Wilfrid Laurier University

Scholars Commons @ Laurier

Theses and Dissertations (Comprehensive)

2022

Effects of 17α -ethinylestradiol (EE2) on gonadal development and gene expression in larval mummichog (Fundulus heteroclitus)

Carly Sing-Judge sing7050@mylaurier.ca

Follow this and additional works at: https://scholars.wlu.ca/etd

Recommended Citation

Sing-Judge, Carly, "Effects of 17α-ethinylestradiol (EE2) on gonadal development and gene expression in larval mummichog (Fundulus heteroclitus)" (2022). *Theses and Dissertations (Comprehensive)*. 2451. https://scholars.wlu.ca/etd/2451

This Thesis is brought to you for free and open access by Scholars Commons @ Laurier. It has been accepted for inclusion in Theses and Dissertations (Comprehensive) by an authorized administrator of Scholars Commons @ Laurier. For more information, please contact scholarscommons@wlu.ca.

1	
2	Effects of 17α-ethinylestradiol (EE ₂)
3	on gonadal development and gene
4	expression in larval mummichog
5	(Fundulus heteroclitus)
6	
7	By:
8	Contra Sing Judgo
9 10	B Sc. Environmental Toxicology and Biology University of Guelph 2015
10	D.Se. Environmental Toxicology and Diology, Oniversity of Gueiph, 2015
12	
13	
14	
15	
16	
17	
18	
19	
20	
21 22	I hesis
23	Submitted to the Department of Biology
24	Faculty of Science
25 26	In partial fulfillement of the particular for the Master of Colours in Internet's D' 1
20 27	In partial fulfillment of the requirements for the Master of Science in Integrative Biology Wilfrid Laurier University
28	While Laurer Oniversity
	2022

29 **Dedication**

30	This thesis is proudly dedicated to my grandparents, Harry Clyde Sing and
31	Barbara Joan Sing, who have helped me tremendously throughout my entire academic
32	career. I would have never gone back to school to complete a Master's degree without
33	their love and encouragement to pursue these studies. My grandparents have always
34	believed in my capabilities ever since I was young. I only wish I could have shared this
35	milestone with them in person.
36	I miss you, Grandma and Papa.

37 Abstract

38 The mummichog (Fundulus heteroclitus) is a small-bodied estuarine fish that 39 inhabits the North American east coast and is often used as a model adult saltwater fish in 40 environmental bioassays. This study aimed to describe gonadal development and gene 41 expression levels in five-week-old mummichog under control conditions and following 42 17α -ethinylestradiol (EE₂) treatment in order to better understand the susceptibility of sex 43 determination (SD) and gonadal differentiation (GD) processes following contaminant 44 exposure. In the first experiment, eggs were fertilized, collected and incubated in the 45 laboratory for three weeks, then yolk-sac larvae were grown out for five weeks and 46 sampled for gonadal development and gene expression levels in ovaries and testes. In a 47 second experiment, yolk-sac larvae were reared for five weeks in one of three static (daily 48 renewal) treatments $[0, 2 \text{ and } 10 \text{ ng/L EE}_2 \text{ (actual)}]$ and then sampled for gonadal 49 histology and gene expression analysis. In controls, the sex ratio approached 50/50 and 50 EE₂ treatment did not change the sex ratios. However, altered gametogenesis and 51 increased degeneration were observed in EE₂-treated ovaries and testes, indicating a 52 possible downregulation of the HPG (hypothalamus-pituitary-gonadal) axis, thus, halting 53 normal gonadal development. Several GD genes were identified for the first time in the 54 mummichog that may be influencing female- and male- promoting networks. EE_2 55 treatment did not change ovarian gene expression, however, testis gene expression was 56 severely altered by increased expression of female-promoting genes and anti-Mullerian 57 hormone (amh) which may influence self-renewal in early-staged germ cells. The lack of 58 effect of EE₂ on sex ratio was surprising and may have been a result of treating the fish 59 after hatching instead of during embryogenesis. These results demonstrate that male

-ii-

- 60 mummichog are more sensitive to EE_2 after hatching than females. This study also
- 61 demonstrates that GD mechanisms in the mummichog can be altered by environmentally-
- 62 relevant concentrations of EE₂ when exposed after hatching. This study suggests that in
- 63 mummichog SD is fixed prior to hatching but that GD mechanisms are susceptible to
- 64 environmental estrogen exposure during early development.

65 Acknowledgments

I would first like to thank my thesis advisors Dr. Deborah MacLatchy at Wilfrid
Laurier University and Dr. Glen Van Der Kraak at the University of Guelph. Thank you
for being strong leaders throughout the COVID-19 pandemic and encouraging me not to
give up on the writing process.

70 I would also like to acknowledge a few laboratory colleagues. Firstly, Dr. Robert 71 Rutherford, a previous post-doc student in the MacLatchy lab, for his continuous support 72 throughout my project both personally and professionally. Rob has inspired me to stay 73 positive, even during the most difficult of times; I will never forget his sunny personality 74 and the impact it made to the lab. As well, I would like to acknowledge Jacquie 75 Matsumoto, from the Van Der Kraak lab, for providing exceptional technical advice and 76 encouragement throughout my studies. Jacquie has been an amazing mentor since my 77 undergraduate thesis project, I hope to one day provide the same kind of mentorship to 78 other students. Lastly, I wanted to recognize Emily Corrigan, a previous technician from 79 the MacLatchy lab, for her technical help with the project and providing me with the 80 motivation that I needed to complete the lab work. It was always comforting having a 81 close friend throughout my studies. I am gratefully indebted to them all for their very 82 valuable guidance on this thesis.

Finally, I must express my very profound gratitude to my fiancé, Connor Simmons, for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis. Connor has always had my back through any rough day; this accomplishment would not have been possible without him. Thank you.

88 Carly Sing-Judge, B.Sc.

Carly Sig-Jufe

90 **Contents**

91	Dedication	i
92	Abstract	ii
93	Acknowledgments	iv
94	Contents	v
95	List of Abbreviations	vii
96	List of Tables	ix
97	List of Figures	X
98	1.0 General introduction	1
99	1.1 Sexual development in fish	2
100	1.1.1 Sexual determination	3
101	1.1.2 Gonadal differentiation	5
102	1.1.3 Steroids controlling sexual fate	16
103	1.1.4 Genes controlling sexual fate	17
104	1.2 Endocrine disruption in fish	
105	1.2.1 Estrogens and their effects on fish	
106	1.3 Fundulus heteroclitus: a good saltwater fish toxicology model	41
107	1.4 Research Objectives	
108	2.0 Materials and methods	51
109	2.1 Adult fish collection and husbandry	51
110	2.2 Fertilization, collection and incubation	
111	2.3 Fish growth	
112	2.4 Sampling	53
113	2.5 Histology cassette preparation and processing	53
114	2.6 Analysis	54
115	2.6.1 Histology	54
116	2.6.2 Gene expression	61
117	2.6.3 Primer development optimization and sequencing	66
118	2.6.4 Experiment 1: Pilot study design	
119	2.6.5 Experiment 2: EE ₂ exposure design	
120	2.7 Statistics	70
121	3.0 Results	72
122	3.1 Fish health	72
123	3.2 Experiment 1: Pilot study	72
124	3.3 Experiment 2: EE ₂ exposure	75
125	4.0 Discussion	
126	4.1 Environmentally-relevant EE ₂	90

127	4.2 Sex ratios	
128	4.3 Intersex	94
129	4.4 Abnormal cavity	96
130	4.5 Gametogenesis	97
131	4.6 Degeneration	
132	4.7 Ovarian gene expression	
133	4.8 Testis gene expression	
134	4.9 Conclusions	
135	5.0 Thesis Relation to Integrative Biology	
136	6.0 References	
137	Appendices	
138	A1: Methodology	
139	A1.1 Histology cassette preparation & processing:	
140	A1.2 Ovarian histology figures	
141	A1.3 Testis histology figures	
142	A1.4 Reference gene expression	
143	A2: Extra histology figures	
144		

145 List of Abbreviations

146	11-KT - 11-ketotestosterone
147	28S - structural large ribosomal RNA of eukaryotic cytoplasmic ribosomes
148	18S - structural small ribosomal RNA of eukaryotic cytoplasmic ribosomes
149	β -actin - beta actin
150	AR - androgen receptor
151	amh - anti-Mullerian hormone
152	amhy - anti Mullerian hormone gene on the Y chromosome
153	amhr - amh receptor
154	BMP - bone morphogenetic protein
155	bmp15 - bone morphogenetic protein 15
156	BSD - behavioural sex determination
157	cDNA - clone DNA
158	Cq - cycle value
159	cyp11c1- cytochrome P450 family 11 subfamily C member 1
160	cyp19a1a - cytochrome P450 family 19 subfamily A group 1 subgroup A or aromatase
161	dax1- dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome x,
162	gene 1
163	dmy - DM-domain gene on the Y chromosome
164	dmrt1- double sex and Mab-3 related transcription factor 1
165	dph - days post hatch
166	DNA - deoxyribonucleic acid
167	E ₁ - estrone
168	$E_2 - 17\beta$ -estradiol
169	EDC - endocrine disruption chemical
170	$EE_2 - 17\alpha$ -ethinylestradiol
171	efl1α - elongation factor 1 alpha
172	ER - estrogen receptor
173	ERα - estrogen receptor alpha
174	$ER\beta$ - estrogen receptor beta
175	ESD- environmental sex determination
176	foxl2 - forkhead transcription factor 2
177	FSH - follicle stimulating hormone
178	GD - gonadal differentiation
179	gdf9 - gonadal differentiating factor 9
180	gdsf - gonadal derived soma factor
181	GnRH - gonadotropin releasing hormone
182	GSD - genetic sex determination
183	GTH - gonadotropin
184	H&E - hemoxylin and eosin stain
185	HPG - hypothalamic-pituitary-gonadal axis
186	LC MS/MS - liquid chromatography with tandem mass spectrometry
187	LH - luteinizing hormone

188	PCR - polymerase chain reaction
189	PGC - primordial germ cell
190	RNA - ribonucleic acid
191	RQI - RNA quality indicator number
192	RT-qPCR - Reverse transcription quantitative polymerase chain reaction
193	SD - sexual determination
194	SRY - sex-determining region on the Y chromosome, also known as testis determining
195	factor or testis determining factor
196	SOX9 - SRY-box transcription factor 9
197	T - testosterone
198	TMS - tricaine methanesulfonate
199	TGF β - transforming growth factor beta superfamily
200	USEPA - United States Environmental Protection Agency
201	VTG - vitellogenin
202	wnt4 - wingless-related integration site family, member 4
203	wph - weeks post hatch
204	XX - homozygous female
205	

206 List of Tables

207	Table 1.1 : Genes implicated in sex determination, ovarian differentiation, testicular
208	differentiation and other processes in different fish species24
209	Table 1.2: Comparison of various male fish species exposed to environmentally-relevant
210	concentrations of 17α -ethinylestradiol (EE ₂) in various experimental designs including
211	stage of development, duration of exposure (years=y, months=mo, days=d, weeks=w),
212	and route of exposure47
213	Table 1.3: Comparison of various female fish species exposed to environmentally-
214	relevant concentrations of 17α -ethinylestradiol (EE ₂) in various experimental designs
215	including stage of development, duration of exposure (years=y, months=mo, days=d,
216	weeks=w), and route of exposure49
217	Table 2.1: Genes of interest involved in to fish gonadal development with their accession
218	numbers
219	Table 3.1: Five-week-old mummichog (Fundulus heteroclitus) sex ratios (%) from
220	Experiments 1 and 2. Fish sex classified histologically by presence of male or female
221	gonadal tissue, or intersexed gonad (both male and female gametes)

222 List of Figures

223	Figure 1.1: Sexual development strategies observed in fish, across embryonic (E), larval
224	(L) and adult (A) life stages
225	Figure 1.2: The two closely related processes, sexual determination (SD) and gonadal
226	differentiation (GD) are responsible for sexual development in fish5
227	Figure 1.3 : Typical order of fish development
228	Figure 1.4: Photomicrograph of undeveloped gonadal section of the newly hatched
229	mummichog (<i>Fundulus heteroclitus</i>) larva7
230	Figure 1.5: Representation of the types of germ cell divisions, type I and II with
231	subsequent meiosis
232	Figure 1.6: Early differentiation of male and female sex cells10
233	Figure 1.7: Photomicrograph of transverse sections of gonads of fathead minnow
234	(<i>Pimephales promales</i>) at 10 days post hatch with hematoxylin and eosin stain12
235	Figure 1.8: Photomicrograph of eight-week-old mummichog (Fundulus heteroclitus)
236	ovary under light microscope with hematoxylin and eosin stain at 50X13
237	Figure 1.9: Photomicrograph of transverse sections of fathead minnow (Pimephales
238	promales) testes at (A) 60 and (B) 90 days post hatch (dph) with hematoxylin and eosin
239	stain15
240	Figure 1.10: Photomicrograph of six-week-old mummichog (Fundulus heteroclitus)
241	testis
242	Figure 1.11: Steroidogenesis in somatic cells generates testosterone (T) in the gonad. A
243	fish destined to be female will convert T into 17β -estradiol (E ₂) via aromatase which is
244	encoded by <i>cyp19a1a</i> 17

245	Figure 1.12: Photomicrographs of hematoxylin and eosin-stained ovary sections from
246	zebrafish (Danio rerio) exposed from 2 to 60 dph to acetone solvent (A; control) or 1 ng/l
247	of 17α-ethinylestradiol (B; EE ₂) at 200X/ magnification29
248	Figure 1.13: Photomicrograph of fathead minnow (<i>Pimephales promales</i>) testis in
249	control and 17α-ethinylestradiol (EE ₂) at 100 dph31
250	Figure 1.14: The initial stage of ovarian follicular atresia of mature Redbelly tilapia
251	(Coptodon zillii) using Verhoff''s stain
252	Figure 1.15: Photomicrograph of late-stage atresia in the ovaries of the common carp
253	(<i>Cyprinus carpio</i>) with hemoxylin and eosin staining33
254	Figure 1.16: Photomicrographs of hematoxylin and eosin-stained histological sections of
255	testes from male three-spined stickleback (Gasterosteus aculeatus) exposed for four
256	weeks
257	Figure 1.17: Light micrograph of zebrafish (Danio rerio) with normally developed testis
258	(40 dph) under control conditions (A) and intersexed testis (testis-ova) with 25 ng/L EE_2
259	treatment (B)
260	Figure 1.18: Fundulus heteroclitus embryos 15 days post fertilization (left; 2X
261	magnification), post-hatch yolk-sac larvae (middle) 10 min after hatching and a five-
262	week-old juvenile (right, average length was 23.59 ± 1.06 mm, N=45)42
263	Figure 1.19: Representation of research objectives for Experiments 1 and 2
264	Figure 2.1: Five-week-old mummichog (Fundulus heteroclitus) ovary under light
265	microscope with hemoxylin and eosin staining. Various developing oocytes (circles) were
266	observable at different stages56
267	Figure 2.2: Atretic follicle stages that can be identified histologically in a five-week-old
268	mummichog (<i>Fundulus heteroclitus</i>)57

269	Figure 2.3: Five-week-old mummichog (Fundulus heteroclitus) testis under light
270	microscope with hemoxylin and eosin staining
271	Figure 2.4: Degeneration index to evaluate severity of necrosis and hypertrophic
272	interstitial tissue in mummichog (Fundulus heteroclitus) testis treated with 17α-
273	ethinylestradiol (EE ₂) for five weeks post hatch61
274	Figure 2.5: Pictograph of five-week-old mummichog (Fundulus heteroclitus) with an
275	abnormal cavity (*) testis under light microscope with hemoxylin and eosin staining62
276	Figure 2.6: Experiment 2 timeline
277	Figure 2.7: Experiment 2 treatment experimental design. Each dosing tank was filled
278	with 15 L of saltwater then mixed with 0.5 ml of ethanol and corresponding EE_2
279	treatment
280	Figure 3.1: Photomicrograph of five-week-old mummichog (Fundulus heteroclitus)
281	testes (left) and ovary (right) under light microscope with hemoxylin and eosin staining.
282	Presence of testis or ovary on slide was used to determine sex of fish for sex ratio data
283	analysis72
284	Figure 3.2: Normalized gene expression of <i>amh</i> , <i>dmrt1</i> , <i>foxl2</i> , <i>cyp19a1a</i> , <i>gdf</i> 9 and <i>bmp15</i>
285	from pooled five-week-old mummichog (Fundulus heteroclitus) ovaries under standard
286	laboratory conditions
287	Figure 3.3: Normalized gene expression of <i>amh</i> , <i>dmrt1</i> , <i>foxl2</i> , <i>cyp19a1a</i> , <i>gdf</i> 9 and <i>bmp15</i>
288	from pooled five-week-old mummichog (Fundulus heteroclitus) testis under standard
289	laboratory conditions74
290	Figure 3.4: Treatment water EE ₂ concentration (ng/L) analysis from LC/MS/MS (method
291	detection limit = 0.5 ng/L)75

292	Figure 3.5: Photomicrographs of cross sectioned five-week-old female mummichog
293	(Fundulus heteroclitus) ovary exposed to daily renewal of 17α -ethinylestradiol (EE ₂) for
294	five-weeks post hatch under light microscope (10X) with hemoxylin and eosin staining
295	(Experiment 2)
296	Figure 3.6: Photomicrographs of cross sectioned five-week-old male mummichog
297	(Fundulus heteroclitus) testis exposed to daily renewal of 17a-ethinylestradiol (EE2) for
298	five-weeks post hatch under light microscope (20X) with hemoxylin and eosin staining
299	(Experiment 2)77
300	Figure 3.7: Distribution of early developmental stage oocytes from five-week-old
301	mummichog (Fundulus heteroclitus) ovary exposed to daily renewal of control (0 ng/L),
302	low (2 ng/L) and high (10 ng/L) concentration of EE_2 from hatching
303	Figure 3.8: The proportion of different classifications of atretic follicles observed in five-
304	week-old mummichog (Fundulus heteroclitus) ovary exposed to daily renewal of control
305	(0 ng/L), low (2 ng/L) and high (10 ng/L) concentration of EE_2 from hatching80
306	Figure 3.9: Distribution of early sperm developmental stages in five-week-old
307	mummichog (Fundulus heteroclitus) testis treated with daily renewal of control (0 ng/L),
308	low (2 ng/L) and high (10n g/L) concentration of EE ₂ from hatching82
309	Figure 3.10: Average degeneration score in five-week-old mummichog (Fundulus
310	heteroclitus) testis exposed to daily renewal of control (0 ng/L), low (2 ng/L), and high
311	(10 ng/L) concentration of EE ₂ after hatching
312	Figure 3.11: Proportion of abnormal cavities found in five-week-old mummichog
313	(Fundulus heteroclitus) testes exposed to daily renewal of control (0 ng/L), low (2 ng/L)
314	and high (10 ng/L) EE ₂ concentration treatments for five weeks after hatching

315	Figure 3.12: Normalized gene expression of <i>cyp19a1a</i> , <i>foxl2</i> , <i>gdf9</i> , <i>bmp15</i> , <i>dmrt1</i> and
316	amh from pooled five week old mummichog (Fundulus heteroclitus) ovaries under
317	standard laboratory conditions
318	Figure 3.13: Normalized gene expression of gonadal differentiating genes in pooled five-
319	week-old mummichog (Fundulus heteroclitus) ovaries from daily renewal of control (0
320	ng/L), low (2 ng/L) and high (10 ng/L) EE_2 concentration treatments from hatching87
321	Figure 3.14: Normalized gene expression of <i>cyp19a1a</i> , <i>foxl2</i> , <i>gdf9</i> , <i>bmp15</i> , <i>dmrt1</i> and
322	amh from pooled five week old mummichog (Fundulus heteroclitus) testes under
323	standard laboratory conditons
324	Figure 3.15: Normalized gene expression of sex determining and gonadal differentiating
325	genes in pooled five-week-old mummichog (Fundulus heteroclitus) testes from daily
326	renewal of control (0 ng/L), low (2 ng/L) and high (10 ng/L) EE_2 concentration
327	treatments from hatching
328	Figure 4.1: Proposed exposure experiment to understand window of sensitivity in a
329	developing mummichog to 17α-ethinylestradiol (EE ₂)94

1.0 General introduction

331 Sexual development in fish is studied in the fields of aquaculture, ecotoxicology and 332 fundamental biology to understand normal differentiation and identify stressors impacting 333 this sensitive process. There are two closely related processes that influence sexual 334 development. Sex determination (SD) controls which developmental pathway, usually 335 male or female, an organism assumes, while gonadal differentiation (GD) encompasses 336 the processes controlling gonad development after sex has been determined. Both SD and 337 GD pathways are conserved among vertebrates, however, the specific genes involved 338 vary. This thesis is focused on describing gonadal morphology as well as identifying 339 genes, which are known to be involved in SD and GD in other species, in the mummichog 340 (Fundulus heteroclitus). This thesis utilized gonadal histology and reverse transcription 341 quantitative polymerase chain reaction (RT- qPCR) to examine morphology and gene 342 expression profiles in testis and ovary of five-week-old mummichog. Research has 343 demonstrated that SD and GD can be affected by endocrine disrupting compounds 344 (EDCs). This thesis also investigates the effects of a model estrogenic EDC (EE₂; 17α -345 ethinylestradiol) on gonad morphology and gene expression in the developing 346 mummichog. The thesis begins with a detailed background on existing literature, 347 followed by the experimental work investigating SD and GD, and concludes with a 348 discussion of the results and a description of the integrative nature of the work.

-1-

1.1 Sexual development in fish

350 Sexual development in vertebrates includes the processes involved in transforming an 351 immature embryo to an adult. The processes driving sexual development are not fixed, 352 varying by species, genes/chromosomes, and environment (Devlin and Nagahama, 2002). 353 Fish are good models for sexual development as they exhibit all sexual strategies (Norris 354 and Lopez, 2011). Fish are generally gonochoristic (Bahamonde et al., 2013; Devlin and 355 Nagahama, 2002), i.e., there are two sexes, and each individual develops into either a 356 male (with testes) or female (with ovaries). One exception to this pattern is 357 hermaphroditism, which represents an individual producing gametes from both sexes 358 either simultaneously or in sequential stages of life (Todd et al., 2016). Another exception 359 is intersex, which is described as the presence of both male and female gonadal tissue in a 360 fixed sex individual. Intersex tends to be atypical in wildlife, occurring briefly in 361 transitioning hermaphroditic fish and irregularly in some pre-spawning gonochoristic fish 362 (Bahamonde et al., 2013). However, intersex has also been implicated as a signature 363 effect caused by exposure to EDCs (Ibor et al., 2016) which will be further discussed later 364 in the chapter. Each of these sexual strategies influences the sex of the adult fish (Figure 365 1.1). Sexual development is controlled by two closely related processes, SD and GD 366 (Figure 1.2). Understanding these processes in fishes is valuable for better understanding 367 the potential impacts anthropogenic wastes cause in fish populations via effects on sexual 368 development (Courtenay et al., 2002).

-2-

370 Figure 1.1: Sexual development strategies observed in fish, across embryonic (E), larval 371 (L) and adult (A) life stages. Hermaphroditic fish (left) are either protandrous, developing 372 into a mature male then transitioning to female [e.g., clownfish (Amphiprion ocellaris)], 373 or protogynous, developing first into a mature female then transitioning to male under specific circumstances [e.g., bluehead wrasse (*Thalassoma bifasciatum*)]. The transition 374 period of hermaphroditic fish may involve a brief intersex phase (purple arrows). 375 Gonochoristic fish (right) will develop into one of two sexes [e.g., medaka (Oryzias 376 *latipes*)]. Unnatural intersex gonochorist (purple arrows) fish have been influenced by a 377 378 chemical stressor (e.g., effluents, DDT, or pharmaceuticals), disrupting normal development and resulting in a gonad containing both male and female gametes. The 379 380 figure has been influenced by concepts from Dietrich and Krieger, 2009; Nagahama et al., 381 2021. Image generated using BioRender.

382 **1.1.1 Sexual determination**

383	SD refers to the genes and molecular events that influence whether a male or female
384	sex-differentiating pathway will be followed during development (Devlin and Nagahama,
385	2002; Leet et al., 2011). Before gonads develop, the organism's unique genome at
386	fertilization influences factors that encourage the gonad to mature into a particular sex
387	(Norris and Lopez, 2011). There are three mechanisms of SD in fish: genetic sex
388	determination (GSD), behavioral sex determination (BSD) and environmental sex
389	determination (ESD). These mechanisms rely primarily on genetic components, social,

and environmental cues such as temperature, respectively. Fish may rely on one, two or
all three methods of SD for development, depending on the species (Devlin and
Nagahama, 2002; Leet et al., 2011). Due to this complexity of the different SD
mechanisms in fish, there are currently gaps in understanding the full physiological
mechanisms of how sex is determined (Devlin and Nagahama, 2002; Ortega-Recalde et
al., 2020).

396 Mammals have a master sex-determining gene identified which is the sex-397 determining region on the Y chromosome, also known as testis determining factor (SRY; 398 Koopman et al., 1990). SRY promotes male development by upregulating SRY-box 399 transcription factor 9 (SOX9) expression, which then leads to a cascade of genetic factors 400 causing additional expression of genes that further male development, e.g., anti-Mullerian 401 hormone (*amh*). This sequence of events, known as the male differentiating pathway, 402 ultimately leads to the development of testes. While there is a good understanding of SD 403 in mammals, there is a need for more research on the control of GSD in fish. An analogue 404 of mammalian SRY, DM-domain gene on the Y chromosome (*dmy*), has been identified in 405 Japanese medaka (Oryzias latipes) as playing a key role in GSD. Since this discovery, 406 several other genes have been implicated in influencing SD and GD (Nagahama et al., 407 2021), including gonadal derived soma factor (gdsf; Myosho et al., 2012), cytochrome 408 P450 family 11 subfamily c member 1 (cyp11c1; Todd et al., 2019) and amh on the Y 409 chromosome (*amhy*; Pan et al., 2019). While the number of genes impacting SD continues to grow, there is currently no 'master gene' found across all teleost species. 410

-4-

412	Figure 1.2: The two closely related processes sexual determination (SD) and gonadal
/12	differentiation (GD) are responsible for sevual development in fish SD is governed by
413	the chromosome(s) and genes in the organism at fartilization. A master say determining
414	the chromosome(s) and genes in the organism at returnzation. A master sex determining
415	switch (MSDS) is activated to promote an organism's development to either male or
416	female, e.g., <i>dmy</i> expression in the Japanese medaka. At the appropriate time, cells in the
417	undifferentiated gonad will express genes that further development of one sex while
418	simultaneously inhibiting the opposites sex's promoting network of genes. Somatic cells
419	in the developing gonad will then produce sex specific steroids that will further
420	development into a functioning gonad. Levdig cells (testes) produce 11-ketotestoserone
421	$(11-KT)$ while granulosa cells (ovary) produce 17 β -estradiol (E ₂) to aid in development of
422	(11 K1) while granulosic cens (ovary) produce $1/p$ estimator (E_2) to and in development of each say. A depted from Conzelez et al. (2015) and concreted using DioDender
422	each sex. Adapted from Gonzalez et al. (2013) and generated using BioRender.
423	1.1.2 Gonadal differentiation
101	CD is the melacular and callular processes that transform on immeture good into a
424	GD is the molecular and central processes that transform an initiature gonad into a
425	testis (male) or ovary (female) after genetic sex has been determined (Devlin and
426	Nagahama, 2002; González et al., 2015; Leet et al., 2011). The timing of these processes

- 427 are species dependent; GD may occur during embryogenesis, larval, juvenile or adult
- 428 stages of life (Devlin and Nagahama, 2002; Dietrich and Krieger, 2009; Leet et al., 2011;
- 429 Piferrer, 2001). The transition into each life stage varies greatly from species to species.
- 430 In general, embryogenesis begins at the time of fertilization, encompassing development

431 while inside the egg, and transitions into a free-swimming larva once free from the egg 432 and the yolk sac has been absorbed (Figure 1.3). In some cases, there is a yolk-sac larva 433 which is free-swimming but relies on feeding via the yolk sac. This stage is considered an 434 embryo until the yolk sac is completely absorbed. Larvae rely on feeding for nutrients and 435 typically have disproportionate features (e.g., large eyes compared to the body size). 436 Larvae transition into juvenile fish once unique features such as fin rays and scales are 437 apparent. This transition is typically followed by an increased growth rate. GD may occur 438 during any of these developmental stages (Devlin and Nagahama, 2002).

439

440 Figure 1.3: Typical order of fish development. Embryos (E, top) are contained in a 441 spherical egg where rapid cell proliferation occurs to create tissues and organs. 442 Eventually hatching enzymes and embryo movement degrades the egg layer resulting in a 443 hatched fish. Some species will hatch with a yolk sac (*) attached which will eventually 444 be consumed by the embryo (Y). The next stage, larvae (L), is characterized by the lack of yolk sac as well as other distinct fish features such as pigmentation or fin rays. Fish 445 446 will transition into juveniles (J) when distinct features are visible followed by an 447 increased growth rate. Adapted from Alix et al., 2015; Armstrong and Child, 1965; Nagahama et al., 2021. Image generated using BioRender. 448

449 There are two main cell types within the gonad that contribute to its development: 450 germ cells, critical for conveying genetic information, and somatic cells, supporting the 451 growth and development of the germ cells (Nishimura and Tanaka, 2014). Typically, GD 452 begins once primordial germ cells (PGC), which are the precursor cells of gametes, 453 migrate from the dorsal wall of the coelomic cavity to the region of the presumptive 454 gonad (Devlin and Nagahama, 2002). Under the right conditions, these germ cells 455 proliferate and enlarge with their supporting somatic cells, to give rise to gonad tissue 456 (Figure 1.4).

457

Figure 1.4: Photomicrograph of undeveloped gonadal section of a newly hatched
mummichog (*Fundulus heteroclitus*) larva. Primordial germ cells (arrows) are in early
developmental stages. Immunostaining with anti-3β-hydroxysteroid dehydrogenase,
counterstaining with hematoxylin. Bar is 10µm. Photo taken from Shimizu et al. (2008)
with permission from Elsevier.

464 There are two different types of cellular divisions that can occur in PGCs: type I and
465 type II (Figure 1.5). Type I divisions are similar to stem cells where there is self-renewal,
466 each daughter cell produced is surrounded by somatic cells (Saito et al., 2007). Type II
467 divisions are characterized by an interconnection of the daughter cells and the onset of
468 meiosis, and, therefore, are committed to furthering gametogenesis processes (Saito et al.,
469 2007).

470

Figure 1.5: Representation of the types of germ cell divisions, type I and II with
subsequent meiosis. Type I (yellow) divisions are denoted by stem cell-like self renewal;
the daughter cells are completely separated. Type II (orange) divisions result in
interconnected daughter germ cells. The resulting daughter cells of type II divisions are
committed to meiosis (red) for gametogenesis. Adapted from Nishimura and Tanaka
(2014).

477	The morphological development of an immature gonad into ovaries or testes in
478	gonochoristic fish typically occurs during the early stages of life, either embryonic or

479 larval (Dietrich and Krieger, 2009). During this time, SD and GD engage in a

480 sophisticated relationship between the brain and gonad to facilitate this transition (Devlin 481 and Nagahama, 2002; Leet et al., 2011). Cellular communication between the brain and 482 gonad are carried out through the endocrine system's hypothalamic-pituitary-gonadal 483 (HPG) axis. Sensory information is collected from the internal and/or external 484 environment (neurotransmitters, social cues, temperature, photoperiod, etc.) which are 485 then processed and integrated in the brain by the hypothalamus. When appropriately 486 stimulated, the hypothalamus reacts by synthesizing and releasing neuropeptides called 487 gonadotropin releasing hormone (GnRH) which act on the anterior pituitary gland. The 488 anterior pituitary then releases the gonadotropins (GTH) follicle stimulating hormone 489 (FSH) and luteinizing hormone (LH) into the bloodstream. These GTHs act on the gonad 490 to stimulate the production of steroids through receptor-mediated signal transduction 491 which initiate and further the development of the gonad as well as relay negative 492 feedback to the brain to downregulate the axis (Biran and Levavi-Sivan, 2018). 493 1.1.2.1 Early gonadal development 494 Early gonad development covers PGC migration and growth, development of the 495 gonadal ridge and the differentiation of the underdeveloped gonad (Norris and Lopez, 496 2011). In most gonochoristic fishes, this process is either differentiated, developing into 497 either an ovary or testis, or undifferentiated, develop an immature ovary before 498 transitioning to a mature ovary or testis (Norris and Lopez, 2011; Santos et al., 2017).

499 PGCs give rise to oogonia (female) or spermatogonia (male; Figure 1.6).

-9-

501	Figure 1.6: Early differentiation of male and female sex cells. Male primordial germ
502	cells differentiate into type A spermatogonia (top left) which are surrounded by Sertoli
503	(grey) and Leydig (dark green) cells. These cells undergo type II division generating type
504	B spermatogonia, which will divide meiotically to form spermatocytes. Spermatocytes are
505	enclosed in spermatocysts made of Sertoli cells to encourage further maturation of sex
506	cells. Female primordial germ cells differentiate into oogonia (top right) which are
507	surrounded by presumptive granulosa cells (black). Oogonia undergo type II divisions in
508	cyst-like capsules enclosed by somatic cells similarly to males however, most of the
509	daughter cells under atresia, a type of programmed cell death, to allow for resorption of
510	nutrients. Granulosa cells (blue) differentiate around the oocyte once it has differentiated
511	into a primary oocyte. Theca cells (light green) also surround the granulosa cells to form
512	the ovarian follicle which is necessary for further oocyte development. Adapted by Norris
513	and Lopez (2011) and Nishimura and Tanaka (2014).

1.1.2.2 Early ovarian differentiation

515 Ovarian differentiation can be characterized by the onset of meiosis in germ cells and 516 the formation of the ovarian cavity, which can be distinguished histologically (Dietrich 517 and Krieger, 2009). Ovarian somatic cells provide factors for oogenesis, the development 518 of the ovum (egg). Oogenesis begins when PGCs differentiate into oogonia through a 519 mitotic division (Dietrich and Krieger, 2009), then undergo a series of steps including (1) 520 transformation into oocytes (2) growth of oocytes, (3) maturation, and (4) ovulation 521 (Dietrich and Krieger, 2009). The follicle layer consists of somatic cells enveloping the 522 oocyte which are necessary components providing factors throughout oogenesis (Dietrich 523 and Krieger, 2009). Thecal cells (outer layer) assist in ovarian development by supplying 524 testosterone (T) under the control of FSH (Norris and Lopez, 2011). T is then aromatized 525 to 17β -estradiol (E₂) in the granulosa cells. E₂ is essential for ovary development as it 526 required to produce vitellogenin (VTG), a characteristic of developing oocytes which is 527 essential to provide a food source to developing embryo (Dietrich and Krieger, 2009). 528 There are four early ovum stages: oogonia, chromatin nucleolar, perinucleolar, and 529 cortical alveolar, which are referred to as previtellogenic stages. Oogonia can be difficult 530 to distinguish from spermatogonia and are typically found in cysts (Figure 1.7A and 1.8). 531 Oogonia have not undergone meiosis, and expand in numbers through type 1 divisions. 532 Once meiosis has started, the germ cells then enter the chromatin nucleolar stage where 533 the chromosomes become arrested in the first meiotic prophase I (Figure 1.6 and 1.7B). 534 At this stage, the cell will appear to have a large nucleus with a thin layer of cytoplasm. 535 As the cell grows in size, the oocyte enters the next stage, by forming perinucleolar 536 oocytes (Figure 1.8). This stage is characterized by the appearance of multiple nucleoli at 537 the periphery of the nucleus. Once vacuoles become present in the cytoplasm, the oocyte

-11-

is entering the cortical alveolar stage (Figure 1.8). The vacuoles, or alveoli, are spherical
structures that appear empty with hematoxylin and eosin (H&E) staining. However, the
alveoli contain polysialoglycogproteins, which are vital to chorion development and
fertilization. Once yolk proteins are present in the cytoplasm, the oocyte is now beginning
vitellogenesis. Previous work by Urushitani et al. (2002) successfully identified these
stages of development in the mummichog using H&E staining and light microscopy
(Figure 1.8).

545

Figure 1.7: Photomicrograph of transverse sections of gonads of larval fathead minnow
(*Pimephales promales*) at 10 days post hatch with hematoxylin and eosin stain. (A)
gonads containing cysts of pre-meiotic germ cells (oogonia, white arrow head), (B)
gonads where the somatic cells were located at the periphery of the gonad (black arrow
head), enclosing several germ cells at the chromatin nucleolar stage. pw, peritoneal wall;
pgc, primordial germ cell; P, pancreas. Bar is 50 µm. Image taken from Van Aerle et al.
(2004) with permission from Elsevier.

555 Figure 1.8: Photomicrograph of eight-week-old mummichog (*Fundulus heteroclitus*) ovary under light microscope with hematoxylin and eosin stain at 50X magnification. The 556 557 epithelial folds (pink circle) help to keep the oocytes (green circle) organized. Photo 558 contains multiple developing oocytes at varying sizes and developmental stages. Oogonia 559 (Oo) are very small, and are easily identified by their large nucleus and minimal cytoplasm. Chromatin nucleolar stage oocytes (CN) can be observed by their increased 560 size compared to Oo, large nucleus to cytoplasm ratio and no more than one nucleolus 561 562 (white arrow). Multiple nucleoli can be seen at the periphery of the nucleus in the 563 perinucleolar staged oocytes (PN), which are usually larger than the previous stage. The 564 alveoli vesicles (av) can be seen in the cytoplasm of one oocyte that is in the early cortical 565 alveolar (CA) stage. The farthest developed oocyte has entered the vitellogenic phase as 566 vitellogenin (vn) can be observed in the cytoplasm. Figure has been taken and modified 567 from Urushitani et al. (2002) with permission from John Wiley and Sons.

1.1.2.3 Early testis differentiation

569 The first characteristic of gonochoristic male differentiation is typically that cell maturation occurs later than females (Devlin and Nagahama, 2002). Testis differentiation 570 571 can be observed histologically by identifying male germ cells, somatic cells and efferent 572 ducts. Within the testis, sperm gametes are generated via spermatogenesis, which occurs 573 in the lobules. These lobules have an organized division appearance, which are connected 574 to efferent ducts (Figure 1.9A) leading to the urogenital pore (Norris and Lopez, 2011). 575 Germ cells reside in spermatocysts and move toward the testis lumen as they mature into 576 sperm. There are three stages of spermatogenesis, (1) spermatogonial (mitotic) phase, (2) 577 meiotic phase, and (3) spermiogenic phase (Norris and Lopez, 2011). During the first 578 stage, PGCs give rise to spermatogonia type A cells through mitotic divisions (Norris and 579 Lopez, 2011), influenced by the main teleost androgen 11-ketotestosterone (11-KT). This 580 hormone is produced in the somatic Sertoli cells, under the control of FSH and is critical 581 for spermatogonial development. When these cells are ready for further development, a 582 mitotic division into spermatogonia type B cells is promptly enveloped by Sertoli cells, 583 creating the testis lobule (Figure 1.9B). Leydig cells are located on the periphery of the 584 testis and are essential for testis maturation by generating T for Sertoli and germ cells 585 (Norris and Lopez, 2011). As the germ cells mature through phases 1-3, Sertoli cells 586 support germ cell survival, regulate development, and physiological functioning as the 587 germ cell matures into a spermatozoa (Dietrich and Krieger, 2009; Norris and Lopez, 588 2011). Mature spermatozoa are stored in the testis center until release into the aqueous 589 environment (Norris and Lopez, 2011).

-14-

Early testis differentiation can be identified histologically in the mummichog as demonstrated by Shimizu et al. (2008; Figure 1.10). Mummichog testis differentiation does not occur until three weeks after hatching, with the appearance of spermatogonia (Shimizu et al., 2008). Mature spermatozoa are not typically seen until six weeks after hatching (Figure 1.10). As gametes mature, they have a reduced size and can be observed in the center of the testis tissue. Spermatozoa will develop a flagellum, a distinct feature from the other stages.

597

598

Figure 1.9: Photomicrograph of transverse sections of fathead minnow (*Pimephales promales*) testes at (A) 60 and (B) 90 days post hatch (dph) with hematoxylin and eosin stain. At 60 dph, structural elements such as blood vessels (bv) and the efferent duct (ed) can be observed, while germ cells have not matured. At 90 dph, lobules are more obvious as the somatic cells (arrow heads) can be seen forming cysts around the germ cells. pw, peritoneal wall; L, liver; P, pancreas. Bar is 25 μ m. Image taken from Van Aerle et al. (2004) with permission from Elsevier.

Figure 1.10: Photomicrograph of six-week-old mummichog (<i>Fundulus heteroclitus</i>)
testis. Periodic acid-Schiff and Mayer's hematoxylin staining. Spermatogonia (SG) are
located at the periphery of the gonad, during the first meiotic division, the cell is arrested
for one or two days as early spermatocytes (ESP) until the process is complete, giving rise
to late staged spermatocytes (LSP). Spermatids (ST) are derived from the second meiotic
division. The spermatocyst then releases the spermatids into the lumen of the testis where
they undergo maturation into spermatozoa (SZ). Bars is 50 µm. Photo taken and modified
from Shimizu et al. (2008) with permission from Elsevier.

1.1.3 Steroids controlling sexual fate

617	To initiate steroidogenesis in a developing gonad, GTHs from the brain stimulate the
618	gonad supporting somatic cells. FSH typically precedes LH activity in the gonad
619	(Dietrich and Krieger, 2009). FSH is responsible for early gonadal development and
620	vitellogenesis, while LH is responsible for later developmental processes such as oocyte
621	maturation, ovulation and spermiation (Peter and Yu, 1997; Weltzien et al., 2004).
622	Steroidogenesis produces estrogens and androgens; the balance between the two steroid
623	types controls sexual fate in fishes (Todd et al., 2016) In fish, a rise in production of the
624	dominant estrogen, E ₂ , promotes ovarian development. Likewise, an upsurge in the
625	dominant terminal androgen, 11-KT, will lead to testis development (Figure 1.11). The

balance of E₂ and 11-KT in fish influences the male and female molecular signaling
pathways (Todd et al., 2016).

628	1.1.4 Genes controlling sexual fate
629	Sex differentiating processes vary among fishes; however, the genes and cellular
630	networks involved in these processes are well conserved regardless of the sex-
631	determining mechanism (Alfaqih et al., 2009). Sexual fate can be described as a battle for
632	dominance between the male and female signaling pathways (Todd et al., 2016). Genes
633	that promote development of one sex may contribute to antagonistic effectors in the
634	opposite sex's network (Figure 1.11). Overall GD is influenced by the expression of
635	specific genes during a short period of time that is unique to each species. As an example,
636	dmy is expressed in Sertoli cells during early differentiation to facilitate the male pathway
637	in the medaka (Matsuda et al., 2002).
638	Genetic signaling pathways controlling sexual fate in fish have been linked to several
639	genes encoding transcription factors, steroidogenic enzymes and key receptors (Leet et
640	al., 2011). There are specific genes that have been found in association with promoting
641	both male and female signaling pathways, respectively (Leet et al., 2011; Todd et al.,
642	2016). While many have been identified, only genes pertinent to this thesis will be
643	discussed in detail.

-17-

646	Figure 1.11: Steroidogenesis in somatic cells generates testosterone (T) in the gonad. A
647	fish destined to be female will convert T into 17β -estradiol (E ₂) via aromatase which is
648	encoded by cyp19a1a. E ₂ will influence the expression of female promoting genes such as
649	foxl2, gdf9, bmp15 among others to facilitate ovary development and increase cyp19a1a
650	expression to maintain the female signaling pathway. Female promoting genes such as
651	foxl2 have inhibitory effects on male promoting genes such as dmrt1 to avert the male
652	signaling pathway. Alternatively, a fish destined to be male will convert T into 11-KT via
653	11 β -hydroxylase which is encoded by <i>cyp11c1</i> . 11-KT promotes the expression of male
654	promoting genes such as <i>dmrt1</i> and <i>amh</i> to maintain the male differentiating pathway.
655	Male promoting genes such as <i>dmrt1</i> directly inhibit female promoting genes (<i>cyp19a1a</i>
656	and <i>foxl2</i>) to avert the female signaling pathway. Adapted from Leet et al. (2011) and
657	Todd et al. (2016). Image generated using BioRender.

- 658
- 659 **1.1.4.1 Female promoting genes**

660 Bone morphogenetic protein 15 and growth and differentiating factor 9

661 Transforming growth factor beta superfamily (TGFβ) is composed of three major

662 subfamilies: TGFβs, activin/inhibin/nodal, and bone morphogenetic proteins (BMP; Lin

663 et al., 2006; Yu et al., 2020). Members of this superfamily have been directly implicated 664 in follicle formation, granulosa cell differentiation, oocyte maturation, and 665 steroidogenesis in vertebrates (Moore et al., 2003; Spicer et al., 2008; Yu et al., 2020). 666 Strong expression of Bone morphogenetic protein 15 (*bmp15*) was found in zebrafish 667 (Danio rerio) during early oocyte development, but as the oocyte matured, expression of 668 bmp15 was lost (Dranow et al., 2016). Loss of function studies of the bmp15 gene in 669 mammals (sheep, human and mouse) found that granulosa cells could not differentiate, 670 therefore, follicles could not support the growth of the oocytes past the primary growth 671 stages, leading to infertility (Galloway et al., 2002; Galloway et al., 2000). Similar studies 672 in the zebrafish resulted in female to male sex reversal (Dranow et al., 2016), supporting 673 *bmp15* expression as being required for female sex determination. Recombinant *bmp15* in 674 zebrafish reduced amh gene expression (Chen et al., 2017), indicating that bmp15 675 expression also hinders the male differentiating pathway. Characterization of the 676 relationship between *bmp15* and growth and differentiating factor 9 (*gdf9*), investigated 677 using RT-qPCR, overexpression and knockout analysis, determined that both genes were 678 highly expressed in the ovary, especially in oogonia and early developed oocytes of the 679 Japanese flounder (*Paralichthys olivaceus*). Over expression analysis showed an 680 interesting relationship between the genes with steroidogenesis; gdf9 expression could 681 increase steroidogenesis in the gonad while *bmp15* expression hindered steroidogenesis 682 (Yu et al., 2020). More research is needed on these genes in fish to gain insight on their 683 steroidogenic control. 684 Cytochrome P450 family 19 subfamily A member 1

685 Cytochrome P450 family 19 subfamily A member 1 (*cyp19a1a*) encodes for
686 aromatase, the enzyme that converts T into E₂ in the gonad. E₂ is widely considered the

-19-

687 primary female-promoting steroid of gonochoristic fishes; its sharp increase in levels 688 during ovarian differentiation makes aromatase expression during this stage crucial 689 (Guiguen et al., 2010; Todd et al., 2016) and increased expression of *cyp19a1a* has been 690 documented in developing Nile tilapia (Oreochromis niloticus; Ijiri et al., 2008), rainbow 691 trout (Oncorynchus mykiss; Vizziano et al., 2007), and Japanese medaka (Nakamoto et 692 al., 2006). Cyp19a1a expression is transcriptionally regulated by FSH signaling and 693 forkhead transcription factor 2 (foxl2) expression in the Japanese flounder (Yamaguchi et 694 al., 2007). The cyp19a1 gene contains a binding site for FOXL2. In the medaka, the 695 female pathway is controlled by dosage-sensitive sex reversal, adrenal hypoplasia critical 696 region, on chromosome X, gene 1 (dax1; Nakamoto et al., 2007). Dax1 suppresses the 697 expression of *foxl2* which causes a downregulation of *cyp19a1a* (Nakamoto et al., 2007). 698 Experiments using aromatase blocking compounds prompted testis development in 699 honeycomb grouper (Epinephelus merra; Bhandari et al., 2004), Japanese flounder 700 (Kitano et al., 2000), golden rabbitfish (Siganus guttatus; Komatsu et al., 2006), and 701 European sea bass (Dicentrarchus labrax; Navarro-Martin et al., 2009). Blocking 702 aromatase production suppresses the female pathway to allow for male differentiation in 703 these fish.

704

Forkhead transcription factor 2

The forkhead transcription factor family regulates numerous developmental
processes in vertebrates (Uhlenhaut et al., 2009). *Foxl2* is a well conserved gene
subfamily in vertebrates that is one of the earliest known markers for ovary differentiation
(Cocquet et al., 2002). Expression of *foxl2* in female fishes appears early in ovarian
differentiation and is maintained throughout adulthood, suggesting involvement in the

female differentiating pathway (Baron et al., 2004; Nakamoto et al., 2006; Yang et al.,

-20-
711 2017). In mammals, *foxl2* is required for granulosa cell differentiation (Schmidt et al., 712 2004), and directly suppresses sox9, a male promoting factor (Uhlenhaut et al., 2009) as 713 demonstrated in mutational studies. In fish, sexually dimorphic expression of *foxl2* has 714 been observed in Nile tilapia (Ijiri et al., 2008) and zebrafish (Yang et al., 2017) showing 715 high expression in XX (homozygous females) individuals. Treatment with aromatase 716 inhibitors downregulated *foxl2* expression in rainbow trout, which suppresses the female 717 signaling pathway (Baron et al., 2004). Another study using the Japanese flounder found 718 that increased temperature resulted in males as well as low expression of *foxl2* and FSH 719 receptor, causing suppression of the female pathway (Yamaguchi et al., 2007). Further 720 analysis using luciferase transfection assays indicated an active binding site on the 721 promotor region of aromatase for FOXL2. These findings indicate that *foxl2* expression is 722 an important transcriptional regulator for aromatase in the Japanese flounder (Yamaguchi 723 et al., 2007), and important in maintaining the female pathway.

724

1.1.4.2 Male promoting genes

725 Anti-Mullerian hormone

726 Amh, also known in fish as Mullerian-inhibiting factor, is a member of the TGF β 727 superfamily of genes that is expressed in somatic cells of mammals and fish (Pfennig et 728 al., 2015). Amh in male goldfish (Carassius auratus) showed elevated expression during 729 gonadal development (Zheng et al., 2016). Expression of amh has been found in 730 undifferentiating gonads of both sexes of medaka (Klüver et al., 2007), Nile tilapia (Ijiri 731 et al., 2008), rainbow trout (Vizziano et al., 2007), and zebrafish (Rodríguez-Marí et al., 732 2005). Researchers believe that amh expression correlates to the onset of meiosis in the 733 early gonad germ cells; meiosis began when *amh* expression in Sertoli and granulosa cells 734 decreased (Pfennig et al., 2015). In the hermaphroditic pejerrey (Odontesthes

-21-

735 *bonariensis*), *amh* has been identified as a male master sex-determining gene (Yamamoto 736 et al., 2014). An *amh* knockout study on pejerrey, showed an upregulation of female 737 promoting genes *foxl2* and *cyp19a1* expression which led to ovary development (Hattori 738 et al., 2012). In the crucian carp (*Cyprinus carpio*), amh is an important regulator for the 739 expression of *dax1* and *cyp19a1a* (Li et al., 2013a). Loss of *amh* function in zebrafish 740 causes a female biased sex ratio and abnormal male germ cell development (Lin et al., 741 2017). These findings indicate that *amh* genes are conserved in teleost fish and their 742 transcriptional influence on the male or female differentiating pathways various slightly 743 from species to species.

744 Double sex and Mab-3 related transcription factor 1

745 Double sex and Mab-3 related transcription factor 1 (*dmrt1*), is a transcription factor 746 implicated in male development in vertebrates, including teleost fish (Jeng et al., 2019; Li 747 et al., 2014). Dmrt1 in fish is believed to be functionally analogous to the SRY gene in 748 mammals and is expressed exclusively in somatic cells (Kobayashi et al., 2004; Matsuda 749 et al., 2002). Dmrt1 is a transcriptional regulator that activates male promoting genes 750 while simultaneously suppressing female signaling pathways, ultimately leading to male 751 development (Todd et al., 2016). Sexually dimorphic expression of *dmrt1* is higher in 752 males during gonad development in zebrafish, medaka, pejerrey, European sea bass, and 753 rainbow trout (Kobayashi et al., 2004; Marchand et al., 2000; Shen and Wang, 2014). 754 Dmrt1 transcriptionally suppresses cvp19a1a expression, preventing estrogen production 755 via aromatase in Nile tilapia (Li et al., 2013b). In contrast, zebrafish show dmrt1 756 expression in both testis and early-stage oocytes. However, *dmrt1* mutants that lose *dmrt1* 757 function showed fish developing as female with normal ovary development (Webster et 758 al., 2017). Male fish from the same experiment were infrequent and exhibited sterility and

-22-

759	testis degeneration (Webster et al., 2017). Dmrt1 expression seems to be expendable in
760	the ovary, while essential for males. Research on the Japanese eel (Anguilla japonica)
761	using immunofluorescence identified DMRT1 protein in the gonad which was localized
762	to spermatogonia type B cells, not type A or somatic Sertoli cells (Jeng et al., 2019).
763	These results demonstrate that <i>dmrt1</i> is not used for SD or GD, but rather regulating
764	spermiogenesis. Whether the primary role of <i>dmrt1</i> is in SD or GD, or instead linked to
765	proper spermiogenesis, is unknown for many teleost species.
766	1.1.4.3 Other Genes
767	While the aforementioned genes have been linked to promoting female- or male-
768	signaling pathways, there are other genes that may also promote GD (Table 1.1). While
769	the current thesis will focus on the discussed genes, these alternate genes may also play
770	critical roles in differentiation and could be incorporated into further studies. There are
771	currently gaps in the research fully describing the genes contributing to differentiation in

Table 1.1: Genes implicated in sex determination (SD), ovarian differentiation (OD),
 testis differentiation (TD) and meiosis (ME) processes in different fish species. Genes
 may appear in more than one category.

Genes	SD	OD	TD	ME
Anti-Mullerian hormone (amh)	Р		Z, P	Z, M, R, T
Anti-Mullerian hormone receptor (amhr)			Μ	
Androgen receptor (AR)			F	
Cytochrome P450 family 11 subfamily C member 1 (<i>cyp11c1</i>)	В			
Cytochrome P450 family 19 subfamily A member 1 (<i>cyp19a1a</i>)		М		
dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1 (<i>dax1</i>)		Z	М	
double sex and Mab-3 related transcription factor 1 (<i>dmrt1</i>)	М		R, T, Z	
Estrogen receptor (ER)		Ζ		
forkhead transcription factor 2 (foxl2)		M, T, Z		
Gonadal derived soma factor (gdsf)			М	
SRY-box transcription factor 9 (<i>sox9a</i> and <i>b</i>)			T, Z, M	
wingless-related integration site family, member 4 (<i>wnt4</i>)		M, Z		

Letter designation: B: bluehead wrasse, E: Japanese eel, F: fathead minnow, M: medaka,
R; rainbow trout, T: tilapia, Z: zebrafish.

1.2 Endocrine disruption in fish

780	Endogenous hormones are crucial for sexual development in fish. This hormonal
781	balance is highly susceptible to interference by exogenous hormones, mimics or
782	antagonists, commonly known as EDCs. According to the US Environmental Protection
783	Agency (USEPA), EDCs can interact with multiple targets within fish including changing
784	the natural rate of hormone synthesis, transport, secretion, receptor agonism/antagonism
785	or elimination (USEPA, 2006). These compounds include diverse chemical structural
786	classes such as steroids, organochlorines, dioxins, polychlorinated biphenyls, alkyl
787	phenolic surfactants, flavonoids and other phytochemicals, inorganic anions, and metals
788	(Norris and Lopez, 2011). EDCs can be natural or artificially synthesized.
789	Anthropogenic EDCs enter the environment in a variety of ways including discharge
790	of waste effluents from industries, such as pulp and paper production, wastewater
791	treatment (sewage), and agricultural activities (Leet et al., 2011). EDCs have been
792	documented in all types of aquatic environments around the globe, including marine,
793	estuarine, and freshwater. A study in Luxemburg quantifying various pharmaceuticals in
794	sewage effluents showed 5 ng/L estrone (E ₁), 46 ng/L E ₂ , and 12 ng/L EE ₂ , among other
795	pharmaceuticals (Pailler et al., 2009). In Eastern Asia, a three-year study quantifying
796	various estrogenic EDCs in surface waters revealed E_1 and E_2 between 1.3-19.8 ng/L
797	(Duong et al., 2010). In the United States, a study measuring the occurrence of steroids in
798	the Elkhorn River found synthetic estrogens [1.7 ng/L (EE ₂), 7.4 ng/L (E ₁)] and
799	androgens [0.9 ng/L (T) and 5.3 ng/L (androstenedione)] in surface waters (Kolok et al.,

-25-

2007). Due to the abundance of EDCs found in the aquatic environment, there is ongoing
concern of the impacts these compounds may cause to resident organisms.

802 An abundance of literature demonstrates that EDCs cause negative effects to fish in 803 the receiving environments (Ankley et al., 2003; Bosker et al., 2009; Chen et al., 2016; 804 Lister et al., 2011). One of the most concerning aspects of these disruptions is alteration 805 of SD and/or GD mechanisms leading to abnormal gonadal development, reproductive 806 dysfunction and eventual population collapse (Leet et al., 2011). Most fish retain a 807 bipotential ability even after gonadal differentiation has occurred, allowing EDCs to 808 potentially disrupt reproductive processes and alter gonad development before, during or 809 after maturation. This interference can result in masculinization or feminization of fishes 810 and their populations (Devlin and Nagahama, 2002; Li et al., 2019; Todd et al., 2016). 811 Exogenous steroids may alter the expression of genes that are working to control SD 812 and GD in the fish by interacting directly with nuclear receptors. Once these hormones 813 enter a cell and complex with a hormone receptor [such as an androgen receptor (AR) or 814 an estrogen receptor (ER)], they can act on hormone response elements controlling 815 transcription and translation of specific genes, eliciting physiological responses in the cell 816 or the organism (Leet et al., 2011). There is substantial research available investigating 817 the effects of estrogens on various fish species and for the purposes of this thesis, effects 818 of exogenous estrogens will be the primary focus.

819

1.2.1 Estrogens and their effects on fish

EE₂ is a common estrogenic EDC is found in the birth control pill. After ingestion,
EE₂ is metabolized into a biologically inactive, water-soluble sulfate or glucuronide
conjugate which is then excreted in urine (Nieto et al., 2008) or remains in the gut as EE₂
due to *Escherichia coli* bacterium that deconjugate these metabolites from β-

-26-

824	glucuronidase and sulfatase activity (Atkinson et al., 2012; Lai et al., 2000). This results
825	in humans excreting biologically active EE_2 into the wastewater systems, which is
826	eventually processed by sewage treatment facilities via activated sludge or biofilms,
827	before entering the receiving environment in effluent (Adeel et al., 2017). In a 2021
828	review, researchers reported that EE_2 in surface waters from 32 different countries
829	averaged between 0-33 ng/L, with some countries having over 17 000 ng/L (Tang et al.,
830	2021). Between 1999 and 2020, the average levels of EE_2 in Canadian waters were found
831	to be 1.1 ng/L, with a maximum of 2.5 ng/L (Tang et al., 2021).
832	EDCs downstream of sewage wastewater facilities are bioavailable to aquatic
833	organisms that inhabit receiving areas (Leet et al., 2011; Lister et al., 2011). Even though
834	sewage treatment facilities are >90% effective at removing EE_2 from water, the minute
835	concentrations in the effluent can nevertheless cause negative effects to downstream fish
836	(Chimchirian et al., 2007). Estrogens have been implicated in causing various
837	reproductive effects in fishes, including increased E_2 and VTG plasma concentrations
838	(Filby et al., 2006; Orrego et al., 2010), reduced gonad development (Ali et al., 2018;
839	Nash et al., 2004), disrupted spermatogenesis (Van Aerle et al., 2002), decreased
840	fecundity and fertility (Filby et al., 2006), pathological changes in gonads (Dietrich and
841	Krieger, 2009), decreased male secondary sexual characteristics (Filby et al., 2006), and
842	female skewed sex ratios (Fenske et al., 2005; Hahlbeck et al., 2004).
843	Estrogenic effects on gonad morphology
844	The effects of estrogenic EDCs on fish gonadal development have been evaluated
845	histologically (Dietrich and Krieger, 2009; Leet et al., 2011). Pathological abnormalities
846	affecting the gonad of individuals include: inhibition of gametogenesis, necrosis and
847	apoptosis of germ and/or somatic cells, fibrosis (wound healing where connective tissue

-27-

replaces functional tissue), partial or complete inhibition of gonadal duct formation,
increased atresia (programmed cell death, apoptosis, of oocytes), and somatic cell
hypertrophy (increased cell size) and hyperplasia (increased cell numbers; Dietrich and
Krieger, 2009). These abnormalities are typically evaluated quantitatively or qualitatively
using the entire gonad from an individual. EE₂ is routinely used as an estrogenic model
EDC. The follow sections on estrogen induced effects to fish gonad will have a focus on
EE₂.

855

A) Hindering gametogenesis

EE₂ has been reported to cause accelerated gametogenesis in female mummichog (Chehade, 2012) and inhibitory effects in several other fish, regardless of sex [Table 2.1 (male) and 2.2 (female)]. These effects may cause reproductive issues for individual fish in adulthood (Dietrich and Krieger, 2009), which has been demonstrated in the fathead minnow (*Pimephales promales*; Van Aerle et al. 2002).

861 *EE*₂ effects on oogenesis

862 Laboratory research studies involving high concentrations of EE_2 provide evidence of 863 germ cell regression or inhibited maturation, decreased number of germ cells, and 864 inhibited follicular development of the ovary (Dietrich and Krieger, 2009). These 865 observations suggest negative feedback to the HPG axis, resulting in downregulation that 866 hinders oogenesis (Leet et al., 2015). As an example, EE₂ has a higher binding affinity to 867 $ER\beta$ than E_2 which demonstrates a mechanism that can potentially downregulate the HPG 868 axis when bound (Katsu et al., 2007). Least killifish (Heterandria formosa) exposed to 25 869 ng/L EE₂ for 12 weeks during gonadal development resulted in hindered oogenesis; on 870 average treated ovaries were composed of approximately 80% previtellogenic oocytes

-28-

- 871 while controls contained significantly more developed oocytes vitellogenic or mature
- 872 (Jackson et al., 2019). Several other researchers have reported EE₂ prevented oogenesis in
- the zebrafish (Weber et al., 2003), fathead minnow (Weisbrod et al., 2007), rare minnow
- 874 (*Gobiocypris rarus*; Zha et al., 2008; Zha et al., 2007), and medaka (Seki et al., 2002).
- 875 Weber et al. (2003) reported EE₂ treated ovaries containing only previtellogenic follicles,
- which are significantly under-developed compared to the mature oocytes in the control
- 877 group (Figure 1.12).

879Figure 1.12: Photomicrographs of hematoxylin and eosin-stained ovary sections from880zebrafish (*Danio rerio*) exposed from 2 to 60 dph to acetone solvent (A; control) or 1 ng/l881of 17α -ethinylestradiol (B; EE₂) at 200X magnification. Control ovaries contained882multiple oocytes that were vitellogenic (Vit) and mature (M). While EE₂ treated ovaries883did not contain any vitellogenic oocytes, only previtellogenic (PreV) and oogonia (Oo)884were observed. Figure taken and modified from Weber et al. (2003) with permission from885Elsevier.

PreV

EE₂ effects on spermatogenesis

887 Several studies using high concentrations of EE₂ provide evidence of germ cell stage 888 absence and inhibition of gametogenesis, among other effects, in the testis (Dietrich and 889 Krieger, 2009). This disrupted gonadal development is caused from altered endocrine 890 communication on normal cellular signaling (Dietrich and Krieger, 2009). This effect has 891 been frequently noted in the fathead minnow (Dietrich and Krieger, 2009). As an 892 example, 5 ng/L EE₂ caused an arrest of spermatogenesis in fathead minnow exposed 893 during the first year of a three year-long study (Kidd et al., 2007). Researchers later 894 reported population collapse after three years of exposure. Another study by Van Aerle et 895 al. (2002) exposing fathead minnow to 10 ng/L EE₂ during various short windows of 896 development showed increased percentages of early-stage spermatocytes in treatments 897 groups when sampled at 100 dph (Figure 1.13). Both studies indicate that EE_2 has the 898 potential to disturb spermatogenesis in fathead minnow, whether for a short period of 899 time or over a lifetime (Kidd et al., 2007; Van Aerle et al., 2002). Several other studies 900 have reported hindered spermatogenesis from EE₂ exposure in the zebrafish (Weber et al., 901 2003), rare minnow (Zha et al., 2007), guppy (Poecilia reticulata; Nielsen and Baatrup, 902 2006) and least killifish (Jackson et al., 2019).

904Figure 1.13: Photomicrograph of fathead minnow (*Pimephales promales*) testis in905control (A) and 10 ng/L 17 α -ethinylestradiol-treated (EE2, B) at 100 dph. Control male906showing sperm duct (arrowhead) and late spermatocytes (red circle). Treatment male with907fully formed ovarian-like cavity (*) attached to the peritoneal wall by duct cells908(arrowhead) and with few late spermatocytes. Bar is 100 µm. Photo taken from Van Aerle909et al. (2002) with permission from Springer Nature.

B) Degeneration

911 Degeneration is often referred to as tissue that deteriorates or loses functional ability.
912 Degeneration is associated with traumatic injury, aging as well as general wear and tear.
913 EE₂ causes various gonadal tissue degeneration effects in both male and female fish
914 (Table 1.2 and 1.3).

915

Ovarian degeneration via EE_2

916 Atresia is a common process in a healthy ovary, one that allows de-recruitment of 917 malfunctioning oocytes and preservation of energy (Dietrich and Krieger, 2009). Atretic 918 follicles can be identified histologically (Figures 1.14 and 1.15). Exposure to various 919 estrogenic compounds, including EE₂, increase frequency of atretic follicles. This drastic 920 effect has led to a decrease in follicles reaching maturity and consequently reduced 921 fecundity in zebrafish (Weber et al., 2003) and medaka (Seki et al., 2002). While not fully 922 understood, research has identified a possible mechanism in which exogenous estrogens 923 may cause atresia. Vitellogenic follicles undergo atresia when E_2 and gonadotropins are 924 reduced (Wood and van der Kraak, 2002). Under the influence of an estrogen and/or 925 mimic, such as EE₂, the HPG axis is expected to downregulate, which could produce decreased levels of E₂ and gonadotropins in the ovary leading to increased atresia 926 927 frequency (Dietrich and Krieger, 2009). One study that exposed zebrafish to EE₂ and then 928 implemented a recovery period found that while treated ovaries recuperated from various 929 histopathological issues, time to atresia recovery was the longest (Luzio et al., 2016). 930 Researchers from this study concluded that the prolonged atresia causes negative impacts 931 to reproductive function of the given population.

-33-

938

Figure 1.14: The initial stage of ovarian follicular atresia of mature Redbelly tilapia
(*Coptodon zillii*) using Verhoff's stain. Shrinkage and degradation of the nuclear
membrane (white arrowhead) resulting in the dispersing of chromatin (black arrowheads)
in the ooplasm (OP). Figure taken from Mokhtar and Hussein (2020; publisher
Cambridge University).

939

Figure 1.15: Photomicrograph of late-stage atresia in the ovaries of the common carp
(*Cyprinus carpio*) with hemoxylin and eosin staining. Yellowish pigment (a) is
surrounded by fibroblast cells (arrow). Bar is 200 µm. Figure taken from Blazer et al.
(2002) with permission from Springer Nature.

944 Testis degeneration via EE₂

945	Common degeneration effects reported from EE ₂ exposure in males include testis
946	inflammation, hypertrophic interstitial tissue and necrosis (Dietrich and Krieger, 2009).
947	These effects have been reported in the fathead minnow (Palace et al., 2002), zebrafish
948	(Schafers et al., 2007; Weber et al., 2003), three spined stickleback (Gasterosteus
949	aculeatus; Figure 1.16; Bjorkblom et al., 2009), and rare minnow (Zha et al., 2007). As an
950	example, in male zebrafish exposed to 1-10 ng/L EE ₂ for 60 dph showed severe fibrosis
951	as well as acellular areas (Weber et al., 2003). Researchers believe the acellular area was
952	a result of necrosis with no fibrotic cellular repair. In a separate study by Luzio et al.
953	(2016), zebrafish were allowed a long recovery period after a chronic exposure to EE_2
954	from hatching. The results from this study showed that zebrafish gonad have a remarkable
955	capability to regenerate following necrosis and fibrosis damage (Luzio et al., 2016).
956	Studies providing evidence of EE_2 induced degeneration in fish report their findings in a
957	variety of ways, with little consistency (Dietrich and Krieger, 2009). However, the overall
958	conclusions provided agree this damage may lead to reproductive dysfunction of affected
959	fish and/or their populations (Dietrich and Krieger, 2009; Schafers et al., 2007; Weber et
960	al., 2003).

-35-

962Figure 1.16: Photomicrographs of hematoxylin and eosin-stained histological sections of963testes from male three-spined stickleback (*Gasterosteus aculeatus*) exposed for four964weeks: (A) Mature testis, control fish; (B) severely affected testis with disrupted lobular965arrangement due to increased fibrosis, fish exposed to 20 ng/L of 17 α -ethinylestradiol.966Basal membrane thickness (orange) has been highlighted to show increase in interstitial967tissue from treatment. Bar is 100 µm. Figure taken and modified from Björkblom et al.968(2009) with permission from John Wiley and Sons.

969

C) Altered sex determination

970 Experiments using high concentrations of EDCs can contribute to complete sex 971 reversal in fish or atrophy of the gonad tissue (Dietrich and Krieger, 2009). A study 972 investigating various EE₂ effects on developing mummichog after fertilization used 973 gonadal histology to evaluate treatment effects on sex ratios. Results from this study 974 showed a female skewed sex ratio; mummichog exposed to 0, 10, 50 and 250 ng/L EE_2 975 contained 60%, 90%, 100% and 80% females, respectively, at 10 wph (Chehade, 2012). 976 These results indicate mummichog are sensitive to EE₂ during the GD process. Another 977 study using EE_2 (100 ng/L), exposed adults and their offspring from fertilization to 52 978 wph found an >80% female skewed sex ratio in the offspring (Peters et al., 2010). 979 Feminized sex ratios have been reported from environmentally-relevant EE₂ exposures in

980	zebrafish (Luzio et al., 2016) and fathead minnow (Van Aerle et al., 2002) indicating that
981	supraphysiological concentrations of EE ₂ are not necessary to cause changes to sex in
982	fish. Luzio et al. (2016) exposed <24 h post fertilized zebrafish embryos to 4 ng/L EE_2 for
983	90 days and demonstrated a 60%:40% female to male ratio. Van Aerle et al. (2002)
984	exposed various stages of fathead minnow embryo and larvae to 10 ng/L EE_2 for short
985	intervals of time (fertilized egg to 5, 5-10, 10-15, 15-20 dph) as well as fertilized eggs
986	through to 20 dph and then fish were sampled at sexual maturity (100 dph). There was a
987	female sex bias in the embryo to 5 dph as well as the embryo to 20 dph EE_2 treatment and
988	no changes to sex ratios were reported in the treatments that started after hatching.
989	Intersex is a condition where the gonad of a fixed sex individual contains both male
990	and female gametes. This condition is atypical in nature and is routinely associated with
991	fish exposed to EDCs both in field and laboratory studies (Bahamonde et al., 2013).
992	Intersex has been implicated as a common effect from estrogen exposure; oocytes will
993	typically develop in testis tissue, commonly referred to as testis-ova (Figure 1.17). EE ₂ in
994	particular induces intersex by generating testis-ova in male fathead minnow (Kidd et al.,
995	2007; Lange et al., 2001), medaka (Metcalfe et al., 2001; Seki et al., 2002), zebrafish
996	(Nash et al., 2004), rare minnow (Zha et al., 2007), least killifish (Jackson et al., 2019)
997	and the three spined stickleback (Hahlbeck et al., 2004) at environmentally-relevant and
998	higher concentrations (0.1-50 ng/L). Male fish develop oocytes because pharmaceutical
999	estrogens, like EE ₂ , directly interact with receptors, change gene expression, alter
1000	available receptors (AR or ER), and alter HPG axis feedback (Leet et al., 2011). These
1001	disruptions could lead to feminized intersex gonadal development if female promoting
1002	genes are upregulated in testis tissue. The intersex condition is important to monitor in
1003	fish as it can lead to reproductive dysfunction in fish and affect fish populations.

-37-

1005Figure 1.17: Light micrograph of zebrafish (Danio rerio) with normally developed testis1006(40 days post hatch; dph) under control conditions (A) and intersexed testis (testis-ova)1007following 25 ng/L EE2 for 20 days starting at 20 dph (B). A is showing a healthy testis1008(blue highlight) with visible spermatids (sp) developing near the lumen (lu). B is showing1009an intersexed gonad with testis and ovary (pink highlight) tissue. Image taken and1010modified from Örn et al. (2003) with permission from Elsevier.

1011	The concern with exogenous estrogens is that they may feminize male fish, resulting
1012	in female skewed sex ratios (Leet et al., 2011). Currently, there are limited studies
1013	investigating environmentally-relevant estrogen exposure to fish population sex ratios.
1014	One study exposing developing zebrafish to 1 ng EE_2/L for 40 days reported no intersex,
1015	but a significantly female-skewed sex ratio (Örn et al., 2006). Another exposure,
1016	conducted over the lifetime of zebrafish, used 5 ng/L EE_2 and found a 50% reduction to
1017	fecundity, with complete population failure stemming from no fertilization in the
1018	subsequent generation (Nash et al., 2004). The male signaling pathway was completely
1019	shut down, producing only functionally female offspring (Nash et al., 2004). Another
1020	experiment using least killifish showed that a 12-week exposure to 25 ng/L of EE_2
1021	resulted in a female biased sex ratio (Jackson et al., 2019). A significant number of males
1022	from the same treatment were intersexed, resulting in declined spermatogenesis (Jackson
1023	et al., 2019). The results from these studies would support the need for further
1024	investigation on environmentally-relevant EDC exposure on fish since major changes to
1025	sex ratios in wild fish will affect the continued survival of their population (Dietrich and
1026	Krieger, 2009).

1027 Estrogen effects on gene expression

1028Given the important role of genes in the sexual development of fish, evaluating EDC1029effects on SD and GD gene expression is warranted. Relative gene expression analysis1030can be used to help determine mechanisms of action and whether EDCs are affecting1031male or female signaling pathways in fish. One study using adult fathead minnow1032exposed to 10 ng EE₂/L for 21 days found $ER\alpha$, $ER\beta$ and AR expression in males and1033females to be significantly downregulated (Filby et al., 2007). Chronic studies exposing

1034 fathead minnows (Feswick et al., 2016; Leet et al., 2015) and zebrafish (Liang et al.,

-39-

1035 2017) to EE₂ reported decreased cyp19a1a expression. Interestingly, studies using adult 1036 mummichog detected no changes in cyp19a1a expression (Doyle et al., 2013; 1037 Kanagasabesan, 2018). It has been suggested that high levels of E_2 in a developing female 1038 mummichog ovary could explain the decreased sensitivity of mummichog to 1039 environmentally-relevant EE_2 concentrations (Kanagasabesan, 2018). These results are 1040 not showing a well-established correlation with cyp19a1a and E₂ in mummichog as 1041 shown in other fish species, indicating that *cyp19a1a* may have other transcriptional 1042 controls that need to be investigated (Rutherford et al., 2020). Studies evaluating gene 1043 expression in the mummichog have focused on adult models, with limited research 1044 available on the early developmental stages. More research is required for understanding 1045 whether a particular EDC could be causing estrogenic gene expression disturbances in 1046 fish during the SD and GD developmental window. SD and GD fish studies using model 1047 compounds, like EE_2 , are encouraged to determine sensitivities to these processes. More 1048 recently, studies investigating both histological and gene expression endpoints have been 1049 carried out; sex ratios including intersex, within a population can be proven histologically 1050 while preserving the remaining gonadal tissue for mRNA analysis (Chen et al. 2017). 1051 These results are advantageous as they could bring valuable mechanistic insights to the 1052 pathological abnormalities observed.

1053 Research gaps

1054There are several limitations in fish sexual development research that should be1055addressed. Firstly, many studies using EE2 contain supraphysiological concentrations,1056which are typically higher than those found in aquatic environments (Leet et al., 2011).1057Research using environmentally-relevant EE2 concentrations would provide better1058predictions for EE2 exposed fish populations. Another research gap would be the lack of

-40-

1059 studies on estrogenic effects in developing fish; most research available focusses on 1060 estrogenic effects in adult fish models. Early life staged fish in particular have been 1061 shown to be more sensitive than adult fish to contaminants (Mohammed, 2013). The 1062 USEPA encourages using early life stages in toxicity testing as the data offers results on 1063 the most vulnerable life stage and best predicts effects of all life stages in a given 1064 environment (Mohammed, 2013). Finally, there is the lack of research on SD and GD in 1065 saltwater fish. There is extensive SD and GD research available on freshwater fish. The 1066 absence of saltwater fish development research is surprising since saltwater fish represent 1067 17% of meat in the food industry (Costello et al., 2020). This statistic is expected to 1068 increase to 25% by 2050 (Costello et al., 2020). Therefore, maintaining saltwater fish 1069 populations will be a valuable asset to the industry. There is a need to understand sexual 1070 development mechanisms in developing saltwater fish and how they respond to estrogens 1071 at environmentally-relevant concentrations.

1072

1.3 Fundulus heteroclitus: a good saltwater fish toxicology model

1073 There is a need for an early life stage estuarine model for toxicologically studies; the 1074 mummichog (Figure 1.18) is a potential candidate to fill this gap. The mummichog is the 1075 common killifish that can be found along the Atlantic coast of North America. Its small 1076 size is easily accommodated in a laboratory setting. Its ability to adapt to varying 1077 salinities, oxygen content and temperature makes it a good model species in physiological 1078 studies (Rutherford et al., 2020). Mummichog are gonochoristic and breeding is cyclical; 1079 gonad size, measured as a percentage of total body weight, and steroid hormone levels 1080 have been shown to coincide with spawning events on the full and new moons during the 1081 summer months (Taylor et al., 1979; Cochran, 1987; Hsiao and Meier, 1989). Gonadal

-41-

1082	recrudescence (a period of active gametogenesis and growth of the gonad) and spawning
1083	may be induced in the lab through manipulation of photoperiod and temperature allowing
1084	for a year-round supply of reproductive mummichog and embryos for development
1085	studies (MacLatchy et al., 2003). Mummichog have been used as a model fish species to
1086	study reproductive effects from complex effluents (Bosker et al., 2010), estrogenic EDCs
1087	(Meina et al., 2013), and androgenic EDCs (Rutherford et al., 2015). Historically, adult
1088	mummichog have been shown to be less sensitive to EE ₂ compared to other fish species
1089	(Rutherford et al., 2020). Mummichog exposed to $100ng/L$ of EE ₂ for 28 days showed no
1090	effects to egg production (Bosker et al., 2016). However, there is limited knowledge on
1091	gonadal development pathways and their susceptibility to EDC interference.
1092	Understanding EDC effects has factually been investigated in freshwater systems more so
1093	than saltwater systems (Leet et al., 2011).

C /1

1094

1000

1095 **Figure 1.18**: Mummichog (*Fundulus heteroclitus*) embryos 15 days post fertilization

1096 (left; 2X magnification), post-hatch yolk-sac larvae (middle) 10 min after hatching and a

1097 five-week-old juvenile (right, average length was 23.59 ± 1.06 mm, N=45).

1098 The mechanisms that drive SD and GD in the mummichog are not yet fully 1099 understood. Morphological SD can be observed two-weeks post hatch with the presence 1100 of primary oocytes, which was previously reported by Shimizu et al. (2008). That study 1101 provided insight during the GD process in juvenile mummichog from one-week post 1102 hatch to thirty-six weeks post hatch using immunohistochemistry techniques to visualize 1103 GD and highlight the roles of LH and FSH in the gonad tissue (Shimizu et al., 2008). FSH 1104 production early in the GD process is believed to initiate steroidogenesis, while LH 1105 production was not found until further into sexual development. FSH signaling in the 1106 early gonad is likely crucial for GD in the mummichog (Shimizu et al., 2008). Gene 1107 expression studies would be an asset in understanding the mechanisms of whether 1108 estrogens are capable of disturbing natural SD and GD processes in a developing fish. 1109 Significant questions remain regarding which genes or signaling pathways are being 1110 expressed or blocked during the SD stage to drive gonadal development. 1111 There are a few studies available that indicate estrogenic effects on developing 1112 mummichog exposed to EE_2 . Mummichog exposed to EE_2 8 h after fertilization 1113 continuously until sampling at later development have shown feminized (>80%) sex 1114 ratios (Chehade, 2012; Peters et al., 2010), accelerated onset of ovarian differentiation 1115 (Chehade, 2012) and reported no intersex (Chehade, 2012; Peters et al., 2010). These 1116 studies indicate mummichog are sensitive to environmentally-relevant and 1117 supraphysiological EE_2 concentrations during development. However, the window of 1118 sensitivity during development has not been investigated. Other endpoints should be 1119 explored to help determine the physiological mechanisms that are being altered, including 1120 gametogenesis, degeneration and gene expression.

-43-

1121 **1.4 Research Objectives**

1122 My thesis focuses on characterizing SD and GD mechanisms of five-week-old 1123 *Fundulus heteroclitus*, using histology to sex the fish and gene expression to examine the 1124 expression of genes implicated in GD using previously optimized mumnichog primers. 1125 To achieve this, individual mummichog were grown to five weeks and then cut in half; 1126 one half was used for gonadal histological analysis and the other half for gene expression 1127 endpoints to characterize GD mechanisms (Figure 1.19). Histology allows for gonadal 1128 sexing and description of gonadal development. The sex of the fish is crucial to establish 1129 for pooled gene expression analysis of each sex separately. A focus will be placed on 1130 female promoting genes, cyp19a1a, foxl2, bmp15 and gdf9, and male promoting genes, 1131 amh and *dmrt1*, as they have been shown to drive female and male differentiation in other 1132 fish species (Table 1.1). The sex ratio of five-week-old mummichog under standard 1133 laboratory conditions is expected to be 50% female:male with no intersex. Male and 1134 female mummichog are expected to show differential expression of male and female 1135 promoting genes. Mummichog testis should have higher expression amh and dmrt1 while 1136 ovaries should have higher expression of cyp19a1a, foxl2, bmp15 and gdf9. 1137 The second objective is to determine sensitivity of exposure to environmentally-1138 relevant EE₂ after hatching. Post hatch, yolk-sac larvae were exposed to 0, 2 and 10 ng/L 1139 of EE₂ until five weeks old and then cut in half to collect gonadal tissue for both gonadal 1140 histology and gene expression. Histology will be used to determine the sex of the fish, 1141 including the prevalence of intersex, and whether EE_2 is affecting gametogenesis and/or 1142 degeneration of the gonad. EE₂ is expected to alter gonadal development in male and 1143 female five-week-old mummichog. Fish exposed to EE_2 are predicted to contain a dose

-44-

1144 dependent increase in females due to the activation of the female signaling pathway in 1145 fish. The presence of intersexed fish is not expected because this condition has not been 1146 previously documented in field or laboratory studies on mummichog. EE₂ induction of 1147 altered gametogenesis and increased degeneration is expected in both sexes since the 1148 excess estrogen will have a direct effect on the developing gonads. Gonads from EE₂-1149 treated fish are predicted to contain fewer developed germ cells. Histology will be used to 1150 determine whether EE₂ is contributing to higher frequencies of atretic follicles in ovaries, 1151 and increased area of necrosis and hypertrophic interstitial tissue in testis. Male 1152 mummichog exposed to EE₂ after hatch for five weeks are predicted to show increased 1153 expression of female promoting genes, cyp19a1a, foxl2, bmp15, and gdf9, as well as a 1154 decrease in expression of male promoting genes, *dmrt1* and *amh*, in the testes due to the 1155 activation of the female differentiating pathway which will consequently suppress the 1156 male differentiating pathway. Female mummichog exposed to EE_2 after hatch for five 1157 weeks will show decreased expression of female promoting genes, *cyp19a1a*, *foxl2*, 1158 bmp15, and gdf9, as well as an increase in male promoting gene expression, dmrt1 and 1159 amh in the ovary due to downregulation of the female differentiating pathway. The 1160 female signaling pathway will be overwhelmed and shut down in the female fish.

-45-

1175**Table 1.2**: Comparison of various male fish species exposed to environmentally-relevant1176concentrations of 17α -ethinylestradiol (EE₂) in various experimental designs including1177stage of development [hours (hph), days (dph) or weeks (wph) post hatch, or adult]1178duration of exposure (years=y, months=mo, weeks=w, days=d), and route of exposure.1179Effects caused by EE₂ exposure are listed as testis-ova (intersex), effects of1180spermatogenesis, presence of fibrosis or apoptosis (degeneration).

Species	Conc. (ng/L)	Stage of development	Duration	Route of Exposure	Results	Reference
Fathead minnow (Pimephales promales)	5-6	All stages	7у	Aqueous Experimen- tal Lake	Testis-ova and arrested spermatogenesis (in first year only)	(Kidd et al., 2007)
	0.2-64	<24hr	305 d	Aqueous flow through	Testis-ova, testicular apoptosis	(Lange et al., 2001)
	4-8.1	Adult	113 d	Aqueous	Delayed spermatogenesis fibrosis	(Palace et al., 2002)
	10	Before and after hatching	5-10 or 20 d	Aqueous	Inhibited spermatogenesis	(Van Aerle et al., 2002)
Medaka (<i>Oryzias</i>	0.1- 1000	1 dph	85-110 d	Aqueous	Testis-ova	(Metcalfe et al., 2001)
latipes)	32.6-	Adult	21 d	Aqueous	>63.9 ng/L:	(Seki et al.,

	488			flow through	testis ova	2002)
Zebrafish (Danio rerio)	5	Egg stage	Lifelong (220 d)	Aqueous flow through	Few testis ova	(Nash et al., 2004)

	1-10	2 dph	60 d	Aqueous	Fibrosis, regressed testes	(Weber et al., 2003)
	9.3	0 dph	177 d	Aqueous flow through	Fibrosis	(Schafers et al., 2007)
Rare minnow (Gobiocypris rarus)	1-25	Adult	28 d	Aqueous flow through	Testis-ova, inhibited spermatogenesis lesion (degeneration)	(Zha et al., 2007)
Three spined stickleback	50	0 dph	39-58 d	Aqueous semi static	Testis-ova	(Hahlbeck et al., 2004)
(Gasterosteus aculeatus)	20	Adult	4 w	Aqueous flow through	Inhibited spermatogenesis increased lobular disorganization, fibrosis	(Bjorkblom et al., 2009)
Guppy (Poecilia reticulata)	10-200	Birth	3.5 mo	Aqueous flow through	10 ng/L: Fewer spermatocytes, >10 ng/L: fewer spermatids	(Nielsen and Baatrup, 2006)
Least killifish (Heterandria formosa)	5-25	<1 w	12-23 w	Aqueous	Intersexed males with delayed spermatogenesis	(Jackson et al., 2019)

1182**Table 1.3**: Comparison of various female fish species exposed to environmentally-1183relevant concentrations of 17α -ethinylestradiol (EE₂) in various experimental designs1184including stage of development [hours (hph), days (dph) or weeks (wph) post hatch, or1185adult] duration of exposure (years=y, months=mo, weeks=w, days=d), duration of1186exposure (years=y, months=mo, days=d, weeks=w), and route of exposure. Effects1187caused by EE₂ exposure are listed as sex ratios, effects of oogenesis, presence of fibrosis1188or atresia (degeneration).

Species	Conc. (ng/L)	Stage of development	Duration	Route of Exposure	Results	Reference
Zebrafish (Danio rerio)	5	Egg stage	Lifelong (220 d)	Aqueous flow through	Arrest of development/ no functional females	(Nash et al., 2004)
	1-10	2 dph	60 d	Aqueous	Regressed ovary previtellogenic follicles	(Weber et al., 2003)
	9.3	0 dph	177 d	Aqueous flow through	Follicular atresia	(Schafers et al., 2007)
Fathead minnow (Pimephales promales	50	Adults	15 d	Aqueous	Increase in previtellogenic follicles	(Weisbrod et al., 2007)
Medaka (Oryzias latipes)	32.6- 488	Adult	21 d	Aqueous flow through	Atresia, regressed ovary previtellogenic follicles	(Seki et al., 2002)
Rare minnow	1-25	Adult	28 d	Aqueous flow through	Degenerated ovary	(Zha et al., 2007)

(Gobiocypris rarus)	1, 4	2 hpf	180 d	Aqueous flow through	Degenerated ovary	(Zha et al., 2008)
Mummichog (Fundulus heteroclitus)	10-250	Egg stage	10 wph	Aqueous semi static	100% female sex ratio, accelerated ovary development	(Chehade, 2012)
	1-100	Parents, embryo and larvae	61 wph	Aqueous semi static	>80% female sex ratio,	(Peters et al., 2010)
Least killifish (Heterandria Formosa)	5-25	<1 w	12-23 w	Aqueous	Delayed oogenesis	(Jackson et al., 2019)

2.0 Materials and methods

1191 **2.1 Adult fish collection and husbandry**

1192 Wild mummichog were collected from an estuary site near Little Shemogue Harbour, 1193 NB (N 46°10, W 64°08) considered free of known contaminants. A beach seine net (1/4'')1194 mesh size) and corralling technique were used to capture the fish, which were 1195 immediately transported in a truck to the Center for Cold Regions and Water Science 1196 Building (CCRWS, Wilfrid Laurier University, Waterloo, ON) in aerated plastic totes. 1197 The fish were kept in 425 L plastic recirculating saltwater tanks (Aquabiotech, 1198 Coaticook, QC) and were held under standard laboratory conditions (16 ppt salinity, 1199 >80% dissolved oxygen, 16 h light:8 h dark; MacLatchy et al., 2003). Salt water was 1200 made in lab using reverse osmosis (RO) and city dechlorinated water mixed with Crystal 1201 Sea Marinemix salt (Marine Enterprises International, Baltimore, MD); salinity was 1202 confirmed daily using a YSI Pro 1030 handheld conductivity meter (Cole-Parmer Canada 1203 Company, Montreal, QC). Dissolved oxygen was confirmed using a YSI pro 2030 1204 oxygen probe (Cole-Parmer Canada Company). The water temperature and feeding 1205 conditions varied throughout the year to control gonad recrudescence and regression. 1206 Warmer temperatures and increased feeding stimulate the fish to spawn, which naturally 1207 occurs in the summer (June-August) in Eastern Canada. For spawning conditions, 1208 temperature of the water was increased from 15°C to 22-23°C. Fish were fed commercial 1209 trout pellets (Fish Farm Supply, Elmira, ON, Canada) until satiated.

-51-

2.2 Fertilization, collection and incubation

1211 To obtain gametes for fertilization, adult fish were transferred into a recirculating 1212 aquatic housing unit connecting multiple tanks to one filtration system where the water 1213 was maintained at 22-23°C under spawning conditions (Section 2.1). Male and female 1214 fish were separated during the acclimation period in 10 and 20 L glass aquaria, 1215 respectively. Once acclimated, male fish were combined into the 20 L aquaria with the 1216 females for gamete release and ova fertilization. The water inflow into the 20 L aquaria 1217 was increased to transfer the eggs out of the aquaria and onto a polyester felt filter (1 1218 micron width) above the sump. Eggs were collected from the filter daily using a scoopula, 1219 cleaned with salt water (16 ppt) and transferred to a plastic container (dimensions: 32 cm 1220 X 26 cm X 12 cm) with a lid and 2.54 cm wide foam inserts (Coulon et al., 2012) to 1221 sandwich the embryos. Collections were done over a three-day period and the eggs were 1222 combined. Plastic containers holding mummichog embryos were incubated at 21°C and 1223 16 h:8 h light:dark cycle for 18-21 days in a controlled environmental chamber (LTCB-19 1224 BioChambers, Winnipeg, MB). While incubating, the containers were removed from the 1225 incubator daily to visually inspect embryos for viability, and to spray the foam with salt 1226 water (16 ppt) to keep the embryos damp. Embryos that were unviable (cloudy, white 1227 appearance) were immediately discarded.

1228

2.3 Fish growth

1229 Methods used were influenced by protocols developed in the MacLatchy Lab

- 1230 (MacLatchy et al., 2003; Peters et al., 2010). At hatching, 60 yolk-sac larvae (18-21 days
- 1231 from fertilization) were randomly allocated into 6 L (22 cm X 22 cm X 14 cm) glass
- 1232 aquaria with a handheld brine shrimp aquarium net (0.40"; Penn Plax, Hauppauge, NY).

-52-

1233	Fish were kept under standard laboratory conditions (Section 2.1) and were fed live
1234	Artemia nauplii (brine shrimp; Brine Shrimp Direct, Ogden, UT) for five weeks twice
1235	daily until satiated. Fish were inspected daily to confirm adequate health as per the
1236	Wilfrid Laurier Animal Care Committee.
1237	The ammonia concentration in each tank was determined every three days to ensure
1238	<1 mg NH ₃ /L using TNT 831 Nitrogen, Ammonia kit (Hach Company, London, ON)
1239	following the manufacturer's instructions on the DR3900 Laboratory Spectrophotometer
1240	(Hach Company).
1241	2.4 Sampling
1242	At five weeks old, fish were euthanized using an overdose of tricaine
1243	methanesulfonate (TMS; Sigma Aldrich, Saint Louis, MO). The first twenty fish sampled
1244	were measured for total length and weight. Fish were then cut between the anal and pelvic
1245	fins using a double-edged blade (Derby double edged razor blades, Royal Island
1246	Enterprise LLC, Garfield, NJ). The anterior half of the fish was placed into a microfuge
1247	tube (1.7 mL microfuge tube, Diamed Laboratory Supplies Inc., Mississauga, ON)
1248	containing 10% buffered formalin (Sigma-Aldrich), while the posterior half was placed
1249	into another microfuge tube containing RNAlater TM Stabilization Solution (Life
1250	Technologies, Carlsbad, CA, USA). All microfuge tubes were left at room temperature
1251	for 24 h before further processing or longer-term storage conditions in the -20°C freezer.
1252	2.5 Histology cassette preparation and processing
1253	After storage in formalin for 24 h, fish anterior halves were dyed using Davidson
1254	Marking black, green, yellow, orange and blue tissue dye for unique identification of each
1255	fish (Bradley Products, Inc., Bloomington, MN, USA). Once dried, five different

-53-

1256	coloured samples were placed into Tissue Path TM Microsette TM Six Compartment Biopsy
1257	Cassettes (Fisher Scientific Company, Ottawa, ON). Cassettes were immediately sent to
1258	Susan Lapos at the animal health laboratory (AHL) histology department at University of
1259	Guelph, Guelph, ON. Fish dye colour and cassette number corresponded to a specific fish
1260	(Figure A1.1). Cassettes were processed and embedded in paraffin wax longitudinally.
1261	Three slides were taken from each block (5 μ m thickness) with 60-80 μ m sectioning
1262	between each slide and stained with H&E (Sigma Aldrich). This revealed a cross section
1263	view of the fish. Each block was sectioned three to five times to ensure >90% of fish
1264	gonads were visible on slides.
1265	2.6 Analysis
1266	2.6.1 Histology
1267	Sex ratio
1268	Mummichog were sexed based on gonad morphology. Categories of gonadal sex
1269	included: 1) female, 2) male, or 3) intersex (male and female gametes in the same fish).
1270	Ovaries were classified by the presence of oogonia, chromatin nucleolar, perinucleolar or
1271	cortico alveolar staged oocytes, and somatic granulosa and theca cells (Figure 2.1). Testes
1272	were identified by the presence of spermatogonia, spermatocytes, spermatids, and somatic
1273	Sertoli cells and Leydig cells (Figure 2.2).
1274	Female gonadal development
1275	Ovarian gametogenesis and degeneration were evaluated to determine gonad
1276	developmental changes in Experiment 2 only. Slides without a full cross section of the

-54-

1278 Gametogenesis

1279 Ten fish slides were randomly selected (3-4/replicate tank) from each treatment for

1280 analysis (A.1.2.1-A1.2.30). Each oocyte in the field of view was classified into a

1281 developmental stage: oogonia, chromatin nucleolar, perinucleolar and cortico alveolar

1282 (Figure 2.1). An overall percentage of each developmental stage was calculated by

1283 dividing the total number of oocytes in the given stage by the total number of oocytes in

the field of view.

Developmental stage percentage (%) =

<u>Count of developmental stage in ovary</u> *100 Total count of oocytes in ovary

1285

1286

1287 Figure 2.1: Five-week-old mummichog (Fundulus heteroclitus) ovary under light microscope with hemoxylin and eosin staining. Oocytes at different stage of development 1288 1289 were found in the ovary of an individual fish. Oogonia (yellow circle) were early staged 1290 oocytes that have differentiated from primary germ cells (undifferentiated sex cells). Oogonia were identified by their small size and small cytoplasm to nucleus area ratio. As 1291 oocytes develop, their overall size and cytoplasm to nucleus area ratio increases. 1292 1293 Chromatin nucleolar oocytes (green circle) were the next stage after oogonia; these cells were identified by their large nucleoli (arrow) at the periphery of the nucleus. 1294 1295 Perinucleolar oocytes (blue circle) were identified by multiple nucleoli at the periphery of 1296 the nucleus. Fat globules (square) indicate the cortico alveolar oocyte (red circle). The

- 1297follicular envelope surrounds each oocyte which were composed of somatic theca and1298granulosa cells. 10 X magnification.
- 1299 1300

Degeneration

- 1301 To calculate degeneration in the ovary, atretic follicles were identified and counted in
- all slides. The three stages of atresia that were identified histologically are: nuclear
- 1303 disintegration, follicular dissociation, and fibrosis (Figure 2.2).

1304

Figure 2.2: Atretic follicle stages (black arrow) that can be identified histologically in a
 five-week-old mumnichog (*Fundulus heteroclitus*). In order of development: nuclear
 disintegration/ granulation (A; 10 X magnification), follicular dissociation (B; 10 X
 magnification), and fibrosis (C; 20 X magnification) were the three stages that were used
 to identify ovarian degeneration in the mumnichog.
1310 Male gonadal development

1311Testis gametogenesis, degeneration and abnormal cavity presence were evaluated to

1312 determine testis developmental changes in Experiment 2. Slides that did not contain at

1313 least one full testis were omitted.

- 1314 Gametogenesis
- 1315 Sixteen fish slides were randomly selected (5-6/replicate tank) from each treatment

1316 for analysis (A.1.3.1-A1.3.30). Sample numbers were increased from 10 to 16 for this

- 1317 analysis to increase significance level of the results. Each gamete in the testes were
- 1318 counted using a handheld tally counter and classified into a developmental stage (Figure

1319 2.3). An overall percentage of each developmental stage in the testis was calculated by

dividing the total number of cells in the given stage divided by the total number of testis

1321 cells in the testis slide.

Developmental stage percentage (%) = Count of developmental stage in testis *100 Total count of all stages in testis

Figure 2.3: Five-week-old mummichog (Fundulus heteroclitus) testis under light
microscope with hemoxylin and eosin staining. A testis showing various stages of sperm
cell development (circles) and spermatocysts (dotted line circle) which enclose the
developing cells in somatic Sertoli cells. Spermatogonia (yellow) were located at the
periphery of the testis. Typically, spermatogonia were the largest cells in the testis and as
cells divide and mature, their size decreases as the spermatocysts move toward the
efferent duct (black arrowhead) in the lumen. Spermatogonia give rise to spermatocytes;
early spermatocytes (green) were found close to spermatogonia and were tightly packed
together. Late spermatocytes (blue) were identifiable by the increased space in the
spermatocyst and rounded shape. Spermatid (red) were easily identified by their small
size (about 50% of spermatocyte size). Leydig cells (white arrow), which assist in
steroidogenesis, were perceptible throughout the testes. 40 X magnification.

1336	Degeneration
1337	Necrotic and hypertrophic interstitial tissue were identified histologically and used to
1338	determine percent degeneration in all testes slides (Figure 2.4). ImageJ
1339	(https://imagej.nih.gov/ij/index.html) was used to calculate the area of necrotic and
1340	hypertrophic interstitial tissue in the testes as well as the total area of the testes. An
1341	overall percentage was calculated by dividing the area of necrosis and fibrosis by the total
1342	area of the testes in the field of view.

Percentage degeneration (%) = <u>Area of necrotic and fibrotic tissue in testes</u> * 100 Total area of testes

- 1344 A degeneration index was used to categorize the severity of degeneration in the testis
- tissue (Figure 2.4).

- 1346
- 1347 Figure 2.4: Degeneration index to evaluate severity of necrosis and hypertrophic 1348 interstitial tissue in mummichog (Fundulus heteroclitus) testis treated with 17a-1349 ethinylestradiol (EE₂) for five weeks post hatch. Histological degeneration percentage 1350 calculated using ImageJ program on histological testis tissue, shown in yellow on figures. 1351 Area of necrosis and hypertrophic interstitial tissue divided by total area of testis tissue 1352 multiplied by 100. Example photos and identification of mummichog testis provided from 1353 Experiment 2. Categories are A <20% degeneration (control male, 20X), B = 20-40%1354 degeneration (low EE₂ concentration treatment, 20X, male), C = 40-60% (high EE₂ 1355 concentration treatment, 20X, male) and D >60% degeneration (high EE₂ concentration 1356 treatment, 40X, male). E, efferent ducts. Arrowhead, blood vessels. *, abnormal cavity.

1357 Abnormal Cavity

1358 The presence of an abnormal cavity was counted from sixteen randomly selected

- 1359 testis slides from each treatment. The abnormal cavity was identified by its large size,
- 1360 which was greater than the efferent duct size, and attached to the mesentery (Figure 2.5).

1361

Figure 2.5: Photomicrograph of a five-week-old mummichog (*Fundulus heteroclitus*) testis under light microscope with hemoxylin and eosin staining. Fish were exposed to daily renewal of 10 ng/L 17 α -ethinylestradiol (EE₂) for five weeks post hatch. The abnormal cavity (*) was observed in several EE₂ treatment exposed mummichog; which was easily distinguishable from the efferent duct (E). Each abnormal cavity was attached to both testis lobes (T) and the mesentery (M), which separates the gut with the gas bladder (G).

- 1369
- **2.6.2 Gene expression**
- 1371 Dissection

1372 Fish were held on top of 4% agar (Select AgarTM, Invitrogen, Waltham, MA) and the

1373 gonad was removed from the posterior body cavity under a dissecting microscope using

- 1374 very fine tip forceps (Tip dimensions: 0.05 x 0.02 mm; Dumont #55 forceps, Fine Science
- 1375 Tools Inc., North Vancouver, BC) and immediately placed onto dry ice. Four ovaries and
- 1376 seven to eight testes were pooled to generate a pooled ovary and testis sample,
- 1377 respectively, and then placed in a microfuge tube.
- 1378 **R**

RNA extraction

1379Total RNA was extracted from the frozen pooled gonad samples using PureZOLTM1380(Bio-Rad Laboratories, Inc., Hercules, CA, USA). The protocol used followed the1381manufacturer instructions with minor modifications from (Toni et al., 2018).

- 1382 To start, 500 μ L of PureZOLTM (Bio-Rad) was added to one microfuge tube
- 1383 containing a pooled sample and was then immediately homogenized using a BD Luer-
- 1384 LokTM Syringe (3 mL) with attached needle (21G; BD Canada, Mississauga, ON) by
- 1385 inhaling and expelling the liquid and tissue into the syringe. One sample was processed at
- a time to prevent degradation of RNA. Once all samples were homogenized, samples
- 1387 were incubated at room temperature for 5 min. Next, 150 µL of chloroform (Sigma
- 1388 Aldrich) was added to each tube and invert mixed for 30 s. Samples were incubated for 3
- 1389 min at room temperature then centrifuged at 2°C for 20 min at 12000 X g. The upper
- aqueous phase of each sample was then carefully transferred into a fresh microfuge tube.
- 1391 Then 1.5 µL UltraPure[™] Glycogen (Thermofisher Scientific, Mississauga, ON) was
- 1392 gently mixed into each sample followed by 300 µL of isopropanol (Sigma Aldrich).
- 1393 Samples were then pulse vortexed and transferred into the -20°C freezer for overnight
- 1394 precipitation.

Samples were removed from the freezer and placed directly into the centrifuge at 2°C
for 20 min at 12000 X g. Once removed from the centrifuge, the supernatant was

-62-

1397 discarded. To wash the samples, 800 μ L of chilled 75% ethanol was added to each tube 1398 and vortexed. Samples were placed back into the centrifuge for 10 min at 7500 X *g*, 2°C. 1399 This wash step was repeated twice. Samples were then air dried at room temperature in 1400 the fume hood for 3 min. Samples were then reconstituted in 10 μ L of sterile molecular

1401 grade water (Wisent Inc., Saint-Jean-Baptiste, QC) and incubated at 55°C for 10 min.

1402 Samples were vortexed before transfer into the -80°C freezer.

1403

RNA purity, integrity and yield

1404RNA purity and yield were determined using a Nanodrop 8000 (Thermo Fisher1405Scientific, Burlington, ON) using 2 μL of 10X diluted sample. Samples yielding <31.25</td>1406ng/μl of RNA in the original sample were eliminated due to insufficient concentration.1407RNA purity was determined using 260/280 nm absorbance ratios; samples with ratios

1408 below 1.7 were eliminated due to phenol contamination. The ExperionTM (Bio-Rad) was

1409 used to evaluate RNA integrity and confirm yield. Analysis was conducted using the

1410 RNA Highsens analysis kit (Bio-Rad) following the manufacturer's instructions. Samples

1411 were diluted to $2 \text{ ng/}\mu\text{L}$ as per Nanodrop results. The RQI (RNA quality indicator

number) was used to determine RNA integrity; this method offers a robust assessment of

- 1413 RNA integrity using an algorithm that compares three regions of an electrophoretic
- 1414 profile to a series of degradation standards. The RQI algorithm within the Experion
- 1415 system compares the electropherogram of RNA samples to data from a series of

1416 standardized [28S (structural large ribosomal RNA of eukaryotic cytoplasmic ribosomes),

- 1417 18S (structural small ribosomal RNA of eukaryotic cytoplasmic ribosomes)], degraded
- 1418 RNA samples and automatically returns a number between 10 (intact RNA) and 1

-63-

1419(degraded RNA) for each sample. Samples containing an RQI value ≤ 6.9 were1420eliminated due to degradation.

1421	RQI equation:
1422	$I_S = I_i \alpha_i$
1423	Where $I_i \in \{I\}_{i=1}^{M}$ is a set of integral numbers assigned to the standards
1424	$I = \min\{\alpha_i\}^{M_{i=1}}$, where $\alpha_i = //P(S^S, S^I) //$, where S^S is sample signal and S^I and
1425	standard signal
1426	DNase treatment
1427	Samples were treated with DNase I (Sigma-Aldrich, St. Louis, MO) to remove any
1428	genomic DNA. To start the reaction, 250 ng of RNA was transferred into corresponding
1429	PCR tubes (0.2 ml; Bio-Rad) with 1 μ L of DNase enzyme (1 U/ μ L) for 15 min following
1430	the manufacturer's instructions. Samples were incubated using the C1000 Touch TM
1431	Thermal Cycler (Bio-Rad) at 70°C for 10 min with 1 μ L of stop solution. Once complete,
1432	samples were chilled on ice and immediately reverse transcribed.
1433	Reverse transcription reaction
1434	Samples were reverse transcribed using iScript TM Reverse Transcription Supermix
1435	for RT-qPCR (Bio-Rad) following the manufacturer's instructions. Samples were
1436	incubated using the C1000 Touch [™] Thermal Cycler (Bio-Rad). Samples were primed for
1437	5 min at 25°C, then reverse transcribed for 20 min at 46°C followed by inactivation at
1438	95°C for 1 min.
1439	<i>qPCR</i>
1440	For RT-qPCR analysis, SsoAdvanced [™] Universal Inhibitor-Tolerant SYBR®Green
1441	Supermix (Bio-Rad) was used following the manufacturer's instructions. Each sample

-64-

1442	was run in duplicate containing 2.5 μL of template 25X diluted cDNA with 5 μL of
1443	SYBR®Green Supermix and 1.25 μ L of forward and reverse primers complementary to
1444	the genes of interest (Table 2.1). The CFX96 Touch [™] Real-Time PCR Detection System
1445	(Bio-Rad) was used for the PCR reaction and melt curve analysis (section A1.4). The
1446	PCR reaction protocol followed: polymerase activation and denaturing at 98°C for 2 min,
1447	then amplification steps including denaturing for 15 s at 98°C, annealing at 60°C for 60 s
1448	followed by a plate reading. The amplification steps were repeated 39 times. Melt curve
1449	analysis was conducted starting at 60°C and increasing 0.5°C every 2 s until 95°C.
1450	qPCR analysis
1451	Raw data provided by the CFX96 Touch [™] Real-Time PCR Detection System for
1452	each gene of interested was normalized to reference genes $\beta actin$ and $efl\alpha$ (elongation
1453	factor 1 alpha) using Bio-Rad Maestro gene study software version 5.3.
1454	The program uses the $2^{-\Delta\Delta cq}$ method to determine the normalized expression of the gene of
1455	interest.
1455 1456 1457 1458	interest. Normalized expression sample (GOI) = $\frac{RQ_{sample (GOI)}}{(RQ_{sample (Ref 1)} X (RQ_{sample (Ref 2)} X (RQ_{sample (Ref n)})^{1/n})}$
1455 1456 1457 1458 1459	interest. Normalized expression sample (GOI) = $\frac{\underline{RQ}_{sample (GOI)}}{(RQ_{sample (Ref 1)} X (RQ_{sample (Ref 2)} X (RQ_{sample (Ref n)})^{1/n}}$ Where:
1455 1456 1457 1458 1459 1460	interest. Normalized expression $_{sample (GOI)} = \frac{RQ_{sample (GOI)}}{(RQ_{sample (Ref 1)} X (RQ_{sample (Ref 2)} X (RQ_{sample (Ref n)})^{1/n}}$ Where: RQ = the relative quantity
1455 1456 1457 1458 1459 1460 1461	interest. Normalized expression sample (GOI) = $\frac{RQ_{sample (GOI)}}{(RQ_{sample (Ref 1)} X (RQ_{sample (Ref 2)} X (RQ_{sample (Ref n)})^{1/n})}$ Where: RQ = the relative quantity GOI = gene of interest
1455 1456 1457 1458 1459 1460 1461 1462	interest. Normalized expression sample (GOI) = $\frac{RQ_{sample (GOI)}}{(RQ_{sample (Ref 1)} X (RQ_{sample (Ref 2)}X (RQ_{sample (Ref n)})^{1/n})}$ Where: RQ = the relative quantity GOI = gene of interest Ref = reference gene
1455 1456 1457 1458 1459 1460 1461 1462 1463	interest. Normalized expression sample (GOI) = $\frac{RQ_{sample (GOI)}}{(RQ_{sample (Ref 1)} X (RQ_{sample (Ref 2)}X (RQ_{sample (Ref n)})^{1/n})}$ Where: RQ = the relative quantity GOI = gene of interest Ref = reference gene
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464	interest. Normalized expression $_{sample (GOI)} = \frac{RQ _{sample (GOI)}}{(RQ_{sample (Ref 1)} X (RQ_{sample (Ref 2)}X (RQ_{sample (Ref n)})^{1/n})}$ Where: RQ = the relative quantity GOI = gene of interest Ref = reference gene The gene study software provides target stability values [Coefficient of Variation]
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465	interest. Normalized expression sample (GOI) = $\frac{RQ_{sample (GOI)}}{(RQ_{sample (Ref 1)} X (RQ_{sample (Ref 2)}X (RQ_{sample (Ref n)})^{1/n})}$ Where: RQ = the relative quantity GOI = gene of interest Ref = reference gene The gene study software provides target stability values [Coefficient of Variation (CV) and M-value (M)] to calculate the quality of the reference genes (A1.4.1 and

1467 **2.6.3 Primer development optimization and sequencing**

Primers to identify mummichog gene of interest sequences were designed and 1468 1469 optimized in the Van Der Kraak Lab at the University of Guelph using adult mummichog 1470 gonadal tissue (Table 2.1). Primer optimization was confirmed in the MacLatchy lab 1471 using five-week-old mummichog gonadal tissue. Final PCR products from the Van Der 1472 Kraak lab were sequenced. Sequences were run on BLAST using Ensembl.org to identify 1473 the location of the products on the mummichog genome and map introns and exons. 1474 Products were found to be located on one exon. Therefore, DNase treatment was critical 1475 to eliminate DNA contamination.

Table 2.1: Genes studied with their accession numbers. Forward and reverse primer1477sequences designed for qPCR analysis, primer efficiency and R^2 from pooled five-week-1478old mummichog (*Fundulus heteroclitus*) mixed gonadal tissue standard curve. β -actin and1479ef1a were reference genes. Product size base pairs (bp) were provided from sequencing1480results via the Van Der Kraak laboratory. Product sequences compared on Ensembl.org1481were found on one exon.

Gene	Accession number	Forward sequence 5'-3'	Reverse sequence 5'-3'	Product size (bp)	Efficiency (%)	R ²
β-actin	AF397164	GCACGGTA TTGTACCA A	GGGTGTTG AAGGTCTC AA	NA	94.3	0.998
efla	AY430091	GTGAGCAC CTACATCA AGA	CTTCCAGCC TTTGAACC A	NA	95.3	0.999
cyp19a1a	AY428665	GTCCACTCT TGTCTTATT TG	CTCTCCTCT CCATTGATC	NA	93.1	0.987
foxl2	XM_01286323 3.2	GGACCAAA TGGCCTTA ATGA	TGCCAGCC TTTCTTGTT CTT	246	93.9	0.985
bmp15	XM_01287498 7.2	AAAGATTC TTCGCTGG ACGA	AATGCCAG GTTGAAGG AGTG	158	90.9	0.992
gdf9	XM_01285682 3.2	GCAAGCGT GGAGATAA AAGC	CCGTAGAT GAAGCCCA TTGT	202	93.2	0.997
dmrt1	XM_02130718 4.1	CACGGCAT GTCCTCTCA GTA	GCAGGTTA TGGTGGAG TCGT	180	90.2	0.988
amh	XM_01286486 4.2	CGTTCATGC GCTCTTATT GA	GTGAGCAC CACAGCTT CAAA	158	90.4	0.989

1483

2.6.4 Experiment 1: Pilot study design

1484The purpose of this experiment is to establish normal gonadal development, sex1485ratios and gene expression levels in female and male five-week-old mummichog. Eggs1486were fertilized, collected and incubated as per section 2.2 and reared as per section 2.3.1487Twenty-eight mummichog were randomly sampled at five-weeks-old from a filtered tank

as per section 2.4.

1489 **2.6.5 Experiment 2: EE₂ exposure design**

1490 The purpose of this experiment is to establish how gonad morphology, sex ratios and 1491 gene expression levels were affected following EE₂ exposure after hatching for five

weeks (Figure 2.6). Mummichog egg were fertilized, collected and incubated as

1493 previously described (Section 2.2). Three days before mummichog eggs hatched, the

1494 dosing and experimental tanks were pretreated with corresponding EE₂ treatment (Section

1495 2.6.5.1; Figure 2.7). After hatching, the fish were randomly allocated into one of nine

1496 experimental tanks and kept under the conditions listed in Section 2.3 (Figure 2.7). Tanks

1497 received a daily treatment renewal for five weeks until sampling.

1498

1492

1499

Figure 2.6: Experiment two timeline: Fertilized embryos were collected from a mesh
filter in tanks holding male and female adult mummichog (*Fundulus heteroclitus*; section
2.2). Eggs were incubated (grey arrow) for three weeks at 21°C and hatched all at once

1503 (H). On day one of 17α -ethinylestradiol (EE₂) exposure (purple arrow), freshly hatched

yolk-sac larvae were randomly allocated into 1 of 9 experimental tanks, totaling 60 per
tank. Fish were kept in their tanks, receiving daily treatment renewal from hatching to
five weeks and were then sampled (S).

1507 2.6.5.1 Treatments 1508 A stock solution of EE₂ (Sigma Aldrich, Saint Louis, MO) was prepared in 1509 anhydrous ethanol (Commercial Alcohols, Brampton, ON) at 1 mg/mL and stored at -1510 20°C. The working stocks for each treatment were designed so that a 0.5 mL aliquot of 1511 working stock would reach a desired final EE_2 concentration in 15 L of salt water in the 1512 dosing aquaria. Final treatment concentrations were intended to be 0 ng/L (control), an 1513 environmentally-relevant concentration: 10 ng/L, and a supraphysiological high 1514 concentration: 100 ng/L. Actual exposure concentrations were measured to be 0, 2 and 10 1515 ng/L EE₂. Treatment was renewed in the experimental tanks daily. After removing 80% 1516 of the day-old treatment out of each experimental tank, 4.5 L of fresh treatment was then 1517 added into the corresponding experimental tank (Figure 2.7).

1519Figure 2.7: Experiment 2 treatment experimental design. Each dosing tank was filled1520with 15 L of saltwater then mixed with 0.5 ml of ethanol and or the corresponding 17α -1521ethinylestradiol (EE₂) treatment. Each experimental tank contained randomly allocated1522mumnichog (*Fundulus heteroclitus*) kept under standard laboratory conditions. During1523daily water changes, 80% of the treatment water in the experimental tank was removed

with a siphon, freshly mixed treatment from the dosing tank was slowly added to the
experimental tanks. Measured final exposure concentrations were 0, 2 and 10 ng/L in the
control, low concentration and high concentration treatments, respectively.

1527

2.6.5.2 Treatment water sampling

1528 Water samples (500 mL) were taken weekly to determine the EE₂ concentration

- using liquid chromatography with tandem mass spectrometry (LC MS/MS; Servos lab,
- 1530 University of Waterloo, Waterloo, ON). Water samples were stabilized using 1 g/L
- sodium azide (Sigma Aldrich) and 50 mg/L of ascorbic acid (Sigma Aldrich). Upon
- arrival at the Servos lab, samples were filtered, extracted, dried using nitrogen gas and
- 1533 stored at -20^oC until analysis using Agilent autosampler with a cooled sample tray,

Agilent 1260 binary pump LC, and Agilent 6460 triple quadrupole mass spectrometer MS

- 1535 (Agilent Technologies Inc., Santa Clara, CA; Srikanthan, 2019). Method detection limit
 1536 was 0.5 ng/L.
- 1537 **2.7 Statistics**

1538 Statistical analyses were conducted using SPSS (IBM, Inc.) computer software. 1539 Sex ratios and abnormal cavity counts (testis only) in control and treatment groups were 1540 evaluated using a Pearson's Chi². P-values ≤ 0.05 were considered statistically different 1541 from the null hypothesis. Both histological gametogenesis and degeneration of male and female mummichog were investigated separately for differences among treatments. 1542 1543 Assumptions of normality and homogeneity of variance were tested using Shapiro-Wilk 1544 and Levene's tests, respectively. Data were \log_{10} transformed and/or $\log_{10}(x+1)$ and re-1545 tested when assumptions failed. A one-way ANOVA test was used to identify any 1546 differences in gonadal development (gametogenesis and degeneration) among EE_2 1547 treatments. Results showing significant differences (p-value < 0.05) among treatments

1548 were followed by Tukey's post hoc test to identify the specific treatments with 1549 significantly different gonadal development. Data sets that failed Shapiro-Wilk and/or 1550 Levene's tests (p-value ≥ 0.05), even after transformation, were evaluated with a non-1551 parametric Games-Howell post hoc test for significant differences in gonadal 1552 development. Gene expression Cq values were normalized ($\Delta\Delta$ Cq) to two reference 1553 genes, $\beta actin$ and efla, on the Bio-Rad Gene study CFX Manager software. Assumptions 1554 of normality and homogeneity of variance were tested using Shapiro-Wilk and Levene's 1555 tests, respectively. Data were \log_{10} transformed and retested when assumptions failed. A 1556 one-way ANOVA test was used to identify any differences in normalized gene expression 1557 among EE₂ treatments. Results showing significant differences (p-value ≤ 0.05) among 1558 treatments were followed by Tukey's post hoc test to identify the specific treatments with 1559 significantly different normalized gene expression. Data sets that failed Shapiro-Wilk 1560 and/or Levene's test (p-value ≥ 0.05), even after data transformations, were evaluated with 1561 a non-parametric Games-Howell post hoc test for significant differences in normalized 1562 gene expression among treatments.

3.0 Results 1563

3.1 Fish health 1564

- 1565 The health of all fish in both experiments appeared normal during the five-week
- 1566 growth period. No obvious external signs of disease, malformation, or other health issues
- 1567 were observed. No significant differences in mortality were recorded among the groups.
- 1568 At most, one mortality was recorded in each tank.

3.2 Experiment 1: Pilot study 1569

1570 Sex ratio

1571 Based on histology (Figure 3.1), five-week-old mummichog were 46% female:54% 1572 male (12 female:14 male) that were sampled from a single tank (Table 3.1). No intersex fish were identified. 1573

1574 1575

Figure 3.1: Photomicrograph of five-week-old mummichog (*Fundulus heteroclitus*) 1576 testes (left) and ovary (right) under light microscope with hemoxylin and eosin staining. Presence of testis or ovary on slide was used to determine sex of fish in Experiment 1 to 1578 understand the normal sex ratio of mummichog under standard laboratory conditions and to sex fish for gene expression analysis.

1579 1580

1581 Gene expression

1587

1582 Samples were dissected and pooled based on histological sexing. All six genes of

- 1583 interest, cyp19a1a, foxl2, gdf9, bmp15, dmrt1 and amh, were expressed in pooled
- 1584 mummichog ovaries (n=3 pools of 4 individuals; Figure 3.2). Normalized gene
- 1585 expression appears higher for female promoting genes compared to male promoting
- 1586 genes, although, no statistical analysis was conducted.

1588Figure 3.2: Normalized gene expression of amh, dmrt1, foxl2, cyp19a1a, gdf9, and1589bmp15 from pooled five-week-old mummichog (Fundulus heteroclitus) ovaries under1590standard laboratory conditions. RNA (250ng) was used for cDNA synthesis. Gene1591expression was normalized to β -actin and ef1a. Circles without outline are actual1592normalized sample values, circles with black outline are mean normalized gene1593expression from RT-qPCR. N=3 pools containing ovaries from 4 individuals.

1594	Samples were dissected and pooled based on histological sexing (n=2 pools of testis
1595	from 7 individuals). All six genes of interest, cyp19a1a, foxl2, gdf9, bmp15, dmrt1 and

- 1596 *amh*, were expressed in pooled mummichog testes (Figure 3.3). Normalized gene
- 1597 expression appears higher for male promoting genes compared to female promoting
- 1598 genes, although, appropriately, no statistical analysis was conducted

1600	Figure 3.3: Normalized gene expression of <i>amh</i> , <i>dmrt1</i> , <i>foxl2</i> , <i>cyp19a1a</i> , <i>gdf9</i> , and
1601	bmp15 from pooled five-week-old mummichog (Fundulus heteroclitus) testis (7) under
1602	standard laboratory conditions. 250 ng RNA was used for cDNA synthesis. Gene
1603	expression was normalized to β -actin and ef1a. N=2 pools of testis from 7 individuals.

1604 **3.3 Experiment 2: EE₂ exposure**

1605 **EE2 concentration**

1606Samples of treatment water (1 L) were taken from one replicate tank before water1607changes from each treatment weekly to verify EE_2 concentration over five weeks (Figure16083.4). Average EE_2 concentration in each treatment was <0.5 ng/L (control), 2.34 ng/L</td>1609(low) and 10.02 ng/L (high). EE_2 levels varied slightly each week, with a decline in EE_2 1610concentration on week five in the high concentration treatment (3.8 ng/L). The control1611treatment contained low levels of EE_2 in weeks 2-4, with the highest amount detected in1612week 4 at 0.7 ng/L.

1619

1620Figure 3.5: Photomicrographs of cross sectioned five-week-old female mumnichog1621(*Fundulus heteroclitus*) ovary exposed to daily renewal of 17α -ethinylestradiol (EE₂) for1622five-weeks post hatch under light microscope (10X) with hemoxylin and eosin staining1623(Experiment 2). EE₂ treatments are control (0 ng/L, A), low EE₂ concentration (2 ng/L;1624B), and high EE₂ concentration (10 ng/L; C).

-76-

Figure 3.6: Photomicrographs of cross sectioned five-week-old male mummichog (Fundulus heteroclitus) testis exposed to daily renewal of 17a-ethinylestradiol (EE₂) for 1628 five-weeks post hatch under light microscope (20X) with hemoxylin and eosin staining 1629 1630 (Experiment 2). EE₂ treatments are control (0 ng/L, A), low EE₂ concentration (2 ng/L; B), and high EE₂ concentration (10 ng/L; C) which is also demonstrating an abnormal 1631 1632 cavity (*).

1633	Sex ratio
1634	Sex ratios did not change among EE ₂ treatment in five-week-old mummichog (Table
1635	3.1). Mummichog sampled at five weeks in each treatment contained 53.8%: 46.2%: 0%
1636	(control; female: male: intersex), 46.2%: 53.8%: 0% (low EE_2 concentration), and 48.6%:
1637	51.4%: 0% (high EE_2 concentration). No intersex fish were found in five-week-old
1638	mummichog gonad in any of the EE_2 treatments. There were no significant differences in
1639	sex frequency with EE_2 treatment (Pearson's Chi ² test; p-value 0.351).
1640	Table 3.1: Five-week-old mummichog (Fundulus heteroclitus) sex ratios (%) from
1641	Experiments 1 and 2. Fish sex classified histologically by presence of male or female
1642	gonadal tissue or intersexed gonad (both male and female gametes) or undefined (no
1643	gonad was found). Chi ² results revealed no significant differences were found between
1644	male and female sex ratio percentages. No intersex fish were found in either experiment.
1645	Experiment 1 values are from 28 fish sampled from a single tank. Experiment 2 values
1646	are the mean \pm SEM of three experimental tanks from three 17 α -ethinylestradiol (EE ₂)
1647	treatments; 0 ng/L (control, N=178), 2 ng/L (low EE ₂ concentration, N= 179) and 10 ng/L
1648	(high EE ₂ concentration, N=179). Histology slides that did not contain a gonad were
1649	excluded from analysis.

		Sex ratio percentage (70)			
Experiment #	Treatment	Female	Male	Intersex	Undefined
1	16ppt salt water	43.0	50.0	0	7.0
	Control	51.1±2.8	43.8±2.2	0	5.1±1.0
2	concentration (2ng/L)	43.6±1.6	50.8±2.1	0	5.6±0.5
	concentration (10 ng/L)	47.0±2.2	49.6±4.3	0	3.4±2.6

Sex ratio percentage (%)

1651 Female gonadal development

1652 **Gametogenesis**

1653 All four stages of developing oocytes (oogonia, chromatin nucleolar, perinucleolar 1654 and cortico alveolar) were identified in all three treatments (Figure 3.5 and 3.7). Oogonia 1655 percentages increased from 25% in the control treatment to 34% in the low EE₂ 1656 concentration treatment and significantly increased to 40% in the high EE₂ concentration 1657 treatment (p-value 0.03). Perinucleolar oocyte percentages showed a decreasing trend 1658 with 45% in the control, 40% in the low EE_2 concentration treatment and significantly 1659 decreased to 31% in the high EE_2 concentration treatment (p-value 0.031). There were no 1660 significant differences in percentage of chromatin nucleolar and cortico alveolar oocytes 1661 among treatments (chromatin nucleolar p-value 0.861, cortico alveolar p-value 0.225).

Developmental oocyte stage

1662 1663 Figure 3.7: Distribution of early developmental stage oocytes from five-week-old 1664 mummichog (Fundulus heteroclitus) ovary exposed to daily renewal of control (0 ng/L), 1665 low (2 ng/L) and high (10 ng/L) concentrations of 17α -ethinylestradiol (EE₂) from 1666 hatching. From left to right, oocyte stages displayed are in order of earliest to latest in

-79-

1667development. Values displayed are mean percentages \pm SEM from 10 randomly selected1668histology slides per treatment. Letters designate statistical differences (one-way ANOVA1669and Games-Howell post hoc test; p-value ≤ 0.05).

- 1670 Degeneration
- 1671 All categories of atresia (nuclear disintegration/granulation, follicular dissociation,
- and fibrosis) were observed in all three treatments of EE₂ (Figure 3.8). Nuclear
- 1673 disintegration / granulation proportions were 8.4 (control), 16.7 (low EE₂ concentration
- treatment), and 23.0 % (high EE₂ concentration treatment) indicating increasing nuclear
- 1675 atresia with treatment (p-value 0.002). Follicular dissociation proportions were 4.0
- 1676 (control), 3.9 (low EE₂ concentration treatment), and 11.5 (high EE₂ concentration
- 1677 treatment) indicating increasing follicular dissociation atresia with treatment (p-value
- 1678 0.004). Fibrosis proportions were 7.0 (control), 9.0 (low EE₂ concentration treatment),
- 1679 and 13.1 (high EE₂ concentration treatment) indicating increasing fibrosis atresia with
- 1680 treatment (p-value 0.021). There were no significant differences of atretic follicle counts
- 1681 between control and low EE₂ concentration treatment in any category.

Atretic Follicle Stage

1684 Figure 3.8: The proportion of different classifications of attretic follicles observed in five-1685 week-old mummichog (Fundulus heteroclitus) ovary exposed to daily renewal of control 1686 (0 ng/L), low (2 ng/L) and high (10 ng/L) concentration of 17α -ethinylestradiol (EE₂) from hatching. Atretic follicles stages include nuclear disintegration/granulation, 1687 follicular envelope dissociation, and fibrosis. Values displayed are mean \pm SEM counts of 1688 1689 atretic follicles from all three treatments. Letters designate statistical differences (Tukey's post hoc test; p-value < 0.05). Ovary sample numbers are 91, 78 and 84 in the control, low 1690 and high EE₂ concentration groups respectively. 1691

1692

Male gonadal development

1693 *Gametogenesis*

1694 The three earliest stages of developing sperm cells, spermatogonia, early 1695 spermatocyte, and late spermatocyte, were identified in all three treatments (Figure 3.6 1696 and 3.9). Spermatids (the most advanced sperm developmental stage observed) were only 1697 found in control testes, therefore, no statistical analysis was conducted on this stage. 1698 There was a significant increase in spermatogonia percentage following EE_2 treatment, 1699 39% in control, 52% in the low EE_2 concentration and 57% in the high EE_2 concentration 1700 treatment (p-value 0.004). There was a significant decrease in late spermatogonia 1701 percentage through EE₂ treatment, 25% in control, 15% in the low EE₂ concentration and 12% in the high EE_2 concentration treatment (p-value 0.039). There were no significant 1702 1703 differences in percent early spermatocytes among treatments (p-value 0.935).

Developmental sperm stage

1704	Developmental sperm stage
1705	Figure 3.9: Distribution of early sperm developmental stages in five-week-old
1706	mummichog (Fundulus heteroclitus) testis treated with daily renewal of control (0 ng/L),
1707	low (2 ng/L) and high (10 ng/L) concentrations of 17α -ethinylestradiol (EE ₂) from
1708	hatching. Early sperm cell stages in order from left to right in development. Letters
1709	designate statistical differences (Tukey's post hoc test; p-value≤0.05). Spermatid stage
1710	did not undergo statistical analysis as most of the testes examined did not contain
1711	spermatid cells. Random subset of testis samples used for analysis, N=16 from each
1712	treatment.
1713	

1714

Degeneration

1715	All testis samples contained areas of degeneration, which were then categorized
1716	(Figure 3.10; A;<20%, B; 20-40%, C; 40-60%, D; >60%). The proportion of testis with
1717	<20% degeneration was 36.9% in the control, 6.1% in the low EE ₂ concentration
1718	treatment, and 0.0% in the high EE_2 concentration treatment indicating significantly
1719	lower degeneration in the control group (p-value 0.001). The proportion of testis with 20-
1720	40% degeneration was 61.5% in the control, 65.9% in the low EE_2 concentration
1721	treatment, and 19.0% in the high EE_2 concentration treatment (p-value 0.028). The
1722	proportion of testis with 40-60% degeneration was 1.5% in the control, 23.2% in the low
1723	EE_2 concentration treatment, and 60.8% in the high EE_2 concentration treatment
1724	indicating significantly higher degeneration in the high concentration treatment (p-value
1725	0.003). The proportions of testis with $>60\%$ degeneration was 0.0% in the control, 4.9%
1726	in the low EE_2 concentration treatment, and 20.3% in the high EE_2 concentration
1727	treatment (p-value 0.231). There were no statistical differences among treatments in
1728	category D, which is likely due to the low values and high variation among replicate
1729	tanks.

1731 Figure 3.10: Average degeneration score in five-week-old mummichog (Fundulus 1732 1733 *heteroclitus*) testis exposed to daily renewal of control (0 ng/L), low (2 ng/L), and high 1734 (10 ng/L) concentration of 17α -ethinylestradiol (EE₂) after hatching. Degeneration scores: 1735 $A \le 20\%$, B= 20-40\%, C= 40-60\%, D \ge 60\% degeneration calculated by dividing the total 1736 area of necrotic and hypertrophic interstitial tissue area by the whole testis area using ImageJ image processing software. Values displayed are mean proportions \pm SEM of 1737 1738 testis samples in each degeneration score category from all testis samples. Letters 1739 designate statistical differences (Tukey's post hoc test used for scores A and B; Games-Howell post hoc test used for scores C and D; p-value≤0.05). Number of testis examined 1740 were 78, 91 and 89 in the control, low and high EE₂ concentration groups, respectively. 1741

1742 Abnormal Cavity

1743	Male mummichog contained an abnormal cavity, indicating a morphological
1744	irregularity following EE ₂ treatment (Figure 3.10). The presence of an abnormal cavity in

- 1745 the testis tissue calculated from a subset (n=16) of samples showed 6% in control, 18% in
- 1746 low EE₂ concentration treatment and 94 % of high EE₂ concentration treatment, which
- 1747 was statistically higher among treatments (p-value < 0.001; Pearson's Chi²; Figure 3.11).

-84-

Treatment

1748 Figure 3.11: Proportion of abnormal cavities found in five-week-old mummichog 1749 (Fundulus heteroclitus) testes exposed to daily renewal of control (0 ng/L), low (2 ng/L) 1750 1751 and high (10 ng/L) 17α -ethinylestradiol (EE₂) concentration treatments for five weeks after hatching. Letters designate statistical differences (Pearson's chi square test; p-1752 1753 value<0.05). N = 16.

- 1754 **Ovarian gene expression**
- 1755 Pooled ovary samples contained four randomly dissected ovaries from the same tank.
- 1756 Three pseudoreplicate samples were used from each tank (n=3 pools of 4 individuals).
- When Experiment 2 control gene expression (Figure 3.12) is compared with the pilot 1757
- 1758 study (Figure 3.2) ovary results, normalized gene expression appeared similar except for
- 1759 dmrt1, which was higher than expected. Appropriately, no statistical analysis was
- 1760 conducted to compare between the two experiments.

1761	Genes
1762	Figure 3.12: Normalized gene expression of cyp19a1a, foxl2, gdf9, bmp15, dmrt1 and
1763	amh from pooled five-week-old mummichog (Fundulus heteroclitus) ovaries under
1764	standard laboratory conditions. Results displayed are control treatment from Experiment
1765	2. RNA (250 ng) was used for cDNA synthesis. β -actin and ef1a used as reference genes.
1766	Values displayed are mean \pm SEM from RT-qPCR. N=3 pools of 4 individuals.

1767 There were no differences in expression due to EE₂ treatment (Figure 3.13). One-way

- 1768 ANOVA results indicate that there were no differences in ovarian *cyp19a1a* (p-value
- 1769 0.962), foxl2 (p-value 0.400), gdf9 (p-value 0.716), bmp15 (p-value 0.555), dmrt1 (p-
- 1770 value 0.855) or *amh* (p-value 0.079) gene expression among EE₂ treatments (Figure 3.13).

1771Genes1772Figure 3.13: Normalized gene expression of gonadal differentiating genes in pooled five-1773week-old mummichog (*Fundulus heteroclitus*) ovaries from daily renewal of control (01774ng/L), low (2 ng/L) and high (10 ng/L) 17α-ethinylestradiol (EE₂) concentration1775treatments from hatching. RNA (250 ng) was used to generate cDNA for RT-qPCR, N=31776pools of 4 individuals. Gene expression normalized to β-actin and ef1a. Letters designate1777significant differences in gene expression among treatments (one-way ANOVA).

1778 **Testis gene expression**

1779	Pooled testes sa	mnles	contained	eight	randomly	dissected	testes	from the	e same f	tank
1//9	rooled lestes sa	unpies	containeu	eigin	Tanuonny	uissecteu	105105	nom uic	same i	iank.

- 1780 Three pseudoreplicate samples were used from each tank (n=3 pools of 8 individuals).
- 1781 When Experiment 2 control gene expression (Figure 3.14) is compared with the pilot
- 1782 study (Figure 3.3) results, normalized gene expression appeared similar except for *dmrt1*,
- 1783 which was lower than expected. Appropriately, no statistical analysis was conducted
- between experiments.

Genes

1785	Genes
1786	Figure 3.14: Normalized gene expression of cyp19a1a, foxl2, gdf9, bmp15, dmrt1 and
1787	amh from pooled five-week-old mummichog (Fundulus heteroclitus) testes (8) under
1788	standard laboratory conditons. Results displayed are control treatment from Experiment 2.
1789	RNA (250 ng) used for cDNA synthesis. β -actin and efla used as reference genes. Values
1790	displayed are mean \pm SEM from RT-qPCR. N=3 pools of 8 individuals.

- 1791 Most genes showed significant differences in normalized expression following EE₂
- 1792 treatment (Figure 3.15). One-way ANOVA results indicated that EE₂ treatment
- 1793 significantly increased gene expression in cyp19a1a (p-value 0.006), foxl2 (p-value
- 1794 0.049), gdf9 (p-value <0.001) and amh, (p-value 0.003) while dmrt1 gene expression was
- 1795 significantly decreased (p-value 0.014). There were no significant differences in *bmp15*
- 1796 gene expression among treatments (p-value 0.136), although an increasing trend was
- 1797 observed.

1798 Figure 3.15: Normalized gene expression of gonadal differentiating genes in pooled five-1799 1800 week-old mummichog (Fundulus heteroclitus) testes from daily renewal of control (0 ng/L), low (2 ng/L) and high (10 ng/L) 17α -ethinylestradiol (EE₂) concentration 1801 1802 treatments from hatching. RNA (250 ng) was used to generate cDNA for RT-qPCR, N=3 1803 pools containing testis from 8 individuals. Gene expression normalized to β -actin and 1804 efla. Letters designate significant differences in gene expression among treatments (one-1805 way ANOVA, Tukey's post hoc test; p-value≤0.05) 1806

4.0 Discussion

1808 This study is the first of its kind to investigate SD and GD of mummichog as an early 1809 life stage estuarine model. Mummichog exposed to environmentally-relevant 1810 concentrations of EE_2 for five weeks post-hatch did not show any feminization; however, 1811 females demonstrated inhibited gametogenesis and increased follicular atresia. Male 1812 mummichog demonstrated inhibited gametogenesis, increased area of necrosis and 1813 hypertrophic interstitial tissue while also displaying an abnormal cavity. The expression 1814 of genes that have been associated in SD and GD mechanisms in other fish (*cyp19a1a*, 1815 *foxl2*, *gdf9*, *bmp15*, *dmrt1*, and *amh*) were measured by RT-qPCR. Gene expression in 1816 five-week-old female mummichog were not affected by EE₂. In five-week-old males, 1817 expression of cyp19a1a, foxl2, gdf9 and amh were upregulated while dmrt1 was

1818 downregulated by EE₂ exposure.

1819

4.1 Environmentally-relevant EE₂

1820 The LC/MS/MS analysis showed that the actual EE₂ concentrations after 24 h in this 1821 experiment were 0 ng/L (control), 2 ng/L (low concentration treatment) and 10 ng/L (high 1822 concentration treatment), with a larger decline in EE_2 levels during week five. While 1823 these concentrations are environmentally-relevant, they were lower than expected. 1824 Working stock concentrations were designed for target EE_2 treatments to be 10 (low 1825 concentration) and 100 ng/L (high concentration). EE_2 can be lost during an experiment 1826 to fish uptake, microbial activity, photodegradation, and/ or adhesion to the aquarium/ 1827 equipment used (Bjorkblom et al., 2009). To account for EE₂ loss, this experiment 1828 pretreated all equipment for three days before fish were added to the system as well as 1829 replenished EE_2 treatments daily with an 80% water change. There was likely EE_2 loss to

-90-

1830	equipment used as well as loss to fish absorption. Since EE_2 is hydrophobic, and has a
1831	half-life of 33 ± 13 h, it can be difficult maintaining a consistent concentration throughout
1832	experimentation (Roggio et al., 2014). As an example, one study that renewed various
1833	EE_2 treatments (0, 10, 75 and 150 ng/L) daily for five male fish in a 5 L aquarium found
1834	~50% loss over the 24 h period (Roggio et al., 2014), so it is not surprising that EE_2 loss
1835	was significant in this experiment with 60 fish per tank. Previous studies on fathead
1836	minnow (Lange et al., 2001), three spined stickleback (Bjorkblom et al., 2009) and
1837	mummichog (Hogan et al., 2010) have shown that nominal concentrations versus actual
1838	concentrations for EE_2 can vary between 50 and 90%. The current results indicate an 85-
1839	95% treatment loss over a 24 h period. Further precautions should be taken in the future
1840	to account for this loss; an experimental design with a lower fish density may help
1841	prevent such drastic EE_2 loss; as well, a treatment flow-through protocol can help
1842	maintain a constant desired concentration (Al-Ansari et al., 2013; Bjorkblom et al., 2009).
1843	The final exposure concentrations were determined to be environmentally-relevant. A
1844	recent review showed EE_2 levels from 32 countries to range from 0-33 ng/L (Tang et al.,
1845	2021). Earlier studies have measured EE_2 levels in Canadian water to be in similar ranges
1846	compared to this study; 0.1-10 ng/L EE_2 were reported in sewage effluents (Desbrow et
1847	al., 1998; Ternes et al., 1999). Studies using environmentally-relevant concentrations of
1848	EE2 during development in the fathead minnow, zebrafish, medaka among others, have
1849	induced a variety of histological gonadal effects including changes to sex ratios (Table
1850	1.2 and 1.3). Previous studies using developing mummichog have not demonstrated these
1851	changes using environmentally-relevant EE_2 concentrations, instead >10 ng/L was
1852	required to cause physiological changes (Peters et al., 2010). The results from the current

-91-

study are the first to report physiological changes in the mummichog to environmentally-relevant concentrations of EE₂.

1855 **4.2 Sex ratios**

1856 This study confirmed that under standard laboratory conditions normal SD 1857 mechanisms in mummichog lead to a 50:50 sex ratio. Similar results have been 1858 documented in other studies investigating mummichog sex ratios under standard 1859 laboratory conditions (Chehade, 2012; Peters et al., 2007; Urushitani et al., 2002). 1860 Aqueous EE₂ exposure at environmentally-relevant concentrations of newly-hatched fish 1861 for five weeks did not alter sex ratios in the current experiment. In previous studies, EE_2 1862 skewed the sex ratio of mummichog toward female when exposure began before hatching 1863 (Chehade, 2012; Peters et al., 2010). Nominal exposure concentration of 100 ng/L EE₂ for 1864 61 weeks post hatch (wph), beginning with reproducing adults through fertilization, 1865 embryo, larval and juvenile stages, skewed histological sex toward female (86%; Peters et 1866 al., 2010). In a later study (Chehade, 2012), mummichog were exposed to various EE₂ 1867 treatments after fertilization and continuously for 10 wph; juvenile fish sampled at 5 wph 1868 were skewed 90% female in 10 ng/L EE_2 and 100% female at 50 and 250 ng/L EE_2 . The 1869 lack of a feminizing effect in the current experiment could be due to the timing of the EE_2 1870 exposure. In the current experiment, yolk-sac larvae were exposed <24 h after hatching 1871 then were continually exposed to a daily renewal of EE₂ treatment for 5 weeks; this 1872 experimental design is different from the previous studies where EE_2 treatment started at 1873 fertilization. There may be an important window of sensitivity in mummichog 1874 development to exogenous estrogen. The timing of chemical exposure before gonadal 1875 differentiation is the most influential for fish gonadal sex (Devlin and Nagahama, 2002;

-92-
1876 Piferrer, 2001). As an example, medaka eggs injected with EE₂ produced sex reversal in 1877 genetic males (Papoulias et al., 1999), while another study demonstrated that exposing 1878 medaka two days after hatching led to intersex condition, with no sex reversal (Balch et 1879 al., 2004). Normal mummichog gonadal differentiation has been reported to occur two 1880 weeks after hatching (Chehade, 2012; Shimizu et al., 2008); however, exposure during 1881 this period at waterborne concentrations of 2 and 10 ng/L did not alter gonadal sex in the 1882 current study. Whether this is due to exposure concentration and/or exposure only 1883 occurring post-hatch is not known; the sex-determining mechanisms in mummichog 1884 could be initiated prior to hatch. 1885 There is high variation in sex-determining mechanisms among fish species 1886 (Nagahama et al., 2021). The SD mechanisms in mummichog are currently unknown and may, as in other species, occur during embryogenesis (i.e., prior to hatching). In the 1887 1888 zebrafish, brain cyp19a1b or aromatase B has been identified as a potential sex-1889 determining mechanism; it is directly influenced during embryogenesis by activation of 1890 the estrogen receptor (Leet et al., 2011; Trant et al., 2001). Future EE_2 exposure 1891 experiments in mummichog should include the embryonic developmental stage from 1892 fertilization to provide further insight on the window of sensitivity in mummichog most 1893 susceptible to EE₂. To differentiate among mechanisms activated during embryogenesis 1894 and post-hatch, exposures that include: fertilization and embryo; fertilization, embryo and 1895 post-hatch; embryo and post-hatch; and post-hatch only could be performed (Figure 4.1) -1896 a similar approach was conducted by Van Aerle et al. (2002). Understanding the 1897 sensitivity of mummichog at various developmental stages to EE_2 could provide valuable 1898 insight into SD and GD mechanisms.

-93-

1900 Figure 4.1: Proposed exposure experiment to understand window of sensitivity in a 1901 developing mummichog to 17α -ethinylestradiol (EE₂). All treatment group eggs will be 1902 artificially fertilized (day -19), incubated for three weeks to hatch (day 0) and then 1903 sampled (day 35). The different treatments are denoted with letters on the left which will 1904 differ based on exposure time to EE_2 (purple arrow). Treatment A represents a control group with no EE₂ exposure. Treatment B represents treating embryos right at 1905 1906 fertilization and continuously until sampling. Treatment C represents treating embryos at 1907 fertilization until hatching. Treatment D represents exposing fish during embryonic development, in between fertilization and hatching (-x), and continuously until sampling. 1908 1909 Treatment E represents treating yolk-sac larvae after hatching until sampling.

4.3 Intersex

1911	This experiment did not find intersex in either male or female mummichog
1912	developing normally or under the influence of EE ₂ . Similar results were observed in
1913	early-life stage estrogen exposure studies using mummichog (E2; Urushitani et al. 2002,
1914	EE ₂ ; Chehade 2012, Shimizu et al. 2008). These results further demonstrate that
1915	mummichog have a unique resistance to the intersex condition (Rutherford et al., 2020).
1916	Because intersex is commonly found in other species, such as the zebrafish (Nash et al.,
1917	2004), fathead minnow (Lange et al., 2001) and medaka (Metcalfe et al., 2001) exposed
1918	to estrogenic EDCs (Dietrich and Krieger, 2009), the current results confirm that
1919	mummichog do not make an ideal model for intersex studies in fish.

-94-

1920 Typically, intersex, or testis-ova, is observed in male fish that have been exposed to 1921 estrogenic compounds; the female steroid, or mimic, is capable of inducing the female 1922 pathway (Dietrich and Krieger, 2009). Testis-ova has been associated with increased 1923 cyp19a1a expression, E₂, FSH and LH in the tilapia (Ibor et al., 2016). While testis 1924 cyp19a1a expression was increased in males in the present study, it was not linked to intersex. In a separate study using least killifish, researchers found that 5 ng/L EE₂ 1925 1926 treatment caused higher incidences of intersex than the 25 ng/L treatment (Jackson et al., 1927 2019). The suggestion was that the EE_2 caused a downregulation of receptor binding and 1928 reduced the overall intersex impact (Jackson et al., 2019). The mechanism explaining 1929 why mummichog are resistant, or why other fish are more susceptible, to intersex is currently unknown. There is a bias in intersex studies; approximately 84% of studies are 1930 1931 using freshwater models while the remainder are estuarine and marine models (Abdel-1932 Moneim et al., 2015). One estuarine model, the thicklip grey mullet (*Chelon labrosus*), 1933 has been reported to display intersexed gonads in contaminated waters containing E_2 , 1934 EE_2 , and other known estrogenic EDCs (Bizarro et al., 2014). Researchers found that 1935 adult intersexed thicklip grey mullet contained increased P450 aromatase activity and 1936 significantly higher transcripts of *cyp19a1a* than the normal males, which also closely 1937 matched the levels found in females (Sardi et al., 2015). These results indicated that the 1938 development of oocytes in the testis tissue is triggered by an increase of cyp19a1a 1939 expression and aromatase activity. Further investigation is warranted here since the 1940 current study found increased *cyp19a1a* expression in males yet reported no intersex. It 1941 would be advantageous for researchers to investigate this resistance to intersex by 1942 understanding other mechanisms of intersex in fish, especially estuarine models.

-95-

4.4 Abnormal cavity

1944 An unexpected finding in this experiment was the presence of an abnormal cavity in 1945 EE_2 -treated male mummichog. A significant increase in abnormal cavity frequency was 1946 observed in the 10 ng/L EE_2 treatment. This observation has not been previously 1947 documented in male mummichog exposed to EE_2 or any other EDC. One study using 1948 fathead minnow found an abnormal cavity in males exposed briefly to EE₂ during various 1949 critical SD and GD developmental points before and after hatching (Van Aerle et al., 1950 2002). Researchers noted the abnormal cavity was likely an ovarian cavity due to the 1951 physical similarities observed in the females (Van Aerle et al., 2002). Currently, there is 1952 limited information available on mummichog duct and cavity formation, therefore, 1953 determining the cause of the abnormal cavity was not possible. In the roach (Rutilus 1954 *rutilus*), ovarian development has been more thoroughly described (Nolan, 2001; 1955 Rodgers-Gray et al., 2001). The roach ovarian cavity is located between the dorsal wall of 1956 the gonad and the coelomic epithelium, with two points of attachment to the mesentery 1957 (Nolan, 2001). These descriptive guidelines enable intersex or sex reversal identification 1958 in early gonadal development (Nolan, 2001). It is not known whether the abnormal cavity 1959 noted in the mummichog testis tissue in the present study is an ovarian cavity; future 1960 studies are encouraged to investigate the entire reproductive tissue to understand normal 1961 vs abnormal duct and cavity formation as a potential early marker for EE₂-induced 1962 feminization. Rogers-Gray et al. (2001) exposed young roach (50 dph) to sewage effluent 1963 which resulted in feminizing effects, including males developing ovarian cavities. Even 1964 after a period of depuration, the ovarian cavity remained in the male gonad indicating a 1965 permanent effect from exposure to effluent before GD differentiation had occurred

-96-

1966 (Rodgers-Gray et al., 2001). Abnormal duct development in the roach has been shown to 1967 compromise reproductive capabilities and consequently impacting fish populations 1968 (Jobling et al., 2002). Sexually mature roach gonads contained gametes, however, due to 1969 duct disruptions, fish were unable to release gametes into the aqueous environment 1970 (Jobling et al., 2002). The current study is unable to determine whether the abnormal 1971 cavity would have long lasting reproductive effects on adults. Further investigation into 1972 mummichog duct development and whether an abnormal cavity derived from EE₂ 1973 exposure is permanent would improve current knowledge of mummichog GD.

1974

4.5 Gametogenesis

1975 In the current study, environmentally-relevant concentrations of EE₂ altered 1976 gametogenesis of both sexes. Treatment with 10 ng/L EE_2 inhibited oogenesis; treated 1977 ovaries were composed of significantly higher percentages of oogonia and lower 1978 percentages of perinucleolar oocytes. Low EE₂ concentrations (1-50 ng/L) halted 1979 oogenesis in medaka (Seki et al., 2002), fathead minnow (Weisbrod et al., 2007) and 1980 zebrafish (Weber et al., 2003). Previous work on mummichog demonstrated that EE₂ 1981 treatment accelerates ovarian development, causing treated ovaries to appear one week 1982 earlier compared to controls (Chehade, 2012). Therefore, it was surprising to find 1983 inhibited obgenesis in the presence of EE_2 in the current study. However, the timing of 1984 exposure could be playing a significant role in the discrepancy observed between these 1985 two studies. Timing of exposure plays an important role in the outcome of gonadal 1986 development (Piferrer, 2001). In general, the timing before differentiation is the most 1987 susceptible to contaminants (Dietrich and Krieger 2009). Therefore, because mummichog 1988 ovaries are not identified histologically until 2 wph (Chehade, 2012; Shimizu et al.,

-97-

1989 2008), mechanisms influencing ovarian differentiation are likely occurring before1990 hatching.

1991 In males, a significant increase in percent spermatogonia and decrease of percent late 1992 spermatocytes in the testis were observed and indicate delayed development. The most 1993 developed stage, spermatid, was only observed in control testes. These results are aligned 1994 with previous studies showing that EE₂ inhibited spermatogenesis in male fathead 1995 minnow (Palace et al., 2002), zebrafish (Weber et al., 2003), rare minnow (Zha et al., 1996 2007), least killifish (Jackson et al., 2019) and guppy (Nielsen and Baatrup, 2006). E_2 has 1997 been demonstrated to be vital in spermatogonial self-renewal by inducing type 1 cell 1998 divisions (Schulz et al., 2010). A type I division results in two separate daughter cells, 1999 while type II divisions result in interconnected daughter cells that are destined for 2000 meiosis. EE_2 treatment could enhance spermatogonial self-renewal in mummichog testis 2001 by binding to ER in spermatogonia; which could explain the significant increase in 2002 spermatogonia percentages. Type 1 self-renewal divisions do not lead to meiosis, 2003 therefore preventing further development of the germ cells. 2004 Environmentally-relevant EE_2 (10 ng/L) altered gametogenesis of both sexes of 2005 mummichog by preventing the sex cells from developing at the same rate as the control 2006 fish. Estrogens and other steroids, including androgens and progestins, have a vital role in 2007 early gonadal differentiation in both sexes (Norris and Lopez, 2011). While estrogens 2008 play an important role in oocyte development and growth, they also have the capability of 2009 downregulating the HPG axis which orchestrates sexual development (Lin and Ge, 2009). 2010 EE_2 can overwhelm the HPG axis causing a downregulation of gonadotropin FSH 2011 production. Since FSH stimulates steroidogenesis in gonadal somatic cells, this may 2012 explain why cell development and differentiation was inhibited. Without the influence of

-98-

2013 androgens and progestins on early developing gametes, these cells may not grow, 2014 proliferate or differentiate. Spermatogonial proliferation in the Japanese eel, including 2015 meiosis and further differentiation, was dependent on the androgen 11-KT from Leydig 2016 cells to induce mediators in Sertoli cells (Miura and Miura, 2003). Without 11-KT, the 2017 Sertoli cells were not able to provide the spermatogonia with the necessary factors for 2018 proliferation, resulting in halted spermatogenesis (Miura and Miura, 2003). Shimizu et al. 2019 (2008) showed that FSH signaling was probably important in early GD in the 2020 mummichog; immunohistochemistry showed that FSH signaling was found in the 2021 mummichog gonad before, during and after GD. Researchers believe that FSH is 2022 responsible for initiating steroidogenesis in the gonad in early development, contributes to 2023 the formation of cortico alveoli in oocytes and then cooperation between both FSH and 2024 LH supports later stages of development (e.g., vitellogenesis and spermiation; Shimizu et 2025 al., 2008). Downregulation of FSH and downstream steroidogenesis may be one 2026 mechanism by which EE_2 affected gonadal development in the current study. To confirm 2027 this theory, further testing could be conducted to measure plasma steroid levels in early 2028 stages mummichog exposed to EE₂ to confirm whether steroid production is being shut 2029 down. Further depuration studies could determine whether gametogenesis in mummichog 2030 can recover with removal of the treatment.

-99-

4.6 Degeneration

2032	Increased atresia was found in ovarian tissue from EE_2 (10 ng/L) exposure during
2033	GD. While atresia is a normal process, extensive atresia can significantly impact GD in
2034	the ovary as germ cells, and their follicles, are decimated. Atresia mechanisms in the
2035	mummichog are currently unknown. Estrogens alter rates of ovarian atresia in mammals
2036	(Billig et al., 1993), and have been linked to enhanced ovarian atresia in fish species
2037	(Zillioux et al., 2001). EE ₂ exposure has been reported to cause increased atresia during
2038	GD in the zebrafish (10 ng/L; Schafers et al., 2007) and the rare minnow (0.2 ng/L; Zha et
2039	al., 2008). Similar to altered gametogenesis, significant atresia has been linked to
2040	reduction in gonadotropins FSH and LH (Dietrich and Krieger, 2009).
2041	Areas of necrosis and hypertrophic interstitial tissue also increased in EE ₂ treated
2042	males. Degeneration by EE_2 has been demonstrated in testes in zebrafish (Luzio et al.,
2043	2016; Schafers et al., 2007), rare minnow (Zha et al., 2007), fathead minnow (Lange et
2044	al., 2001; Palace et al., 2002), as well as the protandrous Lates calcarifer (barramundi;
2045	Banh et al., 2020). The endpoints measured in these aforementioned studies included
2046	necrosis, apoptosis and/or widespread fibrosis. Studies on zebrafish have reported
2047	degeneration effects from EE ₂ , similar to the effects observed in the present experiment
2048	(Schafers et al., 2007; Weber et al., 2003), with increased necrosis and hypertrophic
2049	interstitial tissue. Experimental analysis and result reporting vary between studies; there is
2050	no standardized method for reporting degeneration across studies (Dietrich and Krieger,
2051	2009).
2052	Degeneration observed in both male and female mummichog could be a result of

2053 HPG axis downregulation. Depressed gonadotropins have been linked to increased atresia

-100-

(Papoulias et al., 1999) and necrosis/apoptosis of testis somatic cells (Weber et al., 2004)
from EE₂ exposure. In the latter study, depressed androgen production in the somatic cells
of fathead minnow facilitated altered homeostasis of Leydig and Sertoli cells, which
ultimately led to significant cell death in the testis (Dietrich and Krieger, 2009; Weber et
al., 2004). Somatic cells are required to support germ cell growth; without gonadal
somatic cells, germ cell death is inevitable. Germ cells are necessary for normal gonadal
development.

2061 With significant cell death occurring, as seen in the current study, the injured area is 2062 replaced with fibrotic tissue to maintain gonadal structure. This tissue or scarring was 2063 observed in both male and female gonadal tissue of the mummichog in the present study 2064 and is considered to be non-functional. Luzio et al. (2016) reported significant 2065 degeneration in testes of zebrafish exposed to EE₂, however, a recovery period reversed 2066 some of these degeneration effects. Future studies investigating the recovery period in 2067 mummichog would be of value as fish may not be exposed to contaminants in their 2068 environments throughout their lifecycle. As well, periods of depuration following 2069 contaminant exposures may provide more mechanistic understanding.

4.7 Ovarian gene expression

2071	In this study, mummichog gonadal female and male promoting genes were
2072	characterized in control and EE ₂ environments. To our knowledge, the gene expression of
2073	foxl2, gdf9, bmp15, dmrt1 and amh in the ovary are the first to be documented in the
2074	mummichog. These genes were anticipated to be expressed in the ovary during GD as
2075	they have been identified in many other fish (Nagahama et al., 2021). One of the genes
2076	investigated, cyp19a1a, has been previously reported in adult mummichog ovaries (Doyle
2077	et al., 2013; Kanagasabesan, 2018).
2078	Experiment 1 of the current study showed that ovaries express several genes,
2079	classified in other species as male- and female-promoting genes. Female-promoting genes
2080	cyp19a1a, foxl2, gdf9 and bmp15 showed higher expression than the male-promoting
2081	ones, <i>dmrt1</i> and <i>amh</i> , however, statistical analysis is not possible across genes since the
2082	primer efficiencies were different (Table 2.1). When these results are compared with
2083	Experiment 2, the level of expression was similar. In Experiment 2, the expression of
2084	dmrt1 was higher than expected, indicating there may be more variation than observed in
2085	the initial study. Zebrafish also express dmrt1 during early oocyte differentiation (Guo et
2086	al., 2005) indicating "male"- and "female"-promoting descriptors may not be completely
2087	defining of action. The current study design used a low sample number, therefore,
2088	increasing sample size from 3 in future experiments is warranted for <i>dmrt1</i> expression
2089	under standard laboratory conditions in the ovary to increase precision and power of
2090	analysis.
2091	In Experiment 2, neither EE ₂ treatment caused changes to ovarian gene expression.

2092 These results are in agreement with current mummichog EE₂ literature (Rutherford et al.,

-102-

2093	2020). Researchers did not find EE_2 induced changes to <i>cyp19a1a</i> expression in adult
2094	mummichog exposed to supraphysiological 50 ng/L (Doyle et al., 2013; Meina et al.,
2095	2013), 74 ng/L (Kanagasabesan, 2018) or 100 ng/L EE ₂ (Bosker et al., 2016). It is known
2096	that many fish exhibit a downregulation of ovarian $cyp19a1a$ when exposed to EE ₂ , such
2097	as zebrafish (Cosme et al., 2015; Urbatzka et al., 2012) and fathead minnow (Feswick et
2098	al., 2016; Leet et al., 2015). This downregulation is presumed to be due to negative
2099	feedback of the HPG axis (Leet et al., 2015). It is well established that adult female
2100	mummichog are resistant to EE_2 exposure as adults in that they continue spawning while
2101	other species of fish shut down reproduction; whether the mechanisms in developing
2102	juveniles and reproductive adults are linked requires more experimental studies.
2103	However, the results from this study support that female mummichog are resistant to \mbox{EE}_2
2104	exposure even at a young stage in life. Therefore, the negative histological results
2105	observed in ovaries may not be physiological responses to female-promoting gene
2106	expression network alterations.
2107	Estrogen needs to complex with ERs to carry out physiological effects on cells.
2108	Kanagasabesan (2018) results show that ER α expression is relatively low in
2109	previtellogenic oocytes, then significantly increases into vitellogenesis. Cyp19b (brain
2110	aromatase) contains an estrogen response element (ERE), which allows for estrogens to
2111	bind and increase expression of cyp19b in zebrafish (Trant et al., 2001). However,
2112	cyp19a1 in zebrafish does not contain an ERE (Trant et al., 2001) and is therefore not
2113	directly regulated by estrogen. The absence of changes in gene expression in the post-
2114	hatch juvenile mummichog ovary via either direct EE_2 action or indirectly through the
2115	HPG axis, indicates a lack of sensitivity to exogenous estrogen. More studies are needed

-103-

to confirm these preliminary findings for the suite of genes studied, including brainaromatase.

2118

4.8 Testis gene expression

2119 Experiment 1 revealed higher expression of male-promoting genes compared to 2120 female-promoting genes in testes. Similar to the ovarian results, statistical analysis was 2121 not conducted among genes in the testes. When results were compared to Experiment 2, 2122 there was a similar level of expression observed between the experiments, except for 2123 *dmrt1*, which was lower. The sample sizes used were 2 (Experiment 1) and 3 (Experiment 2124 2), were low. Increasing sample sizes in future experiments is warranted for *dmrt1* 2125 expression under standard laboratory conditions in the testis to increase precision and 2126 power of analysis.

Experiment 2 demonstrated that 10 ng/L EE₂ treatment downregulates *dmrt1* gene expression in the testis. This downregulation of *dmrt1* did not alter the male GD pathway. This is contrary to what has been observed in zebrafish, in which *dmrt1* gene expression is indispensable for male differentiation (Webster et al., 2017). EE₂ downregulated *dmrt1* gene expression in zebrafish exposed during GD, shutting down the male differentiating pathway and resulting in ovary differentiation (Schulz et al., 2007).

2133Dmrt1 is a strong male differentiation transcription factor that influences the2134expression of male- and female-promoting genes in many fish species (Tenugu et al.,21352021). In the zebrafish, dmrt1 upregulates male promoting amh and sox9 genes while2136simultaneously suppressing female-promoting foxl2 and cyp19a1a genes. Results from2137the current study suggest this may not be the case for mummichog, as cyp19a1a, foxl22138and amh were all significantly upregulated in the presence of EE2. It is possible that

-104-

2139 *dmrt1* may not play a significant role in male differentiation as shown in other fish at this 2140 stage in development. There is limited research on male-promoting gene expression in the 2141 developing mummichog, including this study which only investigated two genes. There 2142 are several other male-promoting genes that could be investigated in the mummichog, 2143 such as sox9. As previously mentioned, sox9 is a typical male promoting gene that is 2144 commonly associated with upregulating other male promoting genes such as *amh* in 2145 mammals (Morais de Silva et al., 1996; Rodríguez-Marí et al., 2005). Researchers have 2146 demonstrated that male differentiation in the zebrafish is influenced by sox9 (Rodríguez-2147 Marí et al., 2005), dmrt1 and amh (Schulz et al., 2007) using in situ hybridization and 2148 RT-qPCR. Identifying male differentiating genes in the mummichog would help to 2149 understand the mechanisms controlling male differentiation.

2150 The female promoting genes here are the first to be reported in mummichog testis; 2151 *foxl2, cyp19a1a, gdf9* and *bmp15* have not been previously reported. Results from 2152 Experiment 2 demonstrated that both EE_2 treatments significantly increased gene expression of cyp19a1a and gdf9 in testis. Foxl2 expression was only significantly 2153 2154 upregulated in the high EE₂ concentration treatment. Increased *foxl2* and *cyp19a1a* have 2155 been observed in rainbow trout exposed to EE_2 during GD (Guiguen et al., 2010). It is 2156 possible that the overwhelming effect of EE_2 in the testis was causing upregulation of 2157 female-promoting gene expression in the current study. In many fish species, E_2 , foxl2 2158 and *cyp19a1a* have a positive relationship in that increases in their production (Leet et al., 2159 2011; Tenugu et al., 2021). E_2 encourages *foxl2* expression, which increases *cyp19a1* to 2160 produce more E_2 . Therefore, EE_2 is likely mimicking E_2 and cascading the expression of 2161 female promoting genes in the testis. *Bmp15* expression did not change, although there is 2162 an increasing trend which can be observed. A power analysis revealed that a sample size

-105-

2163 of 12 would be needed to show that the *bmp15* gene expression is significantly different 2164 between the control and high concentration group (significance = 0.05, power = 0.8). 2165 These increased gene expression results are different from adult fish exposed to EE_2 2166 which showed no changes to *cyp19a1a* gene expression in male zebrafish (Urbatzka et 2167 al., 2012), fathead minnow (Leet et al., 2015) and Jenynsia multidentata (a Rio de la Plata 2168 one-sided livebearer; (Roggio et al., 2014). Gene expression pathways controlling steroid 2169 hormones have differing sensitivities to exogenous hormones before, during, and after 2170 GD (Leet et al., 2015). Additionally, exposure duration, especially during critical periods 2171 of development, has been identified as an important factor that influences results (Leet et 2172 al., 2015). The results from this experiment emphasize the importance of further 2173 investigation on various life stages and exposure conditions in different fish models to 2174 untangle different modes of action and organism sensitivity to exogenous hormone 2175 exposure. 2176 In the presence of EE₂, amh gene expression was significantly upregulated. This 2177

result contradicts other studies that reported downregulation in the fathead minnow (Filby 2178 et al., 2007; Filby et al., 2006) and zebrafish (Schulz et al., 2007). The present results 2179 suggest that *amh* is likely not a male-promoting gene during early mummichog GD. A 2180 review by Pfennig (2015) implicates amh as a potential regulator of the onset of gonadal 2181 development in some fish, a process which was first identified in mammals. In medaka, 2182 mutant *amh* was found to prematurely initiate testis development (Morinaga et al., 2007). 2183 In addition, weak *amh* signaling in female Japanese flounder was detected before GD, 2184 and was then absent during the onset of germ cell type II divisions in GD (Yoshinaga et 2185 al., 2004).

-106-

EE₂ treatment inhibited spermatogenesis and oogenesis in the current study. The hindered gametogenesis observed may correlate to the increasing expression of *amh*, as there were more early-staged germ cells, likely from type I divisions, in the high EE₂ treatment. Further studies should be conducted sampling mummichog at earlier and later points in gonadal development to gain a better understanding of *amh* function in both sexes of mummichog.

2192 In the presence of EE₂, gene expression that normally facilitates the male 2193 differentiating pathway is inhibited or altered (Leet et al., 2011). The results from this 2194 study confirm, in general, that mummichog respond during development similarly to 2195 other species, because most female promoting genes were upregulated and male 2196 promoting *dmrt1* was downregulated in the testis. EE_2 acts as a mimic of E_2 facilitating 2197 the female-differentiating pathway and consequently suppressing the male-differentiating 2198 pathway (Leet et al., 2015). Altered male-differentiating pathway gene expression has 2199 been implicated in estrogenic EDC exposure, including EE₂ (Leet et al., 2011). While EE₂ 2200 was not capable of altering female mummichog gene expression, male expression was 2201 feminized. However, histological results of both sexes do not indicate feminization, rather 2202 demonstrating an effect on the HPG axis that is halting gonadal development. Research 2203 taking into account plasma steroid levels, gene expression, and histological analysis 2204 would expand on this fundamental mummichog GD knowledge.

-107-

4.9 Conclusions

2206 SD and GD processes in fish are very complex, varying greatly from species to 2207 species (Devlin and Nagahama, 2002). However, these mechanisms are commonly 2208 demonstrated to be altered by EE_2 (Leet et al., 2011). This study provided evidence that 2209 mummichog exposed to environmentally-relevant EE₂ after hatching severely altered GD 2210 mechanisms, while SD mechanisms remain fixed. The present study demonstrates that 2211 environmentally-relevant EE₂ concentrations can significantly disrupt gonadal 2212 development in the mummichog, hinder gametogenesis, increase degeneration and alter 2213 gene expression. The likely mechanism for these changes is the downregulation of the 2214 HPG axis, subsequently affecting development of the gonad. There is a delicate paracrine 2215 relationship between gametes and their supporting somatic cells (Devlin and Nagahama, 2216 2002); this study provides evidence showing that EE_2 is preventing gonadal development 2217 which may be a result of improper HPG axis communication. As a result, gametogenesis 2218 of both males and females were significantly reduced from EE_2 treatment. Surprisingly, 2219 sex ratios were unaffected by treatment which is likely due to the EE₂ exposure after 2220 hatching; an investigation comparing EE₂ sensitivity to sex ratios is encouraged for 2221 further investigation on the window of sensitivity. SD mechanisms may be established 2222 during embryogenesis as feminized sex ratios have been previous reported in 2223 mummichog exposed before hatching (Chehade, 2012; Peters et al., 2010). As expected, 2224 intersex was not observed in this study, which was not surprising because mummichog 2225 have not been documented to show this form of gonadal determination naturally or 2226 artificially from any EDC exposure to date (Rutherford et al., 2020). Mummichog may 2227 not be as sensitive to intersex SD mechanisms as demonstrated in other fish species. EE₂

-108-

2228treatment affected male mummichog more so than in females. Female gene expression2229pathways did not change from EE2 treatment; however, testis gene expression profiles2230were significantly altered. Male fish also displayed an abnormal cavity in the testis, while2231ovaries showed no signs of abnormal morphology. The results from this study have added2232to pre-existing mummichog gonadal development knowledge and provide useful baseline2233work for future studies.

2234 To strengthen future work and further SD and GD mechanisms in the mummichog, 2235 further studies should be conducted. Going forward, a higher EE₂ concentration treatment 2236 should be utilized in experiments since mummichog respond to supraphysiological high 2237 EE₂ concentrations. To investigate SD mechanisms, research should focus on whether sex 2238 ratios can be altered by EE_2 when mummichog are exposed before and after hatching 2239 (Figure 4.1). Sex ratios did not change from treatment in the current experiment, which 2240 was not predicted. Experimentation exposing embryos to EE₂ before hatching should be 2241 conducted to gain valuable insight into the SD mechanisms and when they are susceptible 2242 to interference. To investigate GD mechanisms, research should focus on before, during 2243 and after gonadal differentiation time points. From previous work, mummichog GD has 2244 been established to occur at two weeks old in females and three weeks old in males 2245 (Shimizu et al., 2008). Increasing sampling timepoints in future experiments would 2246 capture before, during and after GD has occurred. There is little knowledge on 2247 mummichog duct development. Establishing normal and adverse duct development in the 2248 mummichog could help to identify whether the abnormal cavity seen in this experiment is 2249 a feminizing effect i.e., an ovarian cavity. Gene expression profiles before, during and 2250 after differentiation would allow for further understanding of which genes and 2251 mechanisms are orchestrating GD. This methodology could also provide insight on

-109-

- reproductive effects in adult mummichog that have been exposed to EE₂ during
- 2253 development. Gametogenesis or other common reproductive endpoints such as VTG
- induction and reproductive success could be measured after a period of depuration to
- determine whether EE₂ exposure during a critical time in development contributes to long
- term effects in individuals that may lead to negative effects on the population.

5.0 Thesis Relation to Integrative Biology

The Wilfrid Laurier Biology Department defines integrative biology as an interdisciplinary approach to biological research that allows one to explore the answers to complex questions from a perspective that bridges the traditional sub-disciplines of biology, across diverse taxa, over time scales ranging from shorter (physiological) to longer (evolutionary).

2263 There were many different facets of biology that were used to accomplish this work, 2264 resulting in an integrative thesis. This project has taken a holistic approach by considering a link between the environment and the effects that manifest at different levels of 2265 2266 biological activity (cellular/tissue and molecular). EE₂ causes a variety of developmental 2267 effects to various fish species, ranging from body size, skeletal growth, and sexual 2268 development (Chehade, 2012; Dietrich and Krieger, 2009; Leet et al., 2011). At the tissue 2269 level of organization, the current thesis demonstrates adverse effects of environmentally-2270 relevant EE₂ in mummichog by showing halted gametogenesis, degeneration and 2271 abnormal testis morphology. At the molecular level, GD genes in the mummichog have 2272 been successfully identified for the first time, including cyp19a1a, foxl2, gdf9, bmp15, 2273 dmrt1 and amh, which have been identified in other fish species as driving male or female 2274 development. These genes were demonstrated to be specifically altered by EE₂ in males, 2275 demonstrating their vulnerability to estrogen chemicals in the water. 2276 This thesis analyzed results following a five-week period of experimentation, and the 2277 results are considered to be a physiological response. Adverse effects on various levels of 2278 biological organization can be quantified using standardized toxicological tests such as

2279 early lifecycle bioassays. This study was in association with an ongoing project in the

2280 MacLatchy lab which involves developing an in-lab fish early lifecycle bioassay for 2281 industry to use to evaluate the potential effects of pulp mill effluents on estuarine 2282 ecosystems. There is currently limited research focused on development of an estuarine 2283 fish model for coastal environmental monitoring, in comparison to the amount of research 2284 on suggested freshwater fish models. This large-scale project involves collaboration with 2285 government, industry and experts in the fields of toxicology, physiology and ecology. 2286 This thesis, on the nature of the processes mediating reproductive development in 2287 mummichog down to the tissue and molecular levels, provides fundamental information 2288 that can be used in future in the early lifecycle bioassay being developed to assess how 2289 industrial discharges affect fish reproduction, development and growth. Estrogenic effects 2290 on both male and female mummichog, e.g., can now be evaluated at a very early age, 2291 which would allow for decreased testing time and space in the laboratory. Ultimately, it is 2292 hoped results in laboratory bioassays can be extrapolated to determine ecological risk to a 2293 population or community. 2294 By understanding how chemicals, such as EE_2 , affect fish and their communities,

By understanding now chemicals, such as EE₂, affect fish and their communities,
 scientists can better inform industry and policy makers on acceptable chemical
 management strategies for ecosystem protection. The research in this thesis provides one
 small piece of the puzzle by demonstrating how fundamental studies on biological
 mechanisms can underpin such extrapolative work across biological levels of
 organization.

-112-

6.0 References

2302	Abdel-Moneim, A., Coulter, D.P., Mahapatra, C.T., Sepulveda, M.S., 2015. Intersex in
2303	fishes and amphibians: population implications, prevalence, mechanisms and molecular
2304	biomarkers. Journal of Applied Toxicology 35, 1228-1240.
2305	Adeel, M., Song, X., Wang, Y., Francis, D., Yang, Y., 2017. Environmental impact of
2306	estrogens on human, animal and plant life: A critical review. Environment International
2307	99, 107-119.
2308	Al-Ansari, A.M., Atkinson, S.K., Doyle, J.R., Trudeau, V.L., Blais, J.M., 2013. Dynamics
2309	of uptake and elimination of 17alpha-ethinylestradiol in male goldfish (Carassius
2310	auratus). Aquatic Toxicology 132-133, 134-140.
2311	Alfaqih, M.A., Brunelli, J.P., Drew, R.E., Thorgaard, G.H., 2009. Mapping of five
2312	candidate sex-determining loci in rainbow trout (Oncorhynchus mykiss). BMC Genetics
2313	10, 2.
2314	Ali, J.M., Palandri, M.T., Kallenbach, A.T., Chavez, E., Ramirez, J., Onanong, S., Snow,
2315	D.D., Kolok, A.S., 2018. Estrogenic effects following larval exposure to the putative anti-
2316	estrogen, fulvestrant, in the fathead minnow (Pimephales promelas). Comparative
2317	Biochemistry and Physiology Part - C 204, 26-35.
2318	Alix, M., Chardard, D., Ledore, Y., Fontaine, P., Schaerlinger, B., 2015. An alternative
2319	developmental table to describe non-model fish species embryogenesis: application to the
2320	description of the Eurasian perch (Perca fluviatilis L. 1758) development. Evodevo 6, 39.
2321	Ankley, G.T., Jensen, K.M., Makynen, E.A., Kahl, M.D., Korte, J.J., Hornung, M.W.,
2322	Henry, T.R., Denny, J.S., Leino, R.L., Wilson, V.S., Cardon, M.C., Hartig, P.C., Gray,
2323	L.E., 2003. Effects Of The Androgenic Growth Promoter 17-B-Trenbolone On Fecundity
2324	And Reproductive Endocrinology Of The Fathead Minnow. Environmental Toxicology
2325	and Chemistry 6, 1350–1360.
2326	Armstrong, P.B., Child, J.S., 1965. Stages in the Normal Development of Fundulús
2327	heteroclitus. The Biological Bulletin 128, 143-168.

2328	Atkinson, S.K., Marlett, V.L., Kimpe, L.E., Lean, D.R.S., Trudeau, V.L., Blais, J.M.,
2329	2012. The occurrence of steroidal estrogens in south-eastern Ontario wastewater
2330	treatment plants. Science in the Total Environment 430, 119-125.
2331	Bahamonde, P.A., Munkittrick, K.R., Martyniuk, C.J., 2013. Intersex in teleost fish: are
2332	we distinguishing endocrine disruption from natural phenomena? General and
2333	Comparative Endocrinology 192, 25-35.
2334	Balch, G.C., Mackenzie, C.A., Metcalfe, C.D., 2004. Alterations To Gonadal
2335	Development And Reproductive Success In Japanese Medaka (Oryzias latipes) Exposed
2336	To 17a-Ethinylestradiol. Environmental Toxicology and Chemistry 23, 782–791.
2337	Banh, Q.Q.T., Domingos, J.A., Pinto, R.C.C., Nguyen, K.T., Jerry, D.R., 2020. Dietary
2338	17 β -oestradiol and 17 α -ethinyloestradiol alter gonadal morphology and gene expression
2339	of the two sex-related genes, dmrt1 and cyp19a1a, in juvenile barramundi (Lates
2340	calcarifer Bloch). Aquaculture Research 52, 1414-1430.
2341	Baron, D., Xia, X., Fellous, M., Guiguen, Y., Veitia, R.A., 2004. An evolutionary and
2342	functional analysis of FoxL2 in rainbow trout gonad differentiation. Journal of Molecular
2343	Endocrinology 33, 705-715.
2344	Bhandari, R.K., Higa, M., Nakamura, S., Nakamura, M., 2004. Aromatase inhibitor
2345	induces complete sex change in the protogynous honeycomb grouper (Epinephelus
2346	merra). Molecular Reproduction and Development 67, 303-307.
2347	Billig, H., Furuta, I., Hsueh, A.J., 1993. Estrogens inhibit and androgens enhance ovarian
2348	granulosa cell apoptosis. Endocrinology 133, 2204-2212.
2349	Biran, J., Levavi-Sivan, B., 2018. Endocrine Control of Reproduction, Fish. Encyclopedia
2350	of Reproduction 6, 362-368.
2351	Bizarro, C., Ros, O., Vallejo, A., Prieto, A., Etxebarria, N., Cajaraville, M.P., Ortiz-
2352	Zarragoitia, M., 2014. Intersex condition and molecular markers of endocrine disruption
2353	in relation with burdens of emerging pollutants in thicklip grey mullets (Chelon labrosus)
2354	from Basque estuaries (South-East Bay of Biscay). Marine Environmental Research 96,
2355	19-28.
2356	Bjorkblom, C., Hogfors, E., Salste, L., Bergelin, E., Olsson, P., Katsiadaki, I., Wiklund,
2357	T., 2009. Estrogenic And Androgenic Effects Of Municipal Wastewater Effluent On

-114-

2358	Reproductive Endpoint Biomarkers In Three-Spined Stickleback (Gasterosteus
2359	Aculeatus). Environmental Toxicology and Chemistry 28, 1063–1071.
2360	Bosker, T., Hewitt, L.M., Doyle, M.A., Maclatchy, D.L., 2010. Effects of neutral sulfite
2361	semichemical pulp mill effluent in the mummichog (Fundulus heteroclitus) adult fish
2362	reproductive test. Water Quality Research Journal of Canada 45, 201-208.
2363	Bosker, T., Hewitt, L.M., Munkittrick, K.R., Melvin, S.D., MacLatchy, D.L., 2009. The
2364	effects of final treated effluent and in-mill waste streams from a Canadian
2365	thermomechanical pulp and paper mill on mummichog (Fundulus heteroclitus)
2366	reproduction. Water Quality Research Journal of Canada 44, 333-344.
2367	Bosker, T., Munkittrick, K.R., Lister, A., MacLatchy, D.L., 2016. Mummichog (Fundulus
2368	heteroclitus) continue to successfully produce eggs after exposure to high levels of
2369	17alpha-ethinylestradiol. Environmental Toxicology and Chemistry 35, 1107-1112.
2370	Chehade, I., 2012. The effects of 17α -ethynylestradiol (EE2) on gonadal development and
2371	differentiation in the estuarine killifish, Fundulus heteroclitus, Theses and Dissertations
2372	(Comprehensive). Wilfrid Laurier Univeristy, 1-87.
2373	Chen, L., Jiang, X., Feng, H., Shi, H., Sun, L., Tao, W., Xi, Q., Wang, D., 2016.
2374	Simultaneous exposure to estrogen and androgen resulted in feminization and endocrine
2375	disruption. Journal of Endocrinology 228, 205-218.
2376	Chen, W., Liu, L., Ge, W., 2017. Expression analysis of growth differentiation factor 9
2377	(Gdf9/gdf9), anti-müllerian hormone (Amh/amh) and aromatase (Cyp19a1a/cyp19a1a)
2378	during gonadal differentiation of the zebrafish, Danio rerio. Biology of Reproduction 96,
2379	401-413.
2380	Chimchirian, R.F., Suri, R.P., Fu, H., 2007. Free synthetic and natural estrogen hormones
2381	in influent and effluent of three municipal wastewater treatment plants. Water
2382	Environment Research 79, 969-974.
2383	Cochran, R.C., 1987. Serum androgens during the annual reproductive cycle of the male
2384	mummichog, Fundulus heteroclitus. General and Comparative Endocrinology. 65, 141-
2385	148.
2386	Cocquet, J., Pailhoux, E., Jaubert, F., Servel, N., Xia, X., Pannetier, M., De Baere, E.,
2387	Messiaen, L., Cotinot, C., Fellous, M., Veitia, R.A., 2002. Evolution and expression of
2388	FOXL2 Journal of Medical Genetics 39, 916-921.

-115-

2389	Cosme, M.M., Lister, A.L., Van Der Kraak, G., 2015. Inhibition of spawning in zebrafish
2390	(Danio rerio): Adverse outcome pathways of quinacrine and ethinylestradiol. General and
2391	Comparative Endocrinology 219, 89-101.
2392	Costello, C., Cao, L., Gelcich, S., Cisneros-Mata, M.A., Free, C.M., Froehlich, H.E.,
2393	Golden, C.D., Ishimura, G., Maier, J., Macadam-Somer, I., Mangin, T., Melnychuk,
2394	M.C., Miyahara, M., de Moor, C.L., Naylor, R., Nostbakken, L., Ojea, E., O'Reilly, E.,
2395	Parma, A.M., Plantinga, A.J., Thilsted, S.H., Lubchenco, J., 2020. The future of food
2396	from the sea. Nature 588, 95-100.
2397	Coulon, M.P., Gothreaux, C.T., Green, C.C., 2012. Influence of substrate and salinity on
2398	air-incubated gulf killifish embryos. North American Journal of Aquaculture 74, 54-59.
2399	Courtenay, S.C., Munkittrick, K.R., Dupuis, H.M.C., Parker, R., Boyd, J., 2002.
2400	Quantifying impacts of pulp mill effluent on fish in Canadian marine and estuarine
2401	environments: Problems and progress. Water Quality Research Journal of Canada 37, 79-
2402	99.
2403	Desbrow, C., Routledge, E.J., Brighty, G.C., Sumpter, J.P., Waldock, M.J., 1998.
2404	Identification of Estrogenic Chemicals in STW Effluent. 1. Chemical Fractionation and in
2405	Vitro Biological Screening. Environmental Science & Technology 32, 1549-1558.
2406	Devlin, R.H., Nagahama, Y., 2002. Sex determination and sex differentiation in fish: An
2407	overview of genetic, physiological, and environmental influences. Aquaculture 208, 191-
2408	364.
2409	Dietrich, D.R., Krieger, H.O., 2009. Histological Analysis of Endocrine Disruptive
2410	Effects in Small Laboratory Fish. John Wiley & Sons, Inc., Hoboken, New Jersey
2411	Doyle, M.A., Bosker, T., Martyniuk, C.J., Maclatchy, D.L., Munkittrick, K.R., 2013. The
2412	effects of 17-alpha-ethinylestradiol (EE2) on molecular signaling cascades in mummichog
2413	(Fundulus heteroclitus). Aquatic Toxicology 134-135, 34-46.
2414	Dranow, D.B., Hu, K., Bird, A.M., Lawry, S.T., Adams, M.T., Sanchez, A., Amatruda,
2415	J.F., Draper, B.W., 2016. Bmp15 Is an Oocyte-Produced Signal Required for
2416	Maintenance of the Adult Female Sexual Phenotype in Zebrafish. PLoS Genetics 12, 1-
2417	24.

-116-

2418 Duong, C.N., Ra, J.S., Cho, J., Kim, S.D., Choi, H.K., Park, J.H., Kim, K.W., Inam, E., 2419 Kim, S.D., 2010. Estrogenic chemicals and estrogenicity in river waters of South Korea 2420 and seven Asian countries. Chemosphere 78, 286-293. 2421 Fenske, M., Maack, G., Schäfers, C., Segner, H., 2005. An environmentally relevant 2422 concentration of estrogen induces arrest of male gonad development in zebrafish, Danio 2423 rerio. Environmental Toxicology and Chemistry 24, 1088-1098. 2424 Feswick, A., Loughery, J.R., Isaacs, M.A., Munkittrick, K.R., Martyniuk, C.J., 2016. 2425 Molecular initiating events of the intersex phenotype: Low-dose exposure to 17α -2426 ethinylestradiol rapidly regulates molecular networks associated with gonad 2427 differentiation in the adult fathead minnow testis. Aquatic Toxicology 181, 46-56. 2428 Filby, A.L., Thorpe, K.L., Maack, G., Tyler, C.R., 2007. Gene expression profiles 2429 revealing the mechanisms of anti-androgen- and estrogen-induced feminization in fish. 2430 Aquatic Toxicology 81, 219-231. 2431 Filby, A.L., Thorpe, K.L., Tyler, C.R., 2006. Multiple molecular effect pathways of an 2432 environmental oestrogen in fish. Journal of Molecular Endocrinology 37, 121-134. 2433 Galloway, S.M., Gregan, S.M., Wilson, T., McNatty, K.P., Juengel, J.L., Ritvos, O., 2434 Davis, G.H., 2002. *Bmp15* mutations and ovarian function. Molecular and Cellular 2435 Endocrinology 191, 15-18. 2436 Galloway, S.M., McNatty, K.P., Cambridge, L.M., Laitinen, M.P.E., Juengel, J.L., 2437 Jokiranta, S., McLaren, R.J., Luiro, K., Dodds, K.G., Montgomery G. W., Beattie, A.E., 2438 Davis, G.H., Ritvos, O., 2000. Mutations in an oocyte-derived growth factor gene 2439 (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner. 2440 Nature genetics 25, 279-283. 2441 González, A., Fernandino, J.I., Somoza, G.M., 2015. Effects of 5a-dihydrotestosterone on 2442 expression of genes related to steroidogenesis and spermatogenesis during the sex 2443 determination and differentiation periods of the pejerrey, Odontesthes bonariensis. 2444 Comparative Biochemistry and Physiology -Part A 182, 1-7. 2445 Guiguen, Y., Fostier, A., Piferrer, F., Chang, C.F., 2010. Ovarian aromatase and estrogens: A pivotal role for gonadal sex differentiation and sex change in fish. General 2446 2447 and Comparative Endocrinology 165, 352-366.

2448	Guo, Y., Cheng, H., Huang, X., Gao, S., Yu, H., Zhou, R., 2005. Gene structure, multiple
2449	alternative splicing, and expression in gonads of zebrafish Dmrt1. Biochemical and
2450	Biophysical Research Communications 330, 950-957.
2451	Hahlbeck, E., Griffiths, R., Bengtsson, B.E., 2004. The juvenile three-spined stickleback
2452	(Gasterosteus aculeatus L.) as a model organism for endocrine disruption. I. Sexual
2453	differentiation. Aquatic Toxicology 70, 287-310.
2454	Hattori, R.S., Murai, Y., Oura, M., Masuda, S., Majhi, S.K., Sakamoto, T., Fernandino,
2455	J.I., Somoza, G.M., Yokota, M., Strüssmann, C.A., 2012. A Y-linked anti-Müllerian
2456	hormone duplication takes over a critical role in sex determination. Developmental
2457	Biology 109, 2955-2959.
2458	Hogan, N.S., Currie, S., LeBlanc, S., Hewitt, L.M., MacLatchy, D.L., 2010. Modulation
2459	of steroidogenesis and estrogen signalling in the estuarine killifish (Fundulus
2460	heteroclitus) exposed to ethinylestradiol. Aquatic Toxicology 98, 148-156.
2461	Hsiao, SM., Meier, A.H., 1989. Comparison of semilunar cycles of spawning activity in
2462	Fundulus grandis and F. heteroclitus held under constant laboratory conditions. Journal
2463	of Experimental Zoology. 252, 213–218.
2464	Ibor, O.R., Adeogun, A.O., Fagbohun, O.A., Arukwe, A., 2016. Gonado-
2465	histopathological changes, intersex and endocrine disruptor responses in relation to
2466	contaminant burden in Tilapia species from Ogun River, Nigeria. Chemosphere 164, 248-
2467	262.
2468	Ijiri, S., Kaneko, H., Kobayashi, T., Wang, D.S., Sakai, F., Paul-Prasanth, B., Nakamura,
2469	M., Nagahama, Y., 2008. Sexual Dimorphic Expression of Genes in Gonads During Early
2470	Differentiation of a Teleost Fish, the Nile Tilapia Oreochromis niloticus. Biology Of
2471	Reproduction 78, 333-341.
2472	Jackson, L.M., Felgenhauer, B.E., Klerks, P.L., 2019. Feminization, altered gonadal
2473	development, and liver damage in least killifish (Heterandria formosa) exposed to
2474	sublethal concentrations of 17α -ethinylestradiol. Ecotoxicology and Environmental
2475	Safety 170, 331–337.
2476	Jeng, S.R., Wu, G.C., Yueh, W.S., Kuo, S.F., Dufour, S., Chang, C.F., 2019. Dmrt1
2477	(doublesex and mab-3-related transcription factor 1) expression during gonadal

-118-

- 2478 development and spermatogenesis in the Japanese eel. General and Comparative
- Endocrinology 279, 154-163.
- Jobling, S., Coey, S., Whitmore, J.G., Kime, D.E., Van Look, K.J.W., McAllister, B.G.,
- 2481 Beresford, N., Henshaw, A.C., Brighty, G., Tyler, C.R., Sumpter, J.P., 2002. Wild
- 2482 Intersex Roach (*Rutilus rutilus*) Have Reduced Fertility. Biology Of Reproduction 67,
- 2483 515–524.
- 2484 Kanagasabesan, T., 2018. Molecular Characterization of the Mummichog (*Fundulus*
- 2485 *heteroclitus*) Ovarian Steroidogenic Pathway and Implications for Exogenous Estrogen
- 2486 Effects during Follicular Development Theses and Dissertations (Comprehensive).
- 2487 Wilfrid Laurier University.
- 2488 Katsu, Y., Lange, A., Urushitani, H., Ichikawa, R., Paull, G.C., Cahill, L.L., Jobling, S.,
- 2489 Tyler, C.R., Iguchi, T., 2007. Functional Associations between Two Estrogen Receptors,
- 2490 Environmental Estrogens, and Sexual Disruption in the Roach (*Rutilus rutilus*).
- 2491 Environmental Science and Technology 41, 3368-3374.
- 2492 Kidd, K.A., Blanchfield, P.J., Mills, K.H., Palace, V.P., Evans, R.E., Lazorchak, J.M.,
- 2493 Flick, R.W., 2007. Collapse of a fish population after exposure to a synthetic estrogen.
- Proceedings of the National Academy of Sciences of the United States of America 104,8897-8901.
- 2496 Kitano, T., Takamune, K., Nagahama, Y., Abe, S., 2000. Aromatase Inhibitor and 17a-
- 2497 Methyltestosterone Cause Sex-Reversal From Genetical Females to Phenotypic Males
- and Suppression of P450 Aromatase Gene Expression in Japanese Flounder (*Paralichthys olivaceus*). Molecular Reproduction and Development 56, 1-5.
- 2500 Klüver, N., Pfennig, F., Pala, I., Storch, K., Schlieder, M., Froschauer, A., Gutzeit, H.O.,
- 2501 Schartl, M., 2007. Differential expression of anti-Müllerian hormone (*amh*) and anti-
- 2502 Müllerian hormone receptor type II (*amhrII*) in the teleost Medaka. Developmental
- 2503 Dynamics 236, 271-281.
- 2504 Kobayashi, T., Matsuda, M., Kajiura-Kobayashi, H., Suzuki, A., Saito, N., Nakamoto,
- 2505 M., Shibata, N., Nagahama, Y., 2004. Two DM domain genes, DMY and DMRT1,
- involved in testicular differentiation and development in the medaka, *Oryzias latipes*.
- 2507 Developmental Dynamics 231, 518-526.

2508	Kolok, A.S., Snow, D.D., Kohno, S., Sellin, M.K., Guillette, L.J., Jr., 2007. Occurrence
2509	and biological effect of exogenous steroids in the Elkhorn River, Nebraska, USA. Science
2510	in the Total Environment 388, 104-115.
2511	Komatsu, T., Nakamura, S., Nakamura, M., 2006. Masculinization of female golden
2512	rabbitfish (Siganus guttatus) using an aromatase inhibitor treatment during sex
2513	differentiation. Comparative Biochemical Physiology Part C: Toxicological
2514	Pharmacology 143, 402-409.
2515	Koopman, P., Münsterberg, A., Capel, B., Vivian, N., Lovell-Badge, R., 1990.
2516	Expression of a candidate sex-determining gene during mouse testis differentiation. 348,
2517	450-452.
2518	Lai, K.M., Johnson, K.L., Scrimshaw, M.D., Lester, J.N., Binding of waterborne steroid
2519	estrogens to solid phases in river and estuarine systems. Environmental Science and
2520	Technology 34, 3890-3894.
2521	Lange, R., Hutchinson, T., Croudace, C., Siegmund, F., Schweinfurth, H., Hampe, P.,
2522	Panter, G., Sumpter, J., 2001. Effects of the synthetic estrogen 17-ethinylestradiol on the
2523	life-cycle of the fathead minnow (Pimephales promelas). Environmental Toxicology and
2524	Chemistry 20, 1216–1227.
2525	Leet, J.K., Gall, H.E., Sepúlveda, M.S., 2011. A review of studies on androgen and
2526	estrogen exposure in fish early life stages: Effects on gene and hormonal control of sexual
2527	differentiation. Journal of Applied Toxicology 31, 379-398.
2528	Leet, J.K., Sassman, S., Amberg, J.J., Olmstead, A.W., Lee, L.S., Ankley, G.T.,
2529	Sepúlveda, M.S., 2015. Environmental hormones and their impacts on sex differentiation
2530	in fathead minnows. Aquatic Toxicology 158, 98-107.
2531	Li, M., Sun, L., Wang, D.S., 2019. Roles of estrogens in fish sexual plasticity and sex
2532	differentiation. General and Comparative Endocrinology 277, 9-16.
2533	Li, M., Wang, L., Wang, H., Liang, H., Zheng, Y., Qin, F., Liu, S., Zhang, Y., Wang,
2534	Z.J., 2013a. Molecular cloning and characterization of amh, dax1 and cyp19a1a genes
2535	and their response to 17α -methyltestosterone in Pengze crucian carp. Comparative
2536	Biochemistry and Physiology - C 157, 372-381.
2537	Li, M.H., Yang, H.H., Li, M.R., Sun, Y.L., Jiang, X.L., Xie, Q.P., Wang, T.R., Shi, H.J.,
2538	Sun, L.N., Zhou, L.Y., Wang, D.S., 2013b. Antagonistic roles of Dmrt1 and Foxl2 in sex

- differentiation via estrogen production in tilapia as demonstrated by TALENs.
- 2540 Endocrinology 154, 4814-4825.
- Li, X.Y., Li, Z., Zhang, X.J., Zhou, L., Gui, J.F., 2014. Expression characterization of
- 2542 testicular *DMRT1* in both Sertoli cells and spermatogenic cells of polyploid gibel carp.
- 2543 Gene 548, 119-125.
- Liang, Y.Q., Huang, G.Y., Zhao, J.L., Shi, W.J., Hu, L.X., Tian, F., Liu, S.S., Jiang, Y.X.,
- 2545 Ying, G.G., 2017. Transcriptional alterations induced by binary mixtures of
- 2546 ethinylestradiol and norgestrel during the early development of zebrafish (*Danio rerio*).
- 2547 Comparative Biochemical Physiology Part C: Toxicological Pharmacology 195, 60-67.
- Lin, Q., Mei, J., Li, Z., Zhang, X., Zhou, L., Gui, J.F., 2017. Distinct and Cooperative
- 2549 Roles of *amh* and *dmrt1* in Self-Renewal and Differentiation of Male Germ Cells in
- 2550 Zebrafish. Genetics 207, 1007-1022.
- Lin, S.J., Lerch, T.F., Cook, R.W., Jardetzky, T.S., Woodruff, T.K., 2006. The structural
- basis of TGF-beta, bone morphogenetic protein, and activin ligand binding. Reproduction132, 179-190.
- Lin, S.W., Ge, W., 2009. Differential regulation of gonadotropins (FSH and LH) and
- 2555 growth hormone (GH) by neuroendocrine, endocrine, and paracrine factors in the
- 2556 zebrafish--an in vitro approach. General and Comparative Endocrinology 160, 183-193.
- 2557 Lister, A.L., Van Der Kraak, G.J., Rutherford, R., MacLatchy, D.L., 2011. Fundulus
- 2558 *heteroclitus*: Ovarian reproductive physiology and the impact of environmental
- contaminants. Comparative Biochemistry and Physiology C 154, 278-287.
- 2560 Luzio, A., Monteiro, S.M., Rocha, E., Fontaínhas-Fernandes, A.A., Coimbra, A.M., 2016.
- 2561 Development and recovery of histopathological alterations in the gonads of zebrafish
- 2562 (Danio rerio) after single and combined exposure to endocrine disruptors (17α-
- ethinylestradiol and fadrozole). Aquatic Toxicology 175, 90-105.
- 2564 MacLatchy, D.L., Courtenay, S.C., Rice, C.D., Van Der Kraak, G.J., 2003. Development
- 2565 of a short-term reproductive endocrine bioassay using steroid hormone and vitellogenin
- end points in the estuarine mummichog (*Fundulus heteroclitus*). Environmental
- 2567 Toxicology and Chemistry 22, 996-1008.
- 2568 Marchand, O., Govoroun, M., D'Cotta, H., McMeel, O., Lareyre, J.J., Bernot, A., Laudet,
- 2569 V., Guiguen, Y., 2000. DMRT1 expression during gonadal differentiation and

- 2570 spermatogenesis in the rainbow trout, *Oncorhynchus mykiss*. Biochimica et Biophysica2571 Acta 1493, 180-187.
- 2572 Matsuda, M., Nagahama, Y., Shinomiya, A., Sato, T., Matsuda, C., Kobayashi, T.,
- 2573 Morrey, C.E., Shibata, N., Asakawa, S., Shimizu, N., Hori, H., Hamaguchi, S.,
- 2574 Sakaizumi, M., 2002. DMY is a Y-specific DM-domain gene required for male
- development in the medaka fish. Nature 417, 559-563.
- 2576 Meina, E., Lister, A., Bosker, T., Servos, M., Munkittrick, K., MacLatchy, D., 2013.
- 2577 Effects of 17alpha-ethinylestradiol (EE2) on reproductive endocrine status in
- 2578 mummichog (*Fundulus heteroclitus*) under differing salinity and temperature conditions.
- 2579 Aquatic Toxicology 134-135, 92-103.
- 2580 Metcalfe, C.D., Metcalfe, T.L., Kiparissis, Y., Koenig, B.G., Khan, C., Hughes, R.J.,
- 2581 Croley, T.R., March, R.E., Potter, T., 2001. Estrogenic potency of chemicals detected in
- sewage treatment plant effluents as determined by in vivo assays with Japanese medaka
- 2583 (*Oryzias latipes*). Environmental Toxicology and Chemistry 20, 297–308.
- Miura, T., Miura, C.I., 2003. Molecular control mechanisms of fish spermatogenesis. Fish
 Physiology and Biochemistry 28, 181–186.
- 2586 Mohammed, A., 2013. Why are Early Life Stages of Aquatic Organisms more Sensitive
- to Toxicants than Adults?, New Insights into Toxicity and Drug Testing.
- 2588 Mokhtar, D.M., Hussein, M.M., 2020. Microanalysis of Fish Ovarian Follicular Atresia:
- A Possible Synergic Action of Somatic and Immune Cells. Microscopic Microanalitical26, 599-608.
- 2591 Moore, R.K., Otsuka, F., Shimasaki, S., 2003. Molecular basis of bone morphogenetic
- protein-15 signaling in granulosa cells. Journal of Biological Chemistry 278, 304-310.
- 2593 Morais de Silva, S., Hacker, A., Harley, V., Goodfellow, P., Swain, A., Lovell-Badge, R.,
- 2594 1996. *Sox9* expression during gonadal development implies a conserved role for the gene
- in testis differentiation in mammals an birds. Nature genetics 14, 62-68.
- 2596 Morinaga, C., Saito, D., Nakamura, S., Sasaki, T., Asakawa, S., Shimizu, N., Mitani, H.,
- 2597 Furutani-Seiki, M., Tanaka, M., Kondoh, H., 2007. The hotei mutation of medaka in the
- anti-Müllerian hormone receptor causes the dysregulation of germ cell and sexual
- 2599 development. Proceedings of the National Academy of Sciences of the United States of
- America 104, 9691-9696.

2601	Myosho, T., Otake, H., Masuyama, H., Matsuda, M., Kuroki, Y., Fujiyama, A., Naruse,
2602	K., Hamaguchi, S., Sakaizumi, M., 2012. Tracing the Emergence of a Novel Sex-
2603	Determining Gene in Medaka, Oryzias luzonensis. Genetics 191, 163-170.
2604	Nagahama, Y., Chakraborty, T., Paul-Prasanth, B., Ohta, K., Nakamura, M., 2021. Sex
2605	Determination, Gonadal Sex Differentiation and Plasticity in Vertebrate Species.
2606	Physiological Reviews 101, 1237–1308.
2607	Nakamoto, M., Matsuda, M., Wang, D.S., Nagahama, Y., Shibata, N., 2006. Molecular
2608	cloning and analysis of gonadal expression of Foxl2 in the medaka, Oryzias latipes.
2609	Biochemical and Biophysical Research Communications 344, 353-361.
2610	Nakamoto, M., Wang, D.S., Suzuki, A., Matsuda, M., Nagahama, Y., Shibata, N., 2007.
2611	Dax1 Suppresses P430arom Expression in Medaka Ovarian Follicle. Molecular
2612	Reproduction and Development 74, 1239-1246.
2613	Nash, J.P., Kime, D.E., Van der Ven, L.T.M., Wester, P.W., Brion, F., Maack, G.,
2614	Stahlschmidt-Allner, P., Tyler, C.R., 2004. Long-term exposure to environmental
2615	concentrations of the pharmaceutical ethynylestradiol causes reproductive failure in fish.
2616	Environmental Health Perspectives 112, 1725-1733.
2617	Navarro-Martin, L., Blazquez, M., Piferrer, F., 2009. Masculinization of the European sea
2618	bass (Dicentrarchus labrax) by treatment with an androgen or aromatase inhibitor
2619	involves different gene expression and has distinct lasting effects on maturation. General
2620	and Comparative Endocrinology 160, 3-11.
2621	Nielsen, L., Baatrup, E., 2006. Quantitative studies on the effects of environmental
2622	estrogens on the testis of the guppy, Poecilia reticulata. Aquatic Toxicology 80, 140-148.
2623	Nieto, A., Burrull, F., Pocurull, E., Marcé, R.M., 2008. Determination of natural and
2624	synthetic estrogens and their conjugates in sewage sludge by pressurized liquid extraction
2625	and liquid chromatography - tandem mass spectrometry. Journal of Chromatography A
2626	1213, 224-230.
2627	Nishimura, T., Tanaka, M., 2014. Gonadal development in fish. Sexual Development 8,
2628	252-261.
2629	Nolan, M., 2001. A histological description of intersexuality in the roach. Journal of Fish
2630	Biology 58, 160-176.

2631	Norris, D.O., Lopez, K.H., 2011. Hormones and Reproduction of Vertebrates, Volume 1:
2632	Fishes Elsevier Inc
2633	Örn, S., Svenson, A., Viktor, T., Holbech, H., Norrgren, L., 2006. Male-biased sex ratios
2634	and vitellogenin induction in zebrafish exposed to effluent water from a Swedish pulp
2635	mill. Archives of Environmental Contamination and Toxicology 51, 445-451.
2636	Orrego, R., Guchardi, J., Krause, R., Holdway, D., 2010. Estrogenic and anti-estrogenic
2637	effects of wood extractives present in pulp and paper mill effluents on rainbow trout.
2638	Aquatic Toxicology 99, 160-167.
2639	Ortega-Recalde, O., Goikoetxea, A., Hore, T.A., Todd, E.V., Gemmell, N.J., 2020. The
2640	Genetics and Epigenetics of Sex Change in Fish. Annual Review of Animal Biosciences
2641	8, 1-23.
2642	Pailler, J.Y., Guignard, C., Meyer, B., Iffly, J.F., Pfister, L., Hoffmann, L., Krein, A.,
2643	2009. Behaviour and Fluxes of Dissolved Antibiotics, Analgesics and Hormones During
2644	Flood Events in a Small Heterogeneous Catchment in the Grand Duchy of Luxembourg.
2645	Water, Air, and Soil Pollution 203, 79-98.
2646	Palace, V.P., Evans, R.E., Wautier, K., Baron, C., Vandenbyllardt, L., Vandersteen, W.,
2647	Kidd, K.A., 2002. Induction of Vitellogenin and Histological Effects in Wild Fathead
2648	Minnows from a Lake Experimentally Treated with the Synthetic Estrogen,
2649	Ethynylestradiol. Water Quality Research Journal of Canada 37, 637–650.
2650	Pan, Q., Feron, R., Yano, A., Guyomard, R., Jouanno, E., Vigouroux, E., Wen, M.,
2651	Busnel, J.M., Bobe, J., Concordet, J.P., Parrinello, H., Journot, L., Klopp, C., Lluch, J.,
2652	Roques, C., Postlethwait, J., Schartl, M., Herpin, A., Guiguen, Y., 2019. Identification of
2653	the master sex determining gene in Northern pike (Esox lucius) reveals restricted sex
2654	chromosome differentiation. PLoS Genetics 15, e1008013.
2655	Papoulias, D.M., Noltie, D.B., Tillitt, D.E., 1999. An in vivo model fish system to test
2656	chemical effects on sexual differentiation and development: exposure to ethinyl estradiol.
2657	Aquatic Toxicology 48, 37–50.
2658	Peter, R.E., Yu, K.L., 1997. Neuroendocrine regulation of ovulation in fishes: Basic and
2659	applied aspects. Reviews in Fish Biology and Fisheries 7, 173-197.
2660	Peters, R.E.M., Courtenay, S.C., Cagampan, S., Hewitt, M.L., MacLatchy, D.L., 2007.
2661	Effects on reproductive potential and endocrine status in the mummichog (Fundulus

- *heteroclitus*) after exposure to 17α-ethynylestradiol in a short-term reproductive bioassay.
 Aquatic Toxicology 85, 154-166.
- 2664 Peters, R.E.M., Courtenay, S.C., Hewitt, L.M., MacLatchy, D.L., 2010. Effects of 17α-
- 2665 ethynylestradiol on early-life development, sex differentiation and vitellogenin induction
- in mummichog (*Fundulus heteroclitus*). Marine Environmental Research 69, 178-186.
- 2667 Pfennig, F., Standke, A., Gutzeit, H.O., 2015. The role of *Amh* signaling in teleost fish -
- 2668 Multiple functions not restricted to the gonads. General and Comparative Endocrinology 2669 223, 87-107.
- 2670 Piferrer, F., 2001. Endocrine sex control strategies for the feminization of teleost fish.
- 2671 Aquaculture 197, 229-281.
- 2672 Rodgers-Gray, T.P., Jobling, S., Kelly, C., Morris, S., Brighty, G., Waldock, M.J.,
- 2673 Sumpter, J.P., Tyler, C.R., 2001. Exposure of Juvenile Roach (*Rutilus rutilus*) to Treated
- 2674 Sewage Effluent Induces Dose-Dependent and Persistent Disruption in Gonadal Duct
- 2675 Development. Environmental Science & Technology 25, 462-470.
- 2676 Rodríguez-Marí, A., Yan, Y.L., BreMiller, R.A., Wilson, C., Cañestro, C., Postlethwait,
- 2677 J.H., 2005. Characterization and expression pattern of zebrafish anti-Müllerian hormone
- 2678 (*amh*) relative to *sox9a*, *sox9b*, and *cyp19a1a*, during gonad development. Gene
- 2679 Expression Patterns 5, 655-667.
- 2680 Roggio, M.A., Guyon, N.F., Hued, A.C., Ame, M.V., Valdes, M.E., Giojalas, L.C.,
- 2681 Wunderlin, D.A., Bistoni, M.A., 2014. Effects of the synthetic estrogen 17alpha-
- 2682 ethinylestradiol on aromatase expression, reproductive behavior and sperm quality in the
- fish *Jenynsia multidentata*. Bulletin of Environmental Contamination and Toxicology 92,
 579-584.
- 2685 Rutherford, R., Lister, A., Bosker, T., Blewett, T., Gillio Meina, E., Chehade, I.,
- 2686 Kanagasabesan, T., MacLatchy, D., 2020. Mummichog (Fundulus heteroclitus) are less
- 2687 sensitive to 17alpha-ethinylestradiol (EE2) than other common model teleosts: A
- 2688 comparative review of reproductive effects. General and Comparative Endocrinology
- 2689 289, 113378.
- 2690 Rutherford, R., Lister, A., Hewitt, L.M., Maclatchy, D., 2015. Effects of model
- 2691 aromatizable (17α -methyltestosterone) and non-aromatizable (5α -dihydrotestosterone)

2692	androgens on the adult mummichog (Fundulus heteroclitus) in a short-term reproductive
2693	endocrine bioassay. Comparative Biochemistry and Physiology Part - C 170, 8-18.
2694	Saito, D., Morinaga, C., Aoki, Y., Nakamura, S., Mitani, H., Furutani-Seiki, M., Kondoh,
2695	H., Tanaka, M., 2007. Proliferation of germ cells during gonadal sex differentiation in
2696	medaka: Insights from germ cell-depleted mutant zenzai. Developmental Biology 310,
2697	280-290.
2698	Santos, D., Luzio, A., Coimbra, A.M., 2017. Zebrafish sex differentiation and gonad
2699	development: A review on the impact of environmental factors. Aquatic Toxicology 191,
2700	141-163.
2701	Sardi, A.E., Bizarro, C., Cajaraville, M.P., Ortiz-Zarragoitia, M., 2015. Steroidogenesis
2702	and phase II conjugation during the gametogenesis of thicklip grey mullet (Chelon
2703	labrosus) from a population showing intersex condition. General and Comparative
2704	Endocrinology 221, 144-155.
2705	Schafers, C., Teigeler, M., Wenzel, A., Maack, G., Fenske, M., Segner, H., 2007.
2706	Concentration- and time-dependent effects of the synthetic estrogen, 17alpha-
2707	ethinylestradiol, on reproductive capabilities of the zebrafish, Danio rerio. Journal of
2708	Toxicology and Environmental Health, Part A 70, 768-779.
2709	Schmidt, D., Ovitt, C.E., Anlag, K., Fehsenfeld, S., Gredsted, L., Treier, A.C., Treier, M.,
2710	2004. The murine winged-helix transcription factor Foxl2 is required for granulosa cell
2711	differentiation and ovary maintenance. Development 131, 933-942.
2712	Schulz, R.W., Bogerd, J., Male, R., Ball, J., Fenske, M., Olsen, L.C., Tyler, C.R., 2007.
2713	Estrogen-Induced Alterations in amh and dmrt1 Expression Signal for Disruption in Male
2714	Sexual Development in the Zebrafish. Environmental Science and Technology 41, 6305-
2715	6310.
2716	Seki, M., Yokota, H., Matsubara, H., Tsuruda, Y., Maeda, M., Tadokoro, H., Kobayashi,
2717	K., 2002. Effect of ethinylestradiol on the reproduction and induction of vitellogenin and
2718	testis-ova in medaka (Oryzias latipes). Environmental Toxicology and Chemistry 21,
2719	1692–1698.
2720	Shen, Z.G., Wang, H.P., 2014. Molecular players involved in temperature-dependent sex
2721	determination and sex differentiation in Teleost fish. Genetics Selection Evolution 46, 1-
2722	21.

2723	Shimizu, A., Hamaguchi, M., Ito, H., Ohkubo, M., Udagawa, M., Fujii, K., Kobayashi,
2724	T., Nakamura, M., 2008. Appearances and chronological changes of mummichog
2725	Fundulus heteroclitus FSH cells and LH cells during ontogeny, sexual differentiation, and
2726	gonadal development. General and Comparative Endocrinology 156, 312-322.
2727	Spicer, L.J., Aad, P.Y., Allen, D.T., Mazerbourg, S., Payne, A.H., Hsueh, A.J., 2008.
2728	Growth differentiation factor 9 (GDF9) stimulates proliferation and inhibits
2729	steroidogenesis by bovine theca cells: influence of follicle size on responses to GDF9.
2730	Biology of Reproduction 78, 243-253.
2731	Srikanthan, N., 2019. Analysis of Temporal Changes in Estrogenic Compounds Released
2732	from Municipal Wastewater Treatment Plants Theses and Dissertations (Comprehensive).
2733	University of Waterloo, 1-111.
2734	Tang, Z., Liu, Z., Wang, H., Dang, Z., Liu, Y., 2021. A review of 17α-ethynylestradiol
2735	(EE ₂) in surface water across 32 countries: Sources, concentrations, and potential
2736	estrogenic effects. Journal of Environmental Management 292, 112804.
2737	Taylor, M.H., Leach, G.J., DiMichele, L., Levitan, W.M., Jacob, W.F., 1979. Lunar
2738	spawning cycle in the mummichog, Fundulus heteroclitus (Pisces: Cyprinodontidae).
2739	Copeia 1979 (2), 291–297
2740	Tenugu, S., Pranoty, A., Mamta, S.K., Senthilkumaran, B., 2021. Development and
2741	organisation of gonadal steroidogenesis in bony fishes - A review. Aquaculture and
2742	Fisheries 6, 223-246.
2743	Ternes, T.A., Stumpf, M., Mueller, M., Haberer, K., Wilken, R.D., Servos, M., 1999.
2744	Behavior and occurrence of estrogens in municipal sewage treatment plants I.
2745	Investigations in Germany, Canada and Brazil. The Science of the Total Environment
2746	225, 81-90.
2747	Todd, E.V., Liu, H., Muncaster, S., Gemmell, N.J., 2016. Bending Genders: The Biology
2748	of Natural Sex Change in Fish. Sexual Development 10, 223-241.
2749	Todd, E.V., Ortega-Recalde, O., Liu, H., Lamm, M.S., Rutherford, K.M., Cross, H.,
2750	Black, M.A., Kardailsky, O., Marshall Graves, J.A., Hore, T.A., Godwin, J.R., Gemmell,
2751	N.J., 2019. Stress, novel sex genes, and epigenetic reprogramming orchestrate socially
2752	controlled sex change. Science Advances 5, 1-14.

-127-

2753	Toni, L.S., Garcia, A.M., Jeffrey, D.A., Jiang, X., Stauffer, B.L., Miyamoto, S.D.,
2754	Sucharov, C.C., 2018. Optimization of phenol-chloroform RNA extraction. MethodsX 5,
2755	599-608.
2756	Trant, J.M., Gavasso, S., Ackers, J., Chung, B., Place, A.R., 2001. Developmental
2757	Expression of Cytochrome P450 Aromatase Genes (CYP19a and CYP19b) in Zebrafish
2758	Fry (Danio rerio). Journal of Experimental Zoology 290, 475-483.
2759	Uhlenhaut, N.H., Jakob, S., Anlag, K., Eisenberger, T., Sekido, R.i., Kress, J., Treier,
2760	A.C., Klugmann, C., Klasen, C., Holter, N.I., Riethmacher, D., Schütz, G., Cooney, A.J.,
2761	Lovell-Badge, R., Treier, M., 2009. Somatic Sex Reprogramming of Adult Ovaries to
2762	Testes by FOXL2 Ablation. Cell 139, 1130-1142.
2763	Urbatzka, R., Rocha, E., Reis, B., Cruzeiro, C., Monteiro, R.A., Rocha, M.J., 2012.
2764	Effects of ethinylestradiol and of an environmentally relevant mixture of xenoestrogens
2765	on steroidogenic gene expression and specific transcription factors in zebrafish.
2766	Environmental Pollution 164, 28-35.
2767	Urushitani, H., Shimizu, A., Katsu, Y., Iguchi, T., 2002. Early estrogen exposure induces
2768	abnormal development of Fundulus heteroclitus. Journal of Experimental Zoology 293,
2769	693-702.
2770	USEPA, 2006. Aquatic Life Ambient Water Quality Criteria - Nonylphenol
2771	Van Aerle, R., Pounds, N., Hutchinson, T.H., Maddix, S., Tyler, C.R., 2002. Window of
2772	Sensitivity for the Estrogenic Effects of Ethinylestradiol in Early Life-Stages of Fathead
2773	Minnow, Pimephales promelas. Ecotoxicology 11, 423-434.
2774	Vizziano, D., Randuineau, G., Baron, D., Cauty, C., Guiguen, Y., 2007. Characterization
2775	of early molecular sex differentiation in rainbow trout, Oncorhynchus mykiss.
2776	Developmental Dynamics 236, 2198-2206.
2777	Weber, L.P., Balch, G.C., Metcalfe, C.D., Janz, D.M., 2004. Increased kidney, liver, and
2778	testicular cell death after chronic exposure to 17a-ethinylestradiol in medaka (Oryzias
2779	latipes). Environmental Toxicology and Chemistry 23, 792-797.
2780	Weber, L.P., Hill, R.L., Janz, D.M., 2003. Developmental estrogenic exposure in
2781	zebrafish (Danio rerio): II. Histological evaluation of gametogenesis and organ toxicity.
2782	Aquatic Toxicology 63, 431-446.

-128-
2783	Webster, K.A., Schach, U., Ordaz, A., Steinfeld, J.S., Draper, B.W., Siegfried, K.R.,
2784	2017. Dmrt1 is necessary for male sexual development in zebrafish. Developmental
2785	Biology 422, 33-46.
2786	Weisbrod, C.J., Kunz, P.Y., Zenker, A.K., Fent, K., 2007. Effects of the UV filter
2787	benzophenone-2 on reproduction in fish. Toxicology and Applied Pharmacology 225,
2788	255-266.
2789	Weltzien, F.A., Andersson, E., Andersen, Ø., Shalchian-Tabrizi, K., Norberg, B., 2004.
2790	The brain-pituitary-gonad axis in male teleosts, with special emphasis on flatfish
2791	(Pleuronectiformes). Comparative Biochemistry and Physiology Part A 137, 447-477.
2792	Wood, A.W., van der Kraak, G., 2002. Inhibition of apoptosis in vitellogenic ovarian
2793	follicles of rainbow trout (Oncorhynchus mykiss) by salmon gonadotropin, epidermal
2794	growth factor, and 17beta-estradiol. Molecular Reproduction and Development 61, 511-
2795	518.
2796	Yamaguchi, T., Yamaguchi, S., Hirai, T., Kitano, T., 2007. Follicle-stimulating hormone
2797	signaling and Foxl2 are involved in transcriptional regulation of aromatase gene during
2798	gonadal sex differentiation in Japanese flounder, Paralichthys olivaceus. Biochemical and
2799	Biophysical Research Communications 359, 935-940.
2800	Yamamoto, Y., Zhang, Y., Sarida, M., Hattori, R.S., Strüssmann, C.A., 2014.
2801	Coexistence of genotypic and temperature-dependent sex determination in pejerrey
2802	Odontesthes bonariensis. PLoS ONE 9, 1-8.
2803	Yang, Y.J., Wang, Y., Li, Z., Zhou, L., Gui, J.F., 2017. Sequential, divergent, and
2804	cooperative requirements of <i>foxl2a</i> and <i>foxl2b</i> in ovary development and maintenance of
2805	zebrafish. Genetics 205, 1551-1572.
2806	Yoshinaga, N., Shiraishi, E., Yamamoto, T., Iguchi, T., Abe, Si., Kitano, T., 2004.
2807	Sexually dimorphic expression of a teleost homologue of Müllerian inhibiting substance
2808	during gonadal sex differentiation in Japanese flounder, Paralichthys olivaceus.
2809	Biochemical and Biophysical Research Communications 322, 508-513.
2810	Yu, H., Wang, Y., Wang, M., Liu, Y., Cheng, J., Zhang, Q., 2020. Growth differentiation
2811	factor 9 (gdf9) and bone morphogenetic protein 15 (bmp15) are potential intraovarian
2812	regulators of steroidogenesis in Japanese flounder (Paralichthys olivaceus). General and
2813	Comparative Endocrinology 297, 113547.

2814	Zha, J., Sun, L., Zhou, Y., Spear, P.A., Ma, M., Wang, Z., 2008. Assessment of 17alpha-
2815	ethinylestradiol effects and underlying mechanisms in a continuous, multigeneration
2816	exposure of the Chinese rare minnow (Gobiocypris rarus). Toxicology and Applied
2817	Pharmacology 226, 298-308.
2818	Zha, J., Wang, Z., Wang, N., Ingersoll, C., 2007. Histological alternation and vitellogenin
2819	induction in adult rare minnow (Gobiocypris rarus) after exposure to ethynylestradiol and
2820	nonylphenol. Chemosphere 66, 488-495.
2821	Zheng, Y., Chen, J., Bing, X., Yang, Y., Liang, H., Wang, Z., 2016. Gender-specific
2822	differences in gene expression profiles in gynogenetic Pengze crucian carp. Animal
2823	Biology 66, 157-171.
2824	Zillioux, E.J., Johnson, I.C., Kiparissis, Y., Metcalfe, C.D., Wheat, J.V., Ward, S.G., Liu,
2825	H., 2001. The sheepshead minnow as an in vivo model for endocrine disruption in marine
2826	teleosts: A partial life-cycle test with 17a-ethynylestradiol. Environmental Toxicology
2827	and Chemistry 20, 968–1978.

2829 Appendices

2830 A1: Methodology

2831 A1.1 Histology cassette preparation & processing:

- 2832 After storage in formalin for 24 h, fish anterior halves were dyed using Davidson
- 2833 Marking black, green, yellow, orange and blue tissue dye (Bradley Products, Inc.,
- 2834 Bloomington, MN, USA) and placed into Tissue PathTM MicrosetteTM Six Compartment
- 2835 Biopsy Cassettes (Fisher Scientific Company, Ottawa, ON). Cassettes were immediately
- sent to Susan Lapos at the animal health laboratory (AHL) histology department at
- 2837 University of Guelph, Guelph, ON. Fish dye colour and cassette number corresponded to
- a specific fish (Figure A1.1A). Cassettes were processed and embedded in paraffin wax
- longitudinally (Figure A1.1B), then each block was sectioned (60-80µm) perpendicular to
- the fish onto a standard glass slide and stained with H&E (Sigma-Aldrich; Figure A1.1C).
- 2841 This revealed a cross section view of the fish (Figure A1.1C). Each block was sectioned
- three to five times to ensure all fish gonads were visible on slides.

2844

Figure A1.1: Sampled anterior five-week-old mummichog dyed in cassettes (A), paraffin
wax blocks (B) and sectioned histological slide (C) of transverse cross sectioned
mummichog with hemoxylin and eosin staining. Mummichog dye colour and cassette
number were essential for fish identification.

2849 A1.2 Ovarian histology figures

Figures in this section (A.1.2.1-A1.2.30) represent the histological slides (10X) used to evaluate the female mummichog gametogenesis data for Experiment 2. Each slide includes fish identification being Tank number [T1-3 are control treatment (0 ng/L EE₂); T4-6 are high EE₂ concentration treatment 10 ng/L EE₂; T7-9 are low EE₂ concentration treatment (2 ng/L EE₂)], cassette number and dye used to colour coordinate the fish (A1.1).

2856 *Control Treatment*

Figure A.1.2.1: Fish identification T1-5 yellow, female ovary (10X)

Figure A.1.2.2: Fish identification T1-7 green, female ovary (10X).

Figure A.1.2.3: Fish identification T1-3 yellow, female ovary (10X)

Figure A.1.2.5: Fish identification T2-6 green, female ovary (10X)

Figure A.1.2.6: Fish identification T2-3 black, female ovary (10X)

Figure A.1.2.7: Fish identification T3-1 yellow, female ovary (10X)

Figure A.1.2.8: Fish identification T3-11 orange, female ovary (10X)

Figure A.1.2.9: Fish identification T3-12 yellow, female ovary (10X)

Figure A.1.2.10: Fish identification T3-4 blue, female ovary (10X)

2883

2884 *Low EE*₂ concentration treatment

Figure A.1.2.11: Fish identification T7- 1 black, female ovary (10X)

Figure A.1.2.12: Fish identification T7-3 yellow, female ovary (10X)

Figure A.1.2.13: Fish identification T7-4 yellow, female ovary (10X)

Figure A.1.2.14: Fish identification T7-6 green, female ovary (10X)

Figure A.1.2.15: Fish identification T8-3 black, female ovary (10X)

Figure A.1.2.16: Fish identification T8-8 orange, female ovary (10X)

Figure A.1.2.17: Fish identification T8-11 yellow, female ovary (10X)

Figure A.1.2.18: Fish identification T9-3 orange, female ovary (10X)

Figure A.1.2.19: Fish identification T9-8 yellow, female ovary (10X)

2907 2908 Figure A.1.2.20: Fish identification T9-11 green, female ovary (10X)

2910 High EE₂ concentration treatment

2911 2912

Figure A.1.2.21: Fish identification T4-11 yellow, female ovary (10X)

Figure A.1.2.22: Fish identification T4-12 blue, female ovary (10X)

Figure A.1.2.23: Fish identification T4-3 yellow, female ovary (10X)

Figure A.1.2.24: Fish identification T5-1 green, female ovary (10X)

Figure A.1.2.25: Fish identification T5-7 green, female ovary (10X)

Figure A.1.2.26: Fish identification T5-3 green, female ovary (10X)

Figure A.1.2.28: Fish identification T6-1 black, female ovary (10X)

Figure A.1.2.29: Fish identification T6-11 green, female ovary (10X)

Figure A.1.2.30: Fish identification T6-2 green, female ovary (10X)

2936 A1.3 Testis histology figures

Figures in this section (A.1.3.1-A1.3.30) represent the histological slides (20X or 40X) used to evaluate the male mummichog gametogenesis data for Experiment 2. Each slide includes fish identification being Tank number [T1-3 are control treatment (0 ng/L EE₂); T4-6 are high EE₂ concentration treatment 10 ng/L EE₂; T7-9 are low EE₂ concentration treatment (2 ng/L EE₂)], cassette number and dye used to colour coordinate the fish (A1.1).

2943

2944 *Control treatment*

2945 2946

Figure A.1.3.1: Fish identification T1-7 yellow, male testis (20X)

Figure A.1.3.2: Fish identification T1-12 blue, male testis (20X)

Figure A.1.3.4: Fish identification T2-10 yellow, male testis (20X)

Figure A.1.3.5: Fish identification T2-1 green, male testis (40X)

Figure A.1.3.6: Fish identification T2-11 blue, male testis (20X)

Figure A.1.3.7: Fish identification T3-4 black, male testis (20X)

50 µm

2959 2960

Figure A.1.3.8: Fish identification T3-7 orange, male testis (20X)

Figure A.1.3.9: Fish identification T3-10 green, male testis (20X)

- 2963
2964Figure A.1.3.10: Fish identification T3-8 yellow, male testis (20X)
- 2965 *Low EE*₂ concentration treatment

Figure A.1.3.11: Fish identification T7-2 yellow, male testis (20X)

Figure A.1.3.12: Fish identification T7-8 blue, male testis (20X)

Figure A.1.3.13: Fish identification T7-11 green, male testis (20X)

2972S0 μm2973Figure A.1.3.14: Fish identification T7-8 yellow, male testis (20X)

Figure A.1.3.15: Fish identification T8-8 green, male testis (20X)

Figure A.1.3.17: Fish identification T8-5 yellow, male testis (20X)

Figure A.1.3.19: Fish identification T9- 6 blue, male testis (20X)

- 29842985 Figure A.1.3.20: Fish identification T9-11 black, male testis (20X)
- 2986High EE2 concentration treatment

Figure A.1.3.21: Fish identification T4-8 orange, male testis (20X)

Figure A.1.3.23: Fish identification T4-9 green, male testis (20X)

Figure A.1.3.24: Fish identification T5-2 blue, male testis (20X)

Figure A.1.3.25: Fish identification T5-10 blue, male testis (20X)

Figure A.1.3.27: Fish identification T5-4 orange, male testis (40X)

Figure A.1.3.28: Fish identification T6-4 orange, male testis (20X)

3003 3004

Figure A.1.3.29: Fish identification T6-8 yellow, male testis (20X)

A1.4 Reference gene expression

Figure A.1.4.1: Testis β *actin* gene expression Cq (cycle value). Average Cq is 23.84± 0.24 (SEM) for testis samples from Experiment 2.

3013 3014 **Figure A.1.4.2:** Testis β *actin* melt curve indicating one product at 83°C.

Figure A.1.4.3: Testis *ef1a* gene expression Cq (cycle value). Average Cq is 21.30 ± 0.12 (SEM) for testis samples from Experiment 2.

3022

Figure A.1.4.5: Ovary *\betaactin* gene expression Cq (cycle value). Average Cq is 20.57± 0.12 (SEM) for ovary samples from Experiment 2.

Figure A.1.4.6: Ovary β *actin* melt curve indicating one product at 83°C.

Figure A.1.4.7: Ovary *ef1a* gene expression Cq (cycle value). Average Cq is 20.06 ± 0.10 (SEM) for ovary samples from Experiment 2.

3029 3030 **Figure A.1.4.8:** Ovary *ef1a* melt curve indicating one product at 87.5°C.

Table A4.1: Stability values of the reference genes, β actin and ef1a, on pooled ovarian3033tissue provided by BIORAD gene study program.

Stability values: ovary	Coefficient Variance	M value
Acceptable value	<.5	<1
βactin	0.1736	0.4156
efla	0.1216	0.4156

 Table A4.2: Stability values of the reference genes, β actin and ef1a, on pooled testis tissue provided by BIORAD gene study program.

<1
8982
8982

Figure A.1.4.9: *amh* gene expression Cq (cycle value) standard curve.

3041
3042 Figure A.1.4.10: *amh* melt curve indicating one product at 79.5°C.

3043

Figure A.1.4.11: *bmp15* gene expression Cq (cycle value) standard curve.

Figure A.1.4.12: *bmp15* melt curve indicating one product at 87°C.

Figure A.1.4.13: *cyp19a1a* gene expression Cq (cycle value) standard curve.

Figure A.1.4.14: *cyp19a1a* melt curve indicating one product at 81.5°C.

Figure A.1.4.15: *dmrt1* gene expression Cq (cycle value) standard curve.

3056 3057 3058

Figure A.1.4.16: *dmrt1* melt curve indicating one product at 88°C.

Figure A.1.4.17: *foxl2* gene expression Cq (cycle value) standard curve.

Figure A.1.4.18: *foxl2* melt curve indicating one product at 88.5°C

Figure A.1.4.19: *gdf9* gene expression Cq (cycle value) standard curve.

3066 3067 3068

Figure A.1.4.20: *gdf*9 melt curve indicating one product at 86°C

3069 A2: Extra histology figures

3070

Figure A.2.2: Fish identification T1-5 yellow, female ovary (10X)

Figure A.2.3: Fish identification T1-6 blue, female ovary (10X)

Figure A.2.5: Fish identification T2-2 yellow, female ovary (10X)

Figure A.2.7: Fish identification T2-6 green, female ovary (10X)

Figure A.2.8: Fish identification T2-8 green, female ovary (10X)

Figure A.2.9: Fish identification T2-6 black, male testis (20X)

Figure A.2.11: Fish identification T2-12 yellow, male testis (20X)

Figure A.2.12: Fish identification T3-1 yellow, female ovary (10X)

Figure A.2.13: Fish identification T3-3 green, female ovary (10X)

Figure A.2.14: Fish identification T3-1 blue, male testis (20X)

3103 3104 Figure A.2.16: Fish identification T4-4 green, female ovary (10X)

Figure A.2.17: Fish identification T4-6 blue, female ovary (10X)

Figure A.2.18: Fish identification T4-10 orange, female ovary (10X)

Figure A.2.19: Fish identification T4-1 blue, male testis (20X)

Figure A.2.20: Fish identification T4-1 yellow, male testis (20X)

3113 3114 **Figure A.2.21:** Fish identification T4-4 orange, male testis (20X)

Figure A.2.22: Fish identification T5-10 black, female ovary (10X)

311750 μm3118Figure A.2.23: Fish identification T5-2 black, male testis (20X)

Figure A.2.24: Fish identification T5-6 blue, male testis (20X)

31213122Figure A.2.25: Fish identification T5-10 blue, male testis (20X)

3123 3124

Figure A.2.26: Fish identification T6-5 black, female ovary (10X)

3125 3126 Figure A.2.27: Fish identification T6-9 orange, female ovary (10X)

- 3127 3128
- Figure A.2.28: Fish identification T6-10 orange, female ovary (10X)

3129 3130 **Figure A.2.29:** Fish identification T6-2 black, male testis (20X)

Figure A.2.30: Fish identification T6-4 green, male testis (20X)

Figure A.2.31: Fish identification T6-7 yellow, male testis (20X)

Figure A.2.32: Fish identification T7-1 yellow, female ovary (10X)

- 3137 3138
- Figure A.2.33: Fish identification T7-5 orange, female ovary (10X)

Figure A.2.34: Fish identification T7-8 orange, female ovary (10X)

Figure A.2.35: Fish identification T7-1 blue, male testis (20X)

Figure A.2.36: Fish identification T7-2 green, male testis (20X)

Figure A.2.38: Fish identification T7-8 yellow, male testis (20X)

Figure A.2.39: Fish identification T8-2 green, female ovary (10X)

Figure A.2.40: Fish identification T8-4 black, female ovary (10X)

Figure A.2.42: Fish identification T8-1 black, male testis (20X)

Figure A.2.43: Fish identification T8-5 yellow, male testis (20X)

Figure A.2.44: Fish identification T8-8 green, male testis (20X)

Figure A.2.45: Fish identification T9-2 orange, female ovary (10X)

3167
3168 Figure A.2.48: Fish identification T9-12 blue, female ovary (10X)

- 3173 3174 3175 3176
 - Figure A.2.51: Fish identification T9-9 orange, male testis (20X)