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Abstract 

Thermal stratification is a core process of lakes which plays a critical role in shaping the 

ecological dynamics of lakes, influencing major processes like nutrient cycling and oxygen 

availability. For shallow polymictic lakes, thermal stratification patterns present some unique 

differences due to the complex and variable nature of these lakes.  

In this thesis, I examined thermal stratification in a shallow polymictic lake in 

northwestern Ontario during the ice-free season of 2019 to investigate the frequency, duration, 

and driving factors of thermal stratification. The lake underwent 146 separate stratification 

events, with a median duration of 2 hours per event, with a total time spent stratified of almost 

one third the entire study period. The primary drivers of this thermal stratification were air 

temperature, wind direction, and wind speed, underscoring their significance in the thermal 

regime of the lake. Also observed was a brief period of hypolimnetic hypoxia prior to a 

phytoplankton bloom, highlighting potential influence from internal nutrient loading from 

sediment to have occurred under low redox conditions. 

Another aspect of this investigation involved the evaluation of five one-dimensional 

models on their performance in reproducing the observed thermal stratification patterns in both 

the shallow polymictic lake and an adjacent shallow dimictic lake. While some models 

demonstrated success in simulating thermal stratification, particularly in the dimictic lake, they 

struggled to accurately capture the dynamic patterns observed in the polymictic lake. The most 

effective model calculated only 55 stratification events compared to the 146 that were observed 
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in Lake 303, suggesting the need for highly specific modeling approaches tailored to shallow 

polymictic lakes.  

These findings exhibit the complexity of thermal stratification dynamics in shallow 

polymictic lakes and highlight the importance for additional field observations as well as 

modeling efforts to enhance our understanding of this lake type. Improving the state of modeling 

for these lakes is essential for accurately representing the unique nature of shallow polymictic 

lakes, which is crucial for effective lake management and conservation strategies. 
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Chapter 1 Introduction 

1.1 Thermal Stratification 

The studying of our aquatic ecosystems forms a cornerstone of environmental science, 

offering insight into the intricate processes taking place within our water bodies. Of the many 

processes and phenomenon that exist regarding lakes, thermal stratification is one in particular 

which is heavily interconnected with many important topics in limnology. Thermal stratification 

fundamentally shapes the physical, chemical, and biological dynamics of lakes, with ties to a wide 

variety of things such as nutrient cycling, phytoplankton blooms, and species distribution (Orihel 

et al. 2015). Exploring the complexities of thermal stratification not only contributes to the 

understanding of lake ecosystems but also provides invaluable insights into broader 

environmental challenges, making it a compelling subject for scientific research as well as 

conservation efforts. 

Thermal stratification in lakes is the natural layering of lake waters by temperature, with 

warmer water being less dense and floating atop colder denser water. The epilimnion is the layer 

which ranges from the surface to the top of the metalimnion, if any, or the hypolimnion (Wetzel 

2001). Being at the surface, this layer is typically the warmest and features the majority of 

photosynthetic activity. The epilimnion is subject to temperature changes through its contact 

with the atmosphere and can be mixed due to wind. Radiation from sunlight contributes to 

temperature changes in the epilimnion but in some cases radiation penetrates deeper into lakes. 

The metalimnion is a transition layer which may be present between the epilimnion and the 

hypolimnion. The top of the metalimnion is often identified by the presence of the thermocline 
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which is the depth at which the temperature decline is steepest. Lastly, the bottom-most layer is 

the hypolimnion where the coldest and, in-turn, the densest waters are found. 

The factors that drive mixing and changes to lake thermal profiles are wind, solar radiation, 

air temperature and occasionally precipitation. Wind induces mixing by generating surface waves 

as wind passes along the lake surface. The power and height of surface waves for shallow lakes 

is dependent on wind velocity, lake depth, and the fetch of the lake (Blottiere 2016). Wetzel 

(2001) described wave height (h) as function lacking good theoretical explanation, proportional 

to the square root of the fetch (x), expressed as: 

ℎ = 0.105√𝑥 

Fetch is the distance which wind blows unobstructed along the lake surface. With a longer 

fetch, waves become increasingly taller and wider, generating greater force which can induce 

mixing within the water column. When the wavelength of the surface wave is greater than twice 

the depth of the lake, the water below the surface begins to move in an elliptical orbit (Laenen 

and Letourneau 1996). These elliptical orbitals then influence the waters below them to move 

within a new smaller orbital, which is a pattern that can continue to the lake bottom, potentially 

influencing and resuspending the sediment (Figure 1). 
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Figure 1.1. Orbital wave motion induced by wind within shallow lakes which can lead to 
resuspension of sediment. From Laenen and LeTourneau, U.S Geological Survey, Portland Oregon, 
1996. 

 

Solar radiation is an important driving force of lake water temperature and thermal 

stratification. When light energy hits the surface of the lake some is absorbed and dispersed 

within the upper layer of the water column while the remainder is reflected back into the 

atmosphere. The amount of light which is absorbed or reflected is dependent on the angle at 

which the light hits the water surface. The depth to which light penetrates to depends on the 

concentrations of suspended particles and dissolved colored compounds in the water (Wetzel 

2001). Dissolved colored compounds and photosynthetic biota are two of the major controlling 
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factors for the absorption of light within lakes that facilitate the conversion from light into heat 

(Kirk 2010). As water transparency decreases with greater concentrations of dissolved colored 

compounds and photosynthetic biota, light cannot penetrate deeper into the water column 

therefore warming the upper layers of the lake (Williamson et al. 2019). Solar radiation displays 

a diel pattern which means that it cycles on a daily basis, peaking during the middle of the day 

and troughing at night. This diel pattern is particularly important with respect to thermal 

stratification, especially within polymictic lakes which often feature a strong relationship 

between stratification and solar radiation (Yang et al. 2018).  

Air temperature drives lake water temperatures through consistent contact at the water-

air interface which maintains a continual exchange of heat between the two media. The influence 

of air temperature on water varies, focusing on the gradient between the two. Air temperature 

also effects lakes differently within regions, but the general relationship describes the 

atmosphere as a heat sink with changing degrees of effect (Yu et al. 2021). Warmer air 

temperatures lead to less heat loss while colder air temperatures can influence a strong cooling 

pattern. During the spring and summer months the air temperatures typically maintain or limit 

the loss of heat while during the fall and winter lead to greater rates of heat loss. The loss of heat 

makes lakes more susceptible to wind-induced mixing. Similar to solar radiation, air temperature 

typically exhibits diel cycles. 

Precipitation as a driver of water temperature is not as significant as the aforementioned 

drivers; however, its influence still deserves recognition. Precipitation can destratify lakes by 

direct cooling and increased inflow but publications typically only found destratification to occur 
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during severe storms with large amounts of rain (Znachor et al. 2008; Klug et al. 2012). Rainfall 

events of 10 mm or greater has been found to potentially reduce water column stratification or 

alter the depth of the mixed layer and thermocline (Liu et al. 2020).  

Stratification and mixing are key components within lakes, with direct links to several 

physical and chemical interactions. Nutrient mixing is one key process with links to lake mixing, 

where mixing causes the nutrient rich waters of the hypolimnion upward toward the surface. 

Nutrient mixing benefits many organisms throughout the water column by improving access to 

many necessary nutrients. An example of this can be seen in the acquisition of phosphorus by 

some phytoplankton which cannot descend the water column (Brookes and Ganf 2001). Lake 

mixing also helps to replenish dissolved oxygen concentrations in the deeper layers of lakes. 

Oxygen primarily enters lakes at the surface and so during stratification the dissolved oxygen 

(DO) concentrations within the hypolimnion decrease mostly due decomposition of organic 

matter by bacteria (Salonen et al. 1992). DO also plays a key role in oxidation-reduction (redox) 

reactions, notably within the hypolimnion. Redox reactions are important for a number of 

processes within lakes, including the release of certain nutrients like phosphorus (P) and iron (Fe) 

from the sediment into the water column in a bioavailable form (Burger et al. 2005). Increased 

levels of P allow for the formation of harmful phytoplankton blooms, while Fe(II) availability can 

result in a shift toward cyanobacterial dominance within the bloom (Molot et al. 2014). 

Shallow lakes (maximum depth <5 m) make up the majority of lakes worldwide (Downing 

et al. 2006; Meerhoff and Jeppesen 2009), therefore, research and the understanding around 

them is important. Surface area and depth are the main physical factors relating to lake mixing, 
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and as shallow lakes typically have great surface area compared to their depth, they are much 

more prone to water temperature changes than deep lakes (Maberly et al. 2020; Woolway et al. 

2020). This susceptibility to temperature changes also makes them potentially more susceptible 

to climate change. The connection between climate change and thermal stratification has been 

an increasingly popular topic in limnology research (Coats et al. 2006; Schneider and Hook 2010; 

Schmid et al. 2014; Woolway et al. 2017, 2020). Thermal stratification in shallow polymictic lakes 

is unique in that it is typically observed as short-lived events, lasting anywhere from a few 

seconds to several days (Wetzel 2001; Kalff 2002; Soulignac et al. 2017). Polymictic lakes are all 

lakes which stratify either more than twice per year or are constantly mixing, but this variation 

between the amount of stratification and mixing allows for a very broad grouping of different 

lakes, despite many significant differences in their specific mixing regimes. The research of 

thermal stratification in shallow polymictic lakes suffers from a lack of observations and case 

studies with little information on the frequency and durations of thermal stratification (Woolway 

et al. 2017). 

 

1.2 Modelling Shallow Polymictic Lakes 

Modelling is an essential tool used in forecasting and management of environments 

which is used in the process of preventing harmful outcomes and effects. Whether purely 

conceptual or highly specific, models have a wide range of applications and capabilities to assist 

in the research and understanding of our natural ecosystems. In environmental science, models 

are a key component of many fields, such as emission computation (air, water, pollution), process 
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control, ground water, and ecosystem research (Grützner 1996). Limnology is another field which 

often uses models to study oxygen balances, eutrophication, and toxic substances in fresh water 

ecosystems (Jørgensen 1995). Models can be run based on a variety of climate scenarios to 

provide insight on the potential future of ecosystems. The major benefits to modelling are the 

capability to simulate experiments which might otherwise be expensive while also avoiding any 

risk associated with experimentation. Another common use case for modelling in limnology, 

which will be used in this thesis, is for calculating and visualizing lake thermal structures, heat 

exchange, and thermal stratification.  

The types of models which are capable of estimating lake thermal profiles are numerous, 

but 1-Dimensional (1-D) models are the most popular, primarily due to their simple yet effective 

nature in understanding lakes as a multitude of stacked layers. Shallow polymictic lakes; however, 

are an underrepresented study site within environmental research (Woolway et al. 2017). Given 

the lack of research showcasing 1-D models and shallow polymictic lakes, the models which might 

best reproduce the observed thermal profiles of these lakes are not widely known. In addition, 

due to the transient and irregular thermal stratification patterns of shallow polymictic lakes, the 

effectiveness of 1-D models in mimicking stratification in these lakes has only been investigated 

in a small number of studies (Wilhelm and Adrian 2008; Stepanenko et al. 2013). The importance 

of modelling along with the aforementioned importance of understanding thermal stratification 

patterns highlight the need for identifying models which can accurately represent shallow 

polymictic lakes. 
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1.3 International Institute for Sustainable Development Experimental Lakes Area Lake 303 and 
Lake 304 

The International Institute of Sustainable Development Experimental Lakes Area (IISD-

ELA) is a research-based organization which specializes in the undertaking of large scale, often 

whole ecosystem, experiments and the collection of long-term (since 1969) meteorological, 

hydrological, and limnological data from boreal watersheds and natural unmanipulated lakes. 

IISD-ELA is approximately 55 km southeast of Kenora, Ontario in the boreal shield landscape of 

northwestern Ontario, Canada on the traditional land of the Anishinaabe Nation in Treaty 3 

territory and the homeland of the Métis Nation. Often referred to the worlds freshwater 

laboratory, IISD-ELA is able to conduct whole-lake experiments and manipulations on as many as 

58 small lakes and their corresponding water sheds to study a variety of topics such as algal 

blooms, climate change, microplastics, to name a few (Higgins et al. 2018; Mejbel et al. 2023; 

McIlwraith et al. 2024).The local environment consists of coniferous forests of black spruce, 

trembling aspen, white birch, jack pine, balsam fir, and tamarack (McCullough and Campbell 

1993).  

Lake 303 and Lake 304 are two neighboring headwater lakes both chosen for research in 

this thesis, specifically due to their shallow nature and mixing regimes. Lake 303 is a shallow 

(mean depth of 1.86 m and max depth of 2.79 m) polymictic lake known to mix several times 

annually while Lake 304 is a shallow (mean depth of 3.22 m and max depth of 7.22 m) dimictic 

lake. The two lakes share similar environmental characteristics and geology which allows for an 

effective comparison.  
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1.4 Thesis Objectives 

The overall objective for this thesis is to contribute to the understanding of transient 

thermal stratification in shallow polymictic lakes. The importance of this research is highlighted 

by the lack of high-frequency data case studies as well as the connections it possesses to climate 

change and harmful phytoplankton blooms. 

The following objectives will allow the accomplishment of this purpose: 

1. Assess the frequency and durations of thermal stratification in Lake 303, a shallow 

polymictic lake (Chapter 2); 

2. Identify which environmental variables best predict transient thermal stratification in 

Lake 303 (Chapter 2); 

3. Evaluate 1-D models in their ability to calculate the observed thermal stratification for 

Lake 303 and Lake 304, a shallow dimictic lake (Chapter 3). 
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Chapter 2 Identifying Transient Stratification, its Potential Drivers, and 
its Connections to Episodic Hypoxia in Eutrophic Lake 303 

2.1 Abstract 

Thermal stratification is an important phenomenon affecting major processes and lake 

conditions like nutrient cycling and anoxia which can have impacts on aquatic organisms and 

ecosystem management. For shallow polymictic lakes, the development of thermal stratification 

can be more complex and variable than for deeper, stratifying lakes. Here, the occurrences of 

thermal stratification in a shallow polymictic lake in northwestern Ontario during the ice-free 

season of 2019 were investigated with the aim to understand how often shallow polymictic lakes 

thermally stratify, how long stratification typically lasts, and which pre-conditions most often 

lead to thermal stratification. Air temperature, wind speed, wind direction, precipitation, and 

short-wave radiation are analyzed to understand and rank their relative connections and effects 

due to their known influences on thermal stratification. The lake stratified 146 separate times 

with a median length of 2 hours, adding to a total of 1102 hours stratified out of the 3316 hours 

measured during the summer of 2019. Air temperature, wind direction and wind speed had the 

strongest influences on transient thermal stratification. The lake experienced a brief period of 

hypolimnetic hypoxia which is also discussed for its implications on internal nutrient loading from 

the sediment due to low redox conditions. 

 

2.2 Introduction 

Transient thermal stratification is a major physical process in many shallow polymictic 

lakes which has been historically overlooked (Holgerson et al. 2022). Early categorization of lake 
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thermal structures considered all polymictic lakes to be in a continuous state of mixing; however, 

thermal stratification has been recorded in many shallow polymictic lakes (Holgerson et al. 2016; 

Andersen et al. 2019). Thermal stratification is the development of a thermally induced density 

gradient which restricts physical and chemical mixing between layers. Thermal stratification in 

shallow polymictic lakes is termed transient, lasting as briefly as a few seconds to several days, 

and is typically associated with high solar intensity, warm weather, and low wind speeds 

(Imberger and Patterson 1981; Wetzel 2001; Kalff 2002). The frequency, duration, and 

seasonality of transient stratification in shallow polymictic lakes have important implications for 

a variety of physical, chemical, and biological properties including: increased surface temperature, 

reduced sub-surface dissolved oxygen concentrations (Loewen et al. 2007), increased nutrient 

(e.g. phosphorus, iron) regeneration and bioavailability (Burger et al. 2005), increased frequency 

and persistence of phytoplankton blooms (Yindong et al. 2021; Zhang et al. 2022), and even 

shifting the dominance of phytoplankton blooms towards cyanobacteria (Kanoshina et al. 2003). 

Solar radiation is connected to stratification via the absorption of light at the lake’s 

surface which transfers to thermal energy which gets stored into the upper waters and in turn 

increases the density gradient. Wind physically mixes lakes by producing surface waves that then 

create turbulence in the water column (Wüest and Lorke 2003). The effects from wind can vary 

based on the physical characteristics of lakes, where a greater lake fetch can proportionally allow 

for taller waves and therefore greater turbulence (Wetzel 2001). Air temperature acts as a 

consistent heat source or sink, relative to surface water temperatures, which can alter the density 

gradient and make lakes more or less susceptible to wind-induced mixing. Air temperature’s heat 

sink nature comes about by regulating the loss of long-wave radiation, or heat. Precipitation also 
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has a notable influence to thermal stratification, where stratification and mixing can both come 

about after a change of the lake’s surface temperatures due to the temperature of the incoming 

rain and/or increase of inflow to the lake. Precipitation also often occurs alongside a decrease in 

solar-radiation due to the associated cloud cover which in turn can act together to reduce 

temperature density gradients. 

A thermally stratified lake can be broken up into three regions: epilimnion, metalimnion, 

and hypolimnion. The epilimnion is the warmest layer and is in contact with the atmosphere, 

while the hypolimnion is the deepest and coldest layer which lines the lakes sediments. The 

epilimnion and hypolimnion are separated by the metalimnion, a layer typically defined by the 

presence of the largest decline in water temperature with respect to depth known as the 

thermocline. As the epilimnion is in contact with the atmosphere, atmospheric gases like oxygen 

can equilibrate with the lake providing suitable oxygen conditions for aquatic biota. The 

epilimnion typically maintains high dissolved oxygen (DO) concentrations while the hypolimnion 

relies on mixing with the metalimnion and epilimnion for DO. Because of this, the hypolimnion 

can experience periods of low DO (typically designated at <2 mg O2 L-1) or none, which are 

referred to as hypoxia and anoxia, respectively. 

Hypoxia and anoxia become important for biota which rely on oxygen for respiration, but 

also for chemical reactions and internal loading of nutrients. When DO concentrations are low, 

redox reactions may facilitate at the sediment-water interface which allow for the internal 

loading of some nutrients. High DO concentrations typically indicate high redox potential, where 

oxygen will often act as a oxidizing agent and prevent many other redox related reactions. Under 
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hypoxic or anoxic conditions, a low redox potential could allow for other redox reactions at the 

sediment-water interface to proceed. Some of these redox sensitive reactions are 

environmentally important, such as for storage and release of phosphorus and iron (Søndergaard 

et al. 2003). 

The occurrence of phytoplankton blooms in shallow polymictic lakes poses interesting 

questions with respect to the sources for the nutrients which blooms require. Blooms can occur 

quite frequently in lakes of high trophic levels and even occasionally in lakes of lower trophic 

levels (Reinl et al. 2021). In many thermally stratified lakes, the development and presence of a 

hypoxic or anoxic hypolimnion allows for a decrease in redox potential resulting in internal 

loading of key nutrients for phytoplankton like soluble iron(II) and phosphorus (P) species from 

sediments. For shallow polymictic lakes, thermal stratification occurs very briefly, preventing the 

development of a hypoxic or anoxic hypolimnion which suggests that internal loading of P and 

iron(II) due to redox in these lakes must be limited, if at all. As redox is the main method for 

internal loading in many lakes (Einsele 1936; Mortimer 1942), the lack of internal loading through 

redox then leads to the question of where exactly the redox sensitive chemical species are 

acquired by phytoplankton in lakes with limited external nutrient sources. One possibility is that 

anoxia arises at the sediment-water interface during a brief period of thermal stratification which 

can support the redox conditions required for P and iron(II) release for phytoplankton that 

descend the water column. Despite some phytoplankton possessing a means to acquire some 

redox sensitive species, like cyanobacteria and iron(II) sequestration of iron(III) via siderophores, 

the amounts of iron(II) which are required for blooms to develop in shallow polymictic lakes 

indicates that siderophores are likely not the main source (Murphy et al. 1976). Internal P loading 
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is known to occur in some polymictic lakes which may suggest that the sediment-water interface 

could become anoxic for brief periods (Jensen and Andersen 1992; Ramm and Scheps 1997; 

Loewen et al. 2007; Bryant et al. 2010; Orihel et al. 2017). Alternatively, phosphorus has been 

observed in recent years to arise from internal loading from processes not related to redox, such 

as desorption of organic or inorganic P bound to minerals, dissolution of minerals containing 

phosphate, and hydrolysis or mineralization of organic matter, to name a few (Katsev et al. 2006; 

Joshi et al. 2015; Li et al. 2015). Compared to P, internal iron (II) loading in polymictic lakes has 

not been researched in as much depth but has been observed and discussed about in some 

previous studies (Andersen and Ring 1999; Molot et al. 2014). In addition to the possible 

occurrences and potential effects for episodic hypoxia and anoxia, transient stratification in 

polymictic lakes can influence other important phenomenon such as phytoplanktonic vertical 

distribution (Santos et al. 2015) and cyanobacterial biomass (Wagner and Adrian 2009).  

Since shallow lakes (maximum depth <5 m) are the most abundant lake type on Earth 

(Downing et al. 2006; Meerhoff and Jeppesen 2009), a point could be made that their research 

could lead to better-informed decision making which in turn could benefit many ecosystems. 

Previous studies on thermal stratification and the physical and biochemical processes connected 

to it are numerous and relatively in-depth for deep lakes (Michalski and Lemmin 1995; Crawford 

and Collier 1997; Ficker et al. 2017; Liu et al. 2019), while studies of thermal stratification for 

shallow lakes are typically shorter-term and less conclusive in comparison despite their 

importance for a variety of ecosystem processes and properties, including internal nutrient 

generation and algal blooms (Tuan et al. 2009; Zhao et al. 2012; Yang et al. 2018). A better 

understanding of transient thermal stratification is increasingly important given the recent 
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observed trend of changes in climate including increased air temperatures, longer ice free 

seasons, and reduced wind speeds (Schneider and Hook 2010; Schmid et al. 2014), especially for 

shallow lakes which may be more prone to water temperature changes (Maberly et al. 2020; 

Woolway et al. 2020). 

The objectives of this chapter, Objective 1 and Objective 2, are to assess the frequency 

and durations of thermal stratification events in a shallow polymictic boreal forest lake in 

Northwestern Ontario (Lake 303), and to identify which environmental variables best predict 

transient thermal stratification. To identify the relative importance of each of the environmental 

variables on thermal stratification, a classification tree, a bagged model, and a random forest 

model are used to identify a correlations.  

 

2.3 Methods 
 

2.3.1 Study Site 

Lake 303 is a shallow polymictic lake found within the boreal shield landscape of the 

International Institute for Sustainable Development Experimental Lakes Area (IISD-ELA) in 

northwestern Ontario, Canada. Lake 303 is a headwater lake with a surface area of 102,012 m2, 

a terrestrial catchment area of 442,000 m2, and mean and max depths of 1.86 m and 2.79 m, 

respectively. The watershed is made up of mostly jack pine (Pinus banksiana) and black spruce 

(Picea mariana) atop thin acidic soils. The lake is found within a depression in granite bedrock. 

Lake 303 has been a part of three different fertilization experiments in the past. For the first 

experiment, the lake was fertilized with P and nitrogen (N) during the summers of 1975 and 1976 
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to evaluate lake’s recovery after eutrophication (Levine and Schindler 1989). During the second 

experiment in 1984, the lake was fertilized with P and N as part of a study looking at the 

effectiveness of alternative methods to harvesting baitfish (Mohr 1985, Mohr 1986). The third 

experiment began in 2019 which only featured additions of P to observe the influence of high P 

loading on cyanobacterial blooms without anthropogenic N sources (Molot et al. 2021). This 2019 

experiment fertilized Lake 303 weekly with 2 kg (13.3 µg L-1) of P in the form of food grade 

phosphoric acid (Univar) from June 6 to October 17. A phytoplankton bloom began around 

August 13 as a result of fertilization. The peak of the bloom occurred on September 9. 

Cyanobacterial blooms were not observed in unfertilized lakes at IISD-ELA during 2019. In 

addition to fertilization experiments, an experiment in 2011 and 2012 involved adding rainbow 

trout (Oncorhynchus mykiss) to the lake to understand growth dynamics in wild populations. 
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Figure 2.1. Lake 303 bathymetry. This figure was obtained and edited from IISD Experimental 
Lakes Area 2022. 

2.3.2 Data Sources 

The environmental variables used in this study, being air temperature, wind speed, wind 

direction, shortwave radiation, and precipitation were selected due to their known influences on 

stratification, along with availability of their recorded data for this site. These variables are also 

quite commonly available among most lake sites, allowing for similar future research to be done 



 
 

18 

for other lakes. Information on the bathymetry of Lake 303 were obtained from an online 

repository from IISD Experimental Lakes Area (Figure 1). HOBO U26 loggers collected DO and 

water temperature data at 1 m and 1.5 m. DO was collected at a resolution of 0.02 mg L-1 and an 

accuracy of ± 0.02 mg L-1 when below 8.00 mg L-1 or ± 0.05 mg L-1 when between 8.00-

20.00 mg L-1. The water temperature data at 2 m was collected by a HOBO TidbiT MX2203 

temperature logger at a resolution of 0.01 °C and an accuracy of ± 0.2 °C. Both the water 

temperature and DO data were measured from May 20, 2019 to October 10, 2019, but due to an 

equipment error, data after October 6 were omitted. Data were collected every 15 minutes by 

the HOBO TidbiT MX2203 temperature logger and every 10 minutes by the HOBO U26 DO loggers. 

In order to synchronize water temperature data, only the measurements at each half hour were 

used. 

Wind speed, wind direction, air temperature, shortwave radiation, and precipitation, 

were obtained from the Rawson Lake meteorological station (Station ID: 30455, Climate ID: 

6036904) at IISD-ELA, located approximately 2 km from Lake 303. Each of these parameters were 

collected hourly. Wind speed was collected at 10 m above ground level using a RM Young 

anemometer every 5 s averaged for each hour to the nearest 0.1 km h-1 at an accuracy of 

± 0.7 km h-1. Wind direction was also collected by the same RM Young anemometer at a 

resolution of 0.1o every 5 s and averaged each hour. Air temperature was recorded with a 

Campbell Scientific CR3000 Micrologger built-in thermistor at a resolution of 0.01 °C and an 

accuracy of ± 0.3 °C. Precipitation was collected with a HyQuest Solutions TB-4 tipping bucket 

rain gauge at a resolution of 0.1 mm and an accuracy of ± 2%. Shortwave radiation was calculated 

from photosynthetically active radiation (PAR), which was measured by a Licor LI-190R quantum 
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sensor with an accuracy of ± 1% at a resolution of 5-10 µA per 1000 µmol s-1 m-2 and recorded by 

a Campbell Scientific CR1000 data logger every 5 s and averaged every 15 minutes. 

 

2.3.3 Classifying Transient Stratification 

Hutchinson (1957) defined stratification as a difference of > 1 °C per meter depth within 

the water column. This simple yet robust definition allows for a clearer identification of 

stratification as a binary variable which was the main consideration in this process versus 

adopting alternative definitions such as Schmidt stability. Due to the shallow maximum depth of 

Lake 303, thermal stratification was interpreted as > 0.5 °C per 0.5 m depth. 

 

2.3.4 Statistical Analysis 

All analyses were performed using R Statistical Software (v4.2.1; R Core Team 2022). The 

meteorologic variables were heavily skewed which required a means to better analyze each 

variable. To understand and identify wind speeds which may be critical to mixing, speeds were 

binned into quantiles based on the probability values of 0.5, 0.67, and 0.95 were used to 

represent half of the dataset, first standard deviation, and second standard deviation, 

respectively. To examine relationships between the time lengths of the stratified and mixed 

periods, their medians and median average deviations (MADs) were used to represent a similar 

statistic to the mean and standard deviation of the mean.  
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Classification trees were used to assess potential relationships between the 

environmental drivers and transient stratification. Classification trees, or classification and 

regression trees (CARTs) can quantify and predict the relative importance of predictor variables 

to an outcome variable. The outcome variable here was thermal stratification and the predictor 

variables were air temperature, wind speed, wind direction, shortwave radiation, and 

precipitation. The classification tree was produced in R using the rpart package (v4.1.19; 

Therneau and Atkinson 2022). The dataset was randomly partitioned to separate datapoints for 

the training and testing of the model. The two partitions were sized according to typical 

proportions for CART modelling, 70% and 30% for training and testing, respectively. The training 

partition is used first to develop the classification tree. The classification tree begins with all 

datapoints grouped within a single bin, or node, and are subsequently split using predictor 

variables and values until they are finally grouped into terminal nodes. At each node the 

datapoints may be split further into a new row with two new nodes, where the number of rows 

within a tree is known as the tree depth. Terminal nodes are achieved when the number of 

datapoints within a node are too few, referred to as the minimum node split. The terminal nodes 

are then classified by their datapoints based on the most popular value for the outcome variable. 

As terminal nodes often contain different values of the outcome variable, the terminal node’s 

classification may incorrectly represent some of the data, known as misclassification error. 

Misclassification error is often the means which accuracy is assessed for trees. Next, the 

classification tree, created from the training partition, is tested using the remaining partition to 

assess the tree’s accuracy on data which it was not trained on. Classification trees can further be 

improved for greater accuracy or interpretability by adjusting features and settings in a process 
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known as pruning. Pruning was done to achieve a tree with the greatest % accuracy through trial-

and-error of comparing combinations of varying values for minimum node split, which is the 

minimum number of data points required within a node in order to split into a new row, and 

maximum tree depth, which is the maximum number of rows. The best % accuracy for the tree 

was found to result from a minimum node split of 81 and a maximum tree depth of 8.  

Bootstrap aggregating (bagging), is another popular type of modelling often used in 

conjunction with CARTs. Bagging involves averaging an ensemble of unpruned classification trees 

from bootstrap samples of the dataset which can improve the accuracy from a single tree 

(Breiman 1996). Each tree within a bagged model is unpruned, allowing it to have many splits 

and great depth. As a result, the trees are less likely to overfit the dataset because the variability 

of each tree’s structure increases, also reducing its bias. The unpruned trees are evaluated for 

their misclassification rates which are then averaged together often resulting in a greater 

accuracy than a single optimized tree. Bagging was done in R using the caret (v6.0.93; Kuhn 2022) 

and ipred packages (v0.9.13; Peters and Hothorn 2022). Several models were tested with varying 

numbers of trees to assess the impact of the number of trees to provide the lowest 

misclassification error. When increasing the number of trees within models, misclassification 

error approaches a general minimum range while the model’s computational complexity 

continues to increase. The ipred package found that 48 trees achieved a near minimum 

misclassification error while still efficiently keeping the computational complexity low. While 

bagging does well to reduce variability in a model, other approaches such as random forests also 

utilize CARTs to produce large ensembles of varying CARTs to reduce model variability from both 

single optimized trees and bagged models. 
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Finally, I used a random forest modelling approach to evaluate drivers of transient 

thermal stratification. Random forest is a type of ensemble machine learning model which uses 

many randomized CARTs to reduce model variability. While both bagged and random forest 

models use unpruned trees, bagged model trees split based on all predictor variables while 

random forest trees randomly select a subset of only a few predictor variables. The random forest 

then provides overall results based on a majority vote among all trees within the model. This 

process helps to reduce overfitting by lowering bias and variability as well as improving the model 

generalization to new data. The random forest model used here was produced in R using the 

randomForest package (v4.7.1.1; Liaw and Wiener 2002). As with bagging, the size of random 

forest models can become computationally complex, so using the randomForest package, a 

forest size of 2000 was found to provide a low variability while reducing computational 

complexity.  

The main benefit to both bagging and random forests over single classification trees is the 

increase in model accuracy to fitting the dataset. The major drawback to these two methods is 

their interpretability. CARTs provide a figure which can be easily interpreted on its own, while 

due to their complexity, bagged and random forest models only provide a ranking of the predictor 

variables based on importance within the models along with their accuracy. One way to further 

analyze bagged and random forest models is to use the Gini coefficient, which is a measure of 

inequality (Menze et al. 2009). To do this, the mean decrease of the Gini coefficient (MDG), is 

calculated for each predictor variable within the models. MDG quantifies the contribution of each 

predictor variable to the homogeneity of the trees within the models, where higher values 

indicate a higher importance to the outcome variable. For both the bagged and random forest 
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models the MDG was calculated to identify which variables had the strongest relationships with 

transient stratification. 

In order to create a better understanding of observed hypoxic event, the R package 

LakeMetabolizer, was used to calculate the metabolism rates within the lake using the recorded 

oxygen data. The package offers the use of several metabolism models, of which the maximum 

likelihood (MLE) model was selected. The MLE model was used to calculate respiration (R), gross 

primary production (GPP), and net ecosystem production (NEP) at 1.5 m depth, the deepest 

depth of oxygen data in the lake. While the DO data from 1.5 m depth does not reflect true deep 

water respiration rates, the mean depth in Lake 303s is 1.86 m which can still allow for a useful 

assessment of the lakes metabolism. 

2.4 Results and Discussion 
 

2.4.1 Identifying Transient Stratification 

Transient thermal stratification was a common occurrence within the lake during the 

study period. Transient stratification was observed 146 times between May 21 and October 6th, 

2019 (Figure 2.2), ranging in duration from 1 to 106 hours. Overall, transient stratification 

occurred during 1102 of the 3316 hours (~33%) of the study period (Figure 2.2). Mixing periods 

lasted from 1 to 136 hours during the study period. Stratified period lengths had a median of 

2 hours and a median absolute deviation of 3 hours while mixed period lengths had a median of 

3 hours and a median absolute deviation of 4 hours. Transient stratification was observed to 

initiate at any time, but most likely during the morning and afternoon. Transient stratification 

often broke down during the night.  
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Figure 2.2. a) Water temperature measurements at 1m, 1.5m and 2m in Lake 303 from May 21 
to October 6, 2019. b) Stratification status of Lake 303 based on the water temperature profile. 
The stratification status is indicated as either “Yes” or “No” meaning the water column was 
stratified or not, respectively. 

 

Water temperatures were warmest on average during July, and the warmest water 

temperatures were recorded at 1 m on July 4th (26.7 °C) and August 3rd (27.1 °C) (Figure 2.2a). 

The highest frequency of transient stratification events occurred during July, with 42 events 

totaling 326 hours (Figure 2.2b). After the peak in water temperatures on August 3rd, the waters 

consistently cooled and stratification became less frequent until September 13th, when a short 

warming trend began that lasted until September 26th.  
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2.4.2 Potential Drivers for Transient Stratification 

 
Figure 2.3. Temporal variation of a) Lake 303 water temperature b) air temperature, c) wind 
speed, d) precipitation, and e) shortwave radiation. 

 

Air temperature and water temperature displayed similar seasonality, with an overall 

warming from May to early August and then a declining of temperatures thereafter (Figure 

2.3a,b). Both air and water temperatures increased in early September before dropping further. 

Since most of the influence from external factors on lakes occurs at the surface, air temperature 
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is known to be strongly connected to water temperature. The influence of air temperature can 

be seen from May to early August through increasing frequency of stratification (Figure 2.2) as 

air temperatures rose and maintained warmer upper water temperatures of around 20.0 °C 

allowing for thermal stratification (Figure 2.3a). Yet when air temperatures cooled in early August, 

the rate of heat loss from the surface waters increased which led to a more isothermal water 

column which mostly continued for the remainder of the month.  

 
Figure 2.4. a) Polar plot of wind data including direction in degrees true north and speed binned 
as > 14.5 km h-1, between and equal to 14.5 km h-1 and 9.0 km h-1, between and equal to 
9.0 km h-1 and 7.2 km h-1, and less than 7.2 km h-1, where 14.5 km h-1, 9.0 km h-1, and 7.2 km h-1 
represent the quantile probabilities of 0.95, 0.67, and 0.5, respectively. Wind direction data was 
binned into 15-degree groups and centered on the midpoint of each bin. b) The shape of the 
surface of Lake 303 as compared to the polar plot’s orientation. 
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The median wind speed during the study period was 7.2 ± 0.7 km h-1, and wind speeds as 

great as 21.7 ± 0.7 km h-1 were measured. To understand the relative significance of wind speed 

due to its non-normal distribution, quantiles were calculated at probabilities of 0.5, 0.67, and 

0.95, resulting in values of 7.2, 9.0, and 14.5 km h-1, respectively (Figure 2.4a). Approximately 

54.1% of wind directions were recorded between 30o-90o and 180o-255o, aligning closely with 

the fetch of Lake 303 (Figure 2.4b).  

 
Figure 2.5. A classification tree binning the stratification status to air temperature, wind speed, 
and shortwave radiation (sw_Wm2) at each hour in the 2019 dataset from May 21 to October 6. 
Terminal nodes display the stratification status of the majority the data points within the node. 
Below the node class is a value for the class proportion and a value of the percentage of the entire 
dataset within the node. The class proportion is calculated by assigning values of 0 and 1 to the 
classes “Stratified” and “Unstratified”, respectively, and identifying the average of the assigned 
values within the node. 
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The classification tree (Figure 2.5) model selected air temperature to be the most 

effective variable in predicting transient stratification, followed by wind speed and then 

shortwave radiation. Precipitation and wind direction were also included in the model’s 

calculations but their influences on stratification were not found to be as predictive. The model 

was found to be 78.0% accurate on the training dataset and 75.3% on the testing data. At the 

first model node split air temperature was used to split the data based on being above and equal 

to or below 15 °C. Air temperature was below 15 °C for 44% of the dataset. At this terminal node, 

the node class was designated as “Unstratified” with a node proportion of 0.89. Node proportion 

refers to the proportion of data points in a node that are classified as “Unstratified”, where a 

node proportion value of 1 would mean all data points in the node were associated with the lake 

being unstratified/mixed and vice versa for a value of 0. Therefore, a node proportion of 0.89 

indicates that the lake was unstratified for 89% of the data points within the node and that 11% 

of the data points were misclassified. The next split in the tree also used air temperature, now 

splitting data points based on being above and equal to or below 24 °C. The next two splits used 

wind speed as the predictor, where wind speeds above and equal to or below 13 km h-1 and 

6.6 km h-1 when air temperatures were > 24 °C or < 24 °C, respectively. The general pattern 

suggests that stratification is connected with higher air temperatures and lower wind speeds. 

In pursuit of lower variability, a bagged tree model was created. The variability from 

bagged tree models is mostly assessed in R using a trial-and-error approach, where many bagged 

models are produced with differing tree numbers to understand the changes they cause in 

variability. Variability stabilized at 48 trees with an accuracy of 77.0% against the test data, an 

improvement of 1.7% points from the single tree model. The bagged model found air 
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temperature to be the best predictor for stratification; however, the next strongest predictors 

were wind direction and windspeed which differed from the single tree model (Figure 2.6a). The 

relative importance of each variable in the bagged model was determined using the MDG. 

Next, a random forest was produced to further reduce variability. Similarly to the bagged 

model, the number of trees to be used in the random forest was tested to understand the effects 

on variability; however, as the random forests are much larger, computational efficiency was also 

important to consider. At 2000 trees, the random forest model’s accuracy on the test data was 

calculated at 79.0%, an improvement of 3.7% points from the single tree model. The random 

forest model also found that air temperature was the greatest predictor of stratification, 

followed by wind direction and windspeed (Figure 2.6b). The relative importance of each variable 

in the random forest model was also determined using the MDG.  

The importance factor of the variables was assessed by quantifying each variable’s 

contribution to the homogeneity of the nodes, known as mean decrease gini (MDG), where larger 

values of MDG indicate stronger importance. With the bagged model (Figure 2.6a), air 

temperature had the greatest MDG value, 716.93, which was 21.7% greater than the wind 

direction MDG, the closest MDG value. The wind speed MDG plotted just below wind direction 

followed by shortwave radiation. Precipitation trails each of the variables, showing very little 

influence on thermal stratification. MDGs of the random forest followed a similar trend (Figure 

2.6b); however, air temperature appeared as an even greater predictor for stratification 

proportionally in comparison with the other variables. 
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Figure 2.6. The variable importance for a) the bagged model and b) the random forest model on 
stratification in Lake 303 based on the mean decrease of the Gini coefficient for each variable. 
The two models looked at the importance of air temperature, wind direction, wind speed, 
shortwave radiation, and precipitation. A larger value in the mean decrease of the Gini coefficient 
indicates a higher importance of the variable for the models. 

 

All three model types found air temperature to be the greatest predictor of stratification 

in Lake 303 over the study period. As found in the single classification tree, air temperature alone 

could be used to classify just under half of the data as not stratified based on a single initial split. 

Many studies that look at air temperature with lake thermal stratification investigate the effects 

of rising global air temperatures and climate change (Coats et al. 2006; Austin and Colman 2007; 

Schneider and Hook 2010; O’Reilly et al. 2015). Schindler et al. 1996 reported increases of 1.6 °C 

for both air temperature and water temperature at IISD-ELA from 1970 to 1990. Small lakes have 

Precipitation

Shortwave Radiation

Wind Speed

Wind Direction

Air Temperature

0 200 400 600 800

Va
ria

bl
e

A

Precipitation

Shortwave Radiation

Wind Speed

Wind Direction

Air Temperature

0 200 400 600 800
Mean Decrease Gini

Va
ria

bl
e

B



 
 

31 

a high surface area to volume ratio which increases the influence of air temperature on thermal 

stratification more for shallow lakes than deeper lakes. 

Wind speed was the second most important variable in the classification tree. The bagged 

and random forest models; however, found wind speed to be the third most important behind 

wind direction. It should be noted that wind direction and wind speed were collected at 10m 

above ground surface at a nearby meteorological site which could be different from the wind 

conditions experienced at the surface of Lake 303. Despite wind speed being commonly known 

as a major influence for lake mixing, surface waves in small lakes tend to be positively correlated 

with the lake fetch (Gorham and Boyce 1989) which can explain the importance of wind direction 

over speed within the two models. Surface wave height is proportional to distance, therefore, 

winds which propel waves along the fetch of Lake 303s oblong shape will result in larger waves, 

having a greater impact on mixing (Wetzel 2001). It is also possible that priority of wind direction 

over speed within the models suggests that the typical wind speeds that Lake 303 experiences 

are sufficient considering the direction of the winds. 

Trends of increasing stratification duration due to decreasing wind speeds have been 

discovered in other parts of the world (Woolway et al. 2017). O’Reilly et al. (2003) observed 

reduced mixing due to decreasing wind velocities which lead to decreased nutrient upwelling to 

surface waters from the hypolimnion in Lake Tanganyika, Africa. Zhao et al. (2011) found that for 

the large shallow Lake Taihu in China, stratification was more likely when windspeeds were 

< 14.4 km h−1.  
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None of the models found a significant influence from precipitation on the thermal 

stratification status of the lake. Research which connects precipitation to stratification is 

relatively scarce compared to the other parameters being explored here (Wantzen et al. 2008). 

Of the publications which report destratification due to precipitation, the focus is often on severe 

storms with a lot of rain (Znachor et al. 2008; Klug et al. 2012). The greatest daily precipitation 

recorded during the study period was 145.6 mm on July 9. Liu et al. (2020) found that daily 

rainfalls of 10 mm or greater could reduce water column stratification or alter the mixed layer 

depth and thermocline due to a decrease in temperature of surface waters or by increased inflow 

in a reservoir in eastern China.  

Shortwave radiation is critical for thermal stratification via the transfer of thermal energy 

to the lake surface. In lakes with low clarity, or high light attenuation coefficients (Kd), light is 

mostly absorbed and stored in the epilimnion as thermal energy which results in increased water 

temperatures in the epilimnion (Mazumder and Taylor 1994; Riis and Sand-Jensen 1998; 

Heiskanen et al. 2015). In clear shallow lakes, light can penetrate to the sediment and warm both 

the water and sediment (Fang and Stefan 1998; Wetzel 2001). The transfer of energy from light 

to heat can therefore prevent thermal stratification if light penetration reaches the lake sediment. 

If phytoplankton populations proliferate and blooms develop; however, light penetration 

declines. Decreased light penetration allows for greater amounts of thermal energy storage in 

the surface waters, encouraging thermal stratification (Kumagai et al. 2000). The classification 

tree shows that thermal stratification arises more often from lower amounts of shortwave 

radiation (Figure 2.5). The two node splits using shortwave radiation both typically associate 

stratification with the lower values of the split, which may be due to light penetration reaching 
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the bottom of the lake to warm the deeper waters and sediment rather than the surface. The 

proportions for each of the terminal nodes following shortwave radiation splits appear to be 

more neutral compared to other terminal nodes in the tree, with the largest terminal node 

representing 12% of the dataset with a value of 0.69 indicating 69% correct classification of “Yes” 

data points within the node. 

The collinearity of the variables to thermal stratification does bring with it a limitation 

regarding the lagged effects of the variables. The comparison here looks directly at the 

instantaneous values of each of the environmental variables compared to the stratification status 

of the lake, however, there are some important things to note which this method does not reflect. 

Firstly, the influences on the temperature of the lake waters from each of the environmental 

variables do not apply in the exact moment of the recorded values, that is, the heating, cooling, 

and mixing brought about by the environmental drivers are only recorded by the water 

temperature sensors in the moments afterward. The temperature sensors were at depths of 1, 

1.5, and 2 m in Lake 303, therefore, the effects of air temperature, for example, would not be 

reflected by the water temperature data until the energy within the surface waters had 

transferred to the water at the sensor at 1m depth. This means that changes in thermal energy 

which are recorded by the sensors may be representing the influences of the environmental 

drivers from a previous timestep. This lag effect was not explored here due to the many 

complications associated with accounting for the cumulative effects caused by each of the 

environmental variables and their likely differing degrees of lag. 
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2.4.3 Transient Stratification and Hypolimnetic Dissolved Oxygen 

 

Figure 2.7. Full metabolism rates for Lake 303, with a) respiration, b) gross primary productivity, 
and c) net ecosystem productivity, as well as the d) DO dataset. 

 

Throughout the study period, Lake 303 DO levels only dropped into hypoxic levels 

(<2 mg DO L-1) on one occasion (Figure 2.7). While DO was not measured at 2m depth in Lake 303, 

measurements on August 3 at 1.5 m had dropped sharply to 1.35 mg L-1. This decrease in DO was 

ephemeral, staying below 2.00 mg DO L-1 for only 20 minutes, before then rising back to the 

typical daily range near ~7.00 mg L-1 within an hour (Figure 2.8). The respiration rate at the same 
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depth on August 3 was calculated to be -7.57 mg O2 L-1 d-1 (Figure 2.9). This drop in DO occurred 

just 10 days before the estimated start of the cyanobacterial bloom on August 13. Although there 

is limited data on the nutrients of the lake especially surrounding this hypoxic event, the timing 

here could suggest that the hypoxic conditions acted as a key trigger in the development of the 

bloom through the release of redox-sensitive nutrients from the sediment. This rapid and short-

lived drop in DO at 1.5 m may also indicate an upwelling of hypoxic waters from deeper in the 

lake. It is possible that Lake 303 was actually hypoxic below 1.5 m (sensor depth) for an unknown 

period of time. Jabbari et al. (2019) captured two short-lived hypoxic events in the western basin 

of Lake Erie which were caused by upwelling hypolimnetic waters from the central basin of the 

lake. 
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Figure 2.8. Lake 303 was stratified from August 1 at 21:00 until August 6 at 02:00. The data for a) 
air temperature, b) wind speed, c) shortwave radiation, d) water temperature, and e) DO are 
included over this stratified period. DO at 1.5m depth dropped to 1.35mg L-1, the lowest value 
observed during the study. 
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Figure 2.9. The a) respiration (R), b) gross primary productivity (GPP), and c) net ecosystem 
production (NEP) in Lake 303 around the time of the observed hypoxia on August 3. The dashed 
lines indicate 0 mg O2 L-1d-1. 

 

Daily highs in air temperature during the hypoxic period were between 25.0-30.0 °C while 

lows were between 16.0-18.0 °C before dropping to approximately 13.0 °C on August 6. 

Increasing wind speeds in addition to this cooling of air temperatures toward the end of the event 

are likely the reason for destratification. Loewen et al. (2007) found that approximately 4.5 

consecutive days of low wind speeds (<7 m s−1) and warm air temperatures were able to induce 

hypoxia due to stable stratification in the shallow western basin of Lake Erie, although 

understanding key thresholds across ecosystems will of course depend on factors including, 
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morphometry, and sediment oxygen demand. Wind speed during the sampling period in 2019 

for Lake 303, although much smaller than the western basin of Lake Erie, was always <7 m s−1. 

Apart from the biochemical implications for hypoxia, decreased oxygen levels are still 

potentially harmful to biota living within the lake. Rainbow trout, which have been introduced to 

Lake 303 on multiple occasions in the past, are known to prefer higher levels of DO (> 7 mg DO L-

1) and have an estimated lower DO threshold concentration of approximately 4.2 mg DO L-1. 

When levels fall below 4.2 mg DO L-1, their survival rate beings to decline (Jiang et al. 2021). 

Rainbow trout were introduced into the lake first in 1969, however, none had survived, which 

warranted the re-introduction of the species in 2011 and 2012. DO in Lake 303 was observed to 

have dropped below 4.2 mg DO L-1 at 1.5 m or deeper on 8 occasions during the study period 

(Figure 2.7). Lowering levels of DO cause fish to swim into shallower waters which can lead to 

other issues such as predation rates or impaired health conditions (Kraus et al. 2023). It is possible 

that the lake’s transient stratification could be responsible for inconsistent DO levels which may 

have been the fault of the failed initial introduction. To current knowledge, the status of rainbow 

trout within the lake is not known, but with the drops in DO which were observed indicate that 

rainbow trout may experience conditions of decreased survivability multiple times on average in 

the lake during the ice-free season.  



 
 

39 

2.5 Conclusion 

Improving the current understanding of thermal stratification in shallow polymictic lakes 

can greatly assist ecosystem management to benefit prediction and prevention methods for 

issues such as phytoplankton blooms, anoxia, and internal nutrient loading. Lake 303 stratified 

146 times and the duration of stratification ranged from as low as <1 hour to as long as 

>106 hours. Thermal stratification mostly occurred during June and July, aligning with warmer air 

temperatures. Seasonally, thermal stratification in Lake 303 was most strongly influenced by air 

temperature, followed by wind direction and speed. The analysis here, however, did not factor 

in the lagged effects of the environmental parameters. Instead, the analysis here looked purely 

at the state of stratification in the lake and the specific parameters at that exact moment which 

may not reflect the true influence of the parameters like the cumulative effect of heat which may 

be carried over from pervious timesteps resulting from an environmental variable. 

Given evidence of increasing air temperature and water temperature at IISD-ELA 

(Schindler et al. 1996) and recent research suggesting that global air temperatures are rising and 

wind speeds are decreasing, thermal stratification could become longer and more frequent 

(Coats et al. 2006; Austin and Colman 2007; Schneider and Hook 2010; O’Reilly et al. 2015; 

Woolway et al. 2017; Maberly et al. 2020), seen through the importance highlighted here of air 

temperature and wind on Lake 303. Future research can look into the extent of anoxia in the 

hypolimnion and its pre-conditions for shallow polymictic lakes as well as the potential effects of 

global warming and decreased wind speeds on the duration and frequency of thermal 

stratification in shallow polymictic lakes. Changes in frequency and/or duration of transient 
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thermal stratification as a result of climate change scenarios could also present an opportunity 

to research how these might affect phytoplankton blooms.  
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Chapter 3 Using 1-D Models to Reproduce the Observed Thermal 
Stratification in a Shallow Polymictic Lake and a Shallow Dimictic Lake 

3.1 Abstract 

Given that shallow lakes are the most abundant type in the world, the importance to 

effectively model them is clear; however, very few studies look at the success of models on these 

lakes. Five models were evaluated on their performance in reproducing the observed thermal 

stratifications for a shallow polymictic lake and an adjacent shallow dimictic lake. Lake 303 is a 

shallow polymictic lake which was observed to stratify 146 times during the spring and summer 

of 2019 but even the model which reproduced the most stratification only reproduced 55 events. 

Some of the models failed to calculate any thermal stratification at all in Lake 303. Lake 304 is a 

shallow dimitic lake which was stratified for almost the entire spring and summer of 2019 and 

many of the models were able to reproduce some or most of stratification; however, the models 

typically calculated a much warmer lake bottom, even by as much as 10.6 °C warmer than 

observed. With regards to the overall temperature profiles of the two lakes the models were 

generally much better at reproducing the surface mixed layer temperatures than they were for 

the deeper layers of the lakes. The findings here suggest that shallow polymictic lakes require 

either highly specific models or improved parameterization for the dynamic and temporal 

thermal stratification patterns of these lakes.  
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3.2 Introduction 

Modelling has grown to become an essential tool in the field of limnology, allowing for 

the transformation of data into terms which can unite scientists, managers, policy makers, and 

stakeholders to bring about important actions required for our environments (Gal et al. 2009; 

Schmolke et al. 2010; Trolle et al. 2012). Aquatic ecosystem models are often used to predict 

oxygen conditions, phytoplankton, zooplankton and fish communities, and temperature profiles 

(Hall and Day 1977). Models can accurately estimate lake temperature profiles using various 

equations and assumptions for mechanisms like mass-balancing and mechanical mixing which 

are especially effective for many deep stratifying lakes. Those same models; however, may not 

be applicable to all lake types. 

With respect to temperature profiles, 1-D models have had great successes with deep and 

stratifying lakes which are well represented by a wide variety of capable models and publications 

(Perroud et al. 2009; Huang et al. 2019). Shallow and polymictic lakes; however, have seen far 

less specific representation in modelling. Shallow lakes are typically polymictic, either stratifying 

multiple times annually or are completely mixed at all times (McEnroe et al. 2013). Shallow 

polymictic lakes can alternate between periods of stable thermal stratification and complete 

mixing, often as a result of changing meteorological conditions (Soulignac et al. 2017), 

highlighting important factors for modelling in shallow lakes. Due to this dynamic nature of 

shallow polymictic lakes, models may yield many differing results due to model specific features, 

for example, the presence and type of parameterization of heat transport in lake sediments, the 

parameterization of turbulent mixing in the water column, the formulation of the absorption of 
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solar radiation, the parameterizations of surface sensible, latent heat, and momentum fluxes, 

and minimum timestep (Stepanenko et al. 2013).  

Shallow polymictic lakes are not often the focus of studies or modellers when producing 

new models (Woolway et al. 2017). When looking at some of the most popular thermal lake 1-D 

models used in literature, they are often found being applied to deeper lakes than shallow 

polymictic lakes (Long et al. 2007; Tanentzap et al. 2007). General Lake Model (GLM), for example, 

is a popular model which is capable of modelling thermal stratification and yet at the time of 

writing there are no publications found indicating its success in reproducing thermal stratification 

in a shallow polymictic lake. There are some models, like FLake and Simstrat, which are known 

to have successfully reproduced thermal stratification for shallow polymictic lakes (Wilhelm and 

Adrian 2008; Stepanenko et al. 2013; Shatwell et al. 2016). 

Understanding the main factors which cause shallow polymictic lakes to mix as well as 

how often they mix can assist with important connections to lake phenomenon such as 

hypolimnetic anoxia, internal nutrient loading, and phytoplankton blooms (Heaney et al. 1986). 

Lake mixing replenishes hypolimnetic oxygen concentrations, whereas a lack of mixing can result 

in anoxia which may limit aquatic species which rely on aerobic respiration to the epilimnion 

(Kramer 1987). Mixing may also reduce internal loading of soluble iron and phosphorus from the 

sediment by preventing their respective reduction-oxidation (redox) reactions through increased 

redox potential via the presence of dissolved oxygen (Mortimer 1942). Internal loading has been 

found to be a significant source of iron and phosphorus for phytoplankton communities, 

especially iron in the case of cyanobacteria (Molot et al. 2014). The importance of mixing on 
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phytoplankton blooms extends past internal loading, such as mixing leading to nutrient 

circulation from the hypolimnion into the epilimnion as well as changes in light attenuation which 

may influence the size and community composition of blooms (Hamilton et al. 2016; Northington 

et al. 2019). A better understanding of these factors also allows for the improvement of models 

to mimic and reproduce accurate simulations of these lakes.  

The objective of this chapter is to evaluate 1-D model reproduction of the measured 

thermal stratification in shallow polymictic Lake 303 and shallow dimictic Lake 304. Five lake 

models are assessed on their success in reproducing the measured thermal stratification in a 

dimictic lake and a polymictic lake which stratifies for periods ranging from one hour to several 

days. 

 

3.3 Methods  
 
3.3.1 Study Sites 

Within the boreal shield landscape of northwestern Ontario lies the International Institute 

of Sustainable Development Experimental Lakes Area (IISD-ELA). Lake 303 and Lake 304 are two 

neighboring headwater lakes at IISD-ELA with sediment-lined granitic bedrock bottoms 

surrounded by coniferous forests with thin soils. Lake 303 is a shallow polymictic lake with a 

surface area of 102,012 m2 and mean and max depths of 1.86 m and 2.79 m, respectively (IISD 

Experimental Lakes Area 2022). 
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Figure 3.1. Lake 303 bathymetry. This figure was obtained and edited from IISD Experimental 
Lakes Area 2022. 

 

Lake 304 is a dimictic lake with a surface area of 37502 m2 and mean and max depths of 

3.22 m and 7.22 m, respectively (IISD Experimental Lakes Area 2022). With Lake 304s mean depth 

being less than 5 m and its max depth not much above 5 m, the assumption is made here that it 

still behaves as a shallow lake. Both lakes have been a part of fertilization experiments in the past. 
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Lake 303 was fertilized in 1975 and 1984 with P and N, and in 2019 with only while Lake 304 was 

fertilized in 1972 with P, N, and C, in 1974 with N and C, in 1976 with N and P, and in 2019 with 

only P (Levine and Schindler 1989; Molot et al. 2021). Rainbow trout (Oncorhynchus mykiss) were 

introduced into both lakes in 1969; however, none survived in either lake. Afterward, rainbow 

trout were again re-introduced to both lakes in 2011 and 2012 again, to study growth dynamics 

in wild populations. 
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Figure 3.2. Lake 304 bathymetry. This figure was obtained and edited from IISD Experimental 
Lakes Area 2022. 

 

Due to its polymictic nature, Lake 303 was selected to test the effectiveness of models in 

reproducing thermal stratification in a shallow polymictic lake. While Lake 304 is also a shallow 

lake, its deeper bathymetry and differing dimictic regime allows for a contrast from Lake 303 to 
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see how well the models could reproduce longer periods of stratification under the same 

environmental conditions. 

 

3.3.2 Data Sources 

Water temperature data was collected from May 20, 2019 to October 10, 2019 using 

HOBO U26 DO loggers and HOBO TidbiT MX2203 temperature loggers. Due to an equipment 

error, data after October 6, 2019 were omitted. HOBO U26 DO loggers collect water temperature 

data at a resolution of 0.02 °C and an accuracy of ± 0.2 °C. HOBO TidbiT MX2203 temperature 

loggers collected water temperature data at a resolution of 0.01 °C and an accuracy of ± 0.2 °C. 

The HOBO U26 DO logger collected data every 10 minutes while the HOBO TidbiT MX2203 

temperature logger collected data every 15 minutes; however, only the data on the hour was 

used to synchronize water temperature and oxygen data with the environmental parameters. In 

Lake 303, water temperatures were taken at 1, 1.5, and 2 m depths while DO was taken at 1 and 

1.5 m depths. In Lake 304 water temperatures were taken at 1, 1.5, 3, 4, and 5 m depths while 

DO was taken at 1 and 1.5 m depths. 

Data for the wind speed, wind direction, air temperature, shortwave radiation, 

precipitation, and relative humidity were obtained from the Rawson Lake meteorological station 

(Station ID: 30455, Climate ID: 6036904) at IISD-ELA, located approximately 2 km from both Lake 

303 and Lake 304. Wind speed data was collected at 10 m using a RM Young anemometer every 

5 s averaged for each hour to the nearest 0.1 km h-1 at an accuracy of ± 0.7 km h-1. Wind direction 

was also collected by the same RM Young anemometer at a resolution of 0.1 °C every 5 s and 



 
 

49 

averaged each hour. Air temperature was recorded with a Campbell Scientific CR3000 

Micrologger built-in thermistor at a resolution of 0.01 °C and an accuracy of ± 0.3 °C. 

Precipitation was collected with a HyQuest Solutions TB-4 tipping bucket rain gauge at a 

resolution of 0.1 mm and an accuracy of ± 2%. Shortwave radiation was calculated from 

photosynthetically active radiation, which was measured by a Licor LI-190R Quantum Sensor with 

an accuracy of ± 1% and a resolution of 5-10 µA per 1000 µmol s-1 m-2 and recorded by a Campbell 

Scientific CR1000 data logger every 5 s and averaged every 15 minutes. The light extinction 

coefficient was calculated from a best fit curve of underwater photosynthetic active radiation 

(PAR) measurements taken each month by a Licor LI-192 Underwater Quantum Sensor with a 

sensitivity of ~4 μA per 1000 μmol s-1 m-2 and an absolute calibration of ± 5% in air traceable to 

NIST and recorded by a LI-1400 logger. Relative humidity was measured using a Vaisala HMP 45C 

Temperature and Relative Humidity Probe with an accuracy of ± 2% when relative humidity is 

between 0-90% and ± 3% when above 90%. Relative humidity was logged hourly by a Campbell 

Scientific CR3000 Micrologger. 

 

3.3.3 1-Dimensional Modelling 

All modelling was conducted in R (v4.2.3) through the package LakeEnsemblR (v1.2.6) 

which facilitates running 5 separate models from a single set of input files and produces a single 

file with each of the models’ outputs (Moore et al. 2021). The models within LakeEnsemblR are 

FLake, GLM, GOTM, MyLake, and Simstrat. Each of these models are often used in a variety of 

ecosystems in both academic research as well as environmental management. In order to run 
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LakeEnsemblR for all the models it requires the basic bathymetry of the lake, a set of input water 

temperature data and several meteorological variables. The required meteorological variables 

are downwelling shortwave radiation, air temperature, wind speed at 10 m, precipitation, 

relative humidity, and sea level barometric pressure. LakeEnsemblR can also use data from 

variables like downwelling longwave radiation, cloud cover, dewpoint temperature, wind 

direction, and vapour pressure, but each of these can be calculated from the required variables 

if they are not specifically provided. Incorporated into LakeEnsemblR for both lakes was also a 

dataset of monthly light extinction coefficients calculated from in-situ measurements.  

FLake was created by Mironov in 2008 to cater toward small-to-medium sized lakes due 

to an underrepresentation at the time. FLake uses a two-layer parameterization of the evolving 

temperature profile and the integral energy budget. FLake uses the concept of self-similarity, or 

assumed shape, of the temperature-depth curve to describe the structure of the thermocline. 

The concept of self-similarity pertains to the temperature profile, allowing for the description of 

the vertical temperature structure of the thermocline. This structure can be reasonably and 

accurately represented by a "universal" function of dimensionless depth. FLake also applies the 

concept of self-similarity to calculate the temperature of the thermally active upper layer of the 

bottom sediments. The bottom sediments in shallow lakes are known to store heat which is 

returned to the water column and is typically most impactful during fall and winter. For 

calculating the depths of the convectively-mixed layer and wind-mixed layer, FLake uses 

entrainment and relaxation-type equations, respectively. FLake is capable of running at hourly to 

daily timesteps and uses the lake-specific parameters of lake depth, water optical characteristics, 
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the temperature at the bottom of the thermally active layer of bottom sediments, and the depth 

of the thermally active layer of bottom sediments.  

The General Lake Model (GLM) (Hipsey et al. 2019) was developed in 2012 by the Global 

Lake Ecological Observatory Network (GLEON) to support the need for a model suitable for lake 

types of substantial variability in morphology, hydrology, and climatic conditions. GLM uses an 

energy balance approach based on estimating the available turbulent energy which is calculated 

specifically for both surface mixing and mixing below the thermocline. Supporting both hourly 

and daily timesteps, GLM is capable of providing a custom number of thin layers at a fine 

resolution which can be particularly useful for focusing on the thermocline.  

The General Ocean Turbulence Model (GOTM) was first published in Burchard et al. 1999 

for use in the most important hydrodynamic and thermodynamic processes related to vertical 

mixing in natural waters. GOTM was formed using code from a number of effective turbulence 

models with various complexities, leading to its key component for solving equations regarding 

turbulent fluxes of quantities of momentum, salt, and heat. GOTM is capable of running at 

timesteps of an hour or longer.  

MyLake was developed by Saloranta and Andersen 2007 to meet the need for a model 

more well-suited to efficient uncertainty and sensitivity analyses, something many models 

typically take very long periods of time to process. MyLake specifically calculates surface heat 

fluxes, wind stress, light attenuation and also heat flux between sediment and water. MyLake is 

restricted to a minimum daily timestep. 
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Simstrat is based on turbulence closure schemes, similar to GOTM, in which rates for 

vertical transport are related to turbulent kinetic energy, rather than being directly influenced by 

external forces (Goudsmit et al. 2002). By combining the use of a buoyancy-extended k-e model 

with a seiche excitation and damping model, Simstrat is capable of predicting diffusivity below 

the surface mixed layer in stratified lakes where most k-e models typically predict negligible 

turbulent kinetic energy. Simstrat also supports timesteps of an hour or longer. 

Each of the models within LakeEnsemblR has the capability to calibrate model specific 

parameters and scaling factors for the input meteorological forcing which is calculated against 

the observed the observed water temperatures. The method used for calibration was Latin Hyper 

Cube (LHC) sampling, in which a near-random sample of the calibratable parameters’ values were 

taken and tested for fit against the observed water temperature values. FLake has a custom and 

calibratable value for cloud cover. GLM can be calibrated for its mixing coefficient within the 

hypolimnion. GOTM can be calibrated for its value for minimum turbulent kinetic energy. 

Simstrat has a calibratable seiche value. Finally, MyLake can be calibrated for its constant for 

physical wind sheltering. All 5 models were calibrated individually for general wind factors and 

shortwave radiation. The .yaml file data with all lake specific information and the model 

calibrated values can be found in Appendix 5.1 and Appendix 5.2.  

Both Simstrat and FLake have been used in previous studies looking at shallow lakes 

(Stepanenko et al. 2013, 2014). In one study they calculated the temperature difference between 

the surface and at 1 m of depth in the observed data and compared it to both models. FLake 

overestimated this temperature difference by 2.88 °C on average while Simstrat overestimated 
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it by only 0.07 °C on average. In another study Simstrat was reported to have produced a thermal 

profile most similar to the observations (Stepanenko et al. 2014). MyLake was successful in 

reproducing thermal stratification in Võrtsjärv, a shallow polymictic lake in Estonia with a 

maximum depth of 6.1 m (Woolway et al. 2017). At the time of writing GOTM and GLM are not 

known to have been used to investigate or successfully reproduce thermal stratification in any 

shallow polymictic lakes. 

The performances of each model will be assessed first by comparing their ability to predict 

thermal stratification in general for both lakes. As it was done in Chapter 2, thermal stratification 

is defined as > 1 °C per meter depth within the water column. For Lake 303, the models will be 

assessed for whether or not they can reproduce a similar frequency of stratification events to the 

observations. Finally, the models’ thermal profiles will be evaluated for accuracy to the observed 

mean temperatures for the entire lake, the epilimnion/mixed layer, and the hypolimnion/deep 

layer. These accuracies will be evaluated using RMSE and difference of mean (DM). 

 

3.4 Results and Discussion 
 
3.4.1 Model Reproduction of Thermal Stratification 

The thermal profiles calculated by each of the models for Lake 303 (Figure 3.3) and Lake 

304 (Figure 3.4) exhibit different degrees of reproduction of the observed thermal profile. For 

Lake 303, GLM (Figure 3.3c,d) and GOTM (Figure 3.3e,f) predicted temperatures with the most 

short-lived stratification events, the most similar of all models to the observed thermal 

stratification (Figure 3.3k,l). GLM predicted temperatures yielding 35 stratification events, many 
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of which began and ended on or around similar dates to the observed events. GLM’s longest and 

shortest periods of stratification were 91 hours and 1 hour, respectively. GOTM calculated water 

temperatures with 55 stratification events, with many also initiating and ending at similar dates 

to the observations; however, it’s longest period of stratification was just 37 hours, compared to 

the observed stratification events which lasted as long as 106 hours. Both GOTM and GLM 

reproduced the observed general trend of a peak in stratification frequency from June 16 to 

July 2, as well as a low in stratification frequency during most of August. Simstrat was slightly less 

successful at predicting stratification, with a total of 24 periods of stratification and the longest 

of those lapsing 27 hours (Figure 3.3i,j). The calculated water temperatures for both FLake (Figure 

3.3a,b) and MyLake (Figure 3.3g,h) did not show any thermal stratification in Lake 303 during the 

study period. Stepanenko et al. 2013 demonstrated the use of FLake to successfully calculate a 

stratified thermal profile in Großer Kossenblatter See (mean and max depths of 2 m and 5 m, 

respectively, however, this is approximately twice as deep as Lake 303. FLake’s inability to 

calculate stratification in the thermal profile may be due to its calculations of the thermal profile 

in bottom sediments here, potentially requiring temperature data closer the sediment for greater 

accuracy. Stepanenko et al. 2014 found FLake to struggle with accurately calculating the 

development of the mixed layer, namely under weak wind conditions. The same study also 

reported that the thermocline in FLake was shallower than both the observations and the other 

models in the study, one of which was Simstrat. MyLake also, was shown to calculate a stratified 

thermal profile for Võrtsjärv (mean and maximum depths of 2.8 m and 6.1 m, respectively) 

(Woolway et al. 2017), however, in addition to being half as deep, the minimum daily timestep is 
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likely to be an issue for not calculating a stratified thermal profile for Lake 303 given the short 

durations of the observed thermal stratification events.  

 

 
Figure 3.3. Thermal profiles and stratification statuses for Lake 303 from each of the 5 models 
and the observations. A) FLake thermal profile and B) stratification status, C) GLM thermal profile 
and D) stratification status, E) GOTM thermal profile and F) stratification status, G) MyLake 
thermal profile and H) stratification status, I) Simstrat thermal profile and J) stratification status, 
K) observed thermal profile and L) stratification status. 
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As Lake 304 is dimictic and more than twice as deep as Lake 303, models should generally 

be better equipped to reproduce its thermal profile due to its thicker mixed layer, which can 

withstand a greater amount of wind-induced mixing and decreases in air temperature which 

cause lakes to mix. GLM calculated a stratified water column for nearly the entire study period 

until turning over in early October, similar to the observations (Figure 3.4c,d). Simstrat 

reproduced most of the entire stratification; however, it calculated the summer stratification 

period to end on August 21, before stratifying again for approximately one week in late 

September (Figure 3.4i,j). FLake calculated Lake 304 to be stratified for approximately half of the 

study period, with brief mixing events in between before becoming isothermal after August 8th 

(Figure 3.4a,b). GOTM predicted 17 brief stratification periods each lasting between 1-3 hours 

(Figure 3.4e,f). Of the 17 brief periods, 14 of them were calculated to occur between 14:00 and 

18:00, indicating a pattern of daily warming followed by nightly cooling. MyLake calculated just 

7 periods of stratification which ranged from 1 day to 7 days (Figure 3.4g,h). When looking at the 

full thermal profiles of the models, GLM and Simstrat performed best in reproducing the colder 

hypolimnetic temperatures measured in Lake 304, compared to the other three models which 

predicted a much warmer hypolimnion.  
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Figure 3.4. Thermal profiles and stratification statuses for Lake 304 from each of the 5 models 
and the observations. A) FLake thermal profile and B) stratification status, C) GLM thermal profile 
and D) stratification status, E) GOTM thermal profile and F) stratification status, G) MyLake 
thermal profile and H) stratification status, I) Simstrat thermal profile and J) stratification status, 
K) observed thermal profile and L) stratification status. 
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portion of the study for Lake 303, FLake, MyLake, and GLM appeared to slightly overestimate the 

mean lake temperature while GOTM typically underestimated it (Figure 3.5a). For the latter half 

of the summer and into fall, all of the models mostly underestimated the mean lake temperature, 

with a few exceptions of spikes in temperature calculated by MyLake throughout the study period. 

The difference of means (DM) for the models for Lake 303 ranged from -0.2 °C to 0.1 °C excluding 

GOTM which yielded -1.2 °C. GOTM and MyLake had the largest root mean square errors (RMSE), 

being 1.6 °C and 1.7 °C, respectively (Figure 3.6). Simstrat had a DM of -0.1 °C and the best RMSE 

out of all the models, which based on these suggests it calculated the most accurate mean 

temperature of the Lake 303. Stepanenko et al. 2014 found similar results for Simstrat in which 

they reported it to have produced the most accurate water temperature distribution of a shallow 

lake compared to FLake and several other 1-D models. 

Each of the models overestimates the mean lake temperature of Lake 304 for most of the 

study period (Figure 3.5b). GLM plotted closest to the observed mean and had the best DM and 

RMSE values, 1.0 °C and 1.3 °C, respectively (Figure 3.6). For the first 6 days of the simulation 

GLM predicted the lake to be colder than the observed temperatures by as much as 1.4 °C before 

rising above the observations afterward. FLake plotted the farthest from the observed mean and 

had the highest DM and RMSE values, 6.2 °C and 6.8 °C, respectively.  

Other studies using FLake have also shown that it can overestimate temperature in 

shallow lake thermal profiles, and also calculate significant positive temperature spikes 

(Stepanenko et al. 2014). Most models which are involved in comparisons with FLake differ by 

being typically turbulence or energy-balance based models, potentially highlighting issues with 
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how FLake calculates the surface waters and mixed layer (Stepanenko et al. 2013, 2014; Sun et 

al. 2020).  

LakeEnsemblR has a minimum requirement for water temperature input data to have at 

least three depths, which means that the models here are operating with the minimum amount 

of observation depths for Lake 303 whereas for Lake 304 there are four observation depths. A 

minimum of three depths for water temperature input data potentially suggests that the greater 

number of observations for Lake 304 allowed for the models to more accurately identify a 

stronger thermal gradient than for Lake 303. 

As model water temperature equations can depend on depth, the mixed layer and the 

layer below, referred to as the deep layer, were separately analyzed to investigate potential 

reasons for the differences between the models and the observations. 
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Figure 3.5. Mean temperature of the entire water column for a) Lake 303 and b) Lake 304 from 
each model and the observations (Obs). 

 
Figure 3.6. Difference of means (DM) between modeled and observed data and the RMSE of each 
model for the entire water columns of Lake 303 and Lake 304. 
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3.4.2 Temperature Reproduction in the Mixed Layer 

The mixed layer is the surface layer of a lake above the thermocline where temperatures 

are uniform throughout. The mixed layer temperatures were calculated here as the mean of the 

temperatures at each of the depths above the thermocline. The thermocline depths for Lake 303 

and 304 were calculated via the R package, rLakeAnalyzer, to be 1.5 m and 2.5 m, respectively, 

for most of the study period so these depths were selected and kept consistent for this 

experiment. Each of the models appeared to mimic the observations for both lakes, with a fairly 

congruent but offset shape in the graph (Figure 3.7). For Lake 303 (Figure 3.7a), FLake, GLM, and 

Simstrat reproduced the mixed layer accurately, typically deviating only during local minima and 

maxima where the changes in temperature were relatively rapid. GOTM typically underestimated 

the temperature of the mixed layer resulting in a DM value of -1.4 °C, while MyLake typically 

overestimated the mixed layer temperature for the first half of the study and underestimated for 

the latter half. Simstrat had the best RMSE value and the median DM value, while FLake had the 

best DM value and the second best RMSE (Figure 3.8). The mixed layer in Lake 304 (Figure 3.7b) 

was slightly warmer than many of the models had calculated for most of the study period. FLake 

and Simstrat plotted quite similarly to the observed mixed layer temperatures, with some 

overestimation typically toward the latter half of the study period. MyLake displayed a decent 

reproduction of temperature relative to the other models, after starting the simulation quite 

colder than the observations but then warming soon after. GLM began the simulation as the least 

accurate model, underestimating the mixed layer temperature in Lake 304 by 6.8 °C on May 22 

before aligning similarly with the observations around early July. All the models except for FLake, 
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in fact, undercalculated the initial observed temperature of the mixed layer by at least 2.8 °C. 

FLake had the best RMSE value and tied with Simstrat for the best DM value. 

GOTM mostly underestimated the temperature of the mixed layers for both lakes and 

was the least accurate model on overall when considering the ranks for DM and RMSE values. 

MyLake often predicted much stronger changes in temperature compared to the observations 

and produced slightly better DM and RMSE values than GOTM; however, it is difficult to compare 

MyLake to the other models based on calculated thermal profiles due to its daily timestep. FLake 

and Simstrat quite closely reproduced similar results to the observed temperatures, supported 

by their relatively lower DM and RMSE values in comparison to the other the models. These 

findings are similar to others which report FLake to be the better choice between models for 

recreating surface water temperatures in shallow lakes (Haddout et al. 2018). GLM also 

reproduced the observations quite closely, but only after warming up for the first few weeks of 

the simulation which likely offset the DM and RMSE values. 
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Figure 3.7. Mean temperature of the mixed layer for a) Lake 303 (0-1m) and b) Lake 304 (0-2m) 
from each model and the observations (Obs). 

 
Figure 3.8. Difference of means (DM) between modeled and observed data and the RMSE for 
each model in the mixed layer for Lake 303 (0-1m) and Lake 304 (0-2m).  
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3.4.3 Temperature Reproduction in the Deep Layer 

The hypolimnion temperatures were calculated as the mean of the temperatures from 

each of the depths from the thermocline and below. For Lake 303, the models again appear to 

have produced a temperature curve similar to the observations (Figure 3.9a). In the first half of 

the study FLake and MyLake mostly overestimated water temperatures but drew closer to the 

observations in the latter half. MyLake again predicted much steeper temperature changes at 

many points of the study compared to each of the other models and the observations. GLM 

reproduced similar temperatures to the observations, except for the beginning of the simulation 

where it underestimated by as much as 5.1 °C, which likely negatively affected its RMSE and DM 

values which were at the median and slightly better than the median, respectively. GOTM mostly 

underestimated throughout the entire study, reflected by having the worst DM value, -1.1 °C 

(Figure 3.10). Finally, Simstrat performed the best by reproducing a similar temperature curve 

and also featured the best DM and RMSE values.  

 

As for Lake 304, each of the models except for GLM performed quite poorly compared to 

their mixed layer results (Figure 3.9b). For the first half of the study FLake typically overestimated 

temperatures by about 5-7 °C and as much as 10.6 °C on August 8. Both GOTM and MyLake 

predicted a steeper increase followed by a steeper decrease in the temperature curve over the 

study period compared to the more subtle and gradual temperature increase observed until the 

beginning of October. MyLake also had the worst values for DM and RMSE among all models, 

being 6.6 °C and 7.8 °C, respectively. Simstrat reproduced a temperature increase which 



 
 

65 

continued into late August and early September where it predicted the warmest temperatures 

of all the models. GLM gave the best reproduction of the Lake 304 temperature curve as well as 

the best DM and RMSE values, -0.2 °C and 0.4 °C, respectively.  

 

 
Figure 3.9. Mean temperature of the deep layer for a) Lake 303 (1.5-2.5 m) and b) Lake 304 (2.5-
6.5 m) from each model and the observations (Obs).  
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Figure 3.10. Difference of means (DM) between modeled and observed data and the RMSE for 
each model in the deep layer for Lake 303 (1.5-2.5 m) and Lake 304 (2.5-6.5 m).  

 

To investigate differences between the models in calculating stratification, the mixed and 

deep layers were separated to narrow a search for notable factors. In Lake 303, both the DM and 

RMSE values for FLake and MyLake were worse for the deep layer than the mixed layer, 

suggesting that these models have a stronger ability to calculate temperature at the lake surface 

than deeper depths. FLake has been shown to calculate temperature gradients near the surface 

as great as 12 °C m-1 in a shallow lake in one study (Stepanenko et al. 2013). FLake has also been 
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when comparing the deep layer to the mixed layer. In Lake 304, every model except GLM had 

worse DM and RMSE results for the deep layer than the mixed layer. These results suggest that 

these models typically reproduce the surface and the mixed layer of Lake 303 and Lake 304 quite 

effectively but stray in their calculations of the thermocline and below. 

3.4 Conclusion 

Thermal stratification observed in Lake 303 was best reproduced by the models GLM and 

GOTM, while Simstrat was also somewhat successful. Even still, these three models only 

reproduced a portion of the frequency of stratification as well as the overall time the lake was 

stratified. The success of these models could indicate that modelling the entire water column of 

shallow polymictic lakes requires a focus on turbulence and energy balance calculations. 

Although GOTM reproduced the highest frequency of thermal stratification as well as relatively 

similar timings of events, it also had the worst DM and RMSE values for both the mixed and deep 

layers. GLM was also not as effective relative to the other models in replicating the entire thermal 

profile of the lake. In this study FLake and MyLake were the only models to specifically consider 

heat flux between sediment and water which could explain their calculated warmer lake bottom 

and lack of thermal stratification. For Lake 304, all models did generally well to predict 

stratification; however, all models underestimated the observed stratification. For Lake 304 GLM 

was the best model in reproducing the observed stratification which, combined with its success 

for Lake 303, may prove it to be a good choice for future studies looking to model stratification 

in shallow lakes. Overall, each of the models appeared to calculate similar trends of warming and 

cooling for Lake 303 and the upper layer of Lake 304; however, the magnitude of change during 

shifts in temperature were typically greater in the models than the observations, with sudden 
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changes in temperature being stronger in the models than were observed. The mixed layer was 

typically reproduced better than the deep layer for both lakes which could suggest that each of 

the models is correct in understanding the interactions at the surface but are not well tuned for 

the deeper depths of these two shallow lakes. For research looking toward modelling the surface 

water or mixed layer temperatures, the best results might be found using FLake or Simstrat.  
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Chapter 4 Conclusions and Recommendations 

4.1 Transient Thermal Stratification in Lake 303 

There are very few case studies on shallow polymictic lakes focusing on their thermal 

profiles and thermal stratification patterns. As part of Objective 1, The experiments within this 

thesis successfully investigated Lake 303, a shallow polymictic lake, using hourly temperature 

data to observe how often and how brief the lake was stratified during the ice-free months of 

2019. The frequency and durations of transient thermal stratification within Lake 303 were 

successfully observed and investigated, with 146 stratification events totaling 1102 of the 

3316 hours of the study period from May to October in 2019. Stratification periods ranged from 

less than one hour to as long as 106 hours with a median duration of 2 hours.  

In line with Objective 2, the classification tree, bagged, and random forest models allowed 

for a clear comparison between the chosen environmental factors and transient thermal 

stratification in Lake 303. The environmental factors most associated with observed stratification 

were air temperature, wind direction, and wind speed, in that order. Short-wave radiation and 

precipitation were not as closely connected to stratification. The classification tree allowed for a 

simple interpretation of how effective air temperature was as an indicator for stratification, 

classifying as much as 44% of the dataset within the first node as not stratified based on when 

temperatures were < 15 °C. The bagged and random forest models agreed with the results of the 

classification tree in terms of the rank of predictor variables, only differing in their improved rank 

for wind direction. The lack of connection between short-wave radiation and thermal 

stratification was not suspected and warrants further research. The only connection regarding 

short-wave radiation found in the classification tree was actually suggesting that higher levels 
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were more often associated with mixing than stratification. One possibility for this may have been 

that the clarity of the water may have allowed for the short-wave radiation to penetrate into the 

deeper layers of the lake instead of inducing thermal stratification by warming only at the surface.  

On August 3 a hypoxic event occurred in Lake 303 which saw DO levels at 1.5 m depth 

drop to 1.35 mg L-1 and remain below 2 mg L-1 for 20 minutes before rising above hypoxic levels. 

This event took place approximately 10 days before the estimated start of a cyanobacterial 

bloom in the lake which is an interesting timing regarding the possibility for this event to have 

allowed for redox conditions which may have promoted internal loading of Fe and P. As the data 

on the lake nutrient levels is limited, conclusions can only be speculated about from this 

observation. 

 

4.2 Reproducing Transient Thermal Stratification in Models 

The final objective of this thesis, Objective 3, was to evaluate the ability of FLake, GOTM, 

GLM, MyLake, and Simstrat, several commonly used 1-D models, to mimic the observed thermal 

stratification patterns in both Lake 303 and Lake 304. Lake 303 is a shallow discontinuous 

polymictic lake, as evidenced by the 146 stratification events observed in the 2019 study period, 

therefore, the ability of the models to calculate similar stratification was the main objective of 

this experiment. Lake 304 was also investigated to allow for a comparison with the model’s ability 

to calculate a dimictic thermal regime for another shallow lake under the same environmental 

drivers. For Lake 303, GOTM calculated 55 thermal stratification events, the most out of all the 
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models; however, this number is much smaller than the 146 observed events. The next best 

model was GLM, which calculated 35 stratification events. 

In terms of the durations of stratification events, GLM calculated events as short as 1 hour 

and as long as 91 hours while GOTM calculated events ranging from only 1 to 37 hours, compared 

to the observed range of 1 to 106 hours. Simstrat trailed GOTM and GLM in the frequency of 

stratification, with just 24 stratification events, the longest of which lapsed just 27 hours. The 

remaining two models, FLake and MyLake, did not calculate any stratification within Lake 303. 

For Lake 304, GLM was the most successful in calculating the observed thermal stratification as 

well as the overall thermal profile. The success of GLM and GOTM seems to suggest that models 

which focus on turbulence and energy balance equations may be most effective when modeling 

the thermal profiles of shallow polymictic lakes. FLake and MyLake were the only models which 

considered the heat flux at the sediment-water interface, which may be where these models 

strayed in their calculations for Lake 303. Overall, models were much closer to correctly 

calculating the temperature for the upper layers of the lakes than the deeper layers.  

 

4.3 Future Research Suggestions 

Throughout this thesis, several areas have been identified which stand to benefit from 

additional research. There is a need for more case studies involving high resolution temperature 

data for shallow polymictic lakes to better understand their thermal stratification patterns. These 

case studies would provide more insight on the frequency and duration of thermal stratification 

in more shallow polymictic lakes. Related to this, research can look into the impacts of transient 
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thermal stratification and any connections it may have to physical or chemical interactions 

relating to concepts such as redox and internal loading or phytoplankton blooms. Studies which 

apply models to shallow polymictic lakes within other regions besides northern Ontario could 

also be beneficial to identify regional differences and the influences of different climates.  

Climate change is an ever-growing research topic (Harper et al. 2021), and so its 

connections to thermal stratification in shallow polymictic lakes regarding duration and 

frequency are also of importance. Many studies look into climate change and thermal 

stratification in lakes as a general group but specific focuses on polymictic lakes could outline 

issues and findings unique to these lakes.  

Research is required to pursue an improved model with the capability of effectively 

predicting the thermal profiles and stratification patterns of shallow polymictic lakes. Models are 

an invaluable tool which are a core part of research, but first there needs to be a more accurate 

and reliable model for shallow polymictic lakes. The investigation in Chapter 3 found that 

turbulence models as well as energy balance models provided the best overall results while 

models using equations for heat flux at the sediment-water interface included too much warmth 

in the hypolimnion. If a new model were to be created specifically for shallow polymictic lakes, 

using models like GLM, GOTM, and Simstrat as a starting point may prove useful. 
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Appendix 

5.1 LakeEnsemblR L303 .yaml File With Model Parameterizations  

 
location: 
   name: Lake 303                               # name of the lake 
   latitude: 49.7                               # latitude [degrees North; min=-90.0; max=90.0] 
   longitude: -93.7                             # longitude [degrees East; min=-360.0; max=360.0] 
   elevation: 400                               # elevation of lake surface above sea level [m] 
   depth: 2.79                                   # maximum water depth [m; min=0.0] 
   hypsograph: L303_bathymetry.csv              # hypsograph [csv file] 
   init_depth: 2.79                              # initial height of lake surface relative to the bottom [m] 
time: 
   start: 2019-05-21 00:00:00                   # start date and time [yyyy-mm-dd HH:MM:SS] 
   stop: 2019-10-06 00:00:00                    # stop date and time [yyyy-mm-dd HH:MM:SS] 
   time_step: 3600.0                            # time step for integration [s; min=0.0] 
config_files: 
   GOTM: GOTM/gotm.yaml                         # GOTM config file [yaml file] 
   GLM: GLM/glm3.nml                            # GLM config file [nml file] 
   Simstrat: Simstrat/simstrat.par              # Simstrat config file [json-format file] 
   FLake: FLake/flake.nml                       # FLake config file [nml file] 
   MyLake: MyLake/mylake.Rdata                  # MyLake config file [Rdata file] 
observations: 
   temperature: 
      file: L303_wtemp.csv                      # file with observed water temperature profiles, with column 

headers according to LakeEnsemblR vocabulary [csv file; if none use NULL or leave empty] 
   ice_height: 
      file: NULL                                # file with observed ice height, with column headers according to 

LakeEnsemblR vocabulary [csv file; if none use NULL or leave empty] 
   water_level: 
      file: NULL                                # file with observed water level in meter above bottom of the lake 
input: 
   init_temp_profile: 
      file: NULL                                # initial temperature profile [csv file; if none use NULL or leave 

empty; if empty/NULL, the observations file will be used] 
   meteo: 
      file: L303_meteo.csv                      # file with meteorological forcing data, with column headers 

according to LakeEnsemblR vocabulary [csv file] 
   light: 
      Kw: L303_kw.csv                           # light extinction coefficient [m-1 or csv file] 
   ice: 
      use: true                                 # turn on ice models? [true/false] 
inflows: 
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   use: false                                   # use in- and outflows? [true/false] 
   file: LakeEnsemblR_inflow_standard_round.csv # file with inflow data, with column headers 

according to LakeEnsemblR vocabulary [csv file; must be provided if inflows -> use is true] 
   number_inflows: 0                            # number of inflows in the inflow file 
outflows: 
   use: false                                   # use outflows? [true/false] 
   file: LakeEnsemblR_inflow_standard_round.csv # file with outflow data, with column headers 

according to LakeEnsemblR vocabulary [csv file; must be provided if outflows -> use is true] 
   number_outflows: 0                           # number of outflows in the outflow file 
   outflow_lvl: -1                              # height of the outflow above the ground. If the outflow is a 

surface outflow use "-1". If there are more than one outflow in the outflow file, this must 
be a list with one value per outflow 

output: 
   file: L303_ensemble_output                   # name of output file, excluding extension 
   format: netcdf                               # format [text/netcdf] 
   depths: 0.5                                  # depths to extract output [m] 
   compression: 4                               # set to an integer between 1 (least compression) and 9 (most 

compression), this enables compression for the variable as it is written to the file 
   time_unit: hour                              # time unit [second, hour, day] 
   time_step: 1                                 # number of time units between output [min=1] 
   time_method: mean                            # treatment of time dimension [point=instantaneous, mean, 

integrated; only used in GOTM] 
   variables: 
      - temp 
      - ice_height 
      - w_level 
scaling_factors:                                # scaling factors to apply to meteorological input, either for all 

models or model-specific. If not specified, no scaling is applied. If both "all" and model-
specific are specified for a certain model, only the model-specific scaling is applied. 

   Simstrat: 
      wind_speed: 0.82083 
      swr: 1.0089 
   GOTM: 
      wind_speed: 0.78828 
      swr: 1.0995 
   GLM: 
      wind_speed: 1.0058 
      swr: 0.99544 
   FLake: 
      wind_speed: 0.76657     
      swr: 0.98684 
   MyLake: 
      wind_speed: 0.87374 
      swr: 0.90042 
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model_parameters:                               # Parameters and scaling factors based on calibration in 
Moore et al. (2020), LakeEnsemblR: An R package that facilitates ensemble modelling of 
lakes. 

   FLake:                                       # FLake specific parameters 
      fetch_lk: 700                             # Typical wind fetch [m] 
      c_relax_C: 0.016399 
   GLM:                                         # GLM specific parameters 
      bsn_len: 700                              # Length of the lake basin, at crest height [m; default=NULL] 
      bsn_wid: 200                              # Width of the lake basin, at crest height [m; default=NULL] 
      mixing/coef_mix_hyp: 1.8832 
   GOTM:                                        # GOTM specific parameters 
      k_min: 2.568e-05                         # minimum turbulent kinetic energy [m^2/s^2; min=0.0; 

default=1.00000000E-10] 
   Simstrat:                                    # Simstrat specific parameters 
      a_seiche: 0.003208 
   MyLake:                                      # MyLake specific parameters 
      Phys.par/C_shelter: 0.22126  
calibration:                                    # calibration section 
   met:                                         # Meteo scaling parameter 
      wind_speed:                               # Wind speed scaling 
         lower: 0.75                            # lower bound for wind speed scaling         
         upper: 1.25                            # upper bound for wind speed scaling 
         initial: 1                             # initial value for wind speed scaling 
         log: false                             # log transform scaling factor 
      swr:                                      # shortwave radiation scaling 
         lower: 0.9                             # lower bound for shortwave radiation scaling 
         upper: 1.1                             # upper bound for shortwave radiation scaling 
         initial: 1                             # initial value for shortwave radiation scaling 
         log: false                             # log transform scaling factor 
   Simstrat:                                    # Simstrat specific parameters                                  
      a_seiche: 
         lower: 0.0008                          # lower bound for parameter 
         upper: 0.0036                          # upper bound for parameter 
         initial: 0.001                         # initial value for parameter 
         log: false                             # log transform scaling factor                           
   MyLake:                                      # MyLake specific parameters                                     
     Phys.par/C_shelter: 
        lower: 0.05                             # lower bound for parameter 
        upper: 0.35                             # upper bound for parameter 
        initial: 0.15                           # initial value for parameter 
        log: false                              # log transform scaling factor    
   GOTM:                                        # GOTM specific parameters 
      turb_param/k_min: 
         lower: 1E-6                            # lower bound for parameter 
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         upper: 4E-5                            # upper bound for parameter 
         initial: 1E-5                          # initial value for parameter 
         log: true 
   GLM:                                         # GLM specific parameters 
      mixing/coef_mix_hyp: 
         lower: 0.1                             # lower bound for parameter 
         upper: 2                               # upper bound for parameter 
         initial: 1                             # initial value for parameter 
         log: false                             # log transform scaling factor 
   FLake:                                       # FLake specific parameters 
      c_relax_C: 
         lower: 0.00003                         # lower bound for parameter 
         upper: 0.3                             # upper bound for parameter 
         initial: 0.003                         # initial value for parameter 
         log: true                              # log transform scaling factor 
 

5.2 LakeEnsemblR L304 .yaml File with Model Parameterizations 

 
location: 
   name: Lake 304                               # name of the lake 
   latitude: 49.7                               # latitude [degrees North; min=-90.0; max=90.0] 
   longitude: -93.7                             # longitude [degrees East; min=-360.0; max=360.0] 
   elevation: 400                               # elevation of lake surface above sea level [m] 
   depth: 7.2                                   # maximum water depth [m; min=0.0] 
   hypsograph: L304_bathymetry.csv              # hypsograph [csv file] 
   init_depth: 7.2                              # initial height of lake surface relative to the bottom [m] 
time: 
   start: 2019-05-21 00:00:00                   # start date and time [yyyy-mm-dd HH:MM:SS] 
   stop: 2019-10-06 00:00:00                    # stop date and time [yyyy-mm-dd HH:MM:SS] 
   time_step: 3600.0                            # time step for integration [s; min=0.0] 
config_files: 
   GOTM: GOTM/gotm.yaml                         # GOTM config file [yaml file] 
   GLM: GLM/glm3.nml                            # GLM config file [nml file] 
   Simstrat: Simstrat/simstrat.par              # Simstrat config file [json-format file] 
   FLake: FLake/flake.nml                       # FLake config file [nml file] 
   MyLake: MyLake/mylake.Rdata                  # MyLake config file [Rdata file] 
observations: 
   temperature: 
      file: L304_wtemp.csv                      # file with observed water temperature profiles, with column 
headers according to LakeEnsemblR vocabulary [csv file; if none use NULL or leave empty] 
   ice_height: 



 
 

77 

      file: NULL                                # file with observed ice height, with column headers according to 
LakeEnsemblR vocabulary [csv file; if none use NULL or leave empty] 
   water_level: 
      file: NULL                                # file with observed water level in meter above bottom of the lake 
input: 
   init_temp_profile: 
      file: NULL                                # initial temperature profile [csv file; if none use NULL or leave 
empty; if empty/NULL, the observations file will be used] 
   meteo: 
      file: L303_meteo.csv                      # file with meteorological forcing data, with column headers 
according to LakeEnsemblR vocabulary [csv file] 
   light: 
      Kw: L304_kw.csv                           # light extinction coefficient [m-1 or csv file] 
   ice: 
      use: true                                 # turn on ice models? [true/false] 
inflows: 
   use: false                                   # use in- and outflows? [true/false] 
   file: LakeEnsemblR_inflow_standard_round.csv # file with inflow data, with column headers 
according to LakeEnsemblR vocabulary [csv file; must be provided if inflows -> use is true] 
   number_inflows: 0                            # number of inflows in the inflow file 
outflows: 
   use: false                                   # use outflows? [true/false] 
   file: LakeEnsemblR_inflow_standard_round.csv # file with outflow data, with column headers 
according to LakeEnsemblR vocabulary [csv file; must be provided if outflows -> use is true] 
   number_outflows: 0                           # number of outflows in the outflow file 
   outflow_lvl: -1                              # height of the outflow above the ground. If the outflow is a 
surface outflow use "-1". If there are more than one outflow in the outflow file, this must be a 
list with one value per outflow 
output: 
   file: L304_ensemble_output                   # name of output file, excluding extension 
   format: netcdf                               # format [text/netcdf] 
   depths: 0.5                                  # depths to extract output [m] 
   compression: 4                               # set to an integer between 1 (least compression) and 9 (most 
compression), this enables compression for the variable as it is written to the file 
   time_unit: hour                              # time unit [second, hour, day] 
   time_step: 1                                 # number of time units between output [min=1] 
   time_method: mean                            # treatment of time dimension [point=instantaneous, mean, 
integrated; only used in GOTM] 
   variables: 
      - temp 
      - ice_height 
      - w_level 
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scaling_factors:                                # scaling factors to apply to meteorological input, either for all 
models or model-specific. If not specified, no scaling is applied. If both "all" and model-specific 
are specified for a certain model, only the model-specific scaling is applied. 
   Simstrat: 
      wind_speed: 0.7506 
      swr: 0.96035 
   GOTM: 
      wind_speed: 1.2353 
      swr: 0.95362 
   GLM: 
      wind_speed: 0.98485 
      swr: 0.90393 
   FLake: 
      wind_speed: 1.0645     
      swr: 0.99304 
   MyLake: 
      wind_speed: 1.2398 
      swr: 0.90844 
model_parameters:                               # Parameters and scaling factors based on calibration in 
Moore et al. (2020), LakeEnsemblR: An R package that facilitates ensemble modelling of lakes. 
   FLake:                                       # FLake specific parameters 
      fetch_lk: 275                             # Typical wind fetch [m] 
      c_relax_C: 0.00029845 
   GLM:                                         # GLM specific parameters 
      bsn_len: 275                              # Length of the lake basin, at crest height [m; default=NULL] 
      bsn_wid: 225                              # Width of the lake basin, at crest height [m; default=NULL] 
      mixing/coef_mix_hyp: 0.22968 
   GOTM:                                        # GOTM specific parameters 
      k_min: 1.0747e-06                         # minimum turbulent kinetic energy [m^2/s^2; min=0.0; 
default=1.00000000E-10] 
   Simstrat:                                    # Simstrat specific parameters 
      a_seiche: 0.00084626 
   MyLake:                                      # MyLake specific parameters 
      Phys.par/C_shelter: 0.074804  
calibration:                                    # calibration section 
   met:                                         # Meteo scaling parameter 
      wind_speed:                               # Wind speed scaling 
         lower: 0.75                            # lower bound for wind speed scaling         
         upper: 1.25                            # upper bound for wind speed scaling 
         initial: 1                             # initial value for wind speed scaling 
         log: false                             # log transform scaling factor 
      swr:                                      # shortwave radiation scaling 
         lower: 0.9                             # lower bound for shortwave radiation scaling 
         upper: 1.1                             # upper bound for shortwave radiation scaling 
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         initial: 1                             # initial value for shortwave radiation scaling 
         log: false                             # log transform scaling factor 
   Simstrat:                                    # Simstrat specific parameters                                  
      a_seiche: 
         lower: 0.0008                          # lower bound for parameter 
         upper: 0.0036                          # upper bound for parameter 
         initial: 0.001                         # initial value for parameter 
         log: false                             # log transform scaling factor                           
   MyLake:                                      # MyLake specific parameters                                     
     Phys.par/C_shelter: 
        lower: 0.05                             # lower bound for parameter 
        upper: 0.35                             # upper bound for parameter 
        initial: 0.15                           # initial value for parameter 
        log: false                              # log transform scaling factor    
   GOTM:                                        # GOTM specific parameters 
      turb_param/k_min: 
         lower: 1E-6                            # lower bound for parameter 
         upper: 4E-5                            # upper bound for parameter 
         initial: 1E-5                          # initial value for parameter 
         log: true 
   GLM:                                         # GLM specific parameters 
      mixing/coef_mix_hyp: 
         lower: 0.1                             # lower bound for parameter 
         upper: 2                               # upper bound for parameter 
         initial: 1                             # initial value for parameter 
         log: false                             # log transform scaling factor 
   FLake:                                       # FLake specific parameters 
      c_relax_C: 
         lower: 0.00003                         # lower bound for parameter 
         upper: 0.3                             # upper bound for parameter 
         initial: 0.003                         # initial value for parameter 
         log: true                              # log transform scaling factor 
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