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Abstract 

Cyanobacterial blooms are complex phenomenon that are impacted and controlled by 

various factors such as lake depth, air temperature, wind, and nutrient loading. Nutrients such as 

phosphorus, nitrogen and iron all have very differing effects on cyanobacterial blooms. While 

phosphorus and iron are known to drive cyanobacterial biomass, nitrogen has been observed to 

have a direct impact on toxin synthesis. Nitrogen exists in the environment in many different 

forms such as atmospheric N2, in inorganic forms such as nitrate and ammonium as well as in 

organic forms such as urea which can all affect cyanobacterial bloom development differently. 

As removal of external loading of phosphorus has shown drastic effects in decreasing magnitude 

of cyanobacterial blooms, phosphorus will still enter waterbodies through internal loading. This 

leads us to investigate other nutrients such as iron that can act as a limiting agent for 

cyanobacterial growth. In anoxic environments, iron, which is an essential micronutrient for 

bloom development, is available as Fe(II) for uptake. In oxic environments, iron remains trapped 

in the sediment as Fe(III) and unavailable for uptake. By maintaining iron in its oxidized form 

using oxidizing agents such as nitrate to raise the redox potential at the sediment water interface, 

we can ensure iron remains trapped in the sediment. 

In this thesis, two experiments were conducted to understand potential cyanobacterial 

bloom responses to changing nitrogen in terms of biomass, toxins, and sediment nutrient 

dynamics. The first experiment focused on looking at the effects of differing forms of nitrogen 

(ammonium, urea, and nitrate) in combination with phosphorus to assess cyanobacterial biomass 

response as well as toxin production. We also looked at application differences of pulse vs press 

to assess whether large, one-time events such as storms compared with recurring, long-term 

processes such as internal loading yielded toxin and cyanobacterial biomass differences. Nutrient 
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additions of all forms of nitrogen in combination with phosphorus increased chlorophyll-a, with 

ammonium yielding the highest concentrations, followed by urea and lastly nitrate- all higher 

than phosphorus alone. The nitrogen treatments also resulted in the highest concentrations of 

microcystins. When comparing application methods however, the pulse and press methods 

resulted in similar responses of phytoplankton biomass and toxin (microcystin and 

cylindrospermopsin) concentrations. 

The second experiment was a core incubation study where we added nitrate in differing 

concentrations to quantify how effective nitrate is at sustaining redox above key thresholds to 

suppress iron release from the sediment and understand associated changes in chemistry. Nitrate 

was applied in three different treatments, where the high nitrate amendment (20mg N/L) 

suppressed iron for longer and to lower concentrations than the medium (10mg N/L), low (5mg 

N/L) and control treatments. This allowed us to see the potential in using redox control to help 

manage cyanobacterial bloom management via management of iron availability. 
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Chapter 1: Introduction 
 

1.1 Cyanobacteria  

 Cyanobacterial harmful algal blooms (cHABs) are a global concern due to their negative 

impacts on aquatic ecosystems (Chaffin and Bridgeman, 2014; Schindler et al., 2016). Due to 

anthropogenic pressures such as agricultural practices (Dunne et al., 2011; Jarvie et al., 2013), 

population increase well as the influences of climate change (Paerl and Scott, 2010), the 

magnitude of blooms and number of lakes affected is much higher in recent decades than 50 

years ago (Smith, 2003; Chaffin and Bridgeman, 2014; Paerl and Paul, 2012). Cyanobacterial 

blooms have also been affected by increased nutrient loads (Paerl and Huisman, 2008) and the 

spread of invasive species which influence the food-web within aquatic ecosystems through 

weakened control by zooplankton and filtering by organisms such as zebra mussels (Pick, 2016). 

While each of these factors exist, the primary driver of cyanobacterial blooms is high external 

and internal nutrient loading into water bodies. As nutrient loading increases, surface waters 

become enriched with key nutrients such as nitrogen (N) and phosphorus (P) that play a role in 

eutrophication (Jöhnk et al., 2008; Paerl et al., 2011). Eutrophication can have a damaging effect 

on aquatic life by increasing phytoplankton growth, resulting in the expansion of cHABs 

(Chaffin and Bridgeman, 2014). Cyanobacteria demonstrate eco-physiological strategies for 

adaptation in a changing climate by increasing their survival in water bodies (Flores and Herrero, 

2005) through their ability to store nutrients they rely on such as carbon (C), N, P, iron (Fe) and 

other micronutrients (Paerl and Paul, 2012).  

Some species of cyanobacteria tend to thrive at temperatures higher than 25ºC (Lürling et 

al., 2018). As the climate warms, more of the environment will be favorable for the growth of 

more species of cyanobacteria (Sinha et al., 2011; Glibert, 2017). As surface water temperatures 
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increase and ice-free periods become longer at latitudes with ice-on seasons, cyanobacterial 

HABs can thrive for a longer period, and blooms can occur more frequently through the summer 

months (Peeters et al., 2007). The warming global climate will also result in changing hydrologic 

patterns, by regionally increasing the frequency of intense rain events as well as flooding, which 

will cause increased nutrient runoff from agricultural lands (Paerl et al., 2011; Larsen et al., 

2020). In combination, each of these climate-related effects work together to cause an overall 

favorable climate for increased cyanobacteria in more lakes in North America. 

Nutrient loading remains the biggest driver of cyanobacterial blooms and can occur in 

two ways: consistent application at a slow rate (press); or a large, infrequent, and spontaneous 

event (pulse). These consistent inputs are often due to everyday processes such as through 

internal loading, groundwater via septic, sustained inputs from upstream ecosystems or sewage 

effluents, whereas these large events will occur much less frequently and are due to storm or 

flood events (Lisboa et al., 2020; Ringuet and Mackenzie, 2005; Heisler et al., 2008; Harris et 

al., 2018). As a result of loading, both via press and pulse inputs, the common outcome is 

variation in the amount of reactive N and P entering water bodies each year, as well as seasonally 

(Li et al., 2016; Pick, 2016). Increased storm runoff during summer months can contribute to 

increased nutrient loading into water bodies and this could potentially cause cyanobacterial 

blooms later in summer and into the fall (Ringuet and Mackenzie, 2005; Harris et al., 2018). This 

is due to the extreme weather events contributing to greater nutrient loading into water bodies 

(Harris et al., 2018). The primary cause of nutrient runoff into water bodies in many regions is 

through agricultural practices. In the last 50 years, agriculture has increased extremely rapidly 

and has become the largest non-point source of surface water pollution in Canada (Rousseau et 
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al., 2013). These non-point sources of nutrients are through the applications of N- and P-based 

fertilizers, as well as through pastures and animal feeding operations (Glibert, 2017). 

 

1.2 N Forms 

There are various forms in which N can exist in the environment, however phytoplankton 

will more easily take up reduced forms (Chaffin and Bridgeman, 2014). N exists in inorganic 

forms such as nitrate (NO3-), dinitrogen gas (N2), ammonium (NH4+), or in dissolved organic N 

(DON) forms, which includes urea, a bioavailable fertilizer (Chaffin and Bridgeman, 2014). 

While there are unlimited inputs of N2 available from the atmosphere, phytoplankton often 

cannot use it, shifting the phytoplankton dominance to communities that will rely on these other 

sources of N (Belisle et al., 2016). Some species of cyanobacteria are capable of fixing N from 

the atmosphere, giving them a big advantage in fixed N-deficient environments (Agawin et al., 

2007).   

Oxidized forms of N such as NO3- are common in fertilizers and can be used by many 

species of phytoplankton (Sebilo et al., 2013). In oxic waters, dissolved NO3- will be taken up by 

primary producers in the epilimnion, while in anoxic waters, some NO3- will act as an electron 

acceptor by oxidizing organic matter; some NO3- is lost through denitrification followed by 

dissimilative nitrate reduction; and a fraction of NO3- will be reduced to NH4+ (Kalff, 2002). A 

relatively high source of NH4+ is through ammonification, the process in which organic N from 

organic matter is broken down by anaerobic and aerobic microbes at the lake bottom and 

converted into NH4+ (Small et al., 2014; Kalff, 2002). NH4+ can then diffuse from the sediment 

and introduce into the epilimnion and hypolimnion under different conditions and then is taken 
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up by migrating phytoplankton (Kalff, 2002). As the NH4+ enters the water column, however, 

some will oxidize resulting in the formation of NO3- (Kalff, 2002). 

Cyanobacteria can use various forms of N; however, certain forms of N are more easily 

used than other forms (Chaffin and Bridgeman, 2014). Due to lower energy demands, 

cyanobacteria can more readily take up NH4+ as opposed to NO3- (Sebilo et al., 2013), which 

needs to be reduced to nitrite (NO2-), and then finally NH4+ during assimilation (Glibert et al., 

2015; Erratt et al., 2018). Fixation of atmospheric N2 is a common method for N needs, however 

many genera/species of cyanobacteria such as Microcystis aeruginosa, Planktothrix, 

Cylindrospermopsis and Aphanizomenon cannot, causing the need for fixed options of N (Belisle 

et al., 2016; Dolman et al., 2012). 

In recent years there has been a global shift from oxidized to reduced and organic forms 

of N-based fertilizers such as urea (Glibert et al., 2015; Glibert, 2017; Belisle et al., 2016), which 

has become popular due to its solubility in water, low cost, and minimal damage to crops 

(Belisle, 2016). Many species of phytoplankton are incapable of taking up urea, due to the lack 

of urease enzymes required for urea uptake, however some cyanobacteria species such as 

Microcytis aeruginosa and genera such as Anabaena can (Solomon et al., 2010; McLachlan & 

Gorham, 1962; Belisle et al., 2016). It has been suggested that urea is also found naturally in 

lakes from metabolic and catabolic processes, and bacterial decomposition of DON and PON 

(Bogard et al., 2012). Although urea is often in much lower concentrations than NO3- or NH4+, it 

is rapidly used by primary producers including cyanobacteria (Belisle et al., 2016; Bogard et al., 

2012).  
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1.3 N and P 

The C:N:P ratio within lakes is sort of the recipe of the water column which is most 

suitable for bloom conditions (They et al., 2017), however this can be controlled by many factors 

including species, temperature, water residence time and so on (They et al., 2017). At optimal 

cyanobacterial growth, the C:N:P ratio of the water is 106:16:1, however in freshwater inland 

lakes, it is generally higher (Hecky et al., 1993). As P acts as limiting and is externally loaded 

into water bodies, cyanobacteria will accumulate causing eutrophication. A 50-year long study at 

the International Institute for Sustainable Development – Experimental Lakes Area (IISD-ELA) 

demonstrated that sequential decreases of N inputs had no effect on algal biomass because 

constant inputs of P alone kept the lake eutrophic (Schindler et al., 2008; Paterson et al., 2011; 

Schindler et al., 2016), enabling conditions favorable to N-fixing cyanobacteria. This study 

reported that the ultimate nutrient to focus on controlling must be P as opposed to N. Although it 

is commonly accepted that control of P is most beneficial for control of cyanobacterial HABs 

(Schindler et al., 2008; Schindler, 1977; Hecky & Kilham, 1988; Schindler & Vallentyne 2008; 

Schindler 2012), N can be a key component of cyanobacterial toxicity (Lewis Jr & Wurtsbaugh, 

2008; Paerl et al., 2014). 

 

1.4 Control of N 

As external P pollution cannot be controlled in some lakes, using other methods such as 

control of N to target toxins, can be a beneficial approach (Bogard et al., 2020). N loading rates 

and form of N can have an important effect on phytoplankton species. In environments where 

there are high loads of N (18mg N/L), chlorophytes often dominate, however during low to 

intermediate N loads (1-3 mg N-L), colonial cyanobacteria dominate (>50%, Bogard et al., 
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2020). Intermediate loading is much more typical of the natural environment, supporting the 

conditions required for cyanobacteria to grow. Inorganic forms of N have a direct impact on 

toxin production where increased concentrations of N result in increased toxin synthesis (Gobler 

et al., 2016). It is also thought that toxins cannot be produced without sufficient concentrations of 

N (Gobler et al., 2016; Glibert et al., 2015). This is due to high N requirements of the synthesis 

of specific amino acids and/or their precursors present in cyanotoxins (Downing et al., 2005; 

Flores and Herrero, 2005). Additionally in N-deprived systems, at the cellular level, microcystin 

genes responsible for microcystin synthesis decrease dramatically (Downing et al., 2005; Van de 

Waal et al., 2010). When looking at other toxin-producing genera such as Aphanizomenon, N-

limitation resulted in intracellular cylindrospermopsin accumulation, while N-treated cells did 

not (Preußel et al., 2014). N availability can also potentially dictate whether certain strains of 

cyanobacteria will release toxins, and in eutrophic systems microcystins have been reported to 

increase in correlation with increasing N concentrations (Chaffin and Bridgeman, 2014; Davis et 

al., 2015). Controlling external supplies of N can therefore potentially directly change the 

production of toxins in eutrophic systems. 

 

1.5 Loading of P 

External inputs of P can be controlled through management practices for agricultural 

runoff such as riparian buffers and no tillage methods, sewage, and wastewater treatments plants, 

as well as the removal of P from household products (Song et al., 2017; Smith and Schindler, 

2009; Schindler, 1997; Orihel et al., 2017; Chen et al., 2021). While these methods have been 

quite successful for some lakes, many lakes have a delayed response of many years or decades to 
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decreases of external inputs. It can also be difficult to control external inputs to an effective 

threshold. 

In many cases, lakes with historically high rates of P loading have remained eutrophic 

due to the release of P from the sediment by internal loading (Chen et al., 2021). In the sediment, 

P is often found in high concentrations due to accumulation during a period of high loading in 

which it will settle and bind as phosphate compounds thus becoming trapped (Søndergaard et al., 

2003). As anthropogenic pressures increase external loading of P through both agricultural 

practices and urban sprawl, increased rates of sedimentation can occur, causing more P to be 

trapped and then load internally at a later time (Klamt et al., 2019). This legacy P can then 

diffuse out of the sediment under certain circumstances.  

During the summer, many lakes stratify as the surface water warms and the bottom water 

remains cool and dense. This stratification will allow the lake bottom to form a hypolimnion and 

the lack of mixing can allow the lake bottom to run anoxic due to various microbial processes in 

certain lakes (Lake et al., 2007). As the lake bottom becomes anoxic, this reduced state will 

cause many changes in the water chemistry and can impact the water dynamics with microbial 

processes in the sediment. In oxic environments, under some conditions, some forms of 

phosphate are well-retained in the sediment, however when these environments become anoxic, 

bound P can dissociate and be released into the water column (Gächter and Müller, 2003; 

Søndergaard et al., 2003). One process that occurs under these conditions is when iron 

precipitates as Fe(III)-oxyhydroxides and has the ability to precipitate or adsorb phosphates, 

maintaining the P in an unavailable form (Markelov et al., 2019; Søndergaard et al., 2003). 

However, in anoxic environments, Fe(III)- oxyhydroxides will reduce to Fe(II), unbind from the 
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compounds and dissolve, causing the simultaneous dissolution of P to remobilize into the water 

column.  

Due to the binding nature of P in anoxic environments, various methods of P 

sequestration have been explored to retain P in the sediment as a means of controlling internal 

loading (Orihel et al., 2016; Markelov et al., 2019). Some of these involve the application of 

aluminum, iron, calcium phases and lanthanum clays (Phoslock) (Dithmer et al., 2016; Markelov 

et al., 2019). As these P binding chemicals are added to water bodies, they will react and bind 

with P as phosphate compounds and therefore, P is unavailable for uptake by primary producers. 

In some lakes, Phoslock remains an effective method for binding P in anoxic lakes and reducing 

blooms (Zeller and Alperin, 2021; Oosterhout and Lürling, 2012; Lin et al., 2015), however has 

little effect in oxic lakes in which P will bind to other nutrients such as Fe (Zeller and Alperin, 

2021). Calcium nitrate is another additive which also influences redox by partially oxidizing the 

sediment surface (Lin et al., 2015; Austin et al., 2016). In hard-water lakes, calcium can also 

precipitate with P resulting in the formation of an unavailable form of P, however other factors 

such as temperature can cause the dissolution of these compounds (Klamt et al., 2019).  

 

1.6 Iron 

Fe is the fourth most abundant trace metal and micronutrient found in Earth’s crust and 

like all organisms, cyanobacteria require it for growth. It is sparingly soluble as Fe(III) and 

cyanobacteria cannot assimilate Fe(III) very easily (Molot et al., 2014). As this form of Fe is 

unavailable for uptake, cyanobacteria and other primary producers will rely on Fe(II) that can be 

more easily taken up (Bostrom et al., 1988; Molot et al., 2014; Verschoor et al., 2017). In oxic 

lakes, Fe can exist at the sediment surface and within the sediments in solid forms as Fe oxides 
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or oxyhydroxides and often binds with other nutrients such as reactive forms of P (Dillon and 

Molot, 1997; Couture et al., 2010). In anoxic waters where the redox potential is appropriately 

low, Fe(III) oxide compounds are reduced to Fe(II) causing the dissolution of many Fe 

compounds, resulting in higher solubility and mobility of Fe(II) into the water column (Molot et 

al., 2014; Verschoor et al., 2017).  

When the redox potential is low enough, sulphate (SO42-) will also begin reducing and 

reacting with available Fe(II) to form FeS or FeS2 (Couture et al., 2016). These solid compounds 

will form beneath the sediment surface and act as a sink for both Fe and sulfur (S) (Couture et 

al., 2016; Couture et al., 2010). Fe(III) can also react with hydrogen sulfide (H2S) during 

microbial sulphate reduction to form sulfur, contributing to further Fe(III) reduction (Couture et 

al., 2010), as well as taking up available Fe(II). SO42- reduction can also demonstrate how low 

the redox potential is and therefore how reduced the sediment surface has become. As Fe(II) 

becomes more readily available in the water column, cyanobacteria will be able to take it up, 

causing growth to not be as limited by Fe(II) (Verschoor et al., 2017; Burdige and Komada, 

2020). Cyanobacteria have higher Fe requirement than eukaryotes (Molot et al., 2010; Molot et 

al., 2014) which is partially attributed to low Fe availability limiting N fixation (Berman-Frank et 

al., 2001; Garcia et al., 2014).  Eukaryotes have also been shown to take up oxidized forms of Fe 

(Molot et al., 2010), which cyanobacteria are incapable of using. This allows eukaryotic 

phytoplankton to not be Fe limited (Molot et al., 2014), meaning they are able to grow under 

both reduced and oxidized conditions. 
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Figure 1.1 The redox ladder showing coupled redox equations and at what redox potential 
reduction will occur. The reactant before the slash shows the oxidized nutrient and the product 

after the slash is what it is reduced to. The (g) represents gas and (s) represents solid. 

 
1.7 Oxygenation of Lake Bottoms 

Oxidation-reduction reactions exist along the depth profile of lakes and with increasing 

depth, the O2 concentrations decrease resulting in decreasing redox potential (Zhang and 

Furman, 2021). With depth and at the sediment-water interface, once O2 is depleted, NO3- will be 

the next most favorable oxidant used, followed by manganese (Mn), Fe, SO42-, and CO2. In 

anoxic lake bottoms, NO3- (which is the most oxidized form of N) is easily and rapidly 

consumed and reduced through various processes. Dissimilatory NO3- reduction is when NO3- 

acts as the terminal electron receptor in the absence of oxygen. This process can occur with both 

facultative and strict anaerobic bacteria (Kamp et al., 2015) and will occur primarily due to 
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respiration in lakes that have strong reducing sediment (Thamdrup, 2012). Dissimilatory NO3- 

reduction is beneficial for microbes because it allows them to conserve energy as well as 

continue metabolism of nutrients in both oxic and anoxic conditions (Kamp et al., 2015). 

Microbial anaerobic reduction of NO3- is a common process at the anoxic lake bottom and can 

occur through denitrification as well (Crawshaw et al., 2019). Denitrification is the microbial 

process in which NO3- is reduced to NO2-, followed by NO and ultimately lost to the atmosphere 

as N2 (Kamp et al., 2015). In oxygen- limited systems, there is competition between denitrifiers 

and dissimilatory NO3- reducers for NO3- (Bonaglia et al., 2016; Crawshaw et al., 2019) causing 

very rapid disappearance of NO3- as this reduction process can supply DO to microbes (Kalff, 

2002).  

In order to prevent the reduction of Fe(III), it is possible to oxygenate low oxygen lake 

bottoms by supplying an adequate amount of NO3- (Verschoor et al., 2017). This can allow the 

lake bottom to shift from a reduced state by raising the redox potential (Burdige and Komada, 

2020; Verschoor et al., 2017). Through the application of enough NO3-, it is expected that the 

microbial reduction of Fe(III) will not occur. If there is an adequate supply, microbial processes 

would primarily use NO3- as it requires less energy, and the microbial reduction of Fe(III) would 

be much less favorable and simply not happen. As cyanobacteria and other primary producers 

are less capable of taking up reduced forms of Fe(II), maintaining the oxidized Fe(III) would be 

beneficial in decreasing cyanobacterial growth. As NO3- is rapidly used in anoxic lake sediment, 

it is important to quantify the amount of NO3- required to maintain the suppression of Fe(II). 

However, limitations to this method are possible.  For example, in certain anoxic systems where 

denitrification or dissimilatory NO3- reduction is too high, this could result in rapid reduction in 

NO3- concentrations, limiting the duration of effective sediment treatment. 
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1.8 Phytoplankton Species Competition 

Phytoplankton are diverse and include Bacillariophyta (diatoms), dinoflagellates, 

Chlorophyta (green algae), Chrysophyta and coccolithophores. There are many factors that 

influence the ability of phytoplankton to dominate in a system and these factors include the 

ability to compete for and assimilate nutrients, temperature, access to light and movement within 

the water column (Marzetz et al., 2020; Dunker et al., 2016; Huisman and Weissing, 1999). 

Phytoplankton dominance is often described where 50% or more of the phytoplankton 

community is one species of phytoplankton. The dominating phytoplankton species can also be 

dictated by lake features such as depth, mixing, temperatures, seasonality, and oxygen levels 

(Litchman, 2007; Andersen et al., 2019; Edwards et al., 2016).  

While dominance of one species is more prominent in some systems, co-existence is also 

observed in many lakes. Co-existence of phytoplankton species is unique due to their ability to 

suspend and/or migrate within the water column and that they can reach populations of almost 

infinite abundance (Sommer, 2002). This allows for a unique sort of co-existence in which 

multiple phytoplankton species can exist in the same space due to the environmental fluctuations 

in nutrients, light and temperature (Huisman and Weissing, 1999).  Various theories described 

below, suggest that species competing for the same limited resource cannot co-exist, however 

phytoplankton tend to exhibit more frequent co-existence. These theories include the Monod 

model which describes at what rate a microbial species will grow in aquatic environments in 

relation to concentrations of limiting nutrients (Lobry et al., 1992; Sommer et al., 2002), 

however this model does not consider long term survival mechanisms of phytoplankton 

populations. Another model for understanding population dynamics caused by nutrient limitation 

is the Droop Model (Droop, 1968), which considers the internal nutrient storage of species as an 
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indicator of algal growth, however, did not differentiate how internal nutrient are being used 

(whether they had already metabolized or were being used for storage) (Lemesle and Mailleret, 

2008). It is also extremely difficult to apply these models to the environment due to the ability of 

phytoplankton to grow to such high numbers as well as the existence of many species at once, 

meaning that many will reduce to very low numbers but not totally disappear (Sommer, 2002). 

When two phytoplankton species have differing requirements of resources (light, temperature, 

nutrients), they can easily co-exist.  

While smaller species of phytoplankton have adapted to low light and high nutrients at 

the water surface, a co-existing species can thrive in the same space that require low light and 

low nutrients, at a lower point in the water column (Litchman, 2007; Perruche et al., 2010). 

During periods of cyanobacterial dominance, large blooms will occur in the surface waters, 

creating a dense film, limiting light access and nutrients for other species. Diatoms are a type of 

phytoplankton which exist in many environments across the globe and will dominate in systems 

where there is deep mixing and have adapted to survive for long periods where light levels are 

low (Litchman, 2007).   

Seasonality plays a big role in phytoplankton species dominance due to annual variation 

of hydrologic influences causing phytoplankton to be more productive at different parts of the 

summer (Andersen et al., 2019). In shallow lakes during the spring, there are many macrophytes, 

plants and bottom phytoplankton which help maintain clear waters and contribute to maintenance 

of the oxic lake bottoms (Klamt et al., 2019). During the spring, P often acts as the limiting 

nutrient and the seasonal shift to summer can cause the limiting nutrient to become N (Fisher et 

al., 1992; Andersen et al., 2019). As phytoplankton accumulate mid-season, P loading increases 

as anoxia develops, increasing the availability for cyanobacterial uptake in the water column 
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(Klamt et al., 2019). It has been demonstrated that during the spring snowmelt, when low 

nutrient levels and low temperatures occur, eukaryotes such as diatoms and dinoflagellates will 

dominate (Litchman, 2007; Hjerne et al., 2019; Kelly et al., 2018).  

Diatoms and dinoflagellates are also often dominant in oligotrophic lakes. Although 

dinoflagellates are poor at competing for inorganic nutrients, they remain a competitor due to 

their ability to swim and are mixotrophic (Lim et al., 2015; Litchman, 2007). It has been 

demonstrated that diatoms prefer NO3- as well, enabling them to compete when other forms of N 

are low or inaccessible. (Andersen et al., 2019). Diatoms are good competitors in low nutrient 

environments because they have large vacuoles and therefore high storage adaptations giving 

them a survival advantage (Hjerne et al., 2019; Tamelander and Heiskanen, 2004). These large 

vacuoles cause diatoms to sink and become prone to sedimentation resulting in potential blooms 

in the lower zone of the water column (Kalff, 2002).  

Chlorophytes and cyanobacteria prefer NH4+ over NO3- because it is less energetically 

demanding for uptake, however, can use other forms of N including atmospheric N2. 

Chlorophytes are intermediate at nutrient uptake, however, have an affinity (10-fold) for NH4+ 

(Litchman, 2007). This is potentially due to NH4+ existing in the anoxic environments in which 

these types of phytoplankton evolved (Chaffin and Bridgeman, 2014). In contrast, the energy 

needed for uptake has been shown to potentially not have as much importance (Molot et al., 

2022). Alternatively, differing forms of nutrients have shown to influence different traits among 

phytoplankton, meaning the energy expended is a net gain. For example, NH4+ may drive 

increased rates of carbon uptake while NO3- increases photosynthesis abilities in Chlorophytes 

(Lachmann et al., 2019). Chlorophytes also have high Fe requirements and can potentially be 

stimulated in anoxic environments where Fe availability is increased (Quigg et al., 2003).  
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The dominant community in water bodies is often disturbed and replaced by 

cyanobacterial HABs when the temperatures increase during the open water season in eutrophic 

systems. Cyanobacteria can dominate during periods of warm water due to their affinity for heat, 

ability to thrive in low light environments (Verschoor, 2020; Mur et al., 1999), capacity to store 

nutrients when there is a low N:P ratio (Mur et al., 1999) and their population stability. The 

population and density of cyanobacterial blooms remain stable due to their resistance to grazers. 

Many species of cyanobacteria can defend themselves against grazers allowing them to 

accumulate and suppress other species of eukaryotic phytoplankton at the surface of water bodies 

(Mur et al., 1999; Fyda et al., 2009).  

A particular adaptation of interest is the ability of prokaryotic and eukaryotic 

phytoplankton to store NO3- effectively during periods of low or no oxygen (Kamp et al., 2015). 

Many species can store NO3- internally at high concentrations exceeding those present in their 

environments, allowing them access to an N source when it is scarce (Kamp et al., 2015). 

Diatoms are found primarily in oxic environments and can survive in low light and during shifts 

to anoxia. They are thought to store NO3- in their vacuoles during periods of low oxygen, 

however the stores will deplete after hours (Kamp et al., 2011). High NO3- storage capacities 

have also been found in many eukaryotes such as foraminifers and gromiids that exist in both 

oxic and anoxic environments (Kamp et al., 2015; Bernhard et al., 2012). This adaptation is 

beneficial in anoxic systems because if NO3- reducers can maintain redox potential with adequate 

NO3- supply as well as storage, Fe reduction can be prevented. While cyanobacteria heavily rely 

on inputs of Fe(II) to the system, many species of eukaryotic algae will not be limited because 

they can take up Fe(III). By aiming to cut off the Fe supply to toxic cyanobacteria, many lakes 

could potentially be dominated by non-toxic eukaryotic algae. 
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1.9 Cyanotoxins 

Cyanobacteria are a main concern due to its ability to produce harmful cyanotoxins such 

as microcystin and cylindrospermopsin. Microcystins are secondary metabolites produced by 

some species of cyanobacteria, the most common being Anabaena, Microcystis and Planktothrix 

(O’Neil et al., 2012) and only Anabaena is capable of fixing N2 (Davis et al., 2015). Microcystin 

can be extremely harmful to the aquatic life within a lake, as well as the surrounding organisms 

including livestock and humans. Microcystin has been detected in at least 108 countries 

worldwide and has shown to negatively affect aquatic ecosystems by disrupting food webs and 

triggering fish kills (Chaffin et al., 2018; Chellappa et al., 2008). Although cyanobacteria thrive 

at higher temperatures, toxin production is at its highest prior to optimum growth rate 

temperature (18-20ºC) (Peng et al., 2018). 

The impacts of cyanotoxins on human health are also extensive and can cause short-term 

health risks such as nausea, headache, diarrhea, and pneumonia as well as more serious long-

term risks (Lambert et al., 1994). Microcystin are hepatotoxins meaning that ingestion of this 

toxin can cause liver and kidney damage (Lambert et al., 1994; Ngwa et al., 2014), along with 

other long-term effects such as gastroenteritis, tumor development and neurotoxicity (Ngwa et 

al., 2014; Pandhal et al., 2018; Lambert et al., 1994). They are also classified as possible human 

carcinogens and have also resulted in many fatalities among livestock, dogs, and humans 

(Arrieta-Cortes et al., 2017; Chen et al., 2019). Although ingestion can cause the most serious 

effects, microcystin can also enter the body dermally and through inhalation of airborne particles 

(Backer et al., 2008; Zhang et al., 2009) These toxins can also harm the integrity of lakes due to 

their resilient form and harmful influence on the ecosystem. Microcystins are chemically stable 

and are resistant to change in a chemical reaction, thus boiling microcystin concentrated water 
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will have no detoxification effect (Wu et al., 2019). While boiling has no detoxification effect 

while the toxin is already present, overly hot, or cold temperatures can disallow the production of 

microcystins (van der Westhuizen, 1985). 

Cylindrospermopsin is another major cyanotoxin and was initially discovered during an 

outbreak of poisonings in Palm Island, Australia (Mejean and Ploux, 2021; Bourke et al., 1983; 

Kubickova et al., 2019). This toxin is produced by various cyanobacteria species including 

Cylindrospermopsis raciborskii, Anabaena bergii, and Aphanizomenon flosaquae. It is often the 

predominant species in lentic waterbodies (Seifert et al., 2007; Liu, 2017) whereas in lotic 

systems, these cyanobacterial species are often outcompeted by more filamentous cyanobacteria 

(Seifert et al., 2007). This toxin is most commonly found in eutrophic water bodies, is highly 

soluble however will decrease slightly in direct sunlight and at temperatures exceeding 35ºC 

(Liu, 2017; Moreira et al., 2012).  

Cylindrospermopsin also has highly damaging effects to animals and humans including 

long-term health issues as well as death. Cylindrospermopsin is hepatotoxic as well as cytotoxic 

meaning it can damage living cells, cause tissue damage and DNA damage in organs and certain 

cell types (Kubickova et al., 2019; Liu, 2017). Some other short-term and long-term effects 

include tumour development, micronucleus induction, chromosome loss, gastroenteritis, 

diarrhea, nausea, and eye/skin irritation (Liu, 2017; Moreira et al., 2012). As this toxin is 

relatively recently discovered as of 1979, it has become increasingly widespread with elevated 

amounts of cases in new locations each year (Moreira et al., 2012). As global distribution of 

cyanobacteria and the subsequent occurrences of microcystin and cylindrospermopsin increases, 

there is speculation on the role of climate change (Moreira et al., 2012; Sinha et al., 2011). 

Cylindrospermopsin was originally thought to be a tropical cyanotoxin with cases emerging in 
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regions such as Australia and New Zealand (Liu, 2017), however in more recent years it has been 

detected more globally in temperate regions as well (Sinha et al., 2011). This demonstrates the 

significance climate change has on these systems and the need for controlling toxic blooms. 

Evidently, individually both N and P, as well as the combination of both, will influence the 

accumulation of cyanobacteria and the subsequent production of cyanotoxins (Davis et al., 

2015), however further research is required to understand the optimal conditions in which 

cyanobacteria produce these toxins. 

 

1.10 Objectives 

This master’s thesis has three main objectives and is presented in two data chapters. Chapter 2 

will address the first two objectives and chapter 3 addresses the third objective. The objectives 

are as follows: 

1) to understand how different forms of nitrogen (nitrate, ammonium, and urea) influence 

the biomass accumulation of phytoplankton and the production of microcystin in seven 

diverse North American water bodies in the presence of high phosphorus; 

2) to assess how supply rate of nitrogen (as nitrate) affects bloom development (including 

biomass development and cyanotoxins including microcystin and cylindrospermopsin 

concentrations) in the presence of high phosphorus availability in four North American 

water bodies; and 

3) to understand how differing concentrations of nitrate influence reduced iron Fe(II) release 

from sediment cores. Specifically, by quantifying the amount of nitrate needed to 

suppress iron over a long period, we could understand if the redox potential can be raised 

and maintained to stop Fe(III) reduction to Fe(II).  
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Chapter 2: Differing Forms and Application Methods of Nitrogen Increase 
Cyanobacterial Biomass and Cyanotoxin Concentrations 

 

2.1 Abstract 

As anthropogenic pressures increase and climate change alters environments, 

cyanobacterial harmful algal blooms are predicted to change. Phosphorus (P) is a major driver of 

the magnitude of these blooms, however the effects of nitrogen (N) on cyanotoxin production are 

important to consider. There has also been a shift of fertilizer use to organic nitrogen, in 

particular, urea, which the effects of are new. In this study, we conducted a N amendment 

experiment in which we added differing forms of N (urea, nitrate (NO3-) and ammonium (NH4+)) 

with P to lake water, collected from a gradient of sites across North America, to measure 

phytoplankton biomass as well as microcystin and cylindrospermopsin concentrations. We also 

looked at nutrient applications, via pulse versus press to see if these differing loading rates would 

have an effect on phytoplankton. The results of these experiments indicated that in the presence 

of high concentrations of P, N additions increased chlorophyll-a concentrations. Specifically, the 

NH4+ treatment resulted in the highest concentrations, followed by the urea, and NO3- treatments. 

The N amendments also resulted in higher microcystin concentrations relative to the controls and 

P-only treatments. The application experiments comparing a large singular dose of N with a 

slower and constant dose revealed similar responses of phytoplankton and toxin concentrations. 

These results demonstrate the need to understand environmental conditions in which toxins are 

produced. 
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2.2  Introduction 

While phosphorus (P) is thought of as the key control on biomass of harmful blooms 

(Chaffin et al., 2018; Schindler et al., 2016), the conditions leading to cyanobacterial dominance, 

and conditions required for toxin synthesis by cyanobacteria are not well understood. Factors 

such as nitrogen (N) deficiency, the N:P ratio (Van de Waal et al., 2014), the form of available N 

(Donald et al., 2011; Monchamp et al., 2014), light and temperature (Monchamp et al., 2014) 

may influence toxin synthesis. As well, there are biological controls surrounding N such as the 

correct community of cyanobacterial species being favored and selection for the correct amino 

acid and their precursors (Van de Waal et al., 2010; Kellmann et al., 2008) as well as the gene 

development which all require adequate N (Downing et al., 2005; Flores and Herrero, 2005). As 

toxin-producing blooms continue to dominate surface waters, investigating how they synthesize 

using N is of importance. 

Within aquatic ecosystems, there is substantial variety in the forms of available N.  These 

forms include oxidized inorganic forms like nitrate (NO3–), as well as more reduced species 

including ammonium (NH4+) and dissolved organic nitrogen (DON), the latter of which includes 

a tremendous diversity of forms, the simplest of which is urea. N can enter water bodies in 

numerous ways (Reinl et al., 2022). External N inputs into aquatic systems occur primarily from 

fertilizer runoff from agricultural fields, but also through atmospheric deposition, N fixation and 

wastewater effluent (Berman and Bronk, 2003; Kalff, 2002; Sebilo et al., 2013). Internal cycling 

of N within aquatic ecosystems is extensive, with internal processes also yielding a mixture of 

organic and inorganic forms of N which includes decomposition of organic matter yielding 

inorganic N species, N release from grazers and other biota, and very high rates of N uptake by 

phytoplankton and other microbes (Donald et al., 2011). 
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Rapid changes have occurred in agricultural practices, including increases in N 

application, and a shift in many areas to greater use of organic forms of N, specifically, urea 

(Glibert et al., 2006). Urea use in agriculture has increased more than 100-fold over the past 5 

decades in North America and Europe (Glibert et al., 2006; Glibert et al., 2015; Reinl et al., 

2022). Overarching changes in N and P inputs globally are major, estimated at an 8x increase in 

N fertilization rate per unit cropland area, and 3x increase in P fertilization rates (Lu and Tian, 

2017) over 52 years. These changes in agriculture, combined with growing urban nutrient loads 

(Teurlincx et al., 2019) have driven substantive changes in blooms, and cyanotoxin risk.  

Differing forms of N may have an important influence on phytoplankton communities, 

with differing N forms favouring different phytoplankton species. On a cellular level, 

cyanobacteria have adapted to take up and store many different forms of N; however, they 

demonstrate an affinity for reduced forms such as NH4+ and urea (Monchamp et al., 2014). Non-

N2 fixing cyanobacteria will easily take up NH4+, and in NH4+-poor environments, will take up 

NO3- and DON (Belisle et al., 2016; Chaffin and Bridgeman, 2014). In addition, in dissolved 

inorganic nitrogen (DIN)-deficient environments, cyanobacteria can use DON to out-compete 

other species since some phytoplankton species are unable to take up some forms of DON 

(Recknagel, 2022). Many species of cyanobacteria can also fix N2 from the atmosphere which 

puts them at an advantage to grow in comparison to other species of non-toxin producing 

eukaryotic phytoplankton (Chaffin et al., 2018). 

Some cyanobacteria species can produce cyanotoxins which are secondary metabolites 

(Jones et al., 2021), such as microcystin and cylindrospermopsin that can be harmful to life 

(Cirés and Ballot 2016, Buratti et al. 2017). Microcystins can weaken zooplankton populations 

and disrupt the food web, triggering fish kills (Chaffin et al., 2018; Chellappa et al., 2008; Pick, 
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Figure A33. Dissolved Metals analyzed during the Lake 303 experiment. Analytes labeled 
directly above their respective plots. The small dots represent each individual core. Treatment 
legend code shows L303 which means it is the Lake 303 experiment, and C1 means control core 
1, L1 means low core 1, M1 means medium core 1and H1 means high core 1 and so on. 

 

 
Figure A34. Dissolved Metals analyzed during the Lake 303 experiment. Analytes labeled 
directly above their respective plots. The small dots represent each individual core. Treatment 
legend code shows L304 which means it is the Lake 304 experiment, and C1 means control core 
1, L1 means low core 1, M1 means medium core 1and H1 means high core 1 and so on. 
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Figure A35. Manganese (Mn) and aluminum (Al) flux rates for the Lake 303 experiment using 
values taken on and after day 9. The points are the rates calculated in each individual core and 
the error bars are the error produced in the one- way ANOVA. 

 

 
Figure A36. Manganese (Mn) and aluminum (Al) flux rates for the Lake 304 experiment. 
Release rate 1 was calculated using values taken on and after day 9 and before day 14 after the 
first dosing of NO3-. Release rate 2 was calculated using values taken on and after day 17 after 
the second dosing of NO3-. The points are the rates calculated in each individual core and the 
error bars are the error produced in the one- way ANOVA. 
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Figure A37. Line graph showing total nitrogen (TN) concentrations over 40 days for the Lake 
303 experiment. The small dots represent the total nitrogen concentrations in each individual 
core and the larger dots represent the treatment (the average of the three cores). 
 

 
Figure A38. Line graph showing total nitrogen (TN) concentrations over 54 days for the Lake 
304 experiment. The small dots represent the total nitrogen concentrations in each individual 
core and the larger dots represent the treatment (the average of the three cores). 
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