Document Type
Article
Publication Date
2002
Department
Mathematics
Abstract
The so-called μ — λ curves, where is the slip ratio and μ is the normalised traction force or the friction index, are nonlinear functions of the velocity of the vehicle and the wheel rotational velocity. Despite their predominant use in the literature, linear approximations of such curves may fail to predict correctly key characteristics of vehicle performance efficiency such as torque-speed profiles. Although attempts to model these characteristics in the context of slip phenomena have been made before, to our best knowledge a general model with respect to the vehicle velocity, the wheel rotating velocity, the slip ratio, the traction force, and the torque, has never been formulated and solved as a coupled nonlinear problem based on a system of differential-algebraic equations arising naturally in this context. In this paper, such a model is formulated, solved numerically, and some results of numerical simulation of driving an electric vehicle on di®erent surface conditions are presented.
Recommended Citation
Melnik, Roderick V.N.; Song, Ningning; and Sandholdt, Per, "Dynamics of Torque-Speed Profiles for Electric Vehicles and Nonlinear Models Based on Differential-Algebraic Equations" (2002). Mathematics Faculty Publications. 37.
https://scholars.wlu.ca/math_faculty/37
Comments
This article was originally published in Proceedings of the Fourth International Conference on Dynamical Systems and Differential Equations: 610-617.