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ABSTRACT 

Seasonal temperature trend and ice phenology in Great Slave lake (GSL), are strongly influenced 

by warmer inflow from Slave river. The Slave river flows to GSL through Slave river delta (SRD), 

bringing a rise in temperature that triggers the ice break-up process of the lake. Slave river discharge 

is subject to multiple stressors including climate warming and upstream water activities, which in 

turn, directly affects the GSL break-up process. Consequently, monitoring the break-up process at 

SRD, where the river connects to the lake, serves as an indicator to better understand the cascading 

effects on GSL ice break-up. This research aims to develop random forest (RF) models to monitor 

the SRD ice break-up processes, using a combination of satellite images with optical sensors at high 

spatial resolution, including Landsat-5, Landsat-8, Sentinel-2a, and Sentinel-2b. The RF models were 

trained using manually selected training pixels to classify ice, open water, and cloud within the SRD.  

The break-up start period is defined by minimum and maximum thresholds of 60% and 90% on 

ice fraction, which are a trade-off between maximizing the available images and not including images 

that are taken after the break-up start. The results show high variability in the rate of break-up within 

delta using images in recent years with better temporal resolution. Furthermore, a statistically 

significant trend is observed from 1984 to 2023 using the Mann-Kendall test, with the p-value of 

0.05.  

This study is of great significance to northern and high latitude communities who rely on lake ice 

for activities such as transportation, and sustenance. Moreover, the break-up of the delta plays a 

pivotal role in supplying nutrients and sediments, and also in the occurrence of spring flooding. 

Therefore, the outcomes of this study can be leveraged to shape effective water resource management 

policies based on the regional characteristics of climate and hydrological patterns. 
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Chapter 1. General Introduction 

This chapter is structured into four main sections, each designed to provide background knowledge 

for this research. The first section (1.1) discusses the Canada Sub-Arctic region in terms of land cover, 

terrestrial ecoregions and climate. Section 1.2 reviews the lake ice and its interaction with climate in 

Canada's North. Then, section 1.3 reviews lake ice monitoring techniques through the utilization of 

remote sensing and in-situ observations. The subsequent section (1.4) discusses the classification of 

open water and lake ice, with particular emphasis on threshold-based methods and machine learning 

techniques. Lastly, section 5 concludes the chapter, where the research gap is addressed, and the 

objectives of the study are outlined. Understanding the literature presented in these sections assists 

the approach and direction taken in the research program. 

1.1 Canada Sub-Arctic Region 

Situated in the northern part of Canada, below the Arctic Circle, the Sub-Arctic spans several 

provinces and territories. The Sub-Arctic predominantly consists of temperate and sub-polar 

needleleaf forests (Figure 1), encompassing the taiga and Hudson Plains regions (Figure 2) (Rouse et 

al., 1997; Quinton et al., 2011). This region encounters distractive challenges due to ongoing 

environmental change. Consequently, monitoring this region holds immense significance for northern 

communities, whose lives are intricately connected to the health of the land and its resources 

(Davidson et al., 2003; Dibike et al., 2011; Barrette and Charlebois et al., 2018).  
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Figure 1. Canada’s landcover as of 2015 from 30m gridded data (CCRS and NRCan, 2020). Sub-Arctic boundary is delineated in 

black. 

 

Figure 2. Canada's Terrestrial Ecoregion from 1950 to 2000. Data is provided by Commission for Environmental Cooperation 

(CEC), 2011. Sub-Arctic boundary is delineated in black. 
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1.1.1 Climatology  

Influenced by its high latitude and proximity to the Arctic Circle, the Sub-Arctic region is 

characterized by extremely cold temperatures and limited daylight hours in winter, as well as 

relatively cool temperatures in its short summers (Figure 3) (Vincent et al., 2015). According to the 

updated Köppen-Geiger climate classification (Peel et al., 2007), the Sub-Arctic region is 

predominately covered by Sub-Arctic climate zone, which features year-round precipitation. 

Additionally, it includes the continental Sub-Arctic zone with dry summers, as well as the ice cap 

climate zone. Within the Sub-Arctic climate zone, mean temperatures rise above 10°C for one to three 

months of the year, while the coldest month averages below 0°C (Beck et al., 2018). While 

precipitation has increased across Canada in response to climate change, the Sub-Arctic region 

experiences relatively low amounts of precipitation compared to other parts of the country (Figure 4) 

(Vincent et al., 2018). 

 

Figure 3: Mean Annual Temperature from 1950 to 2000. Data is provided by Commission for Environmental Cooperation (CEC), 

2011.  Sub-Arctic boundary is delineated in black. 
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Figure 4. Total Annual Precipitation from 1950 to 2000. Data is provided by Commission for Environmental Cooperation (CEC), 

2011. Sub-Arctic boundary is delineated in black. 

The summer months (Figure 5) bring about precipitation that supports vegetation growth and 

contributes to the lush green landscapes of the area. During the winter, colder temperatures lead to 

precipitation primarily falling as snow. This snowfall can be substantial, resulting in accumulating 

thick snow cover that persists for several months (Estilow et al., 2015). These snowy conditions 

contribute to the formation of ice and frozen lakes, characteristic features of the Sub-Arctic 

environment (Duguay et al., 2003).  It's worth noting that the Sub-Arctic encompasses various 

provinces and territories including the Yukon, Northwest Territories, Nunavut, parts of northern 

British Columbia, Alberta, Saskatchewan, Manitoba, Ontario, and Quebec. Precipitation patterns 

within this region can vary due to factors such as latitude, elevation, proximity to water bodies, and 

local geography. Coastal areas might experience more precipitation due to the influence of moist air 

from the ocean, while inland areas tend to be drier. Although the Sub-Arctic receives less precipitation 
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compared to other regions, the precipitation it receives plays a crucial role in shaping the unique 

ecosystems and climate conditions (Groisman et al., 1994).  

 

    

Figure 5. Observed changes in normalized seasonal precipitation (%) between 1948 and 2012 for the four seasons (From Canada 

Climate Change Report 2019).  

1.2 Lake Ice  

Lakes, reservoirs, streams, and rivers collectively cover approximately 3% of the Earth’s land 

surface, with over half of the area covered by these waterbodies at latitudes above 44°N (Pekel et al., 

2016). Within the Arctic and Sub-Arctic regions, lakes play a significant role, covering around 15% 

to 40% of the landscape with variations in depth and surface area (Duguay et al., 2003b). Lakes 

located in high latitude regions, including the Sub-Arctic, are characterized by both perennial and 

annual ice cover, exhibiting a diverse range of ice phenology such as break-up, freeze-up, and ice 

duration and ice composition varies across these regions. (Brown and Cote, 1992; Latifovic and 

Pouliot, 2007).  

 

Autumn 

Winter Spring 

Summer 
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1.2.1 Lake Ice Phenology 

Lake ice phenology refers to the distinct stages of ice formation, decay, and the duration of ice 

cover on lakes. Freeze-up defines the period between freeze onset (initial onset of ice formation) and 

the complete freeze-up (complete establishment of ice-cover), while break-up defines the period 

between melt onset and the point at which the water becomes free of ice cover (complete 

disappearance of ice). The process of lake ice formation, growth, and decay is significantly influenced 

by the energy from three sources:  heat exchange between the lake and the atmosphere, the thermal 

energy stored within the lake, and heat transfer from inflowing water sources (William, 1965). Lake 

and atmosphere interactions are largely governed by factors such as air temperature, the presence of 

snow, solar radiation, and wind, whereas the heat stored and imported to the lake is governed by lake 

morphology and the discharge of rivers, respectively (Palecki and Barry, 1986; Vavrus et al., 1996; 

Schertzer et al., 2008).  

Air temperature plays a dominant role in the energy balance of lake ice, consequently impacting 

the timing of both break-up and freeze-up (William, 1965). Greater heat storage within the lake during 

ice-free months can lead to delayed ice formation and vice versa (Bonsal et al., 2006). As autumn 

brings a decline in air temperatures, the lake’s surface experiences heat loss, prompting vertical 

movement between the colder upper layer and the warmer beneath.  The convective overturning 

continues until the entire water column reaches its highest density at 4℃. Ice formation initiates once 

the surface of water reaches 0℃, the freezing point of fresh water (Brown and Duguay, 2010). Ice 

freeze-up is relatively less influenced by changes in air temperature, compared to ice break-up. A 

study by Duguay et al. (2006) indicates significantly earlier break-up occurrences over Canadian 

lakes due to recent climate warming; however no clear pattern of changes in freeze-up dates was 

discerned. 
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Another climatic factor that can alter the energy balance of lake ice is the presence of snow. Snow 

has lower thermal conductivity (2.24 Wm-1k-1) compared to ice (0.08-0.54 Wm-1k-1), as well as high 

albedo (Oke, 1978; Sturm et al., 1997). Snowfall substantially delays the freeze-up process by acting 

as an insulation layer for lake ice (Adams, 1976; Adams and Roulet, 1980). Furthermore, wind 

characteristics, particularly wind velocity, play a vital role in changing the lake ice formation and 

decay by drifting and redistributing the snow (Bengtsson, 1986). Higher wind speeds result in less 

snow accumulation on the lake-ice surface, thus limiting the formation of snow-ice layers (Liston and 

Hall, 1995; Huang et al., 2017). 

1.2.2 Lake Ice and Climate Change Interaction  

The warming trend in northern Canada exceeds the global average, with approximately twice the 

magnitude of warming, particularly noticeable during the winter (Figure 6). The impacts of this 

widespread warming are evident in various Canadian regions and are expected to intensify in the 

future (Bush et al., 2019). These effects include more extreme heat events, reduced extreme cold 

spells, prolonged growing seasons, shorter period of snow and ice cover seasons, earlier peak spring 

streamflow, glaciers thinning, permafrost thaw, and rising sea level (Adrian et al., 2009; Jansen et al., 

2007).  

The response of lake ice to climate change depends on lake-specific characteristics. For instance, 

lakes with shallow depths are more affected by changes in heat storage than deeper lakes, and 

accordingly, more sensitive to climate change (Duguay et al., 2003b). Therefore, there is considerable 

regional variation in lake ice response to current and future climate warming. Despite these regional 

variabilities, literature shows a general trend toward earlier ice break-up, later freeze-up, and 

consequently shorter ice duration across Canada (Magnuson et al., 2000). Break-up and freeze-up 

dates have been extensively studied as an indicator of climate change since they can be influenced by 
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only a few degrees in air temperature fluctuation (Liston and Hall 1995; Livingstone et al., 2010). 

Analysis of 12-year (2002-2015) passive microwave ice record indicates an increasingly shorter ice 

duration for roughly 60.6% of Northern Hemisphere lakes (Du et al., 2017). According to 2019 

Canada Climate Change Report, break-up is projected to occur 10 to 25 days earlier by mid-century 

and freeze-up dates to delay by 5 to 15 days, depending on lake-specific characteristics (Bush et al., 

2019). Similarly, Dibike et al., (2011) predicted that in 2040-2079, lake-ice freeze-up dates will be 

delayed by 5-20 days, and break-up will be advanced by 10-30 days, resulting in an overall decrease 

in lake-ice cover duration by about 15–50 days.                      

 

Figure 6. Observed changes (ºC) in seasonal mean temperatures between 1948 and 2016 for the four seasons (From 2019 Canada 

Climate Change Report). 

 

Winter Spring 

Autumn Summer 
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1.3 Lake Ice Monitoring  

This section explores the available in-situ datasets and remote sensing observations, discussing 

their strengths and limitations in the context of ice monitoring. In-situ datasets refer to ground-based 

measurements and observations acquired directly from the study area. These data can include break-

up and freeze-up dates estimation, localized ice thickness profile, ice properties, e.g., ice surface 

roughness and structure, snow cover thickness, and meteorological data. (Kheyrollah Pour et al., 

2017; Lenormand et al., 2002). Remote sensing, on the other hand, refers to the process of collecting 

data without being in direct physical contact. Remote sensing data offers large-scale data, ranging 

from individual lakes to regional and global scale. Such observations typically rely on instruments 

such as satellites, aircraft, drones, or ground-based sensors (Campbell and Wynne, 2011).   

1.3.1 In-situ Observations 

For many years, Canadian government agencies have been actively collecting in-situ data on 

freshwater bodies, including lakes. Three departments within Environment Canada have been 

compiling records separately on ice conditions: the Meteorological Service of Canada Headquarters 

(MSC-HQ), the Canadian Ice Service (CIS), and the Water Survey of Canada (WSC) (Lenormand et 

al., 2002). Given that these records were not easily accessible and were dispersed across different 

government departments, a significant effort was undertaken to gather all available observations into 

a common database known as the Canadian Ice Database (CID). This repository houses 63546 

indexed records from 757 sites, with 562 originating from the MSC-HQ and 195 from the CIS. The 

MSCHQ data mainly relate to freeze-up and break-up dates, whereas the CIS data provide 

information on ice thickness and snow on ice. Unfortunately, a decline in the ground-based 

observation networks that formed the basis for documenting changes in ice cover has occurred since 

the 1980s. The freeze-up and break-up network of 2000-01 only represents 4% of what it 
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encompassed in 1985-86. Similarly, a drastic decline of the ice thickness and the snow on ice network 

is also observable, accounting for just 10% of its 1984-85 counterpart by 1997-98. The severe 

reduction in ice observation networks can be attributed, in part, to significant budget cuts within 

Canadian government agencies during the late 1980s and the 1990s. Currently, the CIS monitors ice 

cover on a weekly basis for over 130 lakes across North America using a combination of SAR and 

optical imagery. The acquired scenes are subject to visual interpretation, and ice cover is reported as 

a fraction out of ten on a weekly basis for each lake. This data is used in a numerical weather 

prediction system operated by Environment and Climate Change (ECCC) (Lenormand et al., 2002).  

Another main source of in-situ datasets comes from traditional knowledge and also volunteer-

based monitoring programs, such as Nature Watch. Nature Watch is initiated by ECCC in partnership 

with the Canadian Nature Federation as part of lake and river break-up and freeze-up network. While 

volunteers in the volunteer-based program are provided with training and guidelines, the dataset may 

not be as consistent as remote sensing data since it can be influenced by variations in observer scope 

and experience. (Futter, 2003). Traditional knowledge is often held by indigenous and local 

communities. Rooted in the depth of cultural heritage, this form of knowledge offers profound 

insights and perspectives that have evolved through long-term, intergenerational experiences. 

Nevertheless, similar to any data source, traditional knowledge does present certain challenges, 

notably the lack of consistency in current form of documentation and its limited applicability beyond 

specific local contexts.  

In conclusion, while in-situ datasets are well-suited to the purposes of validation and calibration, 

they face spatial and temporal limitations as the main source of data for lake ice monitoring. Remote 

Sensing Observation  

In contrast to in-situ datasets, remote sensing observations offer a comprehensive and continuous 

perspective of lake and river ice cover at regional and global scales. Remote sensing employs sensors 
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such as optical, microwave, and thermal infrared to provide a wide range of temporal, spatial, and 

radiometric resolutions for lake monitoring (Chaouch et al., 2014; Dörnhöfer and Oppelt, 2016; 

Murfitt et al., 2021). Optical sensors, such as Operational Land Imager (OLI) and Thermal Infrared 

Sensor (TIRS) aboard Landsat satellites and Moderate Resolution Imaging Spectroradiometer 

(MODIS) on board the Terra and Aqua satellites, have been used extensively in lake monitoring due 

to their high to medium spatial and temporal resolution (Paltan et al., 2015; Wu et al., 2021). MODIS 

as part of NASA's Earth Observing System (EOS) is designed to provide near-daily coverage (Sirguey 

et al., 2008; Chaouch et al., 2014; Zhang et al., 2021). Despite its moderate spatial resolution ranging 

from 250 meters to 1 kilometer, numerous studies, as reviewed by Dörnhöfer and Oppelt (2016), and 

Talukdar et al., (2021), have benefit from its global coverage and frequent revisits in land cover and 

land use change, and sea and lake monitoring (García-Mora et al., 2012; Dörnhöfer and Oppelt, 2016; 

Talukdar et al., 2020).  

Furthermore, Landsat data, jointly managed by NASA and the United States Geological Survey 

(USGS), has been collecting Earth observation data since 1972, offering high spatial resolution of 30 

meters for most spectral bands (Sirguey et al., 2008). Several studies suggest that combining Landsat 

data with other sources may be necessary to achieve higher temporal resolution and thus, more precise 

monitoring of lake and river ice phenology (Yang et al., 2021; Li et al., 2023).   

In lake ice mapping, optical data suffers from three limitations: First, their utility is constrained in 

polar darkness due to the absence of solar radiation. Second, spectral overlap between ice and cloud 

leads to significant misclassification errors. Third, a study by Heinilä et al., (2021) indicates that the 

optical data may not discern between open water pixels and dark ice pixels with a water layer on top 

(Heinilä et al., 2021). Conversely, passively radiated microwave radiation from the Earth’s surface 

can penetrate clouds at low frequencies, providing all weather observation with a significant 
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advantage in regions with persistent cloud cover (Girard et al., 2002; Murfitt and Duguay, 2021). 

Despite this advantage, passive sensors face challenges arising from their coarse spatial resolution, 

which can limit their ability to discern finer details on the Earth's surface (Cai et al., 2020). 

Additionally, active sensors have a limitation in their historical time-series, making them more adept 

at capturing recent changes rather than extensive long-term observations (Hoekstra et al., 2020).  

Airborne observation involves collecting data using sensors and instruments mounted on aircraft 

or remotely piloted aircraft systems (RPAS). RPAS, also known as drones, have gained popularity in 

recent years for monitoring due to their agility and low-altitude capabilities (Alfredsen et al., 2014; 

Kalke and Loewen, 2018). They can carry lightweight sensors like optical cameras, thermal cameras, 

and LiDAR. While satellites typically have coarser spatial resolution, which limits the ability to 

capture fine-scale details of the lake, airborne platforms can offer more localized and detailed 

observations (Everaerts, 2008). However, localized observation can restrict the large sale context, 

and also airborne observation faces constraints in terms of lower temporal coverage due to logistical 

challenges and higher operational costs than satellite-based data access. To maximize the benefits, a 

combination of satellite and airborne observations can be employed (Koenig et al., 2010; Chu and 

Lindenschmidt, 2016).  Integrating data from both sources provides detailed local analysis within the 

context of broader-scale observations and also short-term airborne data can be used in the evaluation 

process. A study by Chu and Lindenschmidt (2016) integrated space-borne and air-borne data in 

monitoring river ice processes in the Slave river. They developed an automated approach using 

MODIS and RADARSAT-2 imagery to monitor the freeze-up process, and characterize ice and water 

(e.g., intact ice, smooth rubble ice, rough rubble ice and open water) during break-up process, 

respectively. They compared the results obtained from the analysis of MODIS and RADARSAT-2 

with time-lapse photos and aerial surveys along the Slave river (Chu and Lindenschmidt, 2016). 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/aerial-survey
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1.4 Ice and Open Water Classification 

Several methods have been proposed for mapping sea ice and lake ice to address human biases 

associated with visual interpretation and to enhance analysis efficiency (Xu et al., 2017; Wu et al., 

2021; Saberi et al., 2022). As one of various popular proposed methods, classification algorithms 

range from parametric to non-parametric approaches, depending on data distribution. In parametric 

classification, data is assumed to follow a specific probability distribution, and the classification 

model’s parameters are estimated based on the data’s statistical characteristics. Conversely, non-

parametric approaches do not assume any particular data distribution. Classification trees (Breiman 

et al., 1984; Friedl and Brodley, 1997), neural networks (Atkinson and Tatnall, 1997), support vector 

machines (SVM), RF (Hoekstra et al., 2020) are some of the more popular non-parametric data driven 

models.  

This chapter focuses on the classification methods employed to discriminate between lake open 

water and ice cover, with a particular emphasis on two approaches: threshold-based methods and 

machine learning techniques.  

1.4.1 Threshold-based Methods 

Early efforts in lake open water and ice cover classification initially revolved around the utilization 

of single-band thresholding techniques. Single-band methods relied on the stability of water and ice 

reflectance in one single band, mostly on water’s low reflectance in longer wavelengths (Bennett, 

1987). Subsequent studies demonstrated the potential of multi-band processing and algebraic-

operation-based indexes, such as Normalized Difference Water Index (NDWI) (McFeeters, 1996; 

English et al., 1999; Frazier et al., 2000; Xu, 2006; Hollstein et al., 2016; Barbieux et al., 2021). The 

reflectance from lake open water and ice cover may change depending on water clarity and presence 

of algae or other organisms. In general, lake materials can be characterized into four categories. 1- 
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Deep water with the lowest reflectance compared to other classes. 2- Shallow water with the common 

property of stable ultra-blue values and low shortwave infrared values. 3- Opaque ice with high 

reflectance in the visible and the near-infrared bands. 4- Clear ice with similar reflectance of water 

below it (Barbieux et al., 2018). Water has notable low reflectance in both the NIR and the shortwave 

infrared (SWIR) and the main difference between shallow and deep water is the visibly brighter 

reflectance of deep water and stable ultra blue and very low shortwave infrared properties of shallow 

water. Ice, on the other hand, shows lower reflection in the NIR, SWIR, and a high degree of 

reflection at visible wavelengths. Also, the surface texture and morphology of ice differ from that of 

open water and can be projected to texture-based indexes. Despite the unique features of ice and open 

water in general, different reflectance of ice, and water across each lake depending on variables, such 

as depth turbidity and also the existence of mixed pixels of ice and water makes it challenging for 

threshold-based method to provide robust classification (Wu et al., 2021). Furthermore, the high solar 

zenith angles in high-latitude regions results in lower TOA reflectance over lakes, and therefore 

threshold-based retrieval algorithms using TOA satellite data do not perform well under such a 

condition (Šmejkalová et al., 2016). However, the latter mentioned challenge also can be addressed 

by using SAR data in the studies focused on recent years. A study by Howell et al. (2009) utilized 

Ku-band QuikSCAT data to assess ice phenology events, such as melt onset, water clear of ice, and 

freeze onset dates for Great Bear and GSL from 2000 to 2006. The stable backscatter pattern observed 

during winter months is used to establish thresholds for estimating the timing of freeze-up, break-up, 

and water becoming clear of ice (Howell et al., 2009). A subsequent study by Surdu et al., (2015) 

employed the same threshold-based approach to determine ice phenology for lakes on the North Slope 

of Alaska, combining ASAR and RADARSAT-2 data from 2005 to 2011 (Surdu et al., 2015). 
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1.4.2 Machine Learning Techniques 

Machine learning (ML), a subset of data-driven approaches, has gained significant popularity 

within remote sensing applications (Tom et al., 2018; Wu et al., 2021; De Coste et al., 2022). This is 

primarily attributed to its capacity to comprehend the intrinsic features of data and extract valuable 

information, leading to notable improvements in classification accuracy.  

The type of ML technique used in a given task, whether supervised or unsupervised, depends on 

the specific objectives, such as available training data, and the target accuracy. Although supervised 

classification can be influenced by biases present in training datasets, the predefined training allows 

for a more targeted and precise classification process. Unsupervised classification, on the other hand, 

autonomously identifies patterns and clusters within the dataset without prior training or labeling, 

which may require additional post-processing and validation steps to interpret and assign meaningful 

labels to the identified clusters. Semi-supervised classification combines elements of both supervised 

and unsupervised approaches, leveraging a smaller set of labeled data in conjunction with a larger 

unlabeled dataset to achieve improved accuracy and efficiency in the classification process 

(Verpoorter et al., 2012; Yan et al., 2020). 

Several ML models have been developed for ice retrieval from optical imagery (Kalke and 

Loewen, 2018; Yang et al., 2021; De Coste et al., 2022). A study by Wu et al. (2021) investigates the 

capability of four machine learning classifiers (i.e. multinomial logistic regression, MLR; SVM; RF; 

gradient boosting trees, GBT) for mapping lake ice cover, water and cloud cover using the 

MODIS/Terra L1B TOA (MOD02) product. Their results show RF and GBT provided overall and 

class-specific accuracies above 98% and the two tree-based classifiers (SVM and RF) offered the 

most robust spatial transferability over the 17 lakes and performed consistently well across 

ice seasons (Wu et al., 2021).  

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/season
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ML techniques also can be integrated with other classification or segmentation methods (Leigh et 

al., 2013; Hoekstra et al., 2020). A study by Hoekstra et al. (2020) presents an approach to classify 

lake open water and ice cover that integrates the iterative region growing using semantics (IRGS) 

algorithm with supervised RF, and SVM, and manual classification. IRGS first locally segments 

homogeneous regions in an image, then merges similar regions into classes across the entire scene. 

Accuracies calculated based on author-generated reference data and reported ice fraction from CIS 

indicate that the RF classification, with an average accuracy of 95.8%, outperformed SVM and the 

manual approach (Hoekstra et al., 2020).  

RF is known as a “random” forest because it introduces randomness during the construction of 

individual decision trees and combines their predictions to make the final classification. Specifically, 

the algorithm randomly selects a subset of the training data (with replacement) for each decision tree 

in the forest. This process is known as bootstrapping or bagging. At each node of the decision tree, 

instead of considering all features, RF randomly selects a subset of features to make a split. This helps 

reduce the correlation between trees and promotes diversity. Each decision tree is constructed by 

recursively splitting the data based on selected features, typically using metrics like Gini impurity. 

The process continues until a stopping criterion is met, such as reaching a maximum depth or 

minimum number of samples per leaf. Once all the decision trees are built, the final prediction is 

determined by majority voting, i.e., the class that receives the most votes from the individual trees is 

selected as the predicted class.  

RF classifier, like other ensemble learning algorithms, can handle complex classification scenarios 

by producing multiple classifications, and ensuring a convergent approach to pixel labeling. 

Additionally, ensemble learning algorithms outweigh the error of a single classification. Another 

advantage of RF classifier is its ability to reduce the chance of overfitting issue (Yang et al., 2021). 
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Overfitting is a major challenge in implementing ML classification; it occurs when the accuracy from 

a training dataset is much higher than that of the validation dataset. Overfitting happens when the 

training dataset is either too small or biased to represent the actual data distribution and variation. RF 

hyperparameters configuration including the number of trees, denoted as Ntree and the number of 

variables available to a split, denoted as Mtry, also can be used to control the overfitting issue 

(Belgiu and Drăguţ, 2016).  

In conclusion, after careful consideration of various classification methods, the RF classification 

has been chosen. The decision to opt for RF is based on its non-sensitivity to outliers in dataset, its 

proven ability to effectively control the overfitting issue, handle complex classification scenarios, 

provide robust predictions, and exhibit model generalization capabilities (Breiman, 2001; Belgiu and 

Drăguţ, 2016). The above-mentioned features make RF classifiers well-suited for analyzing the 

dynamic break-up process across rivers and lakes. 

1.2 Research Objectives 

The general objective of this research is to use ML techniques to improve our understanding of 

GSL ice break-up process by monitoring SRD where the lake break-up starts. The aim of this research 

will be achieved through the following specific objectives.  

1- Develop two RF models to classify ice, open water, and cloud on SRD using Landsat and 

Sentinel observations respectively. 

2- Identify the start of break-up process, following the results of RF models, and analyze 

statistically from 1984 to present. 

Chapter 2, written in manuscript form, details the above-mentioned research objectives. The final 

chapter (Chapter 3) of this thesis provides a general summary discussing contributions made to the 
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field. The chapter also talks about the next steps and the following objectives need to be investigated 

in future works.  
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Chapter 2. Open Water and Ice Cover Classification on Slave 

River Delta Using Machine Learning Techniques 

2.1 Abstract 

Great Slave lake (GSL) experiences seasonal variation in long-term temperature trends and ice 

phenology, strongly influenced by climate change, and cascading effects of upstream water 

management, and water extraction on Slave river inflow. The Slave river flows through Lake 

Athabasca and the Slave river delta (SRD) before reaching GSL, bringing a rise in temperature that 

triggers the ice break-up of the lake. Therefore, monitoring the break-up process at SRD, where the 

river connects to the lake, serves as an indicator to better understand the effects of changes in Slave 

river inflow on GSL ice break-up. This research aims to use machine learning techniques for mapping 

the SRD ice break-up processes. To achieve this goal, a combination of satellite images with optical 

sensors at high spatial resolution, including Landsat-5, Landsat-8, Sentinel-2a, and Sentinel-2b, are 

used to train random forest (RF) models. The Landsat and Sentinel models have accuracies of 91.5% 

and 97.8%, respectively, by testing with independent scenes.  

The break-up start is estimated based on the proportion of the ice versus water pixels in images 

with less than 20% cloud coverage. The start of break-up period is defined by minimum and 

maximum thresholds of 60% and 90% on ice fraction, which are a trade-off between maximizing the 

available images and not including images that are taken after the break-up start. The results show 

high variability in the rate of break-up within delta using images in recent years with better temporal 

resolution. Furthermore, a statistically significant trend is observed from 1984 to 2023 using the 

Mann-Kendall test, with the p-value of 0.05. These findings aim to improve our understanding of 

GSL break-up in response to upstream water activities and climate change.   
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2.2 Introduction 

Seasonal ice cover across rivers and lakes plays a critical role in climatology, closely intertwined 

with both global and regional variability (Prowse and Beltaos 2002; Brown and Duguay, 2010). Lake 

ice has significant implications for ecological, hydrological, and chemical processes (Prowse, 2001; 

Prowse and Brown, 2010; Hampton et al., 2017; Denfeld et al., 2018) and has socio-economic 

importance in regions where it supports sustenance and transportation (Lynch et al., 2010; Barrette 

and Charlebois, 2018). Despite the regional variability of lake ice characteristics, climate warming 

has caused a general trend toward later freeze-up and earlier break-up processes in northern lakes, 

shortening the duration of the ice season (Robertson et al., 1992; Duguay et al., 2006; Dauginis and 

Brown, 2021; Rafat et al., 2023). Changes in seasonal ice duration can significantly affect the lake 

by impacting lake circulation, solar radiation inputs, the exchange of gases between the atmosphere 

and water, and the overall heat budget (Fujisaki et al., 2013; Cavaliere et al., 2021).  

Previous studies have primarily focused on the characteristics of river and lake ice separately, with 

river ice exhibiting multifaceted drivers of change due to dynamic flow, and lake ice being mainly 

influenced by climate factors (Palecki et al., 1986; Williams et al., 2006; Prowse et al., 2007; Mishra 

et al., 2011). However, the factors influencing the ice cover of rivers and lakes are intricately linked 

within a unified system. As the connection of rivers and lakes, the delta is a pivotal node in studying 

the historical behavior of these interconnected components.  

To fully understand this topic and examine long-term trends of changes, the availability of a long 

data record helps in capturing the complex extent of changes. Since in-situ observations are spatially 

and temporally limited especially in the Arctic and Sub-Arctic regions, lake and river ice monitoring 

largely relies on the use of satellite observations. Various satellite sensors have been used to monitor 

seasonal ice cover (Latifovic et al., 2007; Surdu et al., 2016; Scott et al., 2020). Optical sensors, 

including Landsat series, offer a valuable historical data series back to 1970s, despite limitations 

https://www.sciencedirect.com/science/article/pii/S0165232X23000381#bb0055
https://www.sciencedirect.com/science/article/pii/S0380133020301994#b0035
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posed by relatively low temporal resolution, cloud cover, and low light conditions during the polar 

night at high latitudes.  

Accurately monitoring and classifying seasonal ice cover necessitates precise exclusion of optical 

characteristics from lake components, including open water, snow/ice, and cloud cover. Previous 

studies have demonstrated that the optical reflectance of cloud pixels, especially in visible and thermal 

bands, closely resembles that of a surface covered with ice/snow.  Furthermore, the reflectance of the 

water exhibits variation due to turbidity and the presence of suspended materials. Monitoring of water 

in shallow areas also can vary in visible and NIR range by the reflectance originating from the 

underlying surface (Barbieux et al., 2018). Additionally, the reflectance of ice experiences 

fluctuations depending on ice types and composition (Doxaran et al., 2002; Hall and Riggs, 2007).  

Given the persistent and projected climate warming, it is essential to generate data on the lake and 

river ice phenology, utilizing contemporary and precise methods. Various classification methods from 

traditional threshold-based decision trees to ML and deep learning methods have been used in river 

and lake ice classification (Frazier et al., 2000; Xu, 2006; Hollstein et al., 2016; Scott et al., 2019; 

Wu et al., 2021). Traditional decision trees, mostly rely on NIR and SWIR in optical imagery 

(Barbieux et al., 2018; Zhang et al., 2019) and temporal evolution of C-band backscatter in synthetic 

aperture radar (SAR) imagery (Murfitt et al., 2018). A study by Kang et al. (2012) developed a 

threshold-based approach by using daily time series of brightness temperature from the Advanced 

Microwave Scanning Radiometer-Earth Observing System (AMSR-E) and showed that 18.7 GHz H-

pol is the most suitable channel for detecting ice phonological events on GBL and GSL (Kang et al., 

2012). While threshold-based techniques have made a significant contribution to the classification of 

river and lake ice, recent studies are increasingly shifting towards learning techniques, ranging from 

parametric to non-parametric and supervised to un-supervised classification. This is because of ability 
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of learning techniques to capture intricate patterns of data, model generalizability across different 

study areas, and capacity to address limitations posed by threshold-based approaches (Hoekstra et al., 

2020; Yang et al., 2021).  

Among un-supervised approaches, K-means has been frequently used for mapping river ice types. 

A study by Sobiech and Dierking (2013) evaluated the performance of the k-means classification on 

lakes and river channels of the central Lena Delta and showed that it is comparable to that of a fixed-

threshold approach (Sobiech and Dierking, 2013). Neural networks, support vector machines (SVM), 

and RF classifiers are popular examples of supervised learning method used in river and lake ice 

classification (Singh et al., 2020; Kirsikka Heinil et al., 2021; Sola and Scott, 2022). A review study 

by Belgiu and Drăguţ, (2016) reports that RF classifier outperforms artificial neural 

network classifiers in terms of classification accuracy, and provide slightly better results than SVM 

for high dimensional input data such as hyperspectral imagery (Ham et al., 2005). A subsequent study 

by Wu et al., 2021 investigates the capability of four learning classifiers (i.e., multinomial logistic 

regression, SVM, RF, gradient boosting trees) using the MODIS/Terra L1B TOA (MOD02) product. 

Their results show RF and GBT provided overall and class-specific accuracies above 98% and the 

two tree-based classifiers (SVM and RF) offered the most robust spatial transferability over the 17 

lakes and performed consistently well across ice seasons (Wu et al., 2021). 

In this study, we used Landsat-5, Landsat-8, Sentinel-2a, and Sentinel-2b datasets to develop RF 

models for classifying open water, ice and cloud pixels in the SRD, Northwest Territories, Canada. 

The RF classification results are used to estimate the start of the SRD break-up process from 1984 to 

2023, highlighting a statistically significant trend from 1984 to 2023 using two tailed Mann-Kendall 

test. 

https://www.sciencedirect.com/topics/computer-science/artificial-neural-network
https://www.sciencedirect.com/science/article/pii/S0924271616000265?casa_token=9AYwz9ATYxwAAAAA:_XIGymsrplswPeJuvrzjIjL3uTu2ExWJbg5qjT1I8iNhI1EQCgGtjQjmE879pE7uaGkH4CS_zw9h#b0190
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/season
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The subsequent sections of this paper are structured as follows: The next section provides 

background information on the study area and datasets used. the method section describes the RF 

modelling, feature selection, evaluation, and statistical analysis. Moving forward, the Results and 

Discussion section presents the modelling outputs and results of analysis. Finally, the paper concludes 

with a summary of the key findings and paper contribution. 

2.3 Study Area 

The research study area is SRD where the Slave river meets the GSL, located in the Mackenzie 

River Basin in the Northwest Territories, Canada (Figure 7). GSL (61°40′N, 114°W) with a surface 

area of 28.6 × 103 km2 and an average depth of 76 m fed several rivers including the Slave river 

(Rouse et al., 2008). The Slave river flows from Peace Athabasca delta (PAD) in Alberta and provides 

74% of GSL inflow (English et al., 1997) and 82% of the GSL outflow into the Mackenzie River 

(Rouse et al., 2008).  

SRD has a surface area of approximately 400 km2 and comprises hundreds of shallow (<4 m deep) 

and small (<3 km2) lakes (Brock et al., 2009) with side channels of varying depths and widths, 

including Old Steamboat Channel, Resdelta Channel, Middle Channel, Nagle Channel, and the Jean 

River (English et al., 1997). 

Slave river has a drainage area of 616 400 km2, including Peace river, Athabasca river, lake 

Athabasca and the GSL sub-basins in Alberta, British Columbia, Saskatchewan, and the NWT 

(English et al., 1997). Notably, Peace river provides ~65% of the Slave river annual flow and joins 

the Athabasca river at lower Peace Athabasca delta (PAD). PAD is one of the world's largest inland 

freshwater deltas, and situated within Wood Buffalo National Park, a UNESCO World Heritage Site. 

The PAD is closely tied to the hydrological system of the region. Observations by various agencies 

(Alberta Environment and Parks, BC Hydro, Parks Canada, ECCC) have indicated that mechanical 
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breakup is initiated far upstream of the PAD and often triggered by the ice run of the Smoky river, a 

major tributary at ~800 km above the mouth of Peace river; it then essentially progresses in a 

sequence of intermittent break-ups all the way to Slave river and ultimately to GSL. While thermal 

breakups are preceded by advanced thermal decay of the ice, above mentioned break-up is mostly 

governed by mechanical break-up. Mechanical break-up occurs when the physical forces exerted by 

water flow break apart the ice cover (Beltaos and Bonsal, 2021) 

Slave river flow has significant influence on GSL long term temperature data, water quality, and 

ice phenology as it is transferred to GSL via the mouth of SRD (Ménard et al., 2002). Slave river 

discharge is one of main drivers of GSL water lower transparency and has significant influence on 

the optical properties of GSL water, due to the high concentration of suspended particles and 

dissolved organic matter carried by the river (Evans and Muir, 2016). Moreover, the Slave river flow 

plays a significant role in transmitting heat and energy via SRD, thereby influencing convective heat 

fluxes within GSL. This phenomenon leads to an increase in lake temperature, triggering the break-

up process of the lake (Ménard et al., 2002; Rouse et al., 2008; Schertzer et al., 2008; Kang et al., 

2012). Accordingly, SRD break-up process can be served as an indicator of GSL overall break-up 

trend. Slave river flow is subject to several stressors, including upstream water management, water 

extraction, and climate change. These changes results in Slave river regime alteration, such as lower 

flood peaks during the summer and higher discharges in the winter due to the construction of the 

W.A.C. Bennett Dam in 1968 (English et al., 1997; Dubé and Wilson, 2013; Thuan Chu et al., 2016). 

Therefore, monitoring the SRD is vital to improve our understanding of the cascading effects of Slave 

river upstream activities on GSL ice phenology.  

Additionally, as previously discussed, the discharge of the SRD plays a crucial role in shaping the 

circulation patterns and heat fluxes within GSL, consequently influencing the fundamental 
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characteristics of water and ice in the region. The implications of these changes extend beyond the 

physical environment. The water and ice characteristics influenced by SRD discharge, such as 

temperature, turbidity, and nutrient availability shape the habitats and life cycles of organisms, 

ultimately, impacting the ecological balance and biodiversity of the lake (English et al., 1997; Brock 

et al., 2007). Also, the changes impact the lives of the local communities as they rely on lake ice for 

transportation and crossing via ice roads, and sustenance through fishing (Rafat et al., 2021). Given 

the impacts of SRD discharge on human communities, ecosystems, and regional climate, the delta 

region where SRD flows into GSL emerges as a critical geographic location for monitoring.  

 

Figure 7. Site map of Slave river delta (SRD) and Peace Athabasca delta (PAD) in Northwest Territories and Alberta, Canada.  

The a) SRD and b) PAD images are acquired on 2018-05-23, and 2014-05-14, respectively. 

2.4 Dataset and Preprocessing 

Data from Landsat and Sentinel-2 satellites are used to develop RF models. Landsat data are 

selected as the main source of data starting from 1984 to 2013 with Landsat 5 and from 2013 to 

present with Landsat 8. Furthermore, Sentinel-2 imagery, including Sentinel-2a and Sentinel-2b are 

used to increase the temporal resolution from 2015 and 2017, respectively. All images from Landsat 
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and Sentinel have been cropped using a bounding box covering the SRD area and then masked using 

a shape file to remove the land pixels.  

2.4.1 Landsat Archives 

In this study, we used Landsat series of Earth observation data, including Landsat-5 with Thematic 

Mapper (TM) sensor (1984–2013) and Landsat-8 with Operational Land Imager (OLI) and Thermal 

Infrared (TM) Sensors (2013–present). Landsat archives have been downloaded from the United 

States Geological Survey (USGS). Although Landsat images have a temporal resolution of 16 days, 

due to the convergence of Landsat orbit at higher latitudes and the overlap of lateral swaths, the 

temporal resolution has been reduced to an 8-day repeat cycle at the SRD. Landsat (Collection 1 

Level-1) bands are used to train the model and discriminate ice and water pixels, including visible, 

NIR bands, and SWIR bands, as well as the Quality Band (BQA) for cloud masking (Table 1). BQA 

provides cloud and cloud shadow classes at different confidence levels: high (67-100 %), medium 

(34-66 %) and low (0-33 %) (Appendix B). In this study, based on visual inspection, high-confidence 

level is selected. 

2.4.2 Sentinel-2 Archives 

Sentinel-2 data from Copernicus Open Access Hub, acquired by Multi-Spectral Instrument abroad 

the Sentinel-2a (2015–present) and Sentinel-2b (2017-present) satellites are used. Sentinel-2 images 

consist of 13 spectral bands (Table 1)  and provide a revisit time of 10 days with one satellite (2015-

present) and 5 days with two satellites (from 2017 onwards). The Sentinel RF model utilizes the 

Level1C bands that have been resampled to 20 meters to discriminate water, ice, and cloud pixels.  
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Table 1: Spatial resolution and central wavelength of Sentinel-2, Landsat-8, and Landsat-5 bands. 

Sentinel-2 Landsat-8 Landsat-5 

Band Wavelength 

(micrometers) 

Spatial 

Resolution 

(meters) 

Band Wavelength 

(micrometers) 

Spatial 

Resolution 

(meters) 

Band Wavelength 

(micrometers) 

Spatial 

Resolution 

(meters) 

B1 0.443  60 B1 0.43-0.45 30 B1 0.45-0.52 30 

B2 0.490  10 B2 0.45-0.51 30 B2 0.52-0.60 30 

B3 0.560  10 B3 0.53-0.59 30 B3 0.63-0.69 30 

B4 0.665  10 B4 0.64-0.67 30 B4 0.76-0.90 30 

B5 0.705  20 B5 0.85-0.88 30 B5 1.55-1.75 30 

B6 0.740  20 B6 1.57-1.65 30 B6 10.40-12.5 120 

B7 0.783  20 B7 2.11-2.29 30 B7 2.08-2.35 30 

B8 0.842  10 B8 0.50-0.68 15    

B8a 0.865  20 B9 1.36-1.38 30    

B9 0.940  60 B10 10.6-11.19 100    

B10 0.137 60 B11 11.50-12.51 100    

B11 0.161 20       

B12 0.219  20       
 

 

2.5 Method 

2.5.1 Random Forest Modelling  

The RF method creates multiple decision trees, each trained on a bootstrapped sample of training 

data, and searches across a randomly selected subset of features to split nodes of trees. (Leo Breiman, 

2001). By introducing randomness to the construction of each individual tree, the model gains the 

ability to address overfitting issues and remain resilient to outliers within the training data.  The later 

one is especially critical as the training data is manually collected from optical imagery since light 

layers of cloud may not be seen by visualization (Yang et al., 2021). This differentiates RF classifier 

from other learning models, such as SVM, and gradient boosting trees for the purpose of this study. 

In terms of classification output, each tree has a vote, and the result is determined based on the 

majority votes of trees. Like other ensemble learning algorithms, RF can handle complex 

classification scenarios since multiple classifications ensures a convergence approach to pixel 

labeling and outweigh the error of a single classification (Belgiu and Drăguţ, 2016). Therefore, RF 
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models are a suitable choice for the purpose of this study and are expected to provide accurate and 

reliable results. 

2.5.1.1 Feature Selection 

One of the fundamental outcomes of RF models is feature importance measures, including mean 

decrease accuracy or mean decrease Gini values. RF calculates feature rankings by removing each 

feature from the model in turn and comparing accuracies for the model trained with and without the 

feature. The more the model loses accuracy, the more important the feature is. However, it has been 

shown that the RF feature importance measurement can be affected and biased by within-predictor 

correlation (Kristin K. Nicodemus., 2011). Therefore, to assess the capability of Landsat and Sentinel 

bands in discriminating the classes, the average and standard deviation (STD) values for each band 

and each class was computed using training pixels. A greater difference of Average ± STD values for 

a given band across the classes indicates its efficacy in distinguishing between the classes. All bands, 

excluding those with negligible discriminative potential, including SWIR1, SWIR2, and cirrus from 

Landsat bands, and water vapor from Sentinel bands have been selected. Additionally, Mahalanobis 

distance is calculated with a multiple class approach for the remaining features (Scott et al., 2013; 

Masnan et al., 2015) (Appendix D). Mahalanobis distance sorts the features based on their importance 

(Table 2).  

The initial set of features is augmented by incorporating two indices to improve model 

performance, including the water ice classification index (WICI) and a texture-based feature, the local 

average gradient of the red band (Kévin Barbieux et al., 2018). The local average gradient of each 

pixel is defined as the mean of the gradient image in the n × n neighborhood pixels. The parameter 

‘n’ is an odd positive integer, which has been set to 5. Although increasing the ‘n’ value improves 

class identification by including more spatial context, it can also introduce confusion at the borders 
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between ice and water. The local average gradient relies on the difference in intensity changes 

between water and ice. According to Barbieux et al. (2018), water pixels exhibit smoother changes 

in intensity, resulting in a lower local average gradient, whereas ice pixels exhibit high changes in 

intensity resulting in a high local average gradient. The red band for the local average gradient feature 

is selected since its STD values, derived from training pixels, were one of the highest in the ice class 

and the lowest in water class, compared to the other Landsat and Sentinel bands. In essence, while 

some other bands demonstrated distinction in the intensity changes between ice and water classes, 

the red band could more effectively represent this for our study region. WICI and the texture-based 

feature have been shown to improve classification results when included in feature vector (Kévin 

Barbieux et al., 2018).  WICI plays a vital role in enabling the model to differentiate between shallow 

water and ice, which is accomplished by leveraging the uniformity of shallow water reflectance in 

the near and shortwave infrared spectral. Ice, on the other hand, shows noticeable deviations in 

reflectance between these two spectral ranges (Appendix A). 

The final set of features selected for this study are summarized in (Table 3). Variance inflation 

factor (VIF) test with a threshold of 10 has been used to remove features that are correlated (Chatterjee 

and Simonoff, 2013; O’brien 2007). 

Table 2. Sorted bands based on Mahalanobis distance. 

Sentinel bands 𝐃𝐀
𝟐  Landsat bands 𝐃𝐀

𝟐  

SWIR3 0.861 ultra blue 0.852 

ultra blue 0.860 blue 0.851 

green 0.853 green 0.843 

blue 0.851 NIR 0.823 

red edge3 0.850 red 0.816 

 NIR 0.849  thermal 1 0.779 

red edge2 0.842  thermal 2 0.744 

red 0.838   

red edge1 0.834   

narrow NIR 0.830   
 

 

 

 

https://www.google.ca/search?tbo=p&tbm=bks&q=inauthor:%22Samprit+Chatterjee%22
https://www.google.ca/search?tbo=p&tbm=bks&q=inauthor:%22Jeffrey+S.+Simonoff%22
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Table 3: Sentinel and Landsat Model’s Features. As BQA band is used to discriminate cloud, the Landsat model needs less 

features than Sentinel one. 

 

Sentinel model’s Features Landsat Model’s Features 

Local Average Gradient of Red Local Average Gradient of Red 

ultra blue ultra blue 

red red 

NIR NIR 

narrow NIR WICI 

WICI thermal 1 

SWIR1  

SWIR2  

 

2.5.1.2 Training and Modeling 

RF models are sensitive to hyperparameters, such as the number of trees (Ntree) and the number 

of randomly selected variables to split the nodes (Mtry). Here, the Ntree and Mtry are tuned using the 

cross-validation method. The cross-validation method divides the training set into k folds (here k = 

10). The model is trained on k-1 folds and tested on the remaining fold. The iteration continues until 

the model is tested at least once with each fold. Through this approach, an RF model was generated 

for each potential value of the hyperparameters, allowing us to identify the configurations that 

resulted in the highest accuracy (Appendix C). 

In terms of training data, a hand-picked set of ten images, approximately 600,000 pixels, have 

been selected, from early to late break-up process to include different types of ice cover. All the 

images were first visually checked and those with less cloud cover are selected. To achieve the 

optimum sets of images, the training sets start with two images for each model and continue by 

increasing the number of images until increased images no longer yield improvements in accuracies. 

The models trained with five images had the same accuracies as six and seven. Then, training areas 

(pixels) are extracted by drawing polygons on the selected images (Figure 8). The cloud and cloud 
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shadow on training images of Landsat archives are masked using BQA layer before drawing the 

polygons to reduce the chance of including non-clear cloud pixels.     

     

Figure 8. Examples of manually selecting training areas generated from a) Sentinel image captured on 2014-05-12 b) Landsat 

image captured on 2020-05-30, and c) Landsat image captured on 2019-05-10. The black, cyan, and blue colors correspond to 

cloud, ice, and water training areas. Training polygons with nearly equal contributions of ice and water pixels have even 

distribution over SRD. 

2.5.2 Models Evaluation 

In terms of the pixel-based evaluation, training and testing accuracies were calculated based on 

30% of the data chosen as the training sets, which has not been seen by the model, and the remaining 

70% as the testing dataset. In this regard, the balance between training and testing accuracies is 

monitored to avoid overfitting, which occurs when a model performs extremely well on the training 

data but poorly on the testing data. Image-based evaluation is performed by visual inspection between 

classified and RGB plots, and also calculated ice, water, and cloud percentages were cross-checked 

against the RGB plots to confirm their congruity. To assess generalizability of the model, it is further 

evaluated with independent scenes captured from the PAD break-up process. 

2.5.3 SRD Trend Analysis 

To identify the break-up dates, cloudy images with a cloud percentage of more than 20% are not 

considered. As mentioned earlier, while cloud pixels in Landsat imagery were masked using BQA 

layer, the cloud pixels in Sentinel imagery were distinguished during RF classification. The data-

a) 

 

b) 

 

c) 
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driven threshold of 20% on cloud coverage is chosen based on the distribution of cloud percentages 

across all the images. As shown in Figure 9, most of the images have low (0 – 20%) or high (80 – 

100%) cloud coverage. In other words, the data is sparse between the thresholds, hence increasing 

the threshold would not impact the analysis. The average and STD of cloud coverage across the 

remaining images, with less than 20% cloud pixels, are 2.17% and 3.44%, respectively. 

The ice and water percentages for the remaining images (cloud cover of 0 – 20%) are calculated 

from non-cloud pixels (ice portion + water portion = 1). To define the optimum values of thresholds 

for break-up start, the images are divided into ten categories based on the fraction of ice cover for 

each image (Figure 10). Therefore, distribution of images could be effectively tracked by applying 

different thresholds on ice fraction. Given that Landsat images have a temporal resolution of 8 days 

on SRD, the ice minimum threshold is critical to exclude images captured after the break-up start 

period. Consequently, minimum and maximum ice cover thresholds of 60% and 90% were chosen as 

a trade-off to maximize data utilization while excluding images taken after the break-up start period. 

During the break-up period, the images have ice fraction of 60% to 90%, and the number of images 

during this period vary depending on temporal resolution of data. When multiple images are available 

for a given year, originating from either different or the same satellites, the average day of break-up 

is calculated. To enhance the accuracy of this estimation, the average values are weighted based on 

ice fractions. The weighted average compensates the effects of different temporal resolution of data 

and justifies the date to better represent the start of break-up. The overall workflow has been 

highlighted in Figure 11. 
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Figure 9. Distribution of cloud fractions of Landsat and Sentinel datasets from May 1 – May 30. Each open triangle corresponds 

to an individual image with a total number of 210. The cloud percentages are generated from the SRD boundary (The 

images are masked using the SRD shape file to exclude land pixels). 

 

Figure 10. Data distribution provides insight into optimizing the thresholds of break-up identification. Data distribution provides 

insight into optimizing the thresholds of break-up identification. 
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Figure 11. Workflow of RF modelling and Trend analysis. 
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2.6 Results  

2.6.1 RF Models Validation 

Table 3 presents the accuracies of the Landsat and Sentinel models. To address the concern of 

overfitting, the Landsat and Sentinel RF models are closely monitored by comparing the accuracies 

obtained from testing and training data. In terms of visual assessment, Figure 12 and Figure 13 

provide examples of the classification results from Landsat and Sentinel models, respectively. 

Additionally, the performance of both models demonstrates strong agreement when images acquired 

on the same dates are evaluated (Figure 14).  

Table 3. Accuracies of Landsat and Sentinel models for the SRD dataset. Landsat with two classes of ice and water outperforms 

Sentinel model with classes of ice, water, and cloud. 

Evaluation type Landsat model Sentinel model 

Training accuracy 99.71% 97.62% 

Testing accuracy 97.8% 91.53% 

 

       

Figure 12. Examples of Landsat model performance with an overall accuracy of 97.8%. (a) RGB scene captured on 2013-05-25.   

(b) RGB scene captured on 2014-05-28. (c) and (d) Corresponding model classification plots. 

   

 

 

a) b) c) d) 
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Figure 13. Examples of Sentinel model performance with an overall accuracy of 91.5%. (a) RGB scene captured on 2019-05-21.        

(b) RGB scene captured on 2021-05-27. (c) and (d) Corresponding plots. 

     

Figure 14. Evaluation of Landsat and Sentinel models performance by comparing their classified images captured on the same 

date (2018-05-23). (a) RGB plot captured by Landsat-8 satellite. (b) corresponding classified image (Sentinel-2b). (c) corresponding 

classified image (Landsat-8).  The image shown here has mixed pixels of water and ice, mostly around the bottom left corner. 

Additionally, closer to SRD tributaries at the bottom, ice seems to be on top of water. In these cases, depending on ice portion or 

thickness and corresponding reflectance, the model determines the classes. In general, the lack of a clear boundary between ice 

and water areas makes the classification more complicated and requires more involved method than simple decision trees or 

threshold-based classifications.  

2.6.1.1 Performance of model in a different area: Peace Athabasca Delta 

The generalizability of the RF models was assessed and tested by evaluating their performance in 

a region different from where they were trained, chosen as the PAD, located in Alberta, Canada 

(58°42′N 111°30′W). PAD has three major geographic regions 1) Open-drainage lake sector 

composed of Lake Athabasca, Lake Claire, Mamawi Lake and Richardson Lake 2) Peace Delta and 

3) Athabasca Delta. Figure 7 shows the location of Peace Athabasca Delta.  

Both Landsat and Sentinel models, trained using SRD images, exhibited similar accuracies when 

applied to PAD. The testing images and corresponding polygons were manually selected using the 

same criteria as for SRD image selection process. The Landsat model achieved an accuracy of 

a) b) c) d) 

a) 

 

b) 

 

c) 

 



37 

 

95.34%, while the Sentinel model achieved 89.01% accuracy within the PAD. Consequently, the 

presented Landsat and Sentinel models can be effectively adapted to different study areas, providing 

robust accuracies. Figure 15 depicts the classification results within (PAD) using Landsat images.  

   

   

Figure 15. Examples of classification within PAD. RGB scene acquired on (a) 2013-05-11, and (b) 2014-05-14, and 

corresponding plots in c) and d) respectively. 

2.6.2 Seasonal Dynamics of Ice and Water fractions 

Analysis of non-cloudy data from 2018 to 2021 with higher temporal resolution than previous 

years provides insights into the varying rates of the break-up process, following the results of RF 

models. Figure 16 presents the water and ice fraction of non-cloudy images from 100% ice cover to 

0%. A piecewise linear regression model has been fitted to water and ice fractions to better observe 

rate of changes (Tomé and Miranda, 2004). The data indicates fluctuation and non-monotonic patterns 

in the rate of break-up process. Figure 18 shows that a significant portion of ice break-up in 2018 and 

2019 occurred rapidly. Based on RF classification results, transition from approximately 30% to 70% 

a) 

 

b) 

 

c) 

 

d) 

 



38 

 

water fraction took only two days. In contrast, the same transition took 15 days in 2021. Break-up 

rates can be influenced by changes in air temperature and Slave river discharge and faster rates reduce 

the chance of satellites to record the whole process of break-up. 

 

 

 

 

Figure 16. Rate of break-up occurrence in a) 2018, b)2019, and c) 2020. Years with data from Sentinel-2a and Sentinel-2b 

indicate high variability in break-up rate. Solid lines are used as a visual aid. 

2.6.3 Trend of break-up onset  

The earliest break-up event occurred on YD 126 in 2015, captured by an image with an ice fraction 

of 80.9%. Conversely, the latest break-up was observed on YD 152 in 1992. Table  presents the break-

up start dates from 1984 to 2023. Despite annual variations, a consistent declining trend in the break-

b) 

 

c) 

 

a) 
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up process was identified. The Mann-Kendall test conducted from 1984 to 2023 yielded a p-value of 

0.05, indicating a significant trend towards earlier break-up.  

The observed trend aligns with other studies that have examined the break-up of GSL. In a study 

by Duguay et al. (2006), the temporal and spatial patterns of freeze-up and break-up were analyzed 

using in-situ data from the CID, covering three 30-year climatological periods (1951–1980, 1961–

1990, and 1971–2000). The third period has 16 years overlap with the timeframe of our analysis and 

shows a significant earlier break-up trend from two stations and non-significant earlier trend from the 

other one. In general, the paper noted that the trends transitioned from significant and non-significant 

later break-up trend to significant and non-significant earlier trend. Similarly, our data from 1984 to 

2000 showed a non-significant earlier break-up trend.  

Table 5. Estimated the start of break-ups 1984 to 2023. Days in column two represents the start of break-up process for each year 

in column one. 
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Figure 17. Black triangles indicate non-cloudy images with ice fraction of 60% to 90%, while red positive points are 

corresponding weighted averages or estimated days for the start of break-up. A linear model is fitted to estimated break-

up starts with confidence level of 0.99, RSE of 11.98, and slope of -0.84. 

2.7 Discussion 

Figure 18 illustrates the temporal resolution of non-cloudy images acquired by Landsat and 

Sentinel satellites during the month of May. The data collection begins in 1984 with Landsat 5 and 8 

satellites and continues to present with a better temporal resolution in recent years by Sentinel images. 

Lower temporal resolution in early years results in more challenges to estimate the start of break-up, 

and therefore the values of thresholds on ice fraction. Data unavailability is primarily attributed to 

cloud coverage over the SRD area and inevitable gaps between recorded data due to the satellites’ 

temporal resolution. Consequently, while the data provides valuable insights into the break-up trend, 

the analysis is not conducted on a yearly basis (Table 5).  

Different temporal resolution may affect the precision of break-up estimation. The better temporal 

resolution in recent years may result in a more precise estimation of the break-up start than earlier 

years. However, the difference in precision can fluctuate only within the duration between minimum 
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and maximum thresholds, accounting for 30% of the overall period. Furthermore, the estimation can 

be affected by break-up rate since it determines the number of images could be acquired within the 

transition of 60% to 90% of ice fraction.  

To justify the estimated break-up start dates and consequently reduce the effects of different 

temporal resolution, the weighted average date within the transition of 60% to 90% of ice fraction is 

calculated based on ice portion. However, a significant earlier trend is also observed by considering 

the break-up date as the date of first acquired image during the time that ice fraction is between 60% 

and 90%.  

In order to comprehensively assess the impact of varying temporal resolution on trend analysis, a 

separate trend analysis was conducted using a dataset comprised solely of Landsat images. Figure 19 

illustrates the anomaly plots derived from two datasets: one incorporating Sentinel records and the 

other excluding them. The results obtained without Sentinel data exhibit a higher number of temporal 

gaps in break-up identification. Nevertheless, the break-up onset in 2015, 2017, 2022, 2023 was 

successfully identified, yielding the same estimation of break-up onset process in 2015, one day 

earlier in 2017, 2023, and one day later in 2022.  
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Figure 18. Images captured during the break-up period with less than 20% cloud fraction. Each colour corresponds to one satellite. 

Landsat 5 started in 1984 and continued until 2011. Landsat 8 starts afterward and still is active. Furthermore, to fill the temporal 

gaps in recent years, Sentinel data is used as supplementary data starting from 2015 and 2017. 

   

Figure 19. Break-up anomalies from 1984 to 2023 using Landsat archives (right) and combination of Landsat and Sentinel archives 

(left). Lower temporal resolution resulted in more temporal gaps, however, years of 2015, 2017, 2022, and 2023 could be identified 

successfully without Sentinel records and have close estimation of break-up to the results with Sentinel records.  

2.8 Conclusion 

In this study, the start of break-up process within SRD has been monitored by two presented RF 

models, using Landsat and Sentinel imagery. SRD served as a representative of GSL break-up process 

since the Slave river flow delivers energy and initiates the break-up process of lake at the SRD. 

Furthermore, GSL ice break-up is subject to upstream water activities in addition to climate change 
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indirectly by changes in Slave river discharge. Therefore, SRD is the first area of lake that can be 

studied to better understand the effects of upstream water management and water extraction on GSL 

ice break-up.  

Landsat and Sentinel RF models have accuracies of 97.8% and 91.5% using independent scenes, 

separately, and are tested by images acquired from PAD, showing robustness for the models to be 

used in different study areas. The initiation of break-up process at SRD was identified based on ice 

and water portion, calculated from the result of RF classification. The results showed high variability 

in rate of break-up and significant trend toward earlier break-up from 1984 to present, following the 

result of Mann-Kendall test with p-value of 0.05.  

The presented research is of great significance to northern communities as lake ice supports 

activities such as transportation, and fishing. Therefore, it is essential to better understand lake ice 

behavior against climate change and human activities. The findings can help the policymakers and 

resource managers in implementing adaptive strategies to ensure the preservation of reliable ice 

conditions and the sustainable use of natural resources. 
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Chapter 3. Conclusion and Future Work 

This chapter summarizes the objectives of presented research and key findings, following by 

contribution made to the field. Furthermore, limitations encountered during the study, and potential 

directions for future research will be discussed.  

3.1 Conclusion 

The research presented in this thesis has monitored the SRD break-up trend over the last four 

decades, using ML techniques. Slave river flows to GSL and initiates the break-up process of GSL at 

SRD. The changes in Slave river flow, as a result of climate and non-climate factors, such as upstream 

water activities, strongly influences GSL long term temperature trend and ice phenology . Therefore, 

the SRD break-up trend can be served as an indicator to better understand GSL break-up process, and 

also the impact of upstream water activities on GSL ice break-up. In this study, two RF models have 

been developed to monitor break-up process in SRD, using Landsat-8, Landsat-5, Sentinel-2a, and 

Sentinel-2b imagery. Landsat imagery is the main source of data, starting from 1984 to present, and 

Sentinel-2 imagery is a supplementary data to cover the temporal gaps and increase the break-up 

retrieval accuracy. The RF models, tested by independent scenes, showed accuracies of 91.5% and 

97.8%. Additionally, the generalizability of the RF models was assessed by evaluating their 

performance in PAD. The testing images and corresponding polygons in PAD were manually selected 

using the same criteria as for SRD image selection process. The Landsat model achieved an accuracy 

of 95.34%, while the Sentinel model achieved 89.01% accuracy within the PAD. Consequently, the 

presented Landsat and Sentinel models can be effectively adapted to different study areas, providing 

robust accuracies.   
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The start of break-up in each year has been identified using the ice and water portion, calculated 

from RF models. The threshold values on ice/water portion, which define the break-up time frame, 

are a compromise to maximize data utilization while effectively excluding images taken after break-

up. The latter criteria play a critical role as the early years have only been covered by Landsat-5 with 

8 days temporal resolution on SRD. In other words, depending on SRD break-up rate, the satellite 

may record the SRD state, when the break-up has already happened. Therefore, the maximum 

threshold on ice excludes those images and consequently those years that the break-up has been 

missed by the satellites. Accordingly, the monitoring is not yearly based, but presents a valuable 

perspective on historical trend of SRD break-up. The results show while SRD showed high variability 

in the rate of break-up, the result of two-tailed Mann-Kendall test shows a significant trend toward 

earlier break-up (p-value of 0.05). This research is of great significance for the northern communities 

as the earlier break-up on SRD and consequently on GSL can affect communities who rely on lake 

ice for transportation via ice roads, sustenance e.g. fish harvesting.  

3.2 Future Works 

As mentioned earlier, lakes and rivers are intricately linked in a unified system, and previous 

studies have focused on lakes and rivers separately (Palecki et al., 1986; Williams et al., 2006; Prowse 

et al., 2007; Mishra et al., 2011). A study by Ménard et al., (2003) simulates the lake ice phenology 

on GSL, using CLIMo model and validates the model against in-situ break-up/ freeze-up, ice 

thickness, on-ice snow depth measurements at three sites on GSL. They compared the observed 

break-up and freeze-up on Hay River site with and without considering river inflow. Simulated break-

up dates show an almost constant difference from in-situ observations. This indicates that an external 

factor not well captured by the lake ice model influences break-up dates at the Hay River site. A 

plausible explanation is that the ice observation site is located at the mouth of Hay River. Indeed, a 
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river flowing into a lake increases the heat flux, which can lead to accelerated ice break-up during 

spring thaw (Bengtsson, 1986). This discussion opens a way for further improvement to develop 

regional and global lake-river modeling in GSL that presents lake and its main rivers, including Slave 

River in a unified system.   

Additionally, a promising further investigation lies in tracking the time between the break-up of 

the PAD and the SRD, and monitoring how it has changed in recent years (Figure 7). Unfortunately, 

due to temporal gaps in existing data, it was not feasible to accurately track this time lag. Missing 

years in either delta’s break-up identification results in NA (Not Available) rows in the time lag 

calculation, leading to an incomplete understanding. However, with the emergence of advanced 

satellite technology and the availability of more extended time series data from Sentinel-2, this 

monitoring task becomes increasingly achievable in the future. 
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Appendices 

Appendix A. WICI and Local Average Gradient 

A1. Water and Ice Classification Index (WICI) 

WICI is one of features used in developing the RF models in this study and has been proposed by 

Barbieux et al. (2018).  WICI, presented in equation 1, relies on the uniformity of water pixels in NIR 

and SWIR reflectance.  

                                                      WICI =
σρSWIR1

 + σρSWIR2

2σρNIR

                                              (1) 

Where  σρSWIR1
 and  σρNIR

are calculated standard deviations of SWIR and NIR values in a 5 by 5 

window for each pixel. Barbieux et al., 2018 showed that WICI can help the models to achieve higher 

accuracy by enabling the model to differentiate between shallow water and ice, which is accomplished 

by leveraging the uniformity of shallow water reflectance in the near and shortwave infrared spectral. 

Ice, on the other hand, shows noticeable deviations in reflectance between these two spectral ranges. 

A2. Local Average Gradient  

The local average gradient is a texture-based feature used in developing the RF models in this 

study and has been proposed by Barbieux et al. (2018).  The local average gradient presented in 

equation 2, is defined as the mean of the gradient image in the n × n neighborhood pixels. The 

parameter ‘n’ is an odd positive integer, which has been set to 5. As mentioned earlier, the local 

average gradient relies on the difference in textures of water and ice. According to Barbieux et al. 

(2018), water pixels exhibit smoother changes in intensity, resulting in a lower local average gradient, 

whereas ice pixels exhibit high changes in intensity resulting in a high local average gradient. 

                       Local average gradient = √(
𝛿𝑇𝑂𝐴(𝑖,𝑗)

𝛿𝑖
)

2
+ (

𝛿𝑇𝑂𝐴(𝑖,𝑗)

𝛿𝑗
)

2
                        (2) 
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Where  
𝛿𝑇𝑂𝐴(𝑖,𝑗)

𝛿𝑖
  and  

𝛿𝑇𝑂𝐴(𝑖,𝑗)

𝛿𝑗
  are the changes of TOA values in direction of x and y in a localized 

window.  

Appendix B. Landsat Quality Assessment Layer 

The presented Landsat RF model has two classes of water and ice, and the cloud pixels are masked 

out using Quality Assessment layer (BQA) of Landsat. BQA provides cloud and cloud shadow classes 

at different confidence levels: high (67-100 %), medium (34-66 %) and low (0-33 %). Table 4 and 

Table 5 display the attributes and pixel values from BQA and interpretations for Landsat 8 OLI and 

OLI/TIRS and Landsat 5 TM, respectively.  

Table 4. Landsat 8 collection-1 and level-1 BQA band attributes and pixel value possibilities (From USGS). 

Attribute Pixel values 

Fill 1 

Dropped Pixel 2, 674 

Clear 672, 676, 680, 684 

Radiometric Saturation – 1-2 bands 676, 708, 756, 932, 964, 1700, 1732 

Radiometric Saturation – 3-4 bands 680, 712, 760, 936, 968, 1704, 1736 

Radiometric Saturation – 5+ bands 684, 716, 764, 940, 972, 1708, 1740 

Cloud confidence-low 672, 674, 676, 680, 684, 928, 932, 936, 940, 1696, 

1700, 1704, 1708 

Cloud confidence - Medium 704, 708, 712, 716, 960, 964, 968, 972, 1728, 

1732, 1736, 1740 

Cloud confidence - High 752, 756, 760, 764 

Cloud shadow - High 928, 932, 936, 940, 960, 964, 968, 972 

Snow\ice - High 1696, 1700, 1704, 1708, 1728, 1732, 1736, 1740 
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Table 5. Landsat 5 collection-1 and level-1 BQA band attributes and pixel value possibilities (From USGS). 

Attribute Pixel values 

Fill 1 

Terrain Occlusion 2, 2722 

Clear 2720, 2724, 2728, 2732 

Radiometric Saturation – 1-2 bands 2724, 2756, 2804, 2980, 3012, 3748, 3780, 6820, 

6852, 6900, 7076, 7108, 7844, 7876  

Radiometric Saturation – 3-4 bands 2728, 2760, 2808, 2984, 3016, 3752, 3784, 6824, 

6856, 6904, 7080, 7112, 7848, 7880 

Radiometric Saturation – 5+ bands 2732, 2764, 2812, 2988, 3020, 3756, 3788, 6828, 

6860, 6908, 7084, 7116, 7852, 7884 

Cloud confidence - Low 2720, 2722, 2724, 2728, 2732, 2976, 2980, 2984, 

2988, 3744, 3748, 3752, 3756, 6816, 6820, 

6824,6828, 7072, 7076, 7080, 7084, 7840, 7844, 

7848, 7852 

Cloud confidence - Medium 2752, 2756, 2760, 2764, 3008, 3012, 5016, 3020, 

3776, 3780, 3784, 3788, 6848, 6852, 6856, 

6860,7104, 7108, 7112, 7116, 7872, 

7876, 7880, 7884 

Cloud confidence - High 2800, 2804, 2808, 2812, 6896, 6900, 6904, 6908 

Cloud shadow - High 2976, 2980, 2984, 2988, 3008, 3012, 3016, 3020, 

7072, 7076, 7080, 7084, 7104, 7108, 7112, 7116 

Snow\ice – High 3744, 3748, 3752, 3756, 3776, 8760, 3784, 3788, 

7840, 7844, 7848, 7852, 7872, 7876, 7880, 7884 

Cirrus Confidence – Low 2720, 2722, 2724, 2728, 2732, 2752, 2756, 2760, 

2764, 2800, 2804, 2804, 2808, 2812, 2976, 

29802984, 2988, 3008, 3012, 3016, 3020, 3744, 

3748, 3752, 3756, 3780, 3784, 3788 

Cirrus Confidence – High 6816, 6820, 6824, 6828, 6848, 6852, 6856, 6860, 

6896, 6900, 6904, 6908, 7072, 7076, 7080, 

7084,7104, 7108. 7112, 7116, 7840, 7844. 7848, 

7852, 7872, 7876, 7880. 7884 
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Appendix C. Configuration of Models Hyperparameters  

To tune the hyperparameters of Mtry and Ntree, a RF model has been generated for each potential 

value of the hyperparameters. The configurations that resulted in the highest accuracies and stability 

have been chosen. presents the Landsat and Sentinel models accuracies with Ntree values ranging 

from 5 to 100, and Mtry values ranging from 2 to 6 for Sentinel and 2 to 4 for Landsat model.  

The Landsat model tends to be stable at the Ntree of 50, and by increasing Mtry to 4, the model 

achieved ~ %0.5 more accuracy (Figure 20 a). Therefore, the final configuration is set to Ntree of 50 

and Mtry of 4. The sentinel model, on the other hand, has one more class of cloud and a few more 

features, resulting in more fluctuations in accuracy across different configurations (Figure 20 b). The 

Sentinel model with higher value of Mtry tends to get stable in lower Ntree, except the Mtry of 6. 

Mtry of 6 and 8 shows almost same performance at Ntree of 50 and 100. However, the model with 

Mtry of 8 is more stable than the one with Mtry of 6. Therefore, to maximize accuracy and stability 

the model with Mtry of 8 and Ntree of 50 has been chosen.  

 

   

Figure 20. Performance of a) Landsat and b) Sentinel models in different configurations of Mtry and Ntree. A RF model has 

been generated for each potential value of hyperparameters, and its training accuracy is calculated using cross-validation method 

(k = 10).   

a) b) 
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Appendix D. Mahalanobis Distance for Feature Selection  

Equation 3 presents Mahalanobis distance (Scott et al., 2013; Masnan et al., 2015).  

                                                         𝐷2 =  (𝑋1
̅̅ ̅ − 𝑋2

̅̅ ̅ )′𝑆−1(𝑋1
̅̅ ̅ − 𝑋2

̅̅ ̅ )                                                  (1)                  

                                                                 𝑋1
̅̅ ̅ =  

1

𝑁1
 ∑ 𝑋1𝑘

𝑁1
𝑘=1                                                          (2)  

                                                                 𝑋2
̅̅ ̅ =  

1

𝑁2
 ∑ 𝑋2𝑘

𝑁2
𝑘=1                                                          (3)  

                                              S = 
∑ (𝑋1𝑘−𝑋1̅̅̅̅  )′(𝑋1𝑘−𝑋1̅̅̅̅  )

𝑁1
𝑘=1 + ∑ (𝑋2𝑘−𝑋2̅̅̅̅  )′(𝑋2𝑘−𝑋2̅̅̅̅  )

𝑁2
𝑘=1  

𝑁1+ 𝑁2+2
                               (4) 

(𝑋11, 𝑋12, 𝑋13, … ) and (𝑋21, 𝑋22, 𝑋23, … ) are pixel values of class 𝐶𝑖 and 𝐶𝑗 that each has 𝑁1and  

𝑁2 training pixels, respectively. 𝐷𝐴
2 criterion for the class pair of (𝐶𝑖,𝐶𝑗) is given by: 

                                                                         𝐷𝐴𝑖𝑗

2 =  
𝐷𝑖𝑗

2

𝐷𝑖𝑗
2 +4

                                                              (5) 

                                                              𝐷𝐴
2 =  

1

𝐶(2,𝑚)
∑ ∑ 𝐷𝑖𝑗

2𝑚
𝑗=1

𝑚−1
𝑖=1                                                   (6) 

Where m is the number of classes, and 𝐶(2,𝑚) is the combination calculator to choose 2 classes 

from m classes.   
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