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Abstract 
 

Across Mammalia, memory has long been dissociated into multiple component systems 

specialized to process specific facets of experience. Among these segregated systems, 

declarative memory is processed by the hippocampus and surrounding structures, which have 

collectively been referred to as the hippocampal declarative memory system (HDMS). The 

HDMS, in turn, can be further divided into parallel streams dedicated to the processing of 

spatial versus object identity based information, commonly discussed as the ‘what’ and ‘where’ 

streams. While we know that the organization of the HDMS is conserved in humans, nonhuman 

primates, and rats, evidence outside Mammalia is lacking. Here HDMS homology is tested in 

Aves, a class known to have sophisticated memory abilities. This dissertation first adapts testing 

methods well established for dissociating spatial and object recognition in mammals and 

validates them in multiple avian species (Chapter 2). These methods are then applied to birds 

undergoing selective lesions along either the mediolateral (Chapter 3) or rostrocaudal (Chapter 

4) extent of the HDMS. These data then permit an update of the known functions of the sub-

regions of the avian HDMS (Chapter 5). In summary, these data suggest that most of the key 

features of the mammalian HDMS, including the existence of anatomically separated 

hierarchical processing streams for object and spatial information, as well as eventual 

convergence of this information in the hippocampal formation, is conserved across at least 

these two classes. Given the great survival value of the ability to identify the ‘whats’ and 

‘wheres’ within an environment, this homology may not be surprising. In fact, the HDMS may 

be conserved across much of the animal kingdom. 
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Chapter 1: General Introduction  
 

The acquisition, storage, and retrieval of different kinds of information is critical for 

survival. Combining information and storing it within memory allows multiple causative and 

correlative relationships to be identified, permitting learning from past events and enabling 

planning for future ones. Considering the implications for survival, it is perhaps unsurprising 

that memory has been widely studied for centuries. In fact, the idea that memory is not a 

unitary function (a notion that is particularly relevant to this dissertation) dates back more than 

two hundred years. French philosopher Maine de Biran wrote in 1804 about the potential for 

different types of memory, making distinctions between what he called mechanical memory, 

sensitive memory, and representative memory (Maine de Biran, 1804/1929). In the latter part 

of the 19th century, American philosopher and psychologist William James differentiated 

between memory and habit (James, 1890). The proposal of different types of memory 

continued well into the 20th century with theories such as those of McDougall (1923) 

differentiating between explicit and implicit recognition, and Tolman (1948) between different 

kinds of learning. 

Considerable evidence exists supporting the idea that the brain contains multiple 

memory systems (MMS; Poldrack & Packard, 2003; Squire, 2004). Not only does this imply that 

differing regions within the brain may be disproportionately involved in certain types of 

memory relative to others (e.g., procedural versus episodic memory), this also implies that 

different structures within these regions are more involved than others in the processing of 

certain types of information (e.g., object identity versus spatial information). There is a 
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considerable literature tying varying components of MMS to specific pathways in the brain. 

Although these are not covered here, the interested reader is directed to Poldrack and Packard 

(2003) or Squire (2004) for further reading. The current dissertation will focus on a specific 

memory system, declarative memory, which can be described as explicit, conscious recollection 

of facts and events (reviewed in Squire et al., 2004), and its now well characterized association 

with the medial temporal lobe (MTL).  

 The MTL, consisting of the hippocampal formation (Hf; made up of the Cornu Ammonis 

(CA) subfields, the dentate gyrus (DG), and the subicular complex), the adjacent perirhinal 

cortex (PRhC), parahippocampal cortex (PHC), and entorhinal cortex (EC; divided into lateral 

(LEC) and medial (MEC) portions), is critical for declarative memory. Evidence supporting the 

MTL’s role in memory began to accumulate over a century ago when Russian neurologist 

Vladimir Mikhailovich von Bechterew described bilateral softening of the Hf in a patient that 

had exhibited profound memory deficits (von Bechterew, 1900; for review see Maranhão et al., 

2015). Although von Bechterew’s findings hinted at the role of the Hf in memory, the extent of 

MTL involvement was not fully appreciated until over half a century later with the work of 

Brenda Milner. Her systematic documentation of memory deficits associated with the bilateral 

resection of the MTL in patient Henry Molaison (H.M.; Scoville & Milner, 1957) established 

several fundamental principles of memory still utilized today (Squire, 2009). First, despite 

deficits recalling his past, H.M.’s intellectual and perceptual functions remained largely intact 

suggesting that memory associated with the MTL can be separated from other cognitive 

functions. Second, H.M.’s ability to remember information over a short period of time implied 
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that functions supporting short-term memory, such as working memory, must therefore take 

place outside of the MTL.  

At the time of the first descriptions of H.M., little was known about the anatomy of the 

MTL and less was known about how specific structures within this region might contribute 

uniquely to memory (Squire et al., 2004). Through the introduction of animal models of H.M.’s 

amnesia in non-human primates (NHP) and subsequently in the rat, the critical involvement of 

the MTL in declarative memory became increasingly clear, and a model of the medial temporal 

declarative memory system (MTDMS) began to emerge (Mishkin, 1982; Zola-Morgan et al., 

1983; Squire, 1992a, b). Importantly, the use of different species of animal (primarily humans, 

NHPs, and rats) allowed for cross-species comparisons of structure, connectivity, and function, 

offering insight into how the MTDMS system may have been sculpted by selective pressures 

over the course of evolution. This comparison across taxa is the focus of the current 

dissertation, and an area in critical need of further research. Much of the research on the 

MTDMS has focused predominantly on mammals. This focus, while understandable given the 

application of this knowledge to human health, leaves gaps in our knowledge concerning how 

the neural infrastructure underlying memory has changed across the animal kingdom. I address 

a small facet of these shortcomings through a series of experiments on the avian homologue of 

the MTDMS. 

In order to provide context for the experiments outlined in Chapters 2, 3, and 4 of this 

dissertation, this Chapter will begin with a comparison of the MTDMS in humans and NHPs, our 

closest relatives within the same order. The model developed will then be expanded to rats, 

which are arguably the most studied organism within the same phylogenetic class (mammals). 
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Finally, I will describe the MTDMS in avian models in order to assess potential neuroanatomical 

and functional homology across classes within the same clade of tetrapod vertebrates (i.e., 

amniotes). The studies presented within the scope of this introduction will focus largely on 

macaques (Macaca mulatta), rats (Rattus norvegicus), and pigeons (Columba livia), as these 

model organisms make up the bulk of the extant literature. It should be noted, however, that 

there are limitations inherent to such a small fraction of the mammalian and avian taxa making 

up the bulk of our understanding. For instance, it should be noted that Rattus norvegicus 

represent one species within the Rodentia, which consists of 2277 recognized species (42% of 

all mammalian diversity), that there are 376 species of primate (Wilson & Reeder, 2005; Molnár 

& Clowry, 2012), and over 18,000 species of bird (Barrowclough et al., 2016). Considering that 

morphological and anatomical variations are commonly observed within orders (in mammals; 

West, 1990; in aves; Sherry et al., 1992; Hampton & Shettleworth, 1996b, Payne et al., 2021), 

research on species variation would need to increase exponentially for generalizations to be 

made with confidence. As such, this review is of necessity speculative in many regards. In an 

attempt to minimize this variation, the research discussed will be restricted to connectivity 

tracing and the effects of lesions on various tests of memory, as these methods appear to be 

most consistently applied across all species of interest.  

Since the declarative memory system is largely dependent on the Hf and because the 

location of the Hf, as well as the nomenclature (and even the existence) of some of the 

associated structures is contentious across species, for the purpose of comparison and for the 

remainder of this dissertation, I will refer to the structures associated with declarative memory 

as the hippocampal declarative memory system (HDMS).  



 
 

18 
    

 

One feature that characterizes the HDMS across many (perhaps all) species, is the 

segregation and parallel processing of varying kinds of information, which is eventually 

integrated in the Hf, at the apex of this system. Computationally, it has been proposed that this 

type of hierarchical processing would not only allow for more sophisticated information to be 

represented in a way that minimizes interference, but may also increase both processing speed 

and storage capacity of the HDMS (e.g., Damasio, 1989; Alvarez & Squire, 1994; McClelland et 

al., 1995; O’Reilly & Rudy, 2000). Given the apparent ubiquity of this feature, it will be 

discussed first for each of the model systems.  

While establishing a hierarchy of connectivity provides information concerning how 

information is transmitted within the HDMS, it does not provide details concerning how each 

structure contributes uniquely to declarative memory. Toward this, many models have been 

proposed for how information is segregated within the HDMS (see Nadel, 1992, for a historical 

account of these models), but one distinction that features prominently in the data surrounding 

the function of the HDMS is space. The importance of the HDMS for dealing with space is 

perhaps not surprising, given that several regions of the HDMS are thought to be responsible 

for relational learning, and spatial cognition is inherently relational. This provides the 

opportunity to understand the role of the HDMS in processing information in general by 

understanding how it deals with objects embedded in space (Eichenbaum et al., 1999). As such, 

we will focus on how the HDMS handles spatial versus non-spatial information, or what O’Keefe 

and Nadel (1978, p. 381) describe as, “memory for items or events within a spatio-temporal 

context” contrasted with “memory for items, independent of the time or place of their 

occurrence”. 
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1.1 The Primate Hippocampal Declarative Memory System 

Arguably the best model species to begin with when constructing a comparative analysis 

of the HDMS are our closest evolutionary relatives, NHPs. By examining NHPs we can determine 

if elements of structure and function are evolutionarily conserved, or if certain structures and 

functions are unique to humans.  

 This section will describe a hierarchy of connectivity between structures of the HDMS, in 

which two different kinds of information are processed in parallel, and how structures within 

the hierarchy contribute uniquely to the processing of this information. An overview of the 

primate HDMS will lay the groundwork for comparison when later examining this memory 

system more broadly within Mammalia as well as across classes with Aves.  

1.1.1 Hierarchy of Connectivity 

The structures that make up the hierarchical processing of the HDMS have been 

identified largely through the use of NHP models (Squire & Zola-Morgan 1991). Additionally, 

this work has established the boundaries and connectivity of these areas, revealing 

bidirectional pathways between the cerebral cortex and structures within the HDMS, termed 

the ‘hierarchy of connectivity’ (Lavenex & Amaral, 2000; Witter et al., 2000a; Kerr et al., 2007; 

Figure 1). The hierarchy of connectivity is composed of four main levels: association areas of 

the cerebral cortex, the parahippocampal region, the EC, and the Hf. Starting with uni- and 

poly-modal sensory information, higher order association cortices (exclusive of primary sensory 

or motor regions) send inputs to and receive outputs from the HDMS. Cortical association areas 

that do not connect directly with Hf connect to a collection of interconnected areas outside of 
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the Hf, within the parahippocampal region (comprised of the PRhC and PHC). These areas then 

connect with different portions of the EC and from there converge within the Hf. Outputs from 

the Hf are then directed back down the hierarchy, moving information from the Hf to the EC 

and subsequent parahippocampal regions, which in turn project outputs to the areas of the 

cerebral cortex from which the inputs originated (Eichenbaum & Lipton, 2008).   

Information travels to the Hf through the connectivity hierarchy in two partially distinct 

channels, dividing into segregated non-spatial and spatial information processing pathways, 

often referred to as the what and where streams. The PRhC receives inputs from areas that 

encode the non-spatial identity of a stimulus while the PHC receives inputs from areas involved 

in processing the spatial content of sensory information. Looking to NHP research, the PRhC 

largely receives inputs from ventral visual pathway areas, important for object recognition, 

while the PHC receives inputs from dorsal visual pathway areas, important for spatial attention 

and visuospatially guided actions (reviewed in Eichenbaum & Lipton, 2008). The separation of 

spatial and nonspatial information is largely maintained throughout the hierarchy as PRhC 

projects mainly to LEC, and PHC to MEC, before both converge within the Hf.    
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Figure 1. Primate Hierarchy of Connectivity. Separated within two parallel processing streams, 

sensory information converges in higher order association areas of the neocortex (yellow) 

before it is passed on to structures within the parahippocampal region [the perirhinal cortex 

(PRhC, red) or parahippocampal cortex (PHC, blue)]. Information is then relayed to regions of 

the lateral entorhinal cortex (LEC, light purple) or medial entorhinal cortex (MEC, dark purple) 

before both streams, which have thus far been processed in parallel, converge within the 

hippocampal formation (Hf, green). Double-headed arrows indicate bidirectional connectivity. 

Grey arrows indicate connectivity enabling cross-talk between structures. Black arrows indicate 

connectivity between levels of the connectivity hierarchy. Adapted from Manns and 

Eichenbaum (2006).  
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On the basis of connectivity, dorsal and ventral visual inputs seem to maintain largely 

segregated processing pathways within the connectivity hierarchy before converging within the 

Hf. If connectivity is indicative of function, this may imply that non-spatial and spatial 

information are predominantly processed in parallel throughout the hierarchy. Next, I consider 

the extent to which data on the functional contributions of individual regions of the HDMS to 

memory are consistent with this model.  

1.1.2 Functional Contributions 

Here I consider data collected on the ability of NHPs to perform varying memory tasks 

following selective lesions to structures within the HDMS. These data reveal the unique 

structural contributions to functions of the HDMS, and show contributions that are generally 

consistent with the anatomical account of information processing in this system.   

1.1.2.1 Non-Spatial Processing 

Non-spatial information refers generally to physical characteristics of an object such as 

colour, shape, pattern, and size. All of these characteristics can be combined to form a unified 

representation of the identity of an object in order to support recognition (reviewed by 

Logothetis & Sheinberg, 1996; Murray et al., 2007).  

1.1.2.1.1 Perirhinal and LEC 

Non-spatial information carried by the ventral visual stream projects primarily to the 

PRhC which then projects to LEC. Because of this connectivity, the PRhC and LEC are commonly 

studied for their contributions to non-spatial memory, especially that involving recognition of 

objects. 
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On the basis of lesion studies involving separate components of the MTL, the 

contribution of the PRhC to visual recognition memory appears to be greater than that of any 

other single structure (Buffalo et al., 1998). Located at the ventromedial aspect of the primate 

temporal lobe, the PRhC lies at the interface of the MTL memory system and the ventral visual 

stream, the ‘what’ pathway (Bussey et al., 2002). Given that this region receives its heaviest 

inputs from visual sensory areas [anterior inferotemporal (area TE) and posterior 

inferotemporal (area TEO); Suzuki & Amaral, 1994a], studies of this area have focused on its 

role in visual learning and memory. The accumulated data regarding the role of the PRhC to 

date support its contributions to at least four cognitive functions (reviewed in Murray & 

Richmond, 2001): 1) PRhC contributes to recognition memory in an automatic fashion; 2) PRhC 

accomplishes object identification by associating together different sensory features of an 

object; 3) PRhC associates objects with other objects and with abstractions, and 4) it likely 

contributes to both perception and memory.  

Restricting data to that collected in NHPs, a commonly used paradigm for assessment of 

PRhC function is the delayed match to sample (DMS) paradigm and its variant, delayed non-

match to sample (DNMS; Mishkin, 1978). Briefly, this task usually involves a sample and a 

choice phase. During sample, the subject is shown a stimulus (or physical object), and then, 

following a varying delay, there is a choice phase in which the subject is presented with a 

stimulus identical to the sample alongside a different stimulus. In the DMS paradigm, the 

subject is rewarded for selecting the choice trial object identical to sample, and for a DNMS 

paradigm, the subject is rewarded for choosing the other stimulus. In NHP models, PRhC lesions 

create severe deficits in performance on visual DMS and DNMS tasks (Meunier et al., 1993; 
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Buckley et al., 1997). Similar findings came from Buckley and Gaffan (1998), using a set of 

object discrimination problems. During this task, subjects were trained to group images of the 

same object that had been photographed from different perspectives, called ‘set one’. Once 

this set of images had been learned, a new set, ‘set two’ was introduced which included photos 

of the same object but from additional novel perspectives. If ‘set two’ was learned faster than 

‘set one’, this was thought to be evidence of positive transfer. PRhC lesioned monkeys 

displayed impaired performance relative to controls. Deficits were also observed by Buckley 

and colleagues (2001) during an oddity task, in which monkeys were required to identify the 

‘odd object’ (Object B) out of an array of several different views of the same object (Object A).  

Another commonly used task to assess declarative memory is a visual paired-

comparison task (VPC; Buffalo et al., 1999). VPC typically consists of two phases, sample and 

choice. During sample, two identical pictures are presented side by side. After a delay, the 

choice phase consists of two pictures, one being identical to those presented in sample and the 

other being novel. This task capitalizes on the tendency for primates to prefer novelty and 

suggests that if (a) the pictures shown during sample are remembered, and (b) the subject can 

discriminate between the presented stimuli, then the subject should spend more time looking 

at the novel stimulus relative to familiar one. Buffalo and colleagues (1999) observed PRhC 

involvement in a VPC task as lesions to the area inhibited performance.    

While the majority of inputs to the PRhC are those carrying visual information, 

approximately one third of its input comes from non-visual unimodal cortices, implying that this 

region may also be important in combining information across modalities (Suzuki, 1996). 

Consistent with this, deficits in performance are also observed in PRhC lesioned NHPs during a 
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tactile recognition task (Buffalo, et al., 1999) and in cross-modal DNMS (tactile-visual; Buffalo et 

al., 1999; Goulet & Murray, 2001). Additional evidence for PRhC involvement in cross-modal 

DNMS is seen in human subjects with damage encompassing the PRhC (Taylor et al., 2006). 

However, data from human amnesic patients should be treated cautiously, as damage typically 

affects both the Hf and PRhC. Impairments in patients with damage to these areas are typically 

severe and span many types of memory, so dissociations are rare (Brown & Aggleton, 2001). 

Taken together, these findings point to PRhC involvement in forming object identity by 

associating different perspectives of objects and their multimodal attributes. On the basis of 

these studies, it appears that PRhC is critically involved in object discrimination, consistent with 

its implied function following assessment of connectivity alone.   

Within the next level of the connectivity hierarchy, the LEC receives direct projections 

from the PRhC and is one of the two major cortical inputs to the Hf. While there are 

considerable data on the functions of the PRhC, little is known about how neural 

representations are transformed between PRhC and LEC in primates. Historically, it has been 

difficult to dissociate functions of LEC and PRhC as a large number of studies examining PRhC 

have also lesioned LEC (Meunier et al., 1993; Eacott et al., 1994). Additionally, EC lesions 

typically encompass both LEC and MEC so assigning specific contributions should be done 

cautiously. However, EC lesions provide some data in differentiating PRhC and EC function. To 

the best of my knowledge, in the only experiments exploring EC lesions in NHPs, performance 

was spared on a DNMS task (Buckmaster et al., 2004), a task on which performance is 

commonly disrupted following PRhC lesion (Meunier et al., 1993; Buckley et al., 1997). 

Buckmaster and colleagues (2004) reported deficits in EC lesioned subjects on tasks requiring 
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conditional discriminations between stimuli with overlapping elements and the learning of 

predictive relationships.   

Although limited, these findings suggest that the PRhC is critically involved in object 

recognition and simple associations between objects, while the EC may be necessary for flexible 

manipulations of learned associations (for review, see Garcia & Buffalo, 2020). 

1.1.2.2 Spatial Processing 

Spatial information refers generally to information about stimuli that is embedded 

within a spatial context. This context consists of information concerning the stimulus’s location 

both in relation to the subject as well as to other objects (O’Keefe & Nadel; 1978).  

1.1.2.2.1 Parahippocampal Cortex and MEC 

Spatial information that is carried by way of the dorsal visual stream projects primarily 

to the PHC, which then in turn projects to MEC. Because of this connectivity, the PHC and MEC 

are commonly studied for their contributions to spatial memory. 

Located along the ventromedial edge of the temporal lobe adjacent to the Hf, the PHC is 

the interface between the MTL memory system and the dorsal visual stream, commonly 

referred to as the ‘where’ pathway. Insight into the function of the PHC may once again be 

obtained by examining the connections both to and from this structure. The majority of input to 

the PHC comes from cortical areas mediating spatial information, such as area V4 (Schiller & 

Lee, 1991) and the posterior parietal cortex (Calton & Taube, 2009), implying that this area may 

function to represent and retrieve spatial information.  
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To determine once again if connectivity is predictive of function, the PHC has 

unsurprisingly been studied extensively for its involvement in spatial processing (for review see 

Aminoff et al., 2013). To assess the involvement of the PHC on spatial elements of declarative 

memory, Bachevalier and Nemanic (2008) implemented two variations of the VPC task, a 

Spatial Location and an Object-in-Place version. In the Spatial Location version, comparison was 

made between two identical objects presented simultaneously in a novel and familiar location. 

In the Object-in-Place version, the comparison was between two images, each consisting of the 

same five objects only in one of the images, the objects had been rearranged. PHC lesioned 

macaques displayed deficits in both the spatial location and Object-in-Place tasks, supporting 

involvement of this structure in the ‘where’ element of declarative memory. Comparable 

findings were observed by Malkova and Mishkin (2003) in which monkeys with PHC lesions 

displayed deficits when tasked with a one-trial memory task that relied on remembering object-

place associations (object-place trials) or simply a place in an array of three feeding wells (place 

trials). Monkeys with PHC lesions also displayed deficits on a variation of the DNMS task, in 

which discrimination was dependent on location (delayed non-match to location; DNML; 

Alvarado & Bachevalier, 2005). 

In the connectivity hierarchy, the MEC receives direct projections from the PHC and is 

one of the two major cortical inputs to the Hf. By restricting the data presented to that of lesion 

studies in primates, there is little data investigating dissociable functions between the MEC and 

PHC that meet the criteria. Evidence for such dissociations is available largely in rat studies 

which will be discussed in a later section focusing on taxonomic differences in the MTDMS. 
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Although beyond the scope of this dissertation, functional imaging in primates provides findings 

comparable to the rat literature (Reagh & Yassa, 2014).  

1.1.2.2.2 Hippocampus 

The Hf acts as the final stage of convergence for multisensory information received via 

projections from the adjacent EC, PRhC, and PHC (Lavenex & Amaral, 2000). Since the Hf is the 

site of ‘what’ and ‘where’ pathway convergence, it is likely important in binding disparate event 

features into an integrated representation. This idea also suggests that tasks that do not 

require the combining of multiple information streams, such as recognition memory for single 

items, can instead be accomplished by regions adjacent to the Hf (Tulving & Markowitsch, 

1998; Brown & Aggleton, 2001). In examining the functional role of the Hf, I will present two 

complimentary models concerning how the Hf uniquely contributes to the HDMS relative to 

other structures within the hierarchy, the Dual-Process model and Binding of Item in Context 

(BIC). 

1.1.2.2.2.1 Dual-Process Model  

Reviews of Hf function highlight distinctions between two processes employed in 

supporting declarative memory, a sense of familiarity with previously experienced stimuli (i.e., 

recognition of an item without retrieval of specific details about the study episode), which can 

be contrasted with recollection (i.e., recognition of an item on the basis of the associations and 

specific contextual details of a previous study episode; Yonelinas, 1994, 1999; Eichenbaum et 

al., 2007). Following the Dual-Process model, the PRhC is thought to be critical for familiarity, 

and the Hf and PHC for recollection (Figure 2). It is important to note that the Dual-Process 

model described here in relation to declarative memory is not to be confused with the Dual-



 
 

29 
    

 

Process Theory of Thought. While the Dual-Process model describes functional contributions of 

structures within the MTDMS, Dual-Process Theory of Thought describes two co-existing 

systems involved in thought, one of which is a quick, automatic, associative, and affective-

based form of reasoning, and the other, a slow, thoughtful deliberative process (Sloman, 1996). 

This dissertation refers to the former and not the latter.  

There is considerable evidence in NHPs supporting the suggested roles of the PRhC, 

PHC, and Hf in the Dual-Process model. Supporting evidence for the role of the PRhC in 

familiarity comes from studies showing that this region is critically involved in object 

discrimination (Mishkin, 1978; Meunier et al., 1993; Buckley et al., 1997; Buffalo et al., 1999). 

Additionally, since the PHC is critically involved in tasks requiring the association of multiple 

elements such as item and context (Bachevalier & Nemanic, 2008), this could support the idea 

of the PHC as critical to recollection. Comparable findings to PHC have been noted following 

lesions to the Hf as lesions to this area have been shown to impair memory for complex 

associations like those of item and context (for review see Brown & Aggleton, 2001; Rugg & 

Yonelinas, 2003).   

Human studies examining the Dual-Process model support a double dissociation 

between the PRhC and Hf in that the PRhC appears to be involved selectively in familiarity but 

not recognition, and the Hf in recollection but not familiarity (Bowles et al., 2010). In studies of 

patients with transient hypoxia, which causes significant damage to the Hf while sparing 

structures within the parahippocampal region (i.e., PRhC and PHC), hypoxic patients displayed 

disproportional deficits in memory for associations or context compared to item familiarity 

(Mayes et al., 2002; Giovanello et al., 2003; Turriziani et al., 2004; Holdstock et al., 2005). Using 
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receiver operating characteristic analysis to distinguish familiarity from recollection, Yonelinas 

and colleagues (2002) showed that mildly hypoxic patients exhibited severe deficits in 

recollection but not familiarity. Impaired recollection but preserved familiarity has also been 

reported in patients with selective Hf atrophy caused by meningitis (Aggleton et al., 2005). An 

example of impaired familiarity but spared recollection comes from extensive studies of patient 

N.B. who underwent a rare unilateral MTL lesion that spared the Hf (Bowles et al., 2007; Bowles 

et al., 2010; Köhler & Martin, 2020).  

Taken collectively, these lesion studies converge on the idea that the Hf and PHC 

selectively support recollection (but see Wixted & Squire, 2011; Merkow et al., 2015), while the 

PRhC supports familiarity.  

 

Figure 2. Primate Dual-Process Model. Cognitive account of functional roles of sub-regions 

within the medial temporal lobe. The hippocampus (Hf) and parahippocampal cortex (PHC) are 

proposed as supporting recollection (i.e. recognition of an item on the basis of retrieving 

specific contextual details of the previous learning experience). The perirhinal cortex (PRhC) is 

proposed as supporting familiarity (i.e. item recognition in the absence of specific details about 
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the study episode). Double-headed arrows indicate bidirectional communication, single-headed 

indicate unidirectional communication. Adapted from Opitz (2014).  

1.1.2.2.2.2 Binding of Item in Context  

In more recent years, the idea that the Hf and PRhC are differentially involved in 

familiarity and recollection has been challenged. The primary criticism of the Dual-Process 

model is that it too broadly implies functional differences and that information provided by the 

MTL connectivity hierarchy should instead be applied for greater specificity. Rather than trying 

to explain HDMS structural functions in terms of the purely cognitive dichotomy between 

familiarity and recollection, more recent models separate HDMS structures on the basis of the 

kind of information thought to be handled by each structure, i.e., item-specific and contextual 

information. The ‘Binding of Item in Context’ (BIC) model separates the HDMS on the basis of 

the kind of information processed within the structures (Diana et al., 2007). Additionally, the 

BIC model incorporates the ‘what’ and ‘where’ parallel processing streams, identifying each hub 

within the connectivity hierarchy as a site for unique transformations of the information, 

increasing in refinement as the information is relayed to subsequent structures (Figure 3; 

Manns & Eichenbaum, 2006).  

Support for the BIC model can be found in the NHP literature. Recalling the Bachevalier 

and Nemanic (2008) study, not only did this research identify vital contributions of the PHC to 

context memory, it also pointed to unique contributions of the PRhC and Hf to the HDMS. 

Following PRhC lesions, subjects exhibited deficits in a VPC and object-in-place task. However, 

performance on a spatial location task was spared, supporting the notion that the PRhC 

contributes object or item information. Lesions to the Hf resulted in deficits in an object in 
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place association only, suggesting that the Hf may be critically involved in associating 

information from the PHC and PRhC. The findings of Bachevalier and Nemanic (2008) support 

the idea that the PHC is critical to context memory, the PRhC to object memory, and the Hf, 

serving as a site of convergence for both types of information, is vital when task demands 

require associations between context and object information. 

Restricting evidence to human lesion studies, amnesic patients with damage primarily to 

the Hf displayed a spared ability to differentiate between new and old visual scenes but were 

unable to distinguish between intact old scenes and old scenes in which particular elements 

had been displaced (Ryan et al., 2000; Mayes et al., 2004). This suggests that the deficits 

observed were due to an inability to process the relations of items within a specific context. 

However, item recognition devoid of spatial information remained intact. This supports the idea 

that Hf function is dissociable from that of the surrounding cortices and mirrors findings in 

NHPs. Further supporting the critical role of the PRhC in object memory is the proposal that 

multiple items sharing cortical representations due to a high degree of feature overlap (e.g., 

two faces) are associated and stored within the PRhC. In the clinical literature, a People and 

Doors Test provides a battery to assess a number of memory functions, namely visual and 

verbal recognition and recall (Baddeley et al., 1994; Morris et al., 1995; Manns and Squire 

1999). Using this task, amnesic patients with damage restricted to the Hf displayed spared 

recognition for items within the same category (e.g., choosing the familiar door out of an array 

of doors) but deficits in visual recollection (e.g., drawing an item displayed during a previous 

trial; patient Jon; Vargha-Khadem et al., 1997; patient Y.R.; Mayes et al., 2002). Success during 

visual recognition implies that the spared PRhC stores specific features of an item rather than 
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generalizing into broad categories. Greater support for this comes from comparable amnesic 

patient studies, all with damage restricted to the Hf, demonstrating unimpaired recognition for 

within-domain or intra-item associations (e.g., differentiating between faces) but compromised 

performance on between-domain associations (e.g., object-location and face-voice 

associations; Mayes et al., 2004). 

As discussed in the previous sections, primate lesion data informing how structures 

within the EC contribute uniquely to the HDMS is lacking. Based on the limited findings of 

Buckmaster and colleagues (2004), we can only infer that EC structural function is dissociable 

from that of PRhC and that function of the EC appears to involve complex discriminations and 

associations. This offers little information when describing these structures within the context 

of the BIC model. However, LEC and MEC are often depicted at the apex of the spatial and non-

spatial processing streams, respectively (Manns & Eichenbaum, 2006). Each receives input from 

regions that (a) contain complex representations and that (b) are sufficient for many forms of 

recognition memory. How they might further process these representations before they are 

passed onto the hippocampus, however, remains unclear.  

 Taken together, the BIC model and associated experimental evidence supports the 

notion that the PRhC is vital for retrieval of item feature information, supporting recognition, 

the PHC for context memory, and the Hf in associations of item and context. These findings are 

also in agreement with the Dual-Process model of familiarity (recognition) versus recollection 

(recall). However, the BIC view adds greater specificity about the kind of information that each 

structure contributes to memory (Manns & Eichenbaum, 2006).  
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Figure 3. Primate Binding Item in Context (BIC) Model. This model proposes functions for sub-

regions of the medial temporal lobe on the basis of the information that they store. The BIC 

model suggests that the perirhinal (PRhC, red) and the parahippocampal cortex (PHC, blue) 

support the encoding and retrieval of item-specific and contextual information. Maintained 

within parallel processing streams, representations reach their highest level of independent 

processing (i.e. complexity and number of associations between elements), within the 

entorhinal cortex. Within this region, item information is predominantly processed by the 

lateral subregion (LEC, light purple), while contextual information is processed by the medial 

(MEC, dark purple) sub-region. These streams then converge within the hippocampus (Hf, 

green). The Hf is then thought to store representations of item-context associations. Double-

headed arrows indicate bidirectional connectivity. Grey arrows indicate connectivity enabling 
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cross-talk between structures. Black arrows indicate connectivity between levels of the 

connectivity hierarchy. Adapted from Manns and Eichenbaum (2006).  

1.1.3 Summary 

Based only on data from primates (humans and macaques), the HDMS displays a high 

level of homology between species in regards to both connectivity and function. In terms of 

connectivity, both species display a hierarchical connectivity pattern between structures within 

the HDMS, as well as parallel processing of ‘what’ and ‘where’ streams that is maintained 

throughout the hierarchy until converging within the Hf. In terms of functionality, both the 

human and macaque literatures support the role of the PRhC in encoding item-specific 

information (Taylor et al., 2006), the PHC in context information (Alvarado & Bachevalier, 

2005), and the Hf in forming representations combining the two, forming item-context 

associations (reviewed in Opitz, 2014).  

 Since there is a high degree of homology between species belonging to the same order, 

comparative examination will be expanded to species belonging to the same phylogenetic class, 

Mammalia.  
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1.2 The Rat Hippocampal Declarative Memory System 

Despite considerable variation in ecological niches (dietary specialization, social 

structures, means of locomotion, etc.), the anatomy of the Hf across Mammalia is remarkably 

conserved. For example, of all mammalian species studied to date possess an Ammon’s horn, 

DG, and subiculum (Manns & Eichenbaum, 2006). Considerable neuroanatomical differences 

arise, however, when comparing the organization of neocortical areas. Since neocortical inputs 

to the HDMS are predictive of the kind of information being processed, perhaps the HDMS will 

differ across mammalia in terms of the representation of differing sensory modalities within the 

connectivity hierarchy. For example, the primate EC shows greater connectivity with visual 

processing areas (Insausti et al. 1987; Kerr et al., 2007) than that of the rat (Schroeder et al. 

2010). Garcia and Buffalo (2020) postulate that this difference is likely explained by primates 

primarily exploring environments visually, while rats depend more heavily on olfaction, 

although there may be other explanations (see general discussion). 

While the types of information coming into the mammalian HDMS and their proportions 

may differ between species, the functions of HDMS structures may remain conserved, 

particularly when considering that cortical inputs rarely arrive directly at the Hf, but instead 

arrive indirectly through the parahippocampal region. While in primates the parahippocampal 

region consists of the PRhC and PHC, in rats, the positions of structures differ and this area is 

instead comprised of the PRhC and postrhinal hippocampal cortex (PoRhC) rather than PHC. 
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To aid in the comparison of the HDMS across Mammalia, this section will characterize 

the connectivity between MTL structures, and present what is known about the functional 

differentiation of these structures by means of lesion studies in rats. 

1.2.1 Hierarchy of Connectivity 

The most detailed information on MTL connectivity across Mammalia is available in rat 

and macaque models. In these models, the connectivity hierarchy appears to be conserved as 

uni- and polymodal cortical regions project to structures in the parahippocampal regions and 

converge on the Hf (Figure 4; Suzuki & Amaral, 1994b; Burwell & Amaral, 1998a). Although 

hierarchical pathways are similar, patterns of connectivity differ and rats display connectivity 

that strictly conforms to this hierarchy less than macaques. For example, in macaques more 

than two-thirds of input to the EC originates from the parahippocampal region (Suzuki & 

Amaral, 1994a). By contrast, this proportion is only about one quarter in rats and, instead, a 

large proportion of inputs to the EC come directly from olfactory cortices, bypassing the 

parahippocampal region altogether (Burwell & Amaral, 1998a, b; Insausti et al., 2002). The 

more rigid conformity to processing within the connectivity hierarchy displayed in macaques 

may suggest that information converging onto the hippocampus is more processed than that 

converging onto the rat hippocampus (Manns & Eichenbaum, 2006).  

Based on data from both rats and macaques, parallel processing of ‘what’ and ‘where’ 

streams appears to be conserved across Mammalia on the basis of the type of neocortical 

inputs to the parahippocampal region. For example, the PRhC receives inputs concerning non-

spatial identity information while the PHC/PoRhC receives inputs concerning spatial context 
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(Suzuki & Amaral, 1994a; Burwell & Amaral, 1998a,b). In monkeys, ‘what’ and ‘where’ inputs to 

the parahippocampal area correspond to areas along the ventral and dorsal visual streams, with 

ventral thought to be important for object recognition and dorsal for visually-guided actions 

(Suzuki & Amaral, 1994a). In rats, there is no clear-cut segregation of the visual system into 

dorsal and ventral visual streams. However, PRhC and PoRhC receive disproportionate 

nonspatial and spatial information (Burwell & Amaral, 1998a, b). In rats, PRhC receives inputs 

largely from the polymodal ventral temporal association area (TEV) while PoRhC receives 

prominent spatial inputs from areas like the posterior parietal cortex, approximating the 

ventral/dorsal visual stream function observed in primates. Despite this difference, the 

separation of nonspatial and spatial information appears to be maintained between PRC to LEC 

and PHC/PRoC to MEC (Witter et al., 2000b). 

In summary, the evolution of the HDMS across Mammalia is described as a contrast 

between conserved internal circuitry and diversified neocortical inputs (Manns & Eichenbaum, 

2006). When comparing the MTL memory system from an anatomical and connectivity 

perspective, there appear to be striking similarities from the level of the parahippocampal 

region and onward to the hippocampus. Differences between mammalian species seem to 

largely lie upstream of this processing at the level of the neocortex and the resulting 

connections between neocortical areas and the parahippocampal region. However, how and 

whether these differing neocortical connections result in differing functions within the MTL 

cannot be determined by examining anatomy alone. 
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Figure 4. Rat Hierarchy of Connectivity. The rat connectivity hierarchy is separated into two 

parallel processing streams of ‘what’ and ‘where’ information and information converges within 

the hippocampus (Hf, green) after independent processing occurs within various sub-regions. 

Within the hierarchy, sensory information converges upon higher order association areas of the 

neocortex (yellow). It is then passed on to structures within the parahippocampal region (the 

perirhinal cortex (PRhC, red) or postrhinal cortex (PoRhC, blue), the primate parahippocampal 

cortex homologue). Information is then relayed to regions of the lateral entorhinal cortex (LEC, 

light purple) or medial entorhinal cortex (MEC, dark purple) before both streams converge 

within the Hf. Olfactory and tactile information in rats bypasses parahippocampal regions and 

converges directly upon the LEC. Double-headed arrows indicate bidirectional connectivity. 

Grey arrows indicate connectivity enabling cross-talk between structures. Black arrows indicate 
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connectivity between levels of the connectivity hierarchy. Adapted from Manns and 

Eichenbaum (2006).  

1.2.2 Functional Contributions 

In terms of anatomy and the connectivity hierarchy, the Hf and parahippocampal region 

appear to be highly conserved across the mammals presented. By restricting studies to those 

demonstrating the effects of lesions on proposed MTL homologues, how these structures 

compare to one another on a functional basis is explored. This section will focus on tasks that 

have been adapted for use in multiple species, thus limiting confounds due to differing task 

demands and providing a more robust comparative framework.   

1.2.2.1 Non-Spatial Processing 

1.2.2.1.1 Perirhinal and LEC 

Based on the primate literature, the PRhC is vital to object recognition memory, as 

lesioning this area results in profound deficits during DMS and DNMS tasks (Meunier et al., 

1993; Buckley et al., 1997), positive transfer (Buckley & Gaffan, 1998), oddity tasks (Buckley et 

al., 2001), VPC (Buffalo et al., 1999), tactile PC (Buffalo et al., 1999), and cross modal DNMS 

(tactile-visual; Buffalo et al., 1999; Goulet & Murray, 2001).  

When comparing these results to those in rats, the function of the PRhC appears to be 

highly conserved. Following PRhC lesions, deficits were demonstrated during DMS (Prusky et 

al., 2004), on oddity tasks (Bartko, et al., 2007a,b; Hales et al., 2015), and during the rat analog 

of VPC, spontaneous object recognition (SOR; Ennaceur & Delacour, 1988; Winters & Bussey, 

2005a,b). While PRhC lesions in primates resulted in deficits in tactile discrimination (Buffalo et 
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Figure 19. Lesion Reconstruction of (a) rHf-lesioned and (b) cHf-lesioned Quail Included in the 

Study. The black areas depict damage found in at least six lesioned quail. Grey areas show 

damage found in at least two lesioned quail. rHf, rostral hippocampal formation; cHf, caudal 

hippocampal formation.  

 

4.3.3.2 Contextual Fear Conditioning  

  

CFC consisted of four phases: habituation, training, test, and remote test. Prior to 

beginning each day of the experiment, subjects were removed from their housing room and 

placed into individual shoebox cages on a rack devoid of food. Each cage was covered by a 

shroud and subjects were left undisturbed for 1 hour. Subjects were transported individually in 

their covered cages to the testing room. Habituation, training, and test all occurred on the same 

experimental day. During habituation, the subject was placed into Context A and allowed to 

explore freely for 5 min. The subject was promptly removed and the same procedure was 
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followed in Context B with a 1 min inter-trial-interval (ITI).  The subject was then placed back 

into a covered shoebox cage and left undisturbed for 15 minutes. During training, the subject 

was again exposed to Context A for 5 min, a 1 min ITI, and was then placed into Context B. After 

3 min in Context B, an auditory stimulus (1000 Hz, 95 dB) was delivered for 3 sec, followed by 2 

minutes of exploration. The context in which the stimulus was presented was counterbalanced 

across subjects. The subject was then again placed back into the covered shoebox cage and left 

undisturbed for 15 minutes. During test, procedures matched those in habituation with 5 min in 

Context A followed by 5 min in Context B. Following each phase, the arena was wiped down 

with 70% Ethanol to eliminate scent trails. On the following day, subjects were given a remote 

test. During remote test, procedures again matched those followed during habituation with 5 

min in Context A, a 1 min ITI, and 5 min in Context B.  

4.3.3.3 Y-Maze Discrimination  
 

 Quail underwent three consecutive days of 10-min habituation sessions. During the 

sample trial, birds were given 5 min of exploration with one arm of the maze blocked off by a 

guillotine door. Birds were then removed for 1 min, during which time the door was removed 

and the bedding in the maze was replaced to remove scent cues. Birds were then returned to 

the maze for a 5-min choice trial. Which arm was blocked during the sample trial was 

counterbalanced across subjects. 

4.3.3.4 Histology 
 

 Following YMD, subjects were transported to a procedure room, anesthetized with 

isoflurane, decapitated, and brains were extracted and flash frozen in 2-methylbutane (Sigma 
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Aldrich, Oakville, ON). Coronal sections were cut at a thickness of 30 μm using a CM3050 

cryostat (Leica), thaw-mounted onto Superfrost Plus™ slides (Thermo Scientific, Waltham, MA). 

Every 6th section was then stained using Methyl Green to observe placement and extent of the 

lesions under a light microscope. 

4.3.3.5 Behavioural Scoring and Statistical Analysis 
 

Two quail died during surgery, while another 2 were excluded for lack of movement in 

at least one of the 2 tests, yielding final data on 25 quail (9 rHf, 7 cHf, 7 sham). 

 During CFC, quail can be considered freezing when they present a characteristic 

crouching posture with a) total flexion of the legs and the body in contact with the floor or b) 

partial flexion of the legs, wide separation between feet/legs and the pectoral region in close 

contact with one of the walls, with eyes widely opened and accelerated respiration. Such 

posture, associated with the absence of other observable behaviors, has been repeatedly used 

to characterize freezing behavior in pigeons (Barnett & Cowan, 1976; Reis et al., 1999; Brito et 

al., 2006; 2019). 

Analysis of CFC data was conducted using a repeated-measures analysis of variance 

(ANOVA) of the time spent freezing during the first 2 minutes of each trial using context (i.e., 

acoustically-paired vs. control) and time (i.e., immediate vs. remote) as within-subject factors 

and group (i.e., rHf, cHf, and control) as between-subject factors.  As an additional control, the 

time spent freezing in each context was also compared before any acoustical stimulation was 

compared with a 2 (context) x 3 (group) ANOVA.  
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  In the YMD, the time spent within each arm was quantified as a proportion of their total 

exploration time. The subject was considered to be exploring an arm if their entire torso was 

inside of the arm. The time spent exploring the novel arm (TN) and in the familiar arm (TF) 

(excluding the start arm) for all subjects was converted into a discrimination ratio (DR) as 

follows: DR = (TN-TF)/(TN+TF). These DRs were compared across groups by one-way ANOVA.  

 Post hoc tests were conducted using Tukey’s HSD. All statistical tests were conducted 

using JASP (JASP team, 2022). 

4.4 Results 
 

4.4.1 Contextual Fear Conditioning 
 

Analysis of CFC (Figure 20b) showed no significant difference in context (F1,20 = 1.12; p = 

0.30) or group (F2,20 = 1.42; p = 0.27) before acoustic stimulation, showing that the surgeries did 

not induce any pre-existing differences in freezing behavior.  Examining the time spent freezing 

during the trials following simulation failed to show a significant main effect of time (F1,20 = 

1.05; p = 0.32) or of group (F2,20 = 1.33; p = 0.29).  However, a significant effect of context (F1,20 

= 8.47; p = 0.01) as well as a significant time by context interaction ( F1,20 = 8.47; p = 0.01) were 

observed.  This pattern of results shows that quail across all groups selectively froze in the 

context paired with the acoustic stimulus and not in the control environment (paired vs. 

unpaired context: p < 0.05 for all groups), indicating that quail are able to discriminate between 

the two contexts and retain a memory for the context in which the acoustic stimulus had been 

presented. In contrast, 24 hours later, freezing had diminished to the point at which no 
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significant difference could be observed (p > 0.05 for all groups), suggesting that the memory 

had degraded.   

 
Figure 20. Lesions of rHf or cHf Spare Contextual Fear Conditioning (CFC). A schematic (a) shows 

the timing and order of CFC in context A (grey) and context B (white).  Quail were pre-exposed 

consecutively to each context for 5 min (pre-exposure), followed by a 15 min delay.  Quail were 

then exposed to each environment for 5 min a second time, during which they were presented 

with an auditory stimulus (1000 Hz, 95 dB) for 3 sec in one of the environments (stimulus).  

Following another 15 min delay, quail were again exposed consecutively to each context for 5 

min (immediate).  After 24 hours, the quail were once again exposed consecutively to each 

context for 5 min (remote). Analysis of the time spent freezing (b) shows that intact sham quail 

(white) as well as rHf-lesioned quail (light grey) and cHf-lesioned quail (dark grey) spend 

comparable time freezing in either environment a baseline (habituation).  Following 
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presentation of the acoustic stimulus, all quail more time freezing in the environment they 

received the acoustic stimulus in (acoustic) relative to the second environment (control).  This 

difference is no longer apparent 24 hours after the presentation of the stimulus (remote) have 

a discrimination ratio that is not significantly different from 0, showing exploration of objects 

equal to random chance (bars show mean ± SEM; * = p < 0.05 significant difference between 

groups). 

4.4.2 Y-Maze Discrimination 
 

Analysis of the YMD (Figure 21b), yielded a significant effect of condition (F2,20 = 3.99; p 

= 0.03).  Post-hoc tests show that while rHf-lesioned quail performed significantly worse than 

shams (p = 0.04), cHf-lesioned quail did not (p = 0.12).  This pattern of results suggests that, like 

mammals, the rHf of quail may disproportionately support spatial learning tasks. 
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Figure 21. Lesions of rHf but not cHf Impair Y-Maze Discrimination (YMD) Memory.  A schematic 

(a) demonstrates the timing of trials in YMD.  Following 3 days of habituation, quail are exposed 

to the Y-maze for 5 min with one of the arms blocked. Quail are then removed for 1 min and 

the wall blocking passage to the novel arm is removed before quail are returned for another 5 

min. Calculation of a discrimination ratio (b) shows that intact sham quail (white) and cHf-

lesioned quail (dark grey) spend significantly more time investigating the novel arm of the 

maze.  In contrast, quail with lesions to rHf (light grey) have a discrimination ratio that is not 

significantly different from 0, showing exploration of the maze arms equivalent to random 

chance (bars show mean ± SEM; * = p < 0.05 between groups). 
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4.5 Conclusions 
 

The current results are the first to report functional segregation along the rostrocaudal 

axis of the avian Hf. These results partially confirm a gradient along the rostrocaudal axis that is 

in some ways comparable to the mammalian dorsoventral axis.  In particular, we observe that 

the rHf is necessary for identification of spatial novelty during YMD.  This observation is 

consistent with results produced in rats completing comparable tasks following lesions to the 

dHf (Hunsaker et al., 2008; Lee et al., 2005; but see Dalland, 1976).  Moreover, the current 

results are consistent with reports of a gradient of spatial information content in avian Hf, with 

the greatest spatial information in principle cells of the rHf (Payne et al., 2021).  This pattern, 

which mirrors the change in information content observed along the rat dorsoventral axis 

(Kjelstrup et al., 2008) furthers the body of evidence demonstrating that the most rostral extent 

of the Hf disproportionately supports high-resolution spatial information processing across 

both Aves and Mammalia. 

 The observation of intact CFC following either rHf or cHf lesions is inconsistent with data 

showing homology between cHf and the mammalian vHf (reviewed in Smulders, 2017).  Several 

conclusions are possible given this observation. It is possible a gradient for emotional 

processing is absent in the avian Hf. That is, the information required to associate an aversive 

cue with a context may be present along most of the rostrocaudal axis. This suggestion is 

consistent with anatomical studies in pigeons (Atoji et al., 2002) reporting that input from 

nucleus taeniae of the amygdala is absent in the rostral third of the HF, but widespread in the 

caudal two-thirds of this region.  These widespread connections may suggest that the majority 
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of the avian Hf is homologous to the ventral mammalian Hf, and the cHf lesions conducted here 

were not sufficient to remove this distributed structure in its entirety.  Alternatively, the 

gradient in emotional processing may specifically be absent in the Hf of Japanese quail (or 

Galliformes in general). This suggestion would be consistent with observations of species 

differences in spatial information processing, revealing much stronger rostrocaudal gradients in 

food-caching than non food-caching birds (Payne et al., 2021).  

 Despite remaining open questions concerning the extent and functional heterogeneity 

of the cHf, the current results demonstrate that, like its mammalian homologue, the avian Hf is 

functionally heterogeneous, with its rostral portion specialized to computations that support 

spatial learning and memory. 
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Chapter 5: General Discussion   
 

The comparison of the evolutionary origins of HDMS provided in Chapter 1 

demonstrated that the critical features of the HDMS are conserved across Mammalia. These 

key features include: convergence of uni- and poly-modal sensory information onto higher 

order association cortices, separation of this information into two parallel processing streams 

of ‘what’ and ‘where’ information, hierarchical processing of these streams resulting in 

progressively more complex, conjunctive representations, and final convergence of both 

streams within the Hf. Despite these convincing similarities in mammals, a lack of evidence 

hampered attempts to examine more distant homologies in avian models. While there is 

considerable evidence of conserved connectivity and function between primates and rats, the 

existing literature offers little data that could provide definitive conclusions as to whether the 

structure and function of the HDMS is conserved between Mammalia and Aves. To address the 

lack of data on this question, in Chapter 2, I developed standardized testing methods, adapted 

from tests commonly used in mammals, for use in multiple members of Aves; in Chapter 3, I 

described lesions of proposed homologues of structures critical in the mammalian HDMS; and 

in Chapter 4, I explored the possibility of functional differentiation within the avian Hf.  

Throughout Chapter 1, the Dual-Process and BIC models provided important 

frameworks for understanding the role of the components of the HDMS in memory. Given the 

new data in Chapters 2, 3, and 4, it is worthwhile to revisit these theoretical frameworks in 

order to assess the extent to which they need to be revised given the current data. 
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5.1 The Dual-Process Model  
 

As described in Chapter 1, the limited experimental evidence suggested that the avian 

Hf is involved in familiarity but not recollection. More specifically, the collective results of 

Bingman and colleagues (1998) and Coppola and colleagues (2014), suggested that the avian Hf, 

unlike its mammalian counterpart, may not be capable of binding non-spatial elements into a 

unified representation. My findings from Chapter 2 support this claim. Within Chapter 2, 

Experiments 1, 2, and 4 demonstrate that pigeons and quail can detect, and will subsequently 

show a preference for, both spatial and object novelty, consistent with a system geared toward 

familiarity. In Experiment 3 (the COR task), however, no novelty-preference was observed when 

identification required binding object identity with that object’s location, context, or both. 

These findings support the idea that the avian HDMS is largely involved in familiarity rather 

than recollection, as failure on these tasks suggests that the avian brain may not bind multiple 

pieces of information into rich event recollections.  

An alternative account for the observed lack of neophilia when recognition required 

combining multiple elements is that subjects may not have been sufficiently motivated to 

either attend to the COR task or demonstrate a preference for the type of novelty that this task 

tests for. To address this, the issue of motivation was considered when designing the 

behavioural testing in Chapter 4. Since food restriction in the quail during an unpublished pilot 

study had proven to be an unsuccessful motivator, we instead opted for an abrupt (and 

potentially stressful) auditory stimulus to maximize the motivation to differentiate the two 

contexts. Since quail displayed more freezing in the context in which the auditory stimulus was 
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delivered, this implied that they are capable of at least combining an aversive event with a 

specific context. While my data do not provide evidence that this is strictly dependent on the 

avian Hf, it does suggest that given sufficient motivation, Japanese quail are capable of binding 

stimuli across modalities in order to create complex representations and act appropriately in 

that context again. This pattern of behavior is consistent with recollection.  

Taken together, the current findings allow for the HDMS of Japanese quail to be situated 

within the Dual-Process model (Figure 22). Evidence from Chapter 2 established that quail and 

pigeons can detect object and spatial novelty (familiarity), Chapter 3 determined that detection 

of object novelty critically involves the APH and not the Hf, and Chapter 4 established that 

Japanese quail were capable of associating a multimodal and emotional event with contextual 

information (recollection). However, the locus of multimodal representations supporting 

recollection remains unknown and could be a topic of future study.  

   

Figure 22. Avian Dual-Process Model. Within the avian hippocampal declarative memory 

system, area parahippocampalis (APH) seems to support object familiarity. Structures 

supporting recollection remain unknown, denoted by a question mark. Double-headed arrows 

indicate bidirectional communication, single-headed indicate unidirectional communication.  
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5.2 Binding of Item in Context Model  
 

A review of the current literature (Chapter 1) offered little information on how the avian 

HDMS could be situated within the BIC model. Prior to the current findings, there was a general 

consensus that the avian Hf was involved in spatial information and that, on the basis of 

connectivity, the APH/CDL region was possibly an “entorhinal-like” homologue (Figure 23). 

Although the current findings support this role of the avian Hf in spatial memory, they greatly 

expand the role of the APH. Looking first to Chapter 3, my results support critical involvement 

of the Hf in spatial memory, but deficits in spatial memory following APH lesions make the 

distinction between the two structures less clear. While this does not rule out the involvement 

of the APH in spatial processing, it remains possible that lesions to the APH sever fibers of 

passage to the Hf, creating the observed deficit. Alternatively, object identity information 

provided by the APH may be critical in performance during the FA task, as the APH may be 

essential when discriminating between cues that could be used to locate the baited cup. 

However, this is unlikely, considering that all the cups were identical. My findings in Chapter 4 

confirmed the critical involvement of the Hf in spatial memory, as lesions to the rostral portion 

of the Hf resulted in deficits in discriminating novel from familiar arms of the Y-Maze. While my 

data do not support the role of the avian Hf in ‘binding item in context’, they do affirm its 

critical involvement in detecting spatial novelty.  

 On the basis of connectivity, APH/CDL was proposed to be comparable to the 

mammalian EC. The data in Chapter 3 provide the first demonstration, to the best of my 

knowledge, of behavioral data consistent with these measures of connectivity. The APH plays a 
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critical role in SOR, and thus is functionally homologous to the PRhC and/or LEC. These findings 

are comparable to mammalian studies in which lesions to the PRhC (Norman & Eacott, 2005) or 

LEC (Boisselier et al., 2014; Persson et al., 2022) also resulted in SOR deficits. Since we are 

unable to say with certainty whether the APH is critically involved in spatial memory or if the 

lesions described in Chapter 3 simply severed fibers of passage, it would be conservative and 

perhaps more accurate to say that the Japanese quail APH may be a functional homologue of 

the parahippocampal region (PRhC and PHC/PoRhC).  

 

Figure 23. Avian Binding Item in Context (BIC) Model. Proposed BIC model on the basis of 

previous literature (left) and an updated BIC model incorporating findings of this dissertation 

(right). The BIC model proposes hippocampal declarative memory system sub-regions can be 

differentiated on the basis of the information that they store. Based on contributions of the 

current literature, area parahippocampalis (APH) and the dorsolateral corticoid area (CDL) were 

proposed as being entorhinal-like, while the hippocampal formation (Hf) was shown to be 
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entorhinal cortex; MEC, medial entorhinal cortex; PHC, parahippocampal cortex; PoRhC, 

postrhinal cortex; PRhC, perirhinal cortex; rHf, rostral portion of the hippocampal formation. 

 

5.3 Alternate Theories 
 

While I have described the functions of the HDMS by means of the Dual-Process and BIC 

models, there are numerous other ways to interpret the current results. For example, an 

additional way to evaluate these findings is to situate them within the locale and taxon learning 

systems as described by O’Keefe and Nadel (1978; Nadel 1992, 1994). Note that ‘taxon’ 

learning, referring to grouping of learned associations into categories, is not to be confused 

with ‘taxon’, in reference to phylogenetic relatedness. To avoid confusion, the former will be 

referred to as ‘taxon learning’. Briefly, when differentiating between locale (dependent on the 

Hf) and taxon learning (independent of the Hf), Nadel (1992) points to three major distinctions: 

1) speed of acquisition, 2) underlying systems of motivation, and 3) stability of the memory. 

Regarding the speed of acquisition, locale learning is thought to be rapid, but also degrades 

quickly, and taxon learning is thought to be incremental and slower in comparison. Nadel 

(1992) suggests that the motivation for locale learning is driven by the desire to investigate 

novelty, while taxon learning is thought to be motivated by traditional Hullian forces such as 

hunger and thirst. As evidence for this distinction, Nadel (1992) points to a study in which 

lesions of the Hf destroy the motivation for information seeking, leading rats to behave in a 

manner much more tied to reinforcement contingencies (Devenport & Holloway, 1980). Locale 

learning is thought to yield memory representations with map-like formats as the basis for 

unique episodes with multiple access routes, while taxon learning is thought to rely on schema-
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visual field and is associated with local information (Hayes et al., 1987). The yellow field fovea 

mediates high resolution vision in the monocular lateral visual field and is associated with 

global information (Hahmann & Güntürkün, 1993). Comparable structures are found in many 

diurnal birds, including Japanese quail (Budnik et al., 1984; Ikushima et al., 1986). Taken 

together, the tectofugal visual pathway of laterally eyed birds, is associated with information in 

the red field while the thalamofugal visual pathway primarily mediates visuo-spatial localization 

and pattern vision associated with the yellow field (reviewed in Clark & Colombo, 2022).  

In a recent review by Clark and Colombo (2022), the findings from Chapter 3 in which APH 

lesions resulted in deficits in both SOR and the FA task were discussed. The authors speculated 

that the observed impairments may have occurred not because a fiber of passage was severed 

but because the APH receives ‘where’ information from the Wulst in addition to ‘what’ 

information from the NFL. They speculated that the Wulst may process both shape and spatial 

information viewed in the yellow field, and relay both types of information to the Hf via the 

APH. This supports the idea of the APH as an important intermediary structure in potentially 

processing object information in addition to spatial information upstream of the Hf.  

5.3 Future Considerations 
 

The data presented here offer many potential avenues for further exploration of HDMS 

homology. As mentioned by Clark and Colombo (2022), disambiguating the potential 

explanations for how the APH contributes uniquely to spatial memory would be of great 

interest. Toward this, next steps should include reversible knockdown of the APH using 

methods that spare fibers of passage (e.g., transfection with optogenetic receptors). In 
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addition, follow-up studies should investigate potential functional differentiation within 

structures. The study of functional differentiation may be more difficult to investigate in Aves 

relative to Mammalia, as there are fewer well defined structural borders. This lack of discrete 

layering also raises the possibility that functional heterogeneity may follow a gradient rather 

than being contained within discrete anatomical domains. If the avian Hf differs along the 

rostrocaudal axis, this may also be true for the APH and CDL. In fact, the extensive homology 

seen in the HDMS suggests this should be the case, as this heterogeneity would resemble 

mammalian LEC/MEC and PRhC/PHC (PoRHC) distinctions.  

 Another avenue for further research is the lateralization of the avian HDMS. In a study 

by Clayton and Krebs (1994), four species of bird displayed a preference for examining object-

specific cues with the right eye and spatial cues with the left eye (although species differences 

have been observed; see Clary et al., 2014). Subsequent studies investigating the neural basis of 

this behaviour demonstrated preferential involvement of the right Hf in the representation of 

global environmental space, whereas left Hf was sensitive to local landmarks during a 

navigation task (Tommasi et al., 2003; Kahn & Bingman, 2004; reviewed in Bingman et al., 

2006). Interestingly, the function of each hemisphere may be examined by occluding one eye as 

the majority of visual information from each eye is maintained within the optic nerves, crossing 

to the contralateral hemisphere (however, hemispheric functional asymmetry has been shown 

to decrease with age; Shabro et al., 2022). Since there is evidence of asymmetry at the level of 

the hemisphere, how and where differing proportions of object and spatial information get 

integrated within the HDMS could be of interest. In fact, similar hemispheric biases have been 

seen in human imaging (e.g., Bellgowan et al., 2009), so further investigations of avian 
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lateralization may bolster the accumulated data establishing homology of the HDMS across 

classes. 

Taken collectively, the results of this dissertation contribute greatly to our 

understanding of the Japanese quail HDMS. Chapter 2 adapted commonly used mammalian 

testing procedures for assessment of object and spatial novelty for use in Japanese quail and 

pigeons. Using these tests to determine HDMS structural involvement, Japanese quail 

underwent selective lesions along either the mediolateral (Chapter 3) or rostrocaudal (Chapter 

4) axis. Results revealed functional differentiation both between (Hf versus APH) and within 

(rHf versus cHf) structures, permitting an update of the known functions of sub-regions of the 

avian HDMS (Chapter 5). In summary, these data suggest that most of the key features of the 

mammalian HDMS, including the existence of anatomically separated hierarchical processing 

streams, as well as eventual convergence of information in the Hf, is conserved across at least 

these two classes.   
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