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ABSTRACT 

 
Stream metabolism is an ecological process that can be monitored to assess carbon 

cycling and productivity within a stream ecosystem. GPP (gross primary productivity) is 

measured as oxygen produced by autotrophs and ER (ecosystem respiration), which is measured 

by oxygen depleted by all living organisms. Complications arise when estimating GPP and ER in 

the Arctic because most methods require a period of darkness when GPP ceases, however, 

summer regimes of photosynthetically active radiation (PAR) do not reach zero. Furthermore, 

natural diffusion of oxygen from the atmosphere (k) must be accounted for but this requires 

extensive field work, thus posing problems for remote locations. Few studies have assessed how 

stream metabolism is influenced by the surrounding environment, even though it is well 

established that stream metabolism in other biomes is affected by key environmental variables. 

The thesis assesses methods that are appropriate for estimating stream metabolism in the 

Arctic and determines stream metabolism and associated environmental variables in the Greiner 

Lake Watershed, Nunavut. Stream metabolism was estimated using streamMetabolizer and 

empirical methods. These methods were compared based on values expected for low 

productivity streams, and model diagnostics (process and observation error) for Bayesian 

statistics. StreamMetabolizer produced biologically possible days with realistic average values 

and ranges of GPP and ER. 

Estimates of GPP and ER from streamMetabolizer were used in a partial least square 

regression analysis (PLSR) with environmental variables measured at each site (water chemistry, 

channel form, land cover type and surrounding waterbodies). I discovered that GPP was 

positively related to median substrate particle size (D50), and ER was positively related to the 

area of upstream lakes and stream width. D50 may have been providing ideal habitats for primary 
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producers, and lakes may have been impacting downstream controls of ER. Overall, 

streamMetabolizer is a useful method for determining stream metabolism in Arctic environments 

that are remote and have limited periods of darkness in the summer. Moreover, this research 

contributes to a growing data base of stream metabolism in the Arctic and indicates key 

environmental variables influencing stream metabolism in the Arctic. 
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CHAPTER 1: INTRODUCTION  

1.1 Introduction 

 
Average Arctic temperatures have increased at almost twice the global average rate in the 

past 100 years (IPCC, 2007) with the increase being notably pronounced in the Canadian Arctic 

where freshwater ecosystems are particularly vulnerable to environmental change (Rouse et al., 

1997). Warming will have a significant impact on the terrestrial cryosphere, landscape 

vegetation, hydrologic regimes, aquatic species abundance and composition, and biological 

productivity (Wrona et al. 2006). These environmental changes will have cascading effects on 

freshwater ecosystems processes such as ecosystem metabolism that are affected by alterations to 

the cryosphere and the surrounding environment. Specifically, changes to the chemical 

properties of stream water, air and water temperature, precipitation patterns, and hydrological 

regimes can alter the physicochemical parameters controlling ecosystem metabolism (Prowse et 

al, 2006a). 

 

Net ecosystem metabolism (NEP) is an ecological process defined by Woodwell and 

Whittaker (1968) that is comprised of gross primary productivity (GPP) and ecosystem 

respiration (ER).  GPP is the primary production of algae and aquatic plants, and ER is the 

respiration of all organisms. Therefore, ecosystem metabolism permits inferences about the use 

of organic resources by biotic communities (Bott et al., 2006; Odum, 1956; Young et al., 2008). 

Moreover, metabolism is affected by environmental factors such as nutrient concentration and 

water temperature making it an especially relevant process for bioassessment of Arctic rivers 

(Yvon-Durocher et al., 2010). Changes in dissolved oxygen in freshwater occurs due to the 

interrelationship of GPP, ER and reaeration, making oxygen fluctuations a good indicator of 
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ecosystem metabolism (Dodds & Cole, 2007; Hoellein, Bruesewitz & Richardson, 2013; Young 

et al., 2008). Increased light is associated with higher photosynthetic rates that cause an increase 

in dissolved oxygen, whereas respiration consumes oxygen regardless of light levels (Bernot et 

al., 2010; Izagirre et al., 2008; Mulholland et al., 2001). The differences between daytime 

increases in dissolved oxygen and nighttime decreases in dissolved oxygen can provide 

information on the rates of GPP and ER if reaeration rates can be accounted for (Holtgrieve et 

al., 2010).  

Gathering baseline data on stream metabolism in the Arctic will aid in the assessment of 

how stream ecosystem functions are affected by their environment and can help detect and 

predict future change in these freshwaters. Stream metabolism is an ideal candidate for 

monitoring stream changes due to its sensitivity to factors such as atmospheric and water 

temperature, nutrients, and ice phenology (Bernot et al., 2010; Mulholland et al., 2001). A basic 

understanding of which environmental factors have the greatest influence on metabolic rates, 

therefore, is required. My study aims to begin developing an understanding ecosystem 

metabolism in Arctic rivers and the environmental variables and spatial scales that are potential 

drivers of stream metabolism. 

 

1.2 Environmental factors that affect stream metabolism 

 Frissell et al., (1986) indicated that there are patterns in biological processes, such as 

ecosystem metabolism, that are associated with specific morphological features of a stream. 

Thus, they proposed the delineation of different morphological features into categories of 

hierarchical spatial scales; microhabitats, pool/riffle reaches, segments and systems, all of 

increasing sizes and nested within each other. Large scale characteristics include geology, 
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geomorphological structures, and climate, which can be similar for hundreds of kilometers. 

Smaller-scale characteristics, which are typically only similar over hundreds of meters include 

conditions such as temperature, canopy cover, nutrient concentrations, substrate composition, 

water depth, etc. Thus, morphological features of fluvial channels and landscape characteristics 

may be developed as indicators for understanding changes in the biological function of streams. 

Furthermore, there are dynamic nested hierarchies of habitat characteristics that also must be 

considered to understand stream processes. To my knowledge, few studies have been conducted 

where subcatchment conditions are compared to stream scale characteristics to determine the 

factors that control GPP and ER in Arctic biomes. Streams may be more affected by proximal 

features (i.e., riparian environmental variables), and these features may overwhelm any potential 

for a large-scale environmental variation to control stream metabolic rates. For instance, large 

rivers and floodplain lakes can deplete nutrients nitrogen (N) and phosphorus (P) (Wrona et al., 

2006), and may reduce downstream flooding (Leach & Laudon, 2019).   

  

1.3 Subcatchment scale variables 

Furthering the understanding of how functional processes, such as metabolism, are 

associated with the surrounding environmental conditions is important for determining how 

climate change might impact streams and describing the feedback mechanisms by which streams 

could exacerbate climate change (Prowse et al., 2006b). Whether the immediate surrounding 

environment (reach scale), or the larger scale environment (subcatchment scale) controls 

metabolic rate may vary among systems. Streams receive a significant amount of carbon from 

surrounding ecosystems and inland flow. Organic matter (OM) entering a stream (allochthony) is 

incorporated into the food web and can greatly outweigh energy produced instream 
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(autochthony) through photosynthesis. The relative importance of allochthony and autocthony 

depends on which factors (nutrients, temperature, light availability, etc.) limit productivity ( 

Allan & Castillo, 2007).  

Several factors that can affect allochthony and autocthony in freshwaters may change 

because of climate warming (Yvon-Durocher et al., 2010) with such changes potentially 

impacting instream environments as well as other ecosystems. For instance, increased warming 

may result in an increased amount of carbon and nutrients transported to stream ecosystems from 

terrestrial environments (Battin et al., 2009). Increases in overland flow, permafrost thaw, 

groundwater inputs, and increases in atmospheric temperature can result in streams becoming a 

carbon source (Michel & Van Everdingen, 1994; Woo, Lewkowicz & Rouse, 1992; Zolkos et al., 

2022). For example, researchers found that in the Kuparuk River, Alaska, there was a flux of 

1.4x105 mol of CO2 to the atmosphere per year and they predicted this could increase as 

temperatures warmed and raised temperature-dependent respiration rates (Kling, Kipphut & 

Miller, 1991). In contrast, there is conflicting evidence that as the climate warms, Arctic rivers 

will act as carbon sinks due to increases in P (Demars et al., 2011; Drake et al., 2018; McGuire et 

al., 2009). Changes to Arctic stream functions can also significantly impact ocean ecosystems, 

which can have implications for ocean ecosystem function and for global climate systems 

(CliC/AMAP/ISAC, 2016). This is because Arctic rivers can carry a significant amount of 

nutrients and organic matter to the ocean (Parmentier et al., 2017). Under climate change, 

increases in terrestrial tundra runoff due to thermokarst activity will supplement the transfer of 

organic matter, and/or nutrients to the Arctic ocean, due to streams switching from heterotrophic 

(P:R<1) to autotrophic (P:R>1)  (Kling, Kipphut & Miller, 1991; McGuire et al., 2009). 
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1.4 Reach scale variables 

 Stream metabolism is a holistic measure of stream function and health and is affected by 

numerous factors including light levels and water temperature. Light reaching primary producers 

is one of the most important factors controlling GPP (Mulholland, 2001; Young, Matthaei & 

Townsend, 2008; Bott et al., 1985) and has been shown to affect enzyme activity in periphytic 

microbial communities (Kuehn, 2014). In addition, many studies have shown that increases in 

temperature are associated with increases in GPP and ER (Yates et al., 2013; Bott et al., 1985). 

Nutrients can limit stream metabolism, with higher nutrient concentrations leading to 

increased rates of GPP and ER (Bott et al., 1985; Fuss & Smock, 1996; Bowden et al., 1992). In 

addition, substrate chemistry (nutrient poor vs. nutrient rich) can influence metabolic rates (dos 

Reis Oliveira et al., 2019). Lastly, pH can influence stream metabolism as increasing 

acidification can increase both the chlorophyll a standing crop and filamentous algae (Allard & 

Moreau, 1987; Collier et al., 1990).  

GPP and ER are also affected by stream gradient and morphology, current velocity, and 

substrate composition. For example, GPP has been shown to be negatively correlated with 

gradient (Lamberti & Steinman, 1997), and high-water velocity can reduce vegetation, 

subsequently decreasing primary production due to scouring (Kurz et al., 2017). In contrast, ER 

appears to be more resistant to flood events which involve increased flow (Qasem et al., 2019). 

Total production and respiration were observed to be higher in pools than riffles, as algae 

accumulates more easily in pools, while riffles scour algae away (Bowden et al.,1992). Different 

substrates tend to support different pigment densities, due to the different rates of sedimentation, 

bedload movement and scouring (Tett et al., 1978). Furthermore, larger substrate sizes are 

positively correlated with greater rates of metabolism and biofilm formation (Cardinale et al., 
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2002). Stream metabolism is also associated with stream order, with studies having shown that 

streams have higher rates of GPP and become more autotrophic as order increases (Anglier, 

2003; Bott et al, 1985; Naiman & Seddel, 1980). 

1.5 Defining the research problem  

Metabolism has been widely used as a bioassessment tool for understanding the impacts 

of anthropogenic and natural disturbances on ecological function in streams (Bunn, Davies & 

Mosisch,1999; Li, Zheng & Liu., 2010; Young Matthaei & Twonsend, 2008). However, there is 

a notable lack of research conducted on these functions in Arctic streams. Most of the research 

conducted on the connection between metabolism and environmental factors has focused on 

temperate environments (Appling et al., 2018a; Izigairre et al., 2008; Mulholland et al., 2001; 

Pastor et al., 2017) where conditions such as seasonality are significantly different than in 

northern rivers. Furthermore, studies often do not account for the nested hierarchical nature of 

stream environments. Streams can be affected both by their proximal environment (stream reach 

scale) and by the features of their watershed, and which is more significant varies between 

streams (Lento et al., 2013; Schneider, 2001;  Yates et al., 2013). Therefore, this hierarchy must 

be considered when attempting to define the relationship between stream metabolism and 

environmental variables. 

Further research on ecosystem functions in Arctic streams is vital to understanding the 

impacts of climate change within stream ecosystems and their interactions with their surrounding 

ecosystems. Gathering data about how Arctic stream ecosystems are affected by their 

environment will help establish a baseline useful for determining the significance of monitored 

future changes in stream ecosystem function. Stream metabolism is an ideal candidate for 

monitoring stream changes, due to its sensitivity to variations in atmospheric and water 
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temperature, nutrients, and ice phenology (Demars et al., 2011; Fuß et al., 2017; Prowse and 

Culp, 2003; Yvon-Durocher et al., 2012) However, a basic understanding of which 

environmental factors have the greatest influence on metabolic rates is required. Also required is 

an understanding of the importance of scale. Therefore, my study seeks to develop an 

understanding of which environmental variables, measured at which scales, are most closely 

correlated with measures of stream metabolism in the Arctic. In the future, understanding these 

interactions may help improve biomonitoring techniques and management strategies aiming to 

sustain the environment and protect the vital functions of Arctic streams.  

 

1.6 Objectives 

This thesis aims to: 1) determine the most effective method for measuring Arctic stream 

metabolism by using the streamMetabolizer model and empirical equations model (ER-

Interpolation, linear regression, and mass balance equation) (Chapter 2), and 2) applying the 

most effective method to determine if there are any spatial or temporal patterns in daily GPP and 

ER rates, and which environmental variables are most important determinants of daily GPP and 

ER rates (Chapter 3). In Chapter 2, methods for measuring Arctic stream metabolism are 

assessed by comparing the range and magnitude of the predicted values to determine which 

approach produces GPP and ER rates more appropriate for characterizing an Arctic stream. 

Extremely high or low values of GPP and ER are considered very unlikely in these streams due 

to harsh conditions in the Arctic (flooding regimes, low temperatures, low nutrient levels). Thus, 

higher variability in the predicted values will likely indicate a poorly performing method. The 

most appropriate method for measuring Arctic stream metabolism will be selected and refined as 

needed to move forward to Chapter 3. Chapter 3 assesses changes in stream metabolism through 
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space and time to determine if: (i) average daily GPP and ER at the study sites differed 

significantly across the watershed; (ii) sites showed consistent temporal patterns throughout the 

study period; and (iii) if there were environmental variables that were significantly associated 

with changes in average daily GPP and ER. 
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CHAPTER 2: DETERMINING A VIABLE MODEL FOR 

ESTIMATING STREAM METABOLISM 

2.1 Introduction  

Stream metabolism (or net ecosystem productivity, NEP) refers to the combined 

processes of primary productivity by autotrophs and secondary productivity by heterotrophs 

which are referred to as GPP and ER respectively. (Riley & Dodds, 2013). Researchers 

commonly use the single station method, where O2 sensors are placed in a well-mixed portion of 

the stream to measure daily oxygen levels. Measuring stream metabolism through diel variation 

in dissolved oxygen (DO) concentration in a stream is based on the premise that changes in DO 

concentrations are the results of GPP, ER and the natural diffusion of oxygen between the air-

water interface, referred to a reaeration (k) or a reaeration coefficient (K600). The instantaneous 

change in dissolved oxygen can be calculated by Equation 1 (Grace & Imberger, 2006).  

Equation 1: △ 𝐷𝑂 = 𝐺𝑃𝑃 − 𝐸𝑅 ± 𝑘 

 

 During darkness, it is assumed that GPP is equal to 0 and any changes in oxygen levels are due 

to k and ER (a nighttime method). k is determined by Equation 2, where KO2 is the reaeration 

constant and D is the oxygen deficit – the difference between the measured DO concentration 

and the 100% saturation value (which is dependent on water temperature) (Grace & Imberger, 

2006). 

Equation 2: 𝑘 = 𝐾𝑂2 x 𝐷  

Stream metabolism should be a useful tool for monitoring and understanding carbon 

cycling in Arctic streams, however, the standard night-time calculations (when GPP is assumed 

to be 0 in the dark) for estimating NEP are complicated by the fact that, during the summer in 

Arctic streams (e.g., Greiner Lake Watershed) light levels of 0 may be observed only for limited 
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time or not at all (Mesa et al., 2017). Therefore, additional techniques must be applied, or night-

time methods need to be modified to calculate ER and k. 

The overall goal of this chapter is to select a model that can produce suitable results for 

developing a baseline of stream metabolism data for streams in the Greiner Lake Watershed.  

The first approach assessed was streamMetabolizer, which is a software uses daily oxygen levels 

and Bayesian statistics to measure stream metabolism and does not require hands on 

measurements of reaeration (Appling et al., 2018b). The second approach used reaeration values 

calculated based on channel morphology measurements, three separate ER estimation methods, 

and a standard mass balance equation model to measure daily metabolic rates. These approaches 

were used at four sites in the Greiner Lake Watershed and were compared to determine which 

was most effective.  

 

2.2 Methods 
 

2.2.1 Approach for Model Selection  

 The streamMetabolizer and the stream hydraulics models were applied using continuous 

measurements of DO (mg/L), PAR (µmol m-2 s-1) depth (m) and temperature (°C) measurements 

taken from 16 sites in early July to mid-August of 2019 in the Greiner Lake Watershed (Figure 

2.1). For streamMetabolizer, light levels were of most concern due to the nature of GPP being 

calculated linearly with light and requiring a period of darkness (PAR = 0) to determine ER (Hall 

et al., 2016). Therefore, to evaluate model sensitivity to PAR inputs, a range of adjustments were 

made to the PAR data to determine if the quality of the results would improve and remain steady, 

regardless of the changes in PAR levels. If there are significant changes between the adjustments 

made to the values taken from the same site, the models are sensitive to PAR changes and could 
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represent a shortcoming in the metabolism calculation, making it imperative to reassess the use 

of streamMetabolizer.  

For the ER-Interpolation using linear regression and the stream hydraulics mass balance 

equation, k was determined by using reaeration coefficients discussed by Raymond et al. 2012, 

using values of width, depth, and velocity from each stream. Because I did not adjust light levels, 

the number of days input were based on when each site began experiencing darkness, an 

approach that would also change which values of width, depth and velocity used given that flow 

decreased throughout the study period. Any inconsistencies between overlapping dates would 

likely be indicative of a poorly performing model, or inaccurate calculations of reaeration (which 

could be due to sampling errors). 

Although there are few metabolism studies available for Arctic streams, there are 

fundamental expectations for stream metabolism based on the specifics of study period and 

location. The first expectation was GPP, ER and K600 would not show excessive daily variation 

(e.g., 3gO2
-1 to 40 gO2-1 GPP) since the study period is relatively short, and that Arctic streams 

do not experience significant weather events throughout the summer (Myrstener et al, 2021; 

Rocher-Ros, 2019). The second expectation is that streams would not be highly productive as 

this trend is what has been found for other studies of Arctic streams (~15 gO2-1) (Myrstener et al, 

2021; Rocher-Ros, 2019). Third, ER O2 cannot be positive, GPP O2 cannot be negative, and 

K600 cannot be negative (Appling, 2018b). 

 

2.2.2 Data Collection 

 
Stream metabolism was estimated between July 9th to August 12th in 2019 using the open 

single station method, which determines how the DO (dissolved oxygen) in the stream changes 

as a function of time by using measurements from loggers positioned at a single location in the 
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stream. The method is ideal for use in streams with an open canopy (Grace & Imberger, 2006) 

such as these tundra systems, and is used to calculate GPP, ER and NEP. A key assumption of 

the method is that DO concentration is uniform throughout a study reach (Grace & Imberger, 

2006). Oxygen concentration measurements were taken every 15 min over the period of the 

study using D-Opto loggers measuring temperature, DO mg/L, %DO, and DO ppm continuously. 

Depth (m) and temperature (°C) were also measured every 15 min using HOBO loggers. Both D-

Opto and HOBO data loggers were attached to rebar embedded vertically into the substrate at the 

end of each reach in a well-mixed area within the main flow, approximately 5 cm above the 

substrate so that loggers remained underwater throughout the entire sampling period. The 

positioning in the water column was required to obtain accurate measurements of dissolved 

oxygen, and to protect sonde membranes from sedimentation (Grace & Imberger, 2006). PAR 

was measured every 5 minutes using the Odyssey® Waterproof Photosynthetic Active Radiation 

Logger, which was attached to the top of the rebar with the optical sensor head pointing 

upwards. This summarized PAR of the reach since light availability remained relatively the 

same. 

 
 

2.2.3 Calculating Stream Metabolism 

The following section describes the different sets of models used to calculate stream 

metabolism. The first model is streamMetabolizer, which uses continuous oxygen data to 

estimate ER, GPP and K600 simultaneously. The second method estimates stream metabolism 

from the oxygen data by incorporating three additional methods of determining GPP and ER, and 

one single method of determining K600.  
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2.2.3.1 Stream Classification 

Each stream was placed into 1 of 3 different categories: 1. Narrow, 2. Wide, and 3. very 

wide, such that the width to depth ratios were <20 for narrow streams, ≥20-50 for wide streams, 

and ≥50 for very wide streams. Narrow streams included sites: ER03, ER04, CB14, CB29, CB24 

CB26, CB28, CB21 and CB25. Wide streams included streams: CB15, CB16, CB20 and CB22. 

Very wide streams included sites: CB27, CB05, CB06 and CB04 (Table 3.6). The watershed 

was summarized based on the sizes of streams because morphology can directly effect reaeration 

rates (Raymond et al., 2012). Although decreased stream width may be associated with lower 

light levels due to riparian cover in temperate streams, this was not the case in the Greiner Lake 

Watershed where vegetation is low-lying shrub tundra (NASA, 2015). Therefore, different sizes 

would represent the diversity of conditions in the watershed.  

 

2.2.3.2 streamMetabolizer Method 

The model employs Bayesian statistics to simultaneously calculate GPP, ER and K600 

using data trends previously observed in other stream systems. In the initial application of the 

streamMetabolizer method (Appling et al., 2018b), there were no alterations made to the default 

settings of the streamMetabolizer model, and the “Bayes” model within the streamMetabolizer 

package was applied. Of the several different options for algorithms that can be used via the 

streamMetabolizer package, the trapezoid numerical algorithm was applied to model dissolved 

oxygen data because it is more accurate compared to the other algorithm options (Appling et al., 

2018b). Additionally, process and observation error were included in the model to help 

distinguish errors attributable to the data collection process, or due to a shortcoming of the 

model. Lastly, K600 was set to “normal”, meaning that the model will not pool K600 based on 
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any previously inserted values as there were only 2 measurements of discharge available through 

this study.  

 

2.2.3.3 Stream Hydraulics, ER Determination Alternatives and Mass Balance 

Methods 

 This section explains how stream reaeration was calculated from hydraulic components 

of each stream site, the various equations used to calculate ER, and then their application to a 

mass balance equation. The equations used included a mass balance equation when PAR = 0 

μmols-1, an ER interpolation equation when PAR >0 μmols-1, or the use of the lowest PAR 

values to calculate ER when ER interpolation was poor (i.e., produced positive ER values).  

First, the reaeration coefficient (K normalized to a schmidt number of 600) was 

calculated based on equations found to be most effective for small streams in a study of 256 

streams in the USA (Raymond et al., 2012), where several different equations were applied to 

calculate reaeration rates. The equation used in that case was: 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3: 𝐾600 = (𝑉𝑆) 0.89±0.0.020x 𝐷0.54±0.030x 5037 ± 604 

Where k600 is O2 normalized to a temperature between 17.5 and 20.0 °C, D is depth (m), V is 

velocity (m/s), and S is slope (m/m). Then, to determine reaeration from the coefficient of 

reaeration the following equation was used: 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4: 𝐾𝑂2 =
𝐾600

(600 /𝑆𝑐𝑂2)−0.5
 

 

Where S is the Schmidt number, CO2 is the concentration of dissolved O2, and kO2 is the 

reaeration coefficient.  

 When PAR = 0 μmols-1 at some point throughout the day, a standard night-time regression 

equation to determine GPP and ER can be applied. Since Arctic streams at latitude 69°N usually 
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experience a small amount of time in darkness (1-2 hours), the instantaneous ER is averaged 

over the time steps with 0 μmols-1 PAR. This value is used to estimate daily ER following 

temperature correction. When PAR>0 μmols-1 for the entirety of the night, the instantaneous ER 

at 0 μmols-1 PAR is interpolated through linear regression (Cappelletti, 2006). The value is then 

used to estimate daily ER following temperature correction. The model extrapolates ER based on 

the temperature of the water when PAR=0 μmols-1, and then is extrapolated backwards assuming 

ER changes with temperature by 10-fold  with natural logarithms (Cappelletti, 2006). Lastly, 

when PAR > 0 μmols-1 but interpolation is poor (ER is greater than 0 gm-2d-1) the instantaneous 

ER at the minimum PAR is used to estimate daily ER following temperature correction. The k 

value is then calculated based on coefficients recommended by Raymond et al., 2012 using 

measures of stream width, depth, velocity, and slope. The calculated k value is then incorporated 

into the mass balance equation as described by Grace & Imberger (2006) (Figure 2.2). 

 

2.2.4. Testing Differences Between Model Results Based on Input Data/Parameters 

Subsets of the data were used to test different adjustments of the data that were applied to 

improve model estimates of metabolism. Determination of data to be used in streamMetabolizer 

was based upon several considerations including the minimum levels of 1) PAR used, since 

streamMetabolizer is directly impacted by light levels, and 2) dates used, since the number of 

days varied in lights level throughout the night. For the empirical stream hydraulics and mass 

balance model, data were input based on depth levels, as depth levels are related to stream 

hydraulics. The first set of data modifications to streamMetabolizer is labeled SMOD 

(StreamMetabolizer MODifications), where light levels were adjusted minimally. The second 

data modification to streamMetabolizer was labeled SMOD2, where additional light level 
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adjustments were applied for the dates included and threshold PAR values used. The third data 

adjustment used data from the beginning, or the end of the study period based on water depths 

levels was labeled EMOD (i.e., Empirical MODification), as depth is highly related to reaeration 

rates in streams and varies considerably over the study period. The empirical modifications refer 

to the Raymond, ER interpolation and mass balance equation methods and how they are used 

(Cappelletti, 2006; Grace & Imberger, 2006; Raymond et al., 2012;). The following sections 

provide a detailed description of the model and data adjustments. 

2.2.4.1 SMOD 

 Because light levels do not reach zero at this latitude during early summer, I adjusted the 

PAR input data to create varying periods of darkness where GPP was hypothesized to be at a 

minimum. I created periods of darkness by adjusting PAR values ≤ 15 μmols-1 to 0 μmols-1 

(SMOD15), and secondly PAR values ≤ 20 to 0 μmols-1 (SMOD20). These adjusted periods of 

darkness began on days where there were at least 12, 3-h intervals of complete darkness (PAR = 

0). This modification allowed determination of diel light curves with adequate darkness for 

metabolism calculation. 

2.2.4.2 SMOD2 

Next, more dates were included to determine if creating these thresholds and altering the 

data set would produce more satisfactory results. SMOD2 constitutes more substantial changes 

to dates and light values than SMOD. Because the number of values being set to PAR=0 μmols-1 

increased, the number of dates without PAR=0 μmols-1 was less of a concern, since PAR values 

as high as 100 μmols-1 would be set to 0 μmols-1 and be used in the model. Specifically, dates 

were selected where PAR would reach 0 μmols-1 for at least one 15 min interval. This set of 

results is referred to as SMOD-2 and includes versions that were modified from the original data 
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set. PAR was set to 0 at PAR<15 μmols-1 (SMOD2-15), PAR<20 μmols-1, (SMOD2-20), 

PAR<50 μmols-1 (SMOD2-50) and PAR<100 μmols-1 (SMOD2-100) to see the sensitivity of the 

model (Figure 2.3). 

2.2.4.3 EMOD 

Two different data adjustments were evaluated to determine how metabolism estimates 

changed with input data used for water depth and stream hydraulics. This model addresses dark 

periods by switching between equations that require darkness and those that can estimate ER 

regardless of darkness. First, metabolism was calculated using E-UNMOD (Empirical 

Unmodified) that used the average measurements of stream hydraulics (width, depth, velocity, 

discharge, slope) taken at the beginning of the study period during deployment, and then from 

the end of the study period during extraction. 

Second, the EMOD only used stream hydraulic values taken at the end of the study when 

depth values were stable. In theory, because depth is highly correlated with reaeration rates, once 

depth remains constant reaeration rates will be constant. This usually took place beginning in 

August and was done with the intention of improving the accuracy of reaeration rate estimates. 

Depth was deemed stable based on visual inspection of the depth curve as the point when there 

was no further large (i.e., > 10 cm change) increases or decreases in depth. 

2.2.4.4 streamMetabolizer Final Modifications 

Although streamMetabolizer was the ideal model, it produced output that occasionally was 

impossible (i.e., days where ER > 0 gm-2d-1 or GPP < 0 gm-2d-1). In response to this, additional 

changes to light levels and days used were made, and a specific alteration to the 

streamMetabolizer settings was implemented. Three data set adjustments were used to remedy 

this error.  The first set used was unchanged in any way (UNMOD). Next, the entire data set was 
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used, and any PAR<1000 μmols-1 were set to 0 μmols-1 (PAR 1000). Moreover, only data from 

August was used, and PAR levels remained unaltered (AUG). Next, only data from August were 

used, and all values less than 1000 μmols-1 were set to 0 μmols-1. Lastly, the final modification 

included the entire data set, unchanged, however, an altered version of streamMetabolizer was 

employed where it was set so that ER could not be greater than 0 gm-2d-1, and GPP could not be 

less than 0 gm-2d-1 (ER.GPP) (Figure 2.3). 

 

2.3. Statistical Analysis 

2.3.1 Kernel Density Estimate and ANOVA 

A bivariate Kernel density estimation was used to display the paired values of ER and 

GPP produced by the various models and sensitivity tests. The purpose of the bivariate kernel 

density estimation is to make inferences about the underlying probability density function 

everywhere. The different levels of the plot are representative of how much data are expected to 

fall within a certain range. To conduct a bivariate kernel density estimation, the stat_density_2d 

argument was used in ggplot2 (Wickham, 2016) to simultaneously conduct the kde, using the 

MASS:kde2 package, and display the results graphically. Bivariate kernel density plots were 

performed for K600, ER and GPP for one site in every morphology class, with the assumption 

that sites in the same class would have similar distributions. Lastly, an ANOVA and Tukey-HSD 

test were performed to determine if there were significant differences between the modifications 

(dates and PAR thresholds used) within each model (SMOD vs SMOD2 and EMOD vs EMOD2) 

and between the models (SMOD vs. EMOD). 
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2.3.2 Analyzing Model Diagnostics (Markov chain Monte Carlo (MCMC) and Bayesian 

Statistics 

  The streamMetabolizer uses the Bayesian modeling software Stan via the rstan R 

interface combined with Markov chain Monte Carlo (MCMC) to explore the posterior 

distribution (Stan Development Team, 2016). This model incorporates a Bayes' algorithm that 

bases predictions on initial information given to the model, usually based on information from 

previous studies (i.e., “priors”) and a distribution resulting from providing the model with 

additional data. MCMC is commonly used in tandem with Bayes' theorem to assist in reducing 

complicated computations when there are non-normalised distributions. In this package, the 

process error and observation error will be analyzed and reported as rhat values, with an 

acceptable rhat value being ≤1.1. and these terms will be used to assess how accurate the model 

is (van Ravenzwaaij, Cassey & Brown., 2018).  The more the models converge (i.e., how well 

the observed data fits with the modelled data), the more the model consistently predicts similar 

results from the sample distribution, i.e., the metabolism data. Accurate predictions of the sample 

distribution are essential to determining if the Bayesian model is adequately predicting these 

values. However, rhat is not the only means of determining model convergence, and model 

convergence does not necessarily mean they are accurately representing real-life data (Taboga, 

2021). Therefore, model convergence will be considered, but will also be used in tandem with 

common sense to interpret results. 

 

 

 

 



 

 

 

25 

2.3.3 Covariance 

Pearson correlation was used to determine if there was any significant correlation 

between ER and K600 between each day at each site (cor_test in R) (R Core Team, 2018). When 

calculating stream metabolism, it is imperative to correctly attribute changes in oxygen levels at 

night to either ER or K600. As these values are calculated simultaneously in streamMetabolizer, 

it is important to ensure that the models can distinguish between changes in oxygen due to 

reaeration and changes due to ecosystem respiration. If correlation between these two variables is 

consistently high (above 0.6) between these two variables, it may suggest the model was unable 

to draw a distinction between the fluxes. This is especially important when streamMetabolizer is 

altered so that values of ER and K600 values cannot be greater than 0, and there is a lack of data 

used for K600 pooling.  

 

2.4 Results 
 

2.4.1 Comparison of SMOD, SMOD2, EMOD and EMOD2 models using Kernel 

Density Estimates 
 

For the narrow stream type (CB29), changes to lower thresholds of PAR and the number 

of dates used in streamMetabolizer calculations produced minimal differences in ER, GPP and 

K600 as observed through kernel density estimates (kde) (Figures 2.4 - 2.8). These plots indicate 

that the highest density (i.e., relative probability) falls in the same range for all SMOD and 

SMOD2 models. Highest SMOD densities estimates of GPP for CB29 were between ~0.5 - 1.5 g 

O2 m−2 d−1, while ER was between -1 to 1 g O2 m−2 d−1(Figure 2.4a).  In the SMOD2 model 

variation, where more days were included in the estimate calculation, a second cluster of high 

density is evident (Figure 2.4b). Reaeration values also remained similar between SMOD and 

SMOD2 (Figure 2.5a-b.), with values ranging between 5 - 14 K600 day-1 for CB29. In contrast, 



 

 

 

26 

KDEs showed that empirical methods differed greatly between EMOD and EMOD2 (Figure 

2.4c) such that estimates of ER and GPP for the two models did not overlap and EMOD2 values 

did not cluster together. For example, EMOD the GPP and ER estimates were 0 to 5 g O2 m−2 

d−1 and 0 to 2 g O2 m−2 d−1, respectively, while EMOD2 estimates ranged from 10 to 20 g O2 m−2 

d−1 for GPP, and -5 to 4 g O2 m−2 d−1 for ER. Furthermore, K600 was 46.7 K600 day-1 for EMOD 

and 59.6 K600 day-1 for EMOD2. 

 There was a greater range in streamMetabolizer estimates for the wide stream type 

(CB20) compared to CB29. However, GPP and ER estimates were again more consistent than 

those of the empirical methods. SMOD and SMOD2 produced the highest densities in a similar 

range as for CB29, with GPP and ER estimates of -2 to 0 g O2 m−2 d−1 and 4 to 10 g O2 m−2 d−1, 

respectively (Figure 2.6a-b). For reaeration, SMOD to SMOD2 produced estimates of 18 to 15 

K600 day-1, respectively (Figure 2.7a-b). As observed for CB29, EMOD and EMOD2 estimates 

were dissimilar, showing minimal overlap in ER and GPP values. EMOD values of GPP ranged 

from 0 to 7 gm-2d-1 while ER was between 0 to -10 g O2 m−2 d−1 (Figure 2.6c). In contrast, 

EMOD2 produced GPP values between 0 to 20 g O2 m−2 d−1 and ER values ranging from- 17 to 0 g O2 

m−2 d−1. For K600 values, EMOD values were lower at 7.3 K600 day-1 relative to the much higher 

EMOD2 estimates at 23.3 K600 day-1
..  

 Lastly, for the very wide stream type (CB27), SMOD and SMOD2 produced the highest 

densities within a similar range for ER and GPP, with GPP consistently falling between 1 to 2 g 

O2 m−2 d−1, and ER between -1 to 0 g O2 m−2 d−1 (Figure 2.8a-b.) However, reaeration varied 

more than at other sites, with values ranging from 7 to 12 K600 day-1 for SMOD and 10 to 22 K600 

day-1 for SMOD2 (Figure 2.9a-b.). EMOD and EMOD2 presented a large variation in densities 

and showed little overlap. EMOD produced ER estimates ranging from 0 to -8 g O2 m−2 d−1 and 
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GPP from 0 to 9 g O2 m−2 d−1  , while EMOD2 estimated GPP ranging from  0 to 3 g O2 m−2 d−1, 

and ER from -3 to 0 g O2 m−2 d−1  (Figure 2.8c). Reaeration estimates of EMOD1 and EMOD2 

varied greatly, with EMOD1 being higher at 17.0 K600 day-1 compared to the lower value of 5.5 

K600 day-1 for EMOD2. 

 

2.4.2 Comparison of Metabolism Estimates From SMOD, SMOD2 and EMOD, 

EMOD2 Using Boxplots and ANOVA 

 Boxplots show that in most cases, the various versions of the SMOD model produced 

similar values of GPP, ER and K600 when data from all sites was combined (Figures 2.10 – 

2.12). For SMOD-15 to SMOD2-100, GPP average values were between 0 to 2.5 g O2 m−2 d−1 

(Figure 2.10), ER values were between 0 to -1 g O2 m−2 d−1 (Figure 2.11), while reaeration 

values ranged between 7 - 8 K600 day-1 (Figure 2.12). SMOD-15 is the only visible outlier for 

GPP values, with a slightly higher range of GPP values compared to all other models.  In 

contrast, EMOD and EMOD2 showed much more variable results such that GPP averages for 

EMOD2 and EMOD were 2.5 and 2 g O2 m−2 d−1, respectively. However, the range of these 

estimates was greater than the SMOD model variations, with GPP estimates reaching of 60 g O2 

m−2 d−1 for EMOD2, and approximately 30 g O2 m−2 d−1 for EMOD (Figure 2.10). While EMOD 

and EMOD2 ER averages were between -2 to -2.5 g O2 m−2 d−1 and like the SMOD results, some 

values were exceptionally high ranging from -45 g O2 m−2 d−1 for EMOD2, and -30 g O2 m−2 d−1 

(Figure 2.11) for EMOD. EMOD and EMOD2 average reaeration values were between 18 - 19 

K600 day-1 however, outliers reached values of 60 K600 day-1 for EMOD2, and 50 K600 day-1 for 

EMOD (Figure 2.12). Furthermore, ANOVA tests demonstrated that there were no significant 

differences in GPP, ER and K600 between streamMetabolizer versions (SMOD15 vs SMOD20, 

and SMOD2-0 to SMOD2-100). However, an ANOVA did reveal a significant difference 
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(p=0.001) between EMOD and EMOD2, as well as EMOD and EMOD2 and all SMOD and 

SMOD2 values of GPP, ER and K600. 

 

2.4.3 Analysis of Markov Chain Monte Carlo (MCMC), Pearson Correlation 

Values and Barplots 

 MCMC is a statistical modelling technique that creates a series of chains of potential 

predictions, and the model tests itself by seeing how often the model successfully predicts values 

based on actual data collected. The level of convergence helps assess whether these chains end 

up predicting the same values. Convergence is represented by rhat and is considered successful 

when (rhat = <1.1). When analysing streamMetabolizer modifications of AUG, AUG.1000, 

ER.GPP, NO.MOD and PAR.1000, there was a mix of converging (rhat = <1.1) and non-

converging results between models, and between sites (Tables 2.2 – 2.6). Sites CB04, CB05, 

CB15, CB16, CB26, CB27, CB29 and ER04 all produced at least 1 model that had an acceptable 

value of rhat. Furthermore, most sites had significant correlations between K600 and ER, with 

certain sites having high correlations and some sites having low correlations, and some with 

insignificant correlations. Sites that had at least 1 model that produced insignificant correlation 

(p<0.05) were CB06, CB05, CB15, CB20, CB21, CB22, CB26 and ER04. The models that 

produced correlations of r-values <0.6, and acceptable MCMC values (rhat = <1.1), were 

greatest for ER.GPP and AUG. Successful ER.GPP sites included CB04, CB05, CB15 and CB29 

and ER04, and sites that were successful for AUG included CB05, CB16, CB20, CB26 and 

ER04 (Tables 2.1 - 2.5). In terms of analyzing values of ER.GPP, models were forced not to 

produce any values less than 0 g O2 m−2 d−1 for GPP and there were no sites with ER > 0 g O2 

m−2 d−1, however, averages did not differ visibly from between the models (Figure 2.13).  All 

other versions produced values of GPP less than 0 g O2 m−2 d−1, and ER values greater than 0 g 
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O2 m−2 d−1. Although PAR.1000 and NO.MOD had lower correlation values, they had a higher 

percent of days with ER that were biologically impossible. ER.GPP was better in every other 

measure of model success as it produced the most reliable results in terms of lowest process 

error, observation error and highest biologically possible days (Table 2.6). Therefore, I 

concluded that ER.GPP was most successful, and would be used moving forward into Chapter 3 

for environmental analysis. 

 

2.5 Discussion 

Stream metabolism is frequently used to evaluate carbon flow in temperate stream 

ecosystems (Ferreira et al., 2020). In Arctic streams, metabolism has seldom been assessed 

because these ecosystems are understudied due to their remoteness, and sensors for measuring 

dissolved oxygen have only recently become available. To address this deficiency, I evaluated 

whether the standard model for estimating stream metabolism, namely streamMetabolizer 

(Appling et al., 2018b), could be improved for application in the Arctic by raising the lower limit 

of PAR thresholds, thereby extending the daily period and the number of days over which ER 

could be estimated reliably. In addition, I evaluated empirical models that used multiple ER 

calculation methods (ER interpolation or ER regression based on PAR levels) combined with 

reaeration coefficients to calculate K600, which were then used in a mass balance equation 

model which also was designed to eliminate complications due to a lack of darkness. Empirical 

models did not provide consistently reasonable values. In contrast, application of the ER.GPP 

model, where streamMetabolizer was altered to produce biologically possible days (GPP≥0 and 

ER≤0), produced values of GPP and ER values that were deemed reasonable (i.e., within the 
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expected range for Arctic streams), and most sites had adequate model diagnostics (process or 

observation error ≤1.1). 

 

2.5.1 Effect of Changing PAR Thresholds on ER and GPP Estimates 

Increasing the lower limit of PAR thresholds produced longer periods of darkness but did not 

improve ER estimates for the different model versions (i.e., SMOD, SMOD2, PAR.1000, 

AUG.1000, AUG), and continued to produce biologically impossible days. In contrast, model 

versions ER.GPP, and AUG produced biologically possible results for each day as these 

modifications to streamMetabolizer require ER to be less than or equal to 0, and GPP to be 

greater than or equal to 0. While there is the risk that changing these parameters within 

streamMetabolizer could produce inaccurate estimates, ER and K600 were not correlated 

meaning that the model was able to discriminate between changes in oxygen due to respiration or 

reaeration (Appling et al., 2018b). Furthermore, model diagnostics indicated that the ER.GPP 

version produced acceptable values of rhat (i.e., accurate predictions of GPP, ER, and K600), 

and improved predictions of daily values of GPP, ER and K600. In summary, the increased 

amounts of biologically possible days, the low correlation values, and the adequate rhat values 

showed that ER.GPP was the best model for estimating ER and GPP in these Arctic streams.  

Modification of PAR thresholds used in the streamMetabolizer model has not been tested 

previously, thus an important finding was that increasing the lower PAR thresholds for ER 

estimation did not affect the performance of streamMetabolizer. GPP in these Arctic streams 

appears to be insensitive to changes in PAR between 0 to 1000 μmol m−2 indicating that it is 

unlikely PAR values below 1000 μmol m−2 (1.7 μmol m−2 s-1) do not provide enough energy for 

substantial photosynthesis to occur. It is often the case that even within the PAR spectrum, 
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different levels of light have different efficiencies for varying species of photosynthesizes (Hill., 

1995). While light is a main contributing factor to stream metabolism (Trimmer et al. 2012), 

primary producers also may be limited by other factors including nutrients and temperature such 

that PAR levels may need to exceed 1000 μmol m−2 to increase primary production in Arctic 

streams (Singh & Singh, 2015). In this study, changes to streamMetabolizer also indicated that 

the addition of model parameters (the requirement that ER is ≤ 0, and GPP is ≥ 0) can increase 

the number of usable days for GPP and ER estimates without compromising model performance. 

Based on the use of continuous measurements values of DO, PAR, temperature, and depth alone, 

streamMetabolizer was able to distinguish between ER and K600, showing that 

streamMetabolizer is a low sample effort option for use in remote streams where data needed for 

calculating K600 cannot be collected from repeated field sampling visits throughout the study 

period. Finally, the ER.GPP model performed better than unmodified models in terms of model 

diagnostics and produced biologically feasible estimates. 

 

2.5.2 Complicating Factors of Empirical Models (EMOD, EMOD2) 

The lack of success for EMOD and EMOD2 may be related to a need for repeated 

measurements of stream geometry and hydrology data that could improve estimates of K600. 

Because of the remote location of the study sites, discharge could only be measured twice during 

the summer. Given that discharge decreased throughout the summer, reaeration estimates were 

likely affected by decreases in critical parameters of stream hydraulics (e.g., stream width, depth, 

velocity) which would affect the results of the coefficient calculation (Raymond et al., 2012). 

Lastly, there may have been issues with the methods of ER calculations. The empirical models 

are likely affected by equifinality (Appling et al., 2018b), that is the phenomena of having 
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consistent NEP values but higher variability in GPP, ER and K600 values. Moreover, when the 

diel oxygen change is limited as it is in these Arctic streams, high or low values of GPP, ER and 

K600 can create the same NEP value (Appling et al., 2018b).  The empirical models had more 

unreasonable results because there was no way to assess and reduce equifinality. It is likely that 

streamMetabolizer was more successful due to the Bayesian statistics that reduce this 

phenomenon (Appling et al., 2018b). 

 

2.5.3 Limitations of Metabolism Methods and Future Improvements 

Several sampling limitations may have affected the metabolism calculations. First, improved 

estimates from streamMetabolizer can be obtained by measuring velocity consistently throughout 

the summer (Appling et al., 2018b), however, this was logistically impractical. Secondly, the 

study was undertaken in an area with no available information on GPP, ER and K600 that could 

be used as a reference values (i.e., priors) for Bayesian calculations in streamMetabolizer. Future 

studies in this geographic region will benefit from data collected in my study, as well as more 

recent stream metabolism research in the Arctic (Myrstener et al., 2021: Rocher-Ros et al., 

2019). Moreover, there were no reaeration values that could be used for K600 pooling method in 

streamMetabolizer. In addition, the results show that most sites had low GPP and ER values, 

which made interpreting results particularly difficult, and risked equifinality even when using 

streamMetabolizer (Appling et al., 2018b). In conclusion, the proposed changes to PAR 

thresholds did not produce changes to daily values of GPP, ER and K600 and, still produced 

biologically impossible days. Furthermore, empirical models would have required greater 

sampling effort and models that relied on stream hydraulics were not successful, likely due to 

inadequate sampling (which is not reasonable for remote Arctic streams) or equifinality. The 
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most successful approach was adding extra parameters to streamMetabolizer that created only 

biologically possible values of GPP, ER and K600. Model’s that require minimal sampling will 

make tracking changes in carbon and nutrient cycling in streams more feasible, which is 

especially useful as we expect many changes to these ecosystems in the onset of climate change.
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2.7 CHAPTER 2 FIGURES 

 

Figure 2.1: Map of the Greiner Lake Watershed and Sample Sites. The Greiner Lake Watershed is 

located on Victoria Island, Nunavut, Canada latitude 69°N and a longitude of 105°W.    

Victoria Island, Nunavut
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Figure 2.2: Diagram of the Determination of Each Empirical Calculation Used. K (reaeration values) 

remained the same for all 3 methods of ER calculation. Boxes shown in blue explain the choice of ER 

estimation methods based on the levels of PAR experienced throughout the night, and then through the 

success of the interpolation method. k and ER are then applied to the mass balance equation shown where 

in conjunction with O2 measurements can calculate GPP.
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Figure 2.3: Summary of Data Adjustments for Testing Model Performance. This diagram depicts the 

different categories of models and the different parameters used to estimate stream productivity. I. S-

MOD represents the first set of data, where only days with 12, 3-h intervals of PAR=0 were used. Data 

adjustment 1.1 represents PAR=0 when PAR≤ 15, 1.2 represents PAR=0 when PAR≤ 2. 1. II. S-MOD2 

represents the second data set, where days with at least one value of PAR=0 were used. II.I represents 

unaltered data, II.II represents PAR=0 if PAR≤ 15, II.III represents PAR=0 if PAR≤ 20, II.IV represents 

PAR=0 if PAR≤ 50, II.V represents PAR=0 if PAR=100. III.I E-UNMOD represents the entire data set 

used, with the calculations of reaeration taken from the beginning and end of the study period III.II 

EMOD Uses the second half of the data set after depth starts to decline, and measure reaeration based on 

values determined at the end of the study period  
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Figure 2.4: Kernel Density Estimates Representative of Narrow Streams (CB29). KDE showing 

relative, non-parametric probabilities of a random sample of GPP and ER values based on previously 

gathered data of GPP and ER values observed throughout summer of 2019 in the Greiner Lake 

Watershed. Darkest blue values represent areas with greatest volumes beneath, i.e., 2 dimensional (x = 

ER and y = GPP being the dimensions) ranges of values where a random sample would be most likely to 

fall. Points represent actual values of GPP and ER observed throughout the study period, with the various 

shapes representing different version, whereas the colour gradient shows the probability of where a new a 

new observation may fall. Variations in PAR and dates used vary by model where A. SMOD15 and 

SMOD20 uses dates with at least 12 timesteps of darkness (PAR=0) throughout the night, and all values 

<15 and <20 μmols-1 are changed to 0 respectively. B. used SMOD2-0, SMOD2-15, SMOD2-20, 

SMOD2-50 and SMOD2-100 which also uses streamMetabolizer but increases the number of days used 

by including dates with at least 1 period of darkness, i.e., 1 time step of PAR=0, and values >15, >20, 
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>50, >100 μmols-1 are all set to 0. C. EMOD uses empirical methods, combing mass balance equations, 

ER regression and ER interpolation paired with coefficients proposed by Raymond et al., 2012 to 

calculate reaeration values based on discharge, velocity, width, depth and slope of stream channels. 

EMOD uses total average values of the reaeration values calculated at the beginning and end of the study 

EMOD (46.67 K600) and end of the study EMOD-2 (59.64 K600).
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Figure 2.5: Boxplots Demonstrating Reaerations Values of a Narrow Stream (CB29).Boxplot 

where the top line represents the largest values within 1.5x interquartile range (IQR) above the 75th 

percentile, the box represents the 75th – 25th percentile range with the median in the middle, and the 

bottom line represents the smallest value within 1.5x below the 25TH percentile. SMOD15 and SMOD20 

(A.) used dates with at least 12 timesteps of darkness (Photosynthetically active radiation (PAR)) = 0 

throughout the night, and all values <15 and <20 μmols-1 are changed to 0 respectively. SMOD2-0, 

SMOD2-15, SMOD2-20, SMOD2-50 and SMOD2-100 (B.) also used streamMetabolizer but increased 

the number of days used by including dates with at least 1 period of darkness, i.e., 1 time step of PAR=0, 

and values >15, >20, >50, >100 μmols-1 are all set to 0. 
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Figure 2.6: Kernel Density Estimates Representative of Wide Streams (CB20). KDE showing the 

relative, non-parametric probabilities of a random sample of GPP and ER values based on previously 

gathered data of GPP and ER values observed throughout summer of 2019 in the Greiner Lake 

Watershed. Darkest blue values represent areas with greatest volumes beneath, i.e., 2 dimensional ( x = 

ER and y= GPP being the dimensions) ranges of values where a random sample would be most likely to 

fall. Points represent actual values of GPP and ER observed throughout the study period, with the various 

shapes representing different version, whereas the colour gradient shows the probability of where a new a 

new observation may fall. A. SMOD15 and SMOD20 uses dates with at least 12 timesteps of darkness 

(PAR=0) throughout the night, and all values <15 and <20 μmols-1 are changed to 0 respectively. B. uses 

SMOD2-0, SMOD2-15, SMOD2-20, SMOD2-50 and SMOD2-100 which also uses streamMetabolizer 

but increases the number of days used by including dates with at least 1 period of darkness, i.e., 1 time 

step of PAR=0, and values >15, >20, >50, >100 μmols-1 are all set to 0. C. EMOD uses empirical 

methods, combing mass balance equations, ER regression and ER interpolation parried with coefficients 
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proposed by Raymond et al., 2012 to calculate reaeration values based on discharge, velocity, width, 

depth and slope of stream channels. EMOD uses total average values of the reaeration values calculated at 

the beginning and end of the study EMOD (7.3 K600) and end of the study EMOD-2 (23.3 K600).
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Figure 2.7: Boxplots Demonstrating Reaerations Values of a Wide Stream (CB20). Boxplot 

where the top line represents the largest values within 1.5x interquartile range (IQR) above the 75th 

percentile, the box represents the 75th – 25th percentile range with the median in the middle, and the 

bottom line represents the smallest value within 1.5x below the 25TH percentile. SMOD15 and SMOD20 

(A.) used dates with at least 12 timesteps of darkness (Photosynthetically active radiation (PAR)) = 0 

throughout the night, and all values <15 and <20 μmols-1 are changed to 0 respectively. SMOD2-0, 

SMOD2-15, SMOD2-20, SMOD2-50 and SMOD2-100 (B.) also used streamMetabolizer but increased 

the number of days used by including dates with at least 1 period of darkness, i.e., 1 time step of PAR=0, 

and values >15, >20, >50, >100 μmols-1 are all set to 0. 
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Figure 2.8: Kernel Density Estimates Representative of a Very Wide Stream (CB27). KDE 

showing therelative, non-parametric probabilities of a random sample of GPP and ER values based on 

previously gathered data of GPP and ER values observed throughout summer of 2019 in the Greiner Lake 

Watershed. Darkest blue values represent areas with greatest volumes beneath, i.e., 2 dimensional ( x = 

ER and y= GPP being the dimensions) ranges of values where a random sample would be most likely to 

fall. Points represent actual values of GPP and ER observed throughout the study period, with the various 

shapes representing different version, whereas the colour gradient shows the probability of where a new a 

new observation may fall. SMOD15 and SMOD20 (A.) used dates with at least 12 timesteps of darkness 

(PAR=0) throughout the night, and all values <15 and <20 μmols-1 are changed to 0 respectively. 

SMOD2-0, SMOD2-15, SMOD2-20, SMOD2-50 and SMOD2-100 (B.) also used streamMetabolizer but 

increases the number of days used by including dates with at least 1 period of darkness, i.e., 1 time step of 

PAR=0, and values >15, >20, >50, >100 μmols-1 are all set to 0. C. EMOD uses empirical methods, 

combing mass balance equations, ER regression and ER interpolation parried with coefficients proposed 

by Raymond et al., 2012 to calculate reaeration values based on discharge, velocity, width, depth and 

slope of stream channels. EMOD uses total average values of the reaeration values calculated at the 

beginning and end of the study EMOD (17 K600) and end of the study EMOD-2 (5.5 K600). 
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Figure 2.9: Boxplots Demonstrating Reaerations Values of a Very Wide Stream (CB27). Boxplot with 

the top line represents the largest values within 1.5x interquartile range (IQR) above the 75th percentile, 

the box represents the 75th – 25th percentile range with the median in the middle, and the bottom line 

represents the smallest value within 1.5x below the 25TH percentile.  SMOD15 and SMOD20 used dates 

with at least 12 timesteps of darkness (Photosynthetically active radiation (PAR)) = 0 throughout the 

night, and all values <15 and <20 μmols-1  are changed to 0 respectively. SMOD2-0, SMOD2-15, 

SMOD2-20, SMOD2-50 and SMOD2-100 also used streamMetabolizer but increased the number of days 

used by including dates with at least 1 period of darkness, i.e., 1 time step of PAR=0, and values >15, 

>20, >50, >100 μmols-1 are all set to 0. 
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Figure 2.10: Boxplots Representing Combined GPP Data. Boxplots represent all 16 sites across 

the study period in order to demonstrate the changes to values when using different versions of the model. 

The line to the left represents the largest values within 1.5x interquartile range (IQR) above the 75th 

percentile, the box represents the 75th – 25th percentile range with the median in the middle, the line to the 

right represents the smallest value within 1.5x below the 25TH percentile and the dots are values that or 

greater than or less than the 1.5x IQR value. SMOD15 and SMOD20 used dates with at least 12 timesteps 

of darkness (Photosynthetically active radiation (PAR)) = 0 throughout the night, and all values <15 and 

<20 μmols-1 are changed to 0 respectively. SMOD2-0, SMOD2-15, SMOD2-20, SMOD2-50 and 

SMOD2-100 also used streamMetabolizer but increased the number of days used by including dates with 

at least 1 period of darkness, i.e., 1 time step of PAR=0, and values >15, >20, >50, >100 μmols-1 are all 

set to 0. EMOD used empirical methods, combing mass balance equations, ER regression and ER 

interpolation paired with coefficients proposed by Raymond et al., 2012 to calculate reaeration values 

based on discharge, velocity, width, depth and slope of stream channels. EMOD uses total average values 

of the reaeration values calculated at the beginning and end of the study EMOD and end of the study 

EMOD-2. The figure was divided into 2 parts in order to accentuate differences between 

streamMetabolizer models, as EMOD models had higher values making distinctions difficult to observe 

when the full scale was observed. A. shows the total scale of values observed throughout the study, and 

B. shows a range with increased focus on the range of the different version of the streamMetabolizer model.
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Figure 2.11: Boxplots Representing Combined ER Data. Boxplots representing combined ER 

across all 16 sites across the study period in order to demonstrate the changes to values when using 

different versions of the model. The line to the left represents the largest values within 1.5x interquartile 

range (IQR) above the 75th percentile, the box represents the 75th – 25th percentile range with the median 

in the middle, the line to the right represents the smallest value within 1.5x below the 25TH percentile and 

the dots are values that or greater than or less than the 1.5x IQR value. SMOD15 and SMOD20 used dates 

with at least 12 timesteps of darkness (Photosynthetically active radiation (PAR)) = 0 throughout the 

night, and all values <15 and <20 μmols-1 are changed to 0 respectively. SMOD2-0, SMOD2-15, 

SMOD2-20, SMOD2-50 and SMOD2-100 μmols-1 also used streamMetabolizer but increased the 

number of days used by including dates with at least 1 period of darkness, i.e., 1 time step of PAR=0, and 

values >15, >20, >50, >100 μmols-1 are all set to 0. EMOD used empirical methods, combing mass 

balance equations, ER regression and ER interpolation paired with coefficients proposed by Raymond et 

al., 2012 to calculate reaeration values based on discharge, velocity, width, depth and slope of stream 

channels. EMOD uses total average values of the reaeration values calculated at the beginning and end of 

the study EMOD and end of the study EMOD-2. The figure was divided into 2 parts in order to 

accentuate differences between streamMetabolizer models, as EMOD models had higher values making 

distinctions difficult to observe when the full scale was observed. A. shows the total scale of values 

observed throughout the study, and B. shows a range with increased focus on the range of the different 

version of the streamMetabolizer model. 
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Figure 2.12: Boxplots Representing Combined K600 Data. Boxplots representing combined GPP 

across all 16 sites across the study period in order to demonstrate the changes to values when using 

different versions of the model. The line to the left represents the largest values within 1.5x interquartile 

range (IQR) above the 75th percentile, the box represents the 75th – 25th percentile range with the median 

in the middle, the line to the right represents the smallest value within 1.5x below the 25TH percentile and 

the dots are values that or greater than or less than the 1.5x IQR value. SMOD15 and SMOD20 used dates 

with at least 12 timesteps of darkness (Photosynthetically active radiation (PAR)) = 0 μmols-1 throughout 

the night, and all values <15 and <20 μmols-1 are changed to 0 respectively. SMOD2-0, SMOD2-15, 

SMOD2-20, SMOD2-50 and SMOD2-100 also used streamMetabolizer but increased the number of days 

used by including dates with at least 1 period of darkness, i.e., 1 time step of PAR=0, and values >15, 

>20, >50, >100 μmols-1 are all set to 0. EMOD used empirical methods, combing mass balance equations, 

ER regression and ER interpolation paired with coefficients proposed by Raymond et al., 2012 to 

calculate reaeration values based on discharge, velocity, width, depth and slope of stream channels. 

EMOD uses total average values of the reaeration values calculated at the beginning and end of the study 

EMOD and end of the study EMOD-2. The figure was divided into 2 parts to accentuate differences 

between streamMetabolizer models, as EMOD models had higher values making distinctions difficult to 

observe when the full scale was observed. A. shows the total scale of values observed throughout the 

study, and B. shows a range with increased focus on the range of the different version of the 

streamMetabolizer model. 
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Figure 2.13: Boxplots Representing the Second Part of Changes Made to the streamMetabolizer 

Input Variations Including AUG, AUG.1000, ER.GPP, NO.MOD and PAR.1000a and the range of GPP, 

ER and K600 values. The top line represents the largest values within 1.5x interquartile range (IQR) 

above the 75th percentile, the box represents the 75th – 25th percentile range with the median in the middle, 

the bottom line represents the smallest value within 1.5x below the 25TH percentile and the dots are values 

that or greater than or less than the 1.5x IQR value.  The first data set used was unchanged in any way 

(UNMOD). Next, the entire data set was used, and any PAR<1000 μmols-1 was set to 0 μmols-1 (PAR 

1000). Moreover, only data from August was used, and PAR levels remained unaltered (AUG). Next, 

only data from August was used, and all values less than 1000 μmols-1 were set to 0 μmols-1. Lastly, the 

final modification included the entire data set, unchanged, however, an altered version of 

streamMetabolizer was employed where it was set so that ER could not be greater than 0 gm-2d-1, and 

GPP could not be less than 0 gm-2d-1 (ER.GPP).
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2.8 CHAPTER 2 TABLES 

Table 2.1: Model Diagnostics of AUG. Model diagnostics were used to determine the 

effectiveness of the Bayesian models to measure AUG stream metabolism values via the 

streamMetabolizer package in R, across all 16 sites, including all observations made in the month of 

August. Model diagnostics included observing MCMC values when process error and observation error. 

Observation errors are caused by errors in the actual measurement of daily [O2] values, whereas process 

errors represent mistakes in the modelling process. Values greater than > 1.1 show a lack of convergence 

between actual observations of stream metabolism and modelled values/estimates. Pearson correlation 

assessed the relationship of ER and K600 to ensure streamMetabolizer could distinguish the difference 

between ER and K600 when modelling GPP, ER and K600 values. High levels of correlation could show a 

lack of ability to distinguish between the two values. 

 

Site Width Depth 

Ratio 
Start End Observation 

Error 
Process 

Error 
Correlation 

CB04 Very Wide 19/06/07 19/13/08 1.82 1.02 r(11)=0.82, p =0.001 

CB06 Very Wide 19/06/07 19/13/08 2.46 1.17 r(11)=0.72, p =0.006 

CB05 Very Wide 19/06/07 19/13/08 1.03 1.02 r(11)=0.5, p =0.079 

CB14 Wide 19/06/07 19/15/08 1.28 1.01 r(13)=-0.96, p =0.001 

CB15 Wide 19/06/07 19/17/08 2.87 1.64 r(41)=-0.28, p =0.074 

CB16 Wide 19/06/07 19/15/08 1.00 1.04 r(13)=-0.67, p =0.006 

CB20 Wide 19/08/07 19/14/08 1.00 1.01 r(12)=0.06, p =0.839 

CB21 Narrow 19/07/07 19/14/08 1.74 1.19 r(12)=-0.01, p =0.977 

CB22 Narrow 19/07/07 19/14/08 1.91 1.08 r(12)=0.36, p =0.211 

CB24 Narrow 19/07/07 19/17/08 1.90 1.12 r(15)=-0.53, p =0.028 

CB26 Narrow 19/07/07 19/17/08 1.02 1.01 r(15)=0.34, p =0.184 

CB27 Wide 19/07/07 19/16/08 3.61 1.13 r(14)=-0.09, p =0.743 

CB29 Narrow 19/07/08 19/16/08 1.60 1.24 r(11)=-0.74, p =0.004 

ER03 Narrow 19/06/07 19/13/08 1.28 1.14 r(11)=-0.74, p =0.004 

ER04 Narrow 19/06/07 19/13/08 1.00 1.00 r(11)=-0.37, p=0.213 
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Table 2.2: Model Diagnostics of AUG.1000. Model diagnostics were used to determine the 

effectiveness of the Bayesian models to measure stream metabolism using the AUG.1000 version via the 

streamMetabolizer package in R, across all 16 sites, including all observations made in the month of 

August. However, all PAR (photosynthetically active radiation values) that were < 1000 were set to 0.  

Model diagnostics included observing MCMC values when process error and observation error. 

Observation errors are caused by errors in the actual measurement of daily [O2] values, whereas process 

errors represent mistakes in the modelling process. Values greater than > 1.1 show a lack of convergence 

between actual observations of stream metabolism and modelled values/estimates. Pearson correlation 

assessed the relationship of ER and K600 in order to ensure streamMetabolizer could distinguish the 

difference between ER and K600 when modelling GPP, ER and K600 values. High levels of correlation 

could show a lack of ability to distinguish between the two values. 

 

Site Width Depth 

Ratio 
Start End Observation 

Error 

Process 

Error 

Correlation 

CB04 Very Wide 19/06/07 19/13/08 1.56 1.01 r(11)=0.83, p =0.000 

CB06 Very Wide 19/06/07 19/13/08 1.51 1.14 r(11)=0.74, p =0.004 

CB05 Very Wide 19/06/07 19/13/08 1.73 1.12 r(11)=0.5, p =0.079 

CB14 Wide 19/06/07 19/15/08 1.66 1.00 r(13)=-0.96, p =0 

CB15 Wide 19/06/07 19/17/08 1.87 1.24 r(41)=0.17, p =0.287 

CB16 Wide 19/06/07 19/15/08 1.00 1.00 r(13)=-0.66, p =0.008 

CB20 Wide 19/08/07 19/14/08 1.03 1.04 r(12)=0.09, p =0.751 

CB21 Narrow 19/07/07 19/14/08 2.82 1.36 r(12)=-0.02, p =0.956 

CB22 Narrow 19/07/07 19/14/08 1.30 1.05 r(12)=0.36, p =0.211 

CB24 Narrow 19/07/07 19/17/08 1.52 1.09 r(15)=-0.53, p =0.028 

CB26 Narrow 19/07/07 19/17/08 1.01 1.00 r(15)=0.35, p =0.165 

CB27 Wide 19/07/07 19/16/08 2.31 1.02 r(14)=-0.06, p =0.826 

CB29 Narrow 19/07/08 19/16/08 1.64 1.23 r(11)=-0.58, p =0.039 

ER03 Narrow 19/06/07 19/13/08 1.32 1.16 r(11)=-0.58, p =0.039 

ER04 Narrow 19/06/07 19/13/08 1.01 1.01 r(11)=-0.37, p=0.214 
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Table 2.3: Model Diagnostics of ER.GPP. Model diagnostics were used to determine the 

effectiveness of the Bayesian models of ER.GPP to measure stream metabolism via the 

streamMetabolizer package in R, across all 16 sites, including all observations made in the month of 

August. However, an extra requirement was added to the original model used for determining stream 

metabolism using streamMetabolizer. The model was required to only produce “biologically possible” 

values, meaning GPP > 0, and ER < 0. Model diagnostics included observing MCMC values when 

process error and observation error. Observation errors are caused by errors in the actual measurement of 

daily [O2] values, whereas process errors represent mistakes in the modelling process. Values greater than 

> 1.1 show a lack of convergence between actual observations of stream metabolism and modelled 

values/estimates. Pearson correlation assessed the relationship of ER and K600 to ensure 

streamMetabolizer could distinguish the difference between ER and K600 when modelling GPP, ER and 

K600 values. High levels of correlation could show a lac of ability to distinguish between the two values. 

 

Site Width Depth 

Ratio 

Start End Observation 

Error 

Process 

Error 

Correlation 

CB04 Very Wide 19/06/07 19/13/08 1.03 1.00 r(37)=-0.30, p =0.064 

CB06 Very Wide 19/06/07 19/13/08 3.17 1.08 r(37)=0.25, p =0.120 

CB05 Very Wide 19/06/07 19/13/08 1.07 1.04 r(37)=0.19, p =0.254 

CB14 Wide 19/06/07 19/15/08 2.73 1.01 r(38)=-0.77, p =0 

CB15 Wide 19/06/07 19/17/08 1.01 1.00 r(15)=0.14, p =0.584 

CB16 Wide 19/06/07 19/15/08 1.00 1.02 r(39)=-0.53, p =0 

CB20 Wide 19/08/07 19/14/08 1.05 1.35 r(36)=-0.55, p =0 

CB21 Narrow 19/07/07 19/14/08 2.25 1.10 r(37)=-0.68, p =0 

CB22 Narrow 19/07/07 19/14/08 1.81 1.03 r(37)=0.04, p =0.828 

CB24 Narrow 19/07/07 19/17/08 2.01 1.04 r(40)=-0.87, p =0 

CB26 Narrow 19/07/07 19/17/08 1.00 1.01 r(40)=-0.69, p =0 

CB27 Wide 19/07/07 19/16/08 1.03 1.02 r(38)=-0.63, p =0 

CB29 Narrow 19/07/08 19/16/08 1.03 1.00 r(37)=-0.47, p =0.002 

ER03 Narrow 19/06/07 19/13/08 2.32 1.42 r(37)=-0.47, p =0.002 

ER04 Narrow 19/06/07 19/13/08 1.01 1.00 r(37)=-0.37, p=0.022 
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Table 2.4: Model Diagnostics of NO.MOD. Model diagnostics were used to determine the 

effectiveness of the Bayesian models of NO.MOD to measure stream metabolism via the 

streamMetabolizer package in R, across all 16 sites, including all observations made throughout the study. 

diagnostics included observing MCMC values when process error and observation error. Observation 

errors are caused by errors in the actual measurement of daily [O2] values, whereas process errors 

represent mistakes in the modelling process. Values greater than > 1.1 show a lack of convergence 

between actual observations of stream metabolism and modelled values/estimates. Pearson correlation 

assessed the relationship of ER and K600 to ensure streamMetabolizer could distinguish the difference 

between ER and K600 when modelling GPP, ER and K600 values. High levels of correlation could show a 

lac of ability to distinguish between the two values. 

 

Site Width Depth 

Ratio 

Start End Observation 

Error 

Process 

Error 

Correlation 

CB04 Very Wide 19/06/07 19/13/08 1.01 1.01 r(37)=0.61, p =0 

CB06 Very Wide 19/06/07 19/13/08 3.17 1.08 r(37)=0.47, p =0.002 

CB05 Very Wide 19/06/07 19/13/08 1.02 1.01 r(37)=0.39, p =0.014 

CB14 Wide 19/06/07 19/15/08 2.05 1.01 r(38)=-0.8, p =0 

CB15 Wide 19/06/07 19/17/08 1.02 1.01 r(15)=0.18, p =0.494 

CB16 Wide 19/06/07 19/15/08 1.01 1.09 r(39)=-0.53, p =0 

CB20 Wide 19/08/07 19/14/08 1.02 1.32 r(36)=-0.47, p =0.003 

CB21 Narrow 19/07/07 19/14/08 2.29 1.24 r(37)=0.22, p =0.172 

CB22 Narrow 19/07/07 19/14/08 2.48 1.04 r(37)=0.19, p =0.237 

CB24 Narrow 19/07/07 19/17/08 1.75 1.00 r(40)=-0.87, p =0 

CB26 Narrow 19/07/07 19/17/08 1.00 1.01 r(40)=-0.6, p =0 

CB27 Wide 19/07/07 19/16/08 1.03 1.02 r(38)=-0.28, p =0.077 

CB29 Narrow 19/07/08 19/16/08 1.20 1.09 r(37)=-0.35, p =0.03 

ER03 Narrow 19/06/07 19/13/08 1.87 1.35 r(37)=-0.35, p =0.03 

ER04 Narrow 19/06/07 19/13/08 1.01 1.01 r(37)=-0.46, p=0.005 
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Table 2.5: Model Diagnostics of PAR.1000. Model diagnostics were used to determine the 

effectiveness of the Bayesian models to measure stream metabolism using the PAR.1000 version via the 

streamMetabolizer package in R, across all 16 sites, including all observations made throughout the study. 

However, all PAR (photosynthetically active radiation values) that were < 1000 were set to 0.  Model 

diagnostics included observing MCMC values when process error and observation error. Observation 

errors are caused by errors in the actual measurement of daily [O2] values, whereas process errors 

represent mistakes in the modelling process. Values greater than > 1.1 show a lack of convergence 

between actual observations of stream metabolism and modelled values/estimates. Pearson correlation 

assessed the relationship of ER and K600 to ensure streamMetabolizer could distinguish the difference 

between ER and K600 when modelling GPP, ER and K600 values. High levels of correlation could show a 

lack of ability to distinguish between the two values. 

 

Site Width 

Depth Ratio 

Start End Observation 

Error 

Process 

Error 

Correlation 

CB04 Very Wide 19/06/07 19/13/08 1.04 1.00 r(37)=0.61, p =0 

CB06 Very Wide 19/06/07 19/13/08 1.51 1.14 r(37)=0.49, p =0.002 

CB05 Very Wide 19/06/07 19/13/08 1.03 1.01 r(37)=0.4, p =0.012 

CB14 Wide 19/06/07 19/15/08 1.88 1.00 r(38)=-0.82, p =0 

CB15 Wide 19/06/07 19/17/08 1.04 1.01 r(41)=0.16, p =0.317 

CB16 Wide 19/06/07 19/15/08 1.00 1.04 r(39)=-0.52, p =0 

CB20 Wide 19/08/07 19/14/08 1.05 1.24 r(36)=-0.45, p =0.004 

CB21 Narrow 19/07/07 19/14/08 2.00 1.17 r(37)=0.22, p =0.178 

CB22 Narrow 19/07/07 19/14/08 2.15 1.02 r(37)=0.17, p =0.306 

CB24 Narrow 19/07/07 19/17/08 2.07 1.02 r(40)=-0.87, p =0 

CB26 Narrow 19/07/07 19/17/08 1.00 1.02 r(40)=-0.6, p =0 

CB27 Wide 19/07/07 19/16/08 1.04 1.02 r(38)=-0.27, p =0.091 

CB29 Narrow 19/07/08 19/16/08 1.28 1.12 -r(37)=0.33, p =0.038 

ER03 Narrow 19/06/07 19/13/08 2.13 1.45 r(37)=-0.33, p =0.038 

ER04 Narrow 19/06/07 19/13/08 1.01 1.01 r(37)=-0.44, p=0.005 
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Table 2.6: Percent Success of Each Model Based on Model Diagnostics. Results of model diagnostics 

including the successful values of observation and process errors determined by streamMetabolizer and 

the biologically possible values of GPP (≥ 0) and ER (≤ 0). 

 

Method % Success of 

Observation 

Error (≥1.1) 

% 

Success of 

Process 

Error 

(≥1.1) 

% Success 

Correlation 

Values (r<0.6) 

% 

Biologically 

Possible Days 

(GPP) (≥0) 

% 

Biologically 

Possible Days 

(ER) (≤0) 

ER.GPP 56 81 63 100 100 

AUG 31 44 56 42 50 

AUG.1000 30 56 63 87 100 

PAR.1000 50 63 80 95 49 

NO.MOD 50 80 69 94 49 
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CHAPTER 3: ASSESSMENT OF ENVIRONMENTAL DRIVERS 

OF STREAM METABOLISM IN THE GREINER LAKE 

WATERSHED, NU 

3.1 Introduction 

Streams play an essential role in carbon cycling by transporting organic carbon across the 

landscape to the ocean and releasing carbon dioxide to the atmosphere (Lundin et al., 2016; 

Stackpoole et al., 2017). In Arctic tundra streams, there is a clear link between stream 

metabolism and CO2 evasion, with stream metabolism being a key driver of the fate of inorganic 

and organic matter across the landscape (Rocher-Ros, 2019). Therefore, it is critical to 

understand associations between stream metabolism in Arctic streams and key environmental 

factors (e.g., hydrological regimes, land cover type, precipitation patterns). Although stream 

metabolism is an effective biomonitoring technique to study environmental changes (Bernot et 

al., 2010; Mulholland et al., 2001) , most of the research conducted on stream metabolism and its 

connections to the surrounding environment has focused on alpine and temperate environments 

(Staehr et al., 2012; Tank et al., 2010; Young, Matthaei & Townsend., 2008) where conditions, 

such as seasonality, are substantially different (Huryn, Benstead & Parker, 2014). Therefore, the 

goal of this study was to develop a baseline understanding of how Arctic tundra streams are 

affected by the current features of their environment. 

 Research on stream metabolism from well-studied eco-regions has uncovered a wide 

range of temporal patterns and environmental variables that can strongly influence GPP and ER. 

Land-use, vegetation, stream order, underlying geology, subcatchment size and climate (dos Reis 

Oliveira et al., 2019; Frey, Siegel & Smith, 2007; Mosher & Finlay, 2011; Pearce et al., 2020; 

Rodríguez-Castillo et al., 2019) can all play a role in affecting stream metabolism via nutrient 

cycling dynamics, hydrology, channel form (stream width and depth), substrate size and type, 

https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.14895#gcb14895-bib-0036
https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.14895#gcb14895-bib-0058
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light availability and temperature (Bott et al., 1985 ; Bowden et al., 1992; Fuss & Smock, 1996; 

Kurz et al., 2017; Mulholland et al., 2001). However, the primary environmental drivers of GPP 

and ER tend to differ in most eco-regions; GPP being most affected by light availability, nutrient 

availability, and a stable habitat for autotrophs to flourish (Hill, Ryon & Schilling, 1995; 

Mulholland et al., 2001), whereas ER is driven by organic matter availability and temperature 

(Bott et al. 1985; Hill et al. 2000). In contrast, stream metabolism in Arctic ecosystems is poorly 

understood, and little is known about how GPP and ER are affected by unique the environmental 

features of the Arctic. Key factors that separate the Arctic from more thoroughly researched 

biomes (e.g., temperate) include constant summer daylight (for early summer, PAR ≥ 0 at all 

times through a 24-hr period), low nutrient levels and differences in landscape and substrate 

composition (Prowse et al., 2006b). The unique environment and remoteness of many locations 

creates difficulty in measuring and calculating stream metabolism, as most methods require 

periods of complete darkness to estimate ER (Grace & Imberger et al., 2006). However, 

advances in how to measure metabolism offer an alternative to traditional methods. The 

streamMetabolizer package allows GPP to be scaled linearly with light and K600 to be 

determined without prior measurements, thereby requiring minimal work to be conducted in 

remote areas (Appling et al., 2018b). This method allows scientists to further research the key 

associations between environmental factors and GPP or ER in Arctic stream ecosystems that are 

required to monitor changes to Arctic ecosystems.  

To better understand the relationship among environmental variables and the metabolism 

of Arctic streams, the objectives of this study are to: 1) develop a baseline understanding of 

spatial and temporal variation in stream metabolism, and 2) investigate the environmental drivers 
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of stream metabolism in the Arctic streams of the Greiner Lake Watershed during the summer 

months, the time when Arctic streams are generally most productive.  

The Greiner Lake Watershed is an ideal location to investigate variation in stream 

metabolism and environmental drivers associated with these patterns as multiple sub-watersheds 

are available for study within a localized area. Furthermore, the Greiner Lake Watershed is a 

focal study area for the Canadian High Arctic Research Station (CHARS) where additional 

information about the watershed is available for an investigation of the importance of 

environmental drivers for stream metabolism.  

These objectives were investigated across 16 streams during the summer of 2019 by 

continuously measuring dissolved oxygen, photosynthetically active radiation (PAR) and water 

depth. Continuous data collection is necessary to estimate stream metabolism via 

streamMetabolizer (Appling et al., 2018b) and for calculation of daily average GPP and ER. I 

predicted that daily average GPP and ER would not vary significantly over time as the 

observation times were relatively short in comparison to other studies on Arctic streams that 

witnessed minimal changes (Myrstener et al., 2021). Furthermore, I do not expect many 

differences in ER and GPP across spatially across the watershed as the Greiner Lake Watershed 

has relatively uniform geomorphic features (NASA et al., 2015) and Arctic biomes in general 

have low biodiversity due to the harshness of the climate (Roxburgh & Noble, 2001). Lastly, I 

predicted that streams in the watershed would be limited by nutrient levels more than any other 

factor, as has been observed for many other Arctic freshwater streams (Myrstener et al., 2021). 
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3.2 Methods 

3.2.1 Environmental Variables 

Study reaches were approximately 50 – 100m and were selected in attempt to be 

representative of all stream types within the Greiner Lake Watershed. Nutrients were collected in 

grab samples during the deployment and retrieval at each site of water monitoring equipment. 

Water chemistry analysis was completed at the Burlington-National Lab for Environmental 

Testing (NLET), where water was tested for nutrients including DOC (mg L-1), DOIC (mg L-1), 

TN (mg L -1) and TDP (mg L-1). All methods followed those described in the 2020-21 NLET 

methods Descriptions Manual V1.0 (Environment and Climate Change Canada, 2018). DOC and 

DIC were measured using method 1021, which was fully automated and used a UV-persulfate 

TOC Analyzer (Shimadzu TOC-Vwp), which had an analytical range for organic carbon up to 15 

mg L-1 and concentrations of inorganic carbon up to 30 mg L-1. TN was determined using 

method 1151, using the Alkaline Persulfate Oxidation, Automated Flow Injection Analyzer 

(FIA), Hydrazine Reduction, Azo Dye Photometric Method, and reported TN concentrations up 

to 1.50 N mg L-1. TP and TDP were determined using method 1191, using the Unfiltered, Acidic 

Persulphate Oxidation, CFA, Ascorbic Acid, Molybdenum Blue, Colorimetric Method, which 

had an analytic range up to 0.5 P mg L-1 (Environment and Climate Change Canada, 2018).  

Temperature (°C) and light μmols-1 were measured continuously throughout the study. 

Temperature was determined as the average measured using deployed monitoring equipment 

(see 2.2.2 Data Collection). Channel form was determined using cross-section measurements of 

width and depth taken at each site. At each site, depending on the size of the site, 3-5 transects 

were taken. Wetted width (m) was measured across the stream, and depth (cm) measurements 

were taken every 2-3 metres, with a maximum of 10 measurements. However, depth 

measurements were taken more than every 2-3 m at sites with greater wetted widths. The average 
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wetted width and depth from all transects at the sites will be used. Substrate size was determined 

using the Wolman pebble count method, combined with the zig zag method. The pebble count 

method involved measuring the b’ axis of 100 randomly chosen pebbles from the substrate of the 

stream, moving in a zigzag pattern upstream (Bevenger, 1995; Wolman, 1954). Substrate particle 

size was represented by D50, which was determined by finding the median of all pebbles 

recorded using the Wolman pebble count. Gradient (slope) was measured at each site using a 

Nikon Forestry Pro., digital clinometer units (Table 3.1 – 3.3) 

Upstream water bodies were characterized relative to each site using geospatial techniques 

implement via ArcGIS (10.8.2, 2020) and included the total area of the subcatchment (Ha), the 

total amount of area in the subcatchment covered in any type of surface water (Ha), distance to 

the nearest up stream lake (km), area of the nearest upstream lake (Ha), depth class of the nearest 

upstream lake (rated 1 – 4), and the number of ponds upstream of the site (Table 3.1). Following 

the 4 land categories depicted in tundra ecosystem maps produced by Ponomarenko et al., 2019, 

the composition of the subcatchment was defined by the percent vegetative coverage (land 

including Productive Mesic - Subhygric Communities, Turfy Mountain Avens, Lythic Mountain 

Avens and Shrubs), wetland coverage (land including seasonal ponds, Hygric Sedge Fen, sedge 

Fen, Riparian Moss, Productive sedge fen and Subhygric communities) bare soil coverage 

(including sparsely vegetated areas, unvegetated areas and beaches) and/or surface water (water 

bodies between 1 to greater than 4 metres deep). The sub watershed was defined as all the 

land area above the site (i.e., all land area draining to that site is considered a subcatchment) 

(Table 3.4).  

3.2.2 Site and Temporal Differences 
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To determine the differences in stream metabolism across the watershed, a One-way 

ANOVA was used where the stream was the factor, and daily measurements of GPP, ER were 

the replicates within the stream. To account for daily differences, a block was added to the one-

way ANOVA. Furthermore, a Tukey test was then conducted to determine which sites differed 

significantly. To determine if there were any patterns in GPP and ER across time in the 

watershed, the study time was divided into 4 separate periods consisting of 8 days. The total 

daily average of GPP and ER for each of the 8-day periods was calculated and used for 

comparison. Each subsection included 8 days.  Week 1 represents July 9 -August 17th, week two 

represents July 18 – 26, week 3 represents July 27th – August 4th and week 3 represents August 

5th – August 13th. The average daily GPP, and the average ER, were taken for each week, and 

displayed graphically.  

3.2.3. Environmental Drivers of GPP and ER  

 To assess the environmental drivers of stream GPP and ER, a partial least square 

regression analysis (PLSR) was used in the statistical software XLSTAT which performs many 

of the standard tests used for interpreting a PLSR. PLSR is an effective technique to reduce 

multidimensionality where 1) there is likely a high amount of covariance between predictor 

variables and 2) the amount of predictor variables is high relative to the response variables 

(Abdi, 2010). In this study, a PLSR was chosen due to the ratio of predictor variables to response 

variables (Carrascal et al. 2009). The goal of a PLSR is similar to a PCA, however, a PLSR 

searches for components called latent vectors, that perform a simultaneous analysis of X and Y 

with the constraint that the components explain as much as possible of the covariance between X 

and Y (Abdi, 2010). 
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First, using leave-one-out for (LOO) cross validation and 4 fixed components, using a 

confidence of 90%. XLSTAT helps to assess the important environmental drivers by reporting 

model quality indices Q2 (cum), R2 Y(cum) and R2 X(cum) parameters, which help indicate the 

most stable models, as a function of the number of components. The most stable models have 

values close to 1 and Q2 (cum), R2 Y(cum) are within 20% of each other (Eriksson et al., 1995). 

Furthermore, XLSTAT shows the VIPs (Variable Importance for the Projection) for each 

explanatory variable. VIP variables explain which variables contribute the most to the models, 

with values greater than 1 being considered the most important. A model goodness of fit is then 

reported via R2 and SD values. Lastly, XLSTAT performs a test for potential outliers, which can 

be identified via dModx and DModY values over their critical values (DCritX and DCritY). 

These values represent how the predicted X and Y values deviate from the model (AddinSoft, 

2017). Then, using only sites with a significant VIP value, a Pearson correlation analysis was run 

in R using log transformed values of GPP and ER.  

Next, average daily GPP and ER (log transformed), were divided into 4 subsections to 

include the most recent measurements of stream characteristics for the respective GPP and ER 

values. The analyses included July GPP, July ER, August GPP and August ER. The dependent 

variables consist of two different data sets: measurements taken at the beginning and end of the 

study period (Water Quality and Channel Form), and measurements only taken once 

(Subwatershed Characteristics and Waterbodies). July uses observations of water quality and 

channel form taken at the beginning of the study period (between July 5th – 7th) and August uses 

the observations from the end of the study period (August 14th – 19th) with the date depending on 

the site (Figure 3.1). These data were combined with the single observations of subwatershed 
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characteristics and waterbodies to use in PSLR to assess environmental drivers of the dependent 

variables (GPP and ER). 

3.3 Results 

3.3.1 Differences between sites 

Average GPP and ER daily values observed during the study period showed little noticeable 

variation and remained relatively low (Figure 3.2). Total daily average GPP between all sites 

was 1.203 gO2m3 (SD=1.770) and had a range of 0.010 to 13.371 gO2m3. Most sites have a 

higher daily GPP value than their respective ER value, except for CB24 and CB14. A one-way 

ANOVA showed a significant difference in average GPP (F14,525=213.8, p<0.001). A TukeyHSD 

demonstrated that sites with the highest GPP values, CB20 and CB14, were significantly 

different from each-other and all other sites (p<0.05).  

The total average daily ER for all sites across the study period had a mean value of -0.580 

gO2m3 (SD=1.040), with a range of -8.230 to -0.090 gO2m3. Furthermore, daily average ER 

estimates throughout the study period were significantly different (F14,525)=55.99, p≤0.001. A 

Tukey HSD demonstrated that the significantly different sites were limited primarily to sites with 

lower daily averages of ER, including CB14 and CB20, which were significantly different from 

all other sites including each other (p<0.05). Sites generally had similar and low magnitude 

averages, generally falling below -2 gO2m3, many of which were not significantly different. 

CB24 was an exception, as it greater than -2 gO2m3, but still was significantly different (p<0.05) 

from some of the lower magnitude sites including CB04, CB06, CB15, CB29 and CB05. CB16 

was also an exception, as it was significantly different (p<0.05) than CB04, CB06 and CB15. 

 

3.3.2 Temporal Differences 
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Average GPP across the study period showed mixed results for site differences among weeks 

1, 2, 3 and 4, with most sites only reaching a value of ~2.5 gO2m3, and without a clear increase 

or decrease in values. CB20 was the only exception to this rule, as it reached values of ~13 

gO2m2 (Figure 3.3). A two-way ANOVA was performed to compare the main effects of week 

period and site, and their interaction, on daily average GPP. The site and time interaction for 

GPP was significant (F42,480=2.436, p≤0.001).  

 

ER rates generally decreased for almost all sites across weeks 1, 2, 3 and 4, with most sites 

reaching negligible daily averages (0 gO2m3) by week 4. For example, sites CB20 and site CB14 

which had the highest ER rates of all the sites in the study, decreased from a maximum average 

daily value of ~-7.5 gO2m3 to -3gO2m3 per day, and ~-6 gO2m3 to -2.5 gO2m3 respectively, 

however, most sites did not reach rates less than ~-2.5 gO2m3 at any point (Figure 3.3). A two-

way ANOVA was performed to compare the main effects of week and site, and their interaction, 

on daily average ER. The time period and site interaction was significant (F42,480=4.424). 

 

3.3.3 Environmental drivers of stream metabolism 

3.3.3.1 August GPP  

The initial PLSR was of poor model quality as Q2(cum) was not within 20% of 

R2Y(cum). Four outlier sites with high values of dModX and dModY were identified (CB16, 

CB20, CB26 and CB29), indicating that these sites were not accurately represented by the 

model. A subsequent PLSR of GPP that excluded these sites resulted in the fourth component 

with a R2Y(cum) within 20% of Q2(cum). Model quality indices showed Q2(cum), R2Y(cum), 

and R2X(cum) parameters of 0.889, 0.995, and 0.755, (Figure 3.4.a) Based on the Q2 quality 

index, the quality of components assessed through leave one out (LOO) showed that the fourth 
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component (Q2 =0.646) was significant (Q2 limit > 0.097, corresponding to p < 0.05). 

Furthermore, GPP was accurately predicted by the model (R2 =0.995, SD = 0.034). The VIPs 

(Variable Importance for the Projection) for the fourth component demonstrated that D50, Area of 

the watershed, surface water in the watershed, percent vegetation in the watershed, stream width 

and TDP were all significant (greater than 1) (Figure 3.5.d, Table 3.5.). Lastly, a Pearson 

correlation analysis was run for all the variables that were VIPS and average daily GPP across all 

sites and the only significant relationship was D50 (r(13)=.68, p<0.01)), which had a strong, 

positive correlation. 

 

3.3.3.2 August ER 
 

The first PLSR was of poor model quality as Q2(cum) was not within 20% of R2Y(cum). 

Sites CB 14 and CB 29 were identified as outliers. A subsequent PLSR of ER with outlier 

excluded showed that the third and fourth components were interpretable. Model quality indices 

for the third component were Q2(cum), R2Y(cum), and R2X(cum) parameters of, 0.889, 0.992, 

and 0.601 (Figure 3.4.b). Based on the Q2 quality index, the quality of components assessed 

through leave one out (LOO) showed that component 3 (Q2 =0.819) was significant (Q2 limit > 

0.097, corresponding to p < 0.05). Furthermore, GPP was accurately predicted by the model (R2 

=0.997, SD =0.037). The VIPs for the third component showed that area of the nearest upstream 

lake, depth class of nearest upstream lake, width of the stream, percent of bare land in the 

subcatchment, DOC were all significant (greater than 1) (Figure 3.6.c, Table 3.6). Lastly, a 

Pearson correlation analysis was run for all the VIPs. This allowed for further confirmation of 

the significance of these variables with the addition of outliers that were removed in the PLSR.  

It was found that log average ER had a strong, negative relationship between the area of the 

upstream lake (r(13)=-0.68, p≤.01) and stream width (r(13)=-0.62, p=0.042) and a positive 
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relationship with percent bare area in the subcatchment (r(13)=0.53, p=0.042). For ER data, 

negative data was converted to positive by multiplying all values by negative one, to be able to 

log transform the data. Therefore, there was a strong positive correlation between the area of 

upstream lakes, and stream width, with ER.  

3.3.3.3 July GPP and ER 

The PLSR analyses of July GPP and ER were not interpretable as the Q2(cum) was not 

within 20% of R2Y(cum) (Figure 3.4.c-d.) despite the removal of outliers (CB16, CB27, CB29 

for GPP and CB14, CB22 for ER). Therefore, further analysis of the results was not warranted. 

 

3.4 Discussion 

Stream metabolism within the Greiner Lake Watershed was remarkably similar in space 

and time at most sites during July and August, 2019 with GPP below 2.5 and ER above -2.5 

gO2m2d -1. In August the environmental drivers of GPP were correlated with the substrate 

variable (D50), while ER was positively correlated with the area of the upstream lake and stream 

width. Streams in the Greiner Lake Watershed were associated more with D50 and the amount of 

upstream lake area in the watershed than seen in other Arctic or temperate streams where 

nutrient levels, light availability and temperature constrain stream productivity (Myrstener et al., 

2021; Rocher-Ros et al., 2019). While low variation in GPP and ER over space and time has 

been observed elsewhere in Arctic stream ecosystems (Myrstener et al., 2021), the relationships 

with D50 as an important driver of GPP, and the area of upstream lakes for ER, were previously 

unknown. Such relationships between downstream stream reaches and upstream lakes have been 

observed for temperate streams where lake outflow is thought to create transitory environments 

downstream that have both different nutrient concentrations (Schmadel et al., 2018) and species 
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composition (Crump et al., 2007) compared with other stream reaches. Similarly, a connection 

between D50 and productivity has been noted in temperate systems as D50 provides greater 

surface area for attached biofilms (Cardinale et al., 2002; Tett et al., 1978).  

 

3.4.1 Spatial and Temporal Trends in GPP and ER 

Mean GPP at 80% of streams in the Greiner Lake Watershed was below 2.5 gO2m2d -1 

(excluding CB20 which was an outlier), and are comparable but somewhat higher than values 

measured in other Arctic tundra streams at similar latitudes and biomes, such as the Miellajokka 

catchment, Sweden (GPP 0.57 g O2 m−2 d−1), and the Kapuruk and the Toolik rivers, Alaska 

(0.456 ± 0.2531 g O2 m−2 d−1 and 0.09 ±0.2531 gO2m2d -1, respectively) (Myrstener et al., 2021; 

Rocher-Ros et al., 2019). Potential factors that may lead to these differences across the 

circumpolar Arctic include temperature, lake area in the watershed and watershed topography. 

First, the temperature regimes of streams in the Greiner Lake Watershed were much warmer than 

that of the Miellajokka Catchment, with Greiner Lake watershed’s temperatures ranging between 

10 – 12 °C and the Miellajokka system ranging between 5.4 – 6.9°C. However, the Kaparuk’s 

watershed had temperatures more comparable to Greiner Lake, as they were greater than 5 °C 

between July 7th and August 2nd and consistently had values between 10 and 11°C. Another 

potential factor is the spatial distribution of lakes and ponds, as lakes and pond abundance can 

substantially change organic matter cycling downstream (Larson et al., 2007; Wang et al., 2018).  

The Greiner Lake watershed consists of numerous lakes and ponds, with most streams having a 

lake within 1 km as well as many other streams have ponds interconnected among lakes and 

streams (NASA, 2015). In contrast, the Miellajokka Catchment only has 2 lakes within its 

boundary with these lakes well upstream of the same site and more than 1 km from the stream 
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channel. However, it should be noted these streams are fed by glaciers and snowpack, which may 

cause discrepancies in metabolic rates between streams (Holdar et al., 1959). Finally, small 

topographic changes across the tundra landscape can affect the biochemistry of a stream, and 

there are more significant elevation changes in the Miellajokka catchment that could be causing 

variation between average daily average GPP (Larson et al., 2007). Although total yearly average 

GPP is much higher in temperate streams given the limited Arctic open water period and 

growing season, summer values in Arctic streams as those in the Greiner watershed and the 

above examples for Alaska and Sweden are quite comparable to temperate streams. For instance, 

in a study on Walker Branch, Tennessee, a first order stream in a deciduous forest, daily rates of 

GPP fell below 1 g O2 m−2 d−1 between July and August, when in the spring before leaf growth, 

rates were above ~6 - 11 g O2 m−2 d−1 (Roberts, Mulholland, & 2007). However, it would be 

incorrect to conclude that Arctic streams have similar productivity rates to temperate streams, as 

their growing seasons are generally limited compared to other biomes. Although productivity is 

controlled by a stream’s reach scale variables (vegetation, nutrients/or hydrology), a stream will 

also be affected by temporal variables such as nutrient synchrony, canopy cover, light 

availability, temperature and/or precipitation, and these temporal variables will be different 

across different biomes and latitudes (Mulholland et al., 2001). Therefore, comparing just 

summer GPP and ER in streams of the Greiner Lake Watershed to temperate streams is 

insufficient to draw conclusions about how productive the respective systems as a whole. 

Daily mean value of ER was -0.27± 0.37 gO2m2d -1 with a range of -0.089 - 4.0924 gO2m2d -

1, excluding the outlier sites CB14 and CB20. These estimates are lower than in other tundra 

catchments such as in the Miellajokka (mean of -4.22 gO2m2d -1), Toolik River (-2.40±0.176 O2 

m−2 d−1), and Kapuruk River, (-8.42±1.63) (Rocher-Ros., 2021). As proposed for GPP, these 
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difference among tundra rivers may be related temperature regimes, lake influence or catchment 

topography. Although not assessed in these studies, respiration may increase due to an influx of 

organic matter into streams (Hill et al., 2000) providing more nutrients for secondary producers 

to accumulate biomass. This organic matter can come from sources such as thawing permafrost 

(Wang et al., 2018), which could result in spatial differences in stream metabolism across a 

watershed. Such differences in organic matter input may be why differences in ER are 

noticeable, but GPP was not. In terms of other biomes, daily mean ER in the Greiner Lake 

Watershed was lower than values noted by Bernot et al. (2010) across multiple biomes in Europe 

and the USA that included grasslands, forests (deciduous, coniferous, tropical), deserts, and 

mountains. 

There was no consistent increase or decrease in ER or GPP during the study period, which 

has been observed previously in Arctic streams. For example, Myrstener et al., (2021) found that 

there were no distinct temporal patterns in GPP during the ice-free season (May to October) in 

two tundra streams in the Miellajokka catchment, a catchment 200 km north of the Arctic circle 

in Sweden. This is likely due to the same reason that sites across the catchment were the same – 

a harsh environment. Any significant temporal patterns would likely be due to environmental 

variables that allow productivity to bounce back faster after a disturbance, which was not 

assessed in this study as measurements began after spring flooding and ice break up.  

3.4.2 Environmental Drivers 

The main variable affecting GPP was D50, which showed a strong positive correlation 

with log daily average. This positive relationship has been observed in Europe. Pastor et al., 

(2017) found D50 to be more important to GPP than many other associated environmental 

variables including nutrient concentrations, temperature regime, light regime (including canopy 
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cover). Furthermore, it is well established that coarser substrates assist in facilitating the growth 

of autotrophic biofilms, algae, and microbial colonization (Johnson, Tank & Dodds, 2009). This 

may be because increased surface area of rocks provides more habitat suitable for algal and 

microbial colonization (Johnson, Tank & Dodds, 2009). Specifically, larger rocks can produce 

sheltered areas of low velocity and low sheer stress, thereby reducing the scour of primary 

producers (Cardinale et al., 2002). Furthermore, larger rocks provide greater surface area and 

heterogeneous microhabitats for colonization as opposed to fine sediments. Fine sediments are 

more mobile, and are easily moved during flooding events, whereas larger rocks remain stable 

(Tett et al., 1978) thus providing a more consistent habitat for biofilm growth. 

There were strong positive relationships between the daily rates of ER and the area of 

upstream lakes and stream width. There are numerous reasons how a lake may affect a 

downstream environment. First, shallow lakes have accelerated primary production, compared to 

deeper lakes, as light can reach the bottom of the lake where biofilms and macrophytes can 

flourish (Vadeboncoeur, 2008). Shallow lakes will also warm faster during the summer months, 

thereby increasing productivity (Rautio et al., 2011). Both factors will contribute to productivity, 

which will in turn affect carbon and nutrient cycling. Primary producers can convert inorganic 

nutrients (N and P) to organic nutrients to fuel ecosystem respiration in lake-connected streams 

(Baker et al., 2016).  In addition, upstream lakes can directly influence ER through flow 

regulation, increasing water temperature, and altering taxonomic composition in connected 

streams (Baker et al., 2016; Huziy & Sushama, 2017; Jones et al., 2010; Lamberti, Chaloner & 

Hershey et al., 2010; Robinson & Minshall, 1990). The surrounding terrestrial environment is a 

primary driver of organic matter dynamics. Stream ecosystems receive nutrients from soil 

organic matter or eroding peat, which affects substrate type and chemistry, by increasing organic 
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matter and vital nutrients for respiration (dos-Ros Oliveira et al., 2019; Reynolds & Tenhunen, 

1996; Webster & Meyer, 1997). Furthermore, wider streams may have more available surface 

area for microbes relative to the free-flowing water volume (Mulholland et al., 2001), as many of 

the wide streams in this study are also shallow. However, most studies focus on the effects of 

terrestrial environments in temperate environments where leaf litter decay dominates organic 

matter cycling in many streams (Fenoy et al., 2016). Little is known about the role surrounding 

tundra vegetation will play on carbon and nutrient cycling in Arctic streams.  

Overall, GPP and ER estimates for streams in this study were relatively homogenous 

across the watershed, and through the study period. This pattern is likely controlled by the  

the homogeneity across streams in the Greiner Lake watershed which likely results from the 

harshness of the Canadian Arctic that including seasonal spring flooding, cold winter 

temperatures, and ice in the winter limiting or eliminating primary and secondary production and 

after the spring pulse of flow. While others have documented strong connections between 

nutrients and GPP, my study showed that such relationships can be outweighed by 

geomorphological features. GPP was highly correlated with D50, most likely due to the 

relationship between grain size and disturbance. Specifically, larger rocks could provide more 

surface area for algal and microbial community growth and were more stable during periods of 

high flow (e.g., spring snow melt). ER was positively associated with the area of upstream lakes 

and stream width, which may be due to how lakes transport nutrients and regulate the 

environments of downstream rivers. However, these results once again show the potential 

linkages between geomorphological features (stream width) and stream metabolism in nutrient 

deficient Arctic streams. In the future, the effects of flood and associated streambed stability on 

GPP should be explored to help predict the impact that the expected changes to hydrology will 
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have on GPP. Furthermore, understanding nutrient cycling in Arctic lakes throughout complex 

lake-stream networks may help to predict the changes to ER in rivers downstream of lakes in the 

watershed. Additionally, understanding the importance of stream geometry, hydraulics, and 

nutrient cycling, can help predict how ER may respond to a changing environment. This study 

demonstrates that there is a need for improved mechanistic understanding of the drivers of 

stream metabolism to better forecast how climate warming could modify ecological function in 

vulnerable Arctic freshwaters. 
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3.6 CHAPTER 3 FIGURES 

 

Figure 3.1: Subwatershed and Channel Form/Water Quality Data Collection. Single observations of 

subwatershed characteristics taken from GIS and data from Ponomarenko et al., 2019, and 

observed reach scale characteristics measured at each site, once at the beginning and once at the 

end of the study period. 
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Figure 3.2: Boxplots of Average Values of Daily GPP and ER Rates. Boxplots from the entire study 

period in ascending Daily rates of GPP and ER (July 9th – August 13th). The top line represents the largest 

values within 1.5x interquartile range (IQR) above the 75th percentile, the box represents the 75th – 25th 

percentile range with the median in the middle, the bottom line represents the smallest value within 1.5x 

below the 25TH percentile and the dots are values that or greater than or less than the 1.5x IQR value. 
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Figure 3.3: Boxplots Representing Temporal Variability in Stream Metabolism Across All Sites. Temporal variability in stream metabolism, 

including ER and GPP throughout the study period across all study sites in the summer of 2019. Week 1 represents July 9 -August 26th, week two 

represents July 18 – 26, week 3 represents July 27th – August 4th and week 3 represents August 5th – August 13th. The top line represents the largest 

values within 1.5x interquartile range (IQR) above the 75th percentile, the box represents the 75th – 25th percentile range with the median in the 

middle, the bottom line represents the smallest value within 1.5x below the 25TH percentile and the dots are values that or greater than or less than 

the 1.5x IQR value. 

  



 

 

82 

82 

 

Figure 3.4: Model Quality Indexes of PLSR Components. The quality corresponds to the contribution of 

the component to the indexes. The Q2 cumulated index (Q2 cum) measures the global contribution of the 

component to the predictive quality of the model. 
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Figure 3.5: Environmental VIPs of August GPP Barplot. VIPS for each explanatory variables of the first 

component to the fourth component. All values above 1 are considered highly influential variables, and 

values above 0.8 are considered moderately influential. Only the third and fourth components were 

considered having a significant impact on the log of daily average GPP. 
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Figure 3.6: Environmental VIPs of August ER Barplot. VIPs (Variable Importance for the 
Projection) for each explanatory variable of the first to fourth component. All values above 1 are 
considered highly influential variables, and values above 0.8 are considered moderately 
influential. Only the fourth component was considered having a significant impact on the log of 
daily average ER.
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3.7 CHAPTER 3 TABLES 
 

Table 3.1: The Predictor Environmental Variables, their Units, and the Notations to Be Used for 

Analysis 
 

Variable Unit of Measurement Notation 

Water Quality and Channel Form 

Stream Width m Wid 

Stream Depth m Dep 

Nutrients (DIC, DOC, TN, 

TDP) 

Concentration in mg L-1 DIC, DOC, TN, TDP 

pH 1-7 pH 

D50 cm D50 

Conductivity  SPC 

Subwatershed Characteristics and Waterbodies 

Order Strahler, 1-7 Ord. 

Distance from closest 

Upstream Lake 

km Dist.Lake 

Depth Class of the closest 

Upstream Lake 

1-4 Depth.Class 

Total surface area of closest 

upstream lake 

km2 Area.Lake 

Number of Ponds Upstream 0-3. * Depth of all ponds is 

estimated < 1 m 

 

Num.of.Pond  

Total area of the 

subcatchment 

km2 Area 

Percentage of the 

subcatchment covered in 

surface water 

Ha Per.Water 

Total amount of the 

subcatchment covered in 

surface water 

Ha Sur.water 

Percentage of subcatchment 

covered in wetlands 

Ha Per.Wetland 

Percentage of subcatchment 

without vegetation or surface 

water 

Ha Per.Veg 

Percentage of catchment with 

bare land (no water or 

vegetation) 

Ha Per.Bare 
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Table 3.2: In Stream Environmental Variables for July 2019 Greiner Lake Watershed 

 

Site Average 

Temperature 

July 

Width Depth Ratio Width 

Class 

DIC DOC TN pH TDP SPC D50 

CB04 8.74 48.92 0.64 76.44 Very 

Wide 

12 4.1 0.299 7.9 0.0054 199 8.5 

CB05 8.63 18.28 0.31 58.16 Very 

Wide 

13.8 3.4 0.323 7.94 0.0058 225 9 

CB06 9.68 20.22 0.30 68.10 Very 

Wide 

11.3 3 0.251 7.93 0.005 183 6.8 

CB14 10.27 9.632 0.30 31.85 Wide 15.6 4.1 0.331 7.73 0.0043 234 8.2 

CB15 9.08 5.48 0.23 23.48 Wide 6.9 2.5 0.279 7.71 0.0046 83.3 5.25 

CB16 10.21 9.68 0.30 32.05 Wide 9.8 3.3 0.274 7.88 0.0051 134 15.5 

CB20 10.40 8.97 0.34 26.40 Wide 9.8 2.9 0.252 7.86 0.0044 160 19 

CB21 10.84 3.4 0.18 18.76 Narrow 23.5 7.5 0.545 8.32 0.0078 427 10.5 

CB22 10.55 7.42 0.37 19.98 Narrow 12.4 4 0.345 8.01 0.0046 172 10 

CB24 10.37 0.874 0.35 2.53 Narrow 17.35 5.75 0.436 7.92 0.0057 525 0.2 

CB26 9.68 2.42 0.32 7.59 Narrow 12 2.2 0.213 7.94 0.0035 128 4.5 

CB27 10.65 7.86 0.20 39.42 Wide 13.6 4.3 0.413 8.14 0.0067 224 9 

CB29 7.93 1.01 0.13 7.79 Narrow 18.75 3.3 0.258 8.045 0.0051 269.5 6 

ER03 11.73 1.554 0.15 10.61 Narrow 18.4 7.1 0.586 8.14 0.0056 413 1.4 

ER04 10.07 1.11 0.43 2.58 Narrow 16.9 3.9 0.32 8.14 0.0041 268 2 
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Table 3.3: In Stream Environmental Variables for August 2019 Greiner Lake Watershed 

 

Site Average 

Temperature 

August 

Width Depth Ratio Width 

Class 

DIC DOC TN pH TDP SPC D50 

CB04 10.65 33.16 0.45 74.48 Very 

Wide 

13.95 3.65 0.2765 8.155 0.00415 226 8.5 

CB05 11.17 5.54 0.15 35.89 Wide 20.4 4.45 0.357 8.31 0.0058 235 5.25 

CB06 10.73 14.16 0.21 66.29 Very 

Wide 

17.7 3.55 0.283 8.18 0.0044 276 9 

CB14 11.35 0.61 0.16 3.93 Narrow 28.5 9.1 0.681 8.32 0.0061 639 1.4 

CB15 11.06 20.33 0.15 133.84 Very 

Wide 

18.8 3.75 0.3105 8.29 0.00625 298 6.8 

CB16 10.67 0.78 0.47 1.66 Narrow 25.8 4.1 0.309 8.26 0.0045 362 6 

CB20 10.86 0.70 0.21 3.25 Narrow 32.3 6 0.408 8.35 0.0043 517 2 

CB21 11.16 4.36 0.15 28.23 Wide 22.15 5.35 0.422 8.455 0.00555 348 9 

CB22 11.26 7.77 0.26 29.69 Wide 17.1 4.1 0.297 8.3 0.0059 275 19 

CB24 10.80 1.44 0.89 1.61 Narrow 30.4 6.1 0.372 8.33 0.0042 326 4.5 

CB26 11.49 3.15 0.12 26.87 Wide 32.5 8.2 0.539 8.5 0.0064 499 10.5 

CB27 10.78 0.50 0.19 2.71 Narrow 36.6 9.6 0.648 8.07 0.0059 893 0.2 

CB29 11.07 8.12 0.26 31.19 Wide 22.3 5 0.385 8.34 0.0054 298 15.5 

ER03 11.09 6.28 0.14 46.32 Wide 24.4 5.6 0.425 8.22 0.0058 320 10 

ER04 10.67 0.49 0.42 1.17 Narrow 29.4 5.4 0.407 8.16 0.0057 429 8.2 
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Table 3.4: Subwatershed Environmental Variables of the Greiner Lake Watershed 

 
Site Dist.Lake Area.Lake Depth.Class Num.of.Ponds Area Sur.Water Per.Water Per.Wetland Per.Veg Per.Bare 

CB04 0.879 315 4 1 117884 26067 22 30 46 1 

CB05 0.909 111 4 1 14235 3797 27 24 48 1 

CB06 1.966 501 4 3 13715 3670 27 24 48 1 

CB14 1.019 48 4 2 276 78 28 21 49 1 

CB15 1.073 344 4 0 4348 895 21 31 47 1 

CB16 0.521 74 2 0 6409 1380 22 28 49 1 

CB20 1.368 47 3 2 13765 3248 24 31 44 1 

CB21 0.186 18 2 0 2449 358 15 29 55 1 

CB22 2.486 18 1 1 7557 1498 20 28 51 1 

CB24 0.555 47 1 0 179 50 28 26 45 2 

CB26 3.899 353 3 0 2009 496 25 30 44 1 

CB27 0.957 21 1 0 6800 1516 22 28 45 1 

CB29 0.212 44 4 0 472 59 12 26 61 1 

ER03 0.137 30 1 0 752 87 23 30 45 1 

ER04 1.566 74 4 2 337 171 26 31 41 1 
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Table 3.5: Environmental VIPs for August GPP. Highly influential variables extracted for the 

model of log average of daily GPP values. The most influential variables were extracted from the 

fourth component, which had the highest model quality. 
 

 

Variable VIPs 

D50 1.369 

Area 1.335 

Sur.Water 1.335 

Per.Veg 1.268 

Width 1.156 

Per.Wetland 1.152 

Area.Lake 1.085 

TDP 1.032 

 

Table 3.6: Environmental VIPs for August ER. Highly influential variables extracted for the 

model of log average of daily ER values. The most influential variables were extracted from the 

third component, which had the highest model quality  

 

Variable VIPs 

D50 1.898 

Area.Lake 1.474 

Depth.Class 1.155 

Wid 1.147 

Per.Bare 1.096 

TN 1.090 

Order 1.083 

DOC 1.029 
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CHAPTER 4: SUMMARY AND SYNTHESIS 

4.1 Introduction 

Stream metabolism is an excellent biomonitoring tool for assessing stream ecological 

processes and can help measure the impact of changes in a stream’s surrounding environment 

(Bernot et al., 2010; Mulholland et al., 2001). However, the remoteness of the Canadian Arctic, 

and the 24-hour light during Arctic summers complicate using standard measurements of stream 

metabolism. These traditional methods often require a period of complete darkness and a 

reaeration coefficient to measure ER, both of which are difficult-to-impossible to measure during 

an Arctic summer. Furthermore, very few studies have assessed how Arctic streams are 

influenced by their surrounding environment. Studies have examined how GPP rates are affected 

by nutrient availability, and the carbon cycling capabilities of Arctic streams (Rocher-Ros., 

2019). However, most studies on metabolism have not tried to assess environmental drivers 

across many sites in a catchment (Myrstener et al., 2021; Rocher-Ros et al., 2019). The goal of 

this study was to 1) explore a viable method for measuring stream metabolism by comparing 

models that attempted to deal with these challenges, 2) determine if metabolism in tundra 

streams was significantly different from each other and how metabolism changes through time, 

and 3) establish the effects of stream characteristics on daily rates of GPP and ER. Chapter 2 

addressed the first aim by critically comparing two methods of stream metabolism 

measurements: streamMetabolizer, and a combination of linear regression and ER interpolation. 

Chapter 3 addresses Objectives 2 and 3 by using streamMetabolizer estimates of stream 

metabolism to determine if average stream GPP and ER were significantly different from each 

other across a watershed and through time and investigated associations of environmental drivers 
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with GPP and ER. Here I synthesize the findings of Chapters 2 and 3, discuss the significance of 

this research, and suggest future research based on these findings. 

4.2 Summary  

4.2.1 Chapter 2  

After modifying streamMetabolizer so that it could only produce values of GPP ≥0, and 

ER≤0, I found that streamMetabolizer was a viable model for producing daily average rates of 

GPP and ER that were representative of an Arctic tundra stream, without requiring direct K600 

measurements, eliminating dates, or altering light values. The interpolation and regression 

methods produced sporadic daily rates, and values beyond a reasonable range for Arctic tundra 

streams and were therefore not considered moving forward. Model diagnostics of stream 

metabolism showed that 13 sites had process errors of ≥1.1, 9 sites had observation errors ≥1.1, 

and 5 sites with no significant correlation between ER and K600, and 8 sites with a correlation of 

≤0.6 Compared to other methods in this study, this method was deemed satisfactory and was 

therefore used moving forward in Chapter 3. 

4.2.2 Chapter 3 

 Chapter 3 demonstrated that GPP at most sites were significantly different from each other 

across the watershed, however, the actual values of GPP were biologically similar, as there was 

minimal variation in environmental variables im the watershed. In contrast, ER across all sites in 

the watershed were generally not significantly different, except for 2 sites that had much higher 

rates of ER. In terms of temporal variation, no consistent patterns were observed for GPP or ER, 

except for two sites (CB14, CB20) that showed a significant decrease in ER throughout the study 

period. The PLSR analysis showed that D50 was significantly, positively correlated with natural 

log of GPP, and stream width and area of upstream lakes were positively correlated with natural 
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log of ER. A Pearson correlation analysis further indicated these relationships to be statistically 

significant. 

4.2.3 Research Significance 

streamMetabolizer can produce values of daily GPP and ER that fall within a realm of 

possibility for streams across the Arctic tundra, more so than other currently developed empirical 

methods. This is likely because streamMetabolizer is algorithm based, which helps the model 

make informed decisions. This helps avoid “equifinality”, which is the phenomena of many 

combinations of GPP, ER and K600 producing the same values, thus creating unreliable results 

(i.e., outliers). The algorithm in streamMetabolizer constrains the possible values of GPP, ER 

and K600 so that these fall within a logical range (this can be determined by values taken from 

previous studies in similar environments) while still allowing the model to be flexible enough to 

show variation caused by the environment and not poor model performance. This is often the 

case when oxygen curves are low, which is common in environments with low productivity such 

as Arctic streams that have low nutrient levels, cold temperatures, and intense seasonality and 

associated natural disturbance regimes.  Equifinality was likely why the linear regression and ER 

interpolation methods produced sporadic and unreasonable for a low productivity Arctic stream. 

The ability for streamMetabolizer to produce reasonable results is an encouraging discovery for 

estimates the productivity of streams in the Arctic because metabolism estimates can be obtained 

without the logistical constraints (e.g., time and financial investments) of other methods.  

Moreover, long-term studies can be conducted in remote locations such as the Greiner Lake 

Watershed with minimal effort and will better be able to track changes in stream processes.  

Due to the success of streamMetabolizer, I was able to explore the environmental variables 

that play a role in stream metabolism such as the significance of substrate size. The positive 
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relationship between D50 and GPP is most likely due to larger rocks creating a more stable 

environment for the growth of primary producers (algae, macrophytes, etc.), an affect that has 

been observed in temperate streams (Pastor et al., 2017), but to my knowledge, not in other 

Arctic tundra streams. Larger rocks require greater tractive force to be moved during flooding 

disturbances when increase scouring occurs. It is notable that scouring is well established as a 

factor that can reduce stream productivity (Kurz et al., 2017).  In addition, large rocks provide 

microhabitats with reduced velocity on the downstream side of flow, a higher surface area for 

growth, and habitat closer to the surface which likely warms faster and experiences more 

sunlight (depending on rock dimensions). This relationship with D50 was more significant than 

any other in this study which suggests that disturbance patterns and velocity may be the most 

limiting factor for GPP for streams in the Greiner Lake Watershed. 

Success in measuring stream metabolism also allowed me to discover that ER is positively 

related to area of upstream lakes and stream width. It is well known that lakes can greatly alter 

the type of environment by controlling flow patterns, temperature, and nutrients downstream in 

temperate streams (Baker et al., 2016; Fritz et al., 2018; Hauptman et al., 2016; Marcarelli & 

Wurtsbraugh, 2007), thus creating a habitat that is different than the same stream further 

downstream. 

 Lakes with wider areas have longer perimeters where they can be exposed to more bankside 

vegetation/organic inputs and wider lakes will have higher surface area to enable production. 

Therefore, I concluded that there is likely a connection between ER and the amount of organic 

matter, such as coarse particulate organic matter, being transported downstream as affected by 

the greater input of organic material from surrounding vegetation and from growth within the 

lake. A similar conclusion was drawn for stream width, as wider streams may be interacting with 
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surrounding vegetation and terrestrial environments more than narrow streams, and increased 

width may be providing more surface area for growth of biofilms relative to free-flowing water 

volume. This is significant as vegetation shifts are expected in the Canadian Arctic as the climate 

warms. Furthermore, if these vegetation shifts provide more organic matter in streams, there may 

be a spike in CO2 outputs to the atmosphere. However, to my knowledge not there has been 

limited research on the importance of allochthonous inputs to streams in the Arctic to date. It is 

well understood that temperate streams have an integral connection to their surrounding 

environments, particularly streams with leaf litter inputs in the fall. Although my study points to 

a potential connection between terrestrial vegetation and organic matter inputs, it is unlikely that 

Arctic streams follow the same pattern as temperate streams, and more research needs to be 

conducted.  

4.2.4 Future Research Directions 

streamMetabolizer has proven to be the most viable method for calculating daily rates of 

metabolism across the Greiner Lake Watershed. Even so, there are still options that we did not 

use in the streamMetabolizer software that could be implemented including K600 estimates for 

pooling, and better priors. K600 pooling refers to the input of any measurements of stream width, 

depth, and discharge, whether it be once or twice in the study, to help estimate stream 

metabolism. K600 pooling can constrict the values of possible K600 and can control the level on 

constriction. With a minimal input of field effort (measurements of discharge at each site during 

the deployment of loggers), better estimates of reaeration values are possible. Furthermore, as 

more studies are being published about Arctic streams, we can update the priors that are used in 

the model, meaning that we can better inform the model as to what GPP and ER values are most 
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likely in these streams to help constrain values. This would likely decrease process error, 

observation error, and reduce equifinality that may still exist in my models. 

Furthermore, to better understand the major controls of GPP, flood patterns should be 

observed. Although the purpose of this study was to create a snapshot of what stream metabolism 

is like during the summer in the Greiner Lake Watershed, it is likely that spring flooding affects 

summer rates of GPP, as disturbance regimes have proven to affect stream metabolism in 

previous studies (Prowse et al., 2006b; Nilsson, Polvi & Lind, 2015). The connection between 

GPP and D50 lead to the idea that stable habitat availability is a major control of productivity 

during the summer. This suggests that habitats that are more easily disturbed by spring floods 

take longer to recover. To better understand GPP, it is likely important to quantify the intensity 

of flooding by deploying depth loggers earlier in the season, to be used as a proxy for flood 

intensity. We would then expect streams with higher D50 relative to flood intensity to recover 

faster.  

To better understand the major controls of ER, more research needs to be done on the 

relationship between proximal vegetation on streams and lakes. The positive relationship 

between ER and stream width and lake area may be due to an increase in interaction with the 

terrestrial environment, which may provide the streams with more organic matter. In this study, 

only the percent area of the vegetation of the subcatchment was considered, which did not have 

any significant effect on daily rates of ER. A shift to focusing on the vegetation density covering 

the site reach (within 50 – 100m of the loggers) may shed light on these relationships. 

Furthermore, we could correlate the density of vegetation with in-stream organic matter, with the 

expectation that increases in nutrient abundance are due to vegetation entering the stream. Lastly, 

more research needs to be conducted on the interaction between streams and large waterbodies. 
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If a lake is oligotrophic, it would be inaccurate to assume that organic matter is coming from the 

in-lake vegetation and other organisms being transported downstream. Instead, ER may be 

increasing because lakes do not process any organic matter, and any organic matter inputs are 

being transported downstream.  

4.2.3 Integrative Nature of Research 

Much ecological research exists in symbiosis with fields such as chemistry, physics, 

biology, statistics, and geography. Much of this thesis requires knowledge and techniques from 

all disciplines. Calculating metabolism requires a basic understanding of physics and biology. 

Reaeration rates are estimated using coefficients developed by observing hundreds of other 

streams, to be able to estimate how much O2 will naturally exchange with the atmosphere based 

on the hydraulics of a stream, and one must understand the behaviour of different organisms in 

the stream such as autotrophs and heterotrophs. streamMetabolizer requires a basic 

understanding of Bayesian statistics to understand the quality of the models being produced, 

which leads to essential decision making. To integrate this knowledge, one must have a basic 

understanding of the geography of a landscape to determine what characteristics of the 

landscapes are controlling stream metabolism, whether it be from the nutrients being released 

through permafrost thaw, underlying bedrock chemistry, or knowing how to how to delineate a 

catchment using GIS. This thesis was based on all the different fields of science has to offer and 

would not have been possible otherwise. Furthermore, my research contributes to a growing 

understanding of the Greiner Lake Watershed in the Canadian High Arctic Research Centre 

which has been previously research by other Laurier students in the Culp laboratory. 

Specifically, research by Kuhrt (2022) related the feeding patterns of Ninespine Stickleback to 

the surrounding environmental variables of streams across the Greiner Lake Watershed. 
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