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Abstract

The n-body problem models a system of n-point masses that attract each other via some binary interac-

tion. The (n+ 1)-body problem assumes that one of the masses is located at the origin of the coordinate

system. For example, an (n+1)-body problem is an ideal model for Saturn, seen as the central mass, and

one of its outer rings. A relative equilibrium (RE) is a special solution of the (n+1)-body problem where

the non-central bodies rotate rigidly about the centre of mass. In rotating coordinates, these solutions

become equilibria.

In this thesis we study dynamical aspects of planar (4 + 1)-body systems with the outer four of equal

point mass interacting via a modified gravitational “J2” attraction potential of the form:

V (r) = −mimj

r

(
1 +

ϵ

r2

)
, 0 < ϵ << 1 (1)

where r denotes the distance between masses mi and mj .

Using the rotational symmetry as well as the symmetry induced by the mass equality, we are able to

describe qualitatively the phase-space of square-shaped dynamics. We further analyze the existence of

square-shaped RE and establish conditions necessary for their stability. We find that the RE appear as a

saddle-node bifurcation. For a unit central mass and equal outer bodies of mass m, we find that these RE

are unstable.

iv



Acknowledgements

First and foremost, I wish to extend my deepest gratitude to my supervisor and mentor, Dr. Cristina

Stoica. I am extremely thankful for her guidance, wisdom, friendship, kindness and patience. Dr. Stoica

has had a profoundly positive impact on my life; her advice, mentorship and continuing support have

allowed me to grow tremendously as a person over the past three years. In life, there are a rare few people

that we encounter that change our lives forever and even rarer are those that change our lives forever in a

positive way. For me, Cristina is one of these people and I am forever grateful for everything that she has

done for me.

I wish to thank all those that helped me reach this milestone. I am thankful for all of my professors

and instructors for everything they have taught me. I am very grateful for all of the lab coordinators that

taught and supervised me and all of the staff that helped me in one way or another throughout my time

at WLU. Finally, I wish to express my gratitude to my colleagues and friends for all of their help, kindness

and friendship, which has been so valuable to me.

I wish to extend a special thanks to my Thesis Advisory Committee. Additionally, I wish to thank

Dr. Ioannis Haranas for his friendship and for teaching me much of the physics used in this thesis.

Last, but not least, I wish to thank my parents for everything that they have done for me and for their

support. I also wish to thank my brother, my extended family and my friends. Finally, I wish to express

my gratitude for the unwavering companionship of my dog and cat.

v



Table of Contents

Thesis Advisory Committee ii

Author’s Declaration iii

Abstract iv

Acknowledgements v

List of Figures viii

1 Introduction 1

2 Model Construction 5

2.1 General Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Parallelogram-Shaped (Caledonian) Configurations . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Linear Motions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 (4 + 1)-Square-Shaped Configuration Motions . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Relative Equilibria and Stability 15

3.1 Parallelogram Configurations and RE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Square Configurations and RE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Stability of Square RE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

vi



4 Conclusion 22

A Maple Code for Stability Analysis of RE 23

A.1 Maple Code for Determining the RE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

A.2 Maple Code for the Stability of RE R2,e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

A.3 Maple Code for the Sign of α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

A.4 Maple Code for Determining the Second RE in the Full Phase Space . . . . . . . . . . . . . 33

A.5 Maple Code for the Stability of the Second RE in the Full Phase Space . . . . . . . . . . . 36

B Equilibria and Stability for Autonomous ODEs 39

C Newtonian Mechanics 44

C.1 Part 1: Newtonian N -Body Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

C.2 Part 2: Lagrangian Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

C.3 Part 3: The Legendre Transform and Hamiltonian Mechanics . . . . . . . . . . . . . . . . . 57

C.4 Part 4: Cyclic Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

C.5 Part 5: Equilibria and Relative Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

D Bifurcations of Differential Equations with One External Parameter 66

D.1 First-order systems of differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

D.1.1 Saddle-Node Bifurcation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

D.1.2 Transcritical Bifurcation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

D.1.3 Pitchfork Bifurcation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

E Geopotential Model of the Earth 71

E.1 General Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

E.2 Spheroids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

References 76

vii



List of Figures

1.1 Caledonian Problem Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 General Configuration in Cartesian Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Parallelogram-Shaped Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Linear Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Square Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Ueff(r; c) for M = m = 1, ϵ = 0.01, c0 = 1.518793902. Fix total energy h < 0. For low

momenta c < c0, all motions are bounded and there are no RE (blue curve). If c = c0,

all motions are bounded and there is one RE (green curve). As c is increased above c0,

all motions are bounded with two RE present (orange & red curves); forbidden regions are

present. For high momenta, unbounded motions are possible. . . . . . . . . . . . . . . . . . 13
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Chapter 1

Introduction

The n-body problem models a system of n point masses with mutual binary interactions. The (n+1)-body

problem assumes a central mass M located at the origin of the coordinate system with n masses orbiting

it. For example, an (n+ 1)-body problem is an ideal model for Saturn and an outer ring.

In the n-body problem, relative equilibria (RE) are special solutions in which the bodies rotate rigidly

about their centre of mass. In rotating coordinates, these solutions become equilibria parametrized by

total angular momentum. In celestial mechanics the RE configurations are known as central configura-

tions. With few exceptions, the number of possible central configurations in classical Newtonian n-body

problems remains an open problem (see [Albouy & al. 2012] and references within, also [Smale 1998]).

In the case of (n + 1)-body problems, if the outer masses are equal then regular n-gons are RE con-

figurations for gravitational attraction. It has been shown that such RE are unstable regardless of the

magnitude of the central mass or the angular velocity if n ≤ 6 [Pendse 1935]. Later work by [Roberts 2000]

and [Vanderbei & al. 2007] confirmed that regular n-gon RE with n ≥ 7 are rotationally stable provided

that the central mass is sufficiently large.

In this thesis we study planar (4 + 1)-body systems with equal point masses as shown in Figure 1.1.

A mass M is positioned at the centre of a Cartesian system of coordinates around which four point masses

mi are orbiting. We employ a modified gravitational mutual attraction potential of the form:

V (r) = −mimj

r

(
1 +

ϵ

r2

)
, 0 < ϵ << 1 (1.1)
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Figure 1.1: Caledonian Problem Configuration

where r denotes the distance between massesmi andmj . This augmentation of the Newtonian gravitational

law appears in two physically relevant settings:

1. first, as an approximation of the potential manifested between two symmetric ellipsoidal spheroids in

a “floating position”, that is when their axes of symmetry are parallel to each other, see [Arredondo & al. 2012].

The ϵ-term models the oblateness of the bodies and it is the first term in the expansion in Legendre

polynomials of the mutual potential (with ϵ as the “J2” coefficient; see [Stiefel & al. 1971]);

2. second, as a corrective term emerging from relativity theory, see [Schwarzschild 2008], [Stoica 1997]

and [Arredondo & al. 2014] and references within.

For simplicity, we call (1.1) the J2-potential.

A system of four equal point masses in a parallelogram shaped planar configuration orbiting their centre

of mass under gravitational attraction is known as the four-body Caledonian problem and was introduced

by [Roy & al.2000]. The Caledonian problem was investigated by [Steves & al. 2001], [Széll & al. 2004a],

[Széll & al. 2004b] and [Alvarez-Ramirez & al. 2014]. The restriction of the (4 + 1)-body problem to

parallelogram-shaped configurations is a Caledonian problem with the inclusion of a non-zero central mass

M . The boundedness of the motion of systems in this configuration was studied by [Shoaib 2004] and

[Shoaib & al. 2008] and a criterion regarding the “non-escape” of the system was established.
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The rhomboidal (4 + 1)-body problem was studied by [Cornelio & al. 2021]. Recently, in the case of

homogeneous forces and for M = 0, existence of rhomboidal RE was investigated by [Leandro 2019] and

by [Lopez & al. 2022] for M ̸= 0.

The same problem using the classical gravitational attraction between binary pairs of bodies and the

Manev potential, i.e. a potential of the form f(r) = − 1
r −

ϵ
r2 , for the interactions between the central mass

and the outer bodies was studied by [Marchesin & al. 2013].

Regardless of the potential between the points, when all non-central point masses are equal, the sys-

tem admits an invariant dynamical sub-system consisting of motions of square configurations. The latter

is a mechanical system with two degrees of freedom with rotational symmetry. Applying reduction, the

dynamics reduce to one degree of freedom with angular momentum c and total energy h as parameters.

In our work, we fully describe the (homographic) square-shaped solutions in the case of the J2-potential

interaction. We detect the presence of unattainable regions in the configuration space and show that total

collisions are possible for non-zero angular momenta. This phenomenon is known in celestial mechanics as

the black hole effect (not to be confounded with the relativity black holes) and it is specific to attractive

potentials containing terms −1/rα, α ≥ 2, see [Delgado & al. 1996], [Pasca & al. 2019], [Stoica 2000] and

[Arredondo & al. 2014]. For small angular momenta, we find that there are no RE. As momentum is

increased, there exists a threshold value, c0 > 0, marking a saddle-node bifurcation, above which two RE

branches appear. Let us denote the distances from the outer masses to the central mass along these RE

branches as r1,e and r2,e, with r1,e < r2,e.

Within an invariant subset of square-shaped configurations, we show that the RE r1,e branch is unstable

since it corresponds to a maximum of the effective potential of the square-shaped motions. We further

prove that the RE r2,e branch is also unstable. Without loosing generality, we set M = 1 and we first

consider the linearization along r2,e within the phase-subspace of rhomboidal configurations only. We

obtain that for m > 0.042068394, the RE r2,e branch is unstable. For m ∈ [0, 0.042068394] we calculate

the linearization along the r2,e branch of the reduced system with 7-degrees of freedom, that is in the full

phase-space. Again, using a Taylor expansion in ε of the essential coefficients, we find that the RE r2,e

branch is unstable. Thus we conclude:

1. the RE r1,e branch is unstable with respect to perturbations that maintain square-shaped configu-

rations;

2. form > 0.042068394, the RE r2,e branch is stable with respect to perturbations that maintain square-

3



shaped configurations but unstable with respect to those that break rhomboidal configurations;

3. for [0, 0.042068394] the RE r2,e branch is stable with respect to perturbations that maintain rhom-

boidal configurations but unstable with respect to perturbations that break these symmetric config-

urations.

The thesis is organized as follows: we start by setting up the general planar (4 + 1)-body problem within

the Lagrangian framework. We use the rotational symmetry to reduce the system to 7 degrees of freedom.

Using the Legendre transform, we pass then to the Hamiltonian formulation. Next, we introduce the

mass symmetry and write the equations of motion for solutions of parallelogram-shaped configuration. We

briefly consider linear motions, listing all possible motions. We then focus on motions of square-shaped

configurations. Employing the J2 potential, we analyze the level sets of the effective potential as function

of the angular momentum and energy. Consequently we provide a full qualitative description of the Hills’

regions of motions. We calculate the value of the angular momentum which marks a saddle-node bifur-

cation and the birth of two branches of RE. We deduce that one of these branches is unstable, as it is a

maximum of the effective potential. Chapter 3 investigates aspects of RE. First we prove that given the

pair-wise equal masses, within the rhomboidal configuration solutions, a RE is a square if and only if all

masses are equal. We further consider the stability of the square-shaped RE in the case of J2 potential

interactions. As aforementioned, one of the RE branches is unstable. For calculating the stability of the

second branch we pass to polar coordinates. In this way, the linearization operator (matrix) at this RE

takes a particular simple form. We write the characteristic polynomial and using a Taylor expansion in

ε of the essential coefficients, we deduce that if the latter is sufficiently small and m > 0.042068394 the

(second) RE branch is unstable. Further, for m ∈ [0, 0.042068394] we calculate the linearization along the

(second) RE branch of the reduced 7-degree of freedom system and deduce that for these values, this RE

is unstable as well.

The Thesis is augmented by five Appendices. The first Appendix contains the Maple Code used for

determining the RE and calculating the existence and stability of the (second) branch of RE. The next

Appendices present the theoretical mathematical-physics background employed in our work.
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Chapter 2

Model Construction

2.1 General Configuration

In Cartesian coordinates, a general (4 + 1)-body problem can be modelled as shown in the following

diagram: In Figure 2.4, the central mass M is centered at the origin. Each point mass Pi has mass mi for

Figure 2.1: General Configuration in Cartesian Coordinates

i = 1, 2, 3, 4. The distance from the origin to each point mass is ri. For j = 1, 2, 3, 4, the angle θj is the

angle formed between the positive x-axis and rj . All configurations in this thesis are planar.

5



2.2 Equations of Motion

In polar coordinates, the Lagrangian of a general (4 + 1)-body problem is:

L = T − U =

4∑
i=1

mi

2

(
ṙ2i + r21 θ̇

2
i

)
− U(r1, r2, r3, r4, θ1, θ2, θ3, θ4) (2.1)

The potential U is defined as follows where f : R → R is a smooth function on its domain:

U(r1, r2, r3, r4, θ1, θ2, θ3, θ4) =

4∑
1≤i≤4

Mmif(ri) +

4∑
1≤i<j≤4

mimjf(dij) (2.2)

In (2.2) dij is given as:

dij =
√
r2i + r2j − 2rirj cos (θj − θi), 1 ≤ i < j ≤ 4 (2.3)

We apply the following change of variables:

φ1 = θ1, φ2 = θ2 − θ1, φ3 = θ3 − θ1, φ4 = θ4 − θ1 (2.4)

which yields:

L(r1, r2, r3, r4, φ1, φ2, φ3, φ4)

= T (r1, r2, r3, r4, φ1, φ2, φ3, φ4)− U(r1, r2, r3, r4, φ2, φ3, φ4)

=
m1

2
(ṙ21 + r21φ̇

2
1) +

m2

2
(ṙ22 + r22(φ̇1 + φ̇2)

2)

+
m3

2
(ṙ23 + r23(φ̇1 + φ̇3)

2) +
m4

2
(ṙ24 + r24(φ̇1 + φ̇4)

2)

− U(r1, r2, r3, r4, φ2, φ3, φ4)

(2.5)

Furthermore, applying the change of variables given in (2.4) to (2.3) yields:

d1j =
√
r21 + r2j − 2r1rj cos (φj), j = 2, 3, 4

d2j =
√
r22 + r2j − 2r2rj cos (φj − φ2), j = 3, 4

d34 =
√
r23 + r24 − 2r3r4 cos (φ4 − φ3)

(2.6)

We apply the Legendre transform to obtain the Hamiltonian, H = K + U , where:

K =
p21
2m1

+
p22
2m2

+
p23
2m3

+
p24
2m4

+
(pφ1 − pφ2 − pφ3 − pφ4)

2

2m1r21

+
p2φ2

2m2r22
+

p2φ3

2m3r23
+

p2φ4

2m4r24

(2.7)

6



Since H is autonomous along any solution, the total energy is conserved, that is H(t) = h where h is

a constant. Furthermore, the system is rotationally symmetric which implies that angular momentum is

conserved. This is an immediate result of φ1 being a cyclic coordinate, that is, it does not appear in the

Hamiltonian. The equation of motion for pφ1
is:

ṗφ1
= − ∂U

∂φ1
= 0 (2.8)

This implies that along any solution pφ1
(t) = pφ1

(t0) = ĉ where ĉ is a constant. We then substitute pφ1
= ĉ

into the Hamiltonian in order to obtain a reduced Hamiltonian,

Hr = Kr + Ur (2.9)

where Ur = U and:

Kr =
p21
2m1

+
p22
2m2

+
p23
2m3

+
p24
2m4

+
(ĉ− pφ2

− pφ3
− pφ4

)2

2m1r21

+
p2φ2

2m2r22
+

p2φ3

2m3r23
+

p2φ4

2m4r24

(2.10)

The Hamiltonian (2.9) is a 7-degrees of freedom mechanical system with a configuration space given by

(r1, r2, r3, r3, φ2, φ3, φ4) ∈ R4 × S1 × S3 × S2 and ĉ ∈ R as a parameter.

7



2.3 Parallelogram-Shaped (Caledonian) Configurations

We consider parallelogram-shaped shaped configurations, as shown in Figure 2.2.

Figure 2.2: Parallelogram-Shaped Configuration

We modify the system in (2.1) by setting m1 = m3 and m2 = m4. The phase space subset defined by:

r1 = r3 , r2 = r4 , φ3 = π , φ4 = π + φ2

p1 = p3 , p2 = p4 , pφ2 = pφ4

(2.11)

is invariant under the flow for any distance dependent mutual potential f(r). Within this invariant subset,

we have that pφ1
= ĉ = 2pφ2

+ 2pφ3
. We then denote:

φ2 = φ, pφ2
= pφ, ĉ = c/2 (2.12)

The parallelogram-shaped motions are given by the reduced Hamiltonian:

Hred(r1, r2, φ, p1, p2, pφ) =
p21
m1

+
p22
m2

+
(c− pφ)

2

m1r21
+

p2φ
m2r22

+ U(r1, r2, φ) (2.13)

8



where the potential is:

U(r1, r2, φ) =2Mm1f(r1) + 2Mm2f(r2) + 2m1m2f

(√
r21 + r22 + 2r1r2 cos (φ)

)
+2m1m2f

(√
r21 + r22 − 2r1r2 cos (φ)

)
+m2

1f(2r1) +m2
2f(2r2)

(2.14)

The equations of motion are:

ṙ1 =
∂Hred

∂p1
=

2p1
m1

(2.15)

ṙ2 =
∂Hred

∂p2
=

2p2
m2

(2.16)

φ̇ =
∂Hred

∂pφ
= −2(c− pφ)

m1r21
+

2pφ
m2r22

(2.17)

ṗ1 = −∂Hred

∂r1
=

2(c− pφ)
2

m1r31
− ∂U(r1, r2, φ)

∂r1
(2.18)

ṗ2 = −∂Hred

∂r2
=

2p2φ
m2r32

− ∂U(r1, r2, φ)

∂r2
(2.19)

ṗφ = −∂Hred

∂φ
= −∂U(r1, r2, φ)

∂φ
(2.20)

2.4 Linear Motions

We begin by writing the equations of motion for the pair (φ, pφ), denoted as (2.17) and (2.20) respectively:

φ̇ =
2pφ
m2r22

− 2(c− pφ)

m1r21
(2.21)

ṗφ = 2m1m2r1r2

(
f ′
(√

r21 + r22 + r1r2 cos (φ)
)

√
r21 + r22 + r1r2 cos (φ)

−
f ′
(√

r21 + r22 − r1r2 cos (φ)
)

√
r21 + r22 − r1r2 cos (φ)

)
sin (φ)

(2.22)

If we set the angular momentum c to zero, we deduce that linear configurations, that is, motions with

φ = 0 and pφ = 0, form an invariant subset, assuming that we include the constraint r1 ̸= r2 (to avoid

collisions). Within this subset, the dynamics are given by a system with two degrees of freedom where:

Hred lin(r1, r2, p1, p2) =
p21
m1

+
p22
m2

+ Ulin(r1, r2) (2.23)

9



and

Ulin(r1, r2) = 2Mm1f(r1) + 2Mm2f(r2) + 2m1m2f(r1 + r2)

+ 2m1m2f(|r1 − r2|) +m2
1f(2r1) +m2

2f(2r2)

(2.24)

In the case of the J2-potential, i.e. f(r) = − 1
r − ϵ

r3 < 0, we use the energy integral to conclude that

Hred lin(r1, r2, p1, p2) = const. = h from which we deduce that Ulin(r1, r2) ≤ h. Since the potential is an

attractive force, we deduce that for any h < 0, the system’s motion is bounded, resulting in one of three

scenarios (where the bodies form a central configuration at all times):

� The inner masses (the red masses labelledmin in Figure 2.3) collide with the central mass (the yellow

mass labelled M in Figure 2.3).

� The inner masses (the red masses labelled min in Figure 2.3) collide with the outer masses (the blue

masses labelled mout in Figure 2.3).

� The system ends in total collision.

In the case where h ≥ 0, the system’s motion will either end in partial or total collision or will be

asymptotically bounded and escape to infinity.

Figure 2.3: Linear Configuration
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2.5 (4 + 1)-Square-Shaped Configuration Motions

Figure 2.4: Square Configuration

In the case where m1 = m2 = m3 = m4 = m, it can be shown that the subset containing square

configurations described by r1 = r2 = r, pr1 = pr2 = pr, φ = π
2 , pφ = c

2 , is invariant. This subset is a

subset of the phase space subset described in (2.11). In this case, the dynamics are given by a system with

one degree of freedom where:

Hred sq(r, pr) =
2p2r
m

+
c2

2mr2
+ Usq(r) (2.25)

and

Usq(r) = 4Mmf(r) + 4m2f(
√
2r) + 2m2f(2r) (2.26)

Along any solution (r(t), pr(t)), we have the conservation of energy:

Hred sq(r(t), pr(t)) =
2p2r(t)

m
+

c2

2mr2(t)
+ Usq(r(t)) = h (2.27)

11



Without loss of generality, we consider c > 0. Given the binary potential function f , a qualitative

description of the square-shaped motions is given by considering the effective potential Ueff sq where:

Ueff sq(r; c) =
c2

2mr2
+ Usq(r)

=
c2

2mr2
+ 4Mmf(r) + 4m2f(

√
2r) + 2m2f(2r)

(2.28)

The regions of motion are sets that depend on the total energy h and the angular momentum c as param-

eters [Arnold 1989]:

{r > 0|Ueff sq(r; c) ≤ h} (2.29)

Physically, these sets describe the radius r from the outer masses to the central mass M when the energy

h is fixed. The motions consist of rotations about the central mass M , with the radius r varying in time.

We take:

f(r) = −1

r
− ϵ

r3
(2.30)

and thus:

Ueff sq(r; c) =
c2

2mr2
− 4Mm

(
1

r
+

ϵ

r3

)
− 4m2

(
1√
2r

+
ϵ

2
√
2r3

)
− 2m2

(
1

2r
+

ϵ

8r3

)
(2.31)

The relative equilibria configurations are found as the roots of dUeff sq(r; c) = 0. A direct calculation using

Maple (see Appendix A.1) yields the pair:

ri,e =
c2 ±

√
c4 − ε((51 + 18

√
2)m6 + (144

√
2 + 60)Mm5 + 192M2m4)

2m2(4M +m(2
√
2 + 1))

(2.32)

where i = 1, 2, and the roots are real if c ≥ c0,

c40 = ε((51 + 18
√
2)m6 + (144

√
2 + 60)Mm5 + 192M2m4) (2.33)

We find that for c < c0, Ueff sq(r; c) admits no critical points since we assume, without loss of generality,

that c > 0, that is angular momenta are positive. As c increases to the threshold such that c = c0, one

critical point appears. As c increases over the threshold such that c > c0, two critical points appear:

r1,e < r2,e (2.34)

as determined using (2.32). The two critical points are comprised of a maximum and a minimum respec-

tively as shown in Figure 2.5. These critical points are central configurations corresponding to the fixed

12



momentum c. As dynamical solutions, they are relative (rotating) equilibria (RE) with the four external

bodies in a uniform rotating motion about the centre M .

Proposition 2.5.1. Consider the square (4 + 1)-problem with a J2-augmented potential. Then angular

momenta c = c0 marks a saddle-node bifurcation of RE [Guckenheimer & al.]. The RE of smaller side

length r1,e is unstable.

Figure 2.5: Ueff(r; c) forM = m = 1, ϵ = 0.01, c0 = 1.518793902. Fix total energy h < 0. For low momenta
c < c0, all motions are bounded and there are no RE (blue curve). If c = c0, all motions are bounded and
there is one RE (green curve). As c is increased above c0, all motions are bounded with two RE present
(orange & red curves); forbidden regions are present. For high momenta, unbounded motions are possible.

Remark 2.5.1. The stability of the r2e(c) branch is determined by considering the corresponding lineariza-

tion in the larger rhomboidal-shaped configuration’s invariant subset and further in the full phase-space.

Remark 2.5.2. We note that there are motions that end in collision with non-zero angular momentum.

The bodies perform an infinite spin around the central mass and collision is approached asymptotically.

This phenomenon is known in celestial mechanics as the black hole effect and it is specific to attractive

potentials containing terms −1/rα, α ≥ 2; see [Delgado & al. 1996], [Pasca & al. 2019], [Stoica 2000] and

[Arredondo & al. 2014].

From a qualitative standpoint, the regions of motion are as follows:

1. If c ≤ c0, then:

13



(a) for h < 0, we have r ∈ (0, rmax(h, c)).

(b) for h ≥ 0, we have r ∈ (0,∞).

2. If c > c0 and for c such that Ueff(r1,e; c) ≤ 0, then:

(a) for h ≤ Ueff(r2,e, c), we have r ∈ (0, rmax(h, c)].

(b) for Ueff(r2,e; c) ≤ h < Ueff(r1,e; c), the radius r is trapped either in r ∈ (0, r1,max(h, c)] or in a

basin r ∈ [rmin(h, c), r2,max(h, c)] depending on the initial position. Radii (r1,max(h, c), rmin(h, c))

are unattainable.

(c) for h = Ueff(r1e; c), we have r ∈ (0, rmax(h, c)] with an unstable RE in r1,e.

(d) for h > Ueff(r1,e; c) < h < 0, the motion is bounded and r ∈ (0, rmax(h, c)].

(e) for h ≥ 0, the motion is unbounded and r ∈ (0,∞).

3. If c > c0 and for c such that Ueff(r1,e; c) > 0, then:

(a) for h < Ueff(r2,e, c), we have r ∈ (0, rmax(h, c)].

(b) for Ueff(r2,e; c) ≤ h < 0, the radius r is trapped either in r ∈ (0, r1,max(h, c)] or in a basin

r ∈ [rmin(h, c), r2,max(h, c)] depending on the initial position. Radii [r1,max(h, c), rmin(h, c)] are

unattainable.

(c) for 0 ≤ h < Ueff(r1,e; c), the radius r is trapped either in r ∈ (0, r1,max(h, c)] or is unbounded,

that is r ∈ [rmin(h, c),∞). Radii [r1,max(h, c), rmin(h, c)] are unattainable.

(d) for h = Ueff(r1e; c), we have r ∈ (0, rmax(h, c)] with an unstable RE in r1,e.

(e) for h > Ueff(r1,e; c), the motion is unbounded, that is r ∈ (0,∞). No RE are present.

14



Chapter 3

Relative Equilibria and Stability

3.1 Parallelogram Configurations and RE

The RE of parallelogram-shaped configurations are determined by equating (2.15) to (2.20) to zero. For

a fixed angular momentum c, solutions of the configuration equations determine the central configuration

(r1(c), r2(c), φ(c)). The associated RE solution is:

(r1, r2, φ, p1, p2, pφ) = (r1(c), r2(c), φ(c), 0, 0, pφ(c)) (3.1)

where

pφ(c) =
cm2r

2
2(c)

m1r21(c) +m2r22(c)
(3.2)

and (r1(c), r2(c), φ(c)) are given by the central configuration equations:

c2 =
(m1r

2
1 +m2r

2
2)

2

2m1r1

∂U

∂r1
(r1, r2, φ) (3.3)

c2 =
(m1r

2
1 +m2r

2
2)

2

2m2r2

∂U

∂r2
(r1, r2, φ) (3.4)

∂U(r1, r2, φ)

∂φ
= 0 (3.5)

The configuration (r1(c), r2(c), φ(c)) of the RE is called a central configuration and is given by the central

configuration equations (3.3)-(3.5). We must solve Equations (3.3) to (3.5) in order to find relative equilib-

ria for parallelogram-shaped configurations. However, we restrict the parallelogram-shaped configurations

to rhomboidal or colinear configurations, i.e. φ = π
2 or 0. This is done to ensure that (3.5) holds true

for any values of the variables r1, r2 and parameters m1,m2. Therefore, we must solve (3.6) and (3.7)

15



numerically for (r1e, r2e, c) for each specified c value.

c2 =
(m1r

2
1 +m2r

2
2)

2

2m1r1

(
2Mm1f

′(r1) + 2m2
1f

′(2r1)

+ 2m1m2f
′
(√

r21 + r22 + 2r1r2 cos (φ)

)(
2r1 + 2r2 cos (φ)√

r21 + r22 + 2r1r2 cos (φ)

)) (3.6)

c2 =
(m1r

2
1 +m2r

2
2)

2

2m2r2

(
2Mm2f

′(r2) + 2m2
2f

′(2r2)

+ 2m1m2f
′
(√

r21 + r22 + 2r1r2 cos (φ)

)(
2r2 + 2r1 cos (φ)√

r21 + r22 + 2r1r2 cos (φ)

)) (3.7)

For each c value, an equilibrium solution of the form (r1e, r2e, c) needs to be determined using numerical

methods. We completed some work on this problem, however, it is beyond the scope of this thesis. Instead

we study square configurations and provide the necessary and sufficient conditions for the existence of

square RE.

Proposition 3.1.1. Within the rhomboidal configuration solutions, a RE is a square (i.e. r1 = r2 and

φ = π/2) if and only if m1 = m2.

Proof: If m1 = m2 then it is immediate that there is a square-shaped RE. For the reciprocal, let us denote

r1 = r2 = r. Given that the RE is a square, we have that φ = π/2, and so cosφ = 0. Also, we have

∂U

∂r1

∣∣∣∣∣
r1=r2=r

=
∂U

∂r2

∣∣∣∣∣
r1=r2=r

(3.8)

and so, since c ̸= 0, from the equations of motion,

c2 =
(m1r

2
1 +m2r

2
2)

2

2m1r1

∂U

∂r1
=

(m1r
2
1 +m2r

2
2)

2

2m2r2

∂U

∂r2
=⇒ m1 = m2 □

3.2 Square Configurations and RE

In the case of parallelogram-shaped configuration, we introduce the polar coordinates:

r1 = R cos (ψ), r2 = R sin (ψ) R > 0, ψ ∈
(
0,
π

2

)
(3.9)

and

pr1 = pR cos (ψ)− pφ
R

sin (ψ), pr2 = pR sin (ψ)− pφ
R

cos (ψ) (3.10)
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Square configurations are only possible if m1 = m2 which implies that ψ = π/4 and φ = π/2. Applying

the change of coordinates to (2.13) and setting m1 = m2 = m, we obtain:

H(R,ψ, φ, pR, pψ, pφ) =
1

m

(
p2R +

p2ψ
R2

)
+

(c− pφ)
2

mR2 cos2 (ψ)
+

p2φ

mR2 sin2 (ψ)
+ U(R,ψ, φ) (3.11)

with

U(R,ψ, φ) = 2Mmf(R cos (ψ)) + 2Mmf(R sin (ψ))

+ 2m2f
(
R
√
1 + sin (2ψ) cos (φ)

)
+ 2m2f

(
R
√
1− sin (2ψ) cos (φ)

)
+m2f(2R cos (ψ)) +m2f(2R sin (ψ))

(3.12)

Rescaling H → (1/2)H, we obtain:

H(R,ψ, φ, pR, pψ, pφ) =
1

2m

(
p2R +

p2ψ
R2

)
+

(c− pφ)
2

2mR2 cos2 (ψ)
+

p2φ

2mR2 sin2 (ψ)
+ Û(R,ψ, φ) (3.13)

with

Û(R,ψ, φ) =Mmf(R cos (ψ)) +Mmf(R sin (ψ))

+m2f
(
R
√
1 + sin (2ψ) cos (φ)

)
+m2f

(
R
√
1− sin (2ψ) cos (φ)

)
+

(
m2

2

)
f (2R cos (ψ)) +

(
m2

2

)
f (2R sin (ψ))

(3.14)

3.3 Stability of Square RE

The stability of a rotationally symmetric Hamiltonian system, modulo rotations, is determined by com-

puting the eigenvalues of the linearization matrix L of the associated reduced Hamiltonian (3.13). The

eigenvalues of L at a RE of a Hamiltonian system come in quadruples λ1,2,3,4 = ±α± iβ. Spectral stability

is obtained if the real part of all of the eigenvalues is zero. A complete discussion of the theory used here

is provided in Appendix C.

Here we determine the stability of square-shaped configuration RE within the parallelogram-shaped in-

variant motions.

The linearization at a RE, (R0, π/4, π/2, 0, 0, c/2) is:
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

0 0 0 1
m 0 0

0 0 0 0 1
mR2

0
0

0 − 4c
mR2

0
0 0 0 4

mR2
0

ρ 0 0 0 0 0

0 σ 0 0 0 4c
mR2

0

0 0 τ 0 0 0


(3.15)

where

ρ = − 3c2

mR4
0

− ∂2U

∂R2

∣∣∣∣∣
RE

= − 3c2

mR4
0

−Mmf ′′

(
R0

√
2

2

)
− 2m2f ′′(R0)− 2m2f ′′(R0

√
2)

σ = − 4c2

mR2
0

− ∂2U

∂ψ2

∣∣∣∣∣
RE

= − 4c2

mR2
0

+
√
2R0Mmf ′

(
R0

√
2

2

)
−R2

0Mmf ′′

(
R0

√
2

2

)

+
√
2R0m

2f ′(
√
2R0)− 2R2

0m
2f ′′(

√
2R0)

τ = −∂
2U

∂φ2

∣∣∣∣∣
RE

=
−R2

0m
2f ′′(R0) +R0m

2f ′(R0)

2

For the potential function f :

f(r) = −1

r
− ε

r3
(3.16)

we obtain the following:

ρ =
4
√
2m2

(
m
(
R2

0

4 + 3ε
4

)
+M(R2

0 + 12ε)
)
+m3(4R2

0 + 24ε)− 3c2R0

mR5
0

σ =
24
√
2m2

(
m
(
R2

0

4 + 5ε
8

)
+M(R2

0 + 10ε)
)
− 16c2R0

4mR3
0

τ =
3m2(R2

0 + 5ε)

2R3
0

The characteristic polynomial is:

P (λ) =
(
√
2R5

0m
2λ2 − α)(2

√
2R10

0 m
2λ4 + βλ2 + γ)

4m4R15
0

(3.17)
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where

α =4
√
2R2

0m
3 + 8MR2

0m
2 + 24

√
2εm3 + 2R2

0m
3 + 96Mεm2 − 3

√
2R0c

2 + 6εm3

β =− 12
√
2R7

0m
3 − 24MR7

0m
2 − 60

√
2R5

0εm
3 − 6R7

0m
3 − 240MR5

0εm
2 + 8

√
2R6

0c
2 − 15R5

0εm
3

γ =144MR4
0m

3 + 36R4
0m

4 + 2160MR2
0εm

3 + 270R2
0εm

4 + 7200Mε2m3 + 450ε2m4

The (
√
2R5

0m
2λ2 − α) term of the characteristic polynomial (3.17) is associated with perturbations that

preserve square configurations. We find (using Maple in Appendix A.3) that for all permitted values of

c, α is negative and thus (
√
2R5

0m
2λ2 − α) = 0 always has two imaginary solutions. This is in agreement

with the results of Section 2.5, where r2,e is shown to be stable with respect to perturbations that preserve

square configurations. We substitute y for λ2 and obtain:

P (y) =
(
√
2R5

0m
2y − α)(2

√
2R10

0 m
2y2 + βy + γ)

4m4R15
0

(3.18)

We isolate the following piece of (3.18) and obtain:

Q(y) = (2
√
2R10

0 m
2y2 + βy + γ) (3.19)

The perturbations associated with Q(y) are those that preserve parallelogram-shaped configurations. We

analyze Q(y) = [Ay2 +By + C] where:

A = 2
√
2m2R10

0 (3.20)

B = −12
√
2R7

0m
3 − 24MR7

0m
2 − 60

√
2R5

0εm
3 − 6R7

0m
3 − 240MR5

0εm
2 + 8

√
2R6

0c
2 − 15R5

0εm
3 (3.21)

C = 144MR4
0m

3 + 36R4
0m

4 + 2160MR2
0εm

3 + 270R2
0εm

4 + 7200Mε2m3 + 450ε2m4 (3.22)

For stability (within parallelogram-shaped motions), we require the roots y1,2 of Ay2 +By + C = 0 to be

real and negative; for this to be true the following three conditions must be satisfied:

� B2 − 4AC ≥ 0

� S = −B/A < 0

� P = C/A > 0
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As shown in Section 2.5, when the two branches of RE exist, the smaller RE, denoted r1,e in Section 2.5,

corresponding here to R1,e, is an unstable RE. The branch of larger RE, denoted r2,e in Section 2.5 and

is given by:

r2,e =
c2 +

√
c4 − ε((51 + 18

√
2)m6 + (144

√
2 + 60)Mm5 + 192M2m4)

2m2(4M +m(2
√
2 + 1))

(3.23)

The RE is multiplied by
√
2 to account for the change to polar coordinates. Without loss of generality, we

set M = 1 and obtain the larger RE, which we denote as R2,e:

R2,e =
√
2

c2 +
√
c4 − ε((51 + 18

√
2)m6 + (144

√
2 + 60)Mm5 + 192M2m4)

2m2(4M +m(2
√
2 + 1))

 (3.24)

We consider the discriminant of Q(y), denoted as ∆ and determined using Maple as shown in Appendix

A.2. We factor out R10
0 from the discriminant since R0 > 0 and denote this as ∆. We then expand ∆ in ε

and substitute R2,e for R0 and obtain:

∆ = T0(m, c) + T1(m, c)ε+O(ε2) (3.25)

with

T0(m, c) = −16c8(68
√
2m2 + 272

√
2m− 9m2 − 8m− 16)

m4(2
√
2m+ 4 +m)4

(3.26)

T1(m, c) =
72c4

2
√
2m+ 4 +m)4

[
(22

√
2m2 − 176

√
2m− 15m2 + 20m+ 64)(7m2 − 8m− 16)

]
(3.27)

For ε small enough, the sign of ∆ is the same as the sign of T0(m, c). We denote:

g(m) = 68
√
2m2 + 272

√
2m− 9m2 − 8m− 16, m ≥ 0 (3.28)

such that

T0(m, c) = − 16c8g(m)

m4(2
√
2m+ 4 +m)4

(3.29)

We observe that g(m) > 0 for m > (−4(34
√
2−49)/(68

√
2−9)) ≈ 0.042068394 in which case T0(m, c) < 0

which implies that ∆ < 0. Thus the roots of Q(y) are complex with non-zero real parts, which implies

that the eigenvalues of P (λ) have non-zero real parts and thus the equilibrium R2,e is unstable when

m > (−4(34
√
2− 49)/(68

√
2− 9)) ≃ 0.042068394.

For m ∈ [0, (−4(34
√
2 − 49)/(68

√
2 − 9)) ≈ 0.042068394 we calculate the linearization at the RE R2,e

of the mechanical system in the full phase-space with 7-degrees of freedom given by the Hamiltonian (2.9)
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(see Appendices A.4 and A.5). The linearization is a 14× 14 matrix and the corresponding characteristic

polynomial is a polynomial of degree 14 of the form:

P (λ) = a0 + a2λ
2 + a4λ

4 + . . .+ a14λ
14 (3.30)

with the coefficients aj = aj(m, c, ε) , j = 0, 1, 2, . . . , 14. We denote y = λ2 and obtain:

P (y) = a0 + a2y + . . .+ a12y
6 + a14y

7 (3.31)

The requirement for the stability of R2,e is that all roots of P (y) be real and negative. In particular, this

implies that the product of the roots must be negative. Using algebra, we determine the product of the

roots:

Prod: = y1y2 . . . y7 = (−1)7
a0
a14

(3.32)

The calculations performed in Maple (see Appendix A.5) show that a14 = 1. Further, expanding a0(m, c, ε)

in terms of ε

a0(m, c, ε) = A0(m, c) +A1(m, c)ε+O
(
ε2
)

(3.33)

we observe that the term of order zero is always negative (see Appendix A.5) and therefore the product

of the roots is positive. Thus, we obtain

Proposition 3.3.1. In the (4 + 1)-body problem with J2 potential, if ε is sufficiently small, all the square

RE are unstable.
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Chapter 4

Conclusion

In this thesis we have considered (4 + 1)-body problems with Newtonian potential and a J2 correction.

Using Lagrangian and Hamiltonian mechanics, we constructed a model of the standard (4+1)-body prob-

lem and reduced the model to rhomboidal-shaped configurations and to square-shaped configurations. We

used angular momentum to reduce the problem by its rotational symmetry.

We proved that the RE of square-shaped configurations exist if and only if the outer masses are equal. We

then determined the minimum necessary angular momentum, c0, to allow for RE to exist. Furthermore, we

obtained equations that allow for the location of RE, r1,e, r2,e, where r1,e < r2,e, to be determined explicitly.

We provided a theoretical argument that r1,e is unstable. We also presented a numerical based argument

that r2,e is also unstable for m > (−4(34
√
2− 49)/(68

√
2− 9)). We then proposed that the (4 + 1)-body

problem with J2 potential has unstable square RE if m ∈ [0, (−4(34
√
2− 49)/(68

√
2− 9)))

There are two main possibilities that exist for further work. The first and foremost possibility involves

examining square-shaped RE using a different potential function, however depending on the potential

function, analytic solutions may not be possible. Another possibility is to study other RE configurations,

such as rhomboidal or colinear RE configurations. From preliminary work done on this problem, it appears

that numerical methods are needed to determine the location of any rhomboidal or colinear RE. It may

also be possible to employ numerical methods to determine RE in parallelogram-shaped configurations,

that is, configurations where φ ∈ (0, π/2).
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Appendix A

Maple Code for Stability Analysis of

RE

A.1 Maple Code for Determining the RE

Here we present the Maple code used to determine RE.
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A.2 Maple Code for the Stability of RE R2,e

Here, on the following page we present Maple code and results for the analysis of the second RE in the

square-shaped configuration case.
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A.3 Maple Code for the Sign of α

Here, on the following page we present the Maple code that was used to prove that α < 0.
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A.4 Maple Code for Determining the Second RE in the Full

Phase Space

Here, on the following page we present the Maple code that was used to determine the RE in the full phase

space.
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A.5 Maple Code for the Stability of the Second RE in the Full

Phase Space

Here, on the following page we present the Maple code that was used to prove that the larger RE is

unstable.
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Appendix B

Equilibria and Stability for

Autonomous ODEs

This appendix is a brief overview of the underlying theory behind the equilibria and stability of autonomous

ODEs. The relevant references here are Relative Equilibria of Isosceles Triatomic Molecules in Classical

Approximation by Damaris McKinley ([McKinley 2014]), Nonlinear Dynamics and Chaos with Applica-

tions to Physics, Biology, Chemistry, and Engineering by Steven Strogatz and Geometric Mechanics and

Symmetry: From Finite to Infinite Dimensions by Holm et. al. ([Holm & al. 2009]).

We begin by defining equilibria points of non-linear autonomous systems:

Definition B.0.1. Given a non-linear autonomous system defined as follows:

ẋ(t) = f(x(t)), x ∈ D ⊂ Rn, D is open (B.1)

where f : D → Rn is C1(D). A point xe ∈ D is called an equilibrium point of ẋ(t) if it is a solution of

f(x(t)) = 0. A solution x(t) = xe(t) ∀t is valid if it holds for (B.1).

Next we define the stability of an equilibrium point:

Definition B.0.2. An equilibrium point xe is Lyapunov stable if and only if for any ϵ > 0 there exists a

δ > 0 such that if |x(t0)− xe| < δ, then |x(t)− xe| < ϵ for all t > t0

Definition B.0.3. Furthermore, an equilibrium point xe is asymptotically stable if and only if it is Lya-
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punov stable and if there exists δ > 0 such that if |x(t0)− xe| < δ then:

lim
t→∞

|x(t)− xe| = 0 (B.2)

Now, without loss of generality, we assume that xe = 0, which can be always be achieved with a linear

change of coordinates.

Definition B.0.4. Let F (x) be a continuous function on a domain D containing the origin and assume

that F (0) = 0. Under these assumptions:

1. F (x) is positive definite on D if F (x) > 0, ∀x ∈ D \ {0}

2. F (x) is positive semidefinite on D if F (x) ≥ 0, ∀x ∈ D \ {0}

3. F (x) is negative definite on D if F (x) < 0, ∀x ∈ D \ {0}

4. F (x) is negative semidefinite on D if F (x) ≤ 0, ∀x ∈ D \ {0}

Now, we define a Lyapunov function:

Definition B.0.5. Let xe = 0 be the equilibrium point for (B.1) and let D̂ be an open neighbourhood

surrounding the origin and F : D̂rightarrowR be a function. Then F (x) is a Lyapunov function if:

1. F (x) is continuously differentiable on D̂

2. F (0) = 0

3. F (x) > 0 for all x ∈ D̂ \ {0}

4. Ḟ (x(t)) ≤ 0 along any solution x(t) with x(t0) ∈ D̂

The following example is given in order to illustrate Lyapunov functions.

Example B.0.1. Consider a system given as:


ẋ = −x+ y − xy2

ẏ = −x− y

(B.3)

Then given a Lyapunov function F of the form F (x, y) = x2 + ky2 where k ∈ R, the value of k that allows

F to be a Lyapunov function must be determined.
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It is easy to see that the point (0, 0) is an equilibrium point. Then the easiest condition to verify is

Condition 2, which requires that F (0, 0) = 0 which it clearly does regardless of the value of k. Next, it is

easy to see that Condition 3 can be met so long as k is non-negative or x2 > ky2 for all (x, y) ∈ D \ {0, 0}.

Now taking the first derivative, the following is obtained:

d

dt
F (x(t), y(t)) =

∂F

∂x

dx

dt
+
∂F

∂y

dy

dt

= (2x)(−x+ y − xy2) + (2ky)(−x− y)

= −2x2 + 2xy − 2x2y2 − 2kxy − 2ky2

= −2x2 + 2xy(1− k)− 2x2y2 − 2ky2

(B.4)

Now, Condition 3 can be satisfied by setting k = 1, resulting in:

Ḟ (x, y) = −2x2 − 2x2y2 − 2y2 (B.5)

The above equation is always negative for any (x, y) ̸= (0, 0), thus satisfying Condition 4. From here it can

be easily seen that F is continuously differentiable, satisfying Condition 1. Therefore, since all conditions

are satisfied, F is indeed a Lyapunov function.

Now we give the First and Second Lyapunov Stability Theorems which give important results on the

stability of equilibria.

Theorem B.0.1 (Lyapunov’s First Stability Theorem). Suppose that a Lyapunov function F (x) can be

defined on a neighbourhood of the origin and xe = 0. Then the origin is Lyapunov stable.

Theorem B.0.2 (Lyapunov’s Second Stability Theorem). Suppose that xe = 0 is an equilibrium point for

(B.1) and F (x) is a Lyapunov function that is continuous on D, which contains the equilibrium point. If

Ḟ (x) < 0 for all x ∈ D \ {0}, then xe = 0 is asymptotically stable.

If the Lyapunov test fails, then the stability of the equilibria cannot be determined by this method, rather

the behavior of the linear system at x = xe must be studied. We now define linearization at an equilibrium

point of an autonomous ODE system:

Definition B.0.6. The linear system given as ẋ = Ax, with A = Df(xe) is called the linerization of (B.1)

at the equilibrium point xe.

This gives rise to the following conditions regarding the stability of an equilibrium point xe.
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Definition B.0.7. In the following list, it shall be assumed that xe is a hyperbolic equilibrium of (B.1).

xe is called a hyperbolic equilibrium if none of the eigenvalues of A have a real part of zero. Then there

are various possibilities regarding the stability of a hyperbolic equilibrium xe as shown in the following list.

1. xe is unstable if at least one of the eigenvalues of A has a positive real part.

2. xe is asymptotically stable if all of the eigenvalues of A have strictly negative real parts.

3. xe is spectrally stable if all of the eigenvalues of A have real parts that are less than or equal to zero.

It is possible that a non-hyperbolic equilibrium may be spectrally stable.

Now we can establish the criteria to determine what type of equilibrium point we are dealing with.

Definition B.0.8. Given the eigenvalues λ1, λ2, ..., λn of A, the following list outlines the stability of the

equilibrium point xe.

1. If for all i where 1 < i < n, Re(λi) < 0, then xe is a sink.

2. If for all i where 1 < i < n, Re(λi) > 0, then xe is a source.

We now continue our previous example and aim to classify the equilibria points and determine their

stability.

Example B.0.2. Consider the following system of differential equations:


ẋ = xy + 3x− y − 3

ẏ = xy − 5y − x+ 5

(B.6)

The system can be easily rewritten to make the equilibria obvious:


ẋ = (x− 1)(y + 3)

ẏ = (x− 5)(y − 1)

(B.7)

Therefore the two equilibria are (1, 1) and (5,−3). The next step is to compute the Jacobian as follows:

J =


∂ẋ

∂x

∂ẋ

∂y
∂ẏ

∂x

∂ẏ

∂y

 =

y + 3 x− 1

y − 1 x− 5

 = A (B.8)

The matrix A is the linearization of the system.
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Example B.0.3. Recall in the previous example, a linearization matrix A was found for a system with

equilibria points (1, 1) and (5,−3). The matrix A was found to be:

A =

y + 3 x− 1

y − 1 x− 5

 (B.9)

Then evaluating A at the equilibrium (1, 1) yields:

A(1,1) =

4 0

0 −4

⇐⇒

ẋ
ẏ

 =

4 0

0 −4


x
y

⇐⇒


ẋ = 4x

ẏ = −4y

(B.10)

Evaluating the eigenvalues of matrix A(1,1) yields λ1 = 4 and λ2 = −4 meaning that the hyperbolic equi-

librium point (1, 1) is an unstable saddle (λ1 > 0 and λ2 < 0).

Furthermore, evaluating A at the equilibrium (5,−3) yields:

A(5,−3) =

 0 4

−4 0

⇐⇒

ẋ
ẏ

 =

 0 4

−4 0


x
y

⇐⇒


ẋ = 4y

ẏ = −4x

(B.11)

Evaluating the eigenvalues of matrix A(5,−3) yields λ1 = 4i and λ2 = −4i, a non-hyperbolic equilibrium,

meaning that the equilibrium point (5,−3) is a spectrally stable centre.

The next appendix provides an outline of the mathematical and physical theory underlying the work done

in this thesis, specifically the mathematical formulation of conservative mechanical N-point mass systems.
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Appendix C

Newtonian Mechanics

This appendix is a brief overview of the underlying Newtonian mechanics employed in this paper. The

relevant references here are Relative Equilibria of Isosceles Triatomic Molecules in Classical Approximation

by Damaris McKinley ([McKinley 2014]), Nonlinear Dynamics and Chaos with Applications to Physics,

Biology, Chemistry, and Engineering by Steven Strogatz ([Strogatz 2008]) and Geometric Mechanics and

Symmetry: From Finite to Infinite Dimensions by Holm et. al. ([Holm & al. 2009]). Part 1 outlines

Newtonian N -body systems and their associated dynamical quantities such as linear momentum, angular

momentum, etc. This section also examines binary interactions in N -body systems, central force problems

and various examples. Part 2 introduces and outlines the Lagrangian formulation of N -body problems and

the Euler-Lagrange equations. Part 3 discusses the Legendre transform and Hamiltonian mechanics, out-

lining how to obtain the Hamiltonian of a system via the Legendre Transform. The section then discusses

Hamiltonian mechanics, outlining various definitions, theorems, proofs and examples. The penultimate

section covers cyclic and polar coordinates which are used in this paper to reduce the Hamiltonian. This

leads to the final section, which outlines the theory behind finding relative equilibria which is a major part

of the thesis. To summarize, the appendix is organized as follows:

1. Part 1: Newtonian N -Body Systems

2. Part 2: Lagrangian Mechanics and the Formulating Lagrangians for Newtonian N -Body Systems

3. Part 3: The Legendre Transform and Hamiltonian Mechanics for Newtonian N -Body Systems

4. Part 4: Cyclic Coordinates and Reduced Hamiltonians

5. Part 5: Equilibria and Relative Equilibria of Newtonian N -Body Systems
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C.1 Part 1: Newtonian N-Body Systems

In this section, a system of N bodies is considered with each body having a mass of mi with mutual

(binary) interactions. A fixed frame of reference is denoted by Rd, where d is the spatial dimension, d = 1,

2 or 3. Each of the N bodies is represented by a single point mass.

Definition C.1.1 (Point Mass). A point mass is defined as an idealised zero-dimensional object that is

completely described by its mass and spatial position. It is assumed to have a constant mass and its position

varies as a function of time.

This leads to the configuration and configuration space of a system which are defined as follows:

Definition C.1.2 (Configuration and Configuration Space). The configuration of a system comprised of

N point masses that interact with one another is given by the multi-vector q = (q1, q2, ..., qN ) ∈ RdN ,

where qi denotes the position vector of each of the point masses. The configuration space is defined as the

set of all possible configurations where in the absence of constraints, it is either RdN if no collisions are

possible or an open subset of RdN . As a function of time, the velocity of each point mass is given by:

dqi
dt

= q̇i(t) (C.1)

Furthermore, as a function of time, the acceleration of each point mass is given by:

d2qi
dt2

= q̈i(t) (C.2)

Example C.1.1. The preceding definition can be explained with an example. If there is a single particle in

open space, then its configuration space is R3, since the particle can occupy any point in space. Similarly,

a point mass confined to a straight line would have its configuration space as R.

If, for example, there was a system with N non-interacting particles in space, the largest possible con-

figuration space is R3N . However, the actual configuration space would be a proper subset of R3N since

two or more particles cannot simultaneously occupy the same point in space.

Now that we have defined point masses, we can discuss perhaps the most famous law of physics, Newton’s

Second Law.

Definition C.1.3 (Newton’s Second Law). Newton’s Second Law for the system is given as:

miq̈i = Fi for i = 1, 2, ..., N (C.3)
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In the above, Fi is the total force on point mass i.

A crucial aspect of Newtonian Mechanics is the idea of inertia and inertial frames of reference, which we

define below:

Definition C.1.4 (Inertial Frame). A frame of reference in which Newton’s Second Law applies is called

an inertial frame.

An inertial frame of reference is assumed throughout this thesis. Furthermore, it is assumed that each Fi

is a smooth function of configurations only, that is Fi = Fi(q1, q2, ..., qN ). Thus, the system (C.3) is a

second order autonomous ODE system with RdN equations and RdN unknowns.

The following dynamical quantities play central roles in the dynamics of the preceding system. In many

situations, these quantities are conserved, that is, they are constant along any trajectory given below, of

the system (C.3), so long as it satisfies equation (C.3).

q(t) = (q1(t), q2(t), ..., qN (t)) (C.4)

Here we provide definitions of important dynamical quantites for Newtonian N -body systems, such as

various momenta, the centre of mass and kinetic energy.

Definition C.1.5 (Dynamical Quantities). The linear momentum, or impulse of a single point mass with

position qi is pi = miq̇i.

The total linear momentum of a system of N point masses is the sum of the linear momenta of each

of the point masses. This is given as:

p =

N∑
i=1

pi =

N∑
i=1

miq̇i (C.5)

The centre of mass, c(t) is a unique location in space such that:

c(t) =

∑N
i=1miqi∑N
i=1mi

(C.6)

The angular momentum, about the origin of coordinates q = 0, of a single point mass with position qi ∈ R3

is:

πi = qi ×miq̇i = qi × pi (C.7)
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In the preceding equation × denotes the three-dimensional cross product. Now the total angular momentum

of a spatial system (d = 3) of N point masses taken about the origin of coordinates where q = 0 is the

sum of the angular momenta of each point mass, given as:

π =
∑

πi =
∑

qi ×miq̇i =
∑

qi × pi (C.8)

Geometrically, this is the sum of the N oriented areas given by the cross-products of pairs of vectors qi

and pi. For a planar system (d = 2), the total angular momentum is the scalar defined by:

π =
∑

mi(q
1
i q̇

2
i − q2i q̇

1
i ) =

∑
q1i p

2
i − q2i p

1
i (C.9)

In the preceding equation qi = (q1i , q
2
i ) and pi = (p1i , p

2
i ). It should be noted that if the vectors qi are

embedded in R3 as (q1i , q
2
i , 0), then π as defined above is the third component of the vector π as defined

in (C.8). It should also be noted that angular momentum is undefined for systems defined on a line (d = 1).

The total kinetic energy of the system of N point masses is given as:

K =
1

2

N∑
i=1

mi||q̇i||2 (C.10)

Here ||q̇i||2 = q̇i · q̇i =
∑
j(q̇

j
i )

2 is the squared Euclidean norm of q̇i.

The following remark is of great importance in this thesis; it outlines how to change coordinates from

Cartesian coordinates into polar coordinates.

Remark C.1.1. One can convert the total angular momentum and kinetic energy into polar coordinates

by making a change of coordinates as shown below:

qi = (ri cos θi, ri sin θi) for i = 1, 2, ..., N (C.11)

This then yields:

π =
∑

mi(ri cos θi, ri sin θi)× (ṙi cos θi − riθ̇i sin θi, ṙi sin θi + riθ̇i cos θi)

=
∑

mir
2
i θ̇i

K =
1

2

∑
mi||(ṙi cos θi − riθ̇i sin θi, ṙi sin θi + riθ̇i cos θi)||2

=
1

2

∑
mi(ṙ

2
i + r2i θ̇

2
i )

(C.12)
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Under specific conditions, linear momentum, angular momentum and energy are conserved.

The following definition shows how a body’s position described in polar coordiantes can be differentiated

to obatin its velocity in polar coordinates.

Definition C.1.6. In two dimensional space, the velocity in xy-components is given as:

ẋi
ẏi

 = ṙi

cos θi

sin θi

+ rθ̇i

− sin θi

cos θi

 (C.13)

where in the preceding equation ri is the radius from the origin to the point i and θ is the counter-clockwise

angle formed between the positive x-axis and the radius for point i.

The following theorems and definitions provide important results regarding momenta, torque and binary

particle interactions in systems of N point masses.

Theorem C.1.1 (Conservation of Linear Momentum). If
∑

Fi = 0, then the total linear momentum is

conserved.

The following definition is required before proceeding.

Definition C.1.7. The torque on a point mass with position q ∈ R3 and force F is q × F . The total

torque of a system of N point masses is
∑

qi × Fi.

Theorem C.1.2 (Conservation of Angular Momentum). The Conservation of Angular Momentum The-

orem states that if, for a system,
∑

qi × Fi = 0, then its total angular momentum is conserved.

Definition C.1.8 (Binary Particle Interaction). The force being exerted on a single mass point by another

mass point within the system will now be considered.

In many systems, the only forces on the point masses are forces of binary interaction Fij , each paral-

lel to the inter-particle position vector dij = qi − qj , such that Fij = −Fij always holds and the total

force on each point mass i is Fi =
∑
j Fij . This system is called a closed system. Moreover, such forces

are called internal and any other forces are called external.

Proposition C.1.1. In any closed system, the total force and total torque are both zero.

Corollary C.1.1. The total angular momentum of a closed system is conserved.

We now present an extensive example of a Newtonian 2-body system that illustrates many of the preceeding

theorems and definitions.
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Example C.1.2. (Newtonian 2-Body Systems) Consider a system formed by two mass points m1 and m2,

with mutual interaction, so that the motion is described by:

m1q̈1 = −F (q2 − q1) (C.14)

m2q̈2 = F (q2 − q1) (C.15)

In the preceding equations F : D ⊂ Rd → Rd is a force which depends upon the relative vector (q2 − q1)

only. Then, since the sum of the forces is zero, the linear momentum is conserved, yielding the following:

m1q̇1(t) +m2q̇2(t) = constant = c1 (C.16)

In the preceding equation, the constant c1 is determined by the initial conditions. (The relation above can

be also immediately observed from the equations of motion).

The preceding equation leads to:

c(t) =
m1q1(t) +m2q2(t)

m1 +m2
=

c1
m1 +m2

t+ c2 (C.17)

In the preceding equation, c2 is a constant determined by the initial conditions. Now, let r = q2 − q1 be

the relative vector of m1 and m2 and consider the change of coordinates (q1, q2) → (r, c) given below as:

r = q2 − q1 (C.18)

c =
m1q1 +m2q2
m1 +m2

(C.19)

Then r is given by the following equation:

r(t) = q2(t)− q1(t) =
m1 +m2

m2
c(t)− m1

m2
q1(t)− q1(t)

=
m1 +m2

m2
c(t)− m1 +m2

m2
q1(t)

(C.20)

Then the following is deduced using the preceding equation and the first equation in this example, yielding:

r̈(t) =
m1 +m2

m1m2
F (r) (C.21)

49



Let r̃(t) be a solution of the preceding equation, then the motion r(t) is given by:

r(t) = r̃(t) +
m1 +m2

m2
c(t) (C.22)

In the preceding equation r(t) is the sum of the relative vector dynamics r̃(t) and dynamics of centre of

mass vector c(t). Since the dynamics of the centre of mass is known (see (C.6)) from the initial conditions

(see (C.17)), it is sufficient to solve only (C.21).

Thus, without loss of generality, in the case of Newtonian 2-body systems, it can be assumed that c1 =

c2 = 0 and then study the dynamics of the relative vector given by (C.21). It is customary to write this

system as follows:

M r̈ = f(r) (C.23)

In the preceding, M is the relative mass and given as:

M =
m1m2

m1 +m2
(C.24)

Unlike linear and angular momenta, the kinetic energy of closed system is not necessarily conserved.

However, the total energy is conserved if no forces are present. We now expand upon the idea of Newtonian

N -body systems by defining Newtonian N -body potential systems.

Definition C.1.9 (Newtonian N -Body Potential Systems). A Newtonian N -Body Potential System is

a mechanical system formed by N point masses where the force on each point mass is the gradient of a

function. Specifically,

miq̈i = − ∂V

∂qi
, for i = 1, ..., N (C.25)

In the preceding equation V : D ⊂ RdN → R is a smooth function called the potential energy.

Examples of Newtonian N -body potential systems are central force problems, which are defined as follows:

Definition C.1.10 (Central Force Problem). A central force problem is a mechanized system where:

F (q) = F (|q|) q
|q|

(C.26)

This system is a Newtonian potential system with potential given by:

V (q) = −U(|q|) (C.27)
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In the potential, U(|q|) is an anti-derivative of F .

The following example is a very famous central force problem, the Kepler Problem.

Example C.1.3 (Central Force Problem: The Kepler Problem). The motion of a planet of mass m in

the gravitational field of a sun of mass M , with M >> m and G is the gravitational constant, is modeled

by:

mq̈ = −GmM
||q||3

q = −GmM
||q||2

q̂ (C.28)

In the above equation:

q̂ =
q

||q||
(C.29)

An additional example of a Newtonian N -body potential system is given in the following example.

Example C.1.4. (The Classical N -Body Problem) Consider the motion of N point masses under their

mutual Newtonian gravitational forces (i.e., inverse-square law). This system is a Newtonian potential

system with:

V (q) =
∑

1≤i<j≤N

−Gmimj

||qi − qj ||
(C.30)

The general problem of solving this system or determining its characteristics is called the Newtonian N -body

problem.

The following example is a continuation of the previous Newtonian 2-body system example; this example

examines potential energy.

Example C.1.5. (Newtonian 2-Body Systems cont.) In the first part of Example (C.1.2) given previously,

if one considers that F depends only upon the distance between m1 and m2, that is:

F = F (|q2 − q1|)
q2 − q1
|q2 − q1|

= F (r)
r

r
(C.31)

then one finds that:

V (r) = −U(r) =

∫
(−F (ρ))dρ = −

∫
F (ρ)dρ (C.32)

In the above equation,
∫
F (ρ)dρ is an anti-derivative of F . Therefore, (C.23) can be equivalently written

as:

M r̈ = −∂V
∂r

(C.33)

We now consider the total energy of a system and state the Conservation of Energy Theorem with proof.
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Definition C.1.11. The total energy of a Newtonian N -body potential system with potential energy V is:

E = K + V (C.34)

In the preceding equation, K is the kinetic energy.

This allows one to arrive at the following conservation law.

Theorem C.1.3 (Conservation of Energy Theorem). In any Newtonian N -body potential system, the total

energy is conserved.

Proof C.1.1.

dE

dt
=

d

dt
(K + V ) =

d

dt

(
1

2

N∑
i=1

mi||q̇i||2 +
N∑
i=1

V (qi)

)

=
1

2

(
N∑
i=1

miq̇i · q̈i +
N∑
i=1

miq̈i · q̇i

)
+

N∑
i=1

∂V

∂qi
· dqi
dt

=

N∑
i=1

miq̇i · q̈i +
N∑
i=1

∂V

∂qi
· dqi
dt

=

N∑
i=1

q̇i ·
(
miq̈i +

∂V

∂qi

)
= 0

(C.35)

Remark C.1.2. For this reason, Newtonian N -body potential systems are also referred to as conservative.

We now define the conditions for a function to be translationally and rotationally invariant. Furthermore,

we prove that the potential energy of the Classical N -Body Problem is translationally invariant.

Definition C.1.12. A function V : RdN → R is translationally invariant if:

V (q1 + t, ..., qN + t) = V (q1, ..., qN ) (C.36)

for any q = (q1, ..., qN ) and any t ∈ Rd.

A function V : RdN → R is rotationally invariant if:

V (Rq1, ..., RqN ) = V (q1, ..., qN ) (C.37)

for any q = (q1, ..., qN ) and any d× d rotational matrix R (it is assumed that d = 2 or d = 3).
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Example C.1.6. It can be shown that the following potential is translationally invariant:

V (q) =

N∑
i,j=1

−Gmimj

||qi − qj ||
(C.38)

Let t be a scalar quantity, then:

V (q + t) =

N∑
i,j=1

−Gmimj

||qi + t− qj − t||
=

N∑
i,j=1

−Gmimj

||qi − qj ||
= V (q) (C.39)

Note: It can also be shown that V is rotationally invariant as well.

C.2 Part 2: Lagrangian Formulation

In this section we introduce the Lagrangian and the Euler-Lagrange equations and their application to

N -body systems. Additionally, we provide related definitions, examples, theorems and proofs. We begin

this section by defining the Lagrangian of a Newtonian N -body potential system.

Definition C.2.1. The Lagrangian of a Newtonian N -body potential system in Rd with Cartesian coordi-

nates is a smooth function L : D × RdN → R, D ⊂ RdN open, of the form:

L(q, q̇) =
1

2
q̇TM q̇ − V (q) (C.40)

where q = (q1, q2, . . . , qN ).

In the above, the mass matrix M is defined by:

M =



m1

m1 0
m1

. . .

mN

0 mN

mN



(C.41)

In the above matrix, mi > 0, for all i = 1, 2, ..., N .

Remark C.2.1. The Lagrangian consists of L = K − V , where K is the kinetic energy and V is the

potential energy.
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From the Lagrangian we now consider the equations of motion.

Theorem C.2.1. The equations of motion of a Newtonian N -body potential system:

miq̈i = − ∂V

∂qi
, i = 1, 2, ..., N (C.42)

are equivalent to the Euler-Lagrange Equations:

d

dt

(
∂L

∂qi

)
− ∂L

∂qi
= 0, i = 1, 2, ..., N (C.43)

for the Lagrangian L defined by (C.40).

Note that here, q̇ is considered as an independent variable, so that L : R2dN → R and (C.40) has partial

derivatives with respect to both q and q̇. Yet, when evaluating (C.40) and its derivatives, one must

substitute q̇(t) =
d

dt
q(t)

Proof C.2.1.

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
=

d

dt
(M q̇) +

∂V

∂q
=M q̈ +

∂V

∂q
= 0 (C.44)

We now provide a definition for a time-independent Lagrangian system and state with proof a theorem

regarding the coordinate-independence of the Euler-Lagrange equations.

Definition C.2.2. A time-independent Lagrangian system on a configuration space RdN is the system of

ODEs in (C.43), i.e. the Euler-Lagrange equations, for some function L : D × RdN → R, D ⊂ RdN open,

L = L(q, q̇), called the Lagrangian.

Theorem C.2.2. The Euler-Lagrange equations are coordinate-independent.

Proof C.2.2. Consider a change of coordinates q = q(r), where q(r) is a smooth map with a smooth

inverse. Then:

q̇ =
dq

dt
=
∂q

∂r
· dr
dt

=
∂q

∂r
· ṙ, so

∂q̇

∂r
=
∂2q

∂r2
· ṙ and

∂q̇

∂ṙ
=
∂q

∂r
(C.45)

If it is also assumed that q(t) is smooth, then the equality of mixed partials gives:

d

dt

(
∂q

∂r

)
=
∂q̇

∂r
, so

d

dt

(
∂q̇

∂ṙ

)
=

d

dt

(
∂q

∂r

)
=
∂q̇

∂r
(C.46)
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If the Euler-Lagrange equations hold for (q, q̇), then:

d

dt

(
∂L

∂ṙ

)
− ∂L

∂r
=

d

dt

(
∂L

∂q̇
· ∂q̇
∂ṙ

)
−
(
∂L

∂q
· ∂q
∂r

+
∂L

∂q̇
· ∂q̇
∂r

)
=

d

dt

(
∂L

∂q̇

)
· ∂q̇
∂ṙ

+
∂L

∂q̇
· d
dt

(
∂q̇

∂ṙ

)
− ∂L

∂q
· ∂q
∂r

− ∂L

∂q̇
· ∂q̇
∂r

=
d

dt

(
∂L

∂q̇

)
· ∂q
∂r

+
∂L

∂q̇
· ∂q̇
∂r

− ∂L

∂q
· ∂q
∂r

− ∂L

∂q̇
· ∂q̇
∂r

=

(
d

dt

(
∂L

∂q̇

)
− ∂L

∂q

)
· ∂q
∂r

+
∂L

∂q̇
· ∂q̇
∂r

− ∂L

∂q̇
· ∂q̇
∂r

=

(
d

dt

(
∂L

∂q̇

)
− ∂L

∂q

)
= 0

(C.47)

By using the preceding theorem, one can perform a change of coordinate by expressing L = K − V in the

new coordinates in which the (new) Euler-Lagrange equations can be computed.

Definition C.2.3. A Lagrangian system on a configuration space RdN is the system of ODEs in the

Euler-Lagrange equations, given below, for some function L : R2dN → R, called the Lagrangian.

d

dt

(
∂L

∂q̇

)
−
(
∂L

∂q

)
= 0 (C.48)

Here, an example is provided to illustrate the Lagrangian formulation and the Euler-Lagrange equations.

Example C.2.1 (Newtonian 2-Body Potential Systems). Recall from the previous Newtonian 2-body po-

tential system example, the equation of motion (C.33) of the relative vector between two mass points with

binary interaction. The Lagrangian for this problem is:

L(r, ṙ) =
M

2
ṙ2 − V (r) (C.49)

The preceding Lagrangian can be expressed in components as:

L(rx, ry, ṙx, ṙy) =
M

2
(ṙ2x + ṙ2y)− V

(√
r2x + r2y

)
(C.50)

The Euler-Lagrange equations are given by:

Mr̈x = − ∂V

∂rx
, Mr̈y = − ∂V

∂ry
(C.51)

In this problem it is more convenient to use polar coordinates. Passing L to polar coordinates, the following

is obtained:

L(r, θ, ṙ, θ̇) =
M

2

(
ṙ2 + (rθ̇)2

)
− V (r, θ) (C.52)
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with the Euler-Lagrange equations given by:

d

dt

∂

∂ṙ

(
M

2

(
ṙ2 + (rθ̇)2

)
− V (r)

)
=

∂

∂r

(
M

2

(
ṙ2 + (rθ̇)2

)
− V (r)

)
(C.53)

d

dt

∂

∂θ̇

(
M

2

(
ṙ2 + (rθ̇)2

)
− V (r)

)
=

∂

∂θ

(
M

2

(
ṙ2 + (rθ̇)2

)
− V (r)

)
(C.54)

Calculating the above, the Euler-Lagrange equations become:

Mr̈ =Mrθ̇2 − V ′(r) (C.55)

d

dt
Mr2θ̇ = 0 (C.56)

We have

Mr2(t)θ̇(t) = const. (C.57)

which can be used to reduce the system.

To conclude this section we briefly address the energy function for a Lagrangian and prove that this energy

function is conserved in any time-independent Lagrangian system.

Definition C.2.4. The energy function for a Lagrangian L(q, q̇) is:

E =
∂L

∂q̇
· q̇ − L (C.58)

In particular, for Lagrangians of the form (C.40), the energy is given by:

E =
∑

mi||q̇i||2 − L =
1

2

∑
mi||q̇i||2 + V = K + V (C.59)

Theorem C.2.3. In any time-independent Lagrangian system, the energy function is conserved.

Proof C.2.3.

dE

dt
=

d

dt

(
∂L

∂q̇
q̇ − L(q, q̇)

)
=

d

dt

(
∂L

∂q̇
q̇

)
− dL(q, q̇)

dt

=
d

dt

(
∂L

∂q̇

)
· q̇ +

(
∂L

∂q̇

)
· q̈ − ∂L

∂q
· q̇ − ∂L

∂q̇
· q̈

=
∂L

∂q
· q̇ +

∂L

∂q̇
· q̈ − ∂L

∂q
· q̇ − ∂L

∂q̇
· q̈ = 0

(C.60)

The following section discusses the Hamiltonian formulation of the dynamics for mechanical systems, which

serves as an alternative to the Lagrangian formulation discussed in this section.
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C.3 Part 3: The Legendre Transform and Hamiltonian Mechan-

ics

In this section we discuss the Lengendre transform which is used to derive the Hamiltonian of a system

from the Lagrangian of a system. Furthermore, we introduce and discuss Hamiltonian mechanics and how

the Hamiltonian can be applied to N -body systems. We begin by defining the Legendre transform.

Definition C.3.1. The Legendre transform for a Lagrangian L(q, q̇) is the change of variables (q, q̇) 7→

(q,p) given by:

p =
∂L

∂q̇
(C.61)

The new variables p are called the momenta.

Remark C.3.1. If L(q, q̇) = 1
2q

TMq − V (q) =
∑

1
2mi||q̇i||2 − V (q) then:

pi =
∂L

∂q̇i
= miq̇i (C.62)

We now discuss hyperregular Lagrangians and how they can be transformed, via a Legendre transform,

into a Hamiltonian system, which we briefly introduce.

Definition C.3.2. A Lagrangian L is hyperregular if the Legendre transform for L is a diffeomorphism,

that is, a differentiable map with a differentiable inverse.

Remark C.3.2. If L(q, q̇) =
∑

1
2mi||q̇i||2−V (q) then the Legendre transform defined by pi =

∂L
∂q̇i

= miq̇i

is hyperregular, since it is differentiable and has a differentiable inverse given by q̇i =
1
mi

pi.

Theorem C.3.1. If L : R2dN → R is any hyperregular Lagrangian, the the Euler-Lagrange equations:

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0, i = 1, ..., N (C.63)

are equivalent to Hamilton’s equations of motion,

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
, (C.64)

for the Hamiltonian:

H(q,p) = p · q̇(q,p)− L(q, q̇(q,p)) (C.65)

where q̇(q,p) is the second component of the inverse Legendre transform.
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Proof C.3.1. The Euler-Lagrange equations are second order ODEs in the variables q = (q1, ..., qN ), but

they can also be interpreted as part of an equivalent first order system of ODEs in the variables (q, q̇) with

the extra equations d
dtq = q̇. Applying the Legendre transform gives the equivalent system:

d

dt
qi = q̇i(q,p),

d

dt
pi −

∂L

∂qi
= 0 (C.66)

The partial derivatives of H can then be calculated as follows:

∂H

∂qi
= pi ·

∂q̇i(qi,pi)

∂qi
− ∂L

∂qi
− ∂L

∂q̇i
· ∂q̇i(qi,pi)

∂qi
=
∂L

∂qi
(C.67)

∂H

∂pi
= q̇i(qi,pi) + pi ·

∂q̇i(qi,pi)

∂qi
− ∂L

∂q̇i
· ∂q̇i(qi,pi)

∂pi
= q̇i(qi,pi) (C.68)

Consequently, the Euler-Lagrange equations are equivalent to:

d

dt
qi =

∂H

∂pi
,

d

dt
pi = −∂H

∂qi
(C.69)

Remark C.3.3. The Hamiltonian in the preceding theorem is the energy function E expressed as a function

of p and q. Note that this change of variables is valid because the Legendre transform has a differentiable

inverse, that is, L is hyperregular.

Remark C.3.4. If L(q, q̇) =
∑

1
2mi||q̇i||2 − V (q) then pi = miq̇i and

H(q,p) = p · q̇(q,p)− L(q, q̇(q,p)) =
∑ mi

2
||q̇i||2 + V =

∑ 1

2mi
||pi||2 + V (C.70)

To summarize, if L = K − V then H = K + V

Remark C.3.5. Since the Euler-Lagrange equations are coordinate independent, then for any Hamiltonian

deduced via hyperregular Legendre transform, Hamilton’s equations are coordinate independent as well.

Here an example of a simple harmonic oscillator is used to illustrate how a Legendre transform can be

used to obtain the Hamiltonian for the system from the system’s Lagrangian.

Example C.3.1 (Simple Harmonic Oscillator Example). Consider a particle of mass m moving in one-

dimensional space under the influence of a spring with spring constant k. The position of the particle is

given by q instead of x. The Lagrangian of this system is:

L(q, q̇) =
1

2
mq̇2 − 1

2
kq2 (C.71)
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Since there is only one degree of freedom (N = 1), the corresponding phase space is two dimensional (2N).

Now parameterizing by (q, p),

p =
∂L

∂q̇
= mq̇ (C.72)

Inverting yields:

q̇ =
p

m
(C.73)

Then the Hamiltonian is:

H(q, p) = q̇p− L =
p2

m
−
(
p2

2m
− kq2

2

)
=

p2

2m
+
kq2

2
(C.74)

Now that the Hamiltonian has been obtained from the Lagrangian via a Legendre transform, the equations

of motion can be determined:

q̇ =
∂H

∂p
=

p

m
, ṗ = −∂H

∂q
= −kq (C.75)

Here, a simple example of transforming a Lagrangian into a Hamiltonian is given.

Example C.3.2. A system of two point masses with Lagrangian:

L =
(m1q̇

2
1 +m2q̇

2
2)

2
− V (q1, q2) (C.76)

has Hamiltonian:

H =
1

2m1
p21 +

1

2m2
p22 + V (q1, q2) (C.77)

We now define integrals of motion:

Definition C.3.3. Given ẋ = f(x), x ∈ D ⊂ Rn, a function F : D → R is an integral of motion if

F (x(t)) = const., ∀x(t) along a solution. Practically, it is sufficient to show d
dtF (x(t)) = 0, ∀x(t) along a

solution.

Now that we have introduced Hamiltonian mechanics, we state and prove the following conservation

theorem for Hamiltonians.

Theorem C.3.2. In any Hamiltonian system with a Hamiltonian H(q,p), the Hamiltonian is conserved.

Proof C.3.2.

Ḣ =

N∑
i=1

(
∂H

∂qi
· q̇i +

∂H

∂pi
· ṗi

)
=

N∑
i=1

(
∂H

∂qi
· ∂H
∂pi

− ∂H

∂pi
· ∂H
∂qi

)
= 0 (C.78)

Now, the Legendre transform applied to the Lagrangian of the Newtonian N -body potential system (C.40)
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leads to:

pi = miq̇i (C.79)

and hence:

H(q,p) = p · q̇(q,p)− L(q, q̇(q,p)) =
∑ mi

2
||q̇i||2 + V (q) =

∑ 1

2mi
||pi||2 + V (C.80)

Thus the Hamiltonian of a Newtonian N -body potential system takes the form:

H(q,p) =
1

2
pTM−1p+ V (q) (C.81)

where M−1 is the inverse of the mass matrix (C.41).

Remark C.3.6. The Hamiltonian in the preceding theorem is the energy function E expressed as a function

of q and p.

Here we continue with our previous example of a Newtonian 2-body potential system, applying the Leg-

endre transform to obtain the Hamiltonian and obtain the associated equations of motion.

Example C.3.3 (Newtonian 2-Body Potential Systems in Polar Coordinates). Recall from the previous

example, the Lagrangian (C.52) giving the relative motion for a Newtonian 2-body potential system in polar

coordinates. By applying the Legendre transform, the corresponding Hamiltonian is obtained:

H(r, θ, pr, pθ) =
1

2M

(
p2r +

p2θ
r2

)
+ V (r) (C.82)

for which the associated equations of motion are:

ṙ =
pr
M

ṗr =
p2θ
Mr3

− V ′(r) (C.83)

θ̇ =
pθ
mr2

ṗθ = 0 (C.84)

C.4 Part 4: Cyclic Coordinates

In this section we discuss cyclic coordinates which are important as they allow for a reduced Hamiltonian

to be obtained in this thesis. We begin the section by defining a cyclic coordinate.
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Definition C.4.1. Consider a smooth Lagrangian L : D ×RN → R, D ⊂ RN open:

L = L(q1, q2, ..., qN , q̇1, q̇2, ..., q̇N ) (C.85)

A coordinate qi for some i = 1, ..., N is called cyclic if it does not appear explicitly in the Lagrangian

expression.

Now, without loss of generality, let q1 be a cyclic coordinate. Then the Lagrangian takes the form:

L = L(q2, q3, ..., qN , q̇1, q̇2, ..., q̇N ) (C.86)

Using the Legendre Transform, the corresponding Hamiltonian is:

H = H(q2, q3, ..., qN , p1, p2, ..., pN ) (C.87)

Then the following is obtained, where i = 2, ..., N :

q̇1 =
∂H

∂p1
(C.88)

ṗ1 = −∂H
∂q1

(C.89)

q̇i =
∂H

∂pi
(C.90)

ṗi = −∂H
∂qi

(C.91)

Given some initial conditions (q1(t0), q2(t0), q3(t0), ..., qN (t0), p1(t0), p2(t0), ..., pN (t0)), the equation for ṗ1

leads to the momentum conservation:

p1(t) = constant = p1(t0) = c (C.92)

Further, provided the system given by H(q2, q3, ..., qN , p1, p2, ..., pN )|p1=c is solved and explicit expressions

for qi(t; c) and pi(t; c), i = 2, 3, ..., N are found, then one can determine:

q1(t) = q1(t0) +

∫ t

t0

∂H

∂p1
(q2(τ), ..., qN (τ), p2(τ), ..., pN (τ); c)dτ (C.93)

So the presence of a cyclic coordinate implies that the corresponding momentum is constant along the

motion (the constant being fixed by the initial conditions) and the number of degrees of freedom drops by
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one. This leads to the reduced Hamiltonian which is defined as follows:

Definition C.4.2. The Reduced Hamiltonian is:

Hred(q2, q3, ..., qN , p2, ..., pN ; c) = H(q2, q3, ..., qN , p1, p2, ..., pN )|p1=c (C.94)

In Hred, the constant c may be treated as a parameter, which is allowed to take all the values permitted

by the initial conditions.

In the particular case of Newtonian N -body potential systems with a Hamiltonian of the form:

H = H(q2, q3, ..., qN , p1, p2, ..., pN ) =

N∑
i=1

1

2mi
p2i + V (q2, q3, ..., qN ) (C.95)

the following is obtained:

Hred(q2, q3, ..., qN , p2, ..., pN ; c) =
1

2m1
c2 +

N∑
i=2

1

2mi
p2i + V (q2, q3, ..., qN ) (C.96)

where c = p1(t) = const. = p1(t0)

We now continue to expand our example of a Newtonian 2-body potential system.

Example C.4.1 (Newtonian 2-Body Potential Systems cont.). Recall from previous examples that the

Lagrangian is (C.52) with corresponding Hamiltonian (C.82). The Lagrangian and Hamiltonian are stated

again below:

L(r, θ, ṙ, θ̇) =
M

2

(
ṙ2 + (rθ̇)2

)
− V (r) (C.97)

H(r, θ, pr, pθ) =
1

2M

(
p2r +

p2θ
r2

)
+ V (r) (C.98)

It can be observed that θ is cyclic in L as this coordinate is missing from the expression. Consequently, the

corresponding momentum pθ is a conserved quantity. The is immediate from the Hamiltonian equations

of motion:

ṙ =
pr
M

ṗr =
p2θ
Mr3

− V ′(r) (C.99)

θ̇ =
pθ
mr2

ṗθ = 0 (C.100)

From the last equation of (C.100), it can be determined that pθ(t) = const. = p(t0) = c. The reduced
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Hamiltonian is:

Hred(r, pr; c) =
1

2M
p2r +

c2

2Mr2
+ V (r) (C.101)

Definition C.4.3. The effective potential is defined as:

Veff =
c2

2Mr2
+ V (r) (C.102)

C.5 Part 5: Equilibria and Relative Equilibria

In this section we discuss the equilibria and relative equilibra of a Hamiltonian and then discuss methods

to determine the stability of these equilibria. We begin by defining an equilibrium point of a Hamiltonian

system.

Definition C.5.1. Given a Hamiltonian:

H = H(q,p) = H(q1, q2, ..., qN , p1, p2, ..., pN ) (C.103)

a Hamiltonian equilibrium is an equilibrium (qe,pe) point of the Hamiltonian system of equations associ-

ated to H.

The methods for studying the stability of each equilibrium point, as outlined in Part A of the Appendix,

are used for studying the stability of a Hamiltonian equilibrium. However, some specific features of the

analysis occur due to the structure of the Hamiltonian equations. Let (qe,pe) be an equilibrium for

(C.103).

To apply the Lyapunov Method, the Lyapunov function is defined as:

F (q,p) = H(q,p)−H(qe,pe) (C.104)

Then,

1. F (qe,pe) = H(qe,pe)−H(qe,pe) = 0

2. For any solution (q(t),p(t)),

d

dt
F (q(t),p(t)) =

d

dt
H(q(t),p(t)) = 0 (C.105)

since the Hamiltonian is conserved along solutions.
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So the second and fourth conditions of Lyapunov’s First Stability Theorem are satisfied for any Hamilto-

nian system. The third condition is satisfied if (qe,pe) is a local minimum point of the Hamiltonian. The

first condition is satisfied if F is continuously differentiable on its domain.

We now discuss Lyapunov’s Stability Theorem for Hamiltonian systems and discuss the stability of equi-

libria.

Theorem C.5.1 (Lyapunov’s Stability Theorem for Hamiltonian Systems). An equilibrium of a Hamil-

tonian system is stable if it is a local minimum point of the Hamiltonian.

Recall that a Newtonian N -body potential system, with Hamiltonian H(q,p) defined by (C.81) has the

equations of motion:

q̇ =M−1p, ṗ = −∂V
∂q

(C.106)

It follows that equilibria are always of the form (qe,pe) = (qcr,0), where qcr is a critical point of the

potential V (q). Further,

H(qe,pe) = H(qcr,0) =
0TM−10

2
+ V (qcr) = V (qcr) (C.107)

Since the diagonal of the matrix M has strictly positive entries, the matrixM−1 has strictly positive entries

as well and so for any vector p, pM−1p ≥ 0. Hence:

H(q,p) =
pM−1p

2
+ V (q) ≥ V (q) for all (q,p) (C.108)

If qcr is a local minimum for V (q), then using (C.107) and (C.108), the following is obtained:

H(q,p)−H(qe,pe) ≥ V (q)− V (qcr) ≥ 0 for all (q,p) (C.109)

and so (qe,pe) = (qcr,0) is a local minimum for the Hamiltonian.

Proposition C.5.1 (Lyapunov’s Stability Theorem for Newtonian N -Body Potential Systems). If qcr

is a local minimum point of the potential then the equilibrium (qcr,0) of a Newtonian N -body potential

system is stable.

Corollary C.5.1. If the Hessian D2V (qe) is positive definite, then the equilibrium (qcr,0) is stable.

If the Lyapunov criterion fails, then one must resort to spectral analysis. It can be shown (Meyer et. al.

(1992)) that the eigenvalues of the linearization matrix of a Hamiltonian system always form conjugate
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quadruplets, that is, they take the form:

λ1,2,3,4 = ±α± iβ (C.110)

This implies that asymptotical stability (where Re(λ) < 0 for all λ) is not possible in any Hamiltonian

system, but only spectral stability. The latter is ensured by:

Re(λ) = 0 for all λ (C.111)

In the presence of cyclic coordinates, the dynamics are reduced by one degree of freedom and the reduced

Hamiltonian depends on a parameter.

Definition C.5.2. An equilibrium point of the reduced Hamiltonian Hred is a relative equilibrium of the

unreduced Hamiltonian H.

Note that equilibria of Hred depend parametrically on c. The methods for studying Hamiltonian equilibria

may now be applied to the case of relative equilibria with the distinction that the existence and stability

of relative equilibria depend upon c.

Remark C.5.1. An equilibrium of Hred with c = 0 is an equilibrium of H.
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Appendix D

Bifurcations of Differential Equations

with One External Parameter

D.1 First-order systems of differential equations

In this Appendix we briefly describe the typical bifurcations that appear in first-order systems of differential

equations in the presence of an external parameter.

Definition D.1.1. A first-order system of differential equations is defined as:

ẋ = f(x) (D.1)

where x(t) is a real-valued function of time t and f is a smooth real-valued function.

Definition D.1.2. An equilibrium of (D.1) is a solution x(t) that is constant in time, that is x(t) =const.=

x(t0).

If parameters are present, equilibria can be created and destroyed, or their stability can change. These

qualitative changes are known as bifurcations and the parameter values where they occur are called bifur-

cation points.

D.1.1 Saddle-Node Bifurcation

Saddle-node bifurcations consist of a mechanism by which two equilibria are created and destroyed as a

parameter is varied.
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Consider the equation ẋ = r + x2 with r ∈ R is the parameter. Based upon the value of r the system

will display two, one or zero fixed points (see Figure D.1). When r < 0, there are two fixed points, the

left point is stable and the right point is unstable as shown in Figure D.1 (a). When r = 0, there is one

semi-stable fixed point as shown in Figure D.1 (b). Finally, when r > 0, there are zero fixed points as

shown in Figure D.1 (c).

Figure D.1: Plot of ẋ = r + x2 with Varied r

As r → 0 from below, the parabola moves up and the two fixed points move towards each other and

eventually become a single half-stable fixed point when r = 0. The single fixed point vanishes as soon as

r > 0 and thus r = 0 is considered a bifurcation point. We can now consider the curve r = −x2, i.e., ẋ = 0

which shows fixed points for different r values. Unstable fixed points are denoted using a dashed line and

stable fixed points are denoted using a solid line as shown in Figure D.2, which is called a bifurcation

diagram.

Figure D.2: Bifurcation Diagram of ẋ = r + x2
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D.1.2 Transcritical Bifurcation

A transcritical bifurcation is the mechanism by which the stability of an equilibrium may change. A typical

transcritical bifurcation occurs in the equation:

ẋ = rx− x2 (D.2)

Equilibria exist for all values of the parameter r. Figure D.3 shows the vector field of the system as r is

varied.

Figure D.3: Plot of ẋ = rx− x2 with Varied r

As shown in Figure D.3, the equilibrium x∗ = 0 is stable when r < 0, half-stable when r = 0 and unstable

when r > 0. As r is varied, the stability changes, but x∗ = 0 remains a fixed point for all values of r.

Figure D.4 is the bifurcation diagram of this transcritical bifurcation.

Figure D.4: Bifurcation Diagram of ẋ = rx− x2
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D.1.3 Pitchfork Bifurcation

Pitchfork bifurcations consist in the “birth” or “death” of pairs of equilibria. There are two types of

pitchfork bifurcations, supercritical and subcritical.

Supercritical Pitchfork Bifurcation

A typical supercritical pitchfork bifurcation occurs in the equation:

ẋ = rx− x3 (D.3)

Figure D.5: Plot of ẋ = rx− x3 with Varied r

and is depicted qualitatively in Figure D.5. For r < 0 there is only one equilibrium and it is stable. The

values r = 0 is the bifurcation value. When r > 0, the fixed point at the origin has become unstable and

the two new stable fixed points are symmetric about the origin and located at x∗ = ±
√
r. The bifurcation

diagram for this system is given in Figure D.6.

Figure D.6: Bifurcation Diagram of ẋ = rx− x3
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Subcritical Pitchfork Bifurcation

A subcritical pitchfork bifurcation occurs in

ẋ = rx+ x3 (D.4)

Compared to Figure D.6, the bifurcation diagram of ẋ = rx + x3 given in Figure D.7 is inverted. The

nonzero equilibria are unstable and only exist below the bifurcation (r < 0).

Figure D.7: Bifurcation Diagram of ẋ = rx+ x3
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Appendix E

Geopotential Model of the Earth

This appendix is based on Chapter VI from [Stiefel & al. 1971].

E.1 General Theory

We consider an inertial frame, x1, x2, x3, and a point mass (x1, x2, x3) of mass m and distance r from the

origin. The attracting mass M is not necessarily located at the origin but rather is located at (a1, a2, a3)

with distance q from the origin. The distance between the mass points m and M is denoted as ∆ and the

angle between their position vectors is denoted as θ. We have that:

∆2 = (x1 − a1)
2 + (x2 − a2)

2 + (x3 − a3)
2 (E.1)

or

∆2 = r2 + q2 − 2rq cos (θ) (E.2)

Differentiating (E.1), we obtain:

∂∆

∂x
=

1

∆
(x1 − a1, x2 − a2, x3 − a3) (E.3)

The components of the attraction G of M acting on m are (per unit mass of m):

G1 = −k2Mx1 − a1
∆3

, G2 = −k2Mx2 − a2
∆3

, G3 = −k2Mx3 − a3
∆3

(E.4)
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where k2 is the gravitational constant. This force can be derived from a potential:

U = −k
2M

∆
(E.5)

according to the rule:

G = −∂U
∂x

(E.6)

The scalar function U is the gravitational potential of the mass M .

Theorem E.1.1. The gravitational potential of a mass point M satisfies Laplace’s partial differential

equation:

∇2U ≡ ∂2U

∂x21
+
∂2U

∂x22
+
∂2U

∂x23
= 0 (E.7)

at any point that is not M .

Proof E.1.1.

∂2U

∂x21
= −∂G1

∂x1
= −k2M∆3 − 3(x1 − a1)

2∆

∆6
(E.8)

By computing all partial derivatives in (E.7) as shown in (E.8), the result is obtained.

We now consider a sphere centered at the origin and passing through M . We denote r/q = t < 1, that is

m is located in the interior of the sphere, so that:

1

∆
=

1

q
(1 + t2 − 2t cos (θ))−1/2 (E.9)

The binomial expansion of (E.9) is:

(1 + t2 − 2t cos (θ))−1/2 =1− 1

2
(t2 − 2t cos (θ)) +

1 · 3
2 · 4

(t2 − 2t cos (θ))2

− 1 · 3 · 5
2 · 4 · 6

(t2 − 2t cos (θ))3

+
1 · 3 · 5 · 7
2 · 4 · 6 · 8

(t2 − 2t cos (θ))4 − . . .

(E.10)

The preceding expansion can be arranged as a power series in t where the coefficient of tn is a polynomial

Pn with cos (θ) as its argument. The polynomial Pn is the n-th Legendre polynomial, thus we obtain:

(1 + t2 − 2t cos (θ))−1/2 =

∞∑
n=0

Pn(cos (θ))t
n (E.11)

where (1 + t2 − 2t cos (θ))−1/2 is the generating function of the Legendre polynomials. The series (E.11)

converges if |t| < 1, that is if m is located in the interior of the sphere. Then the first five Legendre
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polynomials are:

P0(cos (θ)) = 1 (E.12)

P1(cos (θ)) = cos (θ) (E.13)

P2(cos (θ)) = −1

2
+

3

2
cos2 (θ) (E.14)

P3(cos (θ)) = −3

2
cos (θ) +

5

2
cos3 (θ) (E.15)

P4(cos (θ)) =
3

8
− 15

4
cos2 (θ) +

35

8
cos4 (θ) (E.16)

The potential function when m is contained in the sphere is:

U = −k2M
∞∑
n=0

Pn(cos (θ))
rn

qn+1
, r < q (E.17)

Now, if r > q, that is m is located outside of the sphere, we set t = q/r and:

1

∆
=

1

r
(1 + t2 − 2t cos (θ))−1/2 (E.18)

Then using the same procedure that was previously employed, we obtain the potential function when m

is located outside of the sphere:

U = −k2M
∞∑
n=0

Pn(cos (θ))
qn

rn+1
, r > q (E.19)

Finally, if m is located on the surface of the sphere, the following functions apply:

Pn(cos (θ))r
n,

Pn(cos (θ))

rn+1
, n = 0, 1, 2, . . . (E.20)

The functions (E.20) depend only on the position of m and they can be expressed as functions of x1, x2, x3,

which leads to the following theorem.

Theorem E.1.2. The functions (E.20) satisfy Laplace’s equation.

Proof E.1.2. Refer to page 103 in [Stiefel & al. 1971].
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E.2 Spheroids

Figure E.1: Spheroid Planet with Orbiting Satellite

We consider an attracting body with its centre of mass located at the origin of a rectangular frame

x1, x2, x3. It is assumed that the mass distribution inside the body is rotationally symmetrical about the

x3-axis and symmetrical about the x1x2-plane. Such a body is called a spheroid and Earth is nearly shaped

as a spheroid where the x1x2-plane is the equatorial plane as shown in Figure E.1 with an orbiting satellite

and the corresponding forces acting upon it. The angle between the x3-axis and the position vector of m

is denoted θ. Using the theory from the previous section, a potential function is constructed:

U =

∞∑
n=0

cn
Pn(cos (θ))

rn+1
(E.21)

where r is the distance between m and the origin and cn is determined by the shape of the spheroid. Since

the Legendre polynomials satisfy the following equality:

Pn(cos (θ)) = (−1)nPn(− cos (θ)) (E.22)

the terms corresponding to odd values of n cancel due to symmetry about the x1x2-plane. The coefficient

c0 is determined to be c0 = −k2M , where M is the mass of the spheroid. In general:

U = −k
2M

r
+

∞∑
n=2

cn
Pn(cos (θ))

rn+1
(E.23)

Then for Earth, (E.23) becomes:

U = −k
2M

r
+
k2M

r

∞∑
n=2

Jn

(
R

r

)n
Pn(cos (θ)) (E.24)
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where R is the radius from the centre of Earth to the equator and Jn are dimensionless constants. Taking

into account only the J2 term, the following approximate representation is obtained:

U = −k
2M

r
+
k2MJ2

2

R2

r3
(3 cos2 θ − 1), cos (θ) =

x3
r

(E.25)

For θ = π/2, or equivalently, for x3 = 0, that is at the Equator, the potential reads:

U = −k
2M

r
− k2MJ2

2

R2

r3
. (E.26)

and so it is of the form

U = −1

r
− ε

r3
. (E.27)

where without loosing generality, one may re-scale k2M = 1 and denote ε := R2J2/2 . For Earth, J2 is of

order 10−3 .
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