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Abstract 
 

Across Mammalia, memory has long been dissociated into multiple component systems 

specialized to process specific facets of experience. Among these segregated systems, 

declarative memory is processed by the hippocampus and surrounding structures, which have 

collectively been referred to as the hippocampal declarative memory system (HDMS). The 

HDMS, in turn, can be further divided into parallel streams dedicated to the processing of 

spatial versus object identity based information, commonly discussed as the ‘what’ and ‘where’ 

streams. While we know that the organization of the HDMS is conserved in humans, nonhuman 

primates, and rats, evidence outside Mammalia is lacking. Here HDMS homology is tested in 

Aves, a class known to have sophisticated memory abilities. This dissertation first adapts testing 

methods well established for dissociating spatial and object recognition in mammals and 

validates them in multiple avian species (Chapter 2). These methods are then applied to birds 

undergoing selective lesions along either the mediolateral (Chapter 3) or rostrocaudal (Chapter 

4) extent of the HDMS. These data then permit an update of the known functions of the sub-

regions of the avian HDMS (Chapter 5). In summary, these data suggest that most of the key 

features of the mammalian HDMS, including the existence of anatomically separated 

hierarchical processing streams for object and spatial information, as well as eventual 

convergence of this information in the hippocampal formation, is conserved across at least 

these two classes. Given the great survival value of the ability to identify the ‘whats’ and 

‘wheres’ within an environment, this homology may not be surprising. In fact, the HDMS may 

be conserved across much of the animal kingdom. 
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Chapter 1: General Introduction  
 

The acquisition, storage, and retrieval of different kinds of information is critical for 

survival. Combining information and storing it within memory allows multiple causative and 

correlative relationships to be identified, permitting learning from past events and enabling 

planning for future ones. Considering the implications for survival, it is perhaps unsurprising 

that memory has been widely studied for centuries. In fact, the idea that memory is not a 

unitary function (a notion that is particularly relevant to this dissertation) dates back more than 

two hundred years. French philosopher Maine de Biran wrote in 1804 about the potential for 

different types of memory, making distinctions between what he called mechanical memory, 

sensitive memory, and representative memory (Maine de Biran, 1804/1929). In the latter part 

of the 19th century, American philosopher and psychologist William James differentiated 

between memory and habit (James, 1890). The proposal of different types of memory 

continued well into the 20th century with theories such as those of McDougall (1923) 

differentiating between explicit and implicit recognition, and Tolman (1948) between different 

kinds of learning. 

Considerable evidence exists supporting the idea that the brain contains multiple 

memory systems (MMS; Poldrack & Packard, 2003; Squire, 2004). Not only does this imply that 

differing regions within the brain may be disproportionately involved in certain types of 

memory relative to others (e.g., procedural versus episodic memory), this also implies that 

different structures within these regions are more involved than others in the processing of 

certain types of information (e.g., object identity versus spatial information). There is a 
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considerable literature tying varying components of MMS to specific pathways in the brain. 

Although these are not covered here, the interested reader is directed to Poldrack and Packard 

(2003) or Squire (2004) for further reading. The current dissertation will focus on a specific 

memory system, declarative memory, which can be described as explicit, conscious recollection 

of facts and events (reviewed in Squire et al., 2004), and its now well characterized association 

with the medial temporal lobe (MTL).  

 The MTL, consisting of the hippocampal formation (Hf; made up of the Cornu Ammonis 

(CA) subfields, the dentate gyrus (DG), and the subicular complex), the adjacent perirhinal 

cortex (PRhC), parahippocampal cortex (PHC), and entorhinal cortex (EC; divided into lateral 

(LEC) and medial (MEC) portions), is critical for declarative memory. Evidence supporting the 

MTL’s role in memory began to accumulate over a century ago when Russian neurologist 

Vladimir Mikhailovich von Bechterew described bilateral softening of the Hf in a patient that 

had exhibited profound memory deficits (von Bechterew, 1900; for review see Maranhão et al., 

2015). Although von Bechterew’s findings hinted at the role of the Hf in memory, the extent of 

MTL involvement was not fully appreciated until over half a century later with the work of 

Brenda Milner. Her systematic documentation of memory deficits associated with the bilateral 

resection of the MTL in patient Henry Molaison (H.M.; Scoville & Milner, 1957) established 

several fundamental principles of memory still utilized today (Squire, 2009). First, despite 

deficits recalling his past, H.M.’s intellectual and perceptual functions remained largely intact 

suggesting that memory associated with the MTL can be separated from other cognitive 

functions. Second, H.M.’s ability to remember information over a short period of time implied 
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that functions supporting short-term memory, such as working memory, must therefore take 

place outside of the MTL.  

At the time of the first descriptions of H.M., little was known about the anatomy of the 

MTL and less was known about how specific structures within this region might contribute 

uniquely to memory (Squire et al., 2004). Through the introduction of animal models of H.M.’s 

amnesia in non-human primates (NHP) and subsequently in the rat, the critical involvement of 

the MTL in declarative memory became increasingly clear, and a model of the medial temporal 

declarative memory system (MTDMS) began to emerge (Mishkin, 1982; Zola-Morgan et al., 

1983; Squire, 1992a, b). Importantly, the use of different species of animal (primarily humans, 

NHPs, and rats) allowed for cross-species comparisons of structure, connectivity, and function, 

offering insight into how the MTDMS system may have been sculpted by selective pressures 

over the course of evolution. This comparison across taxa is the focus of the current 

dissertation, and an area in critical need of further research. Much of the research on the 

MTDMS has focused predominantly on mammals. This focus, while understandable given the 

application of this knowledge to human health, leaves gaps in our knowledge concerning how 

the neural infrastructure underlying memory has changed across the animal kingdom. I address 

a small facet of these shortcomings through a series of experiments on the avian homologue of 

the MTDMS. 

In order to provide context for the experiments outlined in Chapters 2, 3, and 4 of this 

dissertation, this Chapter will begin with a comparison of the MTDMS in humans and NHPs, our 

closest relatives within the same order. The model developed will then be expanded to rats, 

which are arguably the most studied organism within the same phylogenetic class (mammals). 
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Finally, I will describe the MTDMS in avian models in order to assess potential neuroanatomical 

and functional homology across classes within the same clade of tetrapod vertebrates (i.e., 

amniotes). The studies presented within the scope of this introduction will focus largely on 

macaques (Macaca mulatta), rats (Rattus norvegicus), and pigeons (Columba livia), as these 

model organisms make up the bulk of the extant literature. It should be noted, however, that 

there are limitations inherent to such a small fraction of the mammalian and avian taxa making 

up the bulk of our understanding. For instance, it should be noted that Rattus norvegicus 

represent one species within the Rodentia, which consists of 2277 recognized species (42% of 

all mammalian diversity), that there are 376 species of primate (Wilson & Reeder, 2005; Molnár 

& Clowry, 2012), and over 18,000 species of bird (Barrowclough et al., 2016). Considering that 

morphological and anatomical variations are commonly observed within orders (in mammals; 

West, 1990; in aves; Sherry et al., 1992; Hampton & Shettleworth, 1996b, Payne et al., 2021), 

research on species variation would need to increase exponentially for generalizations to be 

made with confidence. As such, this review is of necessity speculative in many regards. In an 

attempt to minimize this variation, the research discussed will be restricted to connectivity 

tracing and the effects of lesions on various tests of memory, as these methods appear to be 

most consistently applied across all species of interest.  

Since the declarative memory system is largely dependent on the Hf and because the 

location of the Hf, as well as the nomenclature (and even the existence) of some of the 

associated structures is contentious across species, for the purpose of comparison and for the 

remainder of this dissertation, I will refer to the structures associated with declarative memory 

as the hippocampal declarative memory system (HDMS).  



 
 

18 
    

 

One feature that characterizes the HDMS across many (perhaps all) species, is the 

segregation and parallel processing of varying kinds of information, which is eventually 

integrated in the Hf, at the apex of this system. Computationally, it has been proposed that this 

type of hierarchical processing would not only allow for more sophisticated information to be 

represented in a way that minimizes interference, but may also increase both processing speed 

and storage capacity of the HDMS (e.g., Damasio, 1989; Alvarez & Squire, 1994; McClelland et 

al., 1995; O’Reilly & Rudy, 2000). Given the apparent ubiquity of this feature, it will be 

discussed first for each of the model systems.  

While establishing a hierarchy of connectivity provides information concerning how 

information is transmitted within the HDMS, it does not provide details concerning how each 

structure contributes uniquely to declarative memory. Toward this, many models have been 

proposed for how information is segregated within the HDMS (see Nadel, 1992, for a historical 

account of these models), but one distinction that features prominently in the data surrounding 

the function of the HDMS is space. The importance of the HDMS for dealing with space is 

perhaps not surprising, given that several regions of the HDMS are thought to be responsible 

for relational learning, and spatial cognition is inherently relational. This provides the 

opportunity to understand the role of the HDMS in processing information in general by 

understanding how it deals with objects embedded in space (Eichenbaum et al., 1999). As such, 

we will focus on how the HDMS handles spatial versus non-spatial information, or what O’Keefe 

and Nadel (1978, p. 381) describe as, “memory for items or events within a spatio-temporal 

context” contrasted with “memory for items, independent of the time or place of their 

occurrence”. 
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1.1 The Primate Hippocampal Declarative Memory System 

Arguably the best model species to begin with when constructing a comparative analysis 

of the HDMS are our closest evolutionary relatives, NHPs. By examining NHPs we can determine 

if elements of structure and function are evolutionarily conserved, or if certain structures and 

functions are unique to humans.  

 This section will describe a hierarchy of connectivity between structures of the HDMS, in 

which two different kinds of information are processed in parallel, and how structures within 

the hierarchy contribute uniquely to the processing of this information. An overview of the 

primate HDMS will lay the groundwork for comparison when later examining this memory 

system more broadly within Mammalia as well as across classes with Aves.  

1.1.1 Hierarchy of Connectivity 

The structures that make up the hierarchical processing of the HDMS have been 

identified largely through the use of NHP models (Squire & Zola-Morgan 1991). Additionally, 

this work has established the boundaries and connectivity of these areas, revealing 

bidirectional pathways between the cerebral cortex and structures within the HDMS, termed 

the ‘hierarchy of connectivity’ (Lavenex & Amaral, 2000; Witter et al., 2000a; Kerr et al., 2007; 

Figure 1). The hierarchy of connectivity is composed of four main levels: association areas of 

the cerebral cortex, the parahippocampal region, the EC, and the Hf. Starting with uni- and 

poly-modal sensory information, higher order association cortices (exclusive of primary sensory 

or motor regions) send inputs to and receive outputs from the HDMS. Cortical association areas 

that do not connect directly with Hf connect to a collection of interconnected areas outside of 
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the Hf, within the parahippocampal region (comprised of the PRhC and PHC). These areas then 

connect with different portions of the EC and from there converge within the Hf. Outputs from 

the Hf are then directed back down the hierarchy, moving information from the Hf to the EC 

and subsequent parahippocampal regions, which in turn project outputs to the areas of the 

cerebral cortex from which the inputs originated (Eichenbaum & Lipton, 2008).   

Information travels to the Hf through the connectivity hierarchy in two partially distinct 

channels, dividing into segregated non-spatial and spatial information processing pathways, 

often referred to as the what and where streams. The PRhC receives inputs from areas that 

encode the non-spatial identity of a stimulus while the PHC receives inputs from areas involved 

in processing the spatial content of sensory information. Looking to NHP research, the PRhC 

largely receives inputs from ventral visual pathway areas, important for object recognition, 

while the PHC receives inputs from dorsal visual pathway areas, important for spatial attention 

and visuospatially guided actions (reviewed in Eichenbaum & Lipton, 2008). The separation of 

spatial and nonspatial information is largely maintained throughout the hierarchy as PRhC 

projects mainly to LEC, and PHC to MEC, before both converge within the Hf.    
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Figure 1. Primate Hierarchy of Connectivity. Separated within two parallel processing streams, 

sensory information converges in higher order association areas of the neocortex (yellow) 

before it is passed on to structures within the parahippocampal region [the perirhinal cortex 

(PRhC, red) or parahippocampal cortex (PHC, blue)]. Information is then relayed to regions of 

the lateral entorhinal cortex (LEC, light purple) or medial entorhinal cortex (MEC, dark purple) 

before both streams, which have thus far been processed in parallel, converge within the 

hippocampal formation (Hf, green). Double-headed arrows indicate bidirectional connectivity. 

Grey arrows indicate connectivity enabling cross-talk between structures. Black arrows indicate 

connectivity between levels of the connectivity hierarchy. Adapted from Manns and 

Eichenbaum (2006).  
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On the basis of connectivity, dorsal and ventral visual inputs seem to maintain largely 

segregated processing pathways within the connectivity hierarchy before converging within the 

Hf. If connectivity is indicative of function, this may imply that non-spatial and spatial 

information are predominantly processed in parallel throughout the hierarchy. Next, I consider 

the extent to which data on the functional contributions of individual regions of the HDMS to 

memory are consistent with this model.  

1.1.2 Functional Contributions 

Here I consider data collected on the ability of NHPs to perform varying memory tasks 

following selective lesions to structures within the HDMS. These data reveal the unique 

structural contributions to functions of the HDMS, and show contributions that are generally 

consistent with the anatomical account of information processing in this system.   

1.1.2.1 Non-Spatial Processing 

Non-spatial information refers generally to physical characteristics of an object such as 

colour, shape, pattern, and size. All of these characteristics can be combined to form a unified 

representation of the identity of an object in order to support recognition (reviewed by 

Logothetis & Sheinberg, 1996; Murray et al., 2007).  

1.1.2.1.1 Perirhinal and LEC 

Non-spatial information carried by the ventral visual stream projects primarily to the 

PRhC which then projects to LEC. Because of this connectivity, the PRhC and LEC are commonly 

studied for their contributions to non-spatial memory, especially that involving recognition of 

objects. 
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On the basis of lesion studies involving separate components of the MTL, the 

contribution of the PRhC to visual recognition memory appears to be greater than that of any 

other single structure (Buffalo et al., 1998). Located at the ventromedial aspect of the primate 

temporal lobe, the PRhC lies at the interface of the MTL memory system and the ventral visual 

stream, the ‘what’ pathway (Bussey et al., 2002). Given that this region receives its heaviest 

inputs from visual sensory areas [anterior inferotemporal (area TE) and posterior 

inferotemporal (area TEO); Suzuki & Amaral, 1994a], studies of this area have focused on its 

role in visual learning and memory. The accumulated data regarding the role of the PRhC to 

date support its contributions to at least four cognitive functions (reviewed in Murray & 

Richmond, 2001): 1) PRhC contributes to recognition memory in an automatic fashion; 2) PRhC 

accomplishes object identification by associating together different sensory features of an 

object; 3) PRhC associates objects with other objects and with abstractions, and 4) it likely 

contributes to both perception and memory.  

Restricting data to that collected in NHPs, a commonly used paradigm for assessment of 

PRhC function is the delayed match to sample (DMS) paradigm and its variant, delayed non-

match to sample (DNMS; Mishkin, 1978). Briefly, this task usually involves a sample and a 

choice phase. During sample, the subject is shown a stimulus (or physical object), and then, 

following a varying delay, there is a choice phase in which the subject is presented with a 

stimulus identical to the sample alongside a different stimulus. In the DMS paradigm, the 

subject is rewarded for selecting the choice trial object identical to sample, and for a DNMS 

paradigm, the subject is rewarded for choosing the other stimulus. In NHP models, PRhC lesions 

create severe deficits in performance on visual DMS and DNMS tasks (Meunier et al., 1993; 
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Buckley et al., 1997). Similar findings came from Buckley and Gaffan (1998), using a set of 

object discrimination problems. During this task, subjects were trained to group images of the 

same object that had been photographed from different perspectives, called ‘set one’. Once 

this set of images had been learned, a new set, ‘set two’ was introduced which included photos 

of the same object but from additional novel perspectives. If ‘set two’ was learned faster than 

‘set one’, this was thought to be evidence of positive transfer. PRhC lesioned monkeys 

displayed impaired performance relative to controls. Deficits were also observed by Buckley 

and colleagues (2001) during an oddity task, in which monkeys were required to identify the 

‘odd object’ (Object B) out of an array of several different views of the same object (Object A).  

Another commonly used task to assess declarative memory is a visual paired-

comparison task (VPC; Buffalo et al., 1999). VPC typically consists of two phases, sample and 

choice. During sample, two identical pictures are presented side by side. After a delay, the 

choice phase consists of two pictures, one being identical to those presented in sample and the 

other being novel. This task capitalizes on the tendency for primates to prefer novelty and 

suggests that if (a) the pictures shown during sample are remembered, and (b) the subject can 

discriminate between the presented stimuli, then the subject should spend more time looking 

at the novel stimulus relative to familiar one. Buffalo and colleagues (1999) observed PRhC 

involvement in a VPC task as lesions to the area inhibited performance.    

While the majority of inputs to the PRhC are those carrying visual information, 

approximately one third of its input comes from non-visual unimodal cortices, implying that this 

region may also be important in combining information across modalities (Suzuki, 1996). 

Consistent with this, deficits in performance are also observed in PRhC lesioned NHPs during a 
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tactile recognition task (Buffalo, et al., 1999) and in cross-modal DNMS (tactile-visual; Buffalo et 

al., 1999; Goulet & Murray, 2001). Additional evidence for PRhC involvement in cross-modal 

DNMS is seen in human subjects with damage encompassing the PRhC (Taylor et al., 2006). 

However, data from human amnesic patients should be treated cautiously, as damage typically 

affects both the Hf and PRhC. Impairments in patients with damage to these areas are typically 

severe and span many types of memory, so dissociations are rare (Brown & Aggleton, 2001). 

Taken together, these findings point to PRhC involvement in forming object identity by 

associating different perspectives of objects and their multimodal attributes. On the basis of 

these studies, it appears that PRhC is critically involved in object discrimination, consistent with 

its implied function following assessment of connectivity alone.   

Within the next level of the connectivity hierarchy, the LEC receives direct projections 

from the PRhC and is one of the two major cortical inputs to the Hf. While there are 

considerable data on the functions of the PRhC, little is known about how neural 

representations are transformed between PRhC and LEC in primates. Historically, it has been 

difficult to dissociate functions of LEC and PRhC as a large number of studies examining PRhC 

have also lesioned LEC (Meunier et al., 1993; Eacott et al., 1994). Additionally, EC lesions 

typically encompass both LEC and MEC so assigning specific contributions should be done 

cautiously. However, EC lesions provide some data in differentiating PRhC and EC function. To 

the best of my knowledge, in the only experiments exploring EC lesions in NHPs, performance 

was spared on a DNMS task (Buckmaster et al., 2004), a task on which performance is 

commonly disrupted following PRhC lesion (Meunier et al., 1993; Buckley et al., 1997). 

Buckmaster and colleagues (2004) reported deficits in EC lesioned subjects on tasks requiring 
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conditional discriminations between stimuli with overlapping elements and the learning of 

predictive relationships.   

Although limited, these findings suggest that the PRhC is critically involved in object 

recognition and simple associations between objects, while the EC may be necessary for flexible 

manipulations of learned associations (for review, see Garcia & Buffalo, 2020). 

1.1.2.2 Spatial Processing 

Spatial information refers generally to information about stimuli that is embedded 

within a spatial context. This context consists of information concerning the stimulus’s location 

both in relation to the subject as well as to other objects (O’Keefe & Nadel; 1978).  

1.1.2.2.1 Parahippocampal Cortex and MEC 

Spatial information that is carried by way of the dorsal visual stream projects primarily 

to the PHC, which then in turn projects to MEC. Because of this connectivity, the PHC and MEC 

are commonly studied for their contributions to spatial memory. 

Located along the ventromedial edge of the temporal lobe adjacent to the Hf, the PHC is 

the interface between the MTL memory system and the dorsal visual stream, commonly 

referred to as the ‘where’ pathway. Insight into the function of the PHC may once again be 

obtained by examining the connections both to and from this structure. The majority of input to 

the PHC comes from cortical areas mediating spatial information, such as area V4 (Schiller & 

Lee, 1991) and the posterior parietal cortex (Calton & Taube, 2009), implying that this area may 

function to represent and retrieve spatial information.  
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To determine once again if connectivity is predictive of function, the PHC has 

unsurprisingly been studied extensively for its involvement in spatial processing (for review see 

Aminoff et al., 2013). To assess the involvement of the PHC on spatial elements of declarative 

memory, Bachevalier and Nemanic (2008) implemented two variations of the VPC task, a 

Spatial Location and an Object-in-Place version. In the Spatial Location version, comparison was 

made between two identical objects presented simultaneously in a novel and familiar location. 

In the Object-in-Place version, the comparison was between two images, each consisting of the 

same five objects only in one of the images, the objects had been rearranged. PHC lesioned 

macaques displayed deficits in both the spatial location and Object-in-Place tasks, supporting 

involvement of this structure in the ‘where’ element of declarative memory. Comparable 

findings were observed by Malkova and Mishkin (2003) in which monkeys with PHC lesions 

displayed deficits when tasked with a one-trial memory task that relied on remembering object-

place associations (object-place trials) or simply a place in an array of three feeding wells (place 

trials). Monkeys with PHC lesions also displayed deficits on a variation of the DNMS task, in 

which discrimination was dependent on location (delayed non-match to location; DNML; 

Alvarado & Bachevalier, 2005). 

In the connectivity hierarchy, the MEC receives direct projections from the PHC and is 

one of the two major cortical inputs to the Hf. By restricting the data presented to that of lesion 

studies in primates, there is little data investigating dissociable functions between the MEC and 

PHC that meet the criteria. Evidence for such dissociations is available largely in rat studies 

which will be discussed in a later section focusing on taxonomic differences in the MTDMS. 



 
 

28 
    

 

Although beyond the scope of this dissertation, functional imaging in primates provides findings 

comparable to the rat literature (Reagh & Yassa, 2014).  

1.1.2.2.2 Hippocampus 

The Hf acts as the final stage of convergence for multisensory information received via 

projections from the adjacent EC, PRhC, and PHC (Lavenex & Amaral, 2000). Since the Hf is the 

site of ‘what’ and ‘where’ pathway convergence, it is likely important in binding disparate event 

features into an integrated representation. This idea also suggests that tasks that do not 

require the combining of multiple information streams, such as recognition memory for single 

items, can instead be accomplished by regions adjacent to the Hf (Tulving & Markowitsch, 

1998; Brown & Aggleton, 2001). In examining the functional role of the Hf, I will present two 

complimentary models concerning how the Hf uniquely contributes to the HDMS relative to 

other structures within the hierarchy, the Dual-Process model and Binding of Item in Context 

(BIC). 

1.1.2.2.2.1 Dual-Process Model  

Reviews of Hf function highlight distinctions between two processes employed in 

supporting declarative memory, a sense of familiarity with previously experienced stimuli (i.e., 

recognition of an item without retrieval of specific details about the study episode), which can 

be contrasted with recollection (i.e., recognition of an item on the basis of the associations and 

specific contextual details of a previous study episode; Yonelinas, 1994, 1999; Eichenbaum et 

al., 2007). Following the Dual-Process model, the PRhC is thought to be critical for familiarity, 

and the Hf and PHC for recollection (Figure 2). It is important to note that the Dual-Process 

model described here in relation to declarative memory is not to be confused with the Dual-
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Process Theory of Thought. While the Dual-Process model describes functional contributions of 

structures within the MTDMS, Dual-Process Theory of Thought describes two co-existing 

systems involved in thought, one of which is a quick, automatic, associative, and affective-

based form of reasoning, and the other, a slow, thoughtful deliberative process (Sloman, 1996). 

This dissertation refers to the former and not the latter.  

There is considerable evidence in NHPs supporting the suggested roles of the PRhC, 

PHC, and Hf in the Dual-Process model. Supporting evidence for the role of the PRhC in 

familiarity comes from studies showing that this region is critically involved in object 

discrimination (Mishkin, 1978; Meunier et al., 1993; Buckley et al., 1997; Buffalo et al., 1999). 

Additionally, since the PHC is critically involved in tasks requiring the association of multiple 

elements such as item and context (Bachevalier & Nemanic, 2008), this could support the idea 

of the PHC as critical to recollection. Comparable findings to PHC have been noted following 

lesions to the Hf as lesions to this area have been shown to impair memory for complex 

associations like those of item and context (for review see Brown & Aggleton, 2001; Rugg & 

Yonelinas, 2003).   

Human studies examining the Dual-Process model support a double dissociation 

between the PRhC and Hf in that the PRhC appears to be involved selectively in familiarity but 

not recognition, and the Hf in recollection but not familiarity (Bowles et al., 2010). In studies of 

patients with transient hypoxia, which causes significant damage to the Hf while sparing 

structures within the parahippocampal region (i.e., PRhC and PHC), hypoxic patients displayed 

disproportional deficits in memory for associations or context compared to item familiarity 

(Mayes et al., 2002; Giovanello et al., 2003; Turriziani et al., 2004; Holdstock et al., 2005). Using 
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receiver operating characteristic analysis to distinguish familiarity from recollection, Yonelinas 

and colleagues (2002) showed that mildly hypoxic patients exhibited severe deficits in 

recollection but not familiarity. Impaired recollection but preserved familiarity has also been 

reported in patients with selective Hf atrophy caused by meningitis (Aggleton et al., 2005). An 

example of impaired familiarity but spared recollection comes from extensive studies of patient 

N.B. who underwent a rare unilateral MTL lesion that spared the Hf (Bowles et al., 2007; Bowles 

et al., 2010; Köhler & Martin, 2020).  

Taken collectively, these lesion studies converge on the idea that the Hf and PHC 

selectively support recollection (but see Wixted & Squire, 2011; Merkow et al., 2015), while the 

PRhC supports familiarity.  

 

Figure 2. Primate Dual-Process Model. Cognitive account of functional roles of sub-regions 

within the medial temporal lobe. The hippocampus (Hf) and parahippocampal cortex (PHC) are 

proposed as supporting recollection (i.e. recognition of an item on the basis of retrieving 

specific contextual details of the previous learning experience). The perirhinal cortex (PRhC) is 

proposed as supporting familiarity (i.e. item recognition in the absence of specific details about 
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the study episode). Double-headed arrows indicate bidirectional communication, single-headed 

indicate unidirectional communication. Adapted from Opitz (2014).  

1.1.2.2.2.2 Binding of Item in Context  

In more recent years, the idea that the Hf and PRhC are differentially involved in 

familiarity and recollection has been challenged. The primary criticism of the Dual-Process 

model is that it too broadly implies functional differences and that information provided by the 

MTL connectivity hierarchy should instead be applied for greater specificity. Rather than trying 

to explain HDMS structural functions in terms of the purely cognitive dichotomy between 

familiarity and recollection, more recent models separate HDMS structures on the basis of the 

kind of information thought to be handled by each structure, i.e., item-specific and contextual 

information. The ‘Binding of Item in Context’ (BIC) model separates the HDMS on the basis of 

the kind of information processed within the structures (Diana et al., 2007). Additionally, the 

BIC model incorporates the ‘what’ and ‘where’ parallel processing streams, identifying each hub 

within the connectivity hierarchy as a site for unique transformations of the information, 

increasing in refinement as the information is relayed to subsequent structures (Figure 3; 

Manns & Eichenbaum, 2006).  

Support for the BIC model can be found in the NHP literature. Recalling the Bachevalier 

and Nemanic (2008) study, not only did this research identify vital contributions of the PHC to 

context memory, it also pointed to unique contributions of the PRhC and Hf to the HDMS. 

Following PRhC lesions, subjects exhibited deficits in a VPC and object-in-place task. However, 

performance on a spatial location task was spared, supporting the notion that the PRhC 

contributes object or item information. Lesions to the Hf resulted in deficits in an object in 
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place association only, suggesting that the Hf may be critically involved in associating 

information from the PHC and PRhC. The findings of Bachevalier and Nemanic (2008) support 

the idea that the PHC is critical to context memory, the PRhC to object memory, and the Hf, 

serving as a site of convergence for both types of information, is vital when task demands 

require associations between context and object information. 

Restricting evidence to human lesion studies, amnesic patients with damage primarily to 

the Hf displayed a spared ability to differentiate between new and old visual scenes but were 

unable to distinguish between intact old scenes and old scenes in which particular elements 

had been displaced (Ryan et al., 2000; Mayes et al., 2004). This suggests that the deficits 

observed were due to an inability to process the relations of items within a specific context. 

However, item recognition devoid of spatial information remained intact. This supports the idea 

that Hf function is dissociable from that of the surrounding cortices and mirrors findings in 

NHPs. Further supporting the critical role of the PRhC in object memory is the proposal that 

multiple items sharing cortical representations due to a high degree of feature overlap (e.g., 

two faces) are associated and stored within the PRhC. In the clinical literature, a People and 

Doors Test provides a battery to assess a number of memory functions, namely visual and 

verbal recognition and recall (Baddeley et al., 1994; Morris et al., 1995; Manns and Squire 

1999). Using this task, amnesic patients with damage restricted to the Hf displayed spared 

recognition for items within the same category (e.g., choosing the familiar door out of an array 

of doors) but deficits in visual recollection (e.g., drawing an item displayed during a previous 

trial; patient Jon; Vargha-Khadem et al., 1997; patient Y.R.; Mayes et al., 2002). Success during 

visual recognition implies that the spared PRhC stores specific features of an item rather than 
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generalizing into broad categories. Greater support for this comes from comparable amnesic 

patient studies, all with damage restricted to the Hf, demonstrating unimpaired recognition for 

within-domain or intra-item associations (e.g., differentiating between faces) but compromised 

performance on between-domain associations (e.g., object-location and face-voice 

associations; Mayes et al., 2004). 

As discussed in the previous sections, primate lesion data informing how structures 

within the EC contribute uniquely to the HDMS is lacking. Based on the limited findings of 

Buckmaster and colleagues (2004), we can only infer that EC structural function is dissociable 

from that of PRhC and that function of the EC appears to involve complex discriminations and 

associations. This offers little information when describing these structures within the context 

of the BIC model. However, LEC and MEC are often depicted at the apex of the spatial and non-

spatial processing streams, respectively (Manns & Eichenbaum, 2006). Each receives input from 

regions that (a) contain complex representations and that (b) are sufficient for many forms of 

recognition memory. How they might further process these representations before they are 

passed onto the hippocampus, however, remains unclear.  

 Taken together, the BIC model and associated experimental evidence supports the 

notion that the PRhC is vital for retrieval of item feature information, supporting recognition, 

the PHC for context memory, and the Hf in associations of item and context. These findings are 

also in agreement with the Dual-Process model of familiarity (recognition) versus recollection 

(recall). However, the BIC view adds greater specificity about the kind of information that each 

structure contributes to memory (Manns & Eichenbaum, 2006).  
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Figure 3. Primate Binding Item in Context (BIC) Model. This model proposes functions for sub-

regions of the medial temporal lobe on the basis of the information that they store. The BIC 

model suggests that the perirhinal (PRhC, red) and the parahippocampal cortex (PHC, blue) 

support the encoding and retrieval of item-specific and contextual information. Maintained 

within parallel processing streams, representations reach their highest level of independent 

processing (i.e. complexity and number of associations between elements), within the 

entorhinal cortex. Within this region, item information is predominantly processed by the 

lateral subregion (LEC, light purple), while contextual information is processed by the medial 

(MEC, dark purple) sub-region. These streams then converge within the hippocampus (Hf, 

green). The Hf is then thought to store representations of item-context associations. Double-

headed arrows indicate bidirectional connectivity. Grey arrows indicate connectivity enabling 
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cross-talk between structures. Black arrows indicate connectivity between levels of the 

connectivity hierarchy. Adapted from Manns and Eichenbaum (2006).  

1.1.3 Summary 

Based only on data from primates (humans and macaques), the HDMS displays a high 

level of homology between species in regards to both connectivity and function. In terms of 

connectivity, both species display a hierarchical connectivity pattern between structures within 

the HDMS, as well as parallel processing of ‘what’ and ‘where’ streams that is maintained 

throughout the hierarchy until converging within the Hf. In terms of functionality, both the 

human and macaque literatures support the role of the PRhC in encoding item-specific 

information (Taylor et al., 2006), the PHC in context information (Alvarado & Bachevalier, 

2005), and the Hf in forming representations combining the two, forming item-context 

associations (reviewed in Opitz, 2014).  

 Since there is a high degree of homology between species belonging to the same order, 

comparative examination will be expanded to species belonging to the same phylogenetic class, 

Mammalia.  
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1.2 The Rat Hippocampal Declarative Memory System 

Despite considerable variation in ecological niches (dietary specialization, social 

structures, means of locomotion, etc.), the anatomy of the Hf across Mammalia is remarkably 

conserved. For example, of all mammalian species studied to date possess an Ammon’s horn, 

DG, and subiculum (Manns & Eichenbaum, 2006). Considerable neuroanatomical differences 

arise, however, when comparing the organization of neocortical areas. Since neocortical inputs 

to the HDMS are predictive of the kind of information being processed, perhaps the HDMS will 

differ across mammalia in terms of the representation of differing sensory modalities within the 

connectivity hierarchy. For example, the primate EC shows greater connectivity with visual 

processing areas (Insausti et al. 1987; Kerr et al., 2007) than that of the rat (Schroeder et al. 

2010). Garcia and Buffalo (2020) postulate that this difference is likely explained by primates 

primarily exploring environments visually, while rats depend more heavily on olfaction, 

although there may be other explanations (see general discussion). 

While the types of information coming into the mammalian HDMS and their proportions 

may differ between species, the functions of HDMS structures may remain conserved, 

particularly when considering that cortical inputs rarely arrive directly at the Hf, but instead 

arrive indirectly through the parahippocampal region. While in primates the parahippocampal 

region consists of the PRhC and PHC, in rats, the positions of structures differ and this area is 

instead comprised of the PRhC and postrhinal hippocampal cortex (PoRhC) rather than PHC. 
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To aid in the comparison of the HDMS across Mammalia, this section will characterize 

the connectivity between MTL structures, and present what is known about the functional 

differentiation of these structures by means of lesion studies in rats. 

1.2.1 Hierarchy of Connectivity 

The most detailed information on MTL connectivity across Mammalia is available in rat 

and macaque models. In these models, the connectivity hierarchy appears to be conserved as 

uni- and polymodal cortical regions project to structures in the parahippocampal regions and 

converge on the Hf (Figure 4; Suzuki & Amaral, 1994b; Burwell & Amaral, 1998a). Although 

hierarchical pathways are similar, patterns of connectivity differ and rats display connectivity 

that strictly conforms to this hierarchy less than macaques. For example, in macaques more 

than two-thirds of input to the EC originates from the parahippocampal region (Suzuki & 

Amaral, 1994a). By contrast, this proportion is only about one quarter in rats and, instead, a 

large proportion of inputs to the EC come directly from olfactory cortices, bypassing the 

parahippocampal region altogether (Burwell & Amaral, 1998a, b; Insausti et al., 2002). The 

more rigid conformity to processing within the connectivity hierarchy displayed in macaques 

may suggest that information converging onto the hippocampus is more processed than that 

converging onto the rat hippocampus (Manns & Eichenbaum, 2006).  

Based on data from both rats and macaques, parallel processing of ‘what’ and ‘where’ 

streams appears to be conserved across Mammalia on the basis of the type of neocortical 

inputs to the parahippocampal region. For example, the PRhC receives inputs concerning non-

spatial identity information while the PHC/PoRhC receives inputs concerning spatial context 
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(Suzuki & Amaral, 1994a; Burwell & Amaral, 1998a,b). In monkeys, ‘what’ and ‘where’ inputs to 

the parahippocampal area correspond to areas along the ventral and dorsal visual streams, with 

ventral thought to be important for object recognition and dorsal for visually-guided actions 

(Suzuki & Amaral, 1994a). In rats, there is no clear-cut segregation of the visual system into 

dorsal and ventral visual streams. However, PRhC and PoRhC receive disproportionate 

nonspatial and spatial information (Burwell & Amaral, 1998a, b). In rats, PRhC receives inputs 

largely from the polymodal ventral temporal association area (TEV) while PoRhC receives 

prominent spatial inputs from areas like the posterior parietal cortex, approximating the 

ventral/dorsal visual stream function observed in primates. Despite this difference, the 

separation of nonspatial and spatial information appears to be maintained between PRC to LEC 

and PHC/PRoC to MEC (Witter et al., 2000b). 

In summary, the evolution of the HDMS across Mammalia is described as a contrast 

between conserved internal circuitry and diversified neocortical inputs (Manns & Eichenbaum, 

2006). When comparing the MTL memory system from an anatomical and connectivity 

perspective, there appear to be striking similarities from the level of the parahippocampal 

region and onward to the hippocampus. Differences between mammalian species seem to 

largely lie upstream of this processing at the level of the neocortex and the resulting 

connections between neocortical areas and the parahippocampal region. However, how and 

whether these differing neocortical connections result in differing functions within the MTL 

cannot be determined by examining anatomy alone. 
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Figure 4. Rat Hierarchy of Connectivity. The rat connectivity hierarchy is separated into two 

parallel processing streams of ‘what’ and ‘where’ information and information converges within 

the hippocampus (Hf, green) after independent processing occurs within various sub-regions. 

Within the hierarchy, sensory information converges upon higher order association areas of the 

neocortex (yellow). It is then passed on to structures within the parahippocampal region (the 

perirhinal cortex (PRhC, red) or postrhinal cortex (PoRhC, blue), the primate parahippocampal 

cortex homologue). Information is then relayed to regions of the lateral entorhinal cortex (LEC, 

light purple) or medial entorhinal cortex (MEC, dark purple) before both streams converge 

within the Hf. Olfactory and tactile information in rats bypasses parahippocampal regions and 

converges directly upon the LEC. Double-headed arrows indicate bidirectional connectivity. 

Grey arrows indicate connectivity enabling cross-talk between structures. Black arrows indicate 
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connectivity between levels of the connectivity hierarchy. Adapted from Manns and 

Eichenbaum (2006).  

1.2.2 Functional Contributions 

In terms of anatomy and the connectivity hierarchy, the Hf and parahippocampal region 

appear to be highly conserved across the mammals presented. By restricting studies to those 

demonstrating the effects of lesions on proposed MTL homologues, how these structures 

compare to one another on a functional basis is explored. This section will focus on tasks that 

have been adapted for use in multiple species, thus limiting confounds due to differing task 

demands and providing a more robust comparative framework.   

1.2.2.1 Non-Spatial Processing 

1.2.2.1.1 Perirhinal and LEC 

Based on the primate literature, the PRhC is vital to object recognition memory, as 

lesioning this area results in profound deficits during DMS and DNMS tasks (Meunier et al., 

1993; Buckley et al., 1997), positive transfer (Buckley & Gaffan, 1998), oddity tasks (Buckley et 

al., 2001), VPC (Buffalo et al., 1999), tactile PC (Buffalo et al., 1999), and cross modal DNMS 

(tactile-visual; Buffalo et al., 1999; Goulet & Murray, 2001).  

When comparing these results to those in rats, the function of the PRhC appears to be 

highly conserved. Following PRhC lesions, deficits were demonstrated during DMS (Prusky et 

al., 2004), on oddity tasks (Bartko, et al., 2007a,b; Hales et al., 2015), and during the rat analog 

of VPC, spontaneous object recognition (SOR; Ennaceur & Delacour, 1988; Winters & Bussey, 

2005a,b). While PRhC lesions in primates resulted in deficits in tactile discrimination (Buffalo et 
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al., 1999), this was not the case in rats. Interestingly, and perhaps as a result of a proportion of 

rat neocortical inputs bypassing the parahippocampal region, terminating instead within the EC 

(Burwell & Amaral, 1998a,b; Insausti et al., 2002), lesions to the rat PRhC seem to 

disproportionally affect object recognition when performance depends on visual cues (Albasser 

et al., 2011). In contrast, recognition on the basis of somatosensory and olfactory cues appear 

to remain intact (Albasser et al., 2011). When lesions are instead targeted to the LEC, visual 

recognition remains intact, suggesting that memory for visual object information is mediated 

primarily by the PRhC (Kesner et al., 2001). This supports the rat MTL connectivity hierarchy 

model, suggesting that tactile and olfactory inputs may be terminating directly on the EC while 

visual input is being directed through the PRhC.  

Since olfactory input terminates directly onto the LEC, its role in olfactory contributions 

to declarative memory has been studied extensively. Interestingly, multiple studies using 

lesions to the LEC suggest that this structure is not required for olfactory discriminations but 

seems to instead play a role in olfactory learning and associations between multimodal sensory 

information (Stäubli et al., 1984; Otto et al., 1991; Wirth et al., 1998; Ferry et al., 2006). In a 

cross-modal learning task involving odour and digging media pairings, LEC lesioned rats were 

unable to form the required association between olfactory and tactile stimuli (Boisselier et al., 

2014). Additional support for this comes from a recent study in which LEC lesioned rats 

exhibited deficits when the task used required remembering associations between odors and 

contexts (Persson et al., 2022). However, LEC was not needed when remembering odors or 

contexts by themselves. This suggests that the LEC in rats may serve to combine multimodal 
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information with contextual information. This will be discussed in greater depth when 

comparing functional contributions of HDMS structures within the BIC model framework. 

Comparing the primate and rat literatures, functional differences closely mirroring those 

predicted by neuroanatomical studies are evident. In both rats and primates, PRhC is vital to 

object recognition. However, in the rat, visual information seems to conform more strictly to 

processing within the MTL connectivity hierarchy while tactile and olfactory information largely 

terminate and are processed by the LEC further downstream. Literature from rat studies also 

provides evidence of the function of the LEC, which was largely unavailable in primates. 

Although proportions of sensory information may be represented differently within the LEC of 

different mammals, information from rats suggests that it may be critically involved in 

combining multimodal sensory information as well as forming associations between sensory 

information and context.  

1.2.2.2 Spatial Processing 

1.2.2.2.1 Postrhinal and MEC 

Based on the primate literature, the PHC is critically involved in spatial memory, as 

lesioning this area results in deficits during VPC variants (spatial location and object-in-place; 

Bechevalier & Nemanic, 2008), and DNML (Alvarado & Bechevalier, 2005). On the basis of 

anatomy and connectivity, a homologue to this region was identified within the rat brain, the 

PoRhC. Since structure is similar between rats and primates, studying the function of the PoRhC 

in rats may help to elucidate the function of the PHC in primates.  
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A number of studies in rat models confirm that the PoRhC is critically involved in spatial 

processing. Comparable to the modified VPC studies conducted in primates (Bechevalier & 

Nemanic, 2008), Norman and Eacott (2005) used a series of modified SOR tasks to assess 

memory when combining object and context information. This yielded a telling double 

dissociation between PRhC- and PoRhC-lesioned subjects. PRhC-lesioned rats displayed deficits 

when the object was to be remembered in combination with a cue in close proximity (called 

object as context), while sparing performance when the object was to be remembered within 

the overall environment of presentation (called object in context). PoRhC lesioned subjects 

showed spared performance during the object as context condition and displayed deficits 

during the object in context condition. These findings confirm the involvement of the PRhC in 

binding visual features to create an object identity, while also suggesting that the PoRhC is vital 

for discriminating between contexts, showing a functional similarity to primate homologues.  

Although considered a hallmark study in determining the functional role of the PoRhC, 

the findings of Norman and Eacott (2005) should be interpreted carefully as the object in 

context condition does not solely rely on context differentiation and instead requires a) 

differentiating between contexts and b) also remembering which item was presented in which 

context, a function that could also be accomplished by the Hf. Since there are connections 

providing crosstalk between PRhC and PoRhC, it is possible that PRhC has some level of object 

representation and can accomplish the object in context condition described in Norman and 

Eacott (2005). However, this offers little insight into determining how the PoRhC contributes 

unique functions to declarative memory. This also raises the question of whether the PoRhC is 

involved in context recognition, spatial processing, or both. 
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The primate lesion literature offered little insight into the possible contributions of the 

MEC to memory, with the only evidence coming from Buckmaster and colleagues (2004) 

suggesting that the EC in its entirety was required for conditional discriminations between 

stimuli with overlapping elements and the learning of predictive relationships. While rat studies 

are still somewhat limited, an increase in studies over the past decade has contributed 

significantly to our understanding of the function of this structure. While the LEC is important 

for combining multimodal sensory information (non-spatial) as well as forming associations 

between sensory information and context (spatial), the MEC appears to be critically involved in 

spatial memory during a water maze task (Van Cauter et al., 2013; Hales et al., 2018), 

contextual novelty detection (Hunsaker et al., 2013), and fear memory in response to a 

conditioned context or tone (Hales et al., 2018), extending its role beyond that of strictly the 

spatial domain. Findings from Hales and colleagues (2018) show that even when Hf remains 

intact, MEC lesions produce deficits during spatial tasks, suggesting that the MEC contributes 

unique information to the Hf vital to spatial memory.  

The evidence discussed thus far implies that the rat PoRhC/MEC displays comparable 

functions to those of the primate PHC/MEC. However, in rats functions within the 

parahippocampal region between PRhC and PoRhC as well as between MEC and LEC do not 

seem to conform strictly to the ‘what’ and ‘where’ pathways of the primate connectivity 

hierarchy. Instead, it appears that either due to cross talk between regions of the 

parahippocampal cortex and those of the EC or because of differing neocortical inputs 

compared to primates, these regions seem to contain differing proportions of ‘what’ and 

‘where’ information rather than exclusively one or the other.  
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1.2.2.2.2 Hippocampus 

Based on the literature from primate studies discussed earlier, the Hf seems to be 

critically involved in recollection according to the Dual-Process model (Yonelinas, 1994; 

Yonelinas et al., 2002; Juola et al., 2019) and in binding item and context information according 

to the BIC model (Bechevalier & Nemanic, 2008). The following section will explore how the 

evidence in rats supports each of these models. 

1.1.2.2.2.2 Dual-Process Model  

By situating functions of the primate MTDSM within the Dual-Process model, the PRhC is 

critically involved in object recognition (Mishkin, 1978; Meunier et al., 1993; Buckley et al., 

1997; Buffalo et al., 1999), the PHC in tasks requiring the association of multiple elements such 

as item and context (Bachevalier & Nemanic, 2008) and the Hf is selectively involved in 

recollection but not familiarity (Yonelinas, 1994; Mayes et al., 2002; Giovanello et al., 2003; 

Turriziani et al., 2004; Holdstock et al., 2005; Juola, et al., 2019).  

The Dual-Process model is also supported by the rat data. Comparable to primate 

findings, the rat PRhC is vital to object recognition (Ennaceur & Delacour, 1988; Meunier et al., 

1993; Buckley et al., 1997; Buckley & Gaffan, 1998; Buffalo et al., 1999; Buckley et al., 2001; 

Goulet & Murray, 2001; Winters & Bussey, 2005a, b), and the PoRhC to combining item and 

context information (Norman & Eacott, 2005). To examine the role of the rat Hf in recollection, 

Fortin and colleagues (2004) trained rats to associate odours with different digging media. 

Following lesions to the Hf, rats had impaired recollection for associations, but odour familiarity 

remained intact. Interestingly, using a comparable task, Sauvage and colleagues (2008) 

demonstrated that following Hf lesions, recollection was reduced, but familiarity actually 
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increased. These findings provide evidence that recollection and familiarity are qualitatively 

different and that the Hf supports the former but not the latter process.  

In comparing findings between primates and rats, it appears that the Dual-Process 

model can be used to describe functions of three major structures within the MTL; the PRhC in 

object recognition (familiarity), the PHC (PoRhC in rats) in combining item and context 

information (recollection) and the Hf in recollection. While this model does not take into 

account structures of the EC, and therefore provides a rather limited view into the function of 

structures within the HDMS, it does suggest that function may be conserved between primates 

and rats.  

1.1.2.2.2.3 Binding Item in Context  

When exploring the BIC model in relation to structures within the primate HDMS, each 

structure was shown to have unique functions. For example, the PRhC was shown to contribute 

uniquely to object information (Vargha-Khadem et al., 1997; Mayes et al., 2002; Bachevalier & 

Nemanic, 2008), the PHC to context memory (Bachevalier & Nemanic, 2008), and the Hf to 

associating item and context information (Vargha-Khadem et al., 1997; Ryan et al., 2000; Mayes 

et al., 2002; Mayes et al., 2004; Bachevalier & Nemanic, 2008). However, limited data on the 

role of the EC only permitted speculation about its involvement in complex discriminations and 

associations (Buckmaster et al., 2004). 

Dissociating the functions of the rat Hf from that of the PRhC, Winters and colleagues 

(2004), produced the first known demonstration of a double dissociation between these areas. 

By lesioning PRhC or Hf and testing subjects using a radial arm maze and SOR (while carefully 
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controlling for spatial confounds), Winters and colleagues (2004) demonstrated Hf involvement 

in spatial but not object recognition memory, and PRhC involvement in object recognition but 

not spatial memory. While these data do not provide evidence of item and context binding in 

the Hf (only that it is critical to spatial memory), they do support the idea that the PRhC is vital 

for item information and that spatial information may be obtained by the Hf through the 

PoRhC. 

Determining greater specificity of structural contributions within the BIC model by 

relying solely on lesion studies has proven to be controversial as rat Hf lesions produce 

comparable deficits to those observed following PoRhC lesions. For example, lesions to PoRhC 

resulted in deficits in reference memory during radial arm maze tasks (Liu & Bilkey, 2002; 

Ramos, 2013), water maze tasks (Liu & Bilkey, 2002; but see Burwell et al., 2004), and in context 

differentiation during contextual fear conditioning (Bucci et al., 2002). When lesions are 

restricted to the Hf, deficits in performance were reported on a radial arm maze (Winocur, 

1982; Okaichi & Oshima, 1990), water maze (Mumby et al., 1999; Broadbent et al., 2006; Clark 

et al., 2007) and mixed data emerge from tests of contextual fear conditioning (for review see 

Gewirtz et al., 2000; Anagnostaras et al., 2001; Sanders et al., 2003). When examining Hf 

functional contributions at the structural level rather than cellular, PoRhC and Hf are difficult to 

differentiate. Additionally, inconclusive and conflicting evidence could be arising from slightly 

different testing parameters. For example, placement (proximal or distal; Parron et al., 2004) 

and identity of cues (unique or identical; Winocur, 1982; Clark et al., 2007) can lead to different 

conclusions about the contributions of the Hf to declarative memory. This highlights the need 

for standardized testing procedures that careful control a wide range of parameters. 
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To speculate on the role of the rat Hf in the BIC model (Figure 5), it is advantageous to 

explore the functional contributions of other HDMS structures, since the Hf is the site of 

convergence for the PRhC/LEC and PoRhC/MEC streams. By examining the information being 

projected to the Hf, it is possible to infer what information is being represented within it. 

  Beginning with parahippocampal regions, function seems to be largely conserved 

between primates and rats, with a few key exceptions. When comparing PRhC function within 

rat models to those of primates, function appears to be highly conserved, as lesions to the PRhC 

in rats also have profound effects on object recognition (Ennaceur & Delacour, 1988; Prusky et 

al., 2004; Winters & Bussey, 2005a,b; Bartko, et al., 2007a,b; Hales et al., 2015). An interesting 

differentiation is that PRhC lesions in rats disproportionately affect visual recognition while 

leaving tactile and olfactory recognition intact (Albasser et al., 2011), this is not the case in 

primates as PRhC lesions have been shown to create tactile discrimination deficits (Buffalo et 

al., 1999). The PHC in primates, and homologous PoRhC in rats, was shown to be critically 

involved in spatial memory for both species (in primates; Alvarado & Bechevalier, 2005; 

Bechevalier & Nemanic, 2008; in rats, Norman & Eacott, 2005). When restricting data 

presented to that of lesion studies only, it appears that the PHC/PoRHC serves a similar function 

when compared within the BIC model. However, the findings of Norman and Eacott (2005) 

could suggest that the PoRHC may also represent some amount of ‘what’ information.  

 From the perspective of the BIC model, the most profound differences between primate 

and rat structural contributions come largely from studies differentiating function within the 

EC. Recall that the primate literature only went as far as suggesting that the EC in its entirety 

was involved in conditional discriminations between stimuli with overlapping elements and the 
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learning of predictive relationships (Buckmaster et al., 2004). Rat models greatly improved our 

understanding of how LEC and MEC contribute uniquely to declarative memory. Beginning with 

the rat LEC, multiple studies have supported its critical involvement in combining multimodal 

information with contextual information (Stäubli et al., 1984; Otto et al., 1991; Wirth et al., 

1998; Ferry et al., 2006; Wilson et al., 2013; Kuruvilla & Ainge, 2017; Persson et al., 2022). 

Already, this deviates from what was postulated in the primate BIC model, as ‘what’ and 

‘where’ information does not appear to be strictly maintained in parallel processing streams 

and instead seems to differ in the proportion of ‘what’ and ‘where’ information represented 

within the structure. This implies that ‘what’ information is largely handled within the LEC and 

‘where’ within the MEC, thus ‘what’ and ‘where’ information is not exclusive to either EC 

subdivision.  

 This speculation was confirmed in a study by Hunsaker and colleagues (2013) in which 

either the LEC or MEC was selectively lesioned. Lesions to LEC primarily produced deficits in 

novel object detection while MEC lesions primarily produced deficits in novel context detection, 

displaying a functional double dissociation between these portions of the EC. What is perhaps 

most surprising about these findings is that they revealed a graded contribution of the MEC and 

LEC to the opposing processing stream; that is, LEC appeared to play a minor role in context 

recognition, and MEC in recognition of novel objects. This finding suggests that the ‘what’ and 

‘where’ processing streams in the rat MTL system may not be as strictly organized as those in 

the primate MTL, and, instead, rat LEC and MEC functions differ in the proportion of item and 

context information, albeit much less than that represented when the streams converge within 

the Hf. Despite apparent dissociable deficits in item and context recognition memory following 
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LEC and MEC lesions, performance was spared in a condition in which a conjunction of item and 

context was required for novelty recognition. This finding suggests that although one of the two 

streams is compromised, the other still contains enough of a combination of item and context 

information to make the discrimination at levels comparable to shams.  

 Again in contrast to the primate BIC model, the rat MEC was shown to be critically 

involved in not only spatial memory (Van Cauter et al., 2013; Hales et al., 2018) and contextual 

novelty detection (Hunsaker et al., 2013), but also fear memory in response to a conditioned 

context or tone (Hales et al., 2018). This suggests that in addition to critical spatial information, 

the rat MEC may also act to form fear responses between both contextual and auditory stimuli. 

 When comparing the primate HDMS to that of rats using the BIC model, functions seem 

to be largely maintained, though the rat system appears to have more redundancy in 

information processing between parahippocampal areas (PRhC/PoRhC) and areas of the EC 

(LEC/MEC). This could imply that in the rat HDMS, there may be more crosstalk between 

structures or that there may be more redundancy in neocortical input. Another possibility is 

that the testing methods and analysis of results are biased toward relying on visual information 

and fail to acknowledge the multimodal nature of both context and object identification. Rather 

than thinking that PRhC/PoRhC and LEC/MEC have a poorer division of ‘what’ and ‘where’ 

streams, it is possible that each structure is accomplishing recognition using a differing sensory 

modality.  
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Figure 5. Comparison of Binding Item in Context (BIC) Models between Primates (left) and Rats 

(right). The BIC model proposes functions for the medial temporal lobe sub-regions on the basis 

of the uni-modal and poly-modal information that they receive from association cortices 

(yellow). In both species, the perirhinal (PRhC, red) supports the encoding and retrieval of item-

specific information. The primate parahippocampal cortex (PHC, blue), homologous to the 

postrhinal cortex in rats (PoRhC), supports the encoding and retrieval of contextual 

information. Maintained within parallel processing streams, representations reach their highest 

level of independent processing, within the lateral entorhinal cortex (LEC, light purple) and 

medial entorhinal cortex (MEC, dark purple) before terminating within the hippocampus (Hf, 

green). The Hf is thought to generate item-context associations. The primate BIC shows strict 

adherence to ‘what’ and ‘where’ streams while the rats BIC depicts less conformity. Multimodal 

information in primates appears to be processed within the hierarchy while rat olfactory and 
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tactile information bypass parahippocampal areas and project directly to LEC. Tactile 

information is represented using a hand (or paw); olfactory, a nose; auditory, an ear; and 

emotional information using a cartoon face. Object information is represented by rectangles 

and black triangles. Context information is presented using pattern filled rectangles. Increased 

complexity in representation is depicted through altering the arrangement of object and 

contextual elements. Double-headed arrows indicate bidirectional connectivity. Grey arrows 

indicate connectivity enabling cross-talk between structures. Black arrows indicate connectivity 

between levels of the connectivity hierarchy. Adapted from Manns and Eichenbaum (2006).  

1.2.3 Summary 
 

Following 80 million years of independent evolution between rats and primates, the 

HDMS across Mammalia can be characterized as a contrast between subcortical circuitry that 

remains largely conserved and dramatic alterations in neocortical architecture (Manns & 

Eichenbaum, 2006). This high degree of homology between mammalian species opens the 

possibility of conserved homology across a wider portion of the phylogenetic tree. To explore 

this possibility, comparative examination will be expanded to species from different orders in 

the same clade (amniotes), birds. 
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1.3 The Avian Hippocampal Declarative Memory System 

In examining the evolutionary origins of HDMS, I showed that the available data 

demonstrate a dramatic homology in both the architecture of the HDMS and in the functional 

specialization of its components across Mammalia. Now, the neuroanatomical and functional 

homology of the HDMS will be compared with Aves, as a relatively well-researched example of 

a non-mammalian Amniote. Since there are 320 million years of evolution separating 

Mammalia from Aves (Tosches et al., 2018), it is possible that the Hf and other structures of the 

MTL may have evolved to serve different functions or that an entirely different memory system 

from that of the mammalian MTL is present (for review see Gupta et al., 2012; Gupta et al., 

2020).  

There are considerable anatomical differences between avian brains and those of 

primates and rats (Figure 6). For example, the Hf in rats has a tri-laminar structure with an 

interlocking DG and Hp (Ammon’s horn), and is positioned between the cerebral cortex and 

thalamus. The Hf in birds, by contrast, appears to be quite simple and is a largely 

undifferentiated structure situated on the dorsal surface of the brain along the midline. To 

date, there is no general consensus about which subdivisions of the avian declarative memory 

system correspond to its mammalian counterparts. At best, the field seems to be converging on 

the conclusion that the avian Hf contains homologues for at least some of the mammalian MTL. 

In particular, many researchers conclude that the avian V-shaped region (V) and dorsomedial 

region of the Hf (DM) are homologues for the DG and Ammon’s horn, to some extent (Atoji et 

al., 2016). In addition, the dorsolateral region of the Hf (DL; Herold et al., 2019; although 

defined as area parahippocampalis in some atlases; APH; Karten and Hodos; 1967) is often cited 
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as a homologue of the EC (reviewed in Colombo and Broadbent, 2000; Table 1). No literature, 

to the best of my knowledge, identifies possible homologues of the parahippocampal regions 

(PRhC and PHC/PoRhC). 

 

Figure 6. Cross-Species Comparison of Hippocampal Declarative Memory System Structures. A 

phylogenetic tree is depicted (far left) with date of last common ancestor at each node. Middle 

left, anatomical comparison of the location of the hippocampus in each species. Note the 

distinct structures within the mammalian hippocampus compared to the undifferentiated, 

dorsally situated, avian hippocampus. Middle right, anatomical comparison of the location of 

structures associated with the hippocampal declarative memory system. Note the conserved 
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relative locations of structures among species. Far right, comparison of the location of higher 

association areas. Neocortical areas in mammals and associational areas of the avian dorsal 

ventricular ridge are outlined. DL, dorsolateral region; EC, entorhinal cortex, Hf, hippocampal 

formation; PRhC, perirhinal cortex; PHC, parahippocampal cortex; PoRhC, postrhinal cortex. 

Adapted from Allen and Fortin (2013). 

Table 1. Proposed Avian Homologues of Mammalian Hippocampal Declarative Memory System 
(HDMS) Regions.  

 

1 Atoji and colleagues (2016), 2Colombo and Broadbent (2000). 

 

In the following section, I will outline connectivity between proposed homologues 

within the avian memory system. On the basis of this connectivity, I will propose a memory 

circuit that may be comparable to the mammalian MTL hierarchy of connectivity. Then, I will 

focus on what is known about the proposed homologous structures on the basis of function via 

lesion studies.  

1.3.1 Hierarchy of Connectivity 

Study of the HDMS in Aves presents many challenges. First, there are several different 

ways of dividing the avian Hf and surrounding areas and a single nomenclature has yet to be 

agreed upon. In the simplest model, the avian hippocampal memory system was traditionally 

divided into two areas, the Hf (defined as a V-shaped medial area) and area parahippocampalis 
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(APH) a thin, poorly delineated structure overlaying the dorsal portion of the lateral ventricle 

(Karten & Hodos, 1967). Extensive anatomical studies conducted by Atoji and Wild (2006) 

suggested a different method of division, based on what is known about connectivity in the 

avian Hf. Atoji and Wild’s model defined the avian Hf as the pallial area medial to the 

paraventricular sulcus (Figure 7). When comparing the two models, what Atoji and Wild (2006) 

proposed as a homologue to the avian Hf (areas DM, V, and the triangular region positioned 

within V (Tr)) ultimately encompasses Karten and Hodo’s (1967) proposed Hf in addition to the 

medial portion of the APH. While other models have been described (see Székely, 1999), 

connectivity will be described in reference to the Atoji and Wild (2006) model. In addition to 

differing regional divisions, the second challenge facing avian memory system studies is the 

absence of a universally agreed upon nomenclature. For this reason, I will be using 

nomenclature consistent with Atoji and Wild (2006).    

 

Figure 7. Common Divisions of the Avian Hippocampal Declarative Memory System. Left, Karten 

and Hodos (1967) divisions. Right, Atoji and Wild (2006) divisions. APH, area 

parahippocampalis; CDL, dorsolateral corticoid area; DL, dorsolateral region; DM, dorsomedial 

region; Hf, hippocampal formation; Tr, triangular region; V, V-shaped region.  
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 To review, the HDMS shows strong evidence of homology across Mammalia. Briefly, 

within this hierarchy, multimodal information enters into parahippocampal regions from 

association cortices of the neocortex, is passed onto the EC and then terminates within the Hf. 

From a comparison of primate and rat studies, there is support that the hierarchy of HDMS 

connectivity and functional specialization are conserved across the mammalian species studied. 

Differences primarily arise when considering neocortical inputs to the hierarchy of the HDMS 

from differing modalities as well as how strictly information within the hierarchy conforms to 

the ‘what’ and ‘where’ streams. When comparing mammalian connectivity to avian, the 

neocortex may provide a useful starting point in examining avian declarative memory systems. 

The pallium is the dorsal division of the telencephalon that in mammals gives rise to the 

neocortex and other cortical and non-cortical structures (Medina & Abellán, 2009). In Aves, the 

pallium (Figure 8) consists of a medially located Hf, a laterally located piriform cortex (PiC), and 

between the two lies what has long been regarded as the homologue of the mammalian 

neocortex, the hyperpallium (H, or Wulst; Karten et al., 1973), and the dorsal ventricular ridge 

(DVR; Karten, 1969, 1997; Butler et al., 2005; Ahumada‐Galleguillos et al., 2015)).  
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Figure 8. Avian Pallium Divisions. Hippocampal formation (Hf) in green, hyperpallium (H) in gold, 

dorsal ventricular ridge (DVR) in yellow, the nidopallium (N) of the DVR, striped, and the piriform 

cortex (PiC) in brown. Figure adapted from Montiel and Molnár (2013). 

When examining connections likely to be involved in declarative memory systems, areas 

within the nidopallium (N) of the DVR, called the caudoventral nidopallium (NCV) and 

frontolateral nidopallium (NFL), as well as the PiC and H may contribute unique sensory 

information. The NCV, thought to be equivalent to the avian caudomedial nidopallium 

described in Kröner and Güntürkün (1999), is likely the avian equivalent of the auditory 

association cortex in the mammalian temporal lobe (Atoji & Wild, 2005). The NFL appears to be 

a convergence region for the thalamofugal and tectofugal pathways (Husband & Shimizu, 

1999). This is of interest when comparing  avian to mammalian literature because the 

tectofugal pathway was thought to be involved in local stimulus identification, while the 

thalamofugal pathway has often been attributed to visual information used in spatial learning, 

potentially comparable to mammalian ‘what’ and ‘where’ streams (Budzynski et al., 2002; 
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Mayer et al., 2013; but see Bischof and Watanabe, 1997). Since both the thalamofugal and 

tectofugal pathways converge within the association cortex, it is unlikely that these streams are 

separated and processed in parallel throughout the remainder of the avian declarative system. 

However, whether there is a different division and maintenance of parallel information 

processing in the avian brain is unknown.  

Another area likely to contribute unique sensory information is the PiC. This structure is 

critical for avian olfaction (Gagliardo et al., 1997), comparable to its mammalian homologue 

(Bekkers & Suzuki, 2013) and projects directly to Hf (Atoji and Wild, 2006; but see Striedter, 

2016). Finally, the H is a presumptive homologue to the mammalian primary visual and 

somatosensory cortices (Fernández et al., 2020), receiving inputs from the tectofugal pathway 

as well as the piriform cortex (Atoji et al., 2016) 

While the NCV, NFL, PiC, and H all display a large amount of connectivity, only 

connections to proposed areas of interest for the study of avian declarative memory will be 

discussed. Since the DM, Tr, and V are considered to be homologues of the mammalian Hf and 

since details of connectivity within the Hf were not discussed for primate or mammals, 

connections with respect to components within the Hf will not be discussed and the region will 

instead be treated as a whole. Since the literature to date does not make a distinction between 

homologues of lateral and medial entorhinal cortex, the DL will be treated as homologous to 

the entire entorhinal cortex (Figure 9). Additionally, since the border between the DL and the 

dorsolateral corticoid area (CDL) is not defined (Atoji and Wild, 2006), connectivity of each will 

be discussed to see if they differ in a way comparable to that observed between or within 

mammalian parahippocampal or EC regions.  
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Figure 9. Divisions of the Avian Hippocampal Declarative Memory System Depicting Proposed 

Homologues. Hippocampal formation (green) and surrounding cortex (purple/orange). Since 

avian homologues to parahippocampal regions (i.e., perirhinal and postrhinal cortices) and 

entorhinal (i.e., lateral and medial portions) are unknown, this area is depicted as 

undifferentiated. CDL, dorsolateral corticoid area; DL, dorsolateral region; DM, dorsomedial 

region; Tr, triangular region; V, V-shaped region. 

 To describe the connectivity within the avian HDMS, discussion will progress from the 

most lateral to the most medial pallial structures, through areas commonly considered to be 

the backbone of the avian memory system (Behroozi, et al., 2017), the CDL, DL, and Hf. 

Considering that the mammalian HDMS converges onto the Hf, this will also provide a 

framework for comparison between Mammalia and Aves. The CDL shows strong connectivity 

with the Hf (Atoji & Wild, 2005; Herold et al., 2019), making it a likely critical structure in 

memory formation. The main sources of afferents to the CDL include DVR areas (NCV and NFL), 

PiC, and H, implying that this area receives multimodal sensory information including that of 
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‘what/where’ streams, olfaction, and audition. Another structure receiving input from a large 

number of pallial areas is the DL, which receives sensory input from the PiC, and H, which also 

have reciprocal connections with one another (Bingman et al., 1994; Atoji & Wild, 2006). The DL 

in turn sends inputs to structures within the Hf (Atoji & Wild, 2004). Since the boundaries 

between CDL and DL are unknown, connectivity between the two regions is difficult to 

determine. Additionally, whether these structures operate in parallel or in series is unknown. 

The proposed avian memory system connectivity diagram is shown in Figure 10. While this 

connectivity model does not take into account connections terminating on different portions 

within structures, this is meant to serve as a starting point for investigating functional 

differentiation within the avian declarative memory system that may be comparable to those 

observed in the mammalian MTL. 
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Figure 10. Proposed Avian Hierarchy of Connectivity. Within the hierarchy, sensory information 

converges upon higher order association areas (yellow); the caudoventral nidopallium (NCV) 

and frontolateral nidopallium (NFL) of the dorsal ventricular ridge (DVR), hyperpallium (H), and 

piriform cortex (PiC). NCV, NFL, H, and PiC project to the dorsolateral corticoid area (CDL, 

orange). H and PiC also send projections to the dorsolateral portion of the hippocampal 

formation (DL, purple). PiC sends additional projections directly to the hippocampal formation 

(Hf, green). Streams from CDL and DL then converge within the Hf.  Since the border between 

CDL and DL is undetermined and differentiation may instead follow a gradient, connections 

between the two regions are depicted using a clear double headed arrow. Double-headed 

arrows indicate bidirectional connectivity. Black arrows indicate connectivity between levels of 

the connectivity hierarchy. Dashed arrow indicates a weak connection between the H and DM 

as noted in Atoji and Wild (2006). Adapted from Allen and Fortin (2013). 

When considering connectivity, there is a considerable amount of homology between 

the avian and mammalian HDMS. In both orders, this system has the following features: 1) 

information from various sensory modalities converges onto association areas, 2) from these 

association areas, all outputs are processed through a series of intermediary structures (with 

olfaction having the least amount of processing, at least in pigeons (Atoji & Wild, 2006) and rats 

(Mouly & Di Scala, 2006)), and 3) information processed within these intermediary structures 

ultimately converges on the Hf.  
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1.3.2 Functional Contributions 

Popular nomenclature once again changes when discussing functions of HDMS 

structures and tends to incorporate regions proposed by Karten and Hodos (1967), with those 

of Atoji and Wild (2006). In this model (Figure 11), the Hf covers the area medial to the 

paraventricular sulcus, encompassing Atoji and Wild’s (2006) DM, Tr, and V. APH extends 

laterally to the paraventricular sulcus, encompassing Atoji and Wild’s (2006) DL. Since the 

boundaries between CDL and APH are poorly understood, exact coordinates vary according to 

the atlas and species used but it is, very generally, lateral to the APH (Atoji and Wild, 2005).  

 

Figure 11. Avian Structural Divisions Commonly Used in Lesion Studies. APH, area 

parahippocampalis; CDL, dorsolateral corticoid area; Hf, hippocampal formation. 

Consistent with the primate and mammal discussions, evidence of functional roles of 

areas of interest will be restricted to experiments conducted via lesion study. However, within 

the avian lesion literature, additional problems arise as Hf and APH (as defined in Figure 11) are 

often lesioned together, making it difficult to interpret if and how these structures contribute 

uniquely to memory. This problem also arises with CDL because lesions involving this structure 
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are typically included with, or it is damaged in the process of, lesioning structures deeper within 

the lateral telencephalic wall (Atoji & Wild, 2005). In the only existing study where CDL function 

was examined, the only conclusion drawn was that lesions to this area did not impair 

performance during delayed alternation (Gagliardo et al., 1996). 

Before beginning a discussion of possible functional contributions to declarative 

memory, there is another problem in the avian literature that hinders a comparative analysis 

between amniotes. Since a large proportion of avian research to date has been inspired by 

behaviours exhibited by a relatively small number of species, such as homing and caching, few 

testing methods and results are generalizable across the class. Moreover, these species-specific 

tasks do not provide the framework needed for comparative analysis between amniotes. When 

limiting avian functional discussion to tasks also used in assessing mammalian memory, an 

already limited body of literature becomes even more scant. For the purpose of comparison, 

discussion of avian HDMS functional contributions within the scope of this dissertation will be 

limited to tasks also used in analysis of mammalian models.  

1.3.2.1 Spatial Processing 

In the search for avian homologues of structures within the mammalian HDMS, there is, 

by a wide margin, the most information concerning the avian Hf. To date, there are several lines 

of evidence supporting homology between the rat and avian Hf (see Atoji and Wild, 2006, for 

review). For example, similarities between the avian and mammalian Hf are seen during 

development, as both appear to develop from the same region of the embryonic forebrain 

(Gupta et al., 2012; Gupta et al., 2020); hippocampal afferent and efferent projection patterns 

are similar (Casini et al., 1986; Székely, 1999); regional neurotransmitters are similar (Krebs et 
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al., 1991; Herold et al., 2014); and function is widely regarded as homologous. As previously 

stated, results from lesion studies should be treated with caution as it cannot be determined if 

deficits observed are a result of lesioning Hf or APH.  

Similar to the function of the mammalian Hf, the avian Hf and APH are also thought to 

be critically involved in spatial memory. By lesioning the avian Hf and APH, multiple studies 

have reported consequent deficits in tasks involving the processing of spatial information (see 

Macphail, 2002, for review). Such tasks include: spatial discrimination (Hampton & 

Shettleworth, 1996a; Watanabe, 1999; Broadbent & Colombo, 2000; Watanabe, 2001), spatial 

DMS (Good & Macphail, 1994); spatial alternation in a T-maze (Reilly & Good, 1987; Hampton & 

Shettleworth, 1996b); analogues of the Morris water maze (Fremouw et al., 1997; Watanabe & 

Bischof, 2004); and analogues of the radial maze (Colombo et al., 2001).  

1.3.2.2 Non-Spatial Processing 

When it comes to non-spatial processing within the avian HDMS, very little is known 

and, yet again, the only source of data to draw conclusions from are from Hf/APH lesion 

studies. If a task shows no disruption following Hf/APH lesion, the cognitive demands are likely 

independent of the structure, or at the very least, the task can be accomplished using an 

alternate memory system. By carefully controlling for spatial confounds, Hf/APH lesions in birds 

have been shown to spare performance on visual discrimination and reversal learning 

(reviewed in Broadbent & Colombo, 2000; Colombo et al., 2001), visual DMS (Good & Macphail, 

1994; Colombo et al., 1997a), and concurrent discrimination tasks (Colombo, et al., 1997b). 

These findings do not point to which structure in the avian HDMS may be critical for these 
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functions. At best, they suggest that the combination of Hf and APH does not appear to be 

critically involved in non-spatial processing.  

1.3.2.3 Functional Models 

1.3.2.3.1 Dual-Process Model 

Following the review of the mammalian literature, it is clear that the mammalian Hf is 

not exclusively involved in spatial memory and is also involved in combining multiple features 

of an episode to form a multifaceted, even non-spatial, representation critical to recollection. 

For example, Fortin and colleagues (2004) showed that Hf lesions resulted in impaired 

recollection for associations of odour paired with digging media but spared odour familiarity.  

Thus far, the discussion of avian literature almost exclusively supports the idea that the 

avian Hf is involved in spatial memory, but its role in recollection when associations are 

between non-spatial elements remains largely unexplored. Coppola and colleagues (2014) 

addressed this by testing pigeons on a discrimination task in which both the quality and 

quantity of a food source was to be associated with a certain colour of food cup. This 

experiment revealed no difference in performance between sham and Hf lesioned pigeons, 

leading the authors to conclude that the avian Hf, unlike its mammalian counterpart, is not 

involved in integrating non-spatial elements into a unified memory (non-spatial recollection). 

These findings are consistent with a previous study from the same lab in which lesions to the Hf 

spared performance on a paired associate task (Bingman et al., 1998). However, results from 

these studies should be treated with caution. Unlike the findings of Fortin and colleagues 

(2004), which incorporated multimodal elements, the testing procedures outlined in Bingman 

and colleagues (1998) and Coppola and colleagues (2014) could be accomplished using only 
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visual information and could therefore, assuming homology with mammalian models, be 

mediated solely by parahippocampal structures (Bunsey & Eichenbaum, 1993).   

1.3.2.3.2 Binding of Item in Context 

Since it is unknown if the avian Hf serves as an integration hub for item and context 

information, evaluating the avian HDMS in terms of the BIC model cannot be accomplished 

using the available data.  

1.3.3 Summary 

When comparing the HDMS connectivity across Mammalia and Aves, there are some 

clear similarities. For example, animals within both classes seem to display a hierarchical 

structure in which information from various sensory modalities converges within association 

areas, is then projected to intermediary structures, and ultimately converges within the Hf. 

How structure translates to function within the avian HDMS is much less clear, with the only 

consensus being that 1) the avian Hf is critically involved in spatial memory, and 2) that non-

spatial memory relies on structures outside of the Hf. While both of these point to some level 

of homology between Mammalia and Aves, the data is not substantial enough to provide 

convincing support for conserved function. 

1.4 Current Experiments 

Throughout this chapter, the connectivity and function of the HDMS have been 

examined through comparison between primates and rats, as our best understood models from 

Mammalia, and from Aves, as our most widely-researched non-mammal Amniote. Generally, 

the literature supports the idea that both connectivity and function in the HDMS is largely 
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conserved across Mammalia, suggesting that major species differences in declarative memory 

abilities likely arise as the result of changes in cortical input. There is also evidence of conserved 

connectivity patterns in Aves, although the data are limited relative to Mammalia, and as a 

result functional contributions remain largely undetermined in many regards.  

Two of the largest obstacles hindering comparisons of the HDMS between Aves and 

Mammalia are 1) a lack of standardized testing procedures for use across Aves, analogous to 

procedures used in mammals, and 2) a lack of lesion specificity to establish functional 

contributions of proposed structural homologues to performance on declarative memory tasks. 

In regards to the first issue, Chapter 2 of my dissertation aimed to establish testing procedures 

for studying avian memory within a conventional laboratory setting. Closely mimicking testing 

conditions under which our knowledge of the rat HDMS has been collected allowed for a more 

direct comparison of performance between aves and rats.  

 Using the testing procedures established in Chapter 2, the functional contributions of 

portions of the HDMS were tested following selective lesions across either the mediolateral axis 

(Chapter 3) or the rostrocaudal axis (Chapter 4) in an attempt to characterize the functional 

heterogeneity of the HDMS along these axes.  Finally, in Chapter 5 the HDMS models presented 

here are updated to incorporate the knowledge obtained through these lesions studies and the 

potential homology between Aves and Mammalia are reassessed.  
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Chapter 2: Reaction to Novelty as a Behavioral Assay of Recognition Memory in 

Homing Pigeons and Japanese Quail   
 

2.1 Abstract   
 

Spontaneous novelty preference is apparent in a wide array of animals, including mam-

mals, birds, reptiles, and fish. This provides a powerful behavioral assay to assess whether an 

animal can recognize a diverse array of stimuli in a common paradigm.  Surprisingly, no re-

search has been conducted in birds using novelty approach under conditions comparable to the 

spontaneous object recognition (SOR) protocols that have become standard across other ani-

mals. To correct this, the current study adapts a number of SOR protocols commonly used in 

mammals to characterize novelty approach in silver king pigeons and Japanese quail.  We show 

that, in general, both quail and pigeons readily approach novel objects or locations when tested 

using SOR protocols, although pigeons show a neophilic response under some conditions in 

which quail do not. Neither quail nor pigeons readily approach objects in novel contexts or 

novel locations. These data show that SOR can be successfully adapted to birds, allowing for 

more direct comparison between mammals and birds in tasks of shared ecological relevance. 

 
 
 
 
 
 
 
 
 
 
Chapter taken from: Damphousse, C. C., Miller, N., & Marrone, D. F. (2022a). Reaction to nov-
elty as a behavioral assay of recognition memory in homing pigeons and Japanese quail. Learn-
ing & Behavior, 50(1), 167-177.  
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2.2 General Introduction 

 
The novelty detection has broad implications for survival. For example, the investigation 

of novel places and objects within an environment can create opportunities to gather infor-

mation (Hughes, 1997). Consistent with this idea, many animals, including mammals, birds, rep-

tiles, and fish, will spontaneously and preferentially spend more time dwelling near and investi-

gating novel objects (Hughes, 1997; Blaser & Heyser, 2015). While investigation of novelty can 

be beneficial, avoidance of novelty may be favored by selection in predator-rich environments 

and is thought to drive species specific characteristics such as niche breadth, diet, and home 

range size (Greggor et al., 2016). Because there are large selective pressures driving the detec-

tion of novelty, capitalizing on this ability offers a robust behavioral assay to assess the extent 

to which different animals will spontaneously recognize an object as novel when either the ob-

ject’s physical characteristics or its relationship to its surroundings is altered.  

 Here we utilize a series of four tests commonly used to assess novelty detection: Spon-

taneous Object Recognition (SOR; e.g., Ennaceur & Delacour, 1988; Bevins & Besheer, 2006), 

SOR with Systematic Variation (SOR-SV; e.g., Burke et al., 2011), Conjunctive Object Recognition 

(COR; e.g., Eacott & Norman, 2004), and Y-maze Discrimination (YMD, Lalonde, 2002). The SOR 

and SOR-SV protocols manipulate the physical characteristic of an object (e.g., size, shape, con-

figuration) while COR manipulates aspects of the object relative to its environment (e.g., loca-

tion, context in which an object appeared). While SOR, SOR-SV, and COR rely on a subject’s abil‐

ity to remember characteristics of an object and detect novel changes within them, YMD relies 

on the ability to remember familiar spatial locations and demonstrate a reaction when a novel 

location is made available. For each of these tests, reaction to novelty is commonly described in 
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one of two ways: a preference to explore the detected novelty (neophilia), or avoidance of nov-

elty (neophobia). In both types of exploration, a deviation from random proximity to an object 

indicates that change is detected and the subject can differentiate between the novel and fa-

miliar stimuli (Bevins & Besheer, 2006).  

Although these studies have been conducted over multiple taxa, comparison is difficult 

as methods and experimental design tend to vary within the literature. For this reason, the cur-

rent study adapts protocols that have become the de facto standard for testing in mammals to 

characterize novelty approach in two species of birds – pigeons (Columba livia) and Japanese 

quail (Coturnix japonica). In many ways, birds are the ideal candidates for broadening standard-

ized novelty detection paradigms to non-mammalian species. Birds (and pigeons in particular) 

have inspired an immense body of literature studying their perception of objects (reviewed in 

Soto and Wasserman, 2014). However, no research to date on object recognition in birds has 

explicitly tried to match testing conditions used within rat studies, despite the potential for 

these data to provide a direct comparison across orders using a common task. Generating such 

data facilitates bridging the procedural gaps between the considerable literatures regarding rat 

object memory and avian object perception. 
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2.3 Experiment 1: Spontaneous Object Recognition  
 

2.3.1 Introduction 
 

To begin assessing avian novelty detection in a way comparable to existing mammalian 

literature, we began with the most basic of the tests selected: SOR. The most widely imple-

mented variation of SOR utilizes a sample and choice phase. During the sample phase, the sub-

ject encounters two identical objects within an arena. The subject is then removed and placed 

in a holding cage before returning to the enclosure for the choice phase, in which the subject 

encounters a familiar object (i.e., an object that is identical to those used during the sample 

phase) and a visually distinct novel object. If the subject discriminates between the novel and 

familiar objects, then a behavioral response (typically in the form of novelty approach) is ob-

served. 

The simplicity of SOR’s experimental design is one of the many reasons this paradigm 

has become one of the dominant means to assess a wide range of cognitive functions (Blaser & 

Heyser, 2015).  Because SOR tests are predominantly one-trial memory tests that do not require 

learning, they can be rapidly assessed. Moreover, SOR is well suited for a number of manipula-

tions to evaluate neural function, as this paradigm provides a single unambiguous window 

within which memory function can be facilitated or impaired (Ennaceur, 2010).   

Testing SOR in a variety of mammals, including lab reared rats (e.g., Ennaceur & Dela-

cour, 1988), mice (e.g., Dodart et al., 1997), and domesticated pigs (e.g., Moustgaard et al., 

2002), reveals an ability for these subjects to discriminate between objects, commonly showing 
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a tendency to explore novelty. Testing of avian species explicitly matching the rat protocol out-

lined by Ennaceur and Delacour (1988), has yet to be conducted. Based on previous alternative 

tests in birds demonstrating avian novelty detection (Mettke-Hofmann et al., 2013; Saint-Dizier 

et al., 2008; Sewards & Sewards, 2002) and partially occluded object recognition in chicks 

(Regolin & Vallortigara, 1995) we predicted that quail and pigeons will react differently to novel 

and familiar objects during SOR testing. If these species respond to novelty in a way comparable 

to lab-reared mammals, then we expected to see a neophilic response. 

2.3.2 Methods 
 

2.3.2.1 Subjects  
 

22 adult Japanese quail (Spring Creek Quail Farms, Saint Anns, ON) and 26 Silver King pi-

geons (Cober Farms, Wellesley, ON) were used in this experiment. All birds were group housed 

on a 12:12 light cycle with ad lib access to food and water. Prior to behavioral testing, all ani-

mals were handled 15 minutes per day for at least 7 days. All procedures were approved by the 

Animal Care Committee of Wilfrid Laurier University and conducted in accordance with Cana-

dian Council on Animal Care regulations. 

2.3.2.2 Materials  
 

Testing occurred in a 90 x 90 x 45 cm (l x w x h) open field arena constructed from white 

corrugated plastic sheeting. The interior of one wall was covered in black Bristol board to serve 

as an orienting cue. The arena floor was covered in wood shavings which were redistributed be-

tween trials to control for scent trails.  
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Objects were selected using the criteria previously outlined in Winters and Reid (2010) 

and were an assortment of junk objects (e.g., candle sticks, dog toys) constructed from washa-

ble materials including plastic, glass, and aluminum. Careful consideration was taken when se-

lecting objects to ensure all were devoid of biologically relevant features such as eyes and 

mouths, and likenesses to food or nesting materials. The objects ranged from 10 to 20 cm in 

height and varied in visual and tactile characteristics. Once an object was selected for use, three 

copies were obtained to be used across testing sessions so that the same object was never used 

twice for the same bird. All objects were affixed to the floor of the testing arena using strips of 

hook and loop tape, preventing object movement during testing. Objects were wiped with 70% 

ethanol before each phase of testing. All sessions were recorded using an overhead webcam. 

2.3.2.3 Testing Procedures 

 
The testing protocol was adapted from testing in rats as described previously (Marrone 

et al., 2011). Briefly, birds were transported to the testing room in individual cages on a rack 

containing all subjects. Subjects remained undisturbed on rack for 1 hour prior to testing. Three 

habituation sessions occurred over three consecutive days during which birds were placed indi-

vidually into the arena to explore freely for 10 minutes. The experimental protocol (Figure 12a) 

consisted of a sample phase followed by a choice phase. During sample, birds were placed in 

the open field containing two identical objects. After 5 minutes, the bird was removed and 

placed into a transport cage for 1 minute.  During this time, stimuli in the open field were 

changed to contain an object identical to those used during sample and a novel object. The sub-

ject was then returned to the open field for 5 minutes and exploration was recorded according 
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to the criteria provided below. The side of the arena in which the novel object was placed was 

counterbalanced between subjects and objects used were randomized.  

2.3.2.4 Behavioural Scoring and Analysis  

 
 Exploration was defined as the bird spending time within 30 cm of an object while not 

preening or pecking at the surrounding walls. The time spent exploring the novel (N) and famil-

iar (F) objects for all birds was converted into a discrimination ratio (DR) as follows: DR = (N - F) 

/ (N + F) (Bevins & Besheer, 2006). The DR scores range from -1 (which indicates that the bird 

explored the familiar object exclusively) to 1 (all exploration time was spent around the novel 

object). Finally, a DR of 0 would indicate an equal amount of time around both objects (con-

sistent with random chance). 

 The DRs were analyzed using a one-way analysis of variance (ANOVA) across species, as 

well as a one-sample t-test within each species comparing performance to zero (chance investi-

gation). 

2.3.3 Results and Discussion 
 

When presented with objects to discriminate between (Figure 12b) both quail (t21 = 

6.08; p < 0.001) and pigeons (t25 = 1.99; p = 0.03) spent significantly more time interacting with 

the novel object, and no significant difference was seen in the DRs generated by the two 

species (F1,46 = 3.20; p = 0.08). These results suggests that quail and pigeons spontaneously 

discriminate between junk objects in an SOR paradigm, and react by spending a larger 

proportion of time in exploration actively investigating the novel object, demonstrating a 

neophilic response similar to that described in mammalian studies (Ennaceur & Delacour, 1988; 

Dodart et al., 1997; Moustgaard et al., 2002).  
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Figure 12. Spontaneous Object Recognition (SOR) in Pigeons and Quail. A schematic (a) demon-

strates the placement of objects and timing of trials in SOR.  Following 3 days of habituation, 

birds received their first sample trial (left) in an open-field containing 2 identical novel object 

(circles) for 5 minutes. After a delay of 1 min, birds received a second sample trial (right) in 

which an object that is identical to the two previously seen is presented alongside a distinct 

novel object (square). Calculation of a discrimination ratio (b) shows that both quail (white) and 

pigeons (grey) spend significantly more time investigating the novel object, since the Discrimi-

nation Ratio (DR) is greater than 0 (bars show mean ± SEM; * = p < 0.05 significant difference 

from random chance). 
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It is important here to stress what can and cannot be concluded from these results.  

When animals spend more time exploring an object, this can give an indication of what quail 

and pigeons spontaneously discriminate.  However, when they do not differentially explore an 

object pair, this does not necessarily indicate that an individual or species cannot perceive or 

discriminate the objects. This is because the SOR task does not permit the dissociation of 

memory processes, perception, motivation, or other cognitive factors that go into performance 

on this task. Rewarded training would likely be required to attempt such dissociation. However, 

this task permits the application of novelty detection to a paradigm that is controlled, 

ecologically valid, and easily applied in a consistent manner across the animal kingdom. This last 

feature is particularly relevant considering several studies of novelty reactivity in wild-caught 

birds (e.g., Mettke-Hofmann, et al., 2002; Stowe et al., 2006 a,b; Nilsson et al., 2010; Martin & 

Sherry, 2019) have generally reported strong neophobia, and many either state or imply that 

neophobia is endemic to Aves. However, avian studies of novelty reaction have typically 

involved placing a novel object into the bird’s home cage or another location exceedingly 

familiar to the subject, in which no novel objects had a history of appearing. Under these same 

testing conditions, both wild (Cowan, 1976) and domesticated (Misslin & Ropartz, 1981) rats 

are also neophobic, despite their robust neophilic response within a relatively novel testing 

environment (Ennaceur & Delacour, 1988). This suggests that the extent to which the response 

to novelty is neophobic or neophilic is the result of the testing protocol, rather than the species 

studied.   

In many respects, the observations from Experiment 1 provide baseline data for further 

comparison. Objects presented in Experiment 1 differed across many characteristics, including 
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size, shape, texture, and scent, offering multiple dimensions that could provided the basis for 

novelty discrimination. Now that it has been established that novelty can be detected under 

these conditions and elicits approach of the novel object in quail and pigeons, this positive 

control can be used to make further comparisons. In Experiment 2, we extend our observations 

by systematically varying stimuli across only the visual dimension.   

2.4 Experiment 2: Spontaneous Object Recognition with Systematic Variation 
 

2.4.1 Introduction 
 

Given that both species discriminate novel from familiar objects in simple SOR, next we 

assessed whether birds are sensitive to the degree of feature overlap in reliably detecting 

novelty. Although the discrimination in individual subjects is digital, the probability a subject 

responding changes systematically with feature overlap, and as a result a graded DR is 

generated across levels of similarity. This graded response across the population can be used to 

assess manipulations that improve or degrade performance. In an effort to generate 

comparable graded responses in quail and pigeons, we created objects for the sample and 

choice phases out of LEGO® building blocks (Aggleton et al., 2010; Burke et al., 2011). This had 

the advantage of allowing us to assemble a number of identical objects, as well as affording the 

ability to have a series of objects all made of the same complement of building blocks, but with 

a set number of these blocks rearranged to create the novel object. To assess the degree of 

rearrangement needed for objects to be detected as novel, we implemented conditions in 

which 25%, 50%, and 100% of the blocks making up the structure were rearranged (Figure 13a). 

If the subjects could discriminate between two objects based on the arrangement of building 
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blocks, then we expected a larger proportion of time to be spent investigating the novel 

arrangement, comparable to findings in Experiment 1. We anticipated that the greater the 

percentage of re-arrangement of the building blocks, the more likely subjects would be to 

differentiate between them. 

2.4.2 Methods 
 

2.4.2.1 Subjects  

 
23 adult Japanese quail and 15 Silver King pigeons were used in this experiment. 

Subjects were purchased from the same suppliers and were housed in the same conditions as 

those described in Experiment 1.  

2.4.2.2 Materials  

 
Testing took place in the same arena as described in Experiment 1. LEGO® objects were 

constructed so that each percent change condition (25%, 50%, 100%) had three identical 

sample objects and one novel object. The novel object changed only in the configuration of the 

top portion of pieces by a given percentage, the rest of the pieces remained identical in 

placement to those in the sample object.  

2.4.2.3 Testing Procedure  
 

Testing was conducted as described in Experiment 1 but with three conditions: a 25% 

change group in which 25% of the blocks in the LEGO® object were re-positioned, as well as a 

50% change group, and a 100% change group (Figure 13a). Testing consisted of a sample phase 

with two identical LEGO® objects followed by a choice phase in which one LEGO® object was 

identical to those encountered during sample and the other was manipulated based on the 
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change condition. The order of these conditions was counterbalanced across subjects, and each 

test was separated by at least 24 hours. 

2.4.2.4 Behavioural Scoring and Analysis 

 

Scoring was identical to that outlined in Experiment 1. A two-way mixed ANOVA was 

conducted comparing similarity (i.e., 25%, 50%, 100%) as a repeated factor, as well as species. 

In addition, a one sample t-test was conducted for each species at each similarity level relative 

to a DR of zero (chance exploration).   

2.4.3 Results and Discussion 
 

Discrimination performance was affected by the degree of similarity between objects 

(main effect of similarity: F2,72 = 7.77; p < 0.001, Fig. 2b). The difference between species in this 

regard was not significant (F1,36 = 1.28; p = 0.27). Single sample t-tests showed that while both 

quail (t22 = 5.02; p < 0.001) and pigeons (t14 = 9.11; p < 0.001) were able to make this 

discrimination at the easiest level, in which 100% of the blocks are rearranged, quail did not 

show a significant preference for the novel object in the 50% condition (t22 = 0.63; p = 0.53), 

while pigeons did (t14 = 1.99; p = 0.03). In the 25% condition, both quail (t22 = 0.81; p = 0.43) and 

pigeons (t14 = 0.509; p = 0.62) failed to significantly prefer the novel stimulus. 

 These results suggest that the reactivity of quail and pigeons to a novel object declines 

as the objects become more physically similar. As fewer pieces were rearranged, both species 

investigated the novel object less, suggesting increased difficulty in detecting change or 

decreased motivation to explore novelty in these conditions. This trend is apparent in Figure 
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13b, however, performance of quail in the 50% and 25% condition were not indicative of 

novelty detection.  

 

Figure 13. Spontaneous Object Recognition with Systematic Variation. Images (a) depict one of 

the arrangements of LEGO objects making up the sample object (left) and how the blocks were 

altered to create new objects to be differentiated by rearranging 100%, 50%, or 25% of the 

component blocks.  Testing using the same paradigm described in Figure 12 and calculating a 

discrimination ratio (DR) shows that (b) both quail (white) and pigeons (grey) differentiate 

between objects when 100% of the component blocks are rearranged, since the DR is greater 

than 0.  Pigeons, but not quail, differentiate between objects with 50% of the component 

blocks rearranged from the original, while birds from neither species spend significantly more 
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time investigating an object which has 25% of the component blocks rearranged relative to the 

original (bars show mean ± SEM; * = p < 0.05 significant difference from random chance). 

Previous instrumental conditioning data in both species are consistent with the 

observed relationship between similarity and object discrimination difficulty. In quail, trials to 

reach criterion was lowest for a color discrimination (red vs green), moderately higher for a 

pattern discrimination (horizontal vs vertical lines), and highest for a form discrimination 

(triangle vs circle).  Moreover, as the complexity of the objects increased, quail performance 

during pattern or form discriminations became worse, requiring more than 1300 trials to reach 

a criterion of 15 consecutive correct responses in a form discrimination task (Fidura, 1969; 

Fidura & Grey, 1966). Although pigeons learn these discriminations somewhat faster, they show 

a comparable trend (Towe, 1954; Williams, 1972), requiring approximately 1000 trials to reach 

a similar criterion in a form discrimination task. Thus, it is perhaps not surprising that a 

rearrangement of LEGO® objects, which keeps color consistent while altering form and pattern, 

creates a stimulus pair that neither bird spontaneously discriminates with limited experience 

under the most difficult condition. In fact, the observation that a pigeon can discriminate a 50% 

change in block configuration speaks to the speed with which data can be generated using the 

SOR paradigm. A single trial under conditions that more closely resemble foraging behaviors in 

the wild allows birds to demonstrate a discrimination that would require hundreds of 

instrumental conditioning trials to establish.  

 It is also notable that the current data mimic the small differences observed between 

quail and pigeons in instrumental tasks, with pigeons showing a significant preference for the 

novel configuration in the 50% when quail did not. Differences in performance between quail 
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and pigeons were small and statistical evidence was mixed.  Thus, until a wider array of species 

can be tested, results must be interpreted cautiously.  

 Collectively, Experiment 1 and Experiment 2 suggest that both quail and pigeons (a) 

discriminate between novel and familiar objects, even when novelty is based on the 

arrangement of components of the same shape and color, (b) generally exhibit neophilia when 

novelty is detected, and (c) are sensitive to the amount of feature overlap when making 

discriminations. To further extend our understanding of novelty detection in quail and pigeons, 

in Experiment 3, we were interested in determining if information about the object can be 

bound to information about location and context. 

2.5 Experiment 3: Conjunctive Object Recognition 
 

2.5.1 Introduction 
 

In a naturalistic setting, the context in which an object is encountered, including its 

physical location, and its relationships to other objects, is important for object recognition (re-

viewed by Ennaceur, 2010). To test whether subjects bind these characteristics to form a repre-

sentation of an object and detect change, we implemented a COR task similar to that described 

in Eacott and Norman (2004). If the subjects behaved in a way consistent with recognition of 

important contextual cues in combination with object identity, then we expected them to 

spend a greater portion of time investigating a familiar object if that object is encountered in a 

new location or context. For all conditions of COR, Figure 14 denotes the novel object with an 

N, this is the object expected to elicit a neophilic response. 
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2.5.2 Methods 
 

2.5.2.1 Subjects  

 
22 Japanese quail and 26 Silver King pigeons were used in this experiment. Subjects 

used were the same sample as those used in Experiment 1. Prior experience on Experiment 1 

was not considered to affect performance on Experiment 3 as they were separated by several 

weeks, a different set of objects was used, and spontaneous novelty detection does not require 

rule learning (Blaser & Heyser, 2015).  

2.5.2.2 Materials  
 

This experiment consisted of two arenas, both identical in dimensions to those 

described in Experiment 1, in two different rooms. These are referred to as Context A and 

Context B. While one arena was identical to Experiment 1, the other had three dark grey walls 

and one was covered in green Bristol board. Testing rooms were located across the hallway 

from one another, and each contained distinct visual cues on the walls. Objects used were 

selected based on the same parameters outlined in Experiment 1.  

2.5.2.3 Testing Procedure 

 
Subjects were habituated to both contexts for 10 minutes a day for three consecutive 

days. To assess the extent to which approach could be stimulated by conjunctive object 

recognition (COR), subjects were exposed to novel conjunctions of objects, locations, and 

contexts, through a series of three conditions (Figure 14) adapted from Eacott and Norman 

(2004).   
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 In the Object/Location condition, subjects were placed in the open field containing two 

distinct objects for sample training. After 5 minutes, the bird was removed and placed in a 

transport cage for 1 minute. During this time, one of the stimuli in the open field was 

exchanged for an object identical to the other sample object, so that now there were two 

identical objects in the open field. There was now, therefore, an object in the arena that was 

not novel in itself, and occupied a location in which the bird had previously seen an object, but 

the conjunction of object and location was novel. The bird was then returned to the open field 

for 5 minutes and their exploration was recorded.  

 In the Object/Context condition, birds were placed in the open field containing two 

identical objects for sample training, this will be referred to as Context A. After 5 minutes, the 

bird was removed and placed in their transport cage for 1 minute. During this time, the animal 

was transported to a second room, Context B, with distinct visual cues on the walls and a 

second open field of the same dimensions as Context A, containing two identical objects that 

are distinct from those seen in Context A. After 5 minutes in Context B, the bird was removed 

and placed in a transport cage for 1 minute, before being returned to Context A, which now 

contained one object identical to the objects encountered in Context A and one object 

identical to those encountered in Context B. Thus, neither object nor context are novel on 

their own, but one object is novel in this context. Note here that if the bird responds only to 

relative novelty, they will spend a lesser proportion of time around the most recently seen 

item, rather than the item that was not encountered in this context, indicating that the subject 

was not binding object and context information. 
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 Finally, in the Object/Context/Location condition, birds were exposed to two distinct 

objects in the open field of Context A. After 5 minutes, the bird was removed and placed in a 

transport cage for 1 minute. During this time, the animal was transported to a second room 

(Context B) with distinct visual cues on the walls and an open field of the same dimensions to 

Context A. Context B contained two objects identical to those observed in Context A, but here 

they were presented in the opposite orientation (the object on the left in Context A was now 

on the right and vice versa).  After 5 minutes, the bird was removed and placed in a transport 

cage for 1 minute, before being returned to Context A. The open field now contained two 

identical objects that are the same as one of the objects previously presented. Although both 

objects had been seen in both rooms and in both locations, one object had not been seen in 

this location in this room. The time spent exploring this object was recorded relative to the 

other object, over the course of 5 minutes. Objects used and the location of the novel object 

were counterbalanced for all conditions. At least 24 hours elapsed between each COR testing 

condition.  

2.5.2.4 Behavioral Scoring and Analysis 

 
Scoring was identical to that outlined in Experiment 1.  DRs were analyzed using a 3 

(condition: Object/Context, Object/Location, Object/Context/Location) x 2 (species) mixed 

ANOVA. Each individual species and condition was also evaluated using a one-sample t-test 

against a DR of zero (chance exploration). 

2.5.3 Results and Discussion 
 

Analysis of COR (Figure 14) revealed no significant main effect of condition (F2,90 = 1.85; 

p = 0.16) or species (F1,45 = 0.01; p = 0.97). One-sample t-tests verified that this is because 
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neither quail nor pigeons approached any novel conjunction of an object with a location and/or 

context more than expected by chance (p > 0.05 in all conditions). In the Object/Location 

(Figure 14a), Object/Context (Figurer 14b), and Object/Location/Context (Figure 14c) 

conditions, performance of quail and pigeons did not provide behavioural evidence of novel 

change detection. The observation that quail and pigeons do not approach novel conjunctions 

of object with their environment is not consistent with the rat literature. For instance, findings 

of Eacott and Norman (2004), which provided the basis for our experimental protocol, showed 

that rats behaved consistently with novel change detection in all conditions, and consistently 

exhibited a neophilic response. In another comparable study by Dix and Aggleton (1998), rats 

reliably approached the novel element across a wide range of novelty discrimination tests 

incorporating elements of object location within an arena, object position relative to an array of 

objects, and the context in which an object was presented.  
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Figure 14. Conjunctive Object Recognition (COR) in Pigeons and Quail. Schematics (top) demon-

strate the placement of objects and timing of trials in the Object/Location test (a), the Ob-

ject/Context test (b), and the Object/Context/Location test (c). Neither quail (white) nor pi-

geons (grey) spent significantly more time than expected by chance investigating the novel ob-

ject (N) in any condition.   

The current observations lead to two distinct possibilities: (a) that the conjunction of a 

familiar item with a novel location and/or context does not elicit the motivation to respond 

with exploration, or (b) that the novelty of these conjunctions of information cannot be 

detected. Although no comparable data exist testing feature binding in quail, several behavioral 

experiments in pigeons corroborate the latter interpretation.  Although pigeons can be trained 



 
 

90 
    

 

to make discriminations of object location (Leising et al., 2013), their performance decays to 

chance levels at presentation delays of less than 10 seconds – far less than the delays 

encountered in SOR. Our findings are also consistent with data on pigeons’ performance in a 

what-where-when memory task (Skov-Rakette et al., 2006). Skov-Rakette and colleagues (2006) 

showed that, while pigeons could correctly indicate the location, identity, and time of 

appearance of a single cue, when they were required to respond to more than one of these 

features of a single item, a successful response on one feature did not predict success in the 

other. This suggests that although pigeons could retain information about the what, when and 

where of objects, they did not bind this information together in memory. Similarly, Lazareva 

and Wasserman (2016) found no evidence of feature binding in pigeons across multiple 

versions of a change detection task, even with a delay of only 900 milliseconds.     

A potential explanation for behavioural observations in this task could point to deficits 

in detection or an unwillingness to preferentially explore novel spatial locations. Perhaps 

detection of novelty in quail and pigeons does not extend beyond physical characteristics of the 

object itself. To test this further, we implemented a test in which novelty detection relied on 

differentiating between novel and familiar spatial locations in the absence of object 

information.  
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2.6 Experiment 4: Y-Maze Discrimination 
 

2.6.1 Introduction 
 

After testing novelty seeking in relation to objects, we investigated if quail and pigeons 

had similar discrimination reactions to novel spatial locations. Additionally, since neither spe-

cies responded to novelty via location change in the COR test, we wanted to assess if the lack of 

response was due to an inability to detect or an unwillingness to preferentially explore novel 

spatial locations. Toward this goal, birds were tested using two versions of YMD: one utilizing a 

single Y-maze (Figure 15a) and the other incorporating two Y-mazes in two distinct contexts 

(Figure 15b). During commonly used YMD protocols, an arm of the maze is blocked during the 

sample trial and is opened during the choice trial (Lalonde, 2002). Consistent with mammalian 

experiments (Kraeuter, et al., 2019; Lalonde, 2002), we were interested in the amount of time 

that subjects spend in the novel, previously blocked arm, relative to the proportion of time in 

the familiar, previously open arm. If subjects preferentially explore spatial novelty in addition to 

the observed object novelty from Experiments One and Two, then we expected them to spend 

a larger proportion of time investigating the previously blocked arm. In the two Y-maze condi-

tion, subjects were challenged with remembering which arm was blocked in each of two con-

texts and were expected to explore the previously blocked arms in both contexts during the 

choice trial. 
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2.6.2 Methods 
 

2.6.2.1 Subjects  

 
15 adult Japanese quail and 15 Silver King pigeons were used in this experiment and 

were the same sample as those used in Experiment 2. Participation in Experiment 2 was not 

thought to affect performance on Experiment 4 as they were separated by several weeks, a va-

riety of visual cues within the room and the testing apparatus were changed, and neither task 

required rule learning.   

2.6.2.2 Materials  

 
Two Y-mazes with arms measuring 60 x 20 x 30 cm (l x w x h) were constructed from 

clear acrylic so that subjects could readily see the distinct visual cues present on all four walls of 

the rooms. Square rod styrene tracts with removable opaque acrylic guillotine doors were in-

stalled in the two exploration arms. The floor was constructed from black haircell acrylonitrile-

butadiene-styrene (ABS) and covered with wood shavings. 

2.6.2.3 Testing Procedures   
 

The testing protocol used here was adapted from rat testing procedures as described 

previously in Marrone and colleagues (2011). The YMD tasks consisted of two conditions, a sin-

gle Y-maze condition, and another in which two Y-mazes were utilized in two separate rooms. 

In the first single Y-maze condition, subjects underwent three consecutive days of 10 minute 

habituation sessions. During the sample trial, birds were given 5 minutes of exploration with 

one arm of the maze blocked off by a guillotine door.  Birds were then removed for 1 minute, 

during which time the door was removed and the bedding in the maze was replaced to remove 
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scent cues. Birds were then returned to the maze for a 5 minute choice trial. Which arm was 

blocked during the sample trial was counterbalanced across subjects.  

In the two-Y-maze condition, birds were sequentially placed in two different rooms 

(Context A and Context B) containing distinct visual stimuli. The task consisted of four trials: two 

sample trials (one in each context), and two choice trials (one in each context), in the same or-

der as during sample. In the first sample trial, the subject was placed in the start arm of the 

maze in Context A, facing away from the center, while one arm of the Y-maze (either left or 

right) was blocked with a guillotine door. Subjects were permitted to explore the Y-maze for 5 

minutes. After being placed in a transport cage over a 1 minute delay, the same procedure was 

followed in Context B. Again, after a 1 minute delay, the subject underwent the first choice trial 

in which they were placed back into Context A but this time with all arms open. Following this, 

they were removed, placed in a transport cage for a 1 minute delay and underwent the final 

choice trial in Context B. The sequence of exposure to the two contexts was counterbalanced 

between subjects. The floor of each maze was covered with bedding, which was replaced be-

tween trials in order to eliminate olfactory cues. Recording were taken using an overhead cam-

era. 

2.6.2.4 Behavioral Scoring and Analysis  

 
Manual scoring of videos recorded the time that the subject spent in each arm as a pro-

portion of their total exploration time. The subject was considered to be exploring an arm if 

their entire torso was inside of the arm. The time spent exploring the novel and familiar arm 

(excluding the start arm) for all subjects was converted into a DR as described in Experiment 1. 

In the single Y-maze test, DRs were compared across species by one-way ANOVA. In the double-
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Y-maze, analysis consisted of a 2x2 mixed ANOVA comparing species in addition to maze as a 

repeated factor. Each individual species and condition was also evaluated using a one-sample t-

test against a DR of zero (chance exploration). 

2.6.3 Results and Discussion  
 

The pattern of behavior observed in the COR may suggest that novel spatial information 

does not elicit a spontaneous approach response in these bird species. Testing this hypothesis 

with spatial recognition refutes this possibility; both pigeons (t14 = 2.51; p = 0.01) and quail (t14 

= 2.30; p = 0.02) spent more time in the previously blocked arm in the single Y-maze condition 

(Figure 15a) than expected by chance, and the performance of the two species did not differ 

significantly  (F1,28 = 0.084; p = 0.77). In the two Y-Maze condition (Figure 15b), pigeon perfor-

mance differed from quail, as shown by a significant species difference (F1,26 = 4.51; p = 0.04). 

One-sample t-tests verify that pigeons significantly preferred the novel arms (mean DR: t14 = 

3.38; p = 0.002), while quail did not (mean DR: t14 = 1.34; p = 0.10). 
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Figure 15. Reaction to Novel Spatial Locations in Pigeons and Quail. Schematics are presented 

above to demonstrate the timing of trials in each variation of the spatial recognition task, while 

data are presented below.  In the single-Y-maze condition (a), both quail (white) and pigeons 

(grey) spend significantly more time in the arm of the maze that had previously been blocked.  

In the two-Y-maze condition (b), pigeons spent significantly more time in the previously blocked 

arm in both Y-mazes, while quail did not (bars show mean ± SEM; * = p < 0.05; **p < 0.01, sig-

nificant difference from random chance; † = p < 0.05 significant difference between species). 

 

These results demonstrate that while both quail and pigeons spent a larger proportion 

of time in the previously blocked arm, consistent with novelty detection and neophilia for novel 
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spatial locations. This pattern is inconsistent with the suggestions that novel spatial locations 

cannot be detected or do not elicit approach from birds, corroborating that failures to approach 

novelty in Experiment 3 were the result of an inability to form novel conjunctions of item and 

context information.   

Notably, only pigeons made this discrimination in the two Y-maze condition. Comparing 

results to mammalian literature, rats readily discriminate novel from familiar arms within a Y-

maze in both a single maze (Kraeuter, et al., 2019; Lalonde, 2002), and two maze condition 

(Marrone et al., 2011). Until additional species are tested, an explanation of why pigeons pre-

ferred the novel arms when presented two Y-mazes while quail did not is purely speculative. 

However, it is possible that species-related differences in this task may result from species-re-

lated differences in foraging strategies (Charnov, 1976; Reiss, 1987). For example, a species 

with a win-shift strategy might be more likely to investigate the novel arm, while a win-stay 

species may demonstrate hesitancy. Pigeons have been noted as having a win-shift strategy 

when tested within a T-maze (Olson & Maki, 1983; but see Hughes, 1989). Although infor-

mation for Japanese quail is lacking, other Galliformes have a win-stay strategy (Hayes & War-

ren, 1963). It should be noted, however, that Hayes and Warren (1963) urged caution in this in-

terpretation, positing that exploration of the maze may be a stressful experience and as a result 

removal from the maze may serve as a reward that reinforces entering the arm that the subject 

was last removed from on a previous trial.  
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2.7 General Conclusions  
 

The current findings show that reaction to novelty can be successfully used to assess 

novelty detection for both discrete objects (Experiment 1 and 2) and spatial locations (Experi-

ment 4) in both pigeons and quail. Observations of novelty detection tests described here, sup-

port their use in at least some avian species with minimal changes in protocol relative to that 

used for rats. Moreover, the fact that these effects are consistently observed in two families of 

birds (i.e., Galliformes and Columbiformes) suggests that approach to novelty may provide a ro-

bust behavioral assay across Aves.   

One factor that limits the generalization of these results, however, is the fact that both 

species of bird tested here are highly domesticated. As pointed out by Blaser and Heyser 

(2015), domestication is a major predictor for reaction to novelty in rats (Minckler & Peaseh, 

1938; Orgain, & Schein, 1953; Bernett, 1958). Similarly, studies of novelty reactivity in wild-

caught birds generally reported strong neophobia (e.g., Mettke-Hofmann, et al., 2002; Stowe et 

al., 2006a,b; Nilsson et al., 2010; Martin & Sherry, 2019), and a bird’s neophobia may be pre-

dicted by the nature of the habitat from which the bird was caught, migratory strategy and diet 

breadth (Mettke-Hofmann et al., 2013; Sol et al., 2011).  Although there is evidence to suggest 

that testing procedures may account for this difference (as described in Experiment 1), the neo-

philic reaction observed in Experiments 1, 2, and 4 should be replicated in wild-caught species. 

It will be important to assess behavioral differences in domesticated and wild birds during com-

parable novelty testing – the responses of wild birds under these standardized protocols re-

mains to be addressed.   
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Despite this open question, it is clear that in Experiments 1, 2 and 4, that both novel ob-

jects and novel locations readily elicit a neophilic response in both pigeons and quail. These ob-

servations lay the foundation for further apples-to-apples comparisons of the neurobiology of 

novelty detection across taxa using SOR. The neural circuits underlying these behaviors are very 

well characterized in rats, in part because of dissociation that can be observed by varying stand-

ardized testing protocols. Many of the variations in novelty detection tasks (including those 

used here) exist in part because interventions that perturb only one of these circuits alter per-

formance on some variations of this task and not others. Searching for similar dissociation in 

birds can provide unique insight into the functional homologies that exist across taxa and allow 

the placement of object recognition memory within the framework of an evolutionary basis of 

multiple memory systems (Sherry & Schacter, 1987).    

The fact that our findings show similar results across taxa also raises the question of 

whether novelty detection and neophilia in general are evolutionarily conserved or if these 

traits have independently evolved in two classes. The observation of neophilic responses to 

novel objects in fish, reptiles, amphibians, and a variety of invertebrates (reviewed in Blaser & 

Heyser, 2015) suggests that this may be a trait shared by much of the animal kingdom. More 

importantly, it suggests that the response to novelty when it is detected (i.e., approach or 

avoidance) is likely the product of the exact testing procedures and behavioral history of indi-

vidual animals. The systematic manipulation of these conditions within the framework of stand-

ardized testing holds the most promise of understanding novelty detection and object recogni-

tion across taxa. It is the outliers that will provide the greatest insight into the basis for this cog-

nitive ability and the circumstances under which adaptive specialization might sculpt it, in much 
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the same way that insight into spatial cognition in birds has been gained largely through the 

study of birds with exceptional spatial abilities, such as food caching (Sherry & Hoshooley, 2007; 

Sherry, 2014a,b).   
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Chapter 3:  Dissociation of Spatial and Object Memory in the Hippocampal 

Formation of Japanese Quail 
 

3.1 Abstract   
 

The mammalian temporal cortex can be functionally segregated into regions that en-

code spatial information and others that are predominantly responsible for object recognition. 

In the present study, we report comparable functional segregation in the avian brain. Using Jap-

anese quail, we find that bilateral lesions of the hippocampus (Hf) produce robust deficits in 

performance in a foraging array (FA) spatial memory task, while sparing spontaneous object 

recognition (SOR). In contrast, lesions to the adjacent area parahippocampalis (APH) compro-

mise both SOR and FA. These observations demonstrate a functional dissociation between Hf 

and APH that is comparable to the distinctions seen in mammals between the hippocampus 

and surrounding temporal cortex. 

 

 

 

 

 

 

 

 

Chapter taken from: Damphousse, C. C., Miller, N., & Marrone, D. F. (2022b). Dissociation of 
Spatial and Object Memory in the Hippocampal Formation of Japanese Quail. iScience, 103805.  
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3.2 Introduction    

 
The hippocampus (Hf) and surrounding medial temporal lobe (MTL) structures have long 

been identified as critical neural circuits supporting memory, especially memory for spatial in-

formation (O’Keefe & Nadel, 1970). Recent work has shown that declarative memory can be 

functionally segregated both within and between structures of the MTL (Lee et al., 2017; 

Strange et al., 2014; Winters et al., 2004). The hippocampus and each of the surrounding corti-

cal structures, including the entorhinal cortex (EC), make unique contributions to the computa-

tions supporting declarative memory function (see van Strien et al., 2009, for review). One im-

portant distinction is in the processing of spatial and non-spatial (e.g., object identity-based) in-

formation – with the Hf being critical to the former and often unnecessary for the latter (Eich-

enbaum & Lipton, 2008; Kneirim et al., 2013).  

 The avian Hf is often proposed as the homologue to its mammalian counterpart because 

of similarities in development, connectivity and neurotransmitters, and because of its critical 

role in spatial cognition (see Székely, 1999; Colombo & Broadbent, 2000; Atoji & Wild, 2005 for 

review). Although many ways of dividing the avian hippocampal formation have been proposed 

(e.g., Erichsen et al., 1991; Montagnese et al., 1996), two methods are most commonly utilized. 

The first and most simplistic model describes two subdivisions, the Hf and area parahippocam-

palis (APH) regions (Karten & Hodos, 1967, Székely & Krebs, 1996). In the second, regions are 

described as the ventral (V), dorsomedial (DM), and dorsolateral (DL) subdivisions (Atoji & Wild, 

2005), although these areas are often further subdivided (Atoji & Wild, 2006). Combining these 

two models, the Hf is largely comprised of the V and DM areas while the APH corresponds to 
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the DL. Although the inclusion of more subdivisions is more accurate, here we opt for con-

sistency with the previous lesion studies that inform this research and refer to these areas as 

simply the Hf and APH. These previous studies have often ignored the boundaries between 

these two regions and destroyed both Hf and APH (e.g., Good, 1987; Colombo et al., 2001; 

Kahn & Bingman, 2004; Broadbent & Colombo, 2000; Johnston et al., 2021).  This is in part be-

cause multiple methods of dividing the avian Hf exist, and in part because of early data demon-

strating that damage to either Hf or APH result in comparable spatial memory impairments 

(e.g., Bingman et al., 1988; Bingman & Mench, 1990). As a result, the issue of whether func-

tional specialization might occur in different regions of the avian hippocampal formation re-

mains largely unexplored, despite anatomical data suggesting that APH may be homologous to 

the EC (Redies et al., 2001; Abbelan et al., 2004; Zhou et al., 2020; Bingman et al., 1994; Kröner 

& Güntürkün, 1999; Wild et al., 1993).  

 To address this, groups of Japanese quail (Coturnix japonica) underwent lesion surgery 

to either the APH or Hf (Figure 16) and were tested using a spatial learning task in a foraging ar-

ray (FA) and a spontaneous object recognition (SOR) task, paradigms well known to require dis-

tinct structures of the mammalian memory system.  

3.3 Methods     
 

For methods in greater detail, including a materials list and surgical and behavioural 

procedures, see Damphousse and colleagues (2022d). 

 

  



 
 

103 
    

 

3.3.1 Subjects 

 
24 adult female Japanese quail (Spring Creek Quail Farms, Saint Anns, ON), aged approx-

imately 3 months were used in this experiment. All birds were group housed on a 12:12 h light-

dark cycle with ad lib access to food and water. Prior to behavioral testing, all animals were 

handled 15 min/day for at least 7 days. All procedures were approved by the animal care com-

mittee of Wilfrid Laurier University in accordance with the guidelines of the Canadian Council 

on Animal Care.   

3.3.2 Materials 
 

3.3.2.1 Foraging Array    

 

The FA (see Figure 17a) followed testing methods previously described by Lormant and 

colleagues (2018). Briefly, an octagonal arena (each wall 50 cm in length, 45 cm in height) was 

constructed using white corrugated plastic sheeting. The flooring was also corrugated plastic 

sheeting. Eight unique visual cues constructed of black poster board cut into 8 unique geomet-

ric shapes were used in the arena. Four cues were placed as local cues on walls within the maze 

and the other four were used as distal cues attached to the walls of the room near the ceiling 

so that they were visible to subjects within the arena. Eight food cups were placed in the arena 

in the configuration depicted in Fig. 2a. Food cups were constructed using a 2 oz plastic cup, 

with a 1.5 oz cup with a perforated bottom nested within it. The outer cup contained inaccessi-

ble mealworms in order to control for scent cues. 
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3.3.2.2 Object Recognition     
 

The SOR protocol used here was adapted from a previous publication testing Japanese 

quail (Damphousse et al., 2022a). Testing occurred within a square arena with walls 90 cm wide 

and 60 cm tall, constructed from painted plywood (see Figure 18a). Flooring was corrugated 

plastic sheeting. A spatial cue was placed onto one wall of the arena. Behaviour was monitored 

using an overhead webcam and tracking was done in real time using ANY-maze. All subjects en-

countered the same sets of objects, with object sets differing between test days (Figure 18b). 

3.3.3 Testing Procedures 
 

3.3.3.1 Surgery     

 
All surgeries were conducted prior to any behavioral testing. Each lesion group con-

sisted of 8 subjects (8 APH, 8 Hf, 8 Sham). Lesions (see Figure 16) were conducted in four 

batches of 6 (2 APH, 2 Hf, 2 Sham). Each batch was tested on the FA, SOR, and sacrificed before 

the other batch began testing. This resulted in roughly 2 weeks between start dates for each 

batch. 

 Quail were anesthetized with isoflurane using a SomnoSuite anaesthesia machine (Kent 

Scientific, Torrington, CT) and placed in a stereotaxic instrument (Kopf Instruments, Tujunga, 

CA). Once the head was secured using ear bars and a nose cone, feathers were removed and 

the area was prepared using antibacterial cleanser (Phenrex®), 70% isopropyl alcohol, and chlor-

hexidine gluconate solution (Baxedin®). Following subcutaneous injection of lidocaine and epi-

nephrine (Bimeda, Cambridge, ON) along the midline of the skull, a midline incision was made, 

the scalp was retracted, and a craniotomy was made over the lesion site (1 craniotomy for Hf 
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lesion, 2 for APH). The Hf and APH were removed by aspiration according to coordinates deter-

mined using a published quail brain atlas (Baylé et al., 1974). Coordinates for lesions were de-

termined relative to where the parieto-occipital suture intersects with the midline.  For Hf le-

sions, aspirations were 5 mm anterior to bregma, 3 mm posterior, 1.5 mm on either side of 

midline, and 3 mm deep. Aspirations for APH lesions were 5mm anterior to bregma, 3 mm pos-

terior, 1.5 mm – 3.5 mm lateral to bregma, 2 mm deep. 

 Craniotomies were packed using a hemostatic sponge, sealed with bone wax and the 

skin was sutured. After recovering on a heating pad and regaining mobility, quail were placed 

into individual cages to recover for 1 week while undergoing antibiotic and analgesic treatment.  
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 Figure 16. Coronal Sections Illustrating the Extent of Hf and APH lesions. Lesion reconstruction 

of (a) Hf-lesioned and (b) APH-lesioned quail included in the study. The black areas depict dam-

age found in at least five of the seven lesioned quail. Grey areas show damage found in at least 

two of the seven lesioned quail.  Hf, hippocampal formation; APH, area parahippocampalis.  

 

3.3.3.2 Foraging Array    
 

The FA consisted of three phases: habituation, training, and probe. 1 hr prior to begin-

ning all phases of the experiment, food was removed and subjects were transported to the test-

ing room in a rack containing all subjects in individual cages. The rack was surrounded by a cur-

tain and subjects were left undisturbed. There were 5 days of habituation in total. The first 2 

days were habituation to transport. Subjects were transported into the testing room from their 

homeroom and left undisturbed for 1 hr. Over the next 3 days, subjects were habituated to the 

arena. During arena habituation, subjects were placed into the centre of the arena with all cups 

baited with one mealworm. Sessions were recorded using an overhead webcam and number of 

mealworms eaten was scored. Subjects were removed once all mealworms had been consumed 

or after 600 sec had elapsed.  

Subjects received 3 training trials per day (1 hr ITI) over the course of 8 days. During 

training, only one cup was baited (SW) and this remained consistent throughout all of the train-

ing trials. Subjects were placed into the maze at 1 of 3 locations (N, S, E) chosen at random for 

each trial. Trails were 300 sec in duration or until the subject had retrieved worms from the 

baited cup. Latency to reach the cup was recorded using ANY-maze tracking software. After 8 
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days of training trials, subjects underwent a probe trial in which none of the cups were baited 

and subjects entered the maze from a novel direction (W). 

3.3.3.3 Object Recognition     
 

Birds underwent two SOR tests over two consecutive days. Identical to the spatial learn-

ing task, food was removed, and subjects were left undisturbed in a covered rack for 1 hr prior 

to beginning the experiment. Subjects were habituated to the empty testing arena over 3 con-

secutive days for 300 sec per day. On the first day of testing, subjects underwent a sample 

phase immediately followed by test. During the sample trial, two identical junk objects were 

placed into the arena in the centre of the two quadrants furthest from the entry point. Subjects 

explored the objects and arena for 300 s. The subject was removed and over the course of a 1 

min ITI, the choice trial was prepared by placing an object identical to those used during sample 

(familiar) and a novel object within the arena. The arena was also wiped down with 70% Etha-

nol to eliminate scent trails and the subject was placed into the arena to explore for 300 s. Ex-

ploration was defined as the bird spending time within 30 cm of an object while not preening or 

pecking at the surrounding walls. The entire body of the subject was to be within the defined 30 

cm radius and orientation of the subject toward the object was not required as the field of vi-

sion for prey birds, such as quail, is large and an object may be viewed from many positions rel-

ative to the head (Martin & Young, 1983; for review see Martin & Osorio, 2008). This criterion 

successfully demonstrates novelty preference in multiple avian species, including Japanese 

quail (Damphousse et al., 2022a). While 30 cm is a generous distance, quail have much better 

visual acuity (4.73 ± 0.35 c/d; Lee & Djamgoz, 1997) than albino strains of rat (0.5 c/d; Prusky et 

al., 2002) used within protocols from which the SOR task was originally adapted (for review see 
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Blaser & Heyser, 2015). The time spent exploring the novel (N) and familiar (F) objects for all 

birds was converted into a discrimination ratio (DR) as follows: DR = (N - F) / (N + F). On the sec-

ond day of testing, an identical procedure was followed using a second, visually distinct set of 

objects. 

3.3.3.4 Histology     

 

Following SOR, 25 days post-surgery for a given batch, subjects were transported to a 

procedure room, anesthetized using isoflurane, decapitated, and brains were extracted and 

flash frozen in 2-methylbutane (Sigma Aldrich, Oakville, ON). Coronal sections were cut at a 

thickness of 30 μm using a CM3050 cryostat (Leica), thaw-mounted onto Superfrost Plus™ 

slides (Thermo Scientific, Waltham, MA), dried, and stored at -80°C. Every 6th section was then 

stained using Nuclear fast red-aluminum sulfate to observe placement and extent of the lesions 

under a light microscope. 

3.3.3.5 Behavioural Scoring and Analysis    
 

In the FA task, the mean latency to reach the target cup as well as the number of trials 

in which the baited cup was calculated for each day of training.  These data were analysed using 

a repeated measures analysis of variance (ANOVA).  Lesion location was the between subject 

factor and training day was the within subject factor. The probe trials were analysed by com-

paring the mean proximity of each quail to the previously baited cup relative to the cup on the 

opposite side of the maze using a paired t-test within each group.  In SOR, the mean DR for 

each quail across both object sets was compared using a one-way ANOVA for lesion location. All 
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statistical analyses were conducted using JASP (JASP team, 2021) using Tukey’s HSD in all post 

hoc tests. 

3.4 Results      
 

3.4.1 Foraging Array 
 

Analysis of latency data in the FA (Figure 17b) showed no significant effect of training 

day (F7,133 = 0.55, p = 0.80) or experimental group (F2,19 = 2.18, p = 0.14), showing that, across 

the total population, there was no significant difference in latency in FA. This, however, was be-

cause 2 of the 3 groups examined showed no decrease in latency – in fact, latency increased 

over the 8 days of training in both lesioned groups. In contrast, the latency of intact sham quail 

decreased drastically over this same period, from over 60 sec on Day 1 to less than 10 sec on 

Day 8, consistent with previous observations (Lormant et al., 2018). This resulted in a significant 

group by training day interaction (F14,133 = 2.27, p < 0.01). Similarly, in post hoc tests, the groups 

did not differ (p > 0.60) on Day 1, but by Day 8 shams were significantly different (p < 0.05) from 

both APH and Hf lesioned birds.   

 However, the accuracy with which quail selected the baited cup (Figure 17c) showed a 

consistent increase over trials (main effect of training day: F7,133 = 13.87, p < 0.001) suggests 

that significant learning occurred in all animals.  A significant difference was observed across 

experimental groups (F2,19 = 3.83, p = 0.04). Post hoc tests confirmed that this difference was 

the result of deficits in both lesioned groups, as both APH (p = 0.04) and Hf (p = 0.02) lesioned 

birds were significantly less likely to select the baited cup first relative to controls.  
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 Consistent with these observations, analysis of the probe trial (Figure 17d) shows that 

sham quail spent significantly more time in the vicinity of the previously baited cup when com-

pared to the cup on the opposite end of the arena (t7 = -3.52; p = 0.01).  In contrast, no signifi-

cant difference was observed in either Hf (t. = 0.63; p = 0.55) nor APH (t. = -0.88; p = 0.41) le-

sioned quail.   

 

 
Figure 17. Lesions of Hf or APH Impair Spatial Memory. A schematic (a) shows the placement of 

reward cups including the baited cup (x) in the foraging array (FA). Calculation of latency to visit 

the baited cup (b) as well as first choice accuracy (c) show that intact sham quail (square) were 
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more accurate while requiring less time to retrieve the mealworm from the baited cup relative 

to Hf-lesioned (diamond) and APH-lesioned (triangle) quail.  Similarly, in the probe trials (c) 

sham quail (white) were significantly closer to the previously baited cup (target) relative to the 

cup on the opposite end of the arena. This was not true for Hf-lesioned (light grey) or APH-le-

sioned (dark grey) quail (data represent mean ± SEM). 

 

3.4.2 Object Recognition 
 

Analysis of SOR performance during choice trials showed a significant effect of experi-

mental group (Figure 18c; F2,19 = 12.95, p < 0.01) with post hoc tests showing that the perfor-

mance of APH lesioned quail was significantly worse than either Hf lesioned quail (p = 0.04) or 

sham controls (p = 0.01). No significant differences were observed between Hf lesioned and 

sham quail (p = 0.59). 
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Figure 18. Lesions of APH but not Hf Impair Spontaneous Object Recognition (SOR) Memory.  A 

schematic (a) demonstrates the placement of objects and timing of trials in SOR.  Following 3 

days of habituation, quail received their first sample trial (left) in an open field containing two 

identical copies of a novel object (circles) for 5 min. After a delay of 1 min, quail received a 

choice trial (right) in which a new copy of the same object is presented alongside a novel object 

(square). Samples of the objects (b) used are also shown.  Quantification (c) of discrimination 

ratios (DR) shows that intact sham quail (white) and Hf-lesioned quail (light grey) spend more 

time investigating the novel object, as shown by the positive mean DR.  APH-lesioned quail, 

however, have a mean DR that near 0, a value that reflects random chance object investigation 

(data represent mean ± SEM). 

 

3.5 Conclusions      
 

These data provide the first observation (to the authors’ knowledge) of functional heter‐

ogeneity across the avian memory system that shows some consistency with the functional dif-

ferentiation observed in the mammalian temporal lobe. Here we report that while lesions to 

either APH or Hf induce robust deficits in a spatial learning task. These results are consistent 

with early studies in pigeons showing spatial deficits after lesions to either of these brain struc-

tures (e.g., Bingman et al., 1988; Bingman & Mench, 1990).  We also report the novel observa-

tion that only lesions to APH induce a deficit in object recognition.  It is worth noting here that 

tasks were not counterbalanced and all quail were trained in the FA task prior to SOR.  While 

counterbalancing remains the ideal, it is unlikely that practice effects from FA that could alter 

the conclusions drawn from performance in SOR, a task with different cognitive demands that 
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occurs in a different testing apparatus.  In particular, it would be counterintuitive that any ef-

fects of practice could differentially benefit quail with Hf lesions and not those with APH le-

sions. Object recognition and spatial memory are tasks rely on independent neural circuits in 

mammals. The current observations are consistent not only with these mammalian findings, 

but also with reports that damage to the avian Hf generally spare performance on visual 

memory tasks when careful attention is taken to minimize spatial confounds (Colombo et al., 

1997; Good & Macphail, 1994; Hampton & Shettleworth, 1996). This evidence strongly suggests 

a dissociation in the areas of the avian hippocampal formation supporting spatial cognition and 

object recognition.  

Direct comparisons with previous literature are problematic as the nomenclature used 

changes frequently between papers, often with the same labels describing different regions. 

Given this variation in terminology, the most conservative conclusion is that the avian Hf, like 

its mammalian counterpart, is dispensable for object recognition memory, at least within 1mm 

of the midline.  In contemporary nomenclature, this certainly encompasses area V (and its sub-

divisions) and at least some portion of DM. Moving laterally from the midline, however, there is 

a point in the avian pallium (perhaps at the division between DM and DL) that also encodes 

non-spatial information in order to support object recognition. Given this novel observation, 

many questions remain to be addressed. 

 For instance, it remains unclear if the APH contains further functional segregation. It is 

perhaps surprising that APH lesions produced deficits in both spatial and non-spatial tasks, ra-

ther than producing a double dissociation between the regions responsible for object recogni-

tion and spatial cognition, as is often reported in mammals (e.g., Winters et al., 2004).  There 
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are at least two possibilities that may explain these observations. One is that the APH is less dif-

ferentiated than its mammalian counterparts and contains both cells that encode spatial infor-

mation and those that encode non-spatial information throughout its mediolateral extent. The 

presence of an undifferentiated homologue to the medial temporal cortex (equivalent to a 

combination of the mammalian entorhinal, perirhinal, and parahippocampal cortices) would be 

consistent with the lack of clear boundaries between regions of the avian hippocampal for-

mation in general and would be consistent with previous studies that failed to find any medio-

lateral gradient in spatial information content (Payne et al., 2021). A second possibility, how-

ever, is that there are gradients in the activity of APH not captured by the current protocol. The 

mammalian EC can be functionally separated into a lateral portion that processes non-spatial 

information about object identity and familiarity, while the medial EC specializes in spatial in-

formation (Eichenbaum & Lipton, 2008; Kneirim et al., 2013). Genetic markers provide the basis 

for dividing the APH into a medial, intermediate, and lateral portion (Abellan et al., 2014) and 

the homologue of medial EC has been proposed to be the lateral division, perhaps also extend-

ing into the corticoid dorsolateral (CDL) area. In this scenario, APH lesions are likely causing spa-

tial deficits by severing fibers of passage from the lateral APH/CDL region to the Hf, explaining 

why both lesion types effect performance on the spatial task (Rosinha et al., 2009; Kahn et al., 

2003). It should be noted, however, that the only study to explicitly examine the behavioural 

effects of CDL lesions found no spatial deficits in a delayed alternation task (Gagliardo et al., 

1996). These inconsistencies will require further studies using selective perturbations to disam-

biguate, likely in conjunction with cellular markers to more definitively differentiate regions. 
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Despite these unanswered questions, the current data provide a new perspective on the func-

tional heterogeneity of the avian memory system.   
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Chapter 4: Functional Dissociation Along Rostrocaudal Axis of Japanese Quail 

Hippocampus 
 

4.1 Abstract    
 

The mammalian hippocampus (Hf) can be functionally segregated along its 

septotemporal axis with involvement of dorsal hippocampus (dHf) in spatial memory and 

ventral hippocampus (vHf) in stress responses and emotional behaviour. In the present study, 

we investigate comparable functional segregation in proposed homologues within the avian 

brain. Using Japanese quail, we report that bilateral lesions of the rostral hippocampus (rHf) 

produce robust deficits in a spatial Y-maze discrimination (YMD) test while sparing performance 

during contextual fear conditioning (CFC), comparable to results from lesions to homologous 

regions in mammals. In contrast, caudal hippocampus (cHf) lesions failed to produce deficits in 

either CFC or YMD, suggesting that, unlike mammals, both cHf and rHf of birds can support 

emotional behavior. These observations demonstrate functional segregation along the 

rostrocaudal axis of the avian Hf that is comparable in part to distinctions seen along the 

mammalian hippocampal septotemporal axis.  

 

 

 

 

 

 

Chapter taken from: Damphousse C.C., Miller N., & Marrone D.F. (2022c). Functional 

Dissociation Along Rostrocaudal Axis of Japanese Quail Hippocampus. Under Review.    
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4.2 Introduction 

The hippocampus (Hf) is a structure critical to many forms of memory and spatial 

navigation across a number of species.  Given the many computations that this structure must 

complete in order to serve these complex cognitive functions, it is not surprising that the Hf is 

not a unitary structure but is instead segregated into multiple functionally distinct sub-regions.  

One important functional distinction is along the dorsoventral axis, also referred to as the 

septotemporal, or “long” axis. Evidence of functional distinctions along this axis have been 

noted since the earliest studies examining the behavioral effects of Hf lesions (e.g., Kimura, 

1958; Hughes, 1965; Nadel, 1968), and numerous studies have confirmed and extended these 

observations (reviewed in Strange et al., 2014). While the precise nature of the functional 

domains within the Hf remains a topic of debate (Fanselow and Dong, 2010; Small et al., 2011; 

Strange et al., 2014), there is consensus that the dorsal Hf (dHf), for instance, is critical for 

spatial memory in small environments (e.g., Moser et al., 1993; Moser et al., 1995) while the 

ventral region (vHf) is more critical to emotional behavior and stress responses including 

contextual fear (e.g., Gray & McNaughton, 1983; Hunsaker et al., 2008; Bannerman et al., 2004; 

Kjelstrup et al., 2002).   

The avian Hf is a proposed homologue of the mammalian Hf for numerous reasons 

including similarities in development, connectivity and neurotransmitters, and because of its 

role in spatial cognition (see Székely, 1999; Colombo and Broadbent, 2000; Atoji and Wild, 2005 

for review). Similar to functional gradients observed along the dorsoventral axis in mammals, a 

number of studies have proposed a comparable functional gradient along the rostrocaudal axis 

of the avian Hf. Studies of connectivity (e.g., gene expression (e.g., Smulders & DeVoogd, 2000; 
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Abellán et al., 2014), and place cell characteristics (e.g., Payne et al., 2021) all suggest 

similarities between the rostral pole of the avian Hf (rHf) and the dorsal pole of the mammalian 

Hf (see Smulders, 2017 for review). What remains unknown is whether the caudal pole of the 

avian Hf (cHf) is functionally comparable to the ventral pole of the mammalian Hf and if so, is 

there a functional dissociation between the rostral and caudal poles?  

To address this, groups of Japanese quail (Coturnix Japonica) underwent selective 

lesions to either the rostral or caudal pole of the Hf. Subjects were then tested using a 

contextual fear conditioning (CFC) or Y-Maze discrimination task (YMD), paradigms known to 

require differing poles of the mammalian Hf.  

4.3 Methods 

4.3.1 Subjects 
 

 Twenty-seven adult female Japanese quail (Spring Creek Quail Farms, Saint Ann’s, ON), 

aged approximately 3 months were used in this experiment. All birds were group housed on a 

12:12 h light-dark cycle with ad lib access to food and water. Prior to behavioral testing, all 

animals were handled 15 min/day for at least 7 days. All procedures were approved by the 

animal care committee of Wilfrid Laurier University in accordance with the guidelines of the 

Canadian Council on Animal Care.  

4.3.2 Materials 
 

4.3.2.1 Contextual Fear Conditioning  

 

This experiment consisted of two visually distinct arenas in two different rooms 

containing unique local and distal cues, referred to as Context A and Context B (see Figure 20a). 
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Context A consisted of a circular 90 cm diameter arena with 45 cm high walls constructed from 

white corrugated plastic sheeting, with a floor of the same material covered in butcher paper. 

Context B consisted of a square arena with 90 cm sides and 45 cm high walls constructed from 

painted plywood, with flooring of black haircell acrylonitrile-butadiene-styrene (ABS). 

Behaviour was monitored using an overhead webcam and tracking was done in real time using 

ANY-maze (Stoelting, Wood Dale, IL). 

4.3.2.2 Y-Maze Discrimination 

 

The YMD protocol used here was adapted from a previous publication testing Japanese 

quail (Damphousse et al., 2021). Briefly, Y-maze arms measured 50 x 17 x 45 cm (L x W x H; 

Figure 21a) were constructed from clear acrylic permitting subjects to readily see distinct visual 

cues present on all four walls of the room. Square rod styrene tracts with removable opaque 

acrylic guillotine doors were installed in the two exploration arms. The floor was constructed 

from black haircell acrylonitrile-butadiene-styrene (ABS) and covered with wood shavings. 

Behaviour was monitored using an overhead webcam and tracking was done in real time using 

ANY-maze. 

4.3.3 Testing Procedures 
 

4.3.3.1 Surgery 
 

 All surgeries were conducted prior to any behavioral testing. Each lesion group 

consisted of 9 subjects (9 rHf, 9 cHf, 9 Sham). Surgical procedures were modified from those 

outlined in Damphousse and colleagues (2022). Quail were anesthetized with isoflurane using a 

SomnoSuite anaesthesia machine (Kent Scientific, Torrington, CT) and placed in a stereotaxic 
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instrument (Kopf Instruments, Tujunga, CA). Once the head was secured using ear bars and a 

nose cone, feathers were removed and the area was prepared using antibacterial cleanser 

(Phenrex®), 70% isopropyl alcohol, and chlorhexidine gluconate solution (Baxedin®). Following 

subcutaneous injection of lidocaine and epinephrine (Bimeda, Cambridge, ON) along the 

midline of the skull, a midline incision was made, the scalp was retracted, and a craniotomy was 

made over the lesion site. The Hf was removed by aspiration according to coordinates 

determined using a published quail brain atlas (Baylé et al., 1974). Coordinates for lesions were 

determined relative to where the parieto-occipital suture intersects with the midline. For rHf 

lesions, aspirations were 1 mm to 5 mm anterior to bregma, 1.5 mm on either side of midline, 

and 3 mm deep. cHf lesions were 1 mm anterior to bregma, 3 mm posterior, 1.5 mm on either 

side of midline, and 3 mm deep (see Figure 19).   

 Craniotomies were packed using a hemostatic sponge, sealed with bone wax and the 

skin was sutured. After recovering on a heating pad and regaining mobility, quail were placed 

into individual cages to recover for 1 week while undergoing antibiotic and analgesic treatment. 
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Figure 19. Lesion Reconstruction of (a) rHf-lesioned and (b) cHf-lesioned Quail Included in the 

Study. The black areas depict damage found in at least six lesioned quail. Grey areas show 

damage found in at least two lesioned quail. rHf, rostral hippocampal formation; cHf, caudal 

hippocampal formation.  

 

4.3.3.2 Contextual Fear Conditioning  

  

CFC consisted of four phases: habituation, training, test, and remote test. Prior to 

beginning each day of the experiment, subjects were removed from their housing room and 

placed into individual shoebox cages on a rack devoid of food. Each cage was covered by a 

shroud and subjects were left undisturbed for 1 hour. Subjects were transported individually in 

their covered cages to the testing room. Habituation, training, and test all occurred on the same 

experimental day. During habituation, the subject was placed into Context A and allowed to 

explore freely for 5 min. The subject was promptly removed and the same procedure was 
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followed in Context B with a 1 min inter-trial-interval (ITI).  The subject was then placed back 

into a covered shoebox cage and left undisturbed for 15 minutes. During training, the subject 

was again exposed to Context A for 5 min, a 1 min ITI, and was then placed into Context B. After 

3 min in Context B, an auditory stimulus (1000 Hz, 95 dB) was delivered for 3 sec, followed by 2 

minutes of exploration. The context in which the stimulus was presented was counterbalanced 

across subjects. The subject was then again placed back into the covered shoebox cage and left 

undisturbed for 15 minutes. During test, procedures matched those in habituation with 5 min in 

Context A followed by 5 min in Context B. Following each phase, the arena was wiped down 

with 70% Ethanol to eliminate scent trails. On the following day, subjects were given a remote 

test. During remote test, procedures again matched those followed during habituation with 5 

min in Context A, a 1 min ITI, and 5 min in Context B.  

4.3.3.3 Y-Maze Discrimination  
 

 Quail underwent three consecutive days of 10-min habituation sessions. During the 

sample trial, birds were given 5 min of exploration with one arm of the maze blocked off by a 

guillotine door. Birds were then removed for 1 min, during which time the door was removed 

and the bedding in the maze was replaced to remove scent cues. Birds were then returned to 

the maze for a 5-min choice trial. Which arm was blocked during the sample trial was 

counterbalanced across subjects. 

4.3.3.4 Histology 
 

 Following YMD, subjects were transported to a procedure room, anesthetized with 

isoflurane, decapitated, and brains were extracted and flash frozen in 2-methylbutane (Sigma 
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Aldrich, Oakville, ON). Coronal sections were cut at a thickness of 30 μm using a CM3050 

cryostat (Leica), thaw-mounted onto Superfrost Plus™ slides (Thermo Scientific, Waltham, MA). 

Every 6th section was then stained using Methyl Green to observe placement and extent of the 

lesions under a light microscope. 

4.3.3.5 Behavioural Scoring and Statistical Analysis 
 

Two quail died during surgery, while another 2 were excluded for lack of movement in 

at least one of the 2 tests, yielding final data on 25 quail (9 rHf, 7 cHf, 7 sham). 

 During CFC, quail can be considered freezing when they present a characteristic 

crouching posture with a) total flexion of the legs and the body in contact with the floor or b) 

partial flexion of the legs, wide separation between feet/legs and the pectoral region in close 

contact with one of the walls, with eyes widely opened and accelerated respiration. Such 

posture, associated with the absence of other observable behaviors, has been repeatedly used 

to characterize freezing behavior in pigeons (Barnett & Cowan, 1976; Reis et al., 1999; Brito et 

al., 2006; 2019). 

Analysis of CFC data was conducted using a repeated-measures analysis of variance 

(ANOVA) of the time spent freezing during the first 2 minutes of each trial using context (i.e., 

acoustically-paired vs. control) and time (i.e., immediate vs. remote) as within-subject factors 

and group (i.e., rHf, cHf, and control) as between-subject factors.  As an additional control, the 

time spent freezing in each context was also compared before any acoustical stimulation was 

compared with a 2 (context) x 3 (group) ANOVA.  
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  In the YMD, the time spent within each arm was quantified as a proportion of their total 

exploration time. The subject was considered to be exploring an arm if their entire torso was 

inside of the arm. The time spent exploring the novel arm (TN) and in the familiar arm (TF) 

(excluding the start arm) for all subjects was converted into a discrimination ratio (DR) as 

follows: DR = (TN-TF)/(TN+TF). These DRs were compared across groups by one-way ANOVA.  

 Post hoc tests were conducted using Tukey’s HSD. All statistical tests were conducted 

using JASP (JASP team, 2022). 

4.4 Results 
 

4.4.1 Contextual Fear Conditioning 
 

Analysis of CFC (Figure 20b) showed no significant difference in context (F1,20 = 1.12; p = 

0.30) or group (F2,20 = 1.42; p = 0.27) before acoustic stimulation, showing that the surgeries did 

not induce any pre-existing differences in freezing behavior.  Examining the time spent freezing 

during the trials following simulation failed to show a significant main effect of time (F1,20 = 

1.05; p = 0.32) or of group (F2,20 = 1.33; p = 0.29).  However, a significant effect of context (F1,20 

= 8.47; p = 0.01) as well as a significant time by context interaction ( F1,20 = 8.47; p = 0.01) were 

observed.  This pattern of results shows that quail across all groups selectively froze in the 

context paired with the acoustic stimulus and not in the control environment (paired vs. 

unpaired context: p < 0.05 for all groups), indicating that quail are able to discriminate between 

the two contexts and retain a memory for the context in which the acoustic stimulus had been 

presented. In contrast, 24 hours later, freezing had diminished to the point at which no 
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significant difference could be observed (p > 0.05 for all groups), suggesting that the memory 

had degraded.   

 
Figure 20. Lesions of rHf or cHf Spare Contextual Fear Conditioning (CFC). A schematic (a) shows 

the timing and order of CFC in context A (grey) and context B (white).  Quail were pre-exposed 

consecutively to each context for 5 min (pre-exposure), followed by a 15 min delay.  Quail were 

then exposed to each environment for 5 min a second time, during which they were presented 

with an auditory stimulus (1000 Hz, 95 dB) for 3 sec in one of the environments (stimulus).  

Following another 15 min delay, quail were again exposed consecutively to each context for 5 

min (immediate).  After 24 hours, the quail were once again exposed consecutively to each 

context for 5 min (remote). Analysis of the time spent freezing (b) shows that intact sham quail 

(white) as well as rHf-lesioned quail (light grey) and cHf-lesioned quail (dark grey) spend 

comparable time freezing in either environment a baseline (habituation).  Following 



 
 

127 
    

 

presentation of the acoustic stimulus, all quail more time freezing in the environment they 

received the acoustic stimulus in (acoustic) relative to the second environment (control).  This 

difference is no longer apparent 24 hours after the presentation of the stimulus (remote) have 

a discrimination ratio that is not significantly different from 0, showing exploration of objects 

equal to random chance (bars show mean ± SEM; * = p < 0.05 significant difference between 

groups). 

4.4.2 Y-Maze Discrimination 
 

Analysis of the YMD (Figure 21b), yielded a significant effect of condition (F2,20 = 3.99; p 

= 0.03).  Post-hoc tests show that while rHf-lesioned quail performed significantly worse than 

shams (p = 0.04), cHf-lesioned quail did not (p = 0.12).  This pattern of results suggests that, like 

mammals, the rHf of quail may disproportionately support spatial learning tasks. 
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Figure 21. Lesions of rHf but not cHf Impair Y-Maze Discrimination (YMD) Memory.  A schematic 

(a) demonstrates the timing of trials in YMD.  Following 3 days of habituation, quail are exposed 

to the Y-maze for 5 min with one of the arms blocked. Quail are then removed for 1 min and 

the wall blocking passage to the novel arm is removed before quail are returned for another 5 

min. Calculation of a discrimination ratio (b) shows that intact sham quail (white) and cHf-

lesioned quail (dark grey) spend significantly more time investigating the novel arm of the 

maze.  In contrast, quail with lesions to rHf (light grey) have a discrimination ratio that is not 

significantly different from 0, showing exploration of the maze arms equivalent to random 

chance (bars show mean ± SEM; * = p < 0.05 between groups). 
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4.5 Conclusions 
 

The current results are the first to report functional segregation along the rostrocaudal 

axis of the avian Hf. These results partially confirm a gradient along the rostrocaudal axis that is 

in some ways comparable to the mammalian dorsoventral axis.  In particular, we observe that 

the rHf is necessary for identification of spatial novelty during YMD.  This observation is 

consistent with results produced in rats completing comparable tasks following lesions to the 

dHf (Hunsaker et al., 2008; Lee et al., 2005; but see Dalland, 1976).  Moreover, the current 

results are consistent with reports of a gradient of spatial information content in avian Hf, with 

the greatest spatial information in principle cells of the rHf (Payne et al., 2021).  This pattern, 

which mirrors the change in information content observed along the rat dorsoventral axis 

(Kjelstrup et al., 2008) furthers the body of evidence demonstrating that the most rostral extent 

of the Hf disproportionately supports high-resolution spatial information processing across 

both Aves and Mammalia. 

 The observation of intact CFC following either rHf or cHf lesions is inconsistent with data 

showing homology between cHf and the mammalian vHf (reviewed in Smulders, 2017).  Several 

conclusions are possible given this observation. It is possible a gradient for emotional 

processing is absent in the avian Hf. That is, the information required to associate an aversive 

cue with a context may be present along most of the rostrocaudal axis. This suggestion is 

consistent with anatomical studies in pigeons (Atoji et al., 2002) reporting that input from 

nucleus taeniae of the amygdala is absent in the rostral third of the HF, but widespread in the 

caudal two-thirds of this region.  These widespread connections may suggest that the majority 
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of the avian Hf is homologous to the ventral mammalian Hf, and the cHf lesions conducted here 

were not sufficient to remove this distributed structure in its entirety.  Alternatively, the 

gradient in emotional processing may specifically be absent in the Hf of Japanese quail (or 

Galliformes in general). This suggestion would be consistent with observations of species 

differences in spatial information processing, revealing much stronger rostrocaudal gradients in 

food-caching than non food-caching birds (Payne et al., 2021).  

 Despite remaining open questions concerning the extent and functional heterogeneity 

of the cHf, the current results demonstrate that, like its mammalian homologue, the avian Hf is 

functionally heterogeneous, with its rostral portion specialized to computations that support 

spatial learning and memory. 
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Chapter 5: General Discussion   
 

The comparison of the evolutionary origins of HDMS provided in Chapter 1 

demonstrated that the critical features of the HDMS are conserved across Mammalia. These 

key features include: convergence of uni- and poly-modal sensory information onto higher 

order association cortices, separation of this information into two parallel processing streams 

of ‘what’ and ‘where’ information, hierarchical processing of these streams resulting in 

progressively more complex, conjunctive representations, and final convergence of both 

streams within the Hf. Despite these convincing similarities in mammals, a lack of evidence 

hampered attempts to examine more distant homologies in avian models. While there is 

considerable evidence of conserved connectivity and function between primates and rats, the 

existing literature offers little data that could provide definitive conclusions as to whether the 

structure and function of the HDMS is conserved between Mammalia and Aves. To address the 

lack of data on this question, in Chapter 2, I developed standardized testing methods, adapted 

from tests commonly used in mammals, for use in multiple members of Aves; in Chapter 3, I 

described lesions of proposed homologues of structures critical in the mammalian HDMS; and 

in Chapter 4, I explored the possibility of functional differentiation within the avian Hf.  

Throughout Chapter 1, the Dual-Process and BIC models provided important 

frameworks for understanding the role of the components of the HDMS in memory. Given the 

new data in Chapters 2, 3, and 4, it is worthwhile to revisit these theoretical frameworks in 

order to assess the extent to which they need to be revised given the current data. 
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5.1 The Dual-Process Model  
 

As described in Chapter 1, the limited experimental evidence suggested that the avian 

Hf is involved in familiarity but not recollection. More specifically, the collective results of 

Bingman and colleagues (1998) and Coppola and colleagues (2014), suggested that the avian Hf, 

unlike its mammalian counterpart, may not be capable of binding non-spatial elements into a 

unified representation. My findings from Chapter 2 support this claim. Within Chapter 2, 

Experiments 1, 2, and 4 demonstrate that pigeons and quail can detect, and will subsequently 

show a preference for, both spatial and object novelty, consistent with a system geared toward 

familiarity. In Experiment 3 (the COR task), however, no novelty-preference was observed when 

identification required binding object identity with that object’s location, context, or both. 

These findings support the idea that the avian HDMS is largely involved in familiarity rather 

than recollection, as failure on these tasks suggests that the avian brain may not bind multiple 

pieces of information into rich event recollections.  

An alternative account for the observed lack of neophilia when recognition required 

combining multiple elements is that subjects may not have been sufficiently motivated to 

either attend to the COR task or demonstrate a preference for the type of novelty that this task 

tests for. To address this, the issue of motivation was considered when designing the 

behavioural testing in Chapter 4. Since food restriction in the quail during an unpublished pilot 

study had proven to be an unsuccessful motivator, we instead opted for an abrupt (and 

potentially stressful) auditory stimulus to maximize the motivation to differentiate the two 

contexts. Since quail displayed more freezing in the context in which the auditory stimulus was 
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delivered, this implied that they are capable of at least combining an aversive event with a 

specific context. While my data do not provide evidence that this is strictly dependent on the 

avian Hf, it does suggest that given sufficient motivation, Japanese quail are capable of binding 

stimuli across modalities in order to create complex representations and act appropriately in 

that context again. This pattern of behavior is consistent with recollection.  

Taken together, the current findings allow for the HDMS of Japanese quail to be situated 

within the Dual-Process model (Figure 22). Evidence from Chapter 2 established that quail and 

pigeons can detect object and spatial novelty (familiarity), Chapter 3 determined that detection 

of object novelty critically involves the APH and not the Hf, and Chapter 4 established that 

Japanese quail were capable of associating a multimodal and emotional event with contextual 

information (recollection). However, the locus of multimodal representations supporting 

recollection remains unknown and could be a topic of future study.  

   

Figure 22. Avian Dual-Process Model. Within the avian hippocampal declarative memory 

system, area parahippocampalis (APH) seems to support object familiarity. Structures 

supporting recollection remain unknown, denoted by a question mark. Double-headed arrows 

indicate bidirectional communication, single-headed indicate unidirectional communication.  
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5.2 Binding of Item in Context Model  
 

A review of the current literature (Chapter 1) offered little information on how the avian 

HDMS could be situated within the BIC model. Prior to the current findings, there was a general 

consensus that the avian Hf was involved in spatial information and that, on the basis of 

connectivity, the APH/CDL region was possibly an “entorhinal-like” homologue (Figure 23). 

Although the current findings support this role of the avian Hf in spatial memory, they greatly 

expand the role of the APH. Looking first to Chapter 3, my results support critical involvement 

of the Hf in spatial memory, but deficits in spatial memory following APH lesions make the 

distinction between the two structures less clear. While this does not rule out the involvement 

of the APH in spatial processing, it remains possible that lesions to the APH sever fibers of 

passage to the Hf, creating the observed deficit. Alternatively, object identity information 

provided by the APH may be critical in performance during the FA task, as the APH may be 

essential when discriminating between cues that could be used to locate the baited cup. 

However, this is unlikely, considering that all the cups were identical. My findings in Chapter 4 

confirmed the critical involvement of the Hf in spatial memory, as lesions to the rostral portion 

of the Hf resulted in deficits in discriminating novel from familiar arms of the Y-Maze. While my 

data do not support the role of the avian Hf in ‘binding item in context’, they do affirm its 

critical involvement in detecting spatial novelty.  

 On the basis of connectivity, APH/CDL was proposed to be comparable to the 

mammalian EC. The data in Chapter 3 provide the first demonstration, to the best of my 

knowledge, of behavioral data consistent with these measures of connectivity. The APH plays a 
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critical role in SOR, and thus is functionally homologous to the PRhC and/or LEC. These findings 

are comparable to mammalian studies in which lesions to the PRhC (Norman & Eacott, 2005) or 

LEC (Boisselier et al., 2014; Persson et al., 2022) also resulted in SOR deficits. Since we are 

unable to say with certainty whether the APH is critically involved in spatial memory or if the 

lesions described in Chapter 3 simply severed fibers of passage, it would be conservative and 

perhaps more accurate to say that the Japanese quail APH may be a functional homologue of 

the parahippocampal region (PRhC and PHC/PoRhC).  

 

Figure 23. Avian Binding Item in Context (BIC) Model. Proposed BIC model on the basis of 

previous literature (left) and an updated BIC model incorporating findings of this dissertation 

(right). The BIC model proposes hippocampal declarative memory system sub-regions can be 

differentiated on the basis of the information that they store. Based on contributions of the 

current literature, area parahippocampalis (APH) and the dorsolateral corticoid area (CDL) were 

proposed as being entorhinal-like, while the hippocampal formation (Hf) was shown to be 
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involved in spatial memory. Findings from this dissertation contribute to this model by showing 

APH involvement in object recognition memory and possibly spatial memory, suggesting that 

this region may be comparable to the mammalian parahippocampal region. Tactile information 

is represented using a foot; olfactory, a beak; and auditory, an ear. Object information is 

represented by rectangles and black triangles. Context information is presented using pattern 

filled rectangles. Increased complexity in representation is depicted through altering the 

arrangement of object and contextual elements. Double-headed arrows indicate bidirectional 

connectivity. Black arrows indicate connectivity between levels of the connectivity hierarchy. 

Dashed arrow indicates a weak connection. Clear arrow indicates possible communication 

between structures. Adapted from Manns and Eichenbaum (2006). cHf, caudal portion of the 

hippocampal formation; DVR, dorsal ventricular ridge; H, hyperpallium; NCV, caudoventral 

nidopallium; NFL, frontolateral nidopallium; PiC, piriform cortex. 

The findings presented in this dissertation provide evidence for parallel processing of 

spatial and non-spatial information within the avian HDMS. In Chapter 3, I observed functional 

dissociation between Hf and APH, while Chapter 4 demonstrated functional differences within 

the Hf, along its rostrocaudal axis. Despite the contributions of the current data to the existing 

literature, when comparing BIC models between primates, rats, and birds (Figure 24), we are 

still unable to say, with certainty, the extent to which the functions of the Hf are conserved 

across Aves and Mammalia. However, the results of Chapter 4 suggest homology, as the 

function of the rHf seems to be conserved between rats and several members of Aves, as also 

noted in previous research (Payne et al., 2021).  
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In addition to proposing a hierarchy of connectivity for Aves and situating functional 

findings within the framework of the BIC model, my work provides a critical examination of the 

BIC across multiple taxa. When comparing the rat BIC model to that of primates, differences 

within the model have been largely attributed to diversified neocortical inputs (Manns & 

Eichenbaum, 2006). However, this explanation may not necessarily be correct, and the primate 

BIC model may instead require updating to consider the extent to which multisensory 

information is required for the solution of the tasks typically used.  

It is intuitive that the natural ecology of individual species may ultimately result in 

differing proportions of sensory representations being incorporated within the connectivity 

hierarchy. For example, based on the available literature it is tempting to conclude that the 

primate HDMS has evolved to process largely visual information. However, the bias may instead 

lie in the testing methods used with NHPs, since primate studies have largely focused on visual 

information, usually testing discrimination using images rather than tangible objects, as is most 

commonly used in rats. Thus, the multisensory nature of discrimination seems to be neglected. 

What appears to be a BIC system with more overlapping representations within the rat may 

only appear so because the rat model reflects the response of the mammalian HDMS to real-

world objects, while the primate BIC model reflects the HDMS response to 2-dimensional 

images. Similar testing methods have not been investigated within a primate model, something 

that would be critical for disambiguating these alternative hypotheses. An updated version of 

the primate BIC including multisensory information needs to be created in order to allow for 

more accurate evolutionary comparisons.   
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Figure 24. Comparison of Binding of Item in Context (BIC) Models between Primates (left), Rats 

(center), and Aves (right). BIC models from all three species show similar hierarchical structure 

as poly- and uni-modal sensory information converges on higher association areas (yellow) and 

is then passed on to intermediary structures before converging within the hippocampal 

formation (Hf; green). Tactile information is represented using a hand, paw, or foot; olfactory, a 

nose or beak; auditory, an ear; and emotional information using a cartoon face. Object 

information is represented by rectangles and black triangles. Context information is presented 

using pattern filled rectangles. Increased complexity in representation is depicted through 

altering the arrangement of object and contextual elements. Double-headed arrows indicate 

bidirectional connectivity. Black arrows indicate connectivity between levels of the connectivity 

hierarchy. Dashed arrow indicates a weak connection. Clear arrow indicates possible 

communication between structures. Grey arrows indicate communication between structures. 

CDL, dorsolateral corticoid area; cHf, caudal portion of the hippocampal formation; LEC, lateral 
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entorhinal cortex; MEC, medial entorhinal cortex; PHC, parahippocampal cortex; PoRhC, 

postrhinal cortex; PRhC, perirhinal cortex; rHf, rostral portion of the hippocampal formation. 

 

5.3 Alternate Theories 
 

While I have described the functions of the HDMS by means of the Dual-Process and BIC 

models, there are numerous other ways to interpret the current results. For example, an 

additional way to evaluate these findings is to situate them within the locale and taxon learning 

systems as described by O’Keefe and Nadel (1978; Nadel 1992, 1994). Note that ‘taxon’ 

learning, referring to grouping of learned associations into categories, is not to be confused 

with ‘taxon’, in reference to phylogenetic relatedness. To avoid confusion, the former will be 

referred to as ‘taxon learning’. Briefly, when differentiating between locale (dependent on the 

Hf) and taxon learning (independent of the Hf), Nadel (1992) points to three major distinctions: 

1) speed of acquisition, 2) underlying systems of motivation, and 3) stability of the memory. 

Regarding the speed of acquisition, locale learning is thought to be rapid, but also degrades 

quickly, and taxon learning is thought to be incremental and slower in comparison. Nadel 

(1992) suggests that the motivation for locale learning is driven by the desire to investigate 

novelty, while taxon learning is thought to be motivated by traditional Hullian forces such as 

hunger and thirst. As evidence for this distinction, Nadel (1992) points to a study in which 

lesions of the Hf destroy the motivation for information seeking, leading rats to behave in a 

manner much more tied to reinforcement contingencies (Devenport & Holloway, 1980). Locale 

learning is thought to yield memory representations with map-like formats as the basis for 

unique episodes with multiple access routes, while taxon learning is thought to rely on schema-
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like representations, emphasizing generalization and similarity between traces, which would be 

more prone to interference than memory representations in locale learning. The idea of the Hf 

being tied to information seeking is particularly intriguing given evidence that it is very difficult 

to get birds to exhibit many “curiosity” driven behaviors such as spontaneous alternation 

(Hayes & Warren, 1963; Neiburg et al., 1970; Hughes, 1989). These reports are consistent with 

difficulties I encountered with quail perseverating on arms in radial arm mazes (unpublished 

observation), which are also consistent with Hughes (1989). Perseveration may occur because 

removing the subject from the arm reinforces a win-stay strategy, being driven more by 

contingencies than novelty-seeking. These behavioral patterns, coupled with the idea that Hf 

activity drives novelty-seeking, may suggest that the output of the HDMS has less relative 

control of behavior in Aves than Mammalia. This, however, is a question of the interaction of 

MMS on a scope well beyond the current research.   

An additional way to interpret the current findings is to compare them in terms of visual 

information pathways. Recall that in pigeons, the tectofugal and thalamofugal pathways are 

thought to be a close approximation of the mammalian ‘what’ and ‘where’ (ventral/dorsal) 

pathways. Within birds, tectofugal and thalamofugal are commonly discussed in terms of 

processing local (object) and global (spatial) visual information. For a better understanding of 

these systems, some key features of the pigeon visual system must be discussed. Briefly, the 

retina of the pigeon contains two foveas, each with enhanced ganglion cell density and differing 

from one another in the colour of oil droplets present, either red or yellow, which act to 

enhance spatial resolution (Letelier et al., 2004; Nalbach et al., 1990). The red field fovea, 

named due to the presence of red oil, mediates high resolution vision in the binocular frontal 
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visual field and is associated with local information (Hayes et al., 1987). The yellow field fovea 

mediates high resolution vision in the monocular lateral visual field and is associated with 

global information (Hahmann & Güntürkün, 1993). Comparable structures are found in many 

diurnal birds, including Japanese quail (Budnik et al., 1984; Ikushima et al., 1986). Taken 

together, the tectofugal visual pathway of laterally eyed birds, is associated with information in 

the red field while the thalamofugal visual pathway primarily mediates visuo-spatial localization 

and pattern vision associated with the yellow field (reviewed in Clark & Colombo, 2022).  

In a recent review by Clark and Colombo (2022), the findings from Chapter 3 in which APH 

lesions resulted in deficits in both SOR and the FA task were discussed. The authors speculated 

that the observed impairments may have occurred not because a fiber of passage was severed 

but because the APH receives ‘where’ information from the Wulst in addition to ‘what’ 

information from the NFL. They speculated that the Wulst may process both shape and spatial 

information viewed in the yellow field, and relay both types of information to the Hf via the 

APH. This supports the idea of the APH as an important intermediary structure in potentially 

processing object information in addition to spatial information upstream of the Hf.  

5.3 Future Considerations 
 

The data presented here offer many potential avenues for further exploration of HDMS 

homology. As mentioned by Clark and Colombo (2022), disambiguating the potential 

explanations for how the APH contributes uniquely to spatial memory would be of great 

interest. Toward this, next steps should include reversible knockdown of the APH using 

methods that spare fibers of passage (e.g., transfection with optogenetic receptors). In 
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addition, follow-up studies should investigate potential functional differentiation within 

structures. The study of functional differentiation may be more difficult to investigate in Aves 

relative to Mammalia, as there are fewer well defined structural borders. This lack of discrete 

layering also raises the possibility that functional heterogeneity may follow a gradient rather 

than being contained within discrete anatomical domains. If the avian Hf differs along the 

rostrocaudal axis, this may also be true for the APH and CDL. In fact, the extensive homology 

seen in the HDMS suggests this should be the case, as this heterogeneity would resemble 

mammalian LEC/MEC and PRhC/PHC (PoRHC) distinctions.  

 Another avenue for further research is the lateralization of the avian HDMS. In a study 

by Clayton and Krebs (1994), four species of bird displayed a preference for examining object-

specific cues with the right eye and spatial cues with the left eye (although species differences 

have been observed; see Clary et al., 2014). Subsequent studies investigating the neural basis of 

this behaviour demonstrated preferential involvement of the right Hf in the representation of 

global environmental space, whereas left Hf was sensitive to local landmarks during a 

navigation task (Tommasi et al., 2003; Kahn & Bingman, 2004; reviewed in Bingman et al., 

2006). Interestingly, the function of each hemisphere may be examined by occluding one eye as 

the majority of visual information from each eye is maintained within the optic nerves, crossing 

to the contralateral hemisphere (however, hemispheric functional asymmetry has been shown 

to decrease with age; Shabro et al., 2022). Since there is evidence of asymmetry at the level of 

the hemisphere, how and where differing proportions of object and spatial information get 

integrated within the HDMS could be of interest. In fact, similar hemispheric biases have been 

seen in human imaging (e.g., Bellgowan et al., 2009), so further investigations of avian 
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lateralization may bolster the accumulated data establishing homology of the HDMS across 

classes. 

Taken collectively, the results of this dissertation contribute greatly to our 

understanding of the Japanese quail HDMS. Chapter 2 adapted commonly used mammalian 

testing procedures for assessment of object and spatial novelty for use in Japanese quail and 

pigeons. Using these tests to determine HDMS structural involvement, Japanese quail 

underwent selective lesions along either the mediolateral (Chapter 3) or rostrocaudal (Chapter 

4) axis. Results revealed functional differentiation both between (Hf versus APH) and within 

(rHf versus cHf) structures, permitting an update of the known functions of sub-regions of the 

avian HDMS (Chapter 5). In summary, these data suggest that most of the key features of the 

mammalian HDMS, including the existence of anatomically separated hierarchical processing 

streams, as well as eventual convergence of information in the Hf, is conserved across at least 

these two classes.   
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