Document Type

Thesis

Degree Name

Master of Science (MSc)

Department

Geography & Environmental Studies

Program Name/Specialization

Geomatics

Faculty/School

Faculty of Arts

First Advisor

Colin Robertson

Advisor Role

Supervisor

Second Advisor

André E.B. Lacerda

Advisor Role

Thesis Advisor

Abstract

Tropical and subtropical ecosystems have become vulnerable to biological invasion (i.e., bamboo) due to human induced forest fragmentation. Bamboo ecological processes have been found to impede forest development, resulting in a state of arrested succession, which has been found to significantly reduce biodiversity, thus contributing to biotic homogenization. In this study we use a semi-empirical approach to develop a community-level spatially explicit ecological process model (hybrid model) using a time-series of Landsat imagery to describe single-landscape scale ecological processes of a pervasive bamboo species (Merostachys skvortzovii) found throughout the Araucaria forest, a critically threatened subtype of Atlantic forest of southern Brazil. The model is subsequently used to map bamboo spatial distribution at a multiple-landscape scale to examine patch pattern throughout a portion of the Araucaria forest. It was determined that the M. skvortzovii lifecycle is a synchronized process occurring at single and multiple-landscapes scale and is comprised of four broad lifecycle phases: pioneer predominance, mature bamboo, dieback and pioneer regeneration. Bamboo patch pattern was found to be associated with human settlement and geographic features, with clusters of patches sharing the same shape and size observed at multiple scales.

Convocation Year

2018

Convocation Season

Spring

Share

COinS