Document Type

Thesis

Degree Name

Master of Science (MSc)

Department

Mathematics

Program Name/Specialization

Mathematics for Science and Finance

Faculty/School

Faculty of Science

First Advisor

Dr. Sunny Wang

Advisor Role

Supervisor

Second Advisor

Dr. Yang Liu

Advisor Role

Supervisor

Abstract

This thesis introduces a novel approach to analyzing residential property sales through the lens of stochastic processes by employing point processes. Herein, property sales are treated as point patterns, using self-exciting point process models and a variety of statistical tools to uncover underlying patterns in the data. Key findings include the identification and explanation of clustering in both space and time, and the efficacy of a temporal Hawkes process with a sinusoidal background in predicting home sale occurrences. The temporal analysis starts by employing the state of art techniques for time series data like regression, autoregressive, and autoregressive integrated moving average (ARIMA) models, extending into more sophisticated point process models with self-excitation features. Spatial analysis delves into clustering and dispersion patterns within specific geographic boundaries, utilizing homogeneous and inhomogeneous processes with covariate analysis to describe these patterns. Further, the spatiotemporal exploration sets a precedent for future comprehensive models in this domain. This exploratory research establishes a foundation for further investigation into the dynamic field of real estate analytics under the framework of point processes.

Convocation Year

2024

Convocation Season

Spring

Share

COinS