Document Type

Article

Publication Date

2009

Department

Mathematics

Abstract

Current-voltage I-V characteristics of different ZnO nanostructures were studied using a combined nonequilibrium Green’s function and density functional theory techniques with the two-probe model. It was found that I-V characteristics of ZnO nanostructures depend strongly on their geometry. For wurtzite ZnO nanowires, currents decrease with increasing lengths under the same applied voltage conditions. The I-V characteristics are similar for single-walled ZnO nanotubes and triangular cross section ZnO nanowires but they are different from I-V characteristics of hexagonal cross section ZnO nanowires. Finally, our results are discussed in the context of calculated transmission spectra and densities of states.

Comments

This article was originally published in Applied Physics Letters 95: 192101. © 2009 American Institute of Physics.

Share

COinS