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Abstract

This dissertation studies how patient access to specialized services in referral networks can

be improved. The first study focused on optimizing and coordinating referral and scheduling

decisions in a centralized referral network. I proposed a bi-level optimization model which

enables the referrer to make optimal decisions for different scenarios based on available

capacity in the network and operational competency levels of surgeons. First, I derived

optimal scheduling policies for each surgeon in the network. Next, optimal referral decisions

for the central referrer were derived for each capacity scenario. Finally, I studied how

incorporating fairness in referral decisions can impact patient access to surgeons.

The second study applies deep reinforcement learning (DRL) algorithms in centralized

referral networks that help referrers make optimal decisions during the patient referral process

while considering different challenges such as distance of the patient from the specialist

and wait time. First, I studied the potential impact of using these algorithms in a single

centralized referral network. Next, I defined a general framework under which two adjacent

centralized referral networks that are applying DRL algorithms can collaborate. Finally, I

studied how governments can motivate networks to collaborate and what the impact would

be of this collaboration on patient access to surgeons.

The third study focuses on the patient referral process in the Waterloo Cataract referral

network. First, I analyzed the data and three different ways that are practiced by the network

to refer patients to surgeons. Next, I simulated the whole network and studied how changing

current referral policies or adding more surgeons to the network can impact patient access

to surgeons.
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Chapter 1

Introduction

On-time access of patients to specialized services is one of the main concerns of decision

makers in many health care systems. Waiting too long for specialists not only puts patients’

lives in danger, but also results in excessive costs, putting pressure on the healthcare system.

In fact, the cost of wait time per patient to the health care system in Canada is estimated

to be approximately between $2,254 and $6,838. Exacerbating this situation are imbalanced

referral rates to specialists; there are some specialists who are overloaded with referrals,

making patient wait times far too long, while there are other specialists who have spare

capacities.

Patients can gain access to specialized services through two main referral schemes, namely

centralized and decentralized referral networks. Under both referral schemes, the patient is

first seen by a general practitioner (GP). Under the decentralized referral scheme, which is

the dominant one in most countries, including Canada, when further treatment is needed

the GP has access to a limited number of specialists in the network and directly refers the

patient to one of them. Under a centralized referral scheme, the GP sends the patient to a

referral network. Then, the process of referring them to a specialist is handled by a third

party called the central referrer which has access to all specialists in a network.

In recent years, numerous referral networks have moved toward centralizing their referral

processes to specialists. However, as indicated by various studies, there are still various

questions around centralization: 1) how should centralization be implemented, 2) what

policies should be applied by different players of a centralized network, and 3) to what

degree can a centralized network actually improve patient access to specialists?

The first chapter of this thesis studies how referral and scheduling policies in a centralized

referral network can be coordinated. To ensure the mathematical tractability of the problem,

we focused on a centralized referral network with two specialists where different scenarios are

defined based on available capacity in the system and the specialists’ operational competency

1



level. To coordinate the referral and scheduling decisions, we modeled the system as a bi-

level optimization problem and extracted optimal referral and scheduling policies for each

scenario. Model extensions were then studied which examine fair-allocation referral models

and the benefit of centralization.

In the second chapter of the thesis, we were inspired by how COVID-19 affected referral

networks in Canada, so we applied a Deep Reinforcement Learning (DRL) methodology

on a centralized referral network which allowed us to study referral rates in a larger scale

referral network with multiple specialists. In addition, we applied the methodology on two

centralized networks and studied how collaboration between the two networks could further

improve patient access to specialists. We show that reinforcement learning methodologies

have the potential to significantly help decision-makers in a centralized referral network

reduce patients wait times. Our results also indicate that a right amount of incentive from

the government can play a great role in motivating networks to collaborate which results in

improved access to specialists.

In the third chapter of the thesis, we focus on the centralized cataract network in Waterloo

which covers referrals from three major cities, namely Kitchener, Cambridge, and Guelph,

and more than 100 townships. We studied the current referral process and its impact

on patient average wait time over the next four years and investigated to what degree

implementing different referral policies or adding more resources to the network could further

improve patient access to specialists. Our results show that the system utilization rate is

high and, therefore, implementing new policies without adding more resources to the network

does not have a significant impact on patient average wait time .

2



Chapter 2

Coordinated Referral and Scheduling

Decisions for Specialized Healthcare

Services

2.1 Introduction

In many health care systems, providing access to specialized services in a timely manner is

challenging. Wait times are often long and highly variable leading to inequities in access to

specialized care. Many studies have associated poor health outcomes with prolonged wait

times (Lawrentschuk et al. 2003a, Haddad et al. 2002a, McKeever et al. 2006) and wait

times for specialized services have been recognized as a key impediment to access to quality

care (Sanmartin et al. 2000, BA et al. 2005, Bichel et al. 2009, Viberg et al. 2013a, Patel

et al. 2018, Bleustein et al. 2014). While these challenges have been acute and persistent in

single payer systems such as those in Canada (Barua and Jacques 2018) challenges in access

to specialized services are also present in privatized healthcare systems (Penn et al. 2019,

Shulkin 2017).

Strategies to manage wait times effectively include attention to the operations of the

specialized service as well as improving the referral system which manages the transition

of patients from primary care to the provider of specialized care. With respect to the

provider’s operations, attention has been devoted to increasing resources and improving the

efficiency of the operations and delivery of the service. Increasing capacity through increased

resources is constrained by costs and availability of human and physical resources which

points to improving the efficiency of delivery as a key pathway. Studies like Green (2005)

and VanBerkel and Blake (2007) examine the optimal management of capacity and show

3



the potential for dramatic impacts on wait times. Improving the scheduling and operations

of specialized services has also been extensively studied both directly by improving policies

(Froehle and Magazine 2013, Ahmadi-Javid et al. 2017a) and by providing incentives to

surgeons to hit wait time targets (Frank and Brunsberg 1999, Marcus et al. 2009, Viberg

et al. 2013a).

This study considers how a referral system can build policies which acknowledge the

operational challenges and are coordinated with the provider’s incentives. We consider a

centralized intake system where a single agent receives all referrals from primary care and

allocates these referred patients between the full set of independent providers. Specialized

care may include surgical procedures, imaging or other consultations where a referral is

needed. The referral is received by a single provider which may represent a unique health

care professional (e.g. surgeon or consulting physician) or a centre managing multiple

professionals (e.g. working in a centre, hospital or region). The centralized intake system

model, also referred to as a pooled referral system, is becoming an increasingly popular

replacement for the traditional decentralized model for improving equitable access to specialized

medical services (e.g. Saskatchewan-Initiative 2013). In the decentralized model, patients are

directly referred from primary care to specialized services. The centralized model can take

into account a broader set of information at the time of the referral and has the potential

to improve resource utilization and fairness from the point of view of both patients and

providers. A number of papers, such as Kinchen et al. (2004a), Barnett et al. (2012b) and

An et al. (2018) explore the adverse affects that stem from poor referral decisions. However,

these papers are expository in nature and do not provide prescriptive suggestions on how a

centralized intake system can rectify these shortcomings.

Our paper takes advantage of this transition to centralized intake which provides the

opportunity for increased optimization of the referral process. The broader research question

of interest is how to design centralized referral mechanisms that are both optimized and fair.

More precisely, the referral should both minimize wait times and ensure that access to low

wait time specialized services is equitably distributed throughout the network and patient

populations. Despite the increased applied interest in these systems best practices regarding

the operations of these systems and realizing these goals remains poorly understood.

We study the problem of designing a centralized referral system which includes the

receipt of the referral, the allocation of the referral to the provider and the providers

scheduling of the procedure. To permit tractable analysis of this system, we take a different

approach from much of the scheduling literature. We avoid focus on the algorithmic and

mathematical details of a particular scheduling policy by defining a model for achievable

scheduling outcomes associated with the providers’ operational capabilities. To motivate
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this approach we compute the achievable region for a prioritized queueing system and show

that the key properties can be modeled via a simple reduced form. This approach allows

us to study the implications of particular operational capabilities to the management of the

referral system. While this reduced form approach appears to be somewhat novel, it is not

the first use of a general achievable region function to derive results which are generalizable

to a range of operational settings. Pavlin (2017) for instance uses a general convex function

to characterize achievable wait times for prioritized queueing systems. The approach taken

in this paper leads to a tractable two-stage optimization problem which can encompass the

range of scheduling challenges present in healthcare systems.

The centralized referrer and the providers both seek to maximize the proportion of all

patients served within their target wait times. This incentive is considered due to the

fact that in many countries including Canada providing patients with on-time access to

specialized services has become the key measure performance for assessing access to care.

The province of Ontario for instance maintains a public website which shows the proportion

of cases seen within procedure specific target wait times for a wide range of specialist services

(Government of Ontario 2022). Using access to diagnostic imaging as an example, there are

four patient priority levels and the target times for the first and forth priority patients are 24

hours and 28 days respectively. In October of 2021, 96% of first priority and 51% of fourth

priority patients were scanned within target time. While we focus on on-time delivery, other

incentives such as maximizing revenue or throughput might also be relevant in certain referral

networks. Our analysis maps patient demand, system capacity and operational capabilities

to an optimal referral policy and a scheduling outcome. The referral policy determines

the allocation of patients to providers and the scheduling outcome describes the proportion

of each patient stream served within their wait time targets. The key results include the

following:

1. When operational abilities are low for both providers, it is optimal for the providers

to prioritize one stream of patients. Depending on provider capacities the referral

policy may vary. When capacities are heterogenous, the centralized referrer may focus

providers on particular patient streams. When capacities are low for both providers,

the optimal referral policy may result in providers relegating one of their patients

streams to poor quality service where there is zero probability of receiving the service

within the wait time targets.

2. When operational abilities vary between providers, the provider with higher operational

ability will offer more evenly distributed levels of service. The provider with higher

operational ability will also receive more patients allowing the lower ability provider
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to offer higher levels of service.

3. Requiring providers to provide equal levels of service with respect to target wait times

decreases the overall system performance defined as the number of patients who are

served within their wait time targets. However, the negative impact diminishes as

operational abilities increase.

The rest of the paper is organized as follows: We first review the related medical and

operations management literature. In Section 2 we describe the general setting of our models

and define the objective function of our problem. We also discuss the provider problem and

optimal scheduling policies. In Section 3, we define the referrer problem and analyze optimal

referral policies under different circumstances. Section 4 studies the fair allocation model

which extends the standard model by enforcing parity. We conclude the paper in Section 5

with a summary of our findings, managerial insights, and limitations of our study.

2.1.1 Literature and Positioning

Patient referral decisions play a critical role in determining cost and quality of care by acting

as the bridge between primary care and access to specialized healthcare services (Barnett

et al. 2012b). It is estimated that 30% of patients in the United States and 14% of patients

in the United Kingdom are referred to providers each year (Forrest et al. 2002). The referral

decision is difficult because of the range of patient specific and systemic factors that need

to be taken into account when managing sometimes conflicting objectives such as timeliness

and quality. There are several relevant literatures particular to our problem of optimizing

referral and scheduling policies which we discuss in turn. Because of the unique methods to

derive insights in this paper, we subsequently discuss relevant methodology.

The problem of finding appropriate policies for referring and scheduling patients has been

investigated from three perspectives: (1) Gatekeeper (2) Appointment scheduling and (3)

Referral Management. The gatekeeper perspective studies the appropriateness of referrals

with particular emphasis on ascertaining whether a patient should be treated by a GP

or referred to a provider (Shumsky and Pinker 2003). Studies following the appointment

scheduling perspective focus on the problem of optimizing scheduling of patients for provider

services and typically treat the rate of referrals as exogenous. Stochastic programming

and queueing theory approaches have been extensively applied for scheduling patients and

allocating physicians capacities with the aim of minimizing costs of wait times and overtime

or minimizing the number of patients that exceed waiting-time targets (Castaing et al.

2016, Cayirli and Gunes 2014, Chen and Robinson 2014, Kuiper and Mandjes 2015, Tang

et al. 2014, Gocgun and Puterman 2014). Finally, papers taking the perspective of referral
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management, are focused on analyzing the impact of different interventions in the referral

process on patient access to provider services (Braybrooke et al. 2007, Bungard et al. 2009,

Akbari et al. 2005). A case-in-point is the study of queue pooling to determine situations

under which having a pooled referral system, modeled as a single queue pooling multiple

arrival streams, is more advantageous than having several separate referral queues (Dijk and

Sluis 2008, Mandelbaum and Reiman 1998). Mahmoudzadeh et al. (2020) and Jiang et al.

(2020) are among the papers that have explored optimal decisions in multi-class patients

scheduling with wait time targets and Li et al. (2015) has investigated patient pooling

optimization to allocate available capacity to different types of patients with different waiting

time targets.

Our paper takes a different perspective on this problem. We seek to bridge the gap

between appointment scheduling and referral management in healthcare networks. We

assume that all the patient arrivals are in real need of specialized services and, considering

wait time targets, study the coordination of referral and provider scheduling policies. These

features distinguish our paper from most of the papers in the literature. As noted by Ahmadi-

Javid et al. (2017a) in their survey of the appointment scheduling literature, most operational

papers have explored the problem by doing micro-level analysis which does not provide

generalizable insights into the longer term decisions required to design a proper network.

The changes in methodology which we introduce in this paper allow for an analytically

tractable model where both the referral and scheduling decisions can be studied jointly,

allowing the coordination problem to be considered.

The methodology introduced in this paper uses an achievable region to represent the space

of possible scheduling outcomes for the provider. The achievable region methodology was

first introduced by Coffman and Mitrani (1980) who identified that the space of performance

characteristics achievable by allowable strategies is a convex region. By optimization over

achievable outcomes rather than available strategies, this methodology allows for a more

tractable problem which can often be expressed as a convex mathematical program and

sometimes solved analytically. Important extensions of the methodology include Federgruen

and Groenevelt (1988), Shanthikumar and Yao (1992) and Bertsimas and Nino-Mora (1996).

An achievable region approach has proved useful in a range of managerial studies including

the design of optimal pricing of prioritization in queues (Afeche and Pavlin 2016), service

differentiation in communication/computer systems (Vanlerberghe et al. 2018) and designing

kidney allocation policies (Ata et al. 2020).

We follow in this vein, representing the space of outcomes of the providers scheduling

strategies as a constrained region consistent with operational characteristics expected in the

real system. As a simple example, the region is larger if the providers capacity is larger. This
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approach allows for a tractable model where the impact of system parameters on referral

and scheduling decisions can be jointly studied.

2.2 Model and Preliminary Analysis

In this section we describe and model a system which allocates specialized healthcare services

to heterogeneous patients. The model considers both patient referral and scheduling decisions

which are respectively made by a referrer and a set of providers. Patient heterogeneity is

defined quite generally and may include patients who are differentiated by different conditions

and procedural requirements or simply different levels of severity of the same condition. The

model includes a framework for expressing positive and negative complementarities in the

ability of the provider to schedule different types of patients. For instance, if the provider

is providing two surgical procedures which have different equipment, staffing requirements

and substantial changeover time, then the provider would most likely be more productive

if they serve a more homogenous set of patients and the complementarity is negative. On

the other hand if the provider is delivering two types of consulations that are each partially

delivered by different allied health professionals, then the provider may be able to serve

more patients when there is a more even mix of the two and more patients can be served

in parallel resulting in a positive complementarity. Our model incorporates the scheduling

complementarities into the provider’s operational constraints and allows both the provider

and referrer to take them into account in their operational decisions as these agents act

to maximize the number of their patients who are served within their target wait times.

We provide the formal description of the model below with respect to the key participating

agents before providing an analysis of the providers decision problem.

Patients: To gain generalizable insights into the impact of operational abilities on managing

referrals of multiple patient types, we focus on a parsimonious model featuring two types of

patients i ∈ {1, 2}. λi represents the total arrival rate of patients of type i to the central

system. In addition, for each type of patient a maximum recommended waiting time is

defined by external policy makers (i.e. experts).

Providers: We focus on a system with a pair of providers enumerated j ∈ {1, 2}. Each

provider has a capacity mj ∈ R+. We assume that each provider in the system is eligible

to receive both types of patients. The variable λij denotes the rate of arrivals of patients of

type i at provider j. The provider will select a scheduling strategy which is consistent with

their capacity and operational abilities. These operational abilities do not reflect healthcare
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outcomes. Rather, the operational abilities will reflect managerial skill at scheduling and

optimizing patient flows and may also reflect specific operational conditions related to the

types of procedures that are being performed. The variable xij is the probability that

patients of type i allocated to provider j are served within their target wait time. For

convenience we also define Xj = (x1j, x2j) as the vector of target probabilities for patient

types assigned to provider j. The providers scheduling strategy will result in a particular

proportion of each patient type being served within their target wait times determining xij

for i ∈ 1, 2. Consistent with the achievable region methodology the analysis can ignore

the specific scheduling strategy and wait time targets and focus on the achievable outcomes

of interest, i.e. xij. We allow xij to be a decision variable for the provider j where the

achievable region constraints denoted in Equation 2.1 ensure that the target probability for

patient type i is consistent with a scheduling strategy available to the provider.

xij ≤ Hj(x(−i)j, λij, λ(−i)j,mj) (2.1)

Equation 2.1, shows the target wait time of the focal patient i is bounded by the achievable

region function Hj(x(−i)j, λij, λ(−i)j,mj). This function represents the maximum target

probability achievable in the space of available scheduling policies for provider j and depends

on the target wait time x(−i)j and arrival rate λ(−i)j of the other patient type −i at the

provider. In Section 2.2.1 we discuss expected characteristics of Hj and consider a specific

functional form for the achievable region function.

Each provider is dedicated to her own slate of patients and makes decisions independently

in response to the referrer’s allocation decisions. The scheduling problem for provider j

becomes a problem of selecting the achievable target wait times as follow:

max
Xj

∑
i λijxij∑
i λij

(2.2)

S.t.

0 ≤ xij ≤ 1 ∀i (2.3)

xij ≤ Hj(x(−i)j, λij, λ(−i)j,mj) ∀i (2.4)

The objective of provider j, denoted in Equation 2.2, is to maximize the proportion of their

patients who are seen within their target wait time. Constraint 2.3 assures that target

probabilities are well defined and Constraint 2.4 ensures that xij is achievable by provider j.

Centralized referrer: Consistent with the centralized intake model, the centralized referrer

receives the streams of patients, λi, from a group of primary care providers and is the sole

9



pathway of access to the specialized services. The decisions which the referrer makes is the

volume of each stream which is allocated to each referrer λij. For convenience, we define Λ

as the vector of all λij. The objective of the referrer is to perform the allocation of patients

to providers in a manner which maximizes the number of patients being seen within their

target wait times. We assume that the rate of arrivals of patients at the referrer, λi, is

exogenous and not dependent on the referrer or provider decisions.

We assume that the referrer has knowledge of the providers capabilities and incentives.

The resulting decision problem for the referrer is a bi-level optimization problem where the

final target probabilities are determined by the decisions of the providers as they serve their

particular patient allocations. The mathematical program below shows the complete decision

problem for the referrer.

max
Λ

∑
i

∑
j

λijxij (2.5)

S.t.∑
j

λij = λi ∀i (2.6)

max
Xj

∑
i λijxij∑
i λij

∀j (2.7)

S.t.

0 ≤ xij ≤ 1 (2.8)

xij ≤ Hj(x(−i)j, λij, λ(−i)j,mj) ∀i (2.9)

Equation 2.5 denotes the objective function for the referrer. Equations 2.7 through 2.9

denote the providers subproblem. The objective functions of the referrer and provider are

aligned such that the problem is coordinated.

2.2.1 Model of the Achievable Region

The achievable region is the space of performance outcomes corresponding to available

scheduling policies for the provider. In this section we discuss the form of the achievable

region for an M/M/1 queueing system and how we expect this to generalize to other queueing

and scheduling settings. We then present a functional form for the achievable region which

is analytically tractable but flexible enough to model a wide variety of possible forms.

We consider a non-preemptive M/M/1 queueing system where there are two priority

classes and patient arrivals are received from two streams which we label Type 1 and Type
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2. Both Type 1 and Type 2 patients have fixed target wait times. In addition, the system

experiences a switching time when there are consecutive patients of different type. The

switching time models operational complexity and is denoted by S. It may reflect different

operational challenges such as differences in staffing, location or instrumentation between

the procedures for Type 1 and Type 2 patients.

The strategies available to the queueing system are limited to selecting the proportion

of each patient stream placed in the high priority class. For simplicity we assume that

the scheduling strategy assigns a simple probability to each arriving customer and does not

consider historical or future arrivals. The probability of a patient of type i being in the high

priority class is denoted by Pi. We determine the achievable region via a search over this

space of policies. We use a discrete-event simulation to determine the performance metrics

associated with each strategy. The simulations were performed using the SimPy python

package and each simulation was run for 20000 units of time and repeated 50 times.
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Figure 2.1: Example of achievable region for target probabilities in a prioritized M/M/1 queueing system

Figure 2.1 shows the results of this study for a low utilization (Panels a and c) and a

high utilization example (Panels b and d). The two panels show situations where there is

no switching time and where the switching time is equal to 0.25. Each line in the figures

corresponds to a trajectory of strategies where P1 is fixed and P2 is increased from 0 to 1 in
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increments of 0.1. The achievable region is the region below and to the left of the frontier

(emphasized by the black dots).

Figure 2.1 illustrates how the convexity and size of the empirical achievable region varies

depending on the operational challenges facing the system. Comparing Figures 2.1a to 2.1b

and 2.1c to 2.1d shows that the achievable region decreases in size when the utilization of the

service increases. The area decreases primarily through a downward shift of the H function.

On the hand, comparing Figures 2.1a to 2.1c and 2.1b to 2.1d shows decreases in size but in

a different manner when the switching time is increased. This operational change decreases

scheduling complementarities between the two patient types. As a result, the achievable

region shrinks primarily where both patient types are prioritized and the H function moves

from a concave to a convex function.

While we believe the above example is a useful illustration, it is very simple. In practice

enumerating the space of achievable strategies is highly dependent on the particular provider

and their operational conditions and it is very difficult to solve for these regions in closed

form. For example, a simple scheduling strategy available to the provider is to schedule each

patient in the next available appointment slot. More complex strategies are also available

such as reserving some proportion of open slots in the next week for higher priority patients.

Each of these strategies observed over a long time period with a consistent arrival process

will result in steady state performance outcomes. We focus on characterizing an achievable

region which is consistent with our simulation studies and reacts in an expected way to

changes in key parameters. In particular, we require the achievable region (AR) to have the

following characteristics:

1. The AR is a closed region containing target probabilities of 0 for each patient type.

2. Ceteris paribus, the AR is larger for a provider with larger capacity.

3. Ceteris paribus, the AR is larger for a provider with higher operational ability.

4. Ceteris paribus, the AR is smaller for a provider with higher arrival rates.

5. The function H corresponds to the Pareto frontier where any improvement in target

probabilities for type i will result in a reduction in the target probability for type −i.

The form we select for the achievable region function is:

H(x(−i)j, λij, λ(−i)j,mj) =

(
mj − λ−ijx

αj

−ij

λij

)1/αj

. (2.10)
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Where we introduce the operational ability parameter αj. The role of the parameters in

determining the achievable region becomes more apparent in the provider’s decision problem

where the achievable region constraints can be simplified to the following form:

0 ≤ xij ≤ 1 ∀i (2.11)∑
i

λijx
αj

ij ≤ mj (2.12)

It can be verified that each of the required characteristics of the achievable region are satisfied.

Figure 2.2 shows achievable regions (gray region) for target probabilities in a two-type

patient referral system under high and low operational ability scenarios where the capacity

is insufficient to serve all patients within their target wait-times. In this case there is a

tradeoff between the target probabilities for both patient types. In both cases we assume

that mj = 5, λ1j = 4 and λ2j = 5. The achievable region is between the axes and the dashed

boundary line. In the first scenario αj = 2 which corresponds to a higher operational ability.

The opposite holds in the second scenario where αj = 0.35. The convexity of the frontier of

the achievable region (or equivalently of the H function) depends on a provider’s ability. A

provider with higher operational ability is able to provide both types of patients with higher

target probabilities at the same time. On the contrary, the convexity of the H function when

a provider has low operational ability implies that heterogeneous patient populations can be

served only at lower target probabilities.
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Figure 2.2: Example of achievable region for functional form of H(·) (mj = 5, λ1j = 4, λ2j = 5)

Comparing Figure 2.1 with Figure 2.2 shows that the proposed functional form for H can

generate achievable regions similar to the achievable regions for target probabilities observed

in real systems. The operational ability level in our study (i.e. α) has a similar impact on

the convexity of the achievable region as the switching time in the M/M/1 example. This

parameter α can reflect both the ability of the provider to optimally schedule new referrals
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and the inherent challenge in their particular operational setting.

2.2.2 Analysis of the provider’s Decision Problem

In this section we study the providers decision problem. The following theorem provides a

characterization of the optimal scheduling outcomes for a provider in a centralized system

with two types of patients.

Theorem 1. Given a provider with capacity mj, operational ability αj and receiving patient

streams λ1j and λ2j, the optimal provider decisions are given in Table 2.1 and depend on the

following thresholds:

Th1 = (
m

(αj)
−1

j − (mj − λ1j)
(αj)

−1

λ1j

)
αj

1−αj (2.13)

Th2 = (
m

(αj)
−1

j − (mj − λ2j)
(αj)

−1

λ2j

)
αj

1−αj (2.14)

Table 2.1 shows the optimal target probabilities decided on by the provider and the

conditions for which they are optimal. The operational ability level αj = 1 is important in

determining the optimal provider policy. We will refer to providers where αj ≥ 1 as having

high operational ability or HOC and where αj < 1 as having low operational ability or LOC.

When a provider is HOC, the optimal policy is independent of both the arrival rates and

the capacity. If the provider is LOC, there are four candidate optimal policies which depend

on the arrival rates and provider capacity. The optimality conditions show that P1 and P2

are policies which are optimal at higher capacity and P1 prioritizes Type 1 patients while

P2 prioritizes patients of Type 2. P̄1 and P̄2 are optimal at lower capacity and similarly

prioritize patient types. Each of these policies has two conditions either of which is sufficient

for the policy to be optimal. The first condition indicates whether the provider has very

high or low capacity. The second condition is for intermediate capacities and depends on

arrival rate thresholds for the patient types (Equations 2.13 and 2.14).

The optimal policy for a HOC provider sets target probabilities of all types of patients

equal to (
mj

λ1j+λ2j
)(αj)

−1
. When a provider is LOC, the situation is very different. It is always

best for a LOC provider to provide inequitable service by prioritizing one type of patient over

the other. It can also be seen that for a LOC provider, the optimal scheduling outcomes are

highly dependant on the provider’s capacity and the arrival rates. Note that P1 is identical

to P̄1 and P2 is identical to P̄2 if λij is equal to mj in which case there is full prioritization,

i.e. type i receives target probability of one and the target probability of the other type is
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Index (x1j , x2j) Optimality Condition(s) αj

1 S = ((
mj

λ1j+λ2j
)

1
αj , (

mj

λ1j+λ2j
)

1
αj ) - - - > 1

2 P1 = (1, (
mj−λ1j

λ2j
)

1
αj )

λ2j ≤ λ1j ≤ mj ≤ λ1j + λ2j

< 1

Or

λ1j ≤ mj < λ2j < λ1j + λ2j

and
λ2j ≥ Th1

3 P2 = ((
mj−λ2j

λ1j
)

1
αj , 1)

λ1j ≤ λ2j ≤ mj ≤ λ1j + λ2j

Or

λ2j ≤ mj < λ1j < λ1j + λ2j

and
λ1j ≥ Th2

4 P̄1 = ((
mj

λ1j
)

1
αj , 0)

mj ≤ λ1j ≤ λ2j < λ1j + λ2j

Or

λ2j ≤ mj ≤ λ1j < λ1j + λ2j

and
λ1j < Th2

5 P̄2 = (0, (
mj

λ2j
)

1
αj )

mj ≤ λ2j ≤ λ1j < λ1j + λ2j

Or

λ1j ≤ mj ≤ λ2j < λ1j + λ2j

and
λ2j < Th1

Table 2.1: The provider problem optimal solutions

zero. When λij is not equal to mj for a high capacity provider prioritization still occurs but

in this case, both patients will have positive target probabilities. For a low capacity provider

where the prioritized type is above the capacity, the scheduling policy results in a positive

target probability for the prioritized type at the expense of a target probability of zero for

the second type.

The characteristics of the scheduling policies selected by the provider in response to

referral decisions are likely to impact patient outcomes and will be discussed in depth in

future sections. The following policy types will be used to frame that discussion.

1. Shared scheduling policy: If the optimal scheduling policy for a provider is to set the

target probabilities of both types of patients equal to each other.

2. Partially prioritized scheduling policy: If the optimal scheduling policy for a provider
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results in target probability of 1 for one type of patient and a positive but lower than

1 target probability for the other type.

3. Fully prioritized scheduling policy: If the optimal scheduling policy for a provider

results in target probability of 1 for one type of patient and 0 for the other type.

Numerical example: The following numerical example illustrates the impact of choosing

the optimal policy on the provider objective function value. Consider a high capacity provider

with capacity of 6 where the arrival rates of patient of types 1 and 2 to this provider are

respectively 5 and 4. The three scheduling outcomes which may be optimal for this high

capacity provider are:

Equal Outcome Policy (EOP): Set target probabilities of both types of patients equal to

each other (x1j = x2j).

Prioritize Type 1 (PT1): Fully serve patients of Type 1 and allocate the rest of the

capacity to the second type.

Prioritize Type 2 (PT2): Fully serve patients of Type 2 and allocate the rest of the

capacity to the first type.

Figure 2.3 shows f(Xj) under each policy as αj increases.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
j

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

f(X
j)

EOP
PT1
PT2

Figure 2.3: Provider objective value under different scheduling policies

It can be seen that if the provider is LOC (αj < 1) then prioritizing Type 1 is the optimal

policy. When αj = 1 , the value of f(Xj) does not depend on the selected policy. Finally,
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the equal outcome policy is optimal for the provider if they are HOC (αj > 1) and as αj

increases, the gains from using the equal outcome policy over other policies increases.

2.3 Referrer Problem Analysis

In this section we move on to considering the optimal referral policies for a referrer who takes

into account the optimal decisions of the providers. In this Stackleberg game, the referrer

is assumed to accurately predict the resulting target probabilities (i.e. xij) for each patient

type given the referral rates the referrer chooses. The provider capacities and total arrival

rate of each type of patient to the system are known to the referrer. The referrer’s decision

problem corresponds to the following multilevel programming problem:

max
Λ

∑
i

∑
j

λijxij (2.15)

S.t.∑
j

λij = λi ∀i (2.16)

max
Xj

∑
i λijxij∑
i λij

∀j (2.17)

S.t.

0 ≤ xij ≤ 1 (2.18)∑
i

λijx
αj

ij ≤ mj ∀i (2.19)

Equation 2.16 ensures that patients are properly partitioned between providers. Equations

2.17 to 2.19 denote the provider subproblems.

In order to ensure that the problem is analytically tractable and the exposition is focused

on important cases we make the following series of assumptions:

1. Arrival rate of the second type of patient is less than the arrival rate of the first type

(i.e. λ2 < λ1).

2. There are only two providers in the system and m2 < m1.

3. There is enough capacity in the system to serve each type of patient within their target

wait times independently but not together (i.e. λ2 < λ1 < m1 +m2 < λ1 + λ2).
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4. Both providers have enough capacity to serve both types of patients independently (i.e

λij ≤ mj ≤
∑

i λij)

5. At least one provider is LOC.

Assumption 1 is without loss of generality. The second assumption allows for heterogeneity

in the pool of providers without resulting in an explosion in the number of subcases. Assumptions

3, 4 and 5 ensure that we focus on the most interesting cases where the solution is non-trivial

and requires decisions regarding which patients to prioritize. Together, these assumptions

lead to the following four feasible capacity scenarios:

1. m2 < m1 < λ2 < λ1 < m1 +m2 < λ1 + λ2 (Low, Low)

2. m2 < λ2 < m1 < λ1 < m1 +m2 < λ1 + λ2 (Mid, Low)

3. m2 < λ2 < λ1 < m1 < m1 +m2 < λ1 + λ2 (High, Low)

4. λ2 < m2 < m1 < λ1 < m1 +m2 < λ1 + λ2 (Mid, Mid)

We name the capacity scenarios as in parentheses above. The first entry in the name

corresponds to the capacity of provider 1 and the second to the capacity of provider 2. We

call provider j’s capacity level “Low” if the provider’s capacity is lower than both arrival

rates (i.e. mj < λi, i = 1, 2). The capacity of j is “Mid” if the capacity is between the

arrival rates (i.e. λ2 < mj < λ1). Finally, the capacity is “High” if provider j’s capacity is

higher than both arrival rates (i.e. λ2 < λ1 < mj).

In the analysis that follows we will find the optimal referral policies for these capacity

scenarios where the pool of providers has both homogeneous and heterogeneous operational

abilities (resp. Sections 2.3.1 and 2.3.2).

2.3.1 Referrer Decisions with Homogeneous provider ability

In this section we analyze the optimal referral policies for the referrer where both providers

are LOC (i.e. α1, α2 < 1). Since by assumption, providers have sufficient capacity to

serve both types of patients independently, from Theorem 1, P1 and P2 are the only possible

optimal decisions for each provider. In addition, the assumption λ2 < λ1 < m1+m2 < λ1+λ2

implies that it is impossible to have a situation where both providers select solution P2 at the

same time. So, at least one of the providers will serve Type 1 patients with target probability

of 1. Note that in the case that the capacity is entirely utilized by one type, i.e. λij = mj,

type −i may receive a target probability of zero. Theorems 2-5 explain optimal policies for

the referrer for each capacity scenario when both providers are LOC.
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Theorem 2. [Low provider capacity scenarios] Consider a referral system where both

providers are LOC. For capacity scenario (Low, Low) and (Mid, Low), the optimal referral

policies is the set of feasible policies resulting in G(Λ) = m1 + m2. The candidate optimal

referral policies are listed in Table 2.2. Of these candidate policies, only Policy 3 is feasible

and optimal under all (Low, Low) and (Mid, Low) scenarios.

Index
Optimal Policy TP

(λ11, λ21)
(λ12, λ22)

(x11, x21)
(x12, x22)

1
(m1 +m2 − λ2, λ2 −m2)
(λ1 + λ2 −m1 −m2,m2)

(1, 1)
(0, 1)

2
(m1, λ1 + λ2 −m1 −m2)
(λ1 −m1,m1 +m2 − λ1)

(1, 0)
(1, 1)

3
(m1, λ2 −m2)
(λ1 −m1,m2)

(1, 0)
(0, 1)

4
(λ1 −m2,m1 +m2 − λ1)
(m2, λ1 + λ2 −m1 −m2)

(1, 1)
(1, 0)

5
(λ1 + λ2 −m1 −m2,m1)
(m1 +m2 − λ2, λ2 −m1)

(0, 1)
(1, 1)

6
(λ1 −m2,m1)
(m2, λ2 −m1)

(0, 1)
(1, 0)

Table 2.2: Candidate Policies (both providers are LOC, capacity scenarios (Low, Low) and (Mid, Low))

Theorem 2 shows the candidate optimal policies for the referrer under the scenarios

where there is lower capacity in the system and both providers are LOC. The full mapping

of scenario to optimal policy is listed in Tables A.2 and A.3 in the Appendix. Each of the

candidate solutions listed in the theorem is able to reward the referrer with the full capacity

of the two providers and results in a situation where at least one provider fully prioritized

one type of patient over the other type, however, depending on the scenario, the policy may

not be feasible. For (Low, Low) scenarios each of Policies 1-6 may be optimal and for (Mid,

Low) each of Policies 1-4 can be optimal. The only policy which is optimal in all (Low, Low)

and (Mid, Low) scenarios is Policy 3 where each provider focuses on delivering a high quality

of service to a single patient type and results in a set of patients of each type who have a

probability of zero of receiving service within their target wait time.

Theorem 3 shows the optimal referral policy when providers have very different capacity

levels which together are close to the full arrival rate.

Theorem 3. [High heterogeneous provider capacity] Consider a referral system where

both providers are LOC. If the capacity scenario is (High, Low) and 2m2 + m1 ≥ λ1 + λ2

then the optimal policy for the referrer can be either of the following policies:

19



Index
Optimal Policy TP

(λ11, λ21)
(λ12, λ22)

(x11, x21)
(x12, x22)

1
(m1 +m2 − λ2, λ2 −m2)
(λ1 + λ2 −m1 −m2,m2)

(1, 1)
(0, 1)

2
(λ1 −m2,m1 +m2 − λ1)
(m2, λ1 + λ2 −m1 −m2)

(1, 1)
(1, 0)

Table 2.3: Optimal policies (both providers are LOC, capacity scenario (High, Low) and 2m2 + m1 ≥
λ1 + λ2)

Theorem 3 states that in the case that providers capacities are very different but are

together sufficiently close to the full arrival rate, then the optimal policies result in a situation

where the total number of patients allocated to the first and second providers are m1 and

λ1 + λ2 − m1 respectively. Restricting the arrival rate to the higher capacity provider to

its capacity allows this provider to serve both patient types with target probability one.

provider 2, who has lower capacity, serves more patients than her capacity but the surplus

patients are served with low priority.

Under both policies all types of patients allocated to the the first provider are certain to

be served within their wait time targets and the second provider priorities its full capacity to

one type of patients (patient Type 2 for policy index 1) and provides low quality service to

the remaining patients of the other type. Regardless of policy, the providers objectives are

f(X1) = 1 and f(X2) = m2

λ1+λ2−m1
allowing the higher capacity provider to provide higher

quality service. While the providers are indifferent between the referrer’s policy, the patients

are not. Policy 1 provides higher quality of service to Type 2 patients and Policy 2 provides

higher quality of service to Type 1 patients.

Theorem 4, shown below, explores a similar scenario to that of Theorem 3, except that

the total arrival rates are higher than 2m2 +m1.

Theorem 4. [Low heterogeneous provider capacity] Consider a referral system where

both providers are LOC, capacity scenario is (High, Low) and 2m2 + m1 < λ1 + λ2. The

optimal referral policy depends on the condition:

m2(λ2 −m2)
α−1
1 −1 − (m1 +m2 − λ1)

α−1
1 + (m1 − λ1)

α−1
1 > 0 (2.20)

The optimal policy and target probabilities are shown in the following table:
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Index
Optimal Policy TP

Condition (Eq. 2.20)
(λ11, λ21)
(λ12, λ22)

(x11, x21)
(x12, x22)

1
(λ1, λ2 −m2)

(0,m2)
(1, (m1−λ1

λ2−m2
)(α1)

−1
)

(0, 1)
True

2
(λ1 −m2, λ2 −m2)

(m2,m2)
(1, (m1+m2−λ1

λ2−m2
)(α1)

−1
)

(1, 0) or (0, 1)
False

Table 2.4: Optimal policies (both providers are LOC, capacity scenario (High, Low) and 2m2 + m1 <

λ1 + λ2)

Theorem 4 shows the only situation where the optimal referral policy results in a provider

partially prioritizing one type of patient over the other type. In particular, due to the higher

arrival rates than in the scenario for Theorem 3, patients of Type 2 seen by the provider 1

have target probability between zero and one.

The two policies shown in Table 2.4 differ most markedly in that in Policy 1, all patients

of Type 1 are allocated to provider 1 allowing provider 2 to focus only on patients of Type

2. This policy results in all patients having a positive probability of being seen within their

wait time targets and is optimal only when Equation 2.20 holds. It can be verified that

the left hand side of this condition is decreasing in m1 and increasing in the arrival rates.

To put this in plain language, this is due to the fact that with sufficient residual capacity

the first provider can see more patients within their target wait time when not overloaded.

This congestion effect pushes more patients to be seen by the second provider and results

in sub-par service for one of the types allocated to this provider. Notably, this condition

does not depend on the second provider’s level of operational ability since this provider is

only able to offer target wait times above zero to an arrival rate of customers equal to its

capacity.

The above theorems have covered all scenarios except for both providers having intermediate

capacity levels. Theorem 5 shows optimal referral policy for this scenario:

Theorem 5. [Intermediate provider capacities] Consider a referral system where both

providers are LOC. If the capacity scenario is (Mid, Mid) then either of the following policies

can be optimal for the referrer are:
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Index
Optimal Policy TP

(λ11, λ21)
(λ12, λ22)

(x11, x21)
(x12, x22)

1
(λ1 −m2,m1 +m2 − λ1)
(m2, λ1 + λ2 −m1 −m2)

(1, 1)
(1, 0)

2
(m1, λ1 + λ2 −m1 −m2)
(λ1 −m1,m1 +m2 − λ1)

(1, 0)
(1, 1)

Table 2.5: Optimal policies (both providers are LOC, capacity scenario (Mid, Mid))

The two policies are equivalent from the point of view of the referrer and the patients but

differ with respect to the providers objective. The first policy provides higher mean target

probabilities to the first provider and the second policy favours the second provider. Under

the first policy fpolicy−1(X1) = 1 and fpolicy−1(X2) =
m2

λ1+λ2−m1
and under the second policy

fpolicy−2(X1) =
m1

λ1+λ2−m2
and fpolicy−2(X2) = 1. Under both policies the total proportion of

patients that have no chance to be served within their wait time targets is λ1+λ2−m1−m2.

Discussion of optimal referral policies: The results of Theorems 2-5 describe optimal

referral policies when both providers are LOC. Prioritization, where at least one provider

provides high quality of service to exactly one type of patients, is ubiquitous throughout all

capacity scenarios. At low capacities (Theorem 2) all capacity scenarios lead to at least one

provider using a fully prioritized scheduling policy. In most cases, intermediate and larger

capacities will also have one stream of patients who have a target wait time probability of

zero. This is due to the low operational ability which limits the rewards from serving both

types of patients with quality service simultaneously. The only exception to this rule is

Theorem 4 policy 1, which is optimal when the condition in Equation 2.20 holds. In this

case, the first provider partially prioritizes one type of patient over the other type, while the

second provider is able to see all patients within the target wait time.

Theorem 4 is also exceptional with respect to the referrers value. In all other cases the

referrer receives utility equal to the total provider capacities m1 + m2. The policies for

Theorem 4 use some of provider 1 capacity to provide intermediate service levels to Type 2

patients. This occurs because the residual capacity of provider 1 after serving all the Type

1 patients is insufficient to serve remaining Type 2 patients without compromising the wait

time target probability. This required compromise results in the structure of the referral

policy being dependent on the operational ability of provider 1. The achievable region for

provider 1 is similar to the situation shown in Figure 2.2b.

These results motivate our exploration of fair-allocation objectives in the extension

(Section 2.4). In practice it is unlikely to be acceptable to knowingly send patients to a
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facility where they will certainly suffer from extended wait times.

2.3.2 Referrer Problem with Heterogeneous Operational abilities

In this section we focus on the situations where providers differ in their operational abilities.

Specifically, one provider is HOC and thus able to find efficiencies scheduling both patient

types together, while the other is LOC. The assumptions from the previous section are

maintained which results in the LOC provider utilizing scheduling policies P1 and P2, which

respectively prioritize patient types 1 or 2. The shared scheduling policy S is the only option

for the HOC provider. The theorems below describe the optimal policies for the referrer and

providers for the both scenarios where the HOC provider has higher and lower capacity.

Theorem 6. [Higher capacity HOC provider] Consider a referral system where the

provider with the higher capacity (provider 1) is HOC. The optimal referral and scheduling

policies are as follows:

a) In all capacity scenarios except when both the capacity scenario is (Low, Low) and

2m1 +m2 < λ1 + λ2, all feasible policies are optimal if and only if they satisfy:

λ12 + λ22 = m2 (2.21)

The resulting target probabilities from such a policy are: x11 = x21 = ( m1

λ1+λ2−m2
)(α1)−1

and (x12, x22) = (1, 1).

b) When the capacity scenario is (Low, Low) and 2m1+m2 < λ1+λ2, the optimal referral

policy depends on the condition:

(λ1 +m1 −m2)(
m1

λ1 +m1 −m2

)α
−1
1 − (2m2)(

1

2
)α

−1
1 − (m1 +m2 − λ1)((

m1 +m2 − λ1

λ2 −m1

)α
−1
2 −1 − 1) > 0

(2.22)

The optimal policy and target probabilities are shown in the following table :

Index
Optimal Policy TP

Optimality Condition (Eq. 2.22)
(λ11, λ21)
(λ12, λ22)

xi1

(x12, x22)

1
(λ1 −m2,m1)
(m2, λ2 −m1)

( m1
λ1+m1−m2

)(α1)
−1

(1, 0)
True

2
(m1,m1)

(λ1 −m1, λ2 −m1)

( 1
2
)(α1)

−1

(1, (m2+m1−λ1
λ2−m1

)(α2)
−1

)
False

Table 2.6: Optimal policies (first provider is HOC - capacity scenario (Low, Low) and λ1+λ2 > 2m1+m2)
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Theorem 6 describes the referrer and provider policies when the HOC provider has

higher capacity. There are two cases, where case (b) is the exceptional situation where

both providers have very low capacity.

In case (a), the best policy for the referrer is to allocate the LOC provider its full capacity

m2 and the remaining λ1 + λ2 − m2 patients to the higher capacity HOC provider. These

arrival rates allow the LOC provider to provide a target probability of one to both patient

types. While the HOC provider receives more patients than its capacity, it uses the shared

policy which grants both patient types positive target probabilities.

In case (b) there are two referral policies whose optimality is determined by Equation 2.22.

Policy 1 has the LOC provider fully prioritizing Type 1 patients. In Policy 2, both providers

offer positive target probabilities to all patients. At higher capacity and ability levels of

the LOC provider, the referrer moves toward selecting the second policy. As arrival rates

increase the referrer moves toward selecting Policy 1. Policy 1 refers a smaller proportion of

patients to the HOC provider 1 enabling higher target probabilities for these patients. The

additional Type 2 patients referred to the LOC provider receive a target probability of zero.

Theorem 7 describes optimal referral policies in the situation where provider operational

capabilities are heterogeneous and the HOC provider has lower capacity:

Theorem 7. [Lower capacity HOC provider] Consider a referral system where the

provider with the lower capacity (provider 2) is HOC. The optimal referral and scheduling

policies are as follows:

a) In all the capacity scenarios if 2m2+m1 ≥ λ1+λ2 then all feasible policies are optimal

which satisfy:

λ11 + λ21 = m1 (2.23)

The resulted target probabilities are: (x11, x21) = (1, 1) and x12 = x22 = ( m2

λ1+λ2−m1
)(α2)−1

.

b) The optimal policy and target probabilities when 2m2 + m1 < λ1 + λ2 depend on the

following equations:

(m1 +m2 − λ1)((
m1 +m2 − λ1

λ2 −m2

)α
−1
1 −1 − 1)− (λ1 +m2 −m1)

1−α−1
2 m

α−1
2

2 + 21−α−1
2 m2 > 0

(2.24)

(m1 +m2 − λ1)
α−1
1 − (m1 − λ1)

α−1
1

(λ2 −m2)
α−1
1 −1

− (2m2)(1− (
1

2
)α

−1
2 ) > 0 (2.25)

The optimal policy and target probabilities are shown in the following table:
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Capacity

Scenario
Index

Optimal Policy TP
Optimality Condition

(λ11, λ21)
(λ12, λ22)

(x11, x21)
xi2

(Low, Low)

(Mid, Low)

1
(λ1 −m2, λ2 −m2)

(m2,m2)

(1, (m1+m2−λ1
λ2−m2

)(α1)
−1

)

( 1
2
)(α2)

−1 Eq. 2.24 True

2
(m1, λ2 −m2)
(λ1 −m1,m2)

(1, 0)

( m2
λ1+m2−m1

)(α2)
−1 Eq. 2.24 False

(High, Low)
1

(λ1 −m2, λ2 −m2)
(m2,m2)

(1, (m1+m2−λ1
λ2−m2

)(α1)
−1

)

( 1
2
)(α2)

−1 Eq. 2.25 True

3
(λ1, λ2 −m2)

(0,m2)
(1, (m1−λ1

λ2−m2
)(α1)

−1
)

1
Eq. 2.25 False

Table 2.7: Optimal policies (second provider is HOC and 2m2 +m1 < λ1 + λ2)

Theorem 7 is structurally very similar to Theorem 6. Part (a) describes the first situation

where 2m2+m1 > λ1+λ2 and it is always best for the referrer to allocate the LOC provider its

full capacity of m1 patients. Like Theorem 6, the LOC provider is able to provide both types

of patients with a target probability of one. The HOC provider again can take advantage of

complementarities to offer a shared policy where there is a positive chance for all types of

patients to be served within their target wait times.

Part (b) describes optimal policies when there is relatively small capacity in the system.

The specific policy depends on the the capacity scenario and the two Equations 2.24 and 2.25.

The condition 2m2+m1 < λ1+λ2 excludes the (Mid, Mid) capacity scenario. Equations 2.24

and 2.25 are both decreasing with respect to λ1 and λ2 and increasing with respect to m1.

When either condition is true, the same policy (index 1) is used which partially prioritizes

Type 1 patients at the first (LOC) provider and utilizes shared capacity at the second (HOC)

provider. Policy 2 is used when the LOC provider has lower relative capacity, and results

in the LOC provider fully prioritizing Type 1 patients. Policy 3 is used when the capacity

scenario is (High, Low). Under Policy 3 the referrer specializes the referral rates, sending all

Type 1 patients to the first provider. Of note, Policy 3 is optimal under the same capacity

and arrival rate conditions when both providers are LOC (see Theorem 4). This is also the

only policy which is optimal for an HOC provider where shared scheduling is not used.

Discussion of impact of provider heterogeneity on optimal referral policies: With

the exception of Case (b) Policy 3 of Theorem 7, when there is a HOC provider, the optimal

referral policies elicit the use of the shared policy by the HOC provider. In these situations,

the referrer allocates patients to the HOC provider above its capacity level. While this allows

the system to take advantage of operational efficiencies that this provider is able to gather,
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it overloads the HOC provider and results in target probabilities below one for both patient

types. In many cases this allows for less prioritization on the part of the LOC provider and

broadly more equitable patient outcomes. This dynamic is illustrated in Table 2.8 which

shows the impact of a HOC provider on the referral policy and target probabilities when the

capacity scenario is (Mid, Mid).

Situation
Optimal Policy TP

(λ11, λ21)
(λ12, λ22)

(x11, x21)
(x12, x22)

(LOC,LOC)

(λ1 −m2,m1 +m2 − λ1)
(m2, λ1 + λ2 −m1 −m2)

or
(m1, λ1 + λ2 −m1 −m2)
(λ1 −m1,m1 +m2 − λ1)

(1, 1)
(0, 1)
or

(1, 0)
(1, 1)

(HOC,LOC) λ11 + λ21 = λ1 + λ2 −m2
xi1 = ( m1

λ1+λ2−m2
)(α1)

−1

(1, 1)

(LOC,HOC) λ11 + λ21 = m1

(1, 1)

xi2 = ( m2
λ1+λ2−m1

)(α2)
−1

Table 2.8: Optimal policies (capacity scenario (Mid, Mid))

It can be seen that when both providers are LOC there are two optimal policies for

the referrer (Situation (LOC,LOC) in Table 2.8). Both policies feature a provider who

is overloaded and elects to fully prioritize one patient type. For instance, consider the

first policy where provider 2 prioritizes Type 2 patients resulting in target probabilities

(x11, x21) = (1, 1) and (x12, x22) = (0, 1). The first provider is referred a total rate to their

capacity and is able to fully serve both types of patients within their wait time targets.

Holding arrival rates and capacity equal, improving the first providers operational capabilities

from LOC to HOC results in structural changes to the referral and scheduling policies

(Situation (HOC,LOC) in Table 2.8). The referrer takes advantage of the ability to efficiently

schedule both patient types together and allocates more patients to this provider. This

reduces both the target probabilities and the objective value of the first provider. The

reduced demand for the second provider allows all patients sent to this provider to be seen

within their wait time targets which improves the provider’s objective function. In this

case, conditioned on the provider, both patient types have the same probability of receiving

service within their wait time targets and all patient streams have positive wait time target

probabilities. This increased equity is due to the shared scheduling policy favored by the

HOC provider 1. The policies have similar structure when the second provider is the unique

HOC provider (Situation (LOC,HOC) in Table 2.8). In both situations, The difference in

target probabilities between the HOC and LOC provider depends on the total arrival rate
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and the level of operational ability of the HOC provider.

Discussion of impact of patient demand on referral policy: A referral policy is

specialized if a provider receives patients of only one type (i.e. there exists λij = 0).

Theorems 4 and 7 show that these policies can be optimal only for (High,Low) capacity

scenarios. In these scenarios, the lower capacity provider is specialized and receives a referral

rate commensurate with the provider’s capacity and is able to offer a target probability of 1.

Figure 3.2 shows the impact of different parameters on the optimal range of these policies

for (LOC, LOC) and (LOC, HOC) scenarios (resp. Figures 3.2a, 3.2c and 3.2b, 3.2d).

These figures show the referrers objective function, i.e. the arrival rate of patients receiving

treatment within their target wait times, as the arrival rate of Type 2 patients increases.

The region where the referral policy is specialized is shown with the dashed line. In all cases,

as the arrival rate increases the policy transitions to a specialized policy. At low λ2, there

is a region where the objective function is non-decreasing. For the (LOC, LOC) scenario

this region corresponds to Theorem 3 where exactly m1 +m2 patients are seen within their

target wait time. In the (LOC, HOC) scenario this corresponds to Theorem 7 part (a) where

patients are served within their wait time targets by the LOC provider and the HOC provider

uses a shared policy to serve an increasing rate of patients.

In each scenario, when λ2 is sufficiently large, the policy transitions to a range where the

system remains non-specialized but the number of patients seen within target wait times is

decreasing rapidly. These situations correspond to Theorem 4 Policy 2 (Figures 3.2a,3.2c)

and Theorem 7 Policy 1 (Figures 3.2b,3.2d). In these cases, provider 1 is using a partially

prioritized scheduling policy where the volume of lower priority patients is receiving the

additional Type 2 patients. Comparing Figures 3.2a and 3.2c and Figures 3.2b and 3.2d

shows how the rate of decline depends on the operational ability of provider 1 in this range.

Specialization of referral rates occurs at high arrival rates. When λ2 is sufficiently large

all scenarios transition to a specialized policy where the objective function is decreasing in

the arrival rate. Comparing Figures 3.2a with 3.2b and 3.2c with 3.2d show the region of the

specialization policy decreases when the second provider is HOC. The specialization policy

is also associated with a slower decrease in the objective function. For example for policies

in Theorem 4, the following equations show the derivative of G(Λ) with respect to λ2 for

specialization and non-specialization policies respectively: dG1(Λ)
d(λ2)

= −(α−1
1 − 1)(m1−λ1

λ2−m2
)α

−1
1

and dG2(Λ)
d(λ2)

= −(α−1
1 − 1)(m1+m2−λ1

λ2−m2
)α

−1
1 . It can be verified that both formula are negative

and dG1(Λ)
d(λ2)

>dG2(Λ)
d(λ2)

. This stems from the greater volume of Type 1 patients that are served

at higher priority by provider 1.
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Figure 2.4: Impact of λ2 on the optimal range of the specialization policy. (m2,m1, λ1) = (1, 11, 10)

2.4 Analysis with Fairness Constraints

Based on results in the previous section we know that in many situations implementing

optimal referral policy by the referrer will lead to large differences between the target

probabilities of the two referred patient streams. For example in the scenario described

in Theorem 2, under Policies 2 and 3, patients of Type 2 referred to provider 1 receive a

target wait time probability of zero while the patients of Type 1 referred to this provider

have target wait time probability of one. This is unlikely to be acceptable to the referrer

despite this policy maximizing the total number of patients served within target wait times.

To study the impact of mandating the provider to provide fairness we modify the base model

by adding the constraint to the providers scheduling problem that target probabilities of each

patient stream are equal to each other (i.e x1j = x2j, ∀j). This problem is referred to as the
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fair-allocation scheduling problem:

max
Xj

∑
iλijxij∑
i λij

St :

0 ≤ xij ≤ 1
n∑

i=1

λijx
αj

ij ≤ mj

xij = x(−i)j

This additional constraint leads the provider to offer target probabilities of one if capacity

allows and x1j = x2j = (
mj

λ1j+λ2j
)(αj)

−1
otherwise. Extensive results on the optimal referral

policy are provided in Section A.2.1 of the Appendix. At high operational abilities (αi ≥
1) the shared policy preferred by the providers provides fair scheduling regardless of the

constraint. The fairness constraint will lead to lower objective function values when the

operational abilities are lower. To illustrate the impact of incorporating fairness on target

probabilities and G(Λ) we explore the extreme capacity scenario (Low, Low). We derive

a precise relationship between the provider level of ability and G(Λ). The following table

shows optimal referral policies and associated target probabilities when both providers are

LOC and λ1 + λ2 > 2m1 +m2.

Referrer Problem
Candidate Optimal Policies TP

(λ11, λ21)
(λ12, λ22)

(x11, x21)
(x12, x22)

Standard Problem (Thm. 2 Policy 3)
(m1, λ2 −m2)
(λ1 −m1,m2)

(1, 0)
(0, 1)

Fair-allocation Problem

(m1,m1)
(λ1 −m1, λ2 −m1)

xi1 = ( 1
2
)(α1)

−1

xi2 = ( m2
λ1+λ2−2m1

)(α2)
−1

(λ1 −m2, λ2 −m2)
(m2,m2)

xi1 = ( m1
λ1+λ2−2m2

)(α1)
−1

xi2 = ( 1
2
)(α2)

−1

Table 2.9: Optimal policies (both providers are LOC, capacity scenario (Low, Low))

The fair-allocation problem has two candidate optimal solutions. The optimal solution

will depend on the relative capacities and operational abilities of the two providers. With

respect to the target probabilities, in the regular system the optimal policy results in a fully

polarized system where the first and second providers only serve Type 1 and Type 2 patients

respectively. However, in the fair-allocation referral system there are positive chances for

all patients to be served within their wait time targets. We can explicitly compare the rate
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at which patients receive service within their target wait times between the standard and

fair-allocation problem. This corresponds to the difference between the referrer objective

functions and is shown in the following equation.

∆(G(Λ)) = min(m1(1− (
1

2
)(α1)−1−1) +m2(1− (

m2

λ1 + λ2 − 2m1

)(α2)−1−1),

m2(1− (
1

2
)(α2)−1−1) +m1(1− (

m1

λ1 + λ2 − 2m2

)(α1)−1−1)). (2.26)

The difference shown in Equation 2.26 is decreasing in operational abilities (α1, α2) and

approaches 0 as α1 and α2 both approach 1. This can be generalized to other situations as

well.

Numerical example: We illustrate the impact of fairness on the system performance and

the optimal policy with a series of numerical examples which are shown in Figures 2.5-a

to 2.5-d. In these figures, the impact on the optimal system objective function is shown

as the operational ability of the first provider is increased. In each of these situations the

second provider is LOC, however, we consider the case where α2 = 0.01 (Figures 2.5a,2.5c)

and α2 = 0.99 (Figures 2.5b,2.5d). Figures 2.5a and 2.5b show the capacity scenario (High,

Low) when 2m2 +m1 < λ1 + λ2 and the second provider has low and moderate operational

ability. Figures 2.5a and 2.5-b a similar example but for a (Low, Low) capacity scenario

when 2m1 +m2 < λ1 + λ2.
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Figure 2.5: Impact of fairness on G(Λ). (a)-(b): (m2,m1, λ2, λ1) = (1, 6, 4, 5), (c)-(d): (m2,m1, λ2, λ1) =

(3, 4, 5, 6.5)

In all cases as the operational ability of the providers increase the gap between system

performance for the fair-allocation and regular policies decreases. When α1 is small, the

gap is substantial in all cases, whereas when α1 is large the gap depends on the capacity

situation. In the (High, Low) situations, there is no gap at α1 > 1 as the optimal policy

limits the demand for provider 2 such that all patients can be seen with target probability

of 1 (Theorem 6-a). In the lower capacity scenarios, there is a gap even at higher α1 but

the size of the gap depends to a large degree on α2 and is not visible when α2 = 0.99. The

gap is due to the prioritized optimal policies described in Theorem 6-b. When α2 = 0.01 the

system is fully prioritized with patients allocated to provider 2 receiving target probability

of 1 or 0. When α2 = 0.99 the system is partially prioritized with both types of patients

allocated to provider 2 receiving positive target probabilities.
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2.5 Conclusion

We studied referral and scheduling policies in a centralized system where both the referring

agent and providers delivering the service are attempting to maximize the proportion of

their patients seen within target wait times. Our model allowed study of the impact of

operational parameters through a novel achievable region methodology where providers may

have positive or negative complementarities associated with serving heterogeneous patient

populations. We extracted optimal decisions for the referrer and providers in the centralized

system for different operational parameters.

When operational abilities are high, scheduling complementarities lead the system to

deliver equitable service with high probabilities of patients being seen within their target

wait times. When abilities are low, there is a conflict between maximizing the number of

patients served and fair access services. In particular, providers may be incentivized to fully

or partially prioritize one type of patient over the other. We find that the cost of requiring

equitable service between patient types is highly dependent on the operational abilities of

both providers.

These results highlight how operational structure may influence equitable access to services

for groups of patients with different needs. When scheduling is challenging, there is a strong

incentive to simply prioritize one group of patients over the other. In this paper we have

investigated a single reward mechanism where referrer and provider maximize throughput

of patients receiving service within target wait times. While this is aligned with current

practice, rewards and regulations which explicitly take into account fairness goals may be

required in more challenging instances.
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Chapter 3

The Application of Reinforcement

Learning in Patient Referral Networks

3.1 Introduction

On-time access to specialists has become a major challenge for healthcare systems in many

countries including the United States, Canada, and most European countries (Jaakkimainen

et al. 2014, Alvarez et al. 2019, Viberg et al. 2013b). On-time access to specialists can

be measured by wait time targets (WTT), defined as the recommended time within which

patients should be treated. It has been widely shown that long wait times exceeding WTT

result in deteriorating patient health condition which places additional pressure on healthcare

systems (Lawrentschuk et al. 2003b, Haddad et al. 2002b). Wait times have also been

significantly impacted during COVID-19. For instance, Mayol and Fernández Pérez (2020)

reported that there was reduced capacity and increased wait times for elective surgeries

when resources were rationed for COVID-19 patients in the spring of 2020. Finally, Moir

and Barua (2020) defined the cost of waiting time as the value of time that is lost while

waiting for treatment and estimated that the cost of waiting time per patient in Canada to

be between $2,254 and $6,838.
Patients can gain access to specialized services through two main referral schemes: centralized

and decentralized referral systems. General practitioners (GPs), specialists, and the referral

process are the three main elements of both referral systems. In a decentralized referral

system, a patient is first seen by a GP and in the case that further treatment is needed, the

patient is referred to a specialist directly by the GP. However, under a centralized referral

scheme, if specialized services are needed, the patient is directed by the GP to a central

body (the referrer), which has access to all specialists in the network. The referrer is then
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responsible for allocating the patient to an available specialist.

Research has found that the optimum structure of patient referral networks in many cases

is still unclear (Lorant et al. 2017), but there have been moves toward centralization (Scott

et al. 1999). Reducing the likelihood of patient readmission to hospitals (Mascia et al. 2015),

better continuity of care (Lorant et al. 2017), better equity across the network, wider access

to specialists, streamlining of the referral process and information flow (Scott et al. 1999),

and higher fairness to physicians through balancing referral rates are some advantages of

using a centralized referral scheme.

Despite the potential advantages of a centralized referral network, a referrer’s information

on the characteristics of the network is very limited and there are high levels of uncertainty

in both arrival rates to the network and specialist service times . As a result, finding optimal

referral rates to specialists is still a complex and challenging problem. The complexity of the

problem significantly increases as the network becomes larger (e.g., the number of specialists

in the network increases) or as more factors are incorporated in making referral decisions

(e.g., closeness to specialists and wait times for them). Allocating patients to specialists

close to them can reduce the burden of travel for patients (Piterman and Koritsas 2005) and

therefore, distance between specialists and patients is another important factor besides wait

time that can impact referral decisions in a network (Langley et al. 1997).

In this paper, we use deep learning methodology to model a centralized referral network

where a referrer assigns patients from different locations to a set of specialists. In particular,

we use deep Q-network (DQN), one of the most promising reinforcement learning methodologies

(RL), introduced by Mnih et al. (2015). The methodology is used in complex environments

where, due to incomplete information of a referring agent on environment characteristics;

complexity of interactions within the environment, and a high level of uncertainty in different

elements of the environment, it is not possible to find an analytical solution to the optimal

referring behaviour for an agent. In our model, patients arrive to the system stochastically

and are homogeneous with respect to their health condition. However, the specialists are

heterogeneous with respect to the time they require to treat a patient. This setting is a

representation of health conditions with standardized care pathways such as cataract surgery.

Patients requiring cataract surgery are usually referred to a specialist at a certain stage of

disease progression such as when color intensity is reduced or when a patient has difficulty

in daytime driving (Allen and Vasavada 2006). In practice, a referrer’s information about

system characteristics such as specialists’ service times and patients’ real wait times for

specialists are very limited. These make the system complex to solve using traditional

analytical models such as Markov Decision Process (MDP) and/or queueing system.

We further extend our analysis to incorporate collaboration among adjacent centralized

34



referral networks. Due to the uncertainty in patient arrivals and service times, a referral

network can get congested, in which case patient transfer among adjacent referral networks

can improve health outcomes of patients by reducing their wait times (Centre for Substance

Abuse Treatment 2000). Collaboration between the networks further increases the complexity

of finding optimal referral rates to specialists and thus justifies the implementation of machine

learning algorithms. The concept of collaboration between the networks becomes a more

urgent issue once we consider how pandemics such as COVID-19 have affected healthcare

systems in different countries, including Canada. The pandemic has put unequal pressure

on different referral networks, thus resulting in significant increases in arrival rates to some

referral networks and decreases in capacity in others (Moir and Barua 2020). It is still unclear

under what conditions referral networks can collaborate and what could be the results of

this collaboration on patient wait times and referral rates to specialists.

To the best of our knowledge, our study is the first that applies a DRL methodology

to investigate the potential impact of using an intelligent referrer in centralized referral

networks. Using a state-of-the-art DRL methodology, we seek to answer the following

research questions: 1) To what degree can using an intelligent referrer in a single centralized

referral network improve average patient wait times for specialists, and 2) How can we define

a collaboration mechanism between two intelligent centralized networks and to what degree

would collaboration between the networks improve patient access to specialists?

Our study yields several interesting findings that have policy implications. First, in

comparison with commonly used referral policies such as the shortest queue policy, we find

that depending on a referral’s network characteristics, specialist service times and WTT,

using an intelligent referrer can significantly improve patients’ access to specialists and reduce

wait times in the network. In addition, the performance of the intelligent referrer, with

respect to wait times, increases as WTT decreases and as specialist service times become

more diverse .

Second, we find that it is always better for a referrer to have short-term vision toward

optimizing referral rates to specialists. This is similar to situations where investors might

choose a short-term investment in a highly volatile market. Due to the high level of

uncertainty in arrival and service times, it might be the best practice for a referrer to prioritize

short-term rewards over uncertain long-term rewards.

Finally, we find that collaboration has the potential to further improve patients’ wait

times in the system. However, the impact depends on specific factors such as a compensation

scheme for referrers for each transferred patient and WTT. When WTT is high, meaning

that there is higher flexibility in patient wait times, it is in the interest of an intelligent

referrer to focus on optimizing referral rates to the specialists in its own network and avoid
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transferring them to an adjacent network. In our model, to incorporate potential government

incentives for cross-network collaboration, we allow the payments for a transferred patient to

be set differently than payments for within network referrals. However, we show that there

is an optimal threshold for the payment for transferred patients. While a small incentive

may not motivate the networks to collaborate with each other, a high value of incentive, on

the other hand, could result in over-collaboration which occurs when too many patients are

transferred between the networks and, consequently, average wait times in the whole system

increase. As a result, we show that there is a ”sweet spot” for the incentive to improve the

overall outcome of the system.

The rest of the study is organized as follows. We first review the related operations

management literature. In Section 3.3 we describe different elements of a centralized referral

network and introduce a general mechanism under which collaboration between the networks

can occur. In Section 3.4 we study how a DQN approach can be applied in a single centralized

referral network and in Section 3.5 we study the concept of collaboration between two

centralized referral networks. Section 3.6 is devoted to sensitivity analyses we performed

on different characteristics of the model. We conclude the paper in Section 3.7 with a

summary of our findings, insights, and limitations of our study.

3.2 Literature and Positioning

Convenient and on-time access of patients to specialized services is one of the major concerns

in many countries and evidence suggests that the location of a specialist and its proximity to

patients is one of the factors that can impact referral rates to the specialist (Piterman and

Koritsas 2005, Langley et al. 1997, Olmos et al. 1995). This problem has been investigated

from different perspectives. Studies under the facility-location category have focused on

optimizing the location of the specialized services considering different sets of constraints.

Under this perspective, the main goals are usually to find the optimum number of facilities

and optimum locations to locate the facilities to make sure that patients do not wait more

than a specific amount of time. For instance, Baron et al. (2008) analyzed the Stochastic

Capacity and Facility Location Problem (SCFLP) with the FIFO discipline and general

arrival and service processes. Each facility, modeled as single- or multiple-server queue,

serves customers within a predetermined radius and it is assumed that customers visit the

closest facility. Through decomposition of the problem into three subproblems they showed

that arrivals to facilities have Poisson distribution and developed an algorithm to determine

the optimum number and location of the facilities. Zhang et al. (2009) also investigate the

facility location problem in preventive healthcare with the goal of maximizing the number
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of clients who participate in the program. They focused on a referral network where each

facility is modeled as an M/M/1 queue, and it is assumed that each client favours the facility

with minimum expected total time and the number of arrivals to a facility decreases as the

expected total time increases.

Although optimizing the location of facilities has the potential to improve patients’ access

to specialized services, in most cases re-locating or changing the location of a healthcare

provider is not practical. For instance, if specialized services are only accessible through

specialists, then optimally locating specialists may not be feasible. Therefore, another

perspective is to focus on optimizing interactions within a referral network. Optimizing

referral rates and scheduling policies has been studied extensively (Cayirli and Veral 2003,

Marynissen and Demeulemeester 2019, Ahmadi-Javid et al. 2017b). However, to make the

problem tractable, most of the studies in this category make some restrictive assumptions

that might not represent what happens in practice. For instance, in studies focused on

optimizing scheduling policies, it is usually assumed that the service times of healthcare

providers and their distributions are known and referral rates to these providers are considered

to be exogenous. On the other hand, in most studies focused on optimizing referral rates to

specialists, not only are distance between patients and specialists not considered, but also

referral decisions are made based on average wait time for specialists rather than real wait

time. The first part of our paper where we study the impact of using DQN methodology

in a single referral network falls into the latter category. In our study, a referrer does not

have complete information on the specialists’ service times. In addition, the referrer not

only considers distance between patients and specialists but also takes real wait times for

specialists into account when making its referral decisions. Despite the extensive literature

on optimizing interactions within a referral network, the on-time and convenient access of

patients to specialized services is still one of the challenges yet to be solved.

Another perspective from which optimizing interactions between referral networks has

been studied is on a smaller scale and through a qualitative approach by Peng and Bourne

(2009). They examined the concept of competition between two healthcare networks, including

two core hospitals located next to each other, and their partners, in Taiwan. They proposed

that simultaneous competition and collaboration can exist when each organization has

complementary but distinctly different sets of resources. Since their study investigated one

case study in a single industry, they also argued that their findings might not be generalized.

The second part of our paper utilizes a very different approach from Peng and Bourne (2009)

and provides complementary results including the level of incentives that are required to

initiate collaboration between the networks.

Our paper studies how collaboration between referral networks can improve patient access
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to specialists by applying a RL technique (i.e., DQN). DQN is a RL technique which is the

result of integrating an Artificial Neural Network (ANN) into the Q-learning process. The

approach allows us to analyze the problem in a more practical way where an intelligent

referrer learns optimal behaviour through interacting with different elements of the network.

The methodology has been applied to a variety of topics. Babaev et al. (2019) applied a

deep learning approach for credit scoring in the banking industry. The results indicated

the superiority of the deep learning algorithm versus benchmarks on historical data where

the former resulted in significant higher financial gains for a case study bank. Liu and

Shoji (2019) also applied a deep learning algorithm to predict intelligent vehicle mobility.

The algorithm outperformed other techniques and resulted in significant improvement in

vehicle mobility prediction. Ahn and Park (2020) applied DQN to control balancing between

heating, ventilation, and air conditioning (HVAC) systems and Dai et al. (2019) used this

methodology to improve the utility of vehicular networks. Deep learning techniques have

also been applied widely in medical image analysis to improve both precision and speed of

diagnosis processes (Ker et al. 2017). To the best of our knowledge, our study is the first

one that examines the application of a deep learning approach in patient referral systems.

3.3 Modelling a Centralized Referral Network

In this section we explain key elements and characteristics of centralized referral networks.

Due to the stochastic control nature of the referral system, we explain how the Markov

Decision Process (MDP) can be applied to analyze the system. However, the MDP model

cannot be analytically solved to find optimal solutions because of the complexity of the

system and the uncertainty in many of the variables. As a result, we then propose a DQN

approach to analyze the MDP system.

In a centralized referral network (Network M), the patient is first seen by a GP. In the

case where specialized services are needed the patient is then referred to the referrer which is

responsible for allocating the patient to one of the specialists in the network (i.e., the referrer

selects a specialist). Once the patient is referred, the selected specialist is responsible for

providing the patient with the required service. Centralized referral networks are widely seen

in different healthcare systems. For instance, the centralization of rheumatology referrals in

Canada (Hazlewood et al. 2016) is one case which improved patient access to rheumatologists.

Another example is the centralization of access to specialized health services in Quebec

(Spagnolo et al. 2021). The key elements of the centralized referral Network M and their

characteristics are defined as follows:

38



Patient: Patients are arriving from different locations to the network. We assume that

patients are similar in terms of their health risk. This assumption is reasonable for certain

health conditions such as cataracts for which patients are recommended to have them

removed as soon as they begin interrupting daily activities (Allen and Vasavada 2006).

Arrival rates (λ) are stochastic and the location of patient i ∈ N is represented by (xi, yi).

Specialist: There are nM specialists in Network M that are responsible for providing the

required service for the patients (e.g., cataract surgery). Service times of specialists are

stochastic and the location of specialist j ∈ {1, ..., nM} in this network is represented by

(xj, yj).

Referrer: There is one referrer, Referrer M, in the network that is responsible for allocating

arriving patients to specialists. Because all patients need to visit a specialist (as diagnosed

by a GP) and no triage or any other processes are done by the referrer, patients are referred

to a specialist immediately upon arrival (i.e., no wait time at the referrer stage). We assume

that the location (i.e., address) of patients and specialists are known to the referrer. We use

Euclidean distance as the measure for the distance between patient i located at (xi, yi) and

specialist j located at (xj, yj).

Dij = ((xi − xj)
2 + (yi − yj)

2)0.5 (3.1)

Because the distance cost is a standardized cost, the distance measure does not impact the

referral policies (see discussion in Section 3.3.1 ). Upon the arrival of a patient, the referrer

seeks to allocate the patient to a specialist that is close to them and will have a low wait

time.

3.3.1 Model Structure

We model a centralized referral network (Network M) as a Markov Decision Process (MDP).

Table 3.1 shows the model parameters:
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Index Definition

λM Arrival rate to Network M
nM Number of specialists in Network M
µj Service rate of specialist j, j ∈ {1, ..., nM}
Dij Distance between patient i ∈ N and specialist j
qj−t Real time queue size for specialist j at state t
pr Payment per each patient referred to a specialist
xij Binary variable, the value is 1 if patient i is referred to specialist j
sij−t Binary variable, the value is 1 if patient i is served by specialist j at time step t
Wij Patient i wait time for specialist j

Table 3.1: Single Network Parameters

For Network M, the state of the system at time t, st, is defined as the number of patients

waiting for each specialist (i.e. qj−t, ∀j). Therefore, st = {q1−t, ..., qnk−t}. We assume that

decision epochs are short enough such that only one of the following events can occur at

each time step:

1. A patient arrives to the network

2. A patient is served by one of the specialists and leaves the network

3. No event

where each event occurs with a specific probability. Note that this implies a memoryless

property which is easy to compactly encode into the MDP. However, the deep reinforcement

learning which we use and describe in the next section does not require as compact a

representation and could be generalized in future work or implementations. The first two

events are the only ones that can change the state of the system. A ={Refer,Wait} is the

action set for Referrer M. In the case where there is an arrival to the system, the referrer

action is {Refer}, otherwise (i.e., if a patient is served by a specialist or no event occurs) the

only action is {Wait}. The {Refer} action is itself a set of specific choices of referring the

patient to one of the nM specialists in the network.

Allocating patient i to specialist j at state t results in the following outcomes for Referrer

M:

1. Fixed payment (pr): A government payment per each patient referred to a specialist

in the network.

2. Immediate cost: The immediate cost is a distance-dependent cost which is realized by

the referrer immediately upon referring a patient to a specialist. In our model, F (Dij)

represents the immediate cost of referring patient i to specialist j.
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3. Delayed cost: The delayed cost depends on the patient wait time for the specialist

and is realized by the referrer once the patient is served by the specialist (i.e. when

sij−t′ = 1, t′ > t). In our model, G(Wij) represents the delayed cost of referring patient

i to specialist j.

Therefore, Referrer M’s reward function for referring patient i to specialist j at state t

can be defined as follows:

RM−t(i, j) = {pr} − {F (Dij)} − {sij−t′G(Wij)} t′ > t (3.2)

Note that when there is no arrival to the network there is also no reward for the referrer.

More specifically, there is no reward associated with the action {wait}. For our analysis, we
set pr = 2 and define F (Dij) =

Dij

maxjDij
which is the ratio of the distance between the patient

and the selected specialist over the distance between the patient and the farthest specialist

from the patient in the network. We also define G(Wij) =
Wij

WTT
which is the ratio of the

patient real wait time for the specialist over the WTT. Therefore, the reward function can

be re-written as follows:

RM−t(i, j) =2− (
Dij

maxjDij

)− (
Wij

WTT
) (3.3)

In Equation 3.3 both F (Dij) and G(Wij) are between 0 and 1 if the patient receives the

required service within the WTT. This standardization of costs allows the referrer to equally

incorporate the distance and wait time when optimizing its referral decisions. However, if

the patient waits more than WTT to see the specialist, then wait time cost (i.e.
Wij

WTT
)

becomes greater than 1. This will allow the referrer to balance wait time in the network by

prioritizing shorter wait times over closer distance.

Since the reward function of the referrer depends on the distances between patients and

selected specialists, the probabilities of patient arrivals are distance-dependent. In practice,

it is difficult for the referrer to know these distance-dependent arrival probabilities. In

addition, in practice the referrer has limited information on the service times of specialists

and their scheduling policies. Therefore, in the transition matrix of the MDP model, the

probabilities associated with patients being served by specialists are unknown to the referrer.

As a result, it is not possible to get analytical results from this MDP.

3.3.2 DQN Architecture

Sutton et al. (1998) introduced reinforcement learning (RL) as a self-taught process that

can be represented by an MDP. The main goal of the RL is to find a policy π, defined as
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a mapping from states to actions that results in the highest reward. RL algorithms can

be divided into policy-based and value-based methods depending on the learning objectives

(Rückstiess et al. 2010). To gain the maximum total reward in the future under a policy-

based RL method, an agent (e.g., referrer) must learn a policy, only from the data, such

that the action executed at each state is optimal. Value-based methods learn the policy by

maximizing a value function denoted as V (s) where s is the current state of the system at

time step t. Then, the value-based RL methods will find a policy which results in V ∗(s)

defined as

V ∗(s) = max
π

Vπ(s) (3.4)

where Vπ(s) = E
[∑∞

k=0 γ
kRt+k|st = s, π

]
is the expected long-term return of state s

under policy π. γ ∈ (0, 1) is the discount factor which determines the importance of distant

future rewards versus immediate rewards.

Q-learning, introduced by Watkins (1989), is a value-based RL technique that replaces

the value function with an action-value function Q(s, a) where Q : S ×A → R. As a result,

the action-value function for taking action at in state st is calculated as

Q(st, at) =
∑
st

P (st, st+1, at).[Rt(st, st+1, at) + γmax
a

Q(st+1, a)] (3.5)

where st ∈ S is the input state, st+1 ∈ S is a state accessible from st, at is agent’s action

in st, and P (st, st+1, at) is the probability of moving from state st to state st+1 given action

at. Rt(st, st+1, at) is the reward the referrer obtains from taking action at in state st and

moving to state st+1. Initially, all Q(s,a) values, or simply Q values, are set to zero. The

Bellman Equation is then applied to update the Q values at each step as follows:

Qnew(st, at) = Qold(st, at) + α[Rt(st, st+1, at) + γmax
a

Q(st+1, a)−Qold(st, at)] (3.6)

where α is the learning rate, Qold(st, at) is the old Q-value of the pair (st, at) and

maxaQ(st+1, a) is the maximum possible future reward considering all possible actions in

the new state st+1. The learning rate determines to what degree old information overrides

by the newly obtained information. An episode of the algorithm ends if st+1 is a terminal

state. Q-values are then disposed in a table, known as Q-table, and the agent will apply a

greedy strategy choosing the optimal choice of action a∗ as follows:

a∗ = argmax
a

(Q(s, a)) (3.7)
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Although some reinforcement learning methods such as Q-learning allow referrers to

extract optimal policies when they have limited information about the environment, these

methods can be applied only on small environments and quickly lose their feasibility as the

number of states and actions in the environment increase (Hester et al. 2018). To overcome

these challenges, Mnih et al. (2015) introduced DQN where the idea is to replace a Q-table

with a neural network. The neural network is trained to learn weights in order to approximate

the Q-function. A trained network receives a state as input and selects the action with the

highest Q-value. For a better understanding of the deep learning process in neural networks

readers are referred to Nielsen (2015).

3.3.3 Implementation of DQN For a Referral Network

We use Simpy, a process-based discrete-event framework based on Python, to define the

environment where the information about referrers and specialists is stored in a json file.

There are three main classes in our model:

1. Stream: This class is responsible for generating the stream of arrivals to the network.

Each generated patient i has two attributes: 1) location, and 2) referral time, which

shows the time that the patient is referred to a specialist.

2. Referrer: This class is responsible for referring the patient to a specialist (i.e., the

referrer selects a specialist) once an arrival to a network is generated.

3. Specialist: This class includes information about the selected specialist. Under this

class, the selected specialist provides the patient with the required service and then

the patient leaves the system. Each specialist j has two attributes: 1) location, and 2)

service time distribution.

Upon the arrival of a patient at time step t the state of the network is st . At each time

step t, DQN receives the current state st as the input that contains information about the

number of patients waiting for each specialist in the network. Then, DQN approximates a

Q-value for each action that can be taken from that state. For example, if there are three

specialists in the network, upon the arrival of a patient, there will be three estimated Q-

values which show Q-value for referring the patient to each one of the three specialists. The

objective of the network is to find the optimal approximating function.

In each time step the referrer either explores the environment and selects a random action

or exploits the environment and selects the action for the given state that gives the highest

Q-value. This is called the tradeoff between exploration versus exploitation. It is crucial

for the referrer to explore the environment enough so that it can find the optimal referral
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policies in the environment (Cao et al. 2019). Then, the referrer’s experience at each time

step is stored in a data set called the replay memory that is used to improve the performance

of the DQN over time. For example, executing action at at state st is an experience that

moves the system to state st+1 and results in a reward, Rt+1, for the referrer. Thus, we

define et as the referrer’s experience at time t as follows:

et = (st, at, Rt+1, st+1) (3.8)

All the referrer’s experiences over time are stored in the replay memory. The network

is then trained on random samples from the replay memory, sampling a specific number of

experiences and passing them to the network as input. We define this as the policy-based

network where its objective is to approximate the optimal policy through finding the optimal

function Q∗(s, a). Forward propagation is then applied and the policy-based network outputs

an estimated Q-value for each action that can be taken from the given input state. Then,

we calculate the loss which is a mean-squared error function that compares the Q-value

outputs from the policy-based network for the actions in the experiences sampled and the

corresponding optimal Q-values, called target Q-value, for the same actions. As a simplifying

example, assume that at time step k a given sample to the network is (sk, ak, Rk+1, sk+1).

The loss then can be calculated as follows:

loss =[Q∗(sk, ak)−Q(sk, ak)]
2 (3.9)

Where Q∗(sk, ak) is the target Q-value and Q(sk, ak) is the estimated Q-value. The

policy-based network gives us the value of Q(sk, ak). In addition, Q∗(sk, ak) satisfies the

Bellman requirements. Therefore, it can be written as follows:

Q∗(sk, ak) = E[Rk+1 + γmax
a

Q∗(sk+1, a)] (3.10)

DQN uses a separate network, called the target network, to find the value of maxaQ
∗(sk+1, a).

The loss function is then optimized using stochastic gradient descent (Bottou 2012). In short,

at the end of each time step, gradient descent is applied to update the weights in the policy

network in an attempt to minimize the loss. Also, every certain amount of time steps the

weights of the target network are updated to the weights of the policy-based network.

There is a rich literature on different RL algorithms capable of making an agent able

to efficiently learn optimum policies in environments where there is only one final reward

(e.g., win/lose in chess) (Vecerik et al. 2017, Nair et al. 2018). What makes our problem

distinguishable is the fact that every single action that the referrer takes has a delayed
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reward associated with it. In fact, both the time that a delayed reward is recognized, and its

value depend on the selected specialist service time which is stochastic. The learning process

becomes much slower and challenging due to the following reasons:

1. Since there is a delay between every action and its associated reward, a referrer always

makes decisions during the delay period which might not be optimal.

2. The size of the memory is limited and therefore it is not possible to keep all the state-

action pairs in the memory until the referrer’s rewards are realized.

In the following section we present our experimental results.

3.4 Single Network Experimental Results

In this section we explain our experimental results obtained from applying DQNmethodology

on Network M defined in Section 3.3. We began by representing our model using cataract

referral data from a local health integration network (LHIN) in Ontario. According to the

data, there were six specialists in the LHIN and 2,621 patients entered the system over a

year. Because distance is a key parameter in the reward function, to let the referrer optimize

referral decision more efficiently and avoid the curse of dimensionality (Poggio et al. 2017),

we assumed that patients arrived to the network from two different sources, located at [8,5]

and [12,6] which loosely corresponds to the major population centres in the LHIN. These

locations were chosen close enough so it would be optimal for the referrer to refer patients

from both sources to all specialists; the centralized referral networks are formed such that

all specialists are accessible to all patients. We assumed that the arrivals (λ) to the network

were from either of these two locations with the same probability.

A set of experiments with the data was performed to calibrate the model and determine

the location and service times of the specialists to get similar results as in practice. The

estimated service times and locations are shown in Table 3.2. In Section 3.6.1 we present

the sensitivity of our results to the service times of the specialists.

Specialist Index Location Service Time Mean (Hour)

1 [13,3] 15
2 [14,5] 16
3 [17,7] 17
4 [19,4] 20
5 [18,8] 18
6 [20,3] 14

Table 3.2: Network M Specialists’ Characteristics
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To better examine how changing the wait time targets (WTT) can impact the performance

of the DQN model, we considered three different WTT values [24,168,720] in hours (i.e., 1

day, 1 week, and 1 month). In the following, we explain the steps we took to train and test

models for each value of WTT, and the terminology we used in the rest of the paper.

1. We considered five different values for the discount factor (i.e. γ ∈ (0, 1)) to study if it

is better for a referrer to focus on the short-term rewards (when γ is small) versus the

long-term rewards (when γ is large) when it makes referral decisions. The considered

values are [0.1, 0.3, 0.5, 0.7, 0.9].

2. In the learning phase, for each value of γ we iterated the model ten times. We ran

each trial for a million hours using the same random seed to ensure comparability

among the trials.

3. The performance measure is, then, the average performance of models with the

same value of γ taken over the ten trials. For example, when we refer to average

expected wait time when γ = 0.1, we used the average wait time in the network taken

over the ten trials with γ = 0.1. The same concept also holds for the average expected

accumulated reward. From now on, we call average expected wait time and average

expected accumulated reward as average wait time and average accumulated reward,

respectively.

4. The best discount factor is the one which (on average) results in higher accumulated

reward and lower average wait time in the network.

5. For each value of WTT, the best trained model is defined as the model which outperforms

the rest of the nine models with the same value of γ with respect to accumulated reward

and average wait time in the network.

6. We used the best trained models in the testing phase to compare the performance of

the DQN methodology with other policies such as shortest queue policy and random

allocation policy. To incorporate the effect of randomness on the performance of the

models, we performed the test ten times using different seeds. However, to have

comparable results across policies, the ten seeds used in the testing phase were the

same across all policies.

Next, we presented the results of the training process of Referrer M. Then, we extracted

the best trained model for each value of WTT and tested its performance with respect to the

resulted average wait time to study to what degree applying DQN methodology in a single

referral network can improve patient access to specialists.
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3.4.1 Referrer M: Training Phase

We began with the training phase of Referrer M where 150 models in total were trained (3

WTT values × 5 gamma values × 10 trials). Figure 3.1 shows the average performance of

models with respect to the average wait time in Network M for different values of WTT.

Because a certain number of patients are served at different times in each trial, we used

number of patients served on the x-axis of Figure 3.1 to compare across models.
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Figure 3.1: Average Wait Time in Network M (Training Phase)

In all cases of γ across different WTTs, the average wait time initially increased but,

after a while, started to decrease. This, intuitively, is an indicator that the referrer learned

better referral policies over time and was therefore able to improve its performance.

In all WTT scenarios, models with γ = [0.7, 0.9] have the worst performances. This

suggests that having a long-term vision for optimizing referral rates to specialists may not

result in the best outcomes. In fact, Figure 3.2, which focuses on the last 50,000 patients

served, shows that in all the three WTT scenarios the best results are gained when γ = 0.1.

In plain words, due to the high level of uncertainty in the system considering a long vision

makes it very challenging for the referrer to learn a good referral policy.

In addition, the referrer is able to achieve lower average wait time in Network M as WTT

decreases. This is because as WTT decreases the delayed reward term in the utility function

of the referrer becomes more important. Therefore, low wait time for specialists becomes the

determining factor in the referral decision process. This suggests that small WTT values can

help a network achieve lower average wait times if this is the main concern of the network
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decision makers.
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Figure 3.2: Average Wait Time in Network M (Training Phase - Last 50,000 Patients Served)

Figure 3.3 shows Referrer M’s total average accumulated reward for different WTT

scenarios. When WTT is small (i.e., 24 hours) and γ = [0.7, 0.9], the accumulated reward

stays negative at the end of the trials. This is because wait time for specialists is the dominant

factor in the reward function of the referrer when WTT is small. Figure 3.1 shows that when

WTT is 24 hours and γ = 0.9, the average wait time in the network is three days. Therefore,

even if we ignore distance cost in Equation 3.3, on average, Referrer M receives -1 reward

for referring each patient to a specialist. This results in a significant negative accumulated

reward for the referrer at the end. Comparing Figures 3.1 and 3.3 also shows the tradeoff of

wait time and distance. In fact, both wait time and accumulated reward reduce when WTT

becomes smaller.
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Figure 3.3: Referrer-M Average Accumulated Reward (Training Phase)

Figure 3.4 shows the accumulated reward of the referrer for the last 50,000 patients served.

In all scenarios using γ = 0.1 has resulted in the highest average accumulated reward for the

referrer.
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Figure 3.4: Referrer M Average Accumulated Reward (Training Phase - Last 50,000 Patients Served)

The following conclusions are made from results shown in Figures 3.1-3.4. Considering the

performance of the network with respect to average wait times and Referrer M’s accumulated
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reward, on average, γ = 0.1 and γ = 0.9 result in the best and worst outcomes. As discussed

earlier, the better performance of the models with a lower value of γ is due to the existence

of high levels of uncertainty in different elements of the model. Having a long vision toward

optimizing referral rates in this highly volatile environment results in poor decisions which

negatively impacts both wait times and accumulated reward over time.

In addition, we found that as WTT increases the accumulated rewards become more

stable and the referrer is able to achieve higher rewards on average. Higher values of

WTT allow the referrer to better focus on the tradeoff between wait time and distance. In

particular, unlike the situation where WTT is low, referring a patient to a close specialist with

a longer average wait time does not necessarily result in negative reward. Mathematically,

this occurs due to the fact that when WTT is high, the importance of the delayed reward

term in Equation 3.3 decreases. This intuitively means that the impact of uncertainties in

specialist service times on accumulated reward becomes less significant. As a result, the

referrer’s performance becomes more stable, and it can achieve higher accumulated rewards.

Figures 3.5 and 3.6 compare the average wait time and accumulated reward of the best

trained models with different values of gamma for different WTT scenarios. Note that the

best trained model is defined as the model which outperforms the rest of the nine models

with the same value of γ with respect to accumulated reward and average wait time in the

network. While we use the average performance of the training set for each gamma to choose

the best gamma, we need to choose the best trained model from that optimal gamma for

the testing phase. Earlier we showed that on average models with γ = 0.1 resulted in both

lower average wait time and higher accumulated reward. We now show that the best trained

model also has γ = 0.1. We then use this best trained model in the testing phase.
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Figure 3.5: Average Wait Time in Network M (Best Model Comparison)
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Figure 3.6: Referrer M Average Accumulated Reward (Best Model Comparison)

In all three WTT scenarios, γ = 0.1 has the best outcomes with respect to wait times

and accumulated reward. Therefore, out of 50 models trained for each value of WTT, the

best model with γ = 0.1 is selected as the best trained model for Referrer M.

To assure that Referrer M has learned a referral policy we analyzed the accumulated

reward it received for every 1,000 patients referred to specialists. If the referrer has in fact
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learned and implemented a policy, we expect to see that the stability of the reward increases

as time passes. The following figure shows accumulated reward for every 1,000 patients

referred using the best trained model for different values of WTT.
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Figure 3.7: Referrer M Accumulated Reward for Every 1,000 Patients Referred Using Best Trained Model

The fluctuations of the reward per 1,000 patients are expected and caused by the stochastic

nature of the environment. However, the relative stability of the rewards indicate that

Referrer M has learned a referral policy for each scenario.

3.4.2 Referrer M: Testing Phase

In this section we first analyze how the best trained DQN models obtained in the previous

section can handle wait times in the network. We then test the performance of these DQN

models versus shortest queue and random allocation policies.

In order to analyze the performance of the best DQN models, each model was tested 10

times with different random number seeds, each time for 100,000 hours. Each trial tests our

model performance for a different patient arrival and service time scenario. We used the

same seeds in other referral policies to make their results comparable with the DQN model

result. Figure 3.8 shows average wait time in Network M for each run.
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Figure 3.8: Average Wait Time in Network M (Testing Phase)

At the beginning of the simulation there were significant fluctuations in the wait times;

however, in all three scenarios the referrer was able to reach a long-term stable situation with

respect to the average wait time in the network. Similar to the training phase, increasing

WTT resulted in increased average wait time in the network.

Figure 3.9 compares the performance of the DQN model with the performance of random

allocation policy. As shown, in all the scenarios the difference between the performance of

the two policies is significant and the DQN model was able to reduce average wait time in

the network by almost 80% percent (five days in this particular simulation).
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Figure 3.9: Average Wait Time in Network M (Best DQN Model vs Random Allocation Policy)

Figure 3.10 compares the performance of the DQN models with the performance of the

shortest queue policy resulted from 10 trials using the same random number seeds.
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Figure 3.10: Average Wait Time in Network M (Best DQN Model vs Shortest-Queue Policy)

We show that in all three WTT scenarios the DQN model outperforms the shortest

queue policy, but the performance of the two policies become closer as WTT increases. The

underlying reason is that when WTT is low, wait time for specialists is the key factor in

making referral decisions. Since the DQN model is able to recognize the fastest specialists

in the system the referral policies applied result in lower average wait time in the network.

In particular, upon the arrival of a patient to the network, if the referrer applies shortest

queue policy the patient will be referred to the specialist with the shortest wait list no matter

what the service time of the specialist. Therefore, it is possible that the patient is allocated

to a specialist with a very low service rate (or equivalently with a high service time). In

contrast, the recognition of the fastest specialists in the network allows the DQN model to

make better decisions with respect to patient wait time especially when WTT is restricted.

Our comparisons show that depending on a network’s characteristics, applying the DQN

approach can improve patient access to specialists. In particular, in a network with restricted

target wait times using DQN models can greatly reduce patient wait time over time.

3.5 Collaborative Networks Analysis

In the previous section we showed how applying DQN can improve the performance of a

centralized referral network. However, in practice, to reduce the wait times of a referral

network, patients can be referred to specialists in an adjacent network. Therefore, in this

section we study collaboration between two centralized referral networks (Networks N and

M) where patients from one network can be served by the specialists in the other network.

The stochastic nature of patient arrival and service times and the fact that arrival
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probabilities are distance-dependent make it almost impossible to study the concept of

collaboration using well-known mathematical approaches such as queuing systems. To make

the problem mathematically tractable researchers usually either assume that servers are

identical or combine servers into one or two servers (Wen et al. 2019). It can be shown that

pooling two identical parallel exponential servers would lead to a reduction factor of at least

50% for the mean wait time. Using an approximate formula, van Dijk and van der Sluis

(2008) show that similar reduction factors of at least 50% can also be found for larger groups

of servers to be pooled if 1) the service characteristics are the same, and 2) the workloads

are equal.

Our approach can not only overcome these difficulties, but it is also capable of incorporating

patient (realized) wait times for specialists in referral decisions. In the following we explain

how collaboration between the networks can be modelled and what incentives can be considered

for the networks to collaborate. We assume that Network N is experiencing higher arrival

rates and therefore seeks collaboration from Network M.

Upon an arrival of a patient to Network N, Referrer N can either allocate the patient

to one of the specialists in the network or send a transfer request to Network M. Referrer

M on the other hand can reject or accept the transfer request. If the request is accepted,

the patient will be transferred to Network M and will be allocated to one of the specialists

in this network. Otherwise, Referrer N must refer the patient to one of the specialists in

Network N. As discussed earlier, no queue is allowed for either of the referrers and patients

are immediately referred upon their arrivals to the networks. Once the patient is referred to

a specialist, they will be added to the specialist’s waiting list (queue). Figure 3.11 shows a

general scheme of collaboration between the networks:
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Figure 3.11: Collaboration Between Referral Networks

First, we explain the MDP model for Referrer N and how collaboration between networks

can impact the dynamics of the model presented in Section 3.3.1. Number of patients waiting

for each specialist in Network N defines the state of the network and we assume that decision

epochs are short enough such that only one of the following events can occur at each time

step:

1. A patient arrives to the network (or a transfer request is rejected by Network M)

2. A patient is served by one of the specialists and leaves the network

3. No event

A = {Refer, Transfer, Wait} is the set of actions for Referrer N. In the case where there is

an arrival to the system, the referrer actions are {Refer, Transfer}, otherwise (i.e., if a patient
is served by a specialist or no event occurs) the only action is {Wait}. For example, define

spj as the jth specialist in Network N. Assuming that there are k specialists in Network N

(i.e., nN = k), upon the arrival of a patient to the network, the referrer’s set of actions is

{”refer to sp1”, ”refer to sp2”, ..., ”refer to spk”, ”transfer to Network M”}. We assume

that Referrer N receives no reward (i.e., reward equal to zero) for transferring a patient to

Network M.

There can be two streams of patient arrivals to Network M: 1) Patients who arrive directly

to the network, and 2) transferred patients accepted from Network N. One of the following

events can occur at each time step for Network M:
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1. A patient arrives to the network (direct arrival)

2. Network N requests to transfer a patient and Network M accepts the request (indirect

arrival)

3. A patient is served by one of the specialists and leaves the network

4. No event

We assume that upon the transfer request, Referrer N provides Referrer M with the

location of the patient. Then, for each specialist in Network M, Referrer M calculates the

utility function presented in Equation 3.11.

RM−t(i, j) = ptr − (
Dij

maxjDij

)− (
Wj

WTT
) ∀j ∈ M (3.11)

Where Wj is the average wait time for specialist j. If for at least one of the specialists

in the network the utility value is positive, then Referrer M accepts the request. Otherwise,

the request is rejected. Once the request is accepted, the transferred patient is immediately

referred to a specialist, called j, in Network M and Referrer M receives the following reward:

RM−t(i, j) = ptr − (
Dij

maxjDij

)− (
Wij

WTT
) (3.12)

Equation 3.11 is equivalent to Equation 3.3 except for the monetary reward that the

network receives for each patient referred to a specialist. Equation 3.11 shows that ptr plays

an important role in motivating Network M to collaborate and accept transfer requests from

Network N. Therefore, ptr can be interpreted as a government incentive for collaboration

among networks. We initially assumed that ptr = 4 > pr = 2, which indicates that Referrer

M receives a higher payment per patient for accepting and allocating a transferred patient

to a specialist in its network. However, in Section 3.6.2 we perform a sensitivity analysis

on the value of ptr to better understand the impact of government incentive on network

collaboration.

Complicating the model presented in Section 3.3.1, when networks are collaborating,

Referrer M has no information about the probability of receiving a request from Network

N at each state. Therefore, there is uncertainty in the indirect arrivals to this network

and as a result, the MDP approach cannot be solved analytically to analyze the impact of

collaboration among networks on different performance metrics.

In the following, we explain our experimental results obtained from applying the DQN

methodology on the two referral networks. According to the data, there are six specialists in
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Network N and 2,883 patient arrivals over a year. Therefore, Network N is facing a higher

arrival rate (around 10% higher) than Network M and therefore seeks collaboration from

this network. The following table shows specialists’ characteristics in Network N:

Specialist Index Location Service Time Mean (Hour)

1 [0,10] 16
2 [1,2] 15
3 [3,5] 14
4 [4,0] 17
5 [6,6] 15
6 [2,7] 14

Table 3.3: Network N Specialists’ Characteristics

3.5.1 Referrer N: Training Phase

First, we focus on the training phase of Referrer N and then analyze how much collaboration

between the networks impacts patient access to specialists. We trained 300 models, for which

half the referrer had the option to transfer patients to the adjacent Network M. Using the

best models with different values of γ for each value of WTT, Figure 3.12 shows average

wait time in Network N when patient transfer between networks is allowed. Note that the

general terms used in the rest of the paper as well as the steps taken to train and test the

performance of the models are the same as the process we explained in Section 3.4.
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Figure 3.12: Average Wait Time in Network N (Training Phase - Best Models Comparison)

The right-hand side of Figure 3.12 shows the performance of the best model for each

value of WTT for the last 100,000 hours. When WTT is large (i.e., 168 and 720) γ = 0.1

and when WTT is small (i.e., 24) γ = 0.9 slightly outperform the other models with respect

to the average wait time in Network N. However, to select the best trained model we need

to consider the average wait time in the whole system (i.e., both networks). In fact, a model

with low average wait time in Network N may not be the best option as it may have simply

transferred more patients to the other network which results in high average wait time in

Network M. This, in fact, is the case when WTT is 24 hours and is shown in Figure 3.13.

Figure 3.13 shows average wait time in the whole system using the best trained models for

each value of γ while Referrer N has the option to transfer patients to the other network:
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Figure 3.13: Average Wait Time in The System (Training Phase - Best Models Comparison)

It is clear from 3.13 that in all WTT scenarios, best models with γ = 0.1 has resulted in

the lowest average wait time in the whole system.

Table 3.4 shows the percentage of patients transferred to the other network for different

WTT-γ scenarios:
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WTT = 24 WTT = 168 WTT = 720

γ Avg % Transferred Avg % Transferred Avg % Transferred
0.1 4.54 3.45 3.41
0.3 4.74 3.47 3.43
0.5 5.19 3.50 3.43
0.7 5.80 3.61 3.44
0.9 9.1 4.00 3.50

Table 3.4: Average Percentage of Patients Transferred to Network M (Training Phase)

Table 3.4 shows the percentage of patients transferred to Network M in different scenarios.

We show that higher values of gamma are associated with a higher rate of patient transfer.

In particular, as gamma increases Referrer N transfers more patients to the Network M.

Though this policy results in better outcomes for Network N when WTT is small, it can

result in higher average wait time in the system (Figure 3.13). In addition, Table 3.4 shows

that higher values of WTT are associated with lower transfer rates. The underlying reason

is that as WTT increases the wait time cost becomes less important and thus there is no

need for Referrer N to send patients to the other network. By reducing the transfer rate

Referrer N can better balance the tradeoff between the distance and wait time costs in the

reward function.

To understand the implications of the collaboration between networks, Figure 3.14 compares

the performance of Referrer N for different values of WTT when it has the option to transfer

patients to the other network versus when it does not have that option.
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Figure 3.14: Average Wait Time in The Whole System (Collaboration vs Isolation - Best Model
Comparisons)

Figure 3.14 shows that in all scenarios collaboration between the networks has resulted
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in lower average wait time in the whole system. In comparison with the isolated situation,

collaboration between the networks has reduced average wait time in the system (in the

training phase) by approximately 12%, 6%, and 1% when WTT is 24, 168, and 720 hours,

respectively. As expected, the impact of collaboration decreases as WTT increases. In fact,

when WTT is high, a referrer can perfectly handle arrivals to the network without the need

to transfer them to the other network.

Note that in all three cases, there is a huge gap in performance of the two models at

the beginning. This occurs because during this period, Referrer N was mostly exploring the

environment and referrals were mostly made randomly. However, as time passes, the gap

in performance of the two models first decreases and then starts increasing. As Referrer N

became adept at the referral policy, it matched the performance of Referrer M. However,

once in the collaborative situation, Referrer N added the transfer policies to its knowledge

and, as it started to take advantage of the transfer option, the gap in performance between

the two networks increased again.

3.5.2 Testing Phase: Both Networks

In this section we test the performance of the best trained models by the two referrers. Each

model is tested 10 times, each time for two years (≈ 18000 hours). To be able to compare

the performance of the referrers when different allocation policies are applied, in each run

we use a random generated seed to generate arrival rates to the networks. Moreover, none of

the random number seeds used to test the referrers’ performance was the same as the seeds

used to train the models.

Table 3.5 shows the percentage of patients transferred from Network N to Network M in

the testing phase.
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WTT = 24 WTT = 168 WTT = 720

Run # % Transferred % Transferred % Transferred
1 2.26 0 0
2 1.83 0 0
3 1.43 0 0
4 1.76 0 0
5 1.68 0 0
6 1.77 0 0
7 1.86 0 0
8 2.26 0 0
9 1.57 0 0
10 1.95 0 0
Avg 1.84 0 0

Table 3.5: Percentage of Patients Transferred to Network M (Testing Phase-Both Networks)

On average, around 2% of patients were transferred when WTT was low (i.e., 24 hours)

and no patient was transferred when WTT was high (i.e., 168 and 720 hours).

Similar to the training phase, it can be seen that WTT can greatly impact transfer rates

to the adjacent network. Comparing Tables 3.4 and 3.5 shows a huge difference between

transfers in training and testing phases. The underlying reason is that in the training phase

most transfers occurred for the learning purpose of the model (exploration) because the

referrer was analyzing the potential impact of this option. However, in the testing phase the

referrer is no longer exploring and therefore it only transfers patients if necessary. This is

evident in the testing phase as no patient is transferred when WTT is 168 and 720 hours.

Therefore, when WTT is high it is in the interest of Referrer N to focus on optimizing referral

rates to specialists in its network rather than transferring them to the other network.

Referrals to Specialists

In this section we focus on the referral rates to specialists made by Referrer N during the

testing phase. Figure 3.15 shows the average proportion of patients referred to each specialist

in Network N for different values of WTT. Note that for each value of WTT the average is

taken over the 10 runs.
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Figure 3.15: Average Proportion of Patients Referred to Each Specialist by Referrer N (Average
Performance)

In all three cases, Specialist 6 is the first choice of the referrer, receiving, on average,

around 21% of the referrals. Based on values in Table 3.3, Specialists 3 and 6 have the fastest

service times. When WTT is 24 hours, on average, around 40% of patients are referred to

these two specialists. However, as WTT increases the rate of referrals to Specialist 3 decreases

and it even becomes the last choice for the referrer when WTT is 720 hours. On the other

hand, referral rates to some specialists, such as Specialist 5, increase as WTT increases.

The underlying reason is that as WTT increases, the weight of the delayed reward in the

referral decision function reduces and closeness to the selected specialist becomes a more

important factor. This is represented in Figure 3.16 which shows the percentage of patients

that are referred to the closest specialists under different WTT scenarios. According to the

figure, When WTT is low only 13% of patients are referred to specialists close to them. This

amount increases to 19% and 22% when WTT is 168 and 720 hours, respectively.
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Figure 3.16: Average Proportion of Patients Referred to Closest Specialists by Referrer N

DQN vs Shortest Queue

In this section, we test the performance of the DQN model with collaboration between

networks in the case where each network applies a shortest queue policy for its referrals

(Figure 3.17).
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Figure 3.17: Average Wait Time in The Whole System (Best-Trained DQN Models vs Shortest Queue)

In all scenarios DQN models outperform the shortest queue policy and the difference
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in performance becomes more significant as WTT decreases. When WTT is low, the best

trained DQN model with the transfer option is able to reduce average wait time in the

system by 13% and 26% in comparison with the DQN model without the transfer option

and shortest queue policy, respectively. Note that patients experienced an average wait time

of 30 hours under the best trained model which is still higher than their 24-hour wait time

threshold. We further analyze this in the next section where we conduct a sensitivity analysis

on specialists’ service times.

The DQN models are able to reduce the average wait time in the system by 14% and 7%

when WTT is 168 and 720 hours, respectively. On average, when the DQN model is used to

find the referral and transfer policies, patients waited for around 36 and 39 hours when WTT

is 168 and 720 hours, respectively. In these scenarios, no patient was transferred between

the networks and the performance of the models with and without the transfer option were

barely different from each other. This is already shown in 3.5.

3.6 Sensitivity Analysis

In this section, we first investigate how much changing the initial values of service times

presented in Table 3.2 can impact the performance of the DQN model versus the shortest

queue policy. Next, to understand the impact of government incentives on motivating

collaboration between the networks, we perform a sensitivity analysis on the ptr parameter

introduced in Section 3.5.

3.6.1 Sensitivity Analysis on Specialist Service Times

In the initial model presented in Section 3.4.1, we used data from the cataract referral

network to estimate the service times of the specialists. However, the variation in service

times may impact the performance of the DQN model. Therefore, in this section we perform

the following two sets of sensitivity analyses on the service times of specialists in Network

M:

1. Homogeneous Services Times: We assume that all specialists in Network M have equal

service times.

2. Heterogeneous Service Times: We consider a wide range of service times for the

specialists.
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Homogeneous Service Times

We set service times of all specialists in Network M equal to 12 hours. Then, for each value

of γ = [0.1, 0.3, 0.5, 0.7, 0.9] we train the model 10 times, each time for 1,000,000 hours.

Overall, 50 models are trained and then the best trained model is selected through the same

process explained in Sections 3.4.1 and 3.5.1. The performance of the best trained model

is then tested against the shortest queue policy. In the testing phase, for each policy we

run the model 10 times (using 10 specific seeds), each time for two years (≈ 18000 hours).

In order to make the results comparable we use same seeds in all scenarios to generate the

arrival rates to the network.

Figure 3.18 compares the average performance of the DQN model versus shortest queue

policy when WTT is 24 and 720 hours.
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Figure 3.18: Average Wait Time in Network M (Best DQN Models vs Shortest Queue Policy - Average
Performance)

From Figure 3.18 we conclude that specialist service times can greatly impact the performance

of the DQN models. When specialists are identical in terms of their service times and WTT

is low, the performance of the DQN model and the shortest queue policy become very similar.

However, as WTT increases the shortest queue policy becomes the better option with respect

to the average wait time in the network. This is because when WTT is high the closeness

of patients to the selected specialists becomes the dominant force in referral policies for the

DQN model. In other words, wait times for specialists become less important for the referrer.

As a result, more patients are allocated to the specialists that are close to them, though these
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specialists may not be the best options in terms of patient wait time.

Heterogeneous Service Times

Using the same training and testing procedure described in Section 3.6.1, we trained our

model using service times, presented in Table 3.6, that have higher variability compared to

the original model’s service times.

Specialist Index Location Service Time Mean (Hour)

1 [13,3] 1
2 [14,5] 7
3 [17,7] 10
4 [19,4] 14
5 [18,8] 12
6 [20,3] 4

Table 3.6: Specialist Service Times in Network M

Figure 3.19 shows the average performance, taken over the 10 runs, of the DQN models

versus the shortest queue policy with respect to average wait time in Network M when

specialist service times are heterogeneous.
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Figure 3.19: Average Wait Time in Network M (Best-Trained DQN Models vs Shortest Queue- Avg
Performance)

As the variability in service times increases, the DQN model becomes the better option

even at a high level of WTT. Specifically, in comparison to the shortest queue policy, the DQN
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models have improved wait time in Network M by about 25%. The significant performance

improvement is because in the DQN models, the referrer is able to recognize the difference

between fast-service specialists (such as Specialists 1 and 6 in Table 3.6) with those who are

slower (such as Specialists 4 and 5). This recognition allows the referrer to allocate patients

in an efficient way which results in a significantly lower average wait time in the network

when compared to the shortest queue policy.

Moving from homogeneous to heterogeneous service times shows us that the DQN models

are outperforming the shortest queue policy in environments with higher variability in service

times.

3.6.2 Sensitivity Analysis on Payment Per Transfer

Previously we assumed that Referrer M receives four units of payment if it accepts a patient

from the other network. Even with this high amount of payment (compared to the two units

of payment in the main model), in Section 3.5.2 we show that no patients are transferred

between the networks when WTT is high.

In this section, we focus on the situation where WTT is 24 hours and study how changing

the value of the ptr can impact collaboration between the networks. This will determine to

what degree government incentives can motivate collaboration between networks and what

would be the impact on patients’ access to specialists. The training and testing phases are

similar to the procedures used in 3.5.

Overall, 200 models were trained and then for each value of ptr the best trained model

was extracted and tested. Table 3.7 shows the average percentage of patients transferred

between the networks for different values of payment per transfer. The average is taken over

the 10 runs.

Payment Per Transfer Average Percentage Transferred

2 1.3
4 1.8
6 2.1
8 2.6

Table 3.7: Percentage of Patients Transferred (Testing Phase)

Table 3.7 shows that increasing the value of payment per transfer results in higher levels

of collaboration between the networks and consequently higher transfer rates to Network M.

Specifically, increasing the value from 2 to 8 has doubled the transfer rate to Network M

(from 1.3 to 2.6).
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Figure 3.20 shows the impact of changing payment per transfer on average wait time in

the whole system. In all scenarios, collaboration between the networks has resulted in lower

wait time in comparison with the isolated scenario where patient transfer is not allowed.

Our sensitivity results show that the impact of transfer payment on system performance

is not monotonic. In particular, the average wait time decreases as the transfer payment

increases to ptr = 6. However, a higher transfer payment (ptr = 8) results in higher average

wait time compared to payments 4 and 6. The 95% confidence intervals for the average wait

time when payment is 6 and 8 are [1.3166, 1.3193] and [1.3921, 1.3951], respectively.

Based on the intervals the difference between the average wait times is significant and this

indicates the fact that an uncontrolled amount of payment can result in over-collaboration

between the networks which, in turn, negatively impacts patients’ access to specialists.
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Figure 3.20: Average Wait Time in The Whole System (Average Performance)

3.7 Conclusion

We study the impact of using intelligent referrers in centralized referral networks and collaboration

between such networks on improving patients’ access to specialists. Our approach allows us

to focus on medium-size referral networks where both arrival rates and specialist service times

are unknown to the referrers. On-time access to specialists (i.e., wait time for specialists)

and convenient access to them (i.e., proximity to specialists) are considered the key factors

in making referral decisions. Overall, we trained 750 models, each for 1,000,000 hours, and

the performance of the selected models with respect to different metrics were tested enough

to assure the robustness of the results.

We found that using an intelligent referrer in a single centralized referral network can

greatly reduce average wait time in the network and improve patients’ access to specialists.
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In our study, the referrer was able to learn a referral policy which outperformed two currently

used allocation policies in the real world (random allocation and shortest queue policies).

In comparison with the shortest queue policy, our DQN model for Network M was able to

reduce average wait time in the network by 17%, 14%, and 10% when WTT was 24, 168,

and 720, respectively. The sensitivity analysis results also revealed that the performance

of the DQN model increased as the variability in specialists’ service times increased. In

comparison with the shortest queue policy, our model was able to reduce average wait time

by 25% in a centralized system with widely varied service times. In addition, we show that

it is always beneficial for a referrer to set short-term vision toward optimizing referral rates

to specialists. We show that the intelligent referrer is able to recognize the fastest specialists

in a network and this helps the referrer to significantly improve patient wait time in the

network, specifically when wait time target (WTT) is low. The referrer is also able to adapt

itself to distance-dependent arrival rates and take advantage of this information in its referral

decisions when WTT is high.

Further, we find that collaboration between networks has the potential to further improve

wait times and thus patients’ access to specialists. However, we show that wait time

targets (WTT) and government incentives can play a major role in motivating networks to

collaborate. Referral networks tend to collaborate more as WTT decreases and government

incentives increase. We show that when WTT is low, in comparison with the shortest queue

policy, the DQN model with collaboration was able to reduce average wait time in the

whole system by 28%. The impact can further increase given that the right incentives are

provided by the government. In fact, sensitivity analysis results show that there is a critical

threshold for government incentives. While a low value for incentive may not motivate the

networks enough to collaborate, a high value for incentive can result in over-collaboration

which negatively impacts patients’ average wait time in the whole system.
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Chapter 4

Analyzing Patient Access to Surgeons

in a Cataract Centralized Referral

Network in the Waterloo Region

4.1 Introduction

On-time access of patients in need of cataract surgery to surgeons is one of the major

concerns of health care systems in different countries including Canada (Rachmiel et al.

2007). It is projected that the number of cataract operations in Ontario face a 128% growth

from 2006 to 2036 (Hatch et al. 2012). While an aging population has affected all areas of

the healthcare system, ophthalmology is estimated to face the greatest growth in demand

for services among surgical specialties (Etzioni et al. 2003, Roos et al. 1998). Considering

the impact of the aging population on demand, Taylor (2000) estimated that 50% of people

will need to have cataract surgery. In a study of over 4,900 patients, Klein et al. (2002) also

found that cataracts are age-related and that about 50% of people between 55 and 64 years

old, and 85% of people over 75 years old will develop cataracts.

Patients in need of cataract surgery in the Waterloo region can gain access to surgeons

through a centralized referral network named ”Ocean”. The network connects referrals in

three cities, namely Cambridge, Guelph and Kitchener, and referral decisions are made based

on a patient-choice process. Upon the arrival of a patient to the network, the patient is first

seen by a primary care provider (PCP). In the case where a cataract surgery is needed, the

patient will be provided with a referral form with three options to choose from: 1) the closest

surgeon, 2) the first available surgeon, or 3) a specific surgeon. Once the referral decision is

made by the patient, the referral form will be sent to the centralized intake system by the
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PCP and then it is the central referrer who is responsible to allocate the patient to one of

the surgeons in the network.

Two different types of wait times, called wait time 1 (WT1) and wait time 2 (WT2),

are defined in the system where WT1 represents how long it takes for a patient to get in to

see the selected surgeon in the office, and WT2 shows how long it takes after that to get in

for surgery. The total wait time is then defined as the sum of WT1 and WT2. When the

patient chooses the first available surgeon option, WT1 is the primary decision factor used

by the referrer as it is challenging to estimate and use WT2 information due to the following

reasons:

1. WT2 not only depends on the scheduling policy of the surgeon but also the availability

of operation rooms, the number of beds in the hospitals and even each hospital practice

of allocation of its capacities to surgeons.

2. For each patient, WT2 can only be calculated once the patient is served by the selected

surgeon. At this point, for the majority of surgeons, WT2 is more than a year. As a

result: 1) it is challenging for the central referrer to monitor WT2 for each individual

patient and therefore, the central referrer information on WT2 is provided by surgeons,

and 2) it is better to use WT1 to determine the first available surgeon as the impact of

patient aggregation in the surgeons’ queues on wait times can be realized much sooner

using WT1 rather than WT2.

Both testimonials from the decision makers in the referral network as well as the data

itself support the fact that WT1 is the main factor used to determine the first available

surgeon in all three major cities. For instance, while one of the surgeons in one of the major

cities had a total wait time of around 300 days, the majority of patients allocated to the

first available surgeon in this city were referred to a surgeon with the lowest WT1 but a high

WT2, making their total wait time around 800 days.

Long wait times for surgeons and potential inequity in patient access to specialized

services are amongst the major concerns of the decision makers in the system. The negative

impact of long wait times for surgeons on patient satisfaction has previously been shown by

Dunn et al. (1997). Gimbel and Dardzhikova (2011) also found that waiting for more than

six months for cataract surgery is associated with negative outcomes such as vision loss,

reduced quality of life and even depression. Laidlaw et al. (1998) and Harwood et al. (2005)

found that expedited cataract surgery resulted in better outcomes for patients who received

it.

We use Simpy, a process-based discrete-event simulation framework based on Python,

to simulate the system and study how changing current referral processes and introducing
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new policies can impact patient access to surgeons. In particular, we introduce two models

named the base-model and the multinomial-model. In the base-model, the values of every

parameter in the model, including patient preferences, are directly derived from real data

from the network. We use the base-model to analyze the system performance in the near

future. On the other hand, in the multinomial-model, a multinomial logistic regression is

applied to determine patient preferences over time.

To the best of our knowledge our study is the first that studies a patient-choice centralized

network and investigates how modifying this process can impact patient access to surgeons

over time. The following is a list of key findings:

1. The system currently has a high utilization rate and limiting patient choices does not

have any significant impact on patient average wait times to see surgeons (WT1) in

the system.

2. If patient options are limited to the first available surgeon, the majority of arrivals to

the network would be seen by surgeons within 180 days.

3. Eliminating patients’ option to travel to another city for the first available surgeon

does not necessarily improve average patient wait time to see surgeons (WT1) in the

network.

4. Adding a new surgeon to the network can significantly reduce patient wait time to see

surgeons (WT1) in the network. Kitchener and Guelph are also the best options for

the new surgeon to be located.

The rest of the study is organized as follows. We first review the related operation

management literature. In Section 2 we analyze the data in detail. In Section 3 we introduce

key parameters of the network and how they are modeled. In Section 4 we present our

results for the base-model and multinomial-model and study how introducing new policies

can impact patient access to surgeons. We conclude the paper in Section 5 with a summary

of our findings, insights, and limitations of our study.

4.1.1 Literature Review and Positioning

Cataracts are considered the most common eye disorder in most countries including the

USA and Canada (Hatch et al. 2012). While on-time access of patients in need of cataract

surgery can result in better outcomes such as improved quality of life (Olson et al. 2017),

long wait times for surgeons can deteriorate patient conditions (Freeman et al. 2009). In
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addition, Conner-Spady et al. (2004) found that patient satisfaction decreases as wait time

for cataract surgery increases.

Numerous reasons for long wait times for cataract surgery are considered in the literature.

Rachmiel et al. (2007) compared cataract surgery referral data from 1992 to 2004 and found

a significant negative correlation between the number of surgeons per million people and

cataract surgery rates. However, Wormald and Foster (2004) argued that the number of

surgeons is not the limiting factor, and cataract surgical rates need to be increased. Hopkins

et al. (2008) also estimated that an annual increase of 4% in treatment volume is needed

to meet the stated wait time targets for cataract surgery in Ontario. Boisjoly et al. (2010)

were able to double the rate of cataract surgery at a hospital in Montreal through the

implementation of a cataract efficiency program where surgical technicians were trained and

new technologies were used.

In addition to long wait times, equity in access to surgeons is another major concern in

the healthcare community of most countries including the USA and Canada (Johnston et al.

2020, Hong et al. 2016, Gauer et al. 1994). While the need for cataract surgery is estimated

to increase (Hatch et al. 2012), due to the aging population, the number of surgeons per

million people in Ontario decreased by around 14% from 1992 to 2004 (Rachmiel et al.

2007). This raises the question of whether there is equity in access to surgeons in the current

referral scheme and to what degree adding more resources to the system can balance access

to surgeons.

Simulation has been used to design and analyze patient flows in referral networks and

hospitals (Gibbons and Samaddar 2009, Donker et al. 2010). For instance, Yao et al. (2020)

used simulation to analyze referral rates between two hospitals in Taiwan. To the best of our

knowledge, however, our paper is the first that 1) applies simulation to study a centralized

referral network, and 2) uses real data from a centralized referral network and analyzes the

impact of a patient-choice referral process on patient access to surgeons. We also study how

adding more surgeons to the network can further increase the proportion of patients seen

(WT1) within a specific target wait time.

4.2 Data Description

For our study, we gained access to data from the Waterloo Region cataract referral network

which is a centralized network with 16 surgeons that covers arrivals from three major

cities, namely Kitchener, Guelph and Cambridge, and more than 140 townships. For each

individual patient, the data contains information on their time of arrival to the network,

preference for surgeon, city, age, gender, selected surgeon and wait time to see the selected
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surgeon (i.e., WT1). Due to the high values of WT2 for the majority of surgeons, WT2 data

for each individual patient was not available at the time of receiving the data. However,

surgeon cities and the average value of WT2 for each surgeon are provided on the network

website (Waterloo-Eye-Program 2021). Therefore, with respect to the wait time, for each

individual patient we have WT1 and the average value of WT2 for the selected surgeon.

Upon the arrival of a patient to the network, the patient is first seen by a PCP and if

further treatment is needed the patient is provided with a referral form with three options to

choose from: 1) A specific surgeon, 2) the closest surgeon, or 3) the first available surgeon.

If a patient selects a specific surgeon, then they are required to select one of the 16 available

surgeons in the network.

Any arrival patient is also asked to specify whether they are willing to travel to another

city for service. In the rest of the paper, we use term ”locally referred” if a patient is referred

to a surgeon in their city. Therefore, if a patient selects the first available surgeon and is

not willing to travel to another city, they are locally referred to the first available surgeon.

The central referrer then receives the completed form and refers the patient to the selected

option.

During an eight-month period of time, 1,671 patients in total arrived to the system where

the majority of patients (more than 98%) were 50+ years old. Categorizing arrivals by city

show that 594 patients came from townships, 517 came from Kitchener, 473 came from

Guelph, and 87 came from Cambridge. Figure 1 shows a summary of the total number of

arrivals in each month:
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Figure 4.1: Monthly Arrival Rate to the Network

From May to August 2021 (i.e., prior to the discovery of the Omicron variant of Covid-

19), the average monthly arrival rate to the network was 275.25 patients and reduced to

142.5 from September to December.

Analyzing patient preferences revealed that around 33% of patients chose the first available

surgeon, 19% chose the closest surgeon, and 48% chose a specific surgeon. Figure 2 shows

how patient preferences change over time. While the number of patients who chose the

closest surgeon did not change significantly over time, changes in the other two options is

noticeable and both options follow a similar trend from May to September.
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Figure 4.2: Patient Preferences Over Time

Table 4.1 shows how many patients of each gender selected each one of the options and

Figure 4.3 shows the proportion of each gender by their choices.

Gender Preferences

Closest First Available Specific Surgeon
Female 183 298 480
Male 131 257 322

Table 4.1: Patient Preferences by Gender
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Figure 4.3: Proportion of Patient Preferences by Gender

Figure 4.3 shows that the majority of patients selected a specific surgeon option followed

by the first available surgeon. In both genders, the closest surgeon is selected by roughly

18% of patients and men choose the first available surgeon more than women.

Figure 4.4 shows the proportion of patients who choose each option in each city.

0.0

0.1

0.2

0.3

0.4

0.5

Pr
op

or
tio

n

Kitchener

0.0

0.1

0.2

0.3

0.4

0.5 Guelph

Specific Surgeon First Available Closest
Preference

0.0

0.1

0.2

0.3

0.4

0.5

Pr
op

or
tio

n

Cambridge

Specific Surgeon First Available Closest
Preference

0.0

0.1

0.2

0.3

0.4

0.5

Townships

Figure 4.4: Patient Preferences by City

In all cities the majority of patients have selected the specific surgeon option. In addition,
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the closest surgeon option is the least selected option in all cities except Guelph where around

30% of patients selected this option.

The following table shows the percentage of patients in each city referred to surgeons in

the same city:

Patient City Surgeon City Percentage

Kitchener Kitchener 93%
Guelph Guelph 89%

Cambridge Cambridge 70%

Table 4.2: Percentage of Arrivals Allocated to Surgeons in the Same City

Most arrivals from these three major cities are locally referred. Further analysis shows

that 53% of those patients who are not locally referred chose the first available surgeon and

45% had a preferred surgeon. Finally, 53% and 45% of arrivals from townships were referred

to surgeons in Guelph and Kitchener, respectively.

To analyze the relationship between patient age and preferences we defined two age groups

where patients in the first and second groups are under and over 70 years old, respectively.

The first group contains 637 patients and the second group contains 1,034 patients. The

following figure shows patient preferences by their age group.
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Figure 4.5: Average Wait Time by City and Patient Preferences

In both age groups, around 50% of patients selected the specific surgeon option. However,

the difference in the other two options is noticeable. While more than 20% of patients over

70 years old selected the closest surgeon option, only around 10% of patients in the other

group selected this option.

We also analyzed patient average WT1 for surgeons in the network. Figure 4.6a shows a

histogram of patients’ WT1 to see surgeons and Figure 4.6b shows patients’ approximated
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total wait time to receive the surgery. Define WT1ij and ˜WT2j as the real wait time of

patient i to see surgeon j and the average WT2 for the surgeon. The approximation of the

total wait time for patient i is estimated by adding the real value of WT1 to the ˜WT2j

(i.e., WT1ij + ˜WT2j). For instance, if patient i waited 100 days to see surgeon j (i.e.,

WT1ij = 100) and the average WT2 for the surgeon was 150 days (i.e., ˜WT2j = 150), then

the total wait is approximated to be 250 days. We used the term ”total wait time” instead

of ”estimated total wait time” in the rest of the Figures.
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Figure 4.6: Patient Average Wait Time

On average, patients waited more than 130 days to see surgeons in the network. Average

WT1 for surgeons in Kitchener, Guelph, and Cambridge were 145, 169, and 56 days,

respectively. The majority of patients (≈ 73%) waited less than 180 days to see surgeons in

the network and around 8% waited more than 300 days.

According to our estimation, only 7% of patients will receive cataract surgery within one

year and more than 50% of patients will have to wait more than 600 days to receive the
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surgery.

We also further studied wait times for different types of patients in each city. Figure

4.7a shows how long each type of patient from each city waited, on average, to see surgeons

(WT1) and Figure 4.7b shows average total wait time for different types of patients to receive

service from surgeons in the network.
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Figure 4.7: Average WT1 and Total Wait Time by City and Patient Preferences

Overall, patients who chose the first available surgeon experienced lower average WT1

and total wait time than the other two types of patients. With respect to the patient city,

patients from Guelph experienced higher wait times than patients from the other two cities.

Due to the unavailability of WT2 for individual patients as well as the reasons mentioned

in Section 4.1 in our simulation study, we only focused on patient access to surgeons in the

network and in particular on WT1 rather than WT2. Therefore, in the rest of the paper all

wait times and analyses done on the wait times are only about WT1 and not WT2.
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4.3 Analysis of System Design Decisions

In this section we introduce different elements of the cataract centralized referral network in

Waterloo and how they are incorporated in the simulation process.

According to the data on patient cities and townships we considered four major cities

in our simulation. Each city is considered as a circle in a coordinate plane defined by the

following equations:

Kitchener :(x− 8)2 + (y − 15)2 = 25 (4.1)

Guelph :(x− 30)2 + (y − 25)2 = 9 (4.2)

Cambridge :(x− 22)2 + (y − 4)2 = 4 (4.3)

Townships :(x− 21)2 + (y − 21)2 = 36 (4.4)

The following figure shows the cities on a coordinate plane:

Figure 4.8: Cities Covered by The Centralized Cataract Network

Note that distances between the centers of the circles represent an average distance

between the cities in the real world. In addition, the radius of each circle is a representation
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of the arrival rate from the city that the circle symbolizes. Finally, we assume that townships

are between Kitchener and Guelph and closer to Guelph as, according to the data, 70% and

29% of patients in the townships who chose the closest surgeon were referred to surgeons in

Guelph and Kitchener. Four main elements of the referral network and their characteristics

are listed below:

Patient A patient can come to the network from any point inside a circle. Patient

characteristics, including patient gender and age, are generated based on the information

derived from the data.

PCP As we only focus on those patients who are in need of cataract surgery and to

maintain our focus on the impact of the patient-choice referral process on the performance

metrics of the system we represent the population of PCPs with three main ones in each

city (in total, nine PCPs) except the townships. According to the data, no surgeon in the

townships is connected to the centralized referral network. In each city, the first PCP receives

the stream of patients who have a preferred surgeon. The second PCP receives the stream

of patients who choose to go to the closest surgeon to their home. Finally, the third PCP

receives the stream of patients who choose to go the first available surgeon.

Central Referrer The central referrer is responsible for allocating patients to surgeons

based on their choice and has information about wait times and locations of surgeons.

Surgeon Surgeons are located in different places in the network and they each receive a

stream of patients who are in need of cataract surgery. Once a patient receives the required

service from a surgeon, they leave the system immediately. Note that surgeons in each city

are placed on the city circle’s perimeter.

Figure 4.9 shows the histogram plot of daily interarrival times in an hour.
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Figure 4.9: Patient Interarrival Times (Hour)

The daily interarrival for most of the arrivals to the network (≈ 95%) are less than three

hours. In addition, approximately 57% of daily interarrivals are lower than 30 minutes.

Using statistical analysis, in Figure 4.10 we show that exponential distribution is a good fit

for the interarrival times.
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Figure 4.10: Interarrival Distribution

Figure 4.10(b) shows that exponential distribution performs fairly well in representing

interarrival times shown in Figure 4.10(a). Chi-square statistics and the QQ plot (shown in

Figure 4.10(c)) also suggest that exponential distribution is a good fit in approximating
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”interarrival” data. Therefore, we assume that arrivals to the network have a Poisson

distribution with the means extracted based on the real data from the network.

Finally, in order to extract surgeon service rates, we modeled each surgeon as an M/M/1

queuing system. Using the number of referrals to the surgeon and their associated waiting

time from the data, we estimated the service rate of each surgeon in the system. As discussed

earlier, based on testimonial data from decision makers in the system there have been times

when surgeons have rejected referrals to keep their waiting list short. We incorporated this

feature into our model by considering specific capacities for surgeons. The service rates and

capacities were then further adjusted in the simulation model to make sure that the results

of the model for each individual surgeon was close to what we observed in practice. Table

4.3 compares the results of the base-model that we ran for eight months with the results

from the available data.

# of Referrals to Surgeons Avg Wait Time Wait Time 75%
Data/Simulation D S D S D S

All Network 1671 1677 132.5 132 97 80
Kitchener 819 800 145 142 73 67
Guelph 749 758 167 169 110 97

Cambridge 103 119 56 59 25 35

Table 4.3: Base-Model Comparison with Data (Where D Stands for Data and S Stands for
Simulation)

We further assured that the results of the simulation model with respect to the number

of referrals and resulted average wait time for each individual surgeon in each city were close

to what we observed in practice.

In total, there are 16 surgeons in the system: three surgeons in Cambridge, four in Guelph,

and nine in Kitchener. However, due to the low referral rates to three specific surgeons in

the Kitchener area, we combined the data on these surgeons and used one surgeon in our

simulation model instead of these three surgeons. Table 4.4 shows surgeon locations in the

network:
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City Surgeon Location (x, y)

Kitchener

1 (8,20)
2 (13,15)
3 (8,10)
4 (12,12)
5 (4,12)
6 (4,18)
7 (3,15)

Guelph

8 (27,25)
9 (33,25)
10 (30,28)
11 (30,22)

Cambridge
12 (22,2)
13 (22,6)
14 (24,4)

Table 4.4: Surgeon Locations

Note that surgeon locations are determined based on the available data on the referral

rates between the four cities.

4.4 Results

In this section we analyze the behaviour of the current system and estimate how different

policies impact patient access to surgeons. We considered two scenarios. In the first scenario

we used a model, called a base- model, where model parameters including arrival rates of

each type of patient from each city, referral rates to surgeons, and patient preferences are

derived directly from the available data. The base-model mimics the behaviour seen over

eight months in practice very closely. This model is then used to analyze the future of

the current system over the next two years and examine how policies such as adding more

capacities to the system can improve patient access to surgeons.

To better understand how the patient choice referral system can impact important

performance metrics such as average wait time in the system, in the second scenario we used

a simulation model, called the multinomial-model, where we applied a multinomial logistic

regression in a simulation model to determine patient preferences. This makes referral rates

to surgeons dependable on different characteristics of both surgeons and patients and allows

us to analyze the behaviour of the system for a more distant future.

In the following sections we first present our results for the base-model and then focus

on the multinomial-model.
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4.4.1 Base-Model Results

In this section we study the future of the cataract referral system using the base-model. The

model was run 100 times and values shown in the rest of the papers are the average values

taken over these 100 runs. Note that the base-model is simulated for only two years as one

of the main assumptions in this model is that system characteristics, including arrival rates

to the system, surgeon service rates, and patient preferences, remain unchanged over time.

The following figure shows average wait time for surgeons in the network over the next two

years:
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Figure 4.11: Expected Average Wait Time

where ”C” is the indicator of the current year. If system characteristics, including arrival

and service rates, remain unchanged, the average wait time in the network is expected to

increase from 130 days to around 200 days over the next two years. Figure 4.12 gives a

better understanding of how average wait times for surgeons will be impacted in each city:
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Figure 4.12: Expected Average Wait Time by City

Wait times for surgeons are expected to increase in all cities over the next two years if no

new policy or capacity is added to the network. In comparison with other cities, surgeons in

Kitchener are expected to experience higher wait times at the end of the second year.

Finally, Figure 4.13 shows average wait times for different types of patients.
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Figure 4.13: Expected Average Wait Time by Type

Figure 4.13 shows that over the next two years, patients who choose the first available

surgeon are expected to experience lower average wait times for surgeons in the network.

On the contrary, patients who choose a specific surgeon will experience higher wait times

than the other types. This result is comparable with what is observed in practice where

patients who chose a specific surgeon waited, on average, 154 days to see surgeons while

others who chose the first available surgeon and closest surgeon waited for 121 and 131 days,

respectively.
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Base-Model: Policy Analysis

The base-model application is limited. One limitation is that there is no mechanism in

this model that allows changes in referral rates to surgeons if system characteristics change

over time. Another limitation is the fact that patient preferences are directly derived from

the data and therefore they are fixed. As a result, we can only study how patient access

to surgeons will be affected over the next two years if patient options are reduced to one

option. For instance, if we only eliminate the first available surgeon option, then there is

no mechanism in this model that allows us to understand what proportion of patients who

had chosen this option would now prefer each one of the other two options. Since wait times

are a main concern in the network, in our study we analyze what would happen to patient

wait times if the only option is the first available surgeon. We considered two scenarios. In

the first scenario we incorporated the percentage of patients from each city who were locally

referred. This information was derived directly from the data. In the second scenario, which

we used as a benchmark, patients were allocated to the first available surgeon in the whole

network no matter where the locations of the patient and selected surgeon are. Figure 4.14

shows the impact of this policy for each scenario on patient average wait time in the network

and across each city.
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Figure 4.14: Policy Comparison: Expected Average Wait Time in the Network

Figure 4.14 shows that limiting patient options to only first available surgeon did not

reduce patient average wait time significantly. More interestingly, the first scenario, in

which we incorporated the percentage of patients from each city who were locally referred,

resulted in lower average wait times than the second scenario. The main underlying reason

for this is that the first available surgeon is not necessarily the fastest surgeon in the network

. This is also the reason why patients who chose the first available surgeon in Kitchener and

Cambridge experienced longer wait times, on average, than the other two types of patients
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in practice.

We now examine how much adding a new surgeon to the system improves patient access

to surgeons. Note that the surgeon is added at the beginning of year 1 in the simulation.

For the location of the added surgeon, we consider two scenarios, named L1 and L2, for each

city. In the L1 scenario the new surgeon is located in the center of each circle, shown in

Figure 4.8, and in the L2 scenario the surgeon is located close to the other cities to increase

the chance of receiving patients from outside the city. Finally, for the service rate of the new

surgeon we consider three scenarios, named S1, S2, and S3. In S1, the service rate of the

new surgeon is the same as the fastest surgeon in the network. In S2, the service rate of the

added surgeon is the average of all the surgeons in the network. In S3, the service rate is

the average of all the surgeons in the city in which the surgeon is added. Since the surgeon

is newly added to the network, we assume that 1) the surgeon capacity is not limited, and

2) none of the patients who have a preferred surgeon select the new surgeon. For scenario

L2, the surgeon location in each city is provided in the following table:

City New Surgeon Location

Kitchener (12,18)
Guelph (27.6,23.2)

Cambridge (20.8,5.6)

Table 4.5: New Surgeon Location in Scenario L2

Figure 4.15 shows the impact of adding a new surgeon to Kitchener on patient average

wait time in the next year.
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Figure 4.15: Impact of Adding a Surgeon to Kitchener
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The average wait time in the system will significantly reduce if the added surgeon has a

fast service rate. In addition, adding the surgeon to the border of the city has resulted in lower

wait times than the L1 scenario. The underlying reason is that in Scenario L1 the surgeon

is located in the middle of the city and therefore the majority of patients who choose the

closest surgeon option are being referred to the new surgeon. This intuitively makes referral

rates imbalanced and as a result average wait time in the network is increased. The same

trend can be seen in Figure 4.16 which shows the results for Guelph and Cambridge.
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Figure 4.16: Impact of Adding a Surgeon to Guelph and Cambridge

Comparing Figures 4.15 and 4.16 shows that in all scenarios adding a new surgeon to

the system can reduce patient average wait time over the next year. However, the impact

depends on the surgeon location and service rates. Since the majority of patients prefer

a local surgeon, adding the new surgeon to Cambridge has not resulted in any noticeable

changes in average wait times. Finally, adding the surgeon to Kitchener has resulted in

slightly better outcomes in comparison with Guelph.

4.4.2 Multinomial-Model Results

In this section we introduce the multinomial-model used to analyze how patient preferences

impact their access to surgeons over the next four years. In contrast to the base-model

where we derived patient choices directly from the available data, in the multinomial-model

we applied a multinomial regression model in the simulation process to determine patient

preferences. The details of the regression model can be found in the Appendix.

We used patient age, gender, city and three variables associated with wait time, namely

average wait time, fifth percentile, and 95th percentile, as the independent variables and

patient preference as the dependent variable in the model. In particular, upon the arrival
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of a patient from a city to the network the model calculates the average wait time, the

5th percentile, and 95th percentile for the past ten arrivals from that city. Considering the

patient age and gender, the model then estimates three probabilities, each associated with

one of the patient preferences. In order to improve the performance of the model, patient

choices are derived from the probability distribution of the regression model. Define pF as

the estimated probability for the first available surgeon option. Similarly, define pC and pS

for the closest and specific surgeon options and assume that pF > pC > pS. In order to

determine the patient preference, we generate a random floating point number, called rv, in

the range [0, 1]. The following shows how the model determines a patient preference.

Random Variable Value Patient Choice

rv <= pS Specific Surgeon
pS < rv <= pS + pC Closest Surgeon

rv > pS + pC First Available Surgeon

Table 4.6: Patient Choice Using Regression Model Probability Estimates

It has been shown that previous experience of a PCP with a surgeon can impact the

choice of surgeon by the PCP (Barnett et al. 2012a, Kinchen et al. 2004b). Since our data

lacks information about patient history and PCPs, it is difficult to understand why a patient

might select a specific surgeon. Therefore, in our model if a patient choice is a specific

surgeon, the surgeon is selected based on the probabilities derived from the data.

Using the multinomial regression process to determine patient choices has the following

advantages over the base-model: 1) we can analyze the performance of the system for a

more distant future, 2) to study the impact of patient preferences, we are not obligated to

reduce patient options to only one; in fact, we can estimate what the impact would be of

removing one of the options on patient access to surgeons, and 3) we can study how surgeon

characteristics impact patient preferences. For instance, if average wait time for a surgeon

reduces, it might impact the referral rate to the surgeon as more patients who choose the first

available surgeon will be directed to them. However, as discussed earlier, the base-model is

better when the main concern is how changing different parameters of the system impacts

patient access to surgeons in the near future.

We considered two scenarios for the arrival rates to the network. In the first scenario we

assumed that arrival rates remain unchanged over time. Using real data from the cataract

referral network in Ontario, Hatch et al. (2012) predicted that demand for cataract surgery

would see a 128% growth from 2006 to 2036. Using this information, in the second scenario

we considered a 2.79% annual increase in arrival rates to the network. Each scenario was run

100 times and the same seeds (each run with a different seed) were used in both scenarios to
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make the results comparable. For each scenario, all the results presented in the rest of the

paper are the average values taken over the 100 runs.

Depending on patient condition, various target wait times, ranging from seven days to

six months, are mentioned in the literature (Hodge et al. 2007, Government of Ontario 2022)

for cataract surgery. For the multinomial-model we considered two performance metrics,

namely average wait times for surgeons and number of patients seen within 180 days. This

gives us a better understanding of how different policies impact patient access to surgeons

and their satisfaction over time.

The following figure shows patient average wait time over the next four years and the

percentage of patients served within 180 days for each scenario.
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Figure 4.17: The Expected Performance of the Network Over the Next Four Years
(Multinomial-Model)

The average wait time in the network is expected to increase by around 13% yearly and

reaches over 320 days four years from now. Since surgeon service rates are not changing and

no new capacity is added to the network, the gap between the average wait times in the first

and second scenarios increases over time and reaches 14 days in the fourth year. Under the

fixed arrival rate scenario and over the four years of simulation, patients on average waited

around 250 days to get served by surgeons and 75% of patients received service within 326

days. Finally, in both scenarios, the proportion of patients who receive service within 180

days is expected to halve and reaches around 30% at the end of the fourth year.

Figure 4.18 shows average wait time for surgeons in each city.
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Figure 4.18: Average Wait Time for Surgeons in Each City (Multinomial-Model)

In both scenarios, the average wait time for surgeons in Kitchener is higher than the other

two cities and will double after four years if the annual increase in arrival rate is considered.

Higher arrival rates to this city and the fact that the majority of patients prefer a local

surgeon are the main reasons why wait times in Kitchener are higher than the other two

cities.

Multinomial-Model: Policy Analysis

In this section we present our policy analysis results for the multinomial-model for the

second scenario where arrival rates to the network increase annually. In addition to the

policies introduced in Section 4.4.1 we study how eliminating either of the ”closest surgeon”

or ”specific surgeon” options can impact patient access to surgeons. Figure 4.19 compares

patient average wait time in the network when different policies for patient options are

implemented.
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Figure 4.19: Impact of Different Patient Choice Policies on Patient Average Wait Time
(Multinomial-Model)

Limiting patient options to only the first available surgeon option and incorporating

patient local preferences has resulted in the best outcomes with respect to the patient average

wait time. An additional noticeable advantage of reducing patient options to only first

available surgeon is the higher proportion of patients seen by surgeons within 180 days in

the end of the fourth year (40% compared with ≈ 30% under other policies). However,

from the figure it can be seen that all policies have resulted in very close average wait times

in the network. This indicates that the utilization rate of the current system is very high

and therefore modifying current policies has limited impact on improving patient access to

surgeons over the next four years. This leads us to the next policy where we study how

adding a new surgeon to the network can reduce patient wait time in the system. The same

scenarios explained in Section 4.4.1 are considered here for the location and service rate of

the new surgeon. For each city we then calculate the average wait time over all six defined

scenarios.
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Figure 4.20: Impact of Adding a New Surgeon to the Network (Multinomial-Model)

96



Figure 4.20 compares the impact of adding a new surgeon to the network if surgeon

characteristics remain unchanged. Like the base-model, adding a surgeon to Kitchener results

in the best outcomes; it reduces patient average wait time by up to 43% at the end of the

fourth year and makes the chance of being seen by a surgeon within 180 days near 70%.

4.5 Conclusion

We study the referral process in the cataract referral network in the Waterloo region using

real data from the network and examine how different policies, including reducing variations

in patient preferences and adding a new surgeon to the network, could impact patient access

to surgeons.

We introduce two specific models, called the base-model and the multinomial-model,

which allow us to analyze system performance in the future. In the base-model, the values of

all parameters are fixed and directly derived from the data. Due to this limitation and the fact

that no element of the model can impact patient preferences the base-model is used to analyze

system behaviour in the near future. In the multinomial-model, we consider two arrival

scenarios and to determine patient preferences we apply a multinomial regression model in

the simulation. This allows patient preferences to be affected by different parameters of the

system including patient wait times to see surgeons. Although the structure of the models

is different, the results from both models are consistent.

We find that limiting patient options does not significantly improve patient average wait

time to see surgeons (WT1) in the system. This indicates the high utilization rate of the

system where changing referral policies does not improve the tradeoff between demand and

supply. However, in comparison with other modifications of patient choices, our results

from the multinomial-model suggest that more patients could be seen within 180 days if the

only available option is to allocate patients to the first available surgeon. We also find that

eliminating patients’ option to travel to another city for those patients who choose the first

available surgeon does not necessarily improve patient average wait time to see surgeons in

the network.

Finally, we examine the impact of adding a new surgeon to the network. Different

scenarios for the location and service rate of the new surgeon are considered. Our results

from both models suggest that Kitchener and Guelph, respectively, are the best options to

locate a new surgeon. Our results from the multinomial-model also suggest that adding a

new surgeon to Kitchener can reduce patient average WT1 by up to 43% by the end of the

fourth year.

The models and insights gained from the analysis presented in this paper are a first
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step in understanding the performance of various referral policies on managerial and health

outcome measures. In particular, due to the limited WT2 data for individual patients in

this paper we study how implementing new referral policies or potentially adding more

capacity to the network could improve patient access to surgeons (reduce WT1). However,

on-time delivery of service (in our case, cataract surgery) to patients is yet another important

topic that requires further investigation. Analyzing the impact of hospital operation room

availability and WT2 for each surgeon (and understanding the relationship between hospital

bed availability and surgeon scheduling policies) would be another interesting line of research

for future exploration. We would like to thank all the people from the Waterloo Centralized

Intake System and the surgeons in the network who supported us and provided us with

reliable data resources throughout the whole study.
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Appendix A

First Chapter Proofs

A.1 Online Appendix

The Appendix consists of three sections. In the first section we present our proofs for the

standard centralized referral system and theorems discussed in the main text (Sections 2.2.2

and 2.3, Theorems 1-7). The second section is dedicated to the optimal policies and proofs

for the fair-allocation referral system (Section 2.4).

A.1.1 Proofs of Results for the Standard Centralized Referral

System

The proofs presented in this appendix follow the order in the text.

A.2 Results for Section 2.2.2 (optimal provider scheduling)

We begin with the results characterizing optimal behavior of the provider. The following

lemma is an intermediate result for proving Theorem 1. This result allows us to consider

only a discrete number of candidate optimal scheduling policies for the provider.

Lemma 1. Consider the providers optimization problem shown in Equations 2.17-2.19.

An interior point (x1j, x2j) where 0 < xij < 1,∀i, may be optimal only if x1j = x2j =

(
mj

λ1j+λ2j
)(α1)−1

.

Proof of Lemma 1. Based on the Karush–Kuhn–Tucker (KKT) conditions for the provider

problem under the proposed achievable region we have:
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λ1j

λ1j + λ2j

= uαjλ1jx
αj−1
1j =⇒

 λ1j = 0
1

λ1j+λ2j
= uαjx

αj−1
1j (i)

λ2j

λ1j + λ2j

= uαjλ2jx
αj−1
2j =⇒

 λ2j = 0
1

λ1j+λ2j
= uαjx

αj−1
2j (ii)

u(λ1jx
αj

1j + λ2jx
αj

2j −mj) = 0 (iii)

Variable u is a Lagrangian multiplier. From Equations (i) and (ii), u cannot be 0. In

addition, since 0 < xij < 1,∀i ⇒ λij ̸= 0. Therefore, from equations (i) and (ii) we have:

uαjx
αj−1
1j = uαjx

αj−1
2j ⇒ x

αj−1
1j = x

αj−1
2j ⇒


x1j = x2j

or

αj = 1

Therefore, if αj ̸= 1 then x1j must be equal to x2j. Since u ̸= 0, for equation (iii)

we have λ1jx
αj

1j + λ2jx
αj

2j = mj. Substituting x1j = x2j = x in equation (iii) results in

x1j = x2j = (
mj

λ1j+λ2j
)(αj)

−1
.

Proof of Theorem 1. Table 2.1 shows the five candidate optimal solutions, the interior point

S and the boundary points {P1, P2, P̄1, P̄2} and the scenarios where they are optimal. We

will go through each of these cases to confirm this correspondence.

Case 1: αj > 1.

In Lemma 1 we show that x1j = x2j = (
mj

λ1j+λ2j
)(αj)

−1
is the necessary condition for an

interior point to be optimal. Now, we prove that this point is the optimal solution for a

provider if αj > 1. First, let’s compare f(S) with f(P̄1) and f(P̄2). Since αj > 1 → 0 <
1
αj

< 1. Therefore, we have:

(
λ1j

λ1j+λ2j
) < (

λ1j

λ1j+λ2j
)(αj)

−1 → (
λ1j

λ1j+λ2j
)( 1

λ1j
)(αj)

−1
< ( 1

λ1j+λ2j
)(αj)

−1 ×(mj)
(αj)

−1

−−−−−−−→
(

λ1j

λ1j+λ2j
)(

mj

λ1j
)(αj)

−1
< (

mj

λ1j+λ2j
)(αj)

−1 ⇒ f(P̄1) < f(S)

(
λ2j

λ1j+λ2j
) < (

λ2j

λ1j+λ2j
)(αj)

−1 → (
λ2j

λ1j+λ2j
)( 1

λ2j
)(αj)

−1
< ( 1

λ1j+λ2j
)(αj)

−1 ×(mj)
(αj)

−1

−−−−−−−→
(

λ2j

λ1j+λ2j
)(

mj

λ2j
)(αj)

−1
< (

mj

λ1j+λ2j
)(αj)

−1 ⇒ f(P̄2) < f(S)

Now, let’s compare f(S) with f(P1). When mj < λ1j then f(P1) is undefined. Therefore,

f(S) and f(P1) are comparable when λ1j ≤ mj < λ1j + λ2j. Define ∆1f = f(S) − f(P1).

If we set mj = λ1j then f(P1) =
λ1j

λ1j+λ2j
and f(S) = (

λ1j

λ1j+λ2j
)(αj)

−1
. Since αj > 1 and

0 <
λ1j

λ1j+λ2j
< 1 we can conclude that if mj = λ1j ⇒ ∆1F > 0 ⇒ f(S) > f(P1). In addition,

if we set mj = λ1j + λ2j then f(S) = f(P1) = 1. Therefore, in order to prove that when
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λ1j ≤ mj < λ1j + λ2j then f(S) > f(P1) we need to show that d∆1f
dmj

< 0.

∆1f = f(S)− f(P1) = (
mj

λ1j + λ2j

)(αj)
−1 −

λ1j + λ2j(
mj−λ1j

λ2j
)(αj)

−1

λ1j + λ2j

d(∆1f)

dmj

=
(

mj

λ1j+λ2j
)(αj)

−1

αjmj

− λ2j

λ1j + λ2j

(
mj−λ1j

λ2j
)(αj)

−1

αj(mj − λ1j)

Now we have:

mj < λ1j + λ2j → mjλ1j < (λ1j + λ2j)λ1j → mjλ1j +mjλ2j < (λ1j + λ2j)λ1j +mjλ2j →
mjλ1j +mjλ2j −λ1jλ2j −λ2

1j < mjλ2j → λ1j+λ2j

λ2j
<

mj

mj−λ1j
→ (

λ1j+λ2j

λ2j
)αj−1 < (

mj

mj−λ1j
)αj−1 →

mj(λ1j+λ2j)
αj−1

λ
αj
2j

<
m

αj
j

λ2j(mj−λ1j)
αj−1 → (

λ1j+λ2j

λ2j
)αj(

mj

λ1j+λ2j
) < (

mj

mj−λ1j
)αj(

mj−λ1j

λ2j
) →

(
λ1j+λ2j

λ2j
)(

mj

λ1j+λ2j
)(αj)

−1
< (

mj

mj−λ1j
)(

mj−λ1j

λ2j
)(αj)

−1 →
(

mj
λ1j+λ2j

)(αj)
−1

mj
<

λ2j

λ1j+λ2j

(
mj−λ1j

λ2j
)(αj)

−1

(mj−λ1j)
→

(
mj

λ1j+λ2j
)(αj)

−1

αjmj
<

λ2j

λ1j+λ2j

(
mj−λ1j

λ2j
)(αj)

−1

αj(mj−λ1j)
⇒ d(∆1f)

dmj
< 0

The same process can be done in order to show that when λ2j ≤ mj < λ1j + λ2j then

f(S) > f(P2). Define ∆2f = f(S) − f(P2). If we set mj = λ2j then f(P2) =
λ2j

λ1j+λ2j

and f(S) = (
λ2j

λ1j+λ2j
)(αj)

−1
. Since αj > 1 and 0 <

λ2j

λ1j+λ2j
< 1 we can conclude that when

mj = λ2j → f(S) > f(P2). In addition, if we set mj = λ1j + λ2jthen f(S) = f(P2) = 1.

Therefore, in order to prove that when λ2j ≤ mj < λ1j + λ2j then f(S) > f(P2) we need to

show that d∆2f
dmj

< 0.

Therefore, if αj > 1 then point S is the only optimal solution to the provider problem.

∆2f = f(S)− f(P2) = (
mj

λ1j + λ2j

)(αj)
−1 −

λ1j(
mj−λ2j

λ1j
)(αj)

−1
+ λ2j

λ1j + λ2j

d(∆2f)

dmj

=
(

mj

λ1j+λ2j
)(αj)

−1

αjmj

− λ1j

λ1j + λ2j

(
mj−λ2j

λ1j
)(αj)

−1

αj(mj − λ2j)

We have:

mj < λ1j + λ2j
×λ2j−−−→ mjλ2j < (λ1j + λ2j)λ2j

+mjλ1j−−−−→ mjλ2j +mjλ1j < (λ1j + λ2j)λ2j +

mjλ1j → mjλ2j + mjλ1j − λ1jλ2j − λ2
2j < mjλ1j → λ1j+λ2j

λ1j
<

mj

mj−λ2j
→ (

λ1j+λ2j

λ1j
)αj−1 <

(
mj

mj−λ2j
)αj−1 → mj(λ1j+λ2j)

αj−1

λ
αj
1j

<
m

αj
j

λ1j(mj−λ2j)
αj−1 → (

λ1j+λ2j

λ1j
)αj(

mj

λ1j+λ2j
) < (

mj

mj−λ2j
)αj(

mj−λ2j

λ1j
)

→ (
λ1j+λ2j

λ1j
)(

mj

λ1j+λ2j
)(αj)

−1
< (

mj

mj−λ2j
)(

mj−λ2j

λ1j
)(αj)

−1 →
(

mj
λ1j+λ2j

)(αj)
−1

mj
<

λ1j

λ1j+λ2j

(
mj−λ2j

λ1j
)(αj)

−1

(mj−λ2j)
→

(
mj

λ1j+λ2j
)(αj)

−1

αjmj
<

λ1j

λ1j+λ2j

(
mj−λ2j

λ1j
)(αj)

−1

kj(mj−λ2j)
⇒ d(∆2f)

dmj
< 0
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Case 2: αj < 1, λij ≤ mj ∀i.
Let’s prove that if a provider has enough capacity to serve both types of patients

independently then solutions P1 and P2 are the only optimal solutions. We prove that

when λ2j < λ1j ≤ mj < λ1j + λ2j then solution P1 is the optimal solution to the problem.

Let’s begin with comparing f(P1) and f(P2):

If mj = λ1j →


f(P1) =

λ1j

λ1j+λ2j

f(P2) =
λ1j(

λ1j−λ2j
λ1j

)
1
αj +λ2j

λ1j+λ2j

∆1f = f(P1)− f(P2) =
λ1j − λ1j(

λ1j−λ2j

λ1j
)(αj)

−1 − λ2j

λ1j + λ2j

Since λ2j < λ1j let’s define λ1j = λ2j + a. ∆1f can be rewritten as follows:

∆1f =
(λ2j + a)− λ1j(

a
λ1j

)(αj)
−1 − λ2j

λ1j + λ2j

=
a− λ1j(

a
λ1j

)(αj)
−1

λ1j + λ2j

=
λ1j(

a
λ1j

− ( a
λ1j

)(αj)
−1
)

λ1j + λ2j

Since 0 < a
λ1j

< 1 and 0 < αj < 1 when mj = λ1j, ∆1f = f(P1)−f(P2) > 0. In addition,

when mj = λ1j + λ2j, f(P1) = f(P2) = 1 and consequently ∆1f = 0

Therefore, showing that λ2j < λ1j < mj < λ1j + λ2j implies d∆1f
dmj

< 0 is sufficient to

prove that f(P1) > f(P2).

d∆1f

dmj

=
1

αj(λ1j + λ2j)
((
mj − λ1j

λ2j

)(αj)
−1−1 − (

mj − λ2j

λ1j

)(αj)
−1−1)

Let’s define H = (
mj−λ1j

λ2j
)(αj)

−1−1 − (
mj−λ2j

λ1j
)(αj)

−1−1. Now we show that whenever 0 <

αj < 1 and λ2j < λ1j < mj < λ1j + λ2j then H < 0 and therefore d∆1f
dmj

< 0. We have:

mj < λ1j +λ2j → mj(λ1j −λ2j) < (λ1j +λ2j)(λ1j −λ2j) → mjλ1j −λ2
1j < mjλ2j −λ2

2j →
mj−λ1j

λ2j
<

mj−λ2j

λ1j
→ (

mj−λ1j

λ2j
)(αj)

−1−1 < (
mj−λ2j

λ1j
)(αj)

−1−1 → H < 0 → d∆G
dmj

< 0.

Now let’s compare f(P1) and f(S). Define ∆2f = f(P1)− f(S).

If mj = λ1j →

 f(P1) =
λ1j

λ1j+λ2j

f(S) = (
λ1j

λ1j+λ2j
)(αj)

−1

Since 0 <
λ1j

λ1j+λ2j
< 1 and 0 < αj < 1 ⇒ f(P1) > f(S) when mj = λ1j. In addition,

when mj = λ1j + λ2j, f(P1) = f(S) = 1.

Therefore, if we prove that when λ1j < mj < λ1j + λ2j then d∆2f
dmj

< 0then we actually
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have proved that f(P1) > f(S).

d∆2f

dmj

=
1

αj(λ1j + λ2j)
((
mj − λ1j

λ2j

)(αj)
−1−1 − (

mj

λ1j + λ2j

)(αj)
−1−1)

Let’s define G = (
mj−λ1j

λ2j
)(αj)

−1−1 − (
mj−λ2j

λ1j
)(αj)

−1−1. Now we show that whenever 0 <

αj < 1 and λ2j < λ1j < mj < λ1j + λ2j then G < 0 and therefore d∆2f
dmj

< 0. We have:

mj < λ1j + λ2j → mjλ1j < λ1j(λ1j + λ2j) → mjλ1j − λ2
1j − λ1jλ2j < 0 → mjλ1j − λ2

1j −
λ1jλ2j + mjλ2j < mjλ2j → mj−λ1j

λ2j
<

mj

λ1j+λ2j
→ (

mj−λ1j

λ2j
)(αj)

−1−1 < (
mj

λ1j+λ2j
)(αj)

−1−1 → G <

0 → d∆2f
dmj

< 0.

Now, let’s compare f(P1) and f(P̄2).For solution P̄2 we have x2j = (
mj

λ2j
)(αj)

−1
. It can

be seen that since λ2j < λ1j < mj < λ1j + λ2j, x2j in solution P̄2 is greater than 1.

Therefore, if λ2j < λ1j < mj¡λ1j + λ2j then solution P̄2 is not a feasible solution. The same

logic is also true for solution P̄1. In fact, for solution P̄1 we have x1j = (
mj

λ1j
)(αj)

−1
. Again

λ2j < λ1j < mj < λ1j + λ2j and consequently x1j becomes greater than 1 in solution P̄1.

Therefore, if λ2j < λ1j < mj¡λ1j + λ2j then solution P̄1 is not a feasible solution too. We

proved that if 0 < αj < 1 and λ2j < λ1j < mj < λ1j + λ2j then solution P1 is the optimal

solution.

The same reasoning process can applied for other scheduling policies presented in Table

2.1.

Results for Section 2.3.1 (optimal referral policy)

We begin by presenting two lemmas which are useful in the proof of Theorems 2-5 and then

present the proofs of these theorems.

Lemma 2. Consider the referrer problem described in Equations 2.15-2.19. When both

providers are LOC, m1 +m2 is an upper bound on the referrer objective function.

Proof of Lemma 2. The following equations show the referrer objective functions for each

case feasible under the capacity and arrival rate assumptions:

G(P1, P1) = λ11 + λ12 + (λ21)(
m1 − λ11

λ21

)(α1)−1

+ (λ22)(
m2 − λ12

λ22

)(α2)−1

G(P1, P2) = λ11 + λ22 + (λ21)(
m1 − λ11

λ21

)(α1)−1

+ (λ12)(
m2 − λ22

λ12

)(α2)−1

G(P2, P1) = λ21 + λ12 +
(m1 − λ21)

(α1)−1

(λ11)(α1)−1−1
+

(m2 − λ12)
(α2)−1

(λ22)(α2)−1−1
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Let’s focus on the case (P1, P1). Since both x21 = (m1−λ11

λ21
)(α1)−1

and x22 = (m2−λ12

λ22
)(α2)−1

are between zero and one and (α1)
−1 and (α2)

−1 are greater than 1, the maximum values

for x21 and x22 can be achieved if α1 = α2 = 1 which results in G(P1, P1) = m1 +m2. The

same logic can be applied to prove that the maximum achievable values for G(P1, P2) and

G(P2, P1) is m1 +m2.

Lemma 3. Consider the referrer problem described in Equations 2.15-2.19. When both

providers are LOC, the referrer objective function is strictly convex.

Proof of Lemma 3. We need to prove that the Hessian at feasible points in all the three cases

(P1, P1), (P1, P2) and (P2, P1) is positive semidefinite.

Case 1: (P1, P1).

Since both providers best solutions is solution P1 and they both have enough capacity to

visit each type of patients independently therefore based on conditions in Table 1 we have

λ2j ≤ λ1j ≤ mj, j = 1, 2.

G(P1, P1) = λ11 + λ12 + (λ21)(
m1 − λ11

λ21

)(α1)−1

+ (λ22)(
m2 − λ12

λ22

)(α2)−1

Since λ11 + λ12 = λ1, λ12 + λ22 = λ2 and 0 < αi < 1,∀i the function can be rewritten as

follows:

G(P1, P1) = λ1 +
(m1 − λ11)

(α1)−1

(λ21)(α1)−1−1
+

(m2 − λ1 + λ11)
(α2)−1

(λ2 − λ21)(α2)−1−1

Let’s define k1 = (α1)
−1 and k2 = (α2)

−1. The Hessian matrix for case (P1, P1) is

H(P1, P1) =

[
A1 B1

B1 C1

]
where:

A1 =
d2G(P1, P1)

dλ2
11

=
k1(k1 − 1)(m1 − λ11)

k1−2

(λ21)k1−1
+

k2(k2 − 1)(m2 + λ11 − λ1)
k2−2

(λ2 − λ21)k2−1

B1 =
d2G(P1, P1)

dλ11dλ21

=
k1(k1 − 1)(m1 − λ11)

k1−1

(λ21)k1
+

k2(k2 − 1)(m2 + λ11 − λ1)
k2−1

(λ2 − λ21)k2

C1 =
d2G(P1, P1)

dλ2
21

=
k1(k1 − 1)(m1 − λ11)

k1

(λ21)k1+1
+

k2(k2 − 1)(m2 + λ11 − λ1)
k2

(λ2 − λ21)k2+1

Since k1 > 1, k2 > 1 λ11 ≤ m1, λ12 ≤ m2 → λ1 −m2 ≤ λ11 → 0 ≤ m2 − λ1 + λ11 and

λ21 ≤ λ2 all A1, B1 and C1 are positive. Therefore, since λi1 ≥ 0, i = 1, 2 it can be concluded

that Hessian is positive semidefinite at all feasible points.
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Case 2: (P1, P2).

For case (P1, P2) the assumptions are λ21 ≤ λ11 ≤ m1 and λ12 ≤ λ22 ≤ m2. We have:

G(P1, P2) = λ11 + λ22 + (λ21)(
m1 − λ11

λ21

)k1 + (λ12)(
m2 − λ22

λ12

)k2

The function can be rewritten as follows:

G(P1, P2) = λ2 + λ11 − λ21 +
(m1 − λ11)

k1

(λ21)k1−1
+

(m2 − λ2 + λ21)
k2

(λ1 − λ11)k2−1

Where k1 = (α1)
−1 and k2 = (α2)

−1. The Hessian matrix for case (P1, P2) is H(P1, P2) =[
A2 B2

B2 C2

]
where:

A2 =
d2G(P1, P2)

dλ2
11

=
k1(k1 − 1)(m1 − λ11)

k1−2

(λ21)k1−1
+

k2(k2 − 1)(m2 + λ21 − λ2)
k2

(λ1 − λ11)k2+1

B2 =
d2G(P1, P2)

dλ11dλ21

=
k1(k1 − 1)(m1 − λ11)

k1−1

(λ21)k1
+

k2(k2 − 1)(m2 + λ21 − λ2)
k2−1

(λ1 − λ11)k2

C2 =
d2G(P1, P2)

dλ2
21

=
k1(k1 − 1)(m1 − λ11)

k1

(λ21)k1+1
+

k2(k2 − 1)(m2 + λ21 − λ2)
k2−2

(λ1 − λ11)k2−1

Again, since k1 > 1, k2 > 1 λ11 ≤ m1, λ22 ≤ m2 → λ2 −m2 ≤ λ21 → 0 ≤ m2 + λ21 − λ2

and λ11 ≤ λ1 all A2, B2 and C2 are positive. Therefore, as λi1 ≥ 0, i = 1, 2 it can be

concluded that Hessian is positive semidefinite at all feasible points.

Case 3: (P2, P1).

For case (P2, P1) the assumptions are λ11 ≤ λ21 ≤ m1 and λ22 ≤ λ12 ≤ m2.

G(P2, P1) = λ21 + λ12 +
(m1 − λ21)

(α1)−1

(λ11)(α1)−1−1
+

(m2 − λ12)
(α2)−1

(λ22)(α2)−1−1

The function can be rewritten as follows:

G(P2, P1) = λ1 + λ21 − λ11 +
(m1 − λ21)

k1

(λ11)k1−1
+

(m2 − λ1 + λ11)
k2

(λ2 − λ21)k2−1

Where k1 = (α1)
−1 and k2 = (α2)

−1. The Hessian matrix for case (P2, P1) is H(P2, P1) =[
A3 B3

B3 C3

]
where:
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A3 =
d2G(P2, P1)

dλ2
11

=
k1(k1 − 1)(m1 − λ21)

k1

(λ11)k1+1
+

k2(k2 − 1)(m2 + λ11 − λ1)
k2−2

(λ2 − λ21)k2−1

B3 =
d2G(P2, P1)

dλ11dλ21

=
k1(k1 − 1)(m1 − λ21)

k1−1

(λ11)k1
+

k2(k2 − 1)(m2 + λ11 − λ1)
k2−1

(λ2 − λ21)k2

C3 =
d2G(P2, P1)

dλ2
21

=
k1(k1 − 1)(m1 − λ21)

k1−2

(λ11)k1−1
+

k2(k2 − 1)(m2 + λ11 − λ1)
k2

(λ2 − λ21)k2+1

Again, since k1 > 1, k2 > 1 λ21 ≤ m1, λ12 ≤ m2 → λ1 −m2 ≤ λ11 → 0 ≤ m2 + λ11 − λ1 and

λ21 ≤ λ2 all A3, B3 and C3 are positive. Therefore, as λi1 ≥ 0, i = 1, 2 it can be concluded

that Hessian is positive semidefinite at all feasible points.

We proved that the referrer function is always convex no matter what case the optimal

policy of the referrer results in.

Corollary 1. The candidates for optimal policies to the referrer problem described in Equations

2.15-2.19 are the boundary points that with the exception of Policies 7 and 8 result in

G(Λ) = m1 +m2. Table A.1 shows these candidates when both providers are LOC:

Index
Policy Resulted TP

(λ11, λ21)
(λ12, λ22)

(x11, x21)
(x12, x22)

1
(m1 +m2 − λ2, λ2 −m2)
(λ1 + λ2 −m1 −m2,m2)

(1, 1)
(0, 1)

2
(m1, λ1 + λ2 −m1 −m2)
(λ1 −m1,m1 +m2 − λ1)

(1, 0)
(1, 1)

3
(m1, λ2 −m2)
(λ1 −m1,m2)

(1, 0)
(0, 1)

4
(λ1 −m2,m1 +m2 − λ1)
(m2, λ1 + λ2 −m1 −m2)

(1, 1)
(1, 0)

5
(λ1 + λ2 −m1 −m2,m1)
(m1 +m2 − λ2, λ2 −m1)

(0, 1)
(1, 1)

6
(λ1 −m2,m1)
(m2, λ2 −m1)

(0, 1)
(1, 0)

7
(λ1, λ2 −m2)

(0,m2)
(1, (m1−λ1

λ2−m2
)(α1)

−1

)

(0, 1)

8
(λ1 −m2, λ2 −m2)

(m2,m2)
(1, (m1+m2−λ1

λ2−m2
)(α1)

−1

)

(1, 0)or(0, 1)

Table A.1: Candidate Policies (Both providers are LOC - Regular referral system)
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Proof of Corollary 1. This result follows directly from Lemmas 2 and 3.

Proof of Theorem 2. From Lemma 2 it can be concluded that in a referral system where

both providers are LOC if the referrer objective value under a policy is m1 +m2 then that

policy is optimal. Tables A.2 and A.3 show optimal referral policies extracted from Table

A.1 for the capacity scenario (Low, Low) and (Mid, Low) respectively:

Optimality Conditions Optimal Policy

2λ1 ≤ 2m2 +m1 1-6

λ1 + λ2 ≤ 2m2 +m1 < 2λ1 1,3,5,6

2m2 +m1 < λ1 + λ2

and
2m1 +m2 ≤ λ1 + λ2

3,6

2m2 +m1 < λ1 + λ2

and
2m1 +m2 > λ1 + λ2

2,3,5,6

Table A.2: Optimal policies (Capacity scenario (Low, Low), Both provider are LOC)

Optimality Conditions Optimal Policy

2λ1 ≤ 2m2 +m1 1-4

λ1 + λ2 ≤ 2m2 +m1 < 2λ1 1,3,4

2m2 +m1 < λ1 + λ2 2,3

Table A.3: Optimal policies (Capacity scenario (Mid, Low), Both provider are LOC)

As can be seen in the tables, there are more than one optimal policy under each optimality

condition. However, Policy 3 is the only optimal policies in both scenarios. The policy is:

providers 1: (λ11, λ21) = (m1, λ2 −m2)

providers 2: (λ12, λ22) = (λ1 −m1,m2)

For the first provider we have: m1+m2 > λ2 ⇒ m1 > λ2−m2 ⇒ λ11 > λ21 and λ11 = m1.

Therefore, based on results provided in Table 2.1 the optimal solution for the first provider

is solution P1 and we have (x11, x21) = (1, 0). Similarly for the second provider we have

λ1 < m1 +m2 ⇒ λ1 −m1 < m2 ⇒ λ12 < λ22 and λ22 = m2. Therefore, the best solution for

the second provider is P2 and (x12, x22) = (0, 1). Now for the referrer we have:
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G(Λ) = λ11x11 + λ21x21 + λ12x12 + λ22x22 = m1(1) + (λ2 −m2)(0) + (λ1 −m1)(0) +m2(1) = m1 +m2

The policy is optimal since it is feasible in both capacity scenarios and results in the

highest achievable value for the referrer.

Proof of Theorem 3. We use Lemma 2 to show that policies mentioned in Table 2.3 are

optimal in capacity scenario (High, Low) when 2m2 +m1 ≥ λ1 + λ2.

For the first policy we have:

1. λ11 + λ21 = m1 ⇒ (x11, x21) = (1, 1)

2. Since λ1 + λ2 ≤ 2m2 +m1 ⇒ λ1 + λ2 −m1 −m2 ≤ m2 ⇒ λ12 ≤ λ22. Therefore, the

second provider’s best solution is P2 and (x12, x22) = (0, 1).

Having target probabilities, it can easily be verified that G(Λ) = m1 + m2. The same

process can be done to show that the second policy is also optimal.

Proof of Theorem 4. Lemma 3 states that when providers are both LOC, G(Λ) is strictly

convex so that the optimal referral policy Λ is a boundary point. Define L as the set of

boundary referral points for capacity scenario (High, Low) when 2m2 +m1 < λ1 + λ2. L is

listed exhaustively along with the objective functions in Tables A.4-A.6. From Theorem 1

and our assumptions in Section 2.3 we know that there are three potential sets of optimal

scheduling policies S = (P1, P1), (P1, P2), (P2, P1). We consider each of these cases below

identifying the optimal referral policies leading to the scheduling policy (C∗
S). In each case

we identify Λ ∈ L which lead to the respective scheduling policy. This mapping generates

the set of potential coordinated policies C. The next step is to identify C∗ which eliminates

dominated coordinated policies for each scheduling policy. Finally, we compare objective

value of policies in C∗
P1,P1

, C∗
P1,P2

, and C∗
P2,P1

which results in two potential policies which may

be optimal depending on Equation 2.20. Let’s begin with the first scheduling policy pair

and define k1 = (α1)
−1 and k2 = (α2)

−1.

Case 1: (P1, P1). Policies {R1, R2, ...} can under specific parameters result in (P1, P1):
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Index
Referral Policy

G(Λ)
(λ11, λ21)
(λ12, λ22)

R1
(λ1 −m2, λ2 −m2)

(m2,m2)
λ1 +

(m1+m2−λ1)
k1

(λ2−m2)k1−1

R2
(λ1 − m2

2 , λ2 − m2

2 )
(m2

2 , m2

2 )

λ1 +
m2

2 +
(m1+

m2
2 −λ1)

k1

(λ2−m2
2 )k1−1

R3
(λ1+λ2−m2

2 , λ1+λ2−m2

2 )

(λ1−λ2+m2

2 , λ2−λ1+m2

2 )

m2+λ2+λ1

2 +
(2m1+m2−λ1−λ2)

k1

2(λ1+λ2−m2)k1−1

R4
(λ1 −m2, λ2)

(m2, 0)
λ1 +

(m1+m2−λ1)
k1

(λ2)k1−1

R5
(λ1 −m2, λ1 −m2)
(m2, λ2 +m2 − λ1)

λ1 +
(m1+m2−λ1)

k1

(λ1−m2)k1−1

Table A.4: Boundary referral policies resulting in case (P1, P1)

First, let’s compare G(R1) with G(R4):

λ2 > λ2 − m2 → 1
λ2

< 1
λ2−m2

→ 1
(λ2)k1−1 < 1

(λ2−m2)k1−1

×(m1+m2−λ1)k1−−−−−−−−−−→ (m1+m2−λ1)k1

(λ2)k1−1 <

(m1+m2−λ1)k1

(λ2−m2)k1−1

+λ1−−→ λ1 +
(m1+m2−λ1)k1

(λ2)k1−1 < λ1 +
(m1+m2−λ1)k1

(λ2−m2)k1−1 =⇒ G(R4) < G(R1).

Now we compare G(R1) with G(R5):

λ1 > λ2 → λ1−m2 > λ2−m2 → 1
λ1−m2

< 1
λ2−m2

→ 1
(λ1−m2)k1−1 < 1

(λ2−m2)k1−1

×(m1+m2−λ1)k1−−−−−−−−−−→
(m1+m2−λ1)k1

(λ1−m2)k1−1 < (m1+m2−λ1)k1

(λ2−m2)k1−1

+λ1−−→ λ1 +
(m1+m2−λ1)k1

(λ1−m2)k1−1 < λ1 +
(m1+m2−λ1)k1

(λ2−m2)k1−1 → G(R5) < G(R1).

So far we have shown that Policy R1 results in higher G(Λ) in comparison with policies

R4 and R5. Therefore, C∗
(P1,P1) definitely does not include policies R4 and R5.

Now, let’s compare G(R2) with G(R3). Define:

∆G = G(R2)−G(R3) =
λ1 − λ2

2
+

(m1 +
m2

2
− λ1)

k1

(λ2 − m2

2
)k1−1

−
(m1 − λ1+λ2−m2

2
)k1

(λ1+λ2−m2

2
)k1−1

We have:

d∆G

dm1

= k1((
m1 +

m2

2
− λ1

λ2 − m2

2

)k1−1 − (
m1 − λ1+λ2−m2

2
λ1+λ2−m2

2

)k1−1)

First we show that d∆G
dm1

< 0. We have:

m1 +m2 < λ1 + λ2 ⇒ 2m1 + 2m2 < 2λ1 + 2λ2
×(λ1−λ2)−−−−−→ 2m1(λ1 − λ2) + 2m2(λ1 − λ2) <

2(λ1+λ2)(λ1−λ2) ⇒ 2m1λ1−2λ2
1+2λ1m2 < 2m1λ2+2λ2m2−2λ2

2 ⇒ (2m1+m2−2λ1)(λ1+

λ2−m2) < (2m1+m2−λ1−λ2)(2λ2−m2) ⇒ (m1+
m2

2
−λ1)(

λ1+λ2−m2

2
) < (m1−λ1+λ2−m2

2
)(λ2−
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m2

2
) ⇒ (

m1+
m2
2

−λ1

λ2−m2
2

) < (
m1−λ1+λ2−m2

2
λ1+λ2−m2

2

)
k1>1−−−→ (

m1+
m2
2

−λ1

λ2−m2
2

)k1−1 < (
m1−λ1+λ2−m2

2
λ1+λ2−m2

2

)k1−1 ⇒ d∆G
dm1

< 0.

Therefore, as m1 increases ∆G decreases. So, if we show that ∆G is positive when m1

is equal to its upper limit then we can conclude that ∆G > 0 ⇒ G(R2) > G(R3). We have

2m2 +m1 < λ1 + λ2 ⇒ m1 < λ1 + λ2 − 2m2. Now, since λ1 + λ2 −m2 > λ1 + λ2 − 2m2 if

we show that ∆Gm1=λ1+λ2−m2 ≥ 0 it implies that ∆Gm1=λ1+λ2−2m2 > 0.

∆Gm1=λ1+λ2−m2 =
λ1 − λ2

2
+

(λ1 + λ2 +
m2

2
− λ1)

k1

(λ2 − m2

2
)k1−1

−
(λ1 + λ2 − λ1+λ2−m2

2
)k1

(λ1+λ2−m2

2
)k1−1

= 0

Therefore, ∆Gm1=λ1+λ2−2m2 > 0 ⇒ ∆G > 0 ⇒ G(R2) > G(R3).

So far we have shown that amongst policies presented in Table A.4 only Policies 1 and 2

are eligible to be in C∗
(P1,P1). Through applying the same process we extract C∗ policies for

the next two cases in the followings.

Case 2: (P1, P2).

The following table shows referral policies in C(P1,P2) resulting in case (P1, P2):

Index
Referral Policy

G(Λ)
(λ11, λ21)
(λ12, λ22)

R1
(λ1 −m2, λ2 −m2)

(m2,m2)
λ1 +

(m1+m2−λ1)
k1

(λ2−m2)k1−1

R2
(λ1 − m2

2 , λ2 − m2

2 )
(m2

2 , m2

2 )
λ1 +

m2

2 +
(m1+

m2
2 −λ1)

k1

(λ2−m2
2 )k1−1

R6
(λ1, λ2 −m2)

(0,m2)
λ1 +m2 +

(m1−λ1)
k1

(λ2−m2)k1−1

Table A.5: Boundary referral policies resulting in case (P1, P2)

It can be seen that the first two policies (i.e. R1 and R2) are the same as the policies in

C∗
(P1,P1). Applying the same process we used to compare G(R2) with G(R3) in case (P1, P1),

it can be shown that G(R6) > G(R2). Therefore, Policy R2 in C∗
(P1,P1) is not anymore a

candidate policy and we can eliminate it from C∗
(P1,P1). So far, we have C∗

(P1,P1) = {R1} and

C∗
(P1,P2) = {R1, R6} where Policy R1 is the common policy between the two sets.

Case 3: (P2, P1): We now show that any policies in C∗
(P2,P1) are dominated by other feasible

policies. The following table shows referral policies in C(P2,P1) resulting in case (P2, P1):
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Index
Referral Policy

G(Λ)
(λ11, λ21)
(λ12, λ22)

R3
(λ1+λ2−m2

2 , λ1+λ2−m2

2 )

(λ1−λ2+m2

2 , λ2−λ1+m2

2 )
m2+λ2+λ1

2 + (2m1+m2−λ1−λ2)
k1

2(λ1+λ2−m2)k1−1

R5
(λ1 −m2, λ1 −m2)
(m2, λ2 +m2 − λ1)

λ1 +
(m1+m2−λ1)

k1

(λ1−m2)k1−1

R7
(λ1 −m2, λ2)

(m2, 0)
λ2 +m2 +

(m1−λ2)
k1

(λ1−m2)k1−1

Table A.6: Boundary solutions that result in case (P2, P1)

In the analysis of cases (P1, P1) and (P1, P2) we showed that G(R6) > G(R2) > G(R3)

and G(R1) > G(R5). Therefore, R3 and R5 in Table A.6 cannot be optimal. Using the same

process used to compare R2 and R3 in case (P1, P1) it can be shown that G(R6) > G(R7).

Therefore, C∗
(P2,P1) can be ignored.

Conclusion: From the above cases, R1 and R6 (policies 8 and 7 in Table A.1) are the

only potential optimal policies. Comparing the objective values for these two policies leads

directly to the condition EC1. It can be verified that there exist parameters leading to

both policies being optimal. To conclude we have shown that in a centralized referral system

where both providers are LOC if the capacity scenario is (High, Low) and 2m2+m1 < λ1+λ2

then depending on the resulted objective value it is best for the referrer to apply one of the

policies presented in the following table:

Index
Referral Policy

G(Λ)
(λ11, λ21)
(λ12, λ22)

R1
(λ1 −m2, λ2 −m2)

(m2,m2)
λ1 +

(m1+m2−λ1)
k1

(λ2−m2)k1−1

R6
(λ1, λ2 −m2)

(0,m2)
λ1 +m2 +

(m1−λ1)
k1

(λ2−m2)k1−1

Table A.7: Optimal Policies (Capacity scenario (High, Low), 2m2 +m1 < λ1 + λ2)

Proof of Theorem 5. We use Lemma 2 to show that when capacity scenario is (Mid, Mid),

policies mentioned in Table 2.5 are optimal.
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Since the capacity scenario is (Mid, Mid) (i.e. λ2 < m2 < m1 < λ1) therefore λ11 =

λ1 −m2 > 0 and λ12 = λ1 −m1 > 0. The following shows two possible different situations

for the value of 2m2 +m1:

1. 2m2 +m1 ≥ λ1 + λ2

2. 2m2 +m1 < λ1 + λ2

From the assumptions we made in Section 2.3 we have λ1 < m1+m2 (i). In addition, in the

capacity scenario (Mid, Mid) λ2 < m2 (ii). Adding (i) and (ii) results in λ1+λ2 < 2m2+m1

which implies that the second situation is not feasible. Therefore, the only feasible situation

is 2m2 +m1 ≥ λ1 + λ2. For the first referral policy we have:

1. λ11 + λ21 = m1 ⇒ (x11, x21) = (1, 1)

2. λ1 + λ2 ≤ 2m2 +m1 ⇒ λ1 + λ2 −m1 −m2 ≤ m2 ⇒ λ22 ≤ λ12 which implies that the

second provider best solution is P1 and (x12, x22) = (1, 0).

For the second policy we have:

1. λ12 + λ22 = m2 ⇒ (x12, x22) = (1, 1)

2. Since m1 > m2 ⇒ 2m1+m2 > 2m2+m1 ⇒ 2m1+m2 > 2m2+m1 > λ1+λ2. Now, for

the second policy we have: 2m1+m2 > λ1+λ2 ⇒ m1 > λ1+λ2−m1−m2 ⇒ λ11 > λ21

which implies that the best solution for the first provider is P1 and (x11, x21) = (1, 0)

Having target probabilities and referral rates, it is now easy to verify that under both

policies we have G(Λ) = m1 +m2.

Results for Section 2.3.2 (optimal referral policy)

In this section we present the proofs of Theorems 6 and 7.

Lemma 4. With the exception of capacity scenario (Low,Low), in all other capacity scenarios

we always have 2m1 +m2 ≥ λ1 + λ2

Proof of Lemma 4. Based on our assumptions in Section 2.3 in all capacity scenarios except

(Low,Low) we have λ1 < m1 +m2 (i) and λ2 < m1 (ii). Adding (i) and (ii) together results

in 2m1 +m2 ≥ λ1 + λ2.

Lemma 5. Given 2m1+m2 < λ1+λ2, no feasible policy satisfies λ11+λ12 = λ1+λ2−m2.
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Proof of Lemma 5. First, based on Lemma 4 the only capacity scenario where it is possible

to have 2m1 + m2 < λ1 + λ2 is capacity scenario (Low,Low). Since we assumed that each

provider has enough capacity to serve both types of patients allocated to her independently

for provider 1 we have λ11 ≤ m1 and λ21 ≤ m1 and consequently λ11 + λ21 ≤ 2m1 (i). Since

2m1 + m2 < λ1 + λ2 ⇒ 2m1 < λ1 + λ2 − m2 (ii). From (i) and (ii) we have λ11 + λ21 <

λ1 + λ2 −m2.

Therefore, in capacity scenario (Low, Low) if 2m1+m2 < λ1+λ2 then there is no feasible

policy that that satisfies λ11 + λ12 = λ1 + λ2 −m2.

Proof of Theorem 6-a. Let’s define k1 = (α1)
−1 and k2 = (α2)

−1 where 0 < k1 < 1 and

k2 > 1. Since the first provider is HOC and applies the shared policy we have:

G(Λ) = λ11x11 + λ12x12 + λ21x21 + λ22x22 = (λ11 + λ21)(
m1

λ11 + λ21

)k1 + λ21x21 + λ22x22

Since the optimal policy for the second provider is either P1 or P2 we need to show that

in both cases the optimal policy for the referrer satisfies λ11 + λ21 = λ1 + λ2 − m2. Let’s

define G(S, P1) and G(S, P2) as the referrer objective functions when the best solutions for

the second provider are P1 and P2 respectively. We have:

G(S, P1) = (λ11 + λ21)(
m1

λ11 + λ21

)k1 + λ21 + λ22(
m2 − λ12

λ22

)k2

G(S, P2) = (λ11 + λ21)(
m1

λ11 + λ21

)k1 + λ12(
m2 − λ22

λ12

)k2 + λ22

Let’s assume that the optimal policy satisfies λ11 + λ21 = λ1 + λ2 − x and consequently

λ12 + λ22 = x. Based on our assumptions in Section 2.3, for each provider j we have

mj ≤ λ1j + λ2j which implies m2 ≤ x and m1 ≤ λ1 + λ2 − x ⇒ x ≤ λ1 + λ2 −m1. Therefore

m2 ≤ x ≤ λ1 + λ2 − m1. We need to show that for any optimal policy, x is equal to m2

no matter what the second provider solution is. Let’s begin with G(S, P1). If x = m2 then

G(S, P1) = (λ1 + λ2 − m2)
1−k1mk1

1 + m2. Now we need to show that this is the maximum

achievable value for G(S, P1) and as x increases and moves toward its upper limit G(S, P1)

decreases.

Since k2 > 1 we can rewrite G(S, P1) as follow:

G(S, P1) = (λ1 + λ2 − x)1−k1mk1
1 + λ12 +

(m2 − λ12)
k2

(λ22)k2−1

Where λi2 ≤ m2 ≤
∑

i λi2. Let’s split the function into two terms where the first term

is (λ1 + λ2 − x)1−k1mk1
1 and the second term is λ12 +

(m2−λ12)k2

(λ22)k2−1 . It is obvious that as x
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increases the first term decreases. Now, let’s focus on the second term. Since λ12 + λ22 = x

if x increases both λ12 and λ22 can increase. It can be seen that if λ22 increases the second

term and consequently G(S, P1) decreases. Therefore, in the best policy, λ22 should get the

minimum feasible value. Therefore, if x is increased, it is best to increase λ12 and not λ22.

Now, let’s assume that we increase x by ϵ. From m2 ≤ x ≤ λ1+λ2−m1 we have x = m2+ ϵ.

As λ12 ≤ m2 the maximum value that can be allocated to λ12 is m2 and consequently λ22 = ϵ.

Now from the fact that if λ12 increases G(S, P1) decreases we can conclude that if x increases

G(S, P1) decreases and consequently the optimal policy is to set x = m2. Finally, for the

optimal referral policy (i.e. Λ) we have λ11 + λ21 = λ1 + λ2 −m2, λ12 = m2 and λ22 = 0.

The same process can be done for G(S, P2). However the difference is that as λ12 increases

G(S, P2) decreases. Therefore, for the optimal policy we have λ11 + λ21 = λ1 + λ2 − m2,

λ12 = 0 and λ22 = m2.

From Lemma 4 and 5 as well as our explanations above we can conclude that in a

centralized system where the first provider is HOC , in all capacity scenarios except when

both the capacity scenario is (Low, Low) and 2m1 +m2 < λ1 + λ2, all the feasible policies

that satisfy λ11 + λ21 = λ1 + λ2 −m2 are optimal.

Proof of Theorem 6-b. Based on Lemma 5 in capacity scenario (Low, Low) if 2m1 +m2 <

λ1+λ2 then it is not possible to achieve the highest achievable objective value for the referrer

which is λ11 + λ12 = λ1 + λ2 −m2. The process of finding optimal policies for this situation

is similar to the one we used to prove Theorem 4. The second provider’s policy can be either

P1 or P2. Therefore, depending on the second provider’s policy there can be two cases (S, P1)

and (S, P2). First, we simplify referrer objective function in for case by finding the optimal

value of one of the streams to each provider. Having the simplified (Λ), we then prove that

in each case we need to focus on the boundary referral points. Let’s define L as the set

of boundary referral points for capacity scenario (Low, Low) when 2m1 + m2 < λ1 + λ2.

For each case, we find C ∈ L which defines the boundary referral points that result in that

case. Based on the optimality conditions extracted, for each case, we then find C∗ which

eliminates dominated coordinated policies for that scheduling policy. Finally, we compare

objective value of policies in C∗ which results in two potential policies which may be optimal

depending on Equation 2.22.

Let’s begin with G(S, P1) and define k1 = (α1)
−1 and k2 = (α2)

−1 where 0 < k1 < 1 and

k2 > 1.

G(S, P1) = (λ11 + λ21)(
m1

λ11+λ21
)k1 + λ12 + λ22(

m2−λ12

λ22
)k2 = (λ11 + λ21)

1−k1mk1
1 + λ1 − λ11 +

(m2−λ1+λ11)k2

(λ2−λ21)k2−1

It can be seen that as λ21 increases G(S, P1) also increases. Since λ21 < m1 < λ2, in the
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optimal policy λ21 is equal to its upper limit which is m1 and consequently λ∗
22 = λ2 −m1.

Therefore, G(S, P1) can be rewritten as follows:

G(S, P1) = (λ11 +m1)
1−k1mk1

1 + λ1 − λ11 +
(m2−λ1+λ11)k2

(λ2−m1)k2−1 = (λ1 +m1 − λ12)
1−k1mk1

1 + λ12 +
(m2−λ12)k2

(λ2−m1)k2−1

Since λ11 ≤ m1 ⇒ λ1 −m1 ≤ λ12. So, for the G(S, P1) we have: G(S, P1) = (λ1 +m1 − λ12)
1−k1mk1

1 + λ12 +
(m2−λ12)k2

(λ2−m1)k2−1

λ1 −m1 ≤ λ12 ≤ m2

Now, it all depends on the value of λ12. The same process can be done for G(S, P2) and

for the optimal policy in case (S, P2) we have λ∗
12 = λ1 −m1 and: G(S, P2) = (λ2 +m1 − λ22)
1−k1mk1

1 + λ22 +
(m2−λ22)k2

(λ1−m1)k2−1

λ1 −m1 ≤ λ22 ≤ m2

Now, we prove that in both cases we need to focus on the boundary points. To do so, we

begin with G(S, P1) and the same logic can be applied for the second case. We have:

dG(S, P1)

dλ12

= −k2(
m2 − λ12

λ2 −m1

)k2−1 − (1− k1)(
m1

λ1 +m1 − λ12

)k1 + 1

If we show that only three following situation for dG(S,P1)
dλ12

are possible then we can conclude

that in order to maximize G(S, P1) we only need to focus on the boundary points.

1. Strictly positive

2. Strictly negative

3. First negative then positive

To do so, we prove that it is not possible for dG(S,P1)
dλ12

to move from positive to negative.

If we set k1 = k2 = 1 then dG(S,P1)
dλ12

= 0. In addition, as k1 decreases dG(S,P1)
dλ12

decreases as

well. Therefore, if we keep k2 = 1 and reduce 0 < k1 < 1 then dG(S,P1)
dλ12

< 0. Let’s define

B = k2(
m2−λ12

λ2−m1
)k2−1 where k2 > 1 and 0 < m2−λ12

λ2−m1
< 1. We have:

dB

dk2
= (

m2 − λ12

λ2 −m1

)k2−1(k2ln(
m2 − λ12

λ2 −m1

) + 1) (A.1)

It can be verified that the maximum value of B can be achieved if k2 =
−1

ln(
m2−λ12
λ2−m1

)
. Note

that since 0 < m2−λ12

λ2−m1
< 1, ln(m2−λ12

λ2−m1
) < 0 and −1

ln(
m2−λ12
λ2−m1

)
> 0. Two cases can be considered:
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1. −1

ln(
m2−λ12
λ2−m1

)
< 1 < k2: In this case dB

dk2
> 0. Therefore, as k2 increases B increases as well

and dG(S,P1)
dλ12

decreases.

2. −1

ln(
m2−λ12
λ2−m1

)
> 1.

(a) If 1 < k2 < −1

ln(
m2−λ12
λ2−m1

)
then dB

dk2
< 0. Therefore, as k2 increases B decreases and

dG(S,P1)
dλ12

increases

(b) If k2 >
−1

ln(
m2−λ12
λ2−m1

)
then then dB

dk2
> 0. Therefore, as k2 increases B increases as well

and dG(S,P1)
dλ12

decreases

Previously we show that if k2 = 1 and 0 < k1 < 1 then dG(S,P1)
dλ12

< 0. Therefore, for case 2-a we

have −1

ln(
m2−λ12
λ2−m1

)
< 1 < k2 and therefore dG(S,P1)

dλ12
may remain negative or move from negative

to positive. For case 1 and 2-b since as k2 increases dG(S,P1)
dλ12

decreases we can conclude that

when 1 < k2 <
−1

ln(
m2−λ12
λ2−m1

)
and 0 < k1 < 1 then dG(S,P1)

dλ12
remains negative. Therefore, we show

that it is not possible for dG(S,P1)
dλ12

value to move from positive to negative and therefore in

order to maximize G(Λ) we always need to focus on the boundary points. The following

table shows boundary referral points (i.e. C) resulting in each case:

Case Index
Boundary Referral Points

(λ11, λ21)
(λ12, λ22)

(S, P1)

1
(λ1 −m2, λ2 −m2)

(m2,m2)

2
(λ1 −m2,m1)
(m2, λ2 −m1)

3
(m1,m1)

(λ1 −m1, λ2 −m1)

4
(m1,m1 + λ2 − λ1)
(λ1 −m1, λ1 −m1)

(S, P2)

4
(m1,m1 + λ2 − λ1)
(λ1 −m1, λ1 −m1)

5
(m1, λ2 −m2)
(λ1 −m1,m2)

6
(λ1 −m2, λ2 −m2)

(m2,m2)

Table A.8: Boundary referral points resulting in each case (First provider is HOC)

Since we proved that in case (S, P1) we have λ∗
22 = λ2 − m1 and in case (S, P2) λ∗

12 =
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λ1−m1 therefore policies 1 and 4 in case (S, P1) and policy 6 in case (S, P2) can be ignored.

The following table shows candidate referral policies (i.e. C∗) resulting in each case.

Case Index
Referral Policy

G(Λ)
(λ11, λ21)
(λ12, λ22)

S, P1
R1

(λ1 −m2,m1)
(m2, λ2 −m1)

(λ1 +m1 −m2)
1−k1mk1

1 +m2

R2
(m1,m1)

(λ1 −m1, λ2 −m1)

(2m1)
1−k1mk1

1 +

λ1 −m1 +
(m1+m2−λ1)

k2

(λ2−m1)k2−1

S, P2
R3

(m1,m1 + λ2 − λ1)
(λ1 −m1, λ1 −m1)

(2m1 + λ2 − λ1)
1−k1mk1

1 +

λ1 −m1 +
(m1+m2−λ1)

k2

(λ1−m1)k2−1

R4
(m1, λ2 −m2)
(λ1 −m1,m2)

(λ2 +m1 −m2)
1−k1mk1

1 +m2

Table A.9: Candidate policies (First provider is HOC, capacity scenario (Low, Low), 2m1+m2 < λ1+λ2)

Now we show that G(R1) > G(R4) and G(R2) > G(R3) and therefore in a centralized

system where the first provider is HOC if the capacity scenario is (Low, Low) and 2m1+m2 <

λ1+λ2 then the optimal policy for the referrer always result in case (S, P1). First, let’s begin

with the comparison of G(R1) and G(R4):

λ1 > λ2
+(m1−m2)−−−−−−→ λ1 + m1 − m2 > λ2 + m1 − m2

0<k1<1−−−−→ (λ1 + m1 − m2)
1−k1 >

(λ2 +m1 −m2)
1−k1

×m
k1
1−−−→ (λ1 +m1 −m2)

1−k1mk1
1 > (λ2 +m1 −m2)

1−k1mk1
1

+m2−−→ (λ1 +m1 −
m2)

1−k1mk1
1 +m2 > (λ2 +m1 −m2)

1−k1mk1
1 +m2 ⇒ G(R1) > G(R4)

For G(R2) and G(R3) we have:

λ2 − λ1 < 0
+2m1−−−→ λ2 − λ1 + 2m1 < 2m1

0<k1<1−−−−→ (λ2 − λ1 + 2m1)
1−k1 < (2m1)

1−k1
×m

k1
1−−−→

(λ2 − λ1 + 2m1)
1−k1mk1

1 < (2m1)
1−k1mk1

1
+λ1−m1−−−−−→

×m
k1
1−−−→ (λ2 − λ1 + 2m1)

1−k1mk1
1 + λ1 −m1 <

(2m1)
1−k1mk1

1 + λ1 −m1 (i)

In addition:

λ1 > λ2
−m1−−→ λ1 −m1 > λ2 −m1

k2>1−−−→ (λ1 −m1)
k2−1 > (λ2 −m1)

k2−1 ⇒ 1
(λ1−m1)k2−1 <

1
(λ2−m1)k2−1

×(m1+m2−λ1)k2−−−−−−−−−−→ (m1+m2−λ1)k2

(λ1−m1)k2−1 < (m1+m2−λ1)k2

(λ2−m1)k2−1 (ii)

If we add (i) and (ii) we have:

(λ2−λ1+2m1)
1−k1mk1

1 +λ1−m1+
(m1+m2−λ1)k2

(λ1−m1)k2−1 < (2m1)
1−k1mk1

1 +λ1−m1+
(m1+m2−λ1)k2

(λ2−m1)k2−1 ⇒
G(R3) < G(R2)

Therefore, depending on the resulted value forG(Λ), the optimum policies for the capacity
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scenario (Low, Low) when the first provider is HOC and 2m1 +m2 < λ1 + λ2 can be either

of the policies in the following table:

Index
Optimal Policy TP

Optimality Condition (Eq. 2.22)
(λ11, λ21)
(λ12, λ22)

xi1

(x12, x22)

1
(λ1 −m2,m1)
(m2, λ2 −m1)

( m1

λ1+m1−m2
)(α1)

−1

(1, 0)
True

2
(m1,m1)

(λ1 −m1, λ2 −m1)
( 12 )

(α1)
−1

(1, (m2+m1−λ1

λ2−m1
)(α2)

−1

)
False

Table A.10: Optimal policies (First provider is HOC - Capacity scenario is (Low, Low) and 2m1 +m2 <

λ1 + λ2)

Lemma 6. In a centralized system where the second provider is HOC, if 2m2+m1 < λ1+λ2

then it is not possible to have a policy that satisfies λ12 + λ22 = λ1 + λ2 −m1.

Proof of Lemma 6. Based on our assumptions in Section 2.3 we have λ12 ≤ m2 and λ22 ≤ m2

and consequently λ12 + λ22 ≤ 2m2. Since 2m2 +m1 < λ1 + λ2 ⇒ 2m2 < λ1 + λ2 −m1 ⇒
λ12 + λ22 < λ1 + λ2 −m1.

Proof of Theorem 7-a. The same process applied in Theorem 6-a can be applied here. Let’s

define k1 = (α1)
−1 and k2 = (α2)

−1 where k1 > 1 and 0 < k2 < 1. Since the second provider

is HOC we have:

G(Λ) = λ11x11 + λ12x12 + λ21x21 + λ22x22 = λ11x11 + λ21x21 + (λ12 + λ22)(
m2

λ12 + λ22

)k2

Since the optimal policy for the first provider is either P1 or P2 we need to show that in

both cases the optimal policy for the referrer satisfies λ11 + λ21 = m1. Let’s define G(P1, S)

and G(P2, S) as the referrer functions where the best solutions for the first provider are P1

and P2 respectively. We have:

G(P1, S) = λ11 + λ21(
m1 − λ11

λ21

)k1 + (λ12 + λ22)(
m2

λ12 + λ22

)k2

G(P2, S) = λ11(
m1 − λ21

λ11

)k1 + λ21 + (λ12 + λ22)(
m2

λ12 + λ22

)k2

Let’s assume that the optimal policy satisfies λ11+λ21 = x and consequently λ12+λ22 =

λ1 + λ2 − x. Based on our assumptions in Section 2.3, for any provider like j we have
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mj ≤ λ1j + λ2j which implies that m1 ≤ x and m2 ≤ λ1 + λ2 − x ⇒ x ≤ λ1 + λ2 − m2.

Therefore m1 ≤ x ≤ λ1 + λ2 −m2. We need to show that for any optimal policy, x is equal

to m1 no matter what the first provider solution is. Let’s begin with G(P1, S).

If x = m1 then G(P1, S) = m1 + (λ1 + λ2 −m1)(
m2

λ1+λ2−m1
)k2 . Now we need to show that

this is the maximum achievable value for G(P1, S) and as x increases and moves toward its

upper limit G(P1, S) decreases.

Since k1 > 1 and 0 < k2 < 1 we can rewrite G(P1, S) as follow:

G(P1, S) = λ11 +
(m1 − λ11)

k1

(λ21)k1−1
+ (λ1 + λ2 − x)1−k2mk2

2

Where λi1 ≤ m1 ≤
∑

i λi1. Let’s split the function into two terms where the first term is

(λ1+λ2−x)1−k2mk2
2 and the second term is λ11+

(m1−λ11)k1

(λ21)k1−1 . It can easily be verified that as

x increases the first term decreases. Now, let’s focus on the second term. Since λ11+λ21 = x

if x increases both λ11 and λ21 can increase. It can be seen that if λ21 increases the second

term and consequently G(P1, S) decreases. Therefore, in the best policy, λ21 should get the

minimum feasible value. Therefore, if x is increased, it is best to increase λ11 and not λ22.

Now, let’s assume that we increase x by ϵ. From m1 ≤ x ≤ λ1+λ2−m2 we have x = m1+ ϵ.

As λ11 ≤ m1 the maximum value that can be allocated to λ11 is m1 and consequently λ21 = ϵ.

Now from the fact that if λ11 increases G(P1, S) decreases we can conclude that if x increases

G(P1, S) decreases and consequently the optimal policy is to set x = m1. Finally, for the

optimal policy we have λ12 + λ22 = λ1 + λ2 −m1, λ11 = m1 and λ21 = 0.

The same process can be done for G(P2, S). However the difference is that as λ11 increases

G(P2, S) decreases. Therefore, for the optimal policy (λ11, λ21, λ12, λ22) we have λ12 + λ22 =

λ1 + λ2 −m1, λ11 = 0 and λ21 = m1.

From what is discussed above as well as Lemma 5 we can conclude that in a centralized

system where the second provider is HOC and in all the capacity scenarios if 2m2 +m1 >

λ1 + λ2 then all the feasible policies that satisfy λ11 + λ21 = m1 are optimal.

Proof of Theorem 7-b. Based on Lemma 6 if 2m2 +m1 < λ1 + λ2 then it is not possible to

achieve the highest objective value for the referrer which is discussed in the proof of Theorem

7-a. Note that for the capacity scenario (Mid, Mid) we have m2 > λ2 and m1 +m2 > λ1. If

we add these two inequalities together it results in 2m2+m1 > λ1+λ2. This implies that in

the capacity scenario (Mid, Mid) the referrer is always able to achieve the highest objective

value.

For this part of the theorem we use the same process applied in Theorem 6-b. For each

capacity scenario we will take the following steps:
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1. First we simplify the referrer objective function for each case through finding optimal

values for specific streams to providers.

2. Then, we show that to find the optimal referral solutions for each case (P1, S) and

(P2, S) we need to focus on the boundary referral points.

3. Boundary referral points resulting in each case (i.e. C) are extracted.

4. For each case, policies in C are compared with each other to find the ones that result

in higher G(Λ) (i.e. C∗).

5. Finally, policies in C∗ in both cases are compared to each other to find the optimal

referral policies for referrer.

Let’s define k1 = (α1)
−1 and k2 = (α2)

−1 where k1 > 1 and 0 < k2 < 1 . The followings

show the referrer objective function for each case:

G(P1, S) = λ11 + λ21(
m1−λ11

λ21
)k1 + (λ12 + λ22)(

m2

λ12+λ22
)k2 = λ11 +

(m1−λ11)k1

(λ21)k1−1 + (λ1 + λ2 − λ11 − λ21)
1−k2mk2

2

G(P2, S) = λ11(
m1−λ21

λ11
)k1 + λ21 + (λ12 + λ22)(

m2

λ12+λ22
)k2 = λ21 +

(m1−λ21)k1

(λ11)k1−1 + (λ1 + λ2 − λ11 − λ21)
1−k2mk2

2

For the case (P1, S) it can be seen that as λ21 increases G(P1, S) decreases. Therefore,

in the optimal solution λ∗
21 should be equal to its lower limit which is λ2 −m2 (λ22 ≤ m2 ⇒

λ2 −m2 ≤ λ21). The same logic is true for λ11 in case (P2, S). Therefore, λ
∗
11 = λ1 −m2 in

the optimal solution for the case (P2, S). Therefore, we have: G(P1, S) = (λ1 +m2 − λ11)
1−k2mk2

2 + λ11 +
(m1−λ11)k1

(λ2−m2)k1−1

λ1 −m2 ≤ λ11 ≤ m1 G(P2, S) = λ21 +
(m1−λ21)k1

(λ1−m2)k1−1 + (λ2 +m2 − λ21)
1−k2mk2

2

λ1 −m2 ≤ λ21 ≤ m1

Now we show that to find optimal solutions in both cases we need to focus on the

boundary referral points. We begin with G(P1, S) and the same logic can be applied for the

other case.

dG(P1, S)

dλ11

= −k1(
m1 − λ11

λ2 −m2

)k1−1 − (1− k2)(
m2

λ1 +m2 − λ11

)k2 + 1

If we show that the only three situations for dG(P1,S)
dλ11

value are as follows then we can

conclude that in order to maximize G(P1, S) we only need to focus on the boundary points.
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1. Strictly positive

2. Strictly negative

3. First negative then positive

To do so, we prove that it is not possible for dG(P1,S)
dλ11

value to move from positive to negative.

If we set k1 = k2 = 1 then dG(P1,S)
dλ11

= 0. In addition, as k2 decrease dG(P1,S)
dλ11

also decreases.

Therefore, if we keep k1 = 1 and reduce the value of k2 (i.e. 0 < k2 < 1) then dG(P1,S)
dλ11

< 0.

Let’s define B = k1(
m1−λ11

λ2−m2
)k1−1 where k1 > 1 and 0 < m1−λ11

λ2−m2
< 1.

We have:

dB

dk1
= (

m1 − λ11

λ2 −m2

)k1−1(k1ln(
m1 − λ11

λ2 −m2

) + 1) (A.2)

It an be verified that the maximum value of B can be achieved if k1 = −1

ln(
m1−λ11
λ2−m2

)
. Two

cases can be considered:

1. −1

ln(
m1−λ11
λ2−m2

)
< 1 < k1: In this case dB

dk1
> 0. Therefore, as k1 increases B increases as well

and dG(P1,S)
dλ11

decreases.

2. −1

ln(
m1−λ11
λ2−m2

)
> 1.

(a) If 1 < k1 < −1

ln(
m1−λ11
λ2−m2

)
then dB

dk1
< 0. Therefore, as k1 increases B decreases and

dG(P1,S)
dλ11

increases

(b) If k1 >
−1

ln(
m1−λ11
λ2−m2

)
then then dB

dk1
> 0. Therefore, as k1 increases B increases as well

and dG(P1,S)
dλ11

decreases

Previously we show that if k1 = 1 and 0 < k2 < 1 then dG(P1,S)
dλ11

< 0. Therefore, for case 2-a

where 1 < k1 <
−1

ln(
m1−λ11
λ2−m2

)
, dG(P1,S)

dλ11
may remain negative or move from negative to positive.

For cases 1 and 2-b since as k1 increases
dG(P1,S)

dλ11
decreases we can conclude that when 1 < k1

and 0 < k2 < 1, dG(P1,S)
dλ11

remains negative. Therefore, we show that it is not possible for
dG(P1,S)

dλ11
value to move from positive to negative and therefore we always need to focus on

the boundary points. Now we focus on extracting boundary referral points that result in

each case (i.e. C).
We begin begin with the capacity scenario (Low, Low). The following table shows

boundary referral points resulting in each case when the capacity scenario is (Low, Low)

and 2m2 +m1 < λ1 + λ2:
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Case Index
Referral Policy

(λ11, λ21)
(λ12, λ22)

(P1, S)

R1
(λ1 −m2, λ2 −m2)

(m2,m2)

R2
(λ1+λ2−m2

2 , λ1+λ2−m2

2 )

(λ1+m2−λ2

2 , λ2+m2−λ1

2 )

R3
(λ1 −m2, λ1 −m2)
(m2, λ2 +m2 − λ1)

R4
(m1, λ1 + λ2 −m1 −m2)
(λ1 −m1,m1 +m2 − λ1)

R5
(m1, λ2 −m2)
(λ1 −m1,m2)

R6
(m1,m1)

(λ1 −m1, λ2 −m1)

(P2, S)

R2
(λ1+λ2−m2

2 , λ1+λ2−m2

2 )

(λ1+m2−λ2

2 , λ2+m2−λ1

2 )

R3
(λ1 −m2, λ1 −m2)
(m2, λ2 +m2 − λ1)

R7
(λ1 + λ2 −m1 −m2,m1)
(m1 +m2 − λ2, λ2 −m1)

R8
(λ1 −m2,m1)
(m2, λ2 −m1)

R6
(m1,m1)

(λ1 −m1, λ2 −m1)

Table A.11: Boundary referral points (Second provider is HOC, capacity scenario (Low, Low), 2m2+m1 <

λ1 + λ2)

Based on optimality conditions we extracted in the first step, policies R2, R3, R4 and

R6 in case (P1, S) and policies R2, R7 and R6 in case (P2, S) cannot be ignored. Therefore,

policies R1 and R5 in case (P1, S) and policies R3 and R8 in case (P2, S) are the candidate

solutions for the referrer (i.e. these policies are in C∗). Now, we show that G(R1)(P1,S) >

G(R3)(P2,S) and G(R5)(P1,S) > G(R8)(P2,S) and therefore in a centralized system where the

second provider is HOC if the capacity scenario is (Low, Low) and 2m2+m1 < λ1+λ2 then

the optimal policy for the referrer always results in case (P1, S). Let’s compare G(R1)(P1,S)

with G(R3)(P2,S):
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G(R1)(P1,S) = λ1 −m2 +
(m1 +m2 − λ1)

k1

(λ2 −m2)k1−1
+ (2m2)

1−k2mk2
2

G(R3)(P2,S) = λ1 −m2 +
(m1 +m2 − λ1)

k1

(λ1 −m2)k1−1
+ (λ2 + 2m2 − λ1)

1−k2mk2
2

Since λ1 > λ2 we have (m1+m2−λ1)k1

(λ1−m2)k1−1 < (m1+m2−λ1)k1

(λ2−m2)k1−1 (i) and (λ2 + 2m2 − λ1)
1−k2mk2

2 <

(2m2)
1−k2 (ii). From (i) and (ii) we can conclude G(R1)(P1,S) > G(R3)(P2,S). For G(R5)(P1,S)

and G(R8)(P2,S) we have:

G(R5)(P1,S) = m1 + (λ1 +m2 −m1)
1−k2mk2

2

G(R8)(P2,S) = m1 + (λ2 +m2 −m1)
1−k2mk2

2

Again, since λ1 > λ2 ⇒ (λ1+m2−m1)
1−k2mk2

2 > (λ2+m2−m1)
1−k2mk2

2 ⇒ G(R5)(P1,S) >

G(R8)(P2,S).

Doing the same process for the capacity scenario (Mid, Low) we have:
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Case Index
Referral Policy

(λ11, λ21)
(λ12, λ22)

(P1, S)

R1
(λ2, λ2)

(λ1 − λ2, 0)

R2
(λ1 −m2, λ2 −m2)

(m2,m2)

R3
(λ1+λ2−m2

2 , λ1+λ2−m2

2 )

(λ1+m2−λ2

2 , λ2+m2−λ1

2 )

R4
(λ1 −m2, λ1 −m2)
(m2, λ2 +m2 − λ1)

R5
(m1, λ1 + λ2 −m1 −m2)
(λ1 −m1,m1 +m2 − λ1)

R6
(m1, λ2 −m2)
(λ1 −m2,m2)

R7
(λ1 −m2, λ2)

(m2, 0)

(P2, S)

R8
(λ2, λ2)

(λ1 − λ2, 0)

R3
(λ1+λ2−m2

2 , λ1+λ2−m2

2 )

(λ1+m2−λ2

2 , λ2+m2−λ1

2 )

R4
(λ1 −m2, λ1 −m2)
(m2, λ2 +m2 − λ1)

R7
(λ1 −m2, λ2)

(m2, 0)

Table A.12: Boundary referral points (Second provider is HOC, capacity scenario: (Mid, Low), 2m2+m1 <

λ1 + λ2)

Based on the logic we used before, the only policies that are potential to be optimal (i.e.

policies in C∗) are policies R2 and R6 in the case (P1, S) and policies R4 and R7 in the case

(P2, S). Now we show that G(R2)(P1,S) > G(R4)(P2,S) and G(R6)(P1,S) > G(R7)(P2,S) and

therefore like the capacity scenario (Low, Low), the optimal policy for the referrer always

results in the case (P1, S). We have:

G(R2)(P1,S) = λ1 −m2 +
(m1 +m2 − λ1)

k1

(λ2 −m2)k1−1
+ (2m2)

1−k2mk2
2

G(R4)(P2,S) = λ1 −m2 +
(m1 +m2 − λ1)

k1

(λ1 −m2)k1−1
+ (λ2 + 2m2 − λ1)

1−k2mk2
2

Since λ1 > λ2 we have (m1+m2−λ1)k1

(λ1−m2)k1−1 < (m1+m2−λ1)k1

(λ2−m2)k1−1 (i) and (λ2 + 2m2 − λ1)
1−k2mk2

2 <
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(2m2)
1−k2 (ii). From (i) and (ii) it can be concluded that G(R2)(P1,S) > G(R4)(P2,S). For

G(R6)(P1,S) and G(R7)(P2,S) we have:

G(R6)(P1,S) = m1 + (λ1 +m2 −m1)
1−k2mk2

2

G(R7)(P2,S) = λ2 +
(m1 − λ2)

k1

(λ1 −m2)k1−1
+ (m2)

1−k2m2

Now we show that G(R6)(P1,S) > G(R7)(P2,S):

λ1 > m1 ⇒ λ1 − m1 > 0
+m2−−→ λ1 + m2 − m1 > m2

0<k2<1−−−−→ (λ1 + m2 − m1)
1−k2 >

(m2)
1−k2

×m
k2
2−−−→ mk2

2 (λ1 +m2 −m1)
1−k2 > mk2

2 (m2)
1−k2 (i)

λ1 + λ2 > m1 + m2 ⇒ λ1 − m2 > m1 − λ2 ⇒ 1 > (m1−λ2

λ1−m2
)

k1>1−−−→ 1 > (m1−λ2

λ1−m2
)k1−1 ⇒

(m1 − λ2) >
(m1−λ2)k1

(λ1−m2)k1−1 ⇒ m1 > λ2 +
(m1−λ2)k1

(λ1−m2)k1−1 (ii)

If we add (i) and (ii) together it results in m1+(λ1+m2−m1)
1−k2mk2

2 > λ2+
(m1−λ2)k1

(λ1−m2)k1−1 +

(m2)
1−k2m2 ⇒ G(R6)(P1,S) > G(R7)(P2,S).

Finally for the capacity scenario (High, Low) we have:

125



Case Index
Referral Policy

(λ11, λ21)
(λ12, λ22)

(P1, S)

R1
(λ2, λ2)

(λ1 − λ2, 0)

R2
(λ1 −m2, λ2 −m2)

(m2,m2)

R3
(λ1+λ2−m2

2 , λ1+λ2−m2

2 )

(λ1+m2−λ2

2 , λ2+m2−λ1

2 )

R4
(λ1 −m2, λ1 −m2)
(m2, λ2 +m2 − λ1)

R5
(λ1, λ2 −m2)

(0,m2)

R7
(λ1 −m2, λ2)

(m2, 0)

(P2, S)

R1
(λ2, λ2)

(λ1 − λ2, 0)

R3
(λ1+λ2−m2

2 , λ1+λ2−m2

2 )

(λ1+m2−λ2

2 , λ2+m2−λ1

2 )

R4
(λ1 −m2, λ1 −m2)
(m2, λ2 +m2 − λ1)

R7
(λ1 −m2, λ2)

(m2, 0)

Table A.13: Boundary points (Second provider is HOC, Capacity scenario(High, Low), 2m2+m1 < λ1+λ2)

The only policies that remain potential to be optimal for the referrer are policies 2 and

5 in case (P1, S) and policies 4 and 7 in case (P2, S). In the previous capacity scenarios we

proved that G(R2)(P1,S) > G(R4)(P2,S). Now we show that G(R5)(P1,S) > G(R7)(P2,S) and

like the previous capacity scenario, the optimal policy for the referrer always results in case

(P1, S).

G(R5)(P1,S) = λ1 +
(m1 − λ1)

k1

(λ2 −m2)k1−1
+m2

G(R7)(P2,S) = λ2 +
(m1 − λ2)

k1

(λ1 −m2)k1−1
+m2

Let’s define:

∆G = G(R5)(P1,S) −G(R7)(P2,S) = λ1 − λ2 +
(m1 − λ1)

k1

(λ2 −m2)k1−1
− (m1 − λ2)

k1

(λ1 −m2)k1−1
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Where m2 < λ2 < λ1 < m1 < m1 +m2 < λ1 + λ2 and 2m2 +m1 < λ1 + λ2. Therefore,

m1 ∈ [λ1, λ1 + λ2 − 2m2]

If we set m1 = λ1 then ∆G = λ1 − λ2 − (λ1−λ2)k1

(λ1−m2)k1−1 . First we prove that if we set m1

equal to its lower limit then ∆G > 0.

m2 < λ2 ⇒ −m2 > −λ2
+λ1−−→ λ1 −m2 > λ1 − λ2 ⇒ 1 > λ1−λ2

λ1−m2

k1>1−−−→ 1 > ( λ1−λ2

λ1−m2
)k1−1 ⇒

λ1 − λ2 >
(λ1−λ2)k1

(λ1−m2)k1−1 ⇒ λ1 − λ2 − (λ1−λ2)k1

(λ1−m2)k1−1 > 0 ⇒ ∆Gm1=λ1 > 0

Now, let’s take the derivative of ∆G with respect to m1:

d∆G

dm1

= (k1 − 1)(
m1 − λ1

λ2 −m2

)k1−2 − (k1 − 1)(
m1 − λ2

λ1 −m2

)k1−2

Let’s consider two scenarios where in the first scenario 1 < k1 < 2 and in the second

scenario k1 > 2. For the first scenario since 1 < k2 < 2 we can rewrite d∆G
dm1

as follows:

d∆G

dm1

= (k1 − 1)(
λ2 −m2

m1 − λ1

)2−k1 − (k1 − 1)(
λ1 −m2

m1 − λ2

)2−k1

Now we have:

λ1 + λ2 > m1 + m2
×(m1−m2)−−−−−−→ (λ1 + λ2)(m1 − m2) > m2

1 − m2
2 ⇒ λ2m1 − λ2m2 +

λ1m1 − λ1m2 > m2
1 −m2

2
+λ1λ2−−−→ λ2m1 − λ2m2 + λ1m1 − λ1m2 + λ1λ2 > m2

1 −m2
2 + λ1λ2 ⇒

λ2λ1−λ1m2−λ2m2+m2
2 > m2

1−m1λ2−λ1m1+λ1λ2 ⇒ λ2−m2

m1−λ1
> m1−λ2

λ1−m2

1<k1<2−−−−→ (λ2−m2

m1−λ1
)2−k1 >

(m1−λ2

λ1−m2
)2−k1

×(k1−1)−−−−−→ (k1 − 1)(λ2−m2

m1−λ1
)2−k1 > (k1 − 1)(m1−λ2

λ1−m2
)2−k1 ⇒ d∆G

dm1
> 0.

Therefore, if 1 < k2 < 2 as m1 increases ∆G also increases. Since we also showed

that ∆Gm1=lower−limit > 0 therefore as a conclusion we can say that if 1 < k2 < 2 then

∆G > 0. Now we prove that even if k2 > 1 then ∆G > 0 and therefore we can conclude that

G(R5)(P1,S) is always greater than G(R7)(P2,S).

For k1 > 2 we have:

d∆G

dm1

= (k1 − 1)(
m1 − λ1

λ2 −m2

)k1−2 − (k1 − 1)(
m1 − λ2

λ1 −m2

)k1−2

m1 +m2 < λ1 + λ2
×(m1−m2)−−−−−−→ m2

1 −m2
2 < (λ1 + λ2)(m1 −m2)

+λ1λ2−−−→ m2
1 −m2

2 + λ1λ2 <

(λ1 + λ2)(m1 − m2) + λ1λ2 ⇒ m1−λ1

λ2−m2
< m1−λ2

λ1−m2

k1>2−−−→ (m1−λ1

λ2−m2
)k1−2 < (m1−λ2

λ1−m2
)k1−2 ×(k1−1)−−−−−→

(k1 − 1)(m1−λ1

λ2−m2
)k1−2 < (k1 − 1)(m1−λ2

λ1−m2
)k1−2 ⇒ d∆G

dm1
< 0. Therefore, if k1 > 2 then as m1

increases ∆G decreases. Now if we show that ∆G > 0 when m1 is equal to its upper limit

then we can conclude that ∆G is greater than zero for all m1 ∈ [λ1, λ1 + λ2 − 2m2]. Since

the capacity scenario is (High, Low) we have m2 < λ2 < λ1 < m1 < m1 + m2 < λ1 + λ2.

We know that λ1 + λ2 > λ1 + λ2 − 2m2. Since d∆G
dm1

< 0 if we prove that ∆Gm1=λ1+λ2 > 0

then we can conclude that ∆Gm1=λ1+λ2−2m2 > 0. Let’s assume that the higher limit for m1
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is λ1 + λ2 and prove that ∆Gm1=λ1+λ2 > 0.

∆Gm1=λ1+λ2 = λ1 − λ2 +
λ
k1
2

(λ2−m2)k1−1 − λ
k1
1

(λ1−m2)k1−1 = λ1(1− ( λ1

λ1−m2
)k1−1)− λ2(1− ( λ2

λ2−m2
)k1−1)

Let’s define A = λ1(1− ( λ1

λ1−m2
)k1−1) and B = λ2(1− ( λ2

λ2−m2
)k1−1). Therefore,

∆Gm1=λ1+λ2 = A−B. We have:

λ2 < λ1
×m2−−→ λ2m2 < λ1m2 ⇒ −λ1m2 < −λ2m2

+λ1λ2−−−→ λ1λ2 − λ1m2 < λ1λ2 − λ2m2 ⇒
λ1

λ1−m2
< λ2

λ2−m2

k1−1−−−→ ( λ1

λ1−m2
)k1−1 < ( λ2

λ2−m2
)k1−1 ⇒ −( λ2

λ2−m2
)k1−1 < −( λ1

λ1−m2
)k1−1 +1−→

1− ( λ2

λ2−m2
)k1−1 < 1− ( λ1

λ1−m2
)k1−1 (i)

In addition, we have λ2 < λ1 (ii).

Multiplying (i) and (ii) results in λ2(1− ( λ2

λ2−m2
)k1−1) < λ1(1− ( λ1

λ1−m2
)k1−1) ⇒

∆Gm1=λ1+λ2 > 0. Therefore, we have proved that ∆G > 0 and consequently G(R5)(P1,S) >

G(R7)(P2,S).

We proved that the optimal policy and target probabilities for different capacity scenarios

when the second provider is HOC and 2m2 +m1 < λ1 + λ2 are as follows:

Capacity

Scenario
Index

Optimal Policy TP
Optimality Condition

(λ11, λ21)
(λ12, λ22)

(x11, x21)
xi2

(Low, Low)

(Mid, Low)

1
(λ1 −m2, λ2 −m2)

(m2,m2)
(1, (m1+m2−λ1

λ2−m2
)(α1)

−1

)

( 12 )
(α2)

−1 Eq. 2.24 True

2
(m1, λ2 −m2)
(λ1 −m1,m2)

(1, 0)

( m2

λ1+m2−m1
)(α2)

−1 Eq. 2.24 False

(High, Low)
1

(λ1 −m2, λ2 −m2)
(m2,m2)

(1, (m1+m2−λ1

λ2−m2
)(α1)

−1

)

( 12 )
(α2)

−1 Eq. 2.25 True

3
(λ1, λ2 −m2)

(0,m2)
(1, (m1−λ1

λ2−m2
)(α1)

−1

)

1
Eq. 2.25 False

Table A.14: Optimal policies (Second provider is HOC and 2m2 +m1 < λ1 + λ2)

A.2.1 Fair-Allocation Model Analysis

In this section we extract optimal referral policies for a Fair-allocation referral network. A

summary the optimal policies can be found at the end of the section.

Lemma 7. Consider a referral system where both providers are LOC and fairness is an

important factor in the system. The referrer objective function in this system is convex.
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Proof of Lemma 7. The following shows G(Λ) where k1 = (α1)
−1 and k2 = (α2)

−1 and

k1, k2 > 1.

G(Λ) = (λ11 + λ21)(
m1

λ11 + λ21

)k1 + (λ12 + λ22)(
m2

λ12 + λ22

)k2 =

mk1
1

(λ11 + λ21)k1−1
+

mk2
2

(λ12 + λ22)k2−1
=

mk1
1

(λ11 + λ21)k1−1
+

mk2
2

(λ1 + λ2 − λ11 − λ21)k2−1

And:

d2F

dλ2
11

=
d2F

dλ2
21

=
d2F

dλ11λ21

= k1(k1 − 1)
mk1

1

(λ11 + λ21)k1+1
+ k2(k2 − 1)

mk2
2

(λ12 + λ22)k2+1

Since d2F
dλ2

11
= d2F

dλ2
21

= d2F
dλ11λ21

and all of them are positive we can conclude that the Hessian

matrix is positive and therefore G(Λ) is convex.

Lemma 7 implies that in order to find the maximum value for the G(Λ) we should focus

on boundary points.

Optimal Referral Policies Capacity Scenario (Low, Low)

The following table shows boundary points when the capacity scenario is (Low, Low) and

λ1 + λ2 > 2m1 +m2:

Index
Policy

G(Λ)
(λ11, λ21)
(λ12, λ22)

1
(m1, λ2 −m2)
(λ1 −m1,m2)

m
k1
1

(m1+λ2−m2)k1−1+

m
k2
2

(λ1+m2−m1)k2−1

2
(m1,m1)

(λ1 −m1, λ2 −m1)
m

k1
1

(2m1)k1−1 +
m

k2
2

(λ1+λ2−2m1)k2−1

3
(λ1 −m2, λ2 −m2)

(m2,m2)
m

k1
1

(λ1+λ2−2m2)k1−1 +
m

k2
2

(2m2)k2−1

4
(λ1 −m2,m1)
(m2, λ1 −m1)

m
k1
1

(λ1+m1−m2)k1−1+

m
k2
2

(λ1+m2−m1)k2−1

Table A.15: Boundary points (Capacity scenario (Low, Low), λ1 + λ2 > 2m1 +m2)
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Now based on KKT conditions for the G(Λ) we show that the optimal policy for the

referrer is either Policy 2 or Policy 3. Let’s first compare G(policy − 1) and G(policy − 4):

∆G = mk1
1 (

1

(m1 + λ2 −m2)k1−1
− 1

(λ1 +m1 −m2)k1−1
)

Since λ2 < λ1
+(m1−m2)−−−−−−→ m1 − m2 + λ2 < m1 − m2 + λ1 ⇒ 1

m1−m2+λ2
> 1

m1−m2+λ1
⇒

1
(m1−m2+λ2)k1−1 > 1

(m1−m2+λ1)k1−1 ⇒ ∆G > 0 ⇒ G(policy − 1) > G(policy − 4). Now we

need to prove that Policy 1 cannot be optimal. In other words, we need to show that

max(G(policy − 2), G(policy − 3)) > G(policy − 1).

The following shows the referrer problem when the capacity scenario is (Low, Low):

Max
mk1

1

(λ11 + λ21)k1−1
+

mk2
2

(λ1 + λ2 − λ11 − λ21)k2−1

St :

λ11 −m1 ≤ 0

λ21 −m1 ≤ 0

m1 − λ11 − λ21 ≤ 0

λ1 −m2 − λ11 ≤ 0

λ2 −m2 − λ21 ≤ 0

λ11 + λ21 − λ1 − λ2 +m2 ≤ 0

It should be mentioned that we ignored two conditions λ11 ≤ λ1 and λ21 ≤ λ2 as in the

capacity scenario (Low, Low) m1 and m2 are both lower than λ1 and λ2.

KKT conditions for the problem are as follows:

1. dG
dλ11

= (k2 − 1)( m2

λ1+λ2−λ11−λ21
)k2 − (k1 − 1)( m1

λ11+λ21
)k1 = u1 − u3 − u4 + u6

2. dG
dλ21

= (k2 − 1)( m2

λ1+λ2−λ11−λ21
)k2 − (k1 − 1)( m1

λ11+λ21
)k1 = u2 − u3 − u5 + u6

3. u1(λ11 −m1) = 0

4. u2(λ21 −m1) = 0

5. u3(m1 − λ11 − λ21) = 0

6. u4(λ1 −m2 − λ11) = 0

7. u5(λ2 −m2 − λ21) = 0
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8. u6(λ11 + λ21 − λ1 − λ2 +m2) = 0

From the first and second conditions we have u1 − u4 = u2 − u5.

Where ui ≥ 0, i = 1, ..., 6 are Lagrangian multipliers. Since the objective function is

convex and the problem is a maximization problem as mentioned earlier we need to focus

on the boundary points.

Let’s focus on the Policy 1 we have:

{
λ11 = m1

λ21 = λ2 −m2

⇒



u1

{
= 0

̸= 0

u2 = 0

u3 = 0

u4 = 0

u5

{
= 0

̸= 0

u6 = 0
Since u1 − u4 = u2 − u5 and u2 = u4 = 0 we have u1 = −u5. Since ui ≥ 0 therefore the

only possible situation is u1 = u5 = 0. This results in u1 = u2 = ... = u6. Therefore, from

the first and second conditions we have:

(k2 − 1)( m2

λ1+λ2−λ11−λ21
)k2 − (k1 − 1)( m1

λ11+λ21
)k1 = 0 ⇒ (k2 − 1)( m2

λ1+λ2−λ11−λ21
)k2 =

(k1 − 1)( m1

λ11+λ21
)k1 (i)

Therefore, Policy 1 can be considered as a potential solution if equation (i) holds. Now,

let’s assume that (k2−1)( m2

λ1+λ2−λ11−λ21
)k2 = (k1−1)( m1

λ11+λ21
)k1 and see if under this condition

Policy 1 can be optimal:

(k2 − 1)( m2

λ1+λ2−λ11−λ21
)k2 = (k1 − 1)( m1

λ11+λ21
)k1 ⇒ ( m2

λ1+λ2−λ11−λ21
)k2 = k1−1

k2−1
( m1

λ11+λ21
)k1 ⇒

Gm(Λ) = (λ11 + λ21 + (k1−1
k2−1

)(λ12 + λ22))(
m1

λ11+λ21
)k1 . Where Gm(Λ) indicates the fact that

G(Λ) is calculated under the the condition (k2 − 1)( m2

λ1+λ2−λ11−λ21
)k2 = (k1 − 1)( m1

λ11+λ21
)k1 .

Therefore:

Gm(policy − 1) = (m1 + λ2 −m2 + (
k1 − 1

k2 − 1
)(λ1 +m2 −m1))(

m1

m1 + λ2 −m2

)k1

Gm(policy − 2) = (2m1 + (
k1 − 1

k2 − 1
)(λ1 + λ2 − 2m1))(

m1

2m1

)k1

Gm(policy − 3) = (λ1 + λ2 − 2m2 + (
k1 − 1

k2 − 1
)(2m2))(

m1

λ1 + λ2 − 2m2

)k1

Let’s consider two scenarios where in the first scenario k1 ≥ k2 and in the second scenario

k1 < k2. In the following we show that if k1 ≥ k2 then Gm(policy − 3) > Gm(policy − 1) >

Gm(policy − 2). Let’s first compare Gm(policy − 1) and Gm(policy − 2):
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1. λ2 < m1 + m2 ⇒ m1 + λ2 − m2 < 2m1 ⇒ 1
m1+λ2−m2

> 1
2m1

⇒ m1

m1+λ2−m2
> m1

2m1
⇒

( m1

m1+λ2−m2
)k1 > ( m1

2m1
)k1

2. k1 > k2 ⇒ k1 − 1 > k2 − 1 ⇒ k1−1
k2−1

> 1 ⇒ (k1−1
k2−1

)(m1 +m2 − λ2) > (m1 +m2 − λ2) ⇒
(k1−1
k2−1

)((λ1 + m2 − m1) − (λ1 + λ2 − 2m1)) > (2m1) − (m1 + λ2 − m2)⇒ (m1 + λ2 −
m2 + (k1−1

k2−1
)(λ1 +m2 −m1)) > (2m1 + (k1−1

k2−1
)(λ1 + λ2 − 2m1))

If we multiply 1 and 2 we have:

(m1+λ2−m2+(k1−1
k2−1

)(λ1+m2−m1))(
m1

m1+λ2−m2
)k1 > (2m1+(k1−1

k2−1
)(λ1+λ2−2m1))(

m1

2m1
)k1 ⇒

Gm(policy − 1) > Gm(policy − 2).

Now, let’s compare Gm(policy − 1) and Gm(policy − 3):

1. λ1 < m1 + m2 ⇒ λ1 + λ2 − 2m2 < m1 + λ2 − m2 ⇒ 1
λ1+λ2−2m2

> 1
m1+λ2−m2

⇒
m1

λ1+λ2−2m2
> m1

m1+λ2−m2
⇒ ( m1

λ1+λ2−2m2
)k1 > ( m1

m1+λ2−m2
)k1

2. k1 > k2 ⇒ k1 − 1 > k2 − 1 ⇒ k1−1
k2−1

> 1 ⇒ (k1−1
k2−1

)(m1 +m2 − λ1) > (m1 +m2 − λ1) ⇒
(k1−1
k2−1

)((2m2) − (λ1 + m2 − m1)) > (m1 + λ2 − m2) − (λ1 + λ2 − 2m2)⇒ (λ1 + λ2 −
2m2 + (k1−1

k2−1
)(2m2)) > (m1 + λ2 − m2 + (k1−1

k2−1
)(λ1 + m2 − m1)) ⇒ Gm(policy − 3) >

Gm(policy − 1).

So far we have shown that if k1 ≥ k2 then Gm(policy−3) > Gm(policy−1) > Gm(policy−2)

and therefore Policy 1 cannot be optimal under this condition. Let’s now focus on the second

scenario where k1 < k2.

Let’s define:

∆G = Gm(policy− 3)−Gm(policy− 1) = (λ1 + λ2 − 2m2 + (k1−1
k2−1

)(2m2))(
m1

λ1+λ2−2m2
)k1 −

(m1 + λ2 −m2 + (k1−1
k2−1

)(λ1 +m2 −m1))(
m1

m1+λ2−m2
)k1

We have:

d∆G

dk2
=

(λ1 +m2 −m1)(
m1

m1+λ2−m2
)k1 − (2m2)(

m1

λ1+λ2−2m2
)k1

(k2 − 1)2
(k1 − 1)

Now we show that d∆G
dk2

< 0 and consequently as k2 increases ∆G decreases.

1. λ1 < m1 +m2 ⇒ λ1 +m2 −m1 < 2m2

2. λ1 < m1 + m2 ⇒ λ1 + λ2 − 2m2 < m1 + λ2 − m2 ⇒ 1
λ1+λ2−2m2

> 1
m1+λ2−m2

×m1−−→
m1

λ1+λ2−2m2
> m1

m1+λ2−m2
⇒ ( m1

λ1+λ2−2m2
)k1 > ( m1

m1+λ2−m2
)k1

From (1) and (2) we have:

(2m2)(
m1

λ1 + λ2 − 2m2

)k1 > (λ1 +m2 −m1)(
m1

m1 + λ2 −m2

)k1 ⇒ d∆G

dk2
< 0
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Since k2 > 1 if we show that ∆G is positive when k2 → ∞ then we can conclude that

∆G > 0 ⇒ Gm(policy − 3) > Gm(policy − 1) and therefore Policy 1 cannot be optimal at

all. If k2 → ∞ then we have:

∆Gk2→∞ = (λ1 + λ2 − 2m2)(
m1

λ1 + λ2 − 2m2

)k1 − (m1 + λ2 −m2)(
m1

m1 + λ2 −m2

)k1

We now show that ∆Gk2→∞ > 0 ⇒ ∆G > 0 ⇒ Gm(policy − 3) > Gm(policy − 1).

λ1 < m1 +m2 ⇒ λ1 + λ2 − 2m2 < m1 + λ2 −m2 ⇒ λ1+λ2−2m2

m1+λ2−m2
< 1

Since λ1+λ2−2m2

m1+λ2−m2
< 1 and k1 > 1 we have λ1+λ2−2m2

m1+λ2−m2
> (λ1+λ2−2m2

m1+λ2−m2
)k1 ⇒ λ1+λ2−2m2

m1+λ2−m2
>

(
m1

m1+λ2−m2
m1

λ1+λ2−2m2

)k1 ⇒ (λ1+λ2−2m2)(
m1

λ1+λ2−2m2
)k1 > (m1+λ2−m2)(

m1

m1+λ2−m2
)k1 ⇒ ∆Gk2→∞ > 0

The following table shows boundary points when the capacity scenario is (Low, Low) and

2m2 +m1 < λ1 + λ2 < 2m1 +m2:

Index
Policy

G(Λ)
(λ11, λ21)
(λ12, λ22)

1
(m1, λ2 −m2)
(λ1 −m1,m2)

m
k1
1

(m1+λ2−m2)k1−1+

m
k2
2

(λ1+m2−m1)k2−1

2
(m1, λ1 + λ2 −m1 −m2)
(λ1 −m1,m1 +m2 − λ1)

m2 +
m

k1
1

(λ1+λ2−m2)k1−1

3
(λ1 + λ2 −m1 −m2,m1)
(m1 +m2 − λ2, λ2 −m1)

m2 +
m

k1
1

(λ1+λ2−m2)k1−1

4
(λ1 −m2, λ2 −m2)

(m2,m2)

m
k1
1

(λ1+λ2−2m2)k1−1+

m
k2
2

(2m2)k2−1

5
(λ1 −m2,m1)
(m2, λ1 −m1)

m
k1
1

(λ1+m1−m2)k1−1+

m
k2
2

(λ1+m2−m1)k2−1

Table A.16: Boundary points (Capacity scenario (Low, Low), 2m2 +m1 < λ1 + λ2 < 2m1 +m2)

Previously we proved that policies 1 and 5 cannot be optimal. In addition, G(policy−2) =

G(policy − 3). Therefore, depending on which policy results in the highest objective value

for the referrer each one of the policies 2, 3 and 4 can be optimal.

The following table shows boundary points when the capacity scenario is (Low, Low) and

λ1 + λ2 < 2m2 +m1:
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Index
Policy

G(Λ)
(λ11, λ21)
(λ12, λ22)

1
(m1, λ2 −m2)
(λ1 −m1,m2)

m
k1
1

(m1+λ2−m2)k1−1+

m
k2
2

(λ1+m2−m1)k2−1

2
(m1, λ1 + λ2 −m1 −m2)
(λ1 −m1,m1 +m2 − λ1)

m2 +
m

k1
1

(λ1+λ2−m2)k1−1

3
(m1 +m2 − λ2, λ2 −m2)
(λ1 + λ2 −m1 −m2,m2)

m1 +
m

k2
2

(λ1+λ2−m1)k2−1

4
(λ1 −m2,m1 +m2 − λ1)
(m2, λ1 + λ2 −m1 −m2)

m1 +
m

k2
2

(λ1+λ2−m1)k2−1

5
(λ1 −m2,m1)
(m2, λ1 −m1)

m
k1
1

(λ1+m1−m2)k1−1+

m
k2
2

(λ1+m2−m1)k2−1

6
(λ1 + λ2 −m1 −m2,m1)
(m1 +m2 − λ2, λ2 −m1)

m2 +
m

k1
1

(λ1+λ2−m2)k1−1

Table A.17: Boundary points (Capacity scenario (Low, Low), λ1 + λ2 < 2m2 +m1)

Again policies 1 and 5 can be ignored. In addition, G(policy − 2) = G(policy − 6) and

G(policy − 3) = G(policy − 4). Therefore, depending on which policy results in the highest

objective value each one of the policies 2, 3, 4 and 6 can be optimal.

Optimal Referral Policies Capacity Scenario (Mid, Low)

Now let’s focus on the capacity scenario (Mid, Low). In comparison with the referrer problem

for the capacity scenario (Low, Low), the only constraint that needs to be changed is the

second constraint. The new condition is λ21 ≤ λ2.

Therefore, KKT conditions for the problem are:

1. dG
dλ11

= (k2 − 1)( m2

λ1+λ2−λ11−λ21
)k2 − (k1 − 1)( m1

λ11+λ21
)k1 = u1 − u3 − u4 + u6

2. dG
dλ21

= (k2 − 1)( m2

λ1+λ2−λ11−λ21
)k2 − (k1 − 1)( m1

λ11+λ21
)k1 = u2 − u3 − u5 + u6

3. u1(λ11 −m1) = 0

4. u2(λ21 − λ2) = 0

5. u3(m1 − λ11 − λ21) = 0

6. u4(λ1 −m2 − λ11) = 0
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7. u5(λ2 −m2 − λ21) = 0

8. u6(λ11 + λ21 − λ1 − λ2 +m2) = 0

The following table shows boundary points when the capacity scenario is (Mid, Low) and

λ1 + λ2 > 2m2 +m1:

Index
Policy

G(Λ)
(λ11, λ21)
(λ12, λ22)

1
(m1, λ2 −m2)
(λ1 −m1,m2)

m
k1
1

(m1+λ2−m2)k1−1+

m
k2
2

(λ1+m2−m1)k2−1

2
(m1, λ1 + λ2 −m1 −m2)
(λ1 −m1,m1 +m2 − λ1)

m2 +
m

k1
1

(λ1+λ2−m2)k1−1

3
(λ1 −m2, λ2)

(m2, 0)
m2 +

m
k1
1

(λ1+λ2−m2)k1−1

4
(λ1 −m2, λ2 −m2)

(m2,m2)
m

k1
1

(λ1+λ2−2m2)k1−1 +
m

k2
2

(2m2)k2−1

Table A.18: Boundary points (Capacity scenario (Mid, Low), λ1 + λ2 > 2m2 +m1)

It can be seen that the first and second KKT conditions are remained unchanged and

therefore the results for the capacity scenario (Low, Low) also apply here. As a result,

Policy 1 can be eliminated from the potential optimal solutions for the referrer. In addition,

G(policy − 2) = G(policy − 3). Therefore, depending on which policy results in the highest

objective value for the referrer each one of the policies 2, 3 and 4 can be optimal.

The following table shows boundary points when the capacity scenario is (Mid, Low) and

λ1 + λ2 < 2m2 +m1:
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Index
Policy

G(Λ)
(λ11, λ21)
(λ12, λ22)

1
(m1, λ2 −m2)
(λ1 −m1,m2)

m
k1
1

(m1+λ2−m2)k1−1+

m
k2
2

(λ1+m2−m1)k2−1

2
(m1, λ1 + λ2 −m1 −m2)
(λ1 −m1,m1 +m2 − λ1)

m2 +
m

k1
1

(λ1+λ2−m2)k1−1

3
(λ1 −m2, λ2)

(m2, 0)
m2 +

m
k1
1

(λ1+λ2−m2)k1−1

4
(m1 +m2 − λ2, λ2 −m2)
(λ1 + λ2 −m1 −m2,m2)

m1 +
m

k2
2

(λ1+λ2−m1)k2−1

5
(λ1 −m2,m1 +m2 − λ1)
(m2, λ1 + λ2 −m1 −m2)

m1 +
m

k2
2

(λ1+λ2−m1)k2−1

Table A.19: Boundary points (Capacity scenario (Mid, Low), λ1 + λ2 < 2m2 +m1)

Again Policy 1 can be ignored and G(policy − 2) = G(policy − 3) and G(policy − 4) =

G(policy − 5). The optimal policies can be determined based on the objective value for the

referrer. Therefore, any of the policies 2, 3, 4 and 5 are potential to be optimal.

Optimal Referral Policies Capacity Scenario (High, Low)

The referrer problem and KKT conditions for the capacity scenario (High, Low) are as

follows:

Max
mk1

1

(λ11 + λ21)k1−1
+

mk2
2

(λ1 + λ2 − λ11 − λ21)k2−1

St :

λ11 − λ1 ≤ 0

λ21 − λ2 ≤ 0

m1 − λ11 − λ21 ≤ 0

λ1 −m2 − λ11 ≤ 0

λ2 −m2 − λ21 ≤ 0

λ11 + λ21 − λ1 − λ2 +m2 ≤ 0

It should be mentioned that we ignored two conditions λ11 ≤ λ1 and λ21 ≤ λ2 as in the

capacity scenario (Low, Low) m1 and m2 are both lower than λ1 and λ2.
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KKT conditions for the problem are as follows:

1. dG
dλ11

= (k2 − 1)( m2

λ1+λ2−λ11−λ21
)k2 − (k1 − 1)( m1

λ11+λ21
)k1 = u1 − u3 − u4 + u6

2. dG
dλ21

= (k2 − 1)( m2

λ1+λ2−λ11−λ21
)k2 − (k1 − 1)( m1

λ11+λ21
)k1 = u2 − u3 − u5 + u6

3. u1(λ11 − λ1) = 0

4. u2(λ21 − λ2) = 0

5. u3(m1 − λ11 − λ21) = 0

6. u4(λ1 −m2 − λ11) = 0

7. u5(λ2 −m2 − λ21) = 0

8. u6(λ11 + λ21 − λ1 − λ2 +m2) = 0

The following table shows boundary points when the capacity scenario is (High, Low) and

λ1 + λ2 > 2m2 +m1:

Index
Policy

G(Λ)
(λ11, λ21)
(λ12, λ22)

1
(λ1, λ2 −m2)

(0,m2)
m2 +

m
k1
1

(λ1+λ2−m2)k1−1

2
(λ1 −m2, λ2)

(m2, 0)
m2 +

m
k1
1

(λ1+λ2−m2)k1−1

3
(λ1 −m2, λ2 −m2)

(m2,m2)
m

k1
1

(λ1+λ2−2m2)k1−1 +
m

k2
2

(2m2)k2−1

Table A.20: Boundary points (Capacity scenario (High, Low), λ1 + λ2 > 2m2 +m1)

G(policy − 1) = G(policy − 2) an all the three policies above has the potential to be

optimal. The policy that results in the highest objective value for the referrer is the optimal

policy.

The following table shows boundary points when the capacity scenario is (High, Low)

and λ1 + λ2 < 2m2 +m1:
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Index
Policy

G(Λ)
(λ11, λ21)
(λ12, λ22)

1
(λ1, λ2 −m2)

(0,m2)
m2 +

m
k1
1

(λ1+λ2−m2)k1−1

2
(λ1 −m2, λ2)

(m2, 0)
m2 +

m
k1
1

(λ1+λ2−m2)k1−1

3
(m1 +m2 − λ2, λ2 −m2)
(λ1 + λ2 −m1 −m2,m2)

m1 +
m

k2
2

(λ1+λ2−m1)k2−1

4
(λ1 −m2,m1 +m2 − λ1)
(m2, λ1 + λ2 −m1 −m2)

m1 +
m

k2
2

(λ1+λ2−m1)k2−1

Table A.21: Boundary points (Capacity scenario (High, Low), λ1 + λ2 < 2m2 +m1)

Like the previous situation, all the four policies here are potential to be optimal and the

optimal policy is determined based on the highest resulted objective value.

Finally for the capacity scenario (Mid, Mid) we have:

Max
mk1

1

(λ11 + λ21)k1−1
+

mk2
2

(λ1 + λ2 − λ11 − λ21)k2−1

St :

λ11 −m1 ≤ 0

λ21 −m1 ≤ 0

m1 − λ11 − λ21 ≤ 0

λ1 − λ2 − λ11 ≤ 0

−λ21 ≤ 0

λ11 + λ21 − λ1 − λ2 +m2 ≤ 0

KKT conditions for the problem are as follows:

1. dG
dλ11

= (k2 − 1)( m2

λ1+λ2−λ11−λ21
)k2 − (k1 − 1)( m1

λ11+λ21
)k1 = u1 − u3 − u4 + u6

2. dG
dλ21

= (k2 − 1)( m2

λ1+λ2−λ11−λ21
)k2 − (k1 − 1)( m1

λ11+λ21
)k1 = u2 − u3 − u5 + u6

3. u1(λ11 −m1) = 0

4. u2(λ21 −m1) = 0

5. u3(m1 − λ11 − λ21) = 0
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6. u4(λ1 − λ2 − λ11) = 0

7. u5(−λ21) = 0

8. u6(λ11 + λ21 − λ1 − λ2 +m2) = 0

Optimal Referral Policies Capacity Scenario (Mid, Mid)

The following table shows boundary points when the capacity scenario is (Mid, Mid):

Index
Policy

G(Λ)
(λ11, λ21)
(λ12, λ22)

1
(m1, 0)

(λ1 −m1, λ2)
m1 +

m
k2
2

(λ1+λ2−m1)k2−1

2
(m1, λ1 + λ2 −m1 −m2)
(λ1 −m1,m1 +m2 − λ1)

m2 +
m

k1
1

(λ1+λ2−m2)k1−1

3
(λ1 −m2, λ2)

(m2, 0)
m2 +

m
k1
1

(λ1+λ2−m2)k1−1

4
(λ1 −m2,m1 +m2 − λ1)
(m2, λ1 + λ2 −m1 −m2)

m1 +
m

k2
2

(λ1+λ2−m1)k2−1

Table A.22: Boundary points (Capacity scenario (Mid, Mid))

Each one of the policies in the table above can be optimal and the optimal policy is the

one which results in the highest objective value for the referrer.

Now, we focus on the situations where one of the providers is HOC. Let’s begin with the

situation where the first provider is HOC.

G(Λ) = (λ11 + λ21)
1−k1mk1

1 +
mk2

2

(λ1 + λ2 − λ11 − λ21)k2−1

First, let’s show that if λ1+λ2 > 2m1+m2 then the optimal policy is (λ11, λ21) = (m1,m1).

It can be seen that as λ11+λ21 increasesG(Λ) also increases. The referrer problem constraints

are as follows:

1. λ11 ≤ m1

2. λ21 ≤ m1

3. m1 ≤ λ11 + λ21

4. λ12 ≤ m2 ⇒ λ1 −m2 ≤ λ11
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5. λ22 ≤ m2 ⇒ λ2 −m2 ≤ λ21

6. m2 ≤ λ12 + λ22 ⇒ λ11 + λ21 ≤ λ1 + λ2 −m2

7. λ11 ≤ λ1

8. λ21 ≤ λ2

From constraints 1, 2, 7 and 8 and the fact that in all the capacity scenarios except (Low,

Low) λ2 ≤ m1 it can be concluded that the only capacity scenario in which (λ11, λ21) =

(m1,m1) can be a feasible solution is the capacity scenario (Low, Low). If we add constraints

1 and 2 we have λ11 + λ21 ≤ 2m1. Therefore, if 2m1 ≤ λ1 + λ2 −m2 then the optimal policy

for the referrer is λ11 + λ21 = 2m1 which implies (λ11, λ21) = (m1,m1). On the other hand,

if 2m1 > λ1 + λ2 −m2 then the optimal policy for the referrer is to set λ11 and λ12 in such

a way that satisfies λ11 + λ21 = λ1 + λ2 −m2.

Now, let’s focus on the situation where the second provider is HOC. We have:

G(Λ) = (λ12 + λ22)
1−k2mk2

2 +
mk1

1

(λ1 + λ2 − λ12 − λ22)k1−1

The same logic that we used above can be applied here and therefore if 2m2 ≤ λ1+λ2−m1

then the optimal policy for the referrer is λ12+λ22 = 2m2 which implies (λ12, λ22) = (m2,m2).

On the other hand, if 2m2 ≤ λ1+λ2−m1 then the optimal policy for the referrer is to set λ12

and λ22 in such a way that satisfies λ12 + λ22 = λ1 + λ2 −m1 which implies λ11 + λ21 = m1.

Summary

Consider the policies shown in the following table:
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Index
Policy TP

(λ11, λ21)
(λ12, λ22)

xi1

xi2

1
(m1,m1)

(λ1 −m1, λ2 −m1)
( 12 )

(α1)
−1

( m2

λ1+λ2−2m1
)(α2)

−1

2
(λ1 −m2, λ2 −m2)

(m2,m2)
( m1

λ1+λ2−2m2
)(α1)

−1

( 12 )
(α2)

−1

3
(m1, λ1 + λ2 −m1 −m2)
(λ1 −m1,m1 +m2 − λ1)

( m1

λ1+λ2−m2
)(α1)

−1

1

4
(λ1 + λ2 −m1 −m2,m1)
(m1 +m2 − λ2, λ2 −m1)

( m1

λ1+λ2−m2
)(α1)

−1

1

5
(λ1 −m2,m1 +m2 − λ1)
(m2, λ1 + λ2 −m1 −m2)

1

( m2

λ1+λ2−m1
)(α2)

−1

6
(m1 +m2 − λ2, λ2 −m2)
(λ1 + λ2 −m1 −m2,m2)

1

( m2

λ1+λ2−m1
)(α2)

−1

7
(λ1 −m2, λ2)

(m2, 0)
( m1

λ1+λ2−m2
)(α1)

−1

1

8
(λ1, λ2 −m2)

(0,m2)
( m1

λ1+λ2−m2
)(α1)

−1

1

9
(m1, 0)

(λ1 −m1, λ2)

1

( m2

λ1+λ2−m1
)(α2)

−1

Table A.23: Potential Optimal Policies (Fair-Allocation Referral System)

Tables A.24-A.26 show optimal referral policies in a fair-allocation referral system for

different capacity scenarios and operational competency level.

Both providers are LOC The following table shows optimal policies for the referrer in

a referral system where both providers are LOC and fairness is taken into account.
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Capacity Scenario Optimality Conditions Optimal Policy

(Low, Low)

λ1 + λ2 > 2m1 +m2

Policy − 1
or

Policy − 2

2m2 +m1 < λ1 + λ2

and
λ1 + λ2 < 2m1 +m2

{
Policy − 3
Policy − 4

or
Policy − 2

λ1 + λ2 < 2m2 +m1

{
Policy − 3
Policy − 4

or{
Policy − 5
Policy − 6

(Mid, Low)
λ1 + λ2 > 2m2 +m1

{
Policy − 3
Policy − 7

or
Policy − 2

λ1 + λ2 < 2m2 +m1

{
Policy − 3
Policy − 7

or{
Policy − 5
Policy − 6

(High, Low)
λ1 + λ2 > m1 + 2m2

{
Policy − 7
Policy − 8

or
Policy − 2

λ1 + λ2 < m1 + 2m2

{
Policy − 7
Policy − 8

or{
Policy − 5
Policy − 6

(Mid, Mid) - - - -

{
Policy − 7
Policy − 3

or{
Policy − 5
Policy − 9

Table A.24: Optimal policies (Fair-allocation system, Both providers are LOC)

First provider is HOC The following table shows optimal policies for the referrer in a

referral system where the first provider is HOC.
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Capacity Scenario Optimality Conditions Optimal Policy

(Low, Low)
λ1 + λ2 > 2m1 +m2 Policy − 1

λ1 + λ2 < 2m1 +m2

λ11 + λ21 = λ1 + λ2 −m2(Mid, Low) - - -

(High, Low) - - -

(Mid, Mid) - - -

Table A.25: Optimal policies (Fair-allocation system, First provider is HOC)

Second provider is HOC The following table shows optimal policies for the referrer in

a referral system where the second provider is HOC.

Optimality Conditions Optimal Policy

λ1 + λ2 > 2m1 +m2 Policy − 2

λ1 + λ2 < 2m2 +m1 λ11 + λ21 = m1

Table A.26: Optimal policies (Fair-allocation system, Second provider is HOC)
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Appendix B

Third Chapter Multinomial Logistic

Regression Model

B.1 Multinomial Regression Model

In this section we present the result of the multinomial regression model used in Section 4.4.2.

The dependent variable is patient preference and the independent variables are patient gender

(Figure 4.3); patient location (Figure 4.4); patient age (Figure 4.5); and three variables:

moving average for the past 10 patients, and the 5th and 95th percentiles, calculated based

on wait time information.
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Figure B.1: Multinomial Logistic Model Statistics

145



Bibliography

Afeche, Philipp, J. Michael Pavlin. 2016. Optimal Price/Lead-Time Menus for Queues with

Customer Choice: Segmentation, Pooling, and Strategic Delay. Management Science 62(8)

2412–2436. doi:10.1287/mnsc.2015.2236. Publisher: INFORMS.

Ahmadi-Javid, Amir, Zahra Jalali, Kenneth J Klassen. 2017a. Outpatient appointment systems

in healthcare: A review of optimization studies. European Journal of Operational Research

258(1) 3–34. doi:10.1016/j.ejor.2016.06.064.

Ahmadi-Javid, Amir, Zahra Jalali, Kenneth J Klassen. 2017b. Outpatient appointment systems

in healthcare: A review of optimization studies. European Journal of Operational Research

258(1) 3–34.

Ahn, Ki Uhn, Cheol Soo Park. 2020. Application of deep q-networks for model-free optimal control

balancing between different hvac systems. Science and Technology for the Built Environment

26(1) 61–74.

Akbari, Ayub, Alain Mayhew, Manal Alawi Al-Alawi, Jeremy Grimshaw, Ron Winkens, Elizabeth

Glidewell, Chanie Pritchard, Ruth Thomas, Cynthia Fraser. 2005. Interventions to improve

outpatient referrals from primary care to secondary care. Cochrane Database of Systematic

Reviews (3).

Allen, David, Abhay Vasavada. 2006. Cataract and surgery for cataract. Bmj 333(7559) 128–132.

Alvarez, Rafael, Aaron J Bonham, Colleen M Buda, Arthur M Carlin, Amir A Ghaferi, Oliver A

Varban. 2019. Factors associated with long wait times for bariatric surgery. Annals of surgery

270(6) 1103–1109.

An, Chuankai, A. James O’Malley, Daniel N. Rockmore. 2018. Referral paths in the U.S. physician

network. Appl Netw Sci 3(1). doi:10.1007/s41109-018-0081-4.

Ata, Baris, Yichuan Ding, Stefanos Zenios. 2020. An Achievable-Region-Based Approach

for Kidney Allocation Policy Design with Endogenous Patient Choice. M&SOM doi:

10.1287/msom.2019.0807. Publisher: INFORMS.

BA, MM Sholdice, CS Simpson, BJ O’Neill, MM Sholdice, et al. 2005. Canadian cardiovascular

society commentary on implantable cardioverter defibrillators in canada: Waiting times and

access to care issues. Can J Cardiol 21 19A.

146



Babaev, Dmitrii, Maxim Savchenko, Alexander Tuzhilin, Dmitrii Umerenkov. 2019. Et-rnn:

Applying deep learning to credit loan applications. Proceedings of the 25th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining . 2183–2190.

Barnett, Michael L, Nancy L Keating, Nicholas A Christakis, A James O’Malley, Bruce E Landon.

2012a. Reasons for choice of referral physician among primary care and specialist physicians.

Journal of general internal medicine 27(5) 506–512.

Barnett, Michael L., Nancy L. Keating, Nicholas A. Christakis, A. James O’Malley, Bruce E.

Landon. 2012b. Reasons for Choice of Referral Physician Among Primary Care and Specialist

Physicians. J Gen Intern Med 27(5) 506–512. doi:10.1007/s11606-011-1861-z.

Baron, Opher, Oded Berman, Dmitry Krass. 2008. Facility location with stochastic demand and

constraints on waiting time. Manufacturing & Service Operations Management 10(3) 484–505.

Barua, Bacchus, David Jacques. 2018. Waiting Your Turn: Wait Times for Health Care in Canada,

2018 Report. Library Catalog: www.fraserinstitute.org.

Bertsimas, Dimitris, Jose Nino-Mora. 1996. Conservation Laws, Extended Polymatroids and

Multiarmed Bandit Problems; A Polyhedral Approach to Indexable Systems. Mathematics

of OR 21(2) 257–306. doi:10.1287/moor.21.2.257. Publisher: INFORMS.

Bichel, Allison, Shannon Erfle, Valerie Wiebe, Dick Axelrod, John Conly. 2009. Improving patient

access to medical services: preventing the patient from being lost in translation. Healthc Q

13(Spec. Issue) 61–68.

Bleustein, Clifford, David B Rothschild, Andrew Valen, Eduardas Valatis, Laura Schweitzer,

Raleigh Jones. 2014. Wait times, patient satisfaction scores, and the perception of care.

The American journal of managed care 20(5) 393–400.

Boisjoly, Hélène, Ellen E Freeman, Fawzia Djafari, Marie-Josée Aubin, Simon Couture, Robin P

Bruen, Robert Gizicki, Jacques Gresset. 2010. Reducing wait time for cataract surgery:

comparison of 2 historical cohorts of patients in montreal. Canadian Journal of Ophthalmology

45(2) 135–139.
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