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Abstract

Harmful algal blooms (HABs) are a growing problem in many freshwater water
bodies in Canada and around the world. HABs have wide-ranging impacts to ecosystems
and economies. Since the 1970s, the primary focus of policies with respect to curbing
HABs has been to lowering the inputs of P into waters. However, reports of HABs
continue to increase even with all these P-removing policies in place. Some jurisdictions
have chosen to focus on N-removal instead or in conjunction with P-removal to help with
HABs. However, because some cyanobacteria have the ability to fix atmospheric N2,
N-removal might only lead to the dominance of N-fixing HABs. Recent research has
suggested that micronutrients, such as Fe and Co, are key in algal bloom development and
biochemistry.

Blank line
The goals of this thesis are to assess their dependence on micronutrients and

investigate how micronutrients impact algal bloom growth, to assess possible mitigation
strategies and to explore new techniques to help in answering these questions. Chapters
2 and 6 explore how Fe and Co may play a role in phytoplankton bloom development
and growth of N-fixing cyanobacteria. Chapters 4 and 5 explore how Fe(II) removal
might impact cyanobacterial growth and affect HABs. Chapters 3 and 7 use modified and
new techniques to study algal growth by using stable isotopes to characterize growth of
phytoplankton in culture and using a smartphone app to quantify algal biomass.

Blank line
We found the nutrient threshold concentrations (below which growth ceases) and

relative affinities for Fe at low concentrations for seven different phytoplankton. We
determined that N-fixing cyanobacteria in N-replete conditions have the lowest iron
threshold at 76 ± 2pM, green algae have a mean iron threshold of 245 ± 5pM, the non-
fixer Microcystis aeruginosa has a threshold of 663 ± 17pM, and N-fixing cyanobacteria
that are grown without nitrate have a mean iron threshold of 736 ± 17pM. At low Fe
concentrations, Microcystis aeruginosa had the highest affinity, followed by N-fixing
cyanobacteria grown in N-replete conditions, then N-fixing cyanobacteria who had to
fix N2 and green algae had the lowest affinity at low Fe concentrations. These findings
reinforce the importance of Fe in HABs growth and development and provide insight into
how certain species and species types could dominate at low concentrations of Fe.

Blank line
By using a simple mixing-model, we were able tease apart the isotopic composition

of newly accumulated biomass from the measured bulk samples, we found that estimated
isotopic composition of new biomass differed up to 15h from the measured bulk
sample. We characterized the growth of cultures of ten different phytoplankton species
using the new estimates of isotopic composition and found that fractionation factors
between dissolved nutrient and biomass vary largely with time and in diazotrophic
species, the fractionation factor is much higher than previously reported. We used these
newly estimated isotopic compositions and fractionation factors and correlated them
to instantaneous growth rates and found moderate correlations among growth rates and
carbon isotopic fractionation factors.

Blank line
Fe is an important nutrient from algal bloom development and recent research has

pointed specifically to Fe(II). We assessed the impacts of Fe(II) removal on cyanobacterial
growth using a colourometric Fe(II) chelator, ferrozine (FZ). We found that adding FZ
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in a variety of FZ:Fe molar ratios does not impact the growth of phytoplankton in the
conditions we used. Therefore, we must continue to explore the efficacy and impacts of
Fe(II) removal on HABs in the environment.

Blank line
This work let to further exploration of the properties of FZ while other chelators,

like citrate and EDTA are present. We also studied the impacts of other metal chelators
on the formation of the Fe-FZ complex. While citrate did not inhibit the formation of the
Fe-FZ complex, EDTA might play an Fe oxidizing role in cell medium.

Blank line
Like Fe, increases in Co can increase growth and N-fixation in cyanobacteria. How-

ever, unlike Fe, the mechanism of how this occurs is largely unknown. We investigated
the impacts of increasing Co concentrations on the growth and heterocyst abundance of
filamentous N-fixing cyanobacteria. Our results show that increasing Co significantly
increases the percentage of heterocysts found in cultures of N-fixing filamentous
cyanobacteria. We also combined our culture studies with field and literature data and
found similar results. This may point to a possible role of Co in heterocyst synthesis
and thus N-fixation and how that might impact algal bloom growth and development,
especially in environments with low N.

Blank line
All of this work relied on the optical measurement of algal biomass using a spec-

trophotometer. However, this method is not feasible when it comes to field measurements
or engaging citizens to participate in monitoring efforts. We devised an unique and simple
strategy to accurately measure algal biomass using a smartphone app, using the RGB
colour model. A good linear relationship between algal absorbance at 750nm using a
spectrophotometer and (R + B + G)/G was found. We also correlated this relationship
to cell numbers in culture at a species level. This method offers a promising detection
method for algal biomass determination with simple operation, fast response and low cost.

Blank line
This work highlights the importance of Fe and Co to the growth and proliferation of

HABs and attempts to use this micronutrient dependence to control the problem. We also
show the use of new and innovative models and methods to make the characterization of
this complex problem more efficient and accurate.
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Chapter 1

Introduction

Canada is home to over a million lakes and many more ponds (Pick, 2016). The

Laurentian Great Lakes, the largest freshwater system on Earth, contains approximately

21% of the world’s freshwater and is the source of drinking water for millions of people

(Frey and Mutz, 2006). Since the 1960s, phosphorus (P) loading into lakes has led to

a rise in harmful algal blooms (HABs) as well as a large increase in the possible toxin-

producing cyanobacterial harmful algal blooms (cHABs) (Winter et al., 2011). Harmful

algal blooms can pose a significant threat to human health and the economy due to the

production of potent toxic compounds (Downing et al., 2001). While eutrophication,

the presence of excessive nutrients in a water body, seems to be the primary driver of

HABs and cHABs, other factors play an important role in the proliferation of HABs

and in determining the species that dominate. Since the 1970s, there have been laws and

policies such as the Canada-USA Great Lakes Water Quality Agreement signed in 1972

and revised in 1978, 1987 and 2012, to mitigate and stop the rise of HABs (Pick, 2016).

However, our lack of understanding of what drives the growth of HABs and what factors

determine which species will dominate leaves us unable to effectively control this ever-

proliferating problem.

1.1 HABs and cHABs

There has been an increase in the report of algal blooms all over the world (Pick,

2016). However, "algal bloom" is not a well-defined term. A bloom is commonly
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defined as a large growth of phytoplankton in a water body (Smayda, 1997). Some

groups distinguish between nuisance algal blooms and harmful algae blooms. HABs

are algal blooms associated with adverse health effects while nuisance algal blooms

have been defined to have more general harms (Ho and Michalak, 2015). Many different

researchers and organizations define a bloom more specifically, usually by looking at

biomass. For example, a bloom is defined as algal counts above 200,000 cells/L by the

Intergovernmental Oceanographic Commission (Anderson et al., 2017). Several Canadian

jurisdictions define cHABs based on cell counts of greater than 20,000 cyanobacterial

cells/mL, while some define it as greater than 100,000 cyanobacterial cells/mL (Watson

et al., 2008; Health Canada, 2012).

1.1.1 Impacts of HABs and cHABs

These blooms have a number of wide-ranging impacts associated with them. They

leave foul-smelling and unsightly clusters of dead and dormant cells on shores and

water surfaces which interfere with recreational uses. High algal biomass can deplete

environments of oxygen as the bloom decay, resulting in harm to aquatic life (Anderson

et al., 2002). Some cHABs produce toxins which can kill aquatic wildlife, poison

livestock and even humans. These toxins produced by cyanobacteria (cyanotoxins) have

been linked to many different diseases including carcinomas (Downing et al., 2001).

Metabolic by-products of phytoplankton include taste and odour compounds that are

difficult to remove from the drinking water treatment process (Downing et al., 2001).

Lakes in Canada are a large source of income through fisheries, tourism and other

industries (Hudnell, 2010). However, algal blooms lower such incomes because of

the resulting costs due to losses in recreational and industrial activities, clean up and

treatment efforts add up. It was estimated that from 2011 to 2014, HABs in Lake Erie cost

between $2.25 million to $5.58 million USD in just decreased sales of fishing licenses

due to harm caused by HABs to fisheries (Wolf et al., 2017). A conservative estimate

of annual costs due to HABs is $2.2 billion to $4.6 billion USD to the United States

economy (Hudnell, 2010). These costs are found to be increasing as the severity and the
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occurrence of HABs increases throughout the world.

1.1.2 Diversity of HABs and Nitrogen Fixation

Phytoplankton are a diverse group of photosynthetic organisms, they include

classes of organisms such as diatoms, dinoflagellates, chlorophytes and cyanobacteria

(Simon et al., 2009). They are found in a host of environments such as frozen rocks,

caves, hotsprings, soil, inland waters and many others (Padisák et al., 2016). There

are tens of thousands of branches of phytoplankton on the evolutionary tree of life.

Despite this wide variety and diversity of organisms in the world, thousands of species

are often binned together in groups that perform similar ecological function to simplify

analyses and to help in making conceptual and quantitative models (Mutshinda et al.,

2016). Phytoplankton are split into groups such as silicifying diatoms, mixotrophic

dinoflagellates, calcifiers, toxin-producing cyanobacteria, or nitrogen fixing cyanobacteria

(Mutshinda et al., 2016; Hood et al., 2006; Irwin et al., 2012).

A key characteristic differentiating cyanobacteria is whether the species can fix

atmospheric nitrogen (N2) into a more bioavailable form of nitrogen. This is called

diazotrophy. This process involves breaking the triple bond in N2 and converting it to

ammonia. In many N-depleted environments, this cyanobacterial N-fixation plays an

important role in adding to the pool of bioavailable N (Bauersachs et al., 2009). Nearly

half the nitrogen fixation activity in the world is done by oceanic cyanobacteria (Galloway

et al., 2004).

1.1.3 Theories of Causation of cHABs

The exact cause of cHABs has been a puzzle for ecologists. Historically, cHABs

occurred annually in nutrient-rich, eutrophic environments. However, cHABs are

increasingly reported in low-nutrient lakes, bays and reservoirs (Dodds et al., 2009;

Verschoor et al., 2017). Many factors have been proposed to explain the occurrence

of cHABs such as phosphorus and nitrogen loading and low mixing and flushing rates

(Kane et al., 2014; Michalak et al., 2013; Paerl et al., 2011; Smith and Schindler, 2009).
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With increasing lake temperatures, a focus has also been on studying the impacts of

increasing water temperatures on the occurrence of HABs and the dominance of cHABs.

Cyanobacteria grow at wider and warmer temperature range than other phytoplankton in

lab conditions (Paerl et al., 2011).

Over the years of studying cHABs, the dominant hypothesis has been that increased

loading of nitrogen and phosphorus is the driving force behind bloom proliferation (Kane

et al., 2014; Elser et al., 1990; Schindler, 1974; Steel, 1971). However, as noted above,

because some cyanobacteria taxa can fix atmospheric N, P is the limiting nutrient that

controls the biomass in a bloom (Higgins et al., 2017; Schindler et al., 2008; Schindler,

1974, 1975). Current management practices and models are focused on P and/or N

but overlook other factors that may help the cyanobacteria dominate (Schindler, 2006).

Evidence has suggested that trace elements such as Co, and more importantly Fe, might

play a crucial role in cHABs formation (Molot et al., 2014; Saito et al., 2004). The

conceptual model of Molot et al. (2014) hypothesizes that phytoplankton biomass is

controlled by N and P but cyanobacteria dominance is controlled by the availability of

Fe(II) (Molot et al., 2014). When sediments are oxidized, cHABs do not occur (Molot

et al., 2021).

1.2 Nutrients

1.2.1 Macronutrients

Macronutrients for phytoplankton are elements that are needed in relatively high

abundance in order to live. These include elements such as: carbon (C), phosphorus

(P), nitrogen (N), hydrogen (H), oxygen (O), potassium (K), sulfur (S), calcium (Ca),

magnesium (Mg), silicon (Si), chloride (Cl) and sodium (Na) (Graham et al., 2016).

These macronutrients play a myriad of roles and functions within a phytoplankton cell

(see Table 1.1). If the nutrients are not enough, it results in deformity, lower growth rates,

discolouration, stressed cells and possibly cell death (Barker et al., 2015).
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Table 1.1: Macronutrients commonly needed by phytoplankton and some uses (Graham
et al., 2016; Berg et al., 2002)

Element Examples of Function or Location in Cell
C building block
P ATP, DNA, phospholipids
N amino acids, nucleotides, chlorophyll, phycobilins
H proton gradient, acid-base reactions
O respiration
K agar and carrageenan, osmotic regulation (ionic form), cofactor for many

enzymes
S some amino acids, nitrogenase, thylakoid lipids, CoA, carrageenan, agar,

DMSP, biotin
Ca alginates, calcium carbonate, calmodulin
Mg chlorophyll
Si diatom frustules, silicoflagellate skeletons, synurophyte scales and

stomatocyst walls, walls of the ulvophyte Cladophora
Cl oxygen production in photosynthesis, trichloroethylene, perchloroethylene
Na nitrate reductase

1.2.1.1 Carbon

Carbon (C) is an essential building block of life as it is the subunit in all biomolecules.

C can form long and strong bonds with itself (C-C bonds) and with a variety of other

elements such as N, O, P, S, metals and many more (Burrows et al., 2017; Demming,

2010). Carbon containing molecules can be variable and stable which allows for life

to exist. In freshwater systems, C exists as either dissolved inorganic carbon (DIC),

dissolved organic carbon (DOC) or particulate organic carbon (POC). Most of the carbon

in a lake is found in the particulate form (Einola et al., 2011).

DIC refers to C existing as a species of the carbonate buffer system: carbon

dioxide, bicarbonate, carbonate or carbonic acid. The presence of DIC and light can

determine instantaneous rates of photosynthesis and can impact phytoplankton growth

and proliferation considerably. At an ecologically relevant pH, the concentration of

HCO –
3 is greater than CO2 (Graham et al., 2016).

CO2 + H2O −−−→ H2CO3 −−−⇀↽−−− HCO −
3 + H+ −−−⇀↽−−− CO 2−

3 + 2 H+ (1.1)
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Oxygenic photosynthesis is a key characteristic of almost all phytoplankton.

Phytoplankton use light dependent oxidation of water (Eq. 1.2) to produce energy to carry

out the light independent carbon fixation (Eq. 1.3) (Graham et al., 2016).

H2O + NADP+ + ADP + Pi −−−→ O2 + ATP + NADPH (1.2)

CO2 + NADPH + ATP + H+ −−−→ CH2O + NADP+ + H2O + ADP + Pi (1.3)

The light-dependent reaction (Eq. 1.2) harnesses solar energy through the photosystems

(containing light-harnessing pigment molecules such as chlorophyll and phycocyanin)

and oxidizes a H2O molecule to generate the reducing power needed to reduce CO2

by Rubisco enzyme. The light-independent reaction (Eq. 1.3) uses the reducing power

generated from the light-dependent reaction (NADPH and ATP) to generate carbohydrates

(CH2O). This is done by the enzyme Rubisco, which has Mg cofactors (shown in green

within Fig. 1.1) (Taylor et al., 2001).

Figure 1.1: Structure of Rubisco from Chlamydomonas reinhardtii. Mg cofactors are
green (Taylor et al., 2001)

Phytoplankton have carbon concentrating mechanisms (CCMs) to keep rates of
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photosynthesis high as when environmental concentrations of CO2 are low at commonly

found pH of freshwater systems. To increase intracellular concentrations of CO2,

phytoplankton store HCO –
3 by converting it to CO2 using the enzyme carbonic anhydrase

to catalyze the conversion (Graham et al., 2016; Falkowski and Raven, 2007). Carbonic

anhydrase is known to have metallic cofactors, most commonly Zn but Cd and Co can

also be found (Graham et al., 2016; Suzuki et al., 2011) (shown in light purple within Fig.

1.2).

Figure 1.2: Structure of carbonic anhydrase from Chlamydomonas reinhardtii (Suzuki
et al., 2011)

Another form in which C is found within a freshwater system is DOC or dissolved

organic matter (DOM). DOC and DOM are terms used to describe C-based molecules.

This can include small molecules such as free-floating amino acids or those as large as

humic acids, which have multiple large subunits as parts of their structures (Leenheer

and Croué, 2003). DOC that can be derived from terrestrial sources (allochthonous)

or be from in-lake processes (autochthonous)(Williamson et al., 1999). DOC can be

a source of nutrition for life living in the lake, but it can also be lost to sedimentation,

photodegradation or exported out of the lake through outflows downstream (Hanson et al.,

2011). DOM has the ability to bind to metals and introduce bioavailable micronutrients to

a lake (Creed et al., 2018).
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1.2.1.2 Phosphorus

Phosphorus (P) is also an essential building block element for all organisms. It

forms important biomolecules such as nucleic acids, phospholipids and adenosine

triphosphate (ATP) which acts as an important energy currency in cellular reactions

(see Eqs. 1.2 and 1.3 for examples) (Van Mooy et al., 2009; Knowles, 1980). As with

all organisms, P plays a key role in phytoplankton physiology and growth. In temperate

lakes, chlorophyll A (ChlA) is related to total P as a positive log-linear function (Filstrup

and Downing, 2017). The relationship of increased P-availability increase risk of

occurrence of cHABs is known (Downing et al., 2001). This directly ties P concentrations

to algal biomass, showing the importance of P as a nutrient in algal growth.

P is available to phytoplankton through internal and external sources. P is absorbed

by plants on the land through various mechanisms that involve uptake of free P from the

soil, which is rare. Dead biomass decomposed by bacteria can make more P available

to plants and also enhanced release of P from soil apatites by oxalic acid-producing

mycorrhizal fungi can make P more bioavailable for plants (Smil, 2000). P from the

terrestrial environment enters the aquatic system much like DOC, as dissolved organic

phosphate (DOP). Terrestrial inputs such as decaying biomass, or animal waste contain

significant amounts of P (Khan and Ansari, 2005).

Once in the lake, P can go through many forms and many phases. It can precipitate

out of the water column as an insoluble mineral or be absorbed by aquatic life and

incorporated in to the biomass (Orihel et al., 2017). Once the mineral settles, or the

biomass dies and settles, the P is part of the sediment. Anoxia at the sediment-water-

interface can cause particulate P to solubilize and diffuse into the water column and

become available for the biota once more. This is called "internal loading" of P (Orihel

et al., 2017; Khan and Ansari, 2005; Molot et al., 2014). Internal P loading can be done

through various other ways such as hydrolysis of organic matter, desorption of P from

molecules or minerals, dissociation of P from humic complexes or through resuspension

of solid P (Orihel et al., 2017).

During the 1970s, laws and policies such as the Canada-USA Great Lakes Water
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Quality Agreement were put into effect to curb the impacts of eutrophication due to high

P loading of the 1960s/early 1970s (Pick, 2016; Dolan and McGunagle, 2005). While

P loading has been at or below target levels, release of legacy P from the sediments still

poses a challenge for managers and policy makers to mitigate the occurrences of HABs

(Schindler, 2012).

1.2.1.3 Nitrogen

Nitrogen is used to make proteins, nucleic acids, photosynthetic pigments and

other molecules. In most cases, NO –
3 and NH +

4 are imported into the cell from the

environment, but some algal species have been known to import small amides (like

acetamide), amino acids and urea as well (Graham et al., 2016). Phytoplankton prefer to

use NH +
4 because it can be directly used as a substrate in the synthesis of biomolecules.

Phytoplankton can use the enzyme nitrate reductase, to convert NO –
3 back to

NO –
2 within the cell which then gets further reduced to NH +

4 using the enzyme nitrite

reductase. This process of nitrate assimilation is a Fe and Mo cofactor dependent process

(Graham et al., 2016; Ullrich, 1983). This ammonium is then used for biosynthesis for

necessary molecules.

Nitrogen Fixation Nitrogen makes up 78% of the atmosphere, but the N2 gas form is

unusable for many organisms (Wallace and Hobbs, 2006). There are three ways in which

this nitrogen gas can become bioavailable.

The first is by the energy of a lightning strike that would split N2 into two radical

and those individual N-radicals would then react with the O present in the air and

form NOx. This would further react to form water soluble HNO –
3 which is usable by

organisms (Hill et al., 1980; Tuck, 1976).

Some cyanobacteria can fix atmospheric N2 through an energy-intensive metabolic

process called diazotrophy. This gives these cyanobacteria a competitive edge over other

organisms in N-limited waters (Graham et al., 2016). The reaction of biological N-
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fixation is:

N2 + 16 ATP + 8 e− + 8 H+ −−−→ 2 NH3 + H2 + 16 ADP + 16 Pi (1.4)

The reaction is carried out by the nitrogenase enzyme (see Fig. 1.3). Nitrogenase

has two sets of dimeric proteins that join and form the tetramer and it contains metallic

cofactors of Fe and Mo, (shown in orange and teal in Fig. 1.3) (Schindelin et al., 1997).

The widespread use of synthetic nitrogenous fertilizers, produced via the Haber-Bosch

process resulted in record crop yields, but this reactive N is now one of the largest sources

of NO –
3 to aquatic systems (Sutton and Bleeker, 2013; Farrar et al., 2014; Braun, 2007).

Figure 1.3: Structure of nitrogenase from Azotobacter vinelandii (Schindelin et al., 1997)

Heterocyst Differentiation Nitrogenase is an oxygen-sensitive enzyme that is de-

activated by the presence of oxygen (Kangatharalingam et al., 1992). To control this,

filamentous cyanobacteria such as Anabaena and Aphanizomenon create specialized

cells called heterocysts to house the nitrogen fixation machinery separate from vegetative

cells which photosynthesize (Chaurasia and Apte, 2011). Heterocyst differentiation is a

complex process which can classified into four phases: induction, patterning, commitment

and morphogenesis (see Fig. 1.4) (Videau et al., 2016).

Heterocyst differentiation is triggered by nitrogen starvation and the resulting
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synthesis of the global nitrogen regulator, NtcA protein (Harish and Seth, 2020). In

addition to heterocyst differentiation, NtcA is needed to express genes used in ammonium

and nitrate assimilation. NtcA mutant strains are unable to grow without nitrate being

made available, and heterocyst differentiation is never initiated (Kumar et al., 2010).

NtcA activation in low nitrogen environment initiates the synthesis of HetR, a specific

master regulator for the production of hetercoysts (Harish and Seth, 2020).

Once HetR is activated, proteolysis within the protoheterocysts increase and so does

the expression of HetP and PatS (Wolk, 1996; Harish and Seth, 2020). HetR upregulates

the expression of its own inhibitor, PatS. PatS will move laterally along the filament to

inhibit HetR in cells that are to remain vegetative. Other pattern determining proteins in

the Pat-family are also involved in this process (Xu et al., 2020; Thiel, 2005).

HetR also upregulates the expression of HetP which upregulates the expression of

key genes in pathways that cause physiological changes that form the heterocysts. HetP

is thought to be the involved in the commitment of the cell to irreversibly turn it into a

heterocyst (Harish and Seth, 2020).

Heterocysts are very different from vegetative cells in physiology. During mor-

phogenisis, protoheterocysts undergo a variety of changes to make the make the cell

environment microoxic, in order to maximize nitrogenase efficiency. These changes

include the development of a characteristic multilayer envelope made of specialized

glycolipids (Hgl) and polysaccharaides (Hep) for hetercoysts, the creation of narrow

junctions to adjacent vegetative cells for nutrient transfer and the rearrangement of the

intracellular membrane system (Pernil and Schleiff, 2019; Kumar et al., 2010).

Respiration is enhanced to maintain low O2 levels. Reductants needed for nitroge-

nase and respiration are produced via photosynthesis in vegetative cells and transferred

to heterocysts (Wolk, 1996). The activity of oxygen-generating photosystem II (PSII) is

deactivated during morphogenisis as is the ability for the cell to divide (Zhao and Wolk,

2008). Nitrogenase, glutamine synthase and hydrogenase synthesis is promoted by NtcA

and occurs late in the differentiation process (18 - 24 hours) (Kumar et al., 2010).

Heterocysts have many metalloproteins within them, chief amongst them being
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Figure 1.4: Stages of heterocyst differentiation. This model shows a simplified view of
the some of the genetic and proteomic machinery involved in heterocyst formation. The
temporal divisions are shown on the side. Arrows indicate activation and T-bars represent
deactivation or inhibition. Not all regulatory relationships are shown for simplicity. Image
adapted from Zhao and Wolk (2008); Thiel (2005); Qiu (2018); Harish and Seth (2020)

nitrogenase which needs iron and molybdenum. Other metalloenzymes in the heterocysts

are known and need elements such as Fe, Cu, Mo, Ni, Mn, V, and Zn (Pernil and Schleiff,

2019).

1.2.2 Micronutrients

Micronutrients for phytoplankton are elements that are needed only in small

amounts. These include elements such as: iron (Fe), cobalt (Co), molybdenum (Mo), zinc
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Table 1.2: Micronutrients commonly needed by phytoplankton and some uses (Graham
et al., 2016)

Element Examples of Function or Location in Cell
Fe ferredoxin, cytochromes, nitrogenase, nitrate and nitrite reductase, catalase,

glutamate synthetase, superoxide dismutase cofactor
Co vitamin B12
Mo nitrate reductase, nitrogenase
Mn oxygen-evolving complex of photosystem II, superoxide dismutase
Zn carbonic anhydrase, alcohol dehydrogenase, glutamic dehydrogenase
Cu plastocyanin, cytochrome oxidase
V bromoperoxidase, some nitrogenases
Br or I halogenated compounds with antimicrobial, anti-herbivore, or allelopathic

functions

(Zn), copper (Cu), manganese (Mn), boron (B), vanadium (V), bromine (Br) or iodine (I)

(Graham et al., 2016). As noted with examples above, many of these micronutrients serve

as important cofactors within enzymes of phytoplankton (see Table 1.2). Without these

cofactors important reactions will not occur at the rate needed to sustain life.

Approximately 40% of over 1300 enzymes with known structures require a metal

cofactor. This ranges from 36% to 59% in the different classes of enzymes as shown

in Fig. 1.5 (Andreini et al., 2008). Enrichment of eutrophic lakes in New Zealand with

B, Co, Cu or Mo increased primary productivity in lakes by 40% (Downs et al., 2008)

suggesting the potential for micronutrient limitation in watersheds with low micronutrient

geology.

1.2.2.1 Iron

Fe is considered so important for cellular growth that some consider it to be a

macronutrient (Goldman, 1966). Fe, specifically Fe(II), is thought to be very important

to biological activity is because dissolved Fe(II) was more prevalent in the primordial

anoxic waters than it is today when cyanobacteria evolved (Wilhelm, 1995). This led to

the dependence on Fe for many biological activities like intracellular redox chemistry

(Graham et al., 2016). An abiotic chemical reaction network has been described that

is promoted by Fe(II) in which pyruvate and glyoxylate build 9 of the 11 intermediates
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Figure 1.5: Relative occurrences of metallic cofactors in six enzymatic classes. Number
of enzyme structures examined: Total = 1371, Ligases = 63, Isomerases = 71, Hydrolases
= 432, Transferases = 365 and Oxidoreductases = 310. Figure adapted from Andreini
et al. (2008)

of the Krebs cycle. This Fe(II) promoted reaction network resembles and overlaps with

Krebs and glyoxylate cycles and may represent an ancient, prebiotic precursor to the

reactions of the essential metabolic pathways (Muchowska et al., 2019). Fe is found as

the centre of metalloproteins that carry out the many redox reactions in a cell. These

proteins function in important electron transfer pathways such as cellular respiration and

photosynthesis which release and generate energy in cells. Other biological processes

that Fe is a part of are reduction of a substrate by adding H2, hydrogenation and nitrogen

fixation (see Fig. 1.6) (Kendall et al., 2012; Shi et al., 2007).

The model proposed by Molot et al. (2014, 2021) points to the evidence that

cyanobacteria have a higher requirement for Fe than their eukaryotic counterparts and

are also unable to transport Fe(III) through their cell member (Molot et al., 2010, 2014;

Kranzler et al., 2014). This suggests that while factors like macronutrient concentrations

might play a role in controlling the biomass in the bloom, the cyanobacterial dominance
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Figure 1.6: Schematic model of Fe-included metabolic pathways; photosynthesis,
nitrogen fixation, respiration and Mehler reaction pathways in Trichodesmium erythraeum.
Red arrows, electron transport; blue arrows, proton transport (Shi et al., 2007).

is determined by the availability of Fe(II), which in turn is controlled by the extent of

sediment anoxia, specifically sediment redox which controls internal Fe(II) loading

(Molot et al., 2014, 2021). Determining the sources of Fe(II) and how Fe is used by

phytoplankton is a challenge because in oxygenated water Fe(II) is quickly converted

to Fe(III), resulting in quick removal of Fe(II) unless the Fe(II) is chelated to DOM

(Verschoor and Molot, 2013).

1.2.2.2 Cobalt

Co is an important micronutrient for cyanobacteria. Its role as a cofactor in key

molecules such as vitamin B12 make it significant to cyanobacterial growth and function

(Goldman, 1966). More than 150 species of phytoplankton have an obligate need for

exogenous vitamin B12 which suggests that supply of cobalt-containing vitamin B12 could

play a role in determining which species out competes others when conditions are ripe for

a bloom to occur (Croft et al., 2006).

Co behaves much like Fe in the water column, both exist in very low concentrations
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in oxic waters and have similar redox states (Co (II) or Co (III)) with the Co (III) state

being insoluble. Co has been known to be able to be replaced or replace other metallic

cofactors such as, Zn and Cd, when nutrients are limited. This complicating factor makes

studying Co biogeochemistry very difficult (Saito et al., 2004). It has been found that

increasing Co concentrations led to an increase in photosynthetic activity and increased

rates of N-fixation in cyanobacteria (Goldman, 1966; Granéli and Haraldsson, 1993;

Holm-Hansen et al., 1954; Iswaran and Rao, 1964; Hallsworth et al., 1960; Kelly et al.,

2021). These studies show ample evidence that Co is important for cyanobacterial

growth, but there is no clear picture of the mechanism yet.

1.3 Cell Culture

Cell culture is a common technique for understanding how organisms behave while

still being able to keep controls on the conditions of the experiment. Culture studies are

advantageous in terms of costs, ease of control and manipulation and volumes of media

required (Andersen, 2005). The significant disadvantage to using cell cultures is that

organisms may not behave the same way they would in the environment. In addition,

changes in cell morphology or changes in function have been observed (de Figueiredo

et al., 2011). However, cell cultures are an important step in understanding the complex

phenomena observed in the environment because of the control they offer.

The objectives of this thesis were met by studying cultures of phytoplankton

obtained from a variety of different sources. Some cultures were purchased from

the Canadian Phycological Culture Centre (CPCC) (Waterloo, ON), Pasteur Culture

Collection of Cyanobacteria (PCC) (France), Sammlung von Algenkulturen at the

University of Göttingen (SAG) (Germany) and the Microbial Culture Collection at the

National Institute for Environmental Studies (NIES) (Japan). Some cultures were lake

water isolates from IISD Experimental Lake Area (ELA) lakes and some isolates from

other lakes were provided by Dr. Arthur Zastepa at Environment and Climate Change

Canada (ECCC) (Burlington, ON) (see Table 1.3).
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Table 1.3: Species and characteristics of phytoplankton studied

Organism Type N-Fixer? Source
Anabaena flos-aqaue Cyanobacteria N-Fixing CPCC 67

Aphanizomenon flos-aqaue Cyanobacteria N-Fixing NIES 81
Coelastrum proboscideum Eukaryotic Algae SAG 217-2

Chlorella vulgaris Eukaryotic Algae CPCC 90
Chlamydomonas reinhardtii Eukaryotic Algae CPCC 243
Microcystis aeruginosa Cyanobacteria PCC 7005

Dolichospermum lemmermanii Cyanobacteria N-Fixing Lake Erie (ECCC)
Aphanizomenon skuja Cyanobacteria N-Fixing Lake 227 (ECCC)

Dictyosphaerium pulchellum Eukaryotic Algae Lake 227 (ELA)

1.4 Growth Kinetics

Every population has different characteristics, for example how mobile it can be or

how it occupies the space in which it is located. The growth of a population, in numbers

and in density, is a way to characterize different populations. Phytoplankton, along

with many organisms as a logistic growth curve. Growth rates are essential to studying

different population dynamics. Growth rate is defined as the net rate of change in biomass

(see Eq. 1.5) (Graham et al., 2016).

A# =
3#

3C
(1.5)

dN/dt represent the change in biomass over a unit of time. This represents the population

growth rate, or gross growth rate. This change is equal to r (net growth rate) multiplied by

the biomass, N. We can further isolate r by dividing both sides of Eq. 1.5 by N.

A =

3#
3C

#
(1.6)

A = ` − _ (1.7)

where ` represents the gross growth rate and _ represents the death rate. If the differential

equation in Eq. 1.5 is solved, it results in a exponential equation.

# = #>4
AC (1.8)
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According to Eq. 1.8, a population will grow indefinitely, which is not realistic. Therefore

an upper limit called the "carrying capacity," K which is equal to max N, was introduced,

thus making the growth model have an end.

3#

3C
= A#

( − #)
 

(1.9)

In this equation K has the same units as N (biomass/volume).

1.4.1 Growth and Nutrient Uptake

The Monod growth model considers that population growth is a function of nutrient

concentration and follows similarly to the Michaelis-Menten equation (Graham et al.,

2016).

` = `<0G
(

 ( + (
(1.10)

In this equation, S is the concentration of the substrate of interest, ` is the growth rate,

`<0G is maximum rate of reproduction and  ( is the half-saturation constant for growth as

a function of S (Monod, 1950; Owens and Legan, 1987). The initial slope of the Monod

curve is given by `<0G/ ( which is a relative indicator of competitive ability at low

substrate concentration (Molot and Brown, 1986).

The minimal concentration of substrate needed to commence all growth is defined

as the "nutrient threshold concentration," below this concentration, no growth will occur

and in a Monod growth model, it may look like negative growth or no growth (see Fig.

1.7) (Jiang et al., 2019). The Monod equation (Eq. 1.10), can be modified to include the

threshold concentration (SThreshold) (see Eq. 1.11) (Kilham, 1975; Jiang et al., 2019).

` = `<0G
( − ()ℎA4Bℎ>;3

 ( + ( − ()ℎA4Bℎ>;3
(1.11)
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Figure 1.7: Indication of threshold concentration on Monod growth curve (Jiang et al.,
2019)

1.5 Stable Isotopes

Stable isotopes are a form of an element which have a different atomic mass.

They exist in nature in more numbers than radioactive isotopes. For example, carbon

has two stable isotopes 12C and 13C and nitrogen has 14N and 15N. Likewise, iron has

four stable isotopes: 54Fe (5.85% abundant), 56Fe (91.75% abundant), 57Fe (2.12%

abundant) and 58Fe (0.28% abundant) (Sheftel et al., 2018). The X56Fe is the deviation

of the 56Fe/54Fe ratio present in a sample from a standard (IRMM-014) and is reported

as X in units per mil (h) (Coplen, 2011). Isotopic fractionation factors (X) are defined

as the ratio of isotopic composition of the same element between substances (Coplen,

2011). They are useful in understanding how different processes change the isotopic

composition of a sample. Fractionation factors for common processes are known and

by observing X in different pools, a better idea of what processes are occurring can be

gleaned. Processes such as nitrogen fixation by cyanobacterial cultures have a been

shown to have a fractionation factor of 2 − 3h of X15N while nitrate utilization has

been shown to have a fractionation factor of 4 − 19h of X15N (Bauersachs et al., 2009).

Fractionation processes of other processes are known, however, the fractionation of Fe

during phytoplankton uptake of Fe is unknown.

X56Fe can be used as a tool to track sources and cycling of Fe in freshwater systems.
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Processes, both biotic and abiotic, can fractionate Fe isotopes and isotopic fractionation

have been associated with redox changes (Johnson et al., 2008; Johnson and Beard,

2006; Wu et al., 2011). Fe isotopes have been used to study biogeochemical processes

in oceans, rivers and groundwater (Fehr et al., 2008; Bergquist and Boyle, 2006; Teutsch

et al., 2005). Not many studies have been done on freshwater systems, and most of them

have been in environments containing high Fe concentrations, which are rare (Schiff

et al., 2017). Thus, using stable isotopes of Fe to study lake Fe-cycling and its impacts

on cyanobacterial dominance is novel.

1.6 Lake 227

This research is part of a larger project to understand iron cycling in Lake 227,

located at ELA. ELA is a natural laboratory of 58 lakes and their watersheds located in

northwestern Ontario near Kenora, ON. Lake 227 is a purposely eutrophied lake and

the data set of different chemical and biological parameters of Lake 227 spans 50 years.

Since 1969, N (as nitrate) and P (as phosphate) have been added to Lake 227 at different

ratios during the ice-free season. From 1969 to 1974 the N:P ratio was 27:1 (a P-limited

system), from 1975 to 1989 the ratio was lowered to 9:1 (a somewhat N-limited system)

and from 1990 to present, only P has been added (a N-limited system) (Findlay et al.,

1994).

Throughout the years, phytoplankton species have been enumerated and tracked.

With varying nutrient input regimes, the composition of the phytoplankton too has

changed (see Fig 1.8). At present, the seasonal pattern of phytoplankton is an early season

N-fixing bloom of Aphanizomenon skuja followed by a later season bloom of eukaryotic

chlorophytes after the crash of the Aphanizomenon bloom (Schindler et al., 2008).

Based on previous work, X56Fe in Lake 227 has been found to span the known range

of X56Fe, with significant differences in different parts and phases of the lake (see Fig 1.9)

(Schiff et al., 2017). Given this data set and history of experimentation and understanding

of the system, Lake 227 is an ideal model system for this work.
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Figure 1.8: Epilimnetic phytoplankton community composition of Lake 227 from 1970
to 2018 adapted from Schindler et al. (2008) and extended with data provided from IISD-
ELA. Cyanophyte refers to non N-fixing cyanobacterial species.

1.7 Objectives

The objectives of this thesis are:

1. To determine the Fe threshold concentrations of different taxa of phytoplank-

ton. This will characterize the growth kinetics of different phytoplankton

taxa at low Fe concentrations. Differences in growth kinetics and threshold

concentrations can inform on which species might become dominant, even in

low Fe environments and if Fe requirements change in N-fixing conditions.

2. To determine a new model of determining the isotopic composition and

fractionation factors of newly accumulated biomass between two sampling
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Figure 1.9: Natural abundance of Fe isotopes in Lake 227

events from the bulk sample. This will aim to help understand how isotopic

composition and fractionation differ during growth of phytoplankton and make

relationships and correlations to better understand the growth dynamics of

phytoplankton in the environment.

3. To determine if cyanobacterial growth can be prevented in culture by adding

a Fe(II) specific chelator. This will help inform on possible Fe(II) removal

strategies for freshwater systems to mitigate cHABs.

4. To determine the relative strength of ferrozine (FZ) as a potential Fe chelator

to ethylenediaminetetraacetic acid (EDTA) or citrate. This will help determine

if the formation of the Fe:FZ complex can be impacted by EDTA or citrate

under certain conditions.

5. to determine if Co plays a role in heterocyst formation of N-fixing cyanobac-

teria. This will fill a gap in the understanding of the role of Co as a cofactor in

cyanobacterial cells.

6. To propose an alternative proxy to measuring algal cell culture growth to

absorbance (abs) using a smartphone app and items found easily.
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Chapter 2

Threshold Concentrations and

Transport Affinity of Iron By Various

Freshwater Phytoplankton

Abstract

Harmful algal blooms are an ever-increasing problem in many waterways and

waterbodies in Canada and around the world. Many policies have focused on lowering

phosphorus inputs to waters to curb the growth of algal blooms which cause damages to

industries such as fishing and tourism. However, even with decreasing phosphorus inputs

into rivers and lakes, the reported occurrences of harmful algal blooms are increasing.

Are there other nutrients in play along with phosphorus in the growth and proliferation

of algal blooms? Here, we quantify the ability of seven different phytoplankton taxa

to grow at low initial total dissolved Fe concentrations and determined that N-fixing

cyanobacteria in N-replete conditions have the lowest iron threshold (below which

growth ceases) at 76 ± 2pM, green algae have a mean iron threshold of 245 ± 5pM,

the non-fixer Microcystis aeruginosa has a threshold of 663 ± 17pM, and N-fixing

cyanobacteria that are grown without nitrate have a mean iron threshold of 736 ± 17pM.

Furthermore, growth rates at low Fe varied almost 7-fold. These results show that low
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iron concentrations can potentially play a role in determining which species is dominant

as we did not find that the Fe) patterns hold the same at low Fe concentrations. At low Fe,

the non-fixer Microcystis aeruginosa had the highest initial slope in a plot of uptake vs Fe

concentration, followed by N-fixing cyanobacteria in N-replete conditions, then N-fixing

cyanobacteria that are grown without nitrate and finally eukaryotic algae. These initial

slopes indicate relative competitiveness of these species at low Fe concentrations, if their

threshold concentrations are exceeded.

2.1 Introduction

Harmful algal blooms are an increasing problem in freshwaters over the world

(Huisman et al., 2018). Phytoplankton are diverse organisms. They include a variety of

different genera and phyla and are found in almost any environment (Simon et al., 2009;

Padisák et al., 2016). HABs can make aquatic toxins, foul taste and odour compounds

and millions of dollars in economic damages (Downing et al., 2001; Wolf et al., 2017).

Developing a management plan and targets of nutrient loading is essential for restoring

systems. We can make realistic and attainable management plans if we understand the

relationship between increasing nutrient concentrations and a species’ growth. Previous

work has focused on the limitation of available N and P to stop the formation of algal

blooms (Schindler, 1974, 1975), however the problem of HABs still persists and is

growing. We have increasingly found HABs in oligotrophic lakes, bays and reservoirs

(Verschoor et al., 2017; Winter et al., 2011).

Iron is an important micronutrient for the growth and proliferation of phytoplankton.

Fe is used in major biochemical pathways within the cell such as cellular respiration,

photosynthesis and N-fixation (Shi et al., 2007). Abiotic reaction networks that represent

an ancient prebiotic precursor to life is promoted by Fe(II), indicating the importance of

Fe in chemistry which is necessary for life (Muchowska et al., 2019). Fe is found as a

co-factor in approximately 30% of known enzymes used in redox reactions in the cell

(Andreini et al., 2008). We also know that cyanobacteria have a higher requirement for
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Fe and that they are very depended on transport of Fe(II) (Molot et al., 2014, 2021).

However, we do not yet know the threshold concentrations of Fe needed for the growth

of phytoplankton. Previous work with N and P have demonstrated that using the Monod

model to find threshold concentrations could lead to realistic management goals (Xu et al.,

2015; Jiang et al., 2019).

Previous studies have shown that cyanobacteria need more iron than their eukaryotic

counterparts yet we have not quantified the iron thresholds needed to begin growing in

cell cultures (Sunda and Huntsman, 2015; Molot et al., 2014). Kilham (1975) and Jiang

et al. (2019) have used similar equations as Eq. 2.1 to find the nutrient thresholds for Si,

N and P for algal growth and Braddock et al. (1984) have found Fe growth thresholds for

Thiobacillus ferrooxidans.

The relationship between nutrient concentration and specific growth rate of a species

(`) is non-linear. Establishing nutrient thresholds, the concentration of nutrient below

which growth does not occur, can be an effective way for mitigating and preventing

cHABs formation (Xu et al., 2015). The conventional method of establishing the

threshold concentrations is using the Monod model (Monod, 1950; Williams et al., 2016;

Xu et al., 2015). The Monod model is used to characterize the relationship between the

growth rate of a population and the concentration of a nutrient being studied (Monod,

1950). This model can be modified to find the nutrient thresholds for a species as

described in Eq. 2.1 (Kilham, 1975; Jiang et al., 2019).

` = `<0G
�>=2�4 − �4)

 �4 + �>=2�4 − �4)
(2.1)

Where ` is the specific growth rate, `<0G is the maximum specific growth rate of the

species, �>=2�4 is the concentration of Fe, �4) is the threshold concentration of Fe and

 �4 + �4) is the half-velocity constant which is the concentration of Fe when the ` is half

of `<0G . Eq. 2.1 is the same is Eq. 1.11 but the variables are changed to better describe

the experiment. The initial slope, `<0G/( �4-�4) ) (modified from Molot and Brown

(1986)), gives the relative growth ability at low substrate rates. This slope is an important

predictor of competition outcomes of various taxa at low concentrations of a certain
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nutrient where a higher initial slope indicates a higher growth rate at low concentrations

(Molot and Brown, 1986).

The objective of this paper is to quantify the threshold concentrations of Fe for

seven common temperate freshwater phyto- plankton taxa to gain insight into why certain

taxa become dominant, even in low Fe conditions and to use these values to make better

management decisions for impaired waters.

2.2 Materials and Methods

2.2.1 Experimental Organisms and Growth Conditions

We obtained algal cultures of Anabaena flos-aqaue (CPCC 67), Aphanizomenon

skuja (Lake 227), Microcystis aeruginosa (PCC 7005), Chlamydomonas reinhardtii

(CPCC 243) and Chlorella vulgaris (CPCC 90) from various sources as listed in Table

1.3. These phytoplankton were grown at 20◦C on a 12:12h light/dark cycle at 100

`<>;/<2/s in either Blue-Green Medium Num. 11 (BG-11) for the cyanobacteria, or

Bold’s Basal Medium (modified) (BBM), for the chlorophytes, containing no Fe and

an equivalent amount of Co as CoSO4 instead of Co(NO3)2 (Rippka et al., 1979; Stein

et al., 1973). Anabaena flos-aqaue and Aphanizomenon skuja were also grown in Blue-

Green Medium Num. 11 (no NaNO3) (BG-110) and are referred to below as "N-fixing" to

distinguish those cultures from those with NaNO3. A 12:12h light cycle was selected to

mimic the circadian cycle of cyanobacteria and to ensure that N-fixation rates remained

constant throughout the experiment (Chen et al., 1998).

All species were grown in 1nM Fe as FeCl3 for three transfers before 1mL of

exponentially growing cells from 1nM Fe starter culture was used to inoculate metal-free

tubes of BG-11, BG-110 or BBM containing varying concentrations of Fe. To ensure

that there was no trace metal contamination, all reagents used were trace metal grade,

all flasks and bottles were soaked in 10% HCl over 48 hours and then in Milli-Q water

for another 24 hours. Only acid-washed clear pipette tips were used throughout this

experiment. All media, glassware and supplies such as pipette tips were UV sterilized
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under a Laminar flow hood for 15 minutes as autoclave steam can introduce trace metal

contamination (Keller et al., 1988).

2.2.2 Determining Iron Concentrations

After all growths were completed, the samples were digested using a combination

of trace-metal grade HNO3 and HCl as described by the Environmental Protection

Agency (1983). Due to the use of very low concentrations of Fe, Fe concentrations were

determined after the growth. All samples contained varying concentrations of Fe and thus

there were no replicates at the same Fe concentration. To avoid external Fe contamination,

all digestions were done inside a fume hood and samples were heated on a heating block

using only metal-free plastic tubes. Total Fe concentration in each digested sample was

measured using graphite furnace atomic absorption spectrometry (GF-AAS), detection

limit of 0.06`g/L (Perkin-Elmer Pinaacle 900T AAS).

2.2.3 Calculations and Equations

Absorbance at 750nm (Absorbance at 750nm (A750)) was used to measure growth

of samples. At 750nm, interference from photosynthetic pigments is minimal and can be

used as a consistent proxy for cellular growth (Chioccioli et al., 2014). Cell numbers were

estimated by counting cells with a hemocytometer and generating standard curves for each

organism to correlate cell number to A750 (see Appendix A).

A750 was plotted against time and the R package growthcurver(version 0.3.0) was

used to find the growth rate of each sample (Sprouffske and Wagner, 2016). The package

growthcurver finds the best fit of a given dataset to the logistic growth equation (Eq 2.2).

#C =
 

1 + (  −#0
#0
)4−AC

(2.2)

where #C is the A750 at a given time, K is the carrying capacity, #0 is the starting

A750, r is the growth rate (`) and t is time. Eq. 2.2 is the solution of Eq 1.9.

After the ` are found, the data were fitted to the modified Monod equation (Eq.
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2.1) using the nls function in R with bootstrapping (number of iterations = 10,000)

(McClanahan and Humphries, 2012). nls is used to solve non-linear regressions using

the sum of least squares. This function was used to solve for `<0G , �4) and  �4. Initials

slopes were then calculated using `<0G/( �4-�4) ).

2.3 Results

Figure 2.1: Growth curves of the phytoplankton species at different concentrations of Fe.
Species labelled with (-N) are grown without inorganic N in the media and are N-fixing.
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Growth curves of phytoplankton follow a S-shaped curve (Fig. 2.1). We calculated

the mean and 95% confidence interval and used the mean bootstrap predictions to

calculate the model curve for the Monod plots shown in Fig. 2.2. Low root mean squared

errors (RMSE) shown in Fig. 2.2 indicate that the parameters estimated are a good fit for

the data.

Figure 2.2: Monod plots of the different species with the model line drawn. Horizontal
dashed lines indicate `<0G and vertical dashed lines indicate  �4. RMSE between
experimental and modelled ` are shown. Species labelled with (-N) are grown without
inorganic N in the media and are N-fixing.

We compared the parameters estimated using two-way pairwise ANOVAs com-

paring the iron thresholds, half-velocity constants and maximal growth rates (see Tables
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Table 2.1: Output of two-way ANOVA of Terms by Species

term df sumsq meansq statistic p.value
Term 2 10549 5275 26700 < 2 × 10−16

Species 6 12092 2015 10201 < 2 × 10−16

Term:Species 12 6799 567 2868 < 2 × 10−16

Residuals 209979 41482 0

2.1 and 2.3). The results of the Tukey’s HSD for the ANOVA used to test for different

species and different N conditions for N-fixing species are statistically different are shown

in Fig. 2.3. We averaged the estimates for �4) ,  �4 and `<0G for each species type and

did another two-way pair-wise ANOVA to see if different types of alga taxa have different

iron thresholds. The results of this are shown in Tables 2.3 and 2.4 and Fig. 2.4.

The results in Table 2.4 and Fig. 2.4 show that all three variables have means that

are statistically different from one another. The `<0G for the three different classes are

similar (approximate ` of 0.194) meaning that the phytoplankton will have a similar

maximal growth rate, given enough nutrients.

The  �4 found in this study for the species and species type are statistically

different, where N-fixing, N-replete cyanobacteria have the lowest  �4 at 0.341nM, 95%

CI[0.339, 0.343], followed by eukaryotic algae at 0.745nM, 95% CI[0.741, 0.749], non-

N-fixing, N-replete cyanobacteria (Microcystis aeruginosa) have a mean  �4 of 0.802nM,

95% CI[0.795, 0.808] and finally the N-fixing cyanobacteria without dissolved inorganic

nitrogen (DIN) at 1.093nM, 95% CI[1.085, 1.101].

We found the relative growth ability at low concentrations of Fe by the initial slope

of the Monod curve, `<0G/( �4-�4) ) shown for each species and species type in Tables

2.5 (Molot and Brown, 1986). A higher slope indicates a competitive advantage for the

species or species type at lower concentrations of Fe. At an initial concentration of 1nM

Fe, Chlorella vulgaris, the eukaryotic algae, has the lowest initial slope at 0.332, while

the N-replete cyanobacteria, Anabaena flos-aqaue and Microcystis aeruginosa have initial

slopes greater than 1 indicating that these cyanobacteria species are highly competitive

under culture conditions.
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Table 2.2: Groups of the Post-Hoc of ANOVA analysis using Tukey’s-HSD for
the two-way Species ANOVA (Table 2.1). The N-fixers, Anabaena flos-aquae and
Aphanizomenon skuja, were grown with DIN (N-replete) and without DIN. Groups
indicate results of Tukey’s-HSD only within each parameter at p < 0.05.

Species Species Term ANOVA Mean 95% 5%
Type Grouping Value CI CI

Anabaena flos-aquae Cyanobacteria �4) f 0.021 0.022 0.021
Anabaena flos-aquae (N-Fixing) Cyanobacteria �4) d 0.268 0.274 0.261
Aphanizomenon skuja Cyanobacteria �4) e 0.131 0.134 0.128
Aphanizomenon skuja (N-Fixing) Cyanobacteria �4) a 1.204 1.235 1.174
Chlamydomonas reinhardtii Chlorophyte �4) c 0.347 0.356 0.339
Chlorella vulgaris Chlorophyte �4) e 0.142 0.146 0.139
Microcystis aeruginosa Cyanobacteria �4) b 0.663 0.68 0.647
Anabaena flos-aquae Cyanobacteria  �4 f 0.222 0.224 0.221
Anabaena flos-aquae (N-Fixing) Cyanobacteria  �4 d 0.726 0.731 0.721
Aphanizomenon skuja Cyanobacteria  �4 e 0.46 0.463 0.457
Aphanizomenon skuja (N-Fixing) Cyanobacteria  �4 a 1.461 1.472 1.449
Chlamydomonas reinhardtii Chlorophyte  �4 c 0.741 0.747 0.736
Chlorella vulgaris Chlorophyte  �4 c 0.748 0.755 0.742
Microcystis aeruginosa Cyanobacteria  �4 b 0.802 0.808 0.795
Anabaena flos-aquae Cyanobacteria `<0G a 0.209 0.209 0.209
Anabaena flos-aquae (N-Fixing) Cyanobacteria `<0G e 0.185 0.186 0.185
Aphanizomenon skuja Cyanobacteria `<0G g 0.181 0.181 0.181
Aphanizomenon skuja (N-Fixing) Cyanobacteria `<0G b 0.203 0.203 0.202
Chlamydomonas reinhardtii Chlorophyte `<0G d 0.194 0.194 0.194
Chlorella vulgaris Chlorophyte `<0G c 0.201 0.202 0.201
Microcystis aeruginosa Cyanobacteria `<0G f 0.184 0.184 0.183

2.4 Discussion

The Monod model is a steady-state model derived from the Michaelis-Menten

model of enzyme kinetics (Healey, 1980). In enzymology, affinity by an enzyme for a

substrate has been indicated by the coefficient  < (analogous to  �4 in the equation),

where the lower the  <, the higher the affinity. However, this is incorrect when applying

this model to organisms. Competitive ability between species is best indicated by the

initial slope of the Monod curves for concentrations above threshold values. The  �4

values in the Monod model are empirical and will differ between species and reflect the

ambient conditions (Walker, 1998; Healey, 1980). The affinity for uptake of a nutrient

by an organism is dependent on many factors such as genetics, cell size, and uptake
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Figure 2.3: �4) ,  �4 and `<0G for each species, colour indicates species type. Lettered
groupings indicate statistically different means as shown by the pair-wise two-way
ANOVA (results shown in Tables 2.1 and 2.2) and are ordered from highest to lowest
mean-value. Error bars indicate 95% confidence intervals. Species labelled with (-N) are
grown without inorganic N in the media and are N-fixing.

mechanisms (Sunda and Huntsman, 2015; Healey, 1980) and whether uptake rate (the

numerator) is expressed per unit volume or cell surface area. In this study, the  �4 also

appears to be affect N availability, specifically when comparing N-replete and N-fixing

cyanobacteria. If we treat the half-saturation constant as an analogy for affinity for iron,

then we should observe similar  �4 + �4) values within a species but this did not occur.

We can better indicate affinity by the initial slope of the Monod curve. When

concentration of Fe is very low, a relatively higher slope of the Monod curve can indicate

competitiveness because it reflects a higher growth rate at a given substrate concentration.
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Table 2.3: Output of two-way ANOVA of Terms by Species type

term df sumsq meansq statistic p.value
Term 2 10549 5275 22545 < 2 × 10−16

Species Type 3 7109 2370 10128 < 2 × 10−16

Term:Species Type 6 4136 689 2947 < 2 × 10−16

Residuals 209988 49129 0.23

Table 2.4: Groups of the Post-Hoc of ANOVA analysis using Tukey’s-HSD for the two-
way Species Type ANOVA (Table 2.3). Anabaena flos-aquae and Aphanizomenon skuja
have been pooled dependent on the availability of DIN in culture and Chlorella vulgaris
and Chlamydomonas reinhardtii were pooled. Letters indicate statistically different means
within each parameter at p < 0.05.

Species Type Term ANOVA Mean 95% 5%
Type Grouping Value CI CI
Cyanobacteria �4) b 0.663 0.680 0.647
Cyanobacteria (N Rep. N-Fixer) �4) d 0.076 0.078 0.074
Cyanobacteria (N-Fixing) �4) a 0.736 0.753 0.719
Chlorophyte �4) c 0.245 0.250 0.240
Cyanobacteria  �4 b 0.802 0.808 0.795
Cyanobacteria (N Rep. N-Fixer)  �4 d 0.341 0.343 0.339
Cyanobacteria (N-Fixing)  �4 a 1.093 1.101 1.085
Chlorophyte  �4 b 0.745 0.749 0.741
Cyanobacteria `<0G d 0.184 0.184 0.183
Cyanobacteria (N Rep. N-Fixer) `<0G b 0.195 0.195 0.195
Cyanobacteria (N-Fixing) `<0G c 0.194 0.194 0.194
Chlorophyte `<0G a 0.198 0.198 0.198

A comparatively higher initial slope, the better the taxa will do at lower concentrations of

the nutrient (Molot and Brown, 1986; Healey, 1980).

This study offers an opportunity to compare iron threshold of growth among a

variety of different types of phytoplankton taxa. The iron thresholds for the four species

types are different where N-fixing cyanobacteria in N-replete conditions (Anabaena flos-

aquae and Aphanizomenon skuja) have the lowest iron threshold with a mean threshold

of 0.076nM, 95% CI[0.074, 0.076], followed by eukaryotic algae (Chlamydomonas

reinhardtii and Chlorella vulgaris) with a mean iron threshold of 0.245nM, 95%

CI[0.240, 0.250], followed by non-N-fixing cyanobacteria (Microcystis aeruginosa) with

a threshold of 0.663nM, 95% CI[0.647, 0.680] and the N-fixing cyanobacteria (Anabaena

flos-aquae and Aphanizomenon skuja) with have an iron threshold at 0.736nM, 95%
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Figure 2.4: Average estimates of the variables; �4) ,  �4 and `<0G for each species type,
colour indicates species type. Lettered groupings indicate statistically different means as
shown by the pair-wise two-way ANOVA (results shown in Tables 2.3 and 2.4) and are
ordered from highest to lowest mean-value. Error bars indicate 95% confidence intervals.
Species labelled with (-N) are grown without inorganic N in the media and are N-fixing.

CI[0.719, 0.753].

N-fixing cyanobacteria have a higher Fe threshold than their N-replete counterparts

(Fig. 2.4). When diazotrophic species switch to N-fixation, their the �4) increases almost

an order of magnitude. This is in line with other studies that show that iron quotients of

N-fixing cyanobacteria are higher than those of their N-replete counterparts (Molot et al.,

2014). Nitrogenase increases demand for Fe but cells do not lower their �4) to meet this

extra demand. Rather, they increase it. This could possibly be because lowering the �4)

may be too energy intensive at a time when energy is needed to fix atmospheric nitrogen.
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Table 2.5: Relative growth abilities of phytoplankton taxa and species types at low
concentrations of Fe found by the initial slope of the Monod curve. ± indicate propagated
95% confidence intervals.

Species `<0G/( �4-�4) )
Anabaena flos-aquae 1.040 ± 0.008
Anabaena flos-aquae (N-Fixing) 0.404 ± 0.007
Aphanizomenon skuja 0.550 ± 0.007
Aphanizomenon skuja (N-Fixing) 0.790 ± 0.085
Chlamydomonas reinhardtii 0.492 ± 0.012
Chlorella vulgaris 0.332 ± 0.004
Microcystis aeruginosa 1.324 ± 0.172
Species Type `<0G/( �4-�4) )
Cyanobacteria 1.324 ± 0.172
Cyanobacteria (N Rep. N-Fixer) 0.736 ± 0.008
Cyanobacteria (N-Fixing) 0.543 ± 0.026
Chlorophyte 0.396 ± 0.005

Each nitrogenase complex has 32 to 36 Fe atoms as metallic co-factors and this apparent

increase in iron threshold could be evidence of increased use of nitrogenase by the

cyanobacteria (see fig 1.3) (Schindelin et al., 1997; Graham et al., 2016). However, the

nutrient thresholds determined in this study are also dependent on the other conditions.

Factors like temperature and light are known to impact nutrient thresholds (Yuan et al.,

2007; Hill et al., 2009) but these factors were considered and kept constant during this

experiment.

Affinity for iron at low concentrations may play an important role in the ability

of phytoplankton species to be competitive. Microcystis aeruginosa has the highest

initial slope but will out-compete Anabaena flos-aqaue only when the concentration of

Fe is higher than 0.6nM which is the iron threshold for Microcystis aeruginosa. The

chlorophyte Chlorella vulgaris, has a low iron threshold at 0.142nM, however, because

the initial slope is lower it will not be competitive at low concentrations of iron. Outcome

of competition between species at low Fe concentrations will depend on their species-

specific threshold and affinity values.

Threshold concentrations for N and P have been used to set targets for nutrient

loading in Lake Taihu, China (Yin et al., 1992; Xu et al., 2015; Jiang et al., 2019).

Threshold concentrations can help inform on determining nutrient loading standards for
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management of HABs (Hill et al., 2009). Additionally, in the case of Fe, these nutrient

thresholds combined with the initial slopes can help us understand what is involved in

determining dominance by one species over another at different concentrations of Fe.

2.5 Conclusion

In this study we quantified the Fe thresholds for several common freshwater

phytoplankton using a modified Monod equation and used the initial slopes as measures

of relative competitiveness in low Fe environments to better understand how Fe impact

growth dynamics of different potentially bloom forming species.

The data presented in this study show that N fixing cyanobacteria in N-replete

conditions have the lowest iron threshold, followed by chlorophytes, then Microcystis

aeruginosa and finally, N-fixing cyanobacteria. We also show thatMicrocystis aeruginosa

has the highest initial slope, followed by N-fixing cyanobacteria in N-replete conditions,

then N-fixing cyanobacteria and finally chlorophytes, showing the relative competitive-

ness of these species types at low Fe concentrations.

We confirmed previous work which showed that N-fixation increases iron demand

and we show that the increased demand does not decrease the Fe) , but increases it. We

also quantify and show that while cyanobacteria have a high Fe) than eukaryotic algae,

the initial slopes indicate that in low Fe environments, the cyanobacteria will outcompete

the eukaryotic algae.

These findings reinforce the importance of Fe in harmful algal bloom growth and

development and mitigation strategies should be designed to limit both Fe and P below

the threshold concentrations for phytoplankton. Further research into these technologies is

required.
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Chapter 3

Using a Mixing-Model to Estimate

Phytoplankton Growth Rates Using

Carbon and Nitrogen Stable Isotope

Fractionation

Abstract

Lakes, bays and reservoirs are important sources of drinking water, recreation

and economic activity. Eutrophication has led to the increased and persistent presence

of harmful algal blooms (HABs) that can potentially cause great damage to water

quality. Understanding the biogeochemical processes that occur in freshwater is key to

understanding the drivers to forming HABs. The use of stable isotopes is a common

strategy to understand the movement of elements and growth rates of species through an

aquatic system. However, measurements of stable isotopic composition of particulate

matter report only one value for the bulk sample and distinguishing between old and

newly accumulated biomass values in a bulk sample has been challenging. In this study,

we propose the use of a mixing-model to estimate the X13C and the X15N of the newly

accumulated phytoplankton biomass between two sampling events in culture. We show
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that the difference in the isotopic compositions of the new particulate organic matter

(POM) and the measured bulk POM can be as large as 15h. Using this model, we show

that the fractionation factors, the discrimination between the isotopes (U and n) change

during the growth of phytoplankton cultures and we used this model to correlate the

growth rate of the phytoplankton with the changing fractionation factors and found good

correlations (R2 > 0.7) between species grown in N-replete conditions and the n13C. This

technique and model can be used with environmental samples to better understand the

biogeochemical processes that contribute to the growth of new algal biomass and to better

understand the growth of the species in the environment.

3.1 Introduction

Macronutrients such as nitrogen and carbon are essential for growth of any

organism. C and N are a part of almost all the major molecules involved in biology

from carbohydrates, to proteins, to DNA and RNA (Graham et al., 2016). Carbon and

nitrogen exist in freshwater in the dissolved phase, as dissolved inorganic carbon (DIC),

dissolved organic carbon (DOC) or dissolved organic nitrogen (??), or in the particulate

phase as particulate organic carbon (POC) or particulate organic nitrogen (particulate

organic nitrogen (PON)). Most of the biomass is found in the particulate phase dependent

on the filter size (Kurihara et al., 2018; Einola et al., 2011). DIC and DIN are used by

phytoplankton for cellular function and growth (Graham et al., 2016).

C and N, along with P are considered to be the three most important macronu-

trients for phytoplankton (Graham et al., 2016). In oligotrophic areas of the oceans,

cyanobacteria account for more than 50% of primary productivity and can introduce

N in bioavailable forms through N-fixation (Bauersachs et al., 2009). The abilities

of phytoplankton to fix atmospheric carbon and sometimes nitrogen has led to the

understanding that phosphorus is the key macronutrient driving harmful algal bloom

biomass in freshwaters (Schindler et al., 2008). However, studying C and N is important

to understanding how these vital macronutrients are cycled through the ecosystem.
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HABs and cHABs are large growths of phytoplankton that can cause harm to the

environment that they grow in (Graham et al., 2016). cHABs are especially problematic

because they are capable of producing toxic and/or foul smelling compounds and

causing fish and aquatic wildlife death by creating anoxic conditions formed due to the

accumulation of scum. All of these problems are expensive to solve (Downing et al.,

2001; Winter et al., 2011; Michalak et al., 2013).

The use of stable isotopes as a technique to understand biogeochemical processes

began in the 1960s (Park and Epstein, 1961). Since then, stable isotopes have been useful

in differentiating between biotic, abiotic, and a variety of other processes involving C,

N and other elements (Dauphas et al., 2017; Johnson and Beard, 2006; Gu et al., 1994;

Mackensen and Schmiedl, 2019; Guiry, 2019; Bauersachs et al., 2009).

There are a several factors that have an impact on the isotopic composition of

phytoplankton. In freshwater systems dominated by phytoplankton, the stable isotopic

composition of the POM (X13C and X15N) is dependent on the concentration and the

stable isotopic composition of the dissolved nutrient and the isotopic fractionation (U

and n) of the dissolved nutrients during uptake and usage (Gu et al., 2006; Lehmann

et al., 2004). The isotopic fractionation is the ratio of heavy to light isotope ratio for two

pools of interchanging species and is represented by U. These U can be converted into

permil fractionation factor, n , by presenting the U as a deviation from 1. The fractionation

between the dissolved nutrient and the particulate for many processes are known and

studied. The carbon isotopic fractionation is approximately -29h for eukaryotic algae

and between -22 and -25h in cyanobacteria (Falkowski and Raven, 2007). The nitrogen

isotopic fractionation during nitrate assimilation is 5-6h (Waser et al., 1998; Karsh

et al., 2014). Amount of biomass present, the instantaneous growth rate (`8) and nutrient

concentration all can impact the fractionation factors between the dissolved nutrients and

the particulate matter (Holben and Ostrom, 2000; Burkhardt et al., 1999; Kukert and

Riebesell, 1998). Laws et al. (1997) determined the relationship between n13C and `

of Phaeodactylum tricornutum cultures. However, due to the technological constraints,

the practical applications of this methods are limited (Zhen and Zhu, 2018). Popp et al.
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(1998) found that introducing the size and surface area of a cell will help make the

relationship between n13C and ` stronger, however, this formulation involves variables

such as carbon fixation rates, flow and CO2 diffusion across cell membranes, making the

process of using stable isotopes to calculate growth rate more complicated. Tanaka et al.

(2008) found a positive linear relationship between ΔX13C;40 5−��� and `. However, the

linear fit had a correlation coefficient of 0.39, indicating a weak relationship. Zhen and

Zhu (2018) used laboratory cultures of Microcystis to build an exponential relationship

between the carbon isotopic fractionation and the growth rate. They then used this

relationship to find the growth rate of Microcystis in Lake Taihu, China.

However, many of these studies only used the isotopic composition of the bulk

particulate matter. Bulk samples, especially lake water samples, contain much more

than just algal biomass, and can confound results further (Bade et al., 2006). In cell

cultures, bulk samples include all accumulated materials which formed when culture

conditions were different than the conditions for the instantaneous biomass. Changes

in biochemical processes and how nutrients are used and recycled are known for

phytoplankton cells (Fogg and Thake, 1987). Understanding how stable isotopic

composition of phytoplankton changes during growth in culture can help understand the

roles of C and N in the growth of HABs.

The objective of this study is to use a mixing-model to separate the isotopic

composition (X13C and X15N) of newly accumulated phytoplankton biomass from the

bulk sample to better understand how growth changes the isotopic composition and the

fractionation factors of several species of temperate freshwater phytoplankton in culture

and to use the fractionation factors to build relationships with the growth rates of these

species.
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3.2 Materials and Methods

3.2.1 Experimental Organisms and Growth Conditions

Cultures were grown in BG-11 media with and without nitrate (BG-110) and

Bold Basal Media (BBM). Cultures of cyanobateria: Anabaena flos-aqaue (CPCC 67)

(in BG-11 and BG-110), Aphanizomenon flos-aqaue (NIES 81) (in BG-11 and BG-

110), Aphanizomenon skuja (isolate from Lake 227, ELA) (in BG-11 and BG-110),

and Microcystis aeruginosa (PCC 7005) (in BG-11) along with cultures of eukaryotic

algae: Coelastrum proboscideum (SAG 217-2), Chlorella vulgaris (CPCC 90), and

Chlamydomonas reinhardtii (CPCC 243), all grown in BBM, were grown in 4L batch

cultures at 20◦C on a 12:12h light/dark cycle at 100 `mol/m2/s with constant aeration.

A 12:12h light cycle was selected to mimic the circadian cycle of cyanobacteria and

to ensure that N-fixation rates remained constant throughout the experiment (Chen

et al., 1998). All media contained equivalent concentrations of FeCl3 instead of ferric

ammonium citrate and equivalent amount of CoSO4 instead of Co(NO3)2 (Rippka et al.,

1979; Stein et al., 1973). Growth of the culture was monitored by measuring absorbance

of the cell culture at 750 nm (A750). At four time points along the growth, samples

for nutrient concentrations, stable isotope analyses of Fe, C and N and DOC spectral

characterization were collected. Cultures of nitrogen-fixing cyanobacteria were aerated

at less power than cultures grown in nitrate to help maintain integrity of filaments.

3.2.2 Nutrient Analyses

Samples for DIC were collected directly into 12mL exetainers with no headspace

and preserved with diluted HgCl2. Analysis was done by withdrawing 6mL of sample

while displacing with 6mL of He and transferring to another evacuated 12mL exetainer

filled with 12mL He. Both exetainers were acidified using H2SO4 and placed on a shaker

for 2 hours to allow gas/liquid equilibrium. The concentration of the headspace CO2 was

measured using a Varian CP-3800 Gas Chromatograph and dissolved CO2 concentrations

were determined using Henry’s Law for each exetainer.
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Samples for dissolved P and Fe concentrations were collected by filtering samples

through 0.22`m filters. Dissolved P was analyzed using the molybdenum blue reaction

as described by Ota and Kawano (2017). Fe samples were digested using a combination

of HNO3 and HCl digestion as described by Environmental Protection Agency (1983) in

acid-washed plastic tubes and analyzed using ICP-OES (emission _ = 238.204).

Samples for total dissolved nitrogen (TDN) and DOC concentration were collected

by filtering sample water though 0.45`m filters and analyzed with a Shimadzu Total

Organic Carbon (TOC-L) Combustion Analyzer with TNM-1 Module with the precision

of ±0.3mg C/L and ±0.3mg N/L.

3.2.3 Isotope Analyses

Samples for X13C-DIC were collected and prepared as samples for DIC concentra-

tion and analyzed by GC-CF-IRMS using an Agilent 6890 gas chromatograph coupled to

an Isochrom isotope ratio mass spectrometer (IRMS: Micromass UK) with precision of

±0.3h as described in Schiff et al. (2017).

Samples for X13C-POM and X15N-POM were collected by filtering sample water

through an ashed Whatman QMA filter, nominal pore size of 1`m and analyzed by CF-

EA-IRMS (CHNS-O EA1108) coupled with a Delta Plus (Thermo) isotope ratio mass

spectrometer with a precision of ± 0.2h in X13C and ± 0.3h in X15N as described by

Schiff et al. (2017).

X15N-DIN for all samples were assumed to be constant throughout the growth of the

initial value. For species grown with NaNO3, the NaNO3 powder was analyzed using the

same method as X15N-POM and found to be -15.1h. For diazotrophic species, the X15N-

DIN was assumed to be 0h corresponding to the stable isotopic composition of air.

Isotopic composition were expressed in delta (X) permil (h) notation for all samples

relative to Vienna Pee Dee Belemite (VPDB) for C and atmospheric N2 for N.
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3.2.4 Calculations and Equations

3.2.4.1 Growth Rates

A750 was used to monitor growth. Growth rates (`) were calculated using the

equation:

` =
;=( �1BC

�1B0
)

C
(3.1)

where ` is the growth rate, AbsC and Abs0 are the A750 at time t and at time 0 right after

the inoculation.

3.2.4.2 Model Development

A simple model was used to determine the isotopic fractionation factors in the

new biomass accumulated between two sampling points, similar to the model used

to differentiate different sources of the isotopic signature (Dĳkstra et al., 2008). New

biomass isotopic fractionation factors were determined by first determining the X13C-POC

or X15N-PON of the new biomass:

X�-#4F%$" =
(�1B2 ∗ X�-2) − (�1B1 ∗ X�-1)

�1B2 − �1B1
(3.2)

where X�X8 represents either X13C-POC or X15N-PON at Time 1 and Time 2, and

Abs is the measured A750 at those sampling events. The result of eq. 3.2 is the modelled

X�X-POM of the newly accumulated biomass from the two sampling points used. Error in

the isotopic composition of new POM was also calculated (IAEA, 2009).

To determine the permil fractionation factor (n) between the X13C-POC with X13C-

DIC and X15N-PON with X15N-DIN, the fractionation factor (U) was first determined

and then that was used to find the n (Farquhar et al., 1989; Farquhar and Richards, 1984;

Sharp, 2017):

U =
1 + X�-�8B.#DCA84=C 5 A><)8<41
1 + X�-#4F%$" 5 A><)8<42

(3.3)
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n = (U − 1) ∗ 1000 (3.4)

where X�X#4F%$" is the isotopic composition of the new biomass accumulated be-

tween two sampling events that was calculated from eq. 3.2, and X�X�8B.#DCA84=C is either

extracellular X13C-DIC or X15N-DIN from Time 1. The n illustrates the fractionation of

the stable isotopes from the dissolved phase into the newly accumulated biomass at each

sampling event in permil.

Supplemental Figures and Tables

Please see Appendix B for supplemental figures and tables.

3.3 Results

A750 of each culture of phytoplankton are shown in fig. 3.1. The absorbance

increases with time as predicted. However, the diazotrophic species grown without

nitrogen exhibit lower A750 than their N-replete counterparts throughout the whole growth

process. The growth rates (`) for each species by using eq. 3.1. The changing growth

rates during the growth are shown in fig. B.1 (located in Appendix B). The instantaneous

growth rates are increasing for about 10 in most species and then start lowering.

DIC concentrations for all species are increasing with time except for N-fixing

species, which remain relatively low and stable (fig. 3.2). The TDN in all species grown

with nitrate ranged from 19.07 - 20.14mM N and in N-fixing cultures 0.01 - 0.04mM N

(fig. 3.3). Dissolved P concentrations remain relatively stable in all cultures, ranging

from 1.1 - 2.3mM P, with no clear increasing or decreasing trends observed (fig. B.2).

Dissolved iron decreased in all cultures getting very close to 0`M of Fe by 29 days (fig.

B.3). In cultures grown with NO –
3 , DOC concentrations increased in the medium while

DOC concentration in diazotrophic cultures remained low and stable throughout the

incubation (fig. B.4).
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Figure 3.1: Growth curves of the phytoplankton shows the change in A750 with time to
indicate algal growth in culture. Species labelled with (-N) are grown without inorganic N
in the media and are N-fixing.
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Figure 3.2: Dissolved inorganic carbon (DIC) concentrations during growth of each
species. DIC is reported as mM of C. Species labelled with (-N) are grown without
inorganic N in the media and are N-fixing.
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Figure 3.3: Total dissolved nitrogen (TDN) concentrations during growth of each species.
TDN is reported as mM of N. Species labelled with (-N) are grown without inorganic N in
the media and are N-fixing.Precision is ±0.021mM N.
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Figure 3.4: Measured X13C-DIC, X13C-POC and X15N-PON along with assumed X15N-
TDN as changing with time during the growth of the various phytoplankton species.
X15N-TDN in cultures grown in nitrate is expected to be a constant -15.1h, the isotopic
composition of the stock NaNO3 and 0h for N-fixing cultures which had atmospheric N2
bubbled in. Precision on X13C is ±0.2h and X15N is ±0.3h.
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We have shown the isotopic composition of DIC, POC, DIN and PON in fig. 3.4.

The X13C-POC and X15N-PON shown represent the bulk-particulate matter isotopic

composition. X13C-POC does not follow any discernible trends and ranges mostly

between -15 - -22h. X15N-PON for N-replete cultures is similar to X13C-POC also

ranging from -15 - -20h. X15N-PON for N-fixing cyanobacteria, is decreasing with time.

X13C-DIC increased for all N-replete cultures and plateaued around 0h. The X13C-DIC

for the N-fixing cyanobacteria is relatively constant around -9h. X15N-DIN is assumed to

be constant at -15.1h for cultures grown with NaNO3 based on the measure X15N of the

NaNO3, and 0hfor N-fixing cultures. The value of -15.1h is assumed to be constant

because the DIN in those cultures was consistently very high (fig. 3.3), and the value

of 0his the value of atmospheric N2, which was the only source for N in diazotrophic

cultures.

We calculated the isotopic composition of the newly-accumulated biomass between

two sampling points as well as the isotopic fractionation factor (U) and the permil

fractionation factor (n) using the model outlined above. The results of each of these

calculations are shown in Tables B.1 for X13C-POC and B.2 for X15N-PON. Figs. 3.5

and 3.6 show the difference in the X13C-POC and X15N-PON of the bulk, analyzed via

mass-spectrometry and the X13C-POC and X15N-PON of the newly accumulated biomass

between two sampling points calculated here for each species. Largest differences

between the bulk and the calculated-new biomass POC isotopic compositions occur at

approximately 21 days into the growth and the two converge again at day 29 (fig. 3.5).

Differences in the isotopic composition of the bulk PON and the calculated-new PON are

variable species-to-species and no patterns can be visually distinguished (fig. 3.6).

We then calculated the fractionation factors between the dissolved and particulate

fractions of this experiment using Eq. 3.3 and 3.4. Fig. 3.7 shows the permil fractionation

factors for both n13C and n15N for all the species and how they change during the growth

of the cultures. The n13C appears to be increasing till about 21 days and then decreases

again for all species. The n15N for many species appears to increase from 8 to 14 days,

then decrease again at 21 days to finally increase again at 29 days. Exceptions to this
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Figure 3.5: X13C-POC of the measured bulk POC and calculated new POC (from eq.
3.2). Error bars indicate precision for Bulk POM samples, and propagated error for New
POM.
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Figure 3.6: X15N-PON of the measured bulk PON and calculated new PON (from eq.
3.2). Error bars indicate precision for Bulk POM samples, and propagated error for New
POM.
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Figure 3.7: The permil fractionation factors (n) between the DIC-POC and DIN-PON in
cell culture. Error bars indicate propagated errors from isotopic compositions.

52



overall pattern in the n15N are Anabaena flos-aquae and Chlamydomonas reinhardtii

which increase as the growth continues.

n Species Equation R2

n13C Anabaena flos-aquae ` = 0.2359n−0.293 0.0966
Anabaena flos-aquae (N-Fixing) ` = 0.0215n0.6461 0.4311
Aphanizomenon flos-aquae ` = 103.49n−2.148 0.9042
Aphanizomenon flos-aquae (N-Fixing) ` = 0.2434n−0.352 0.2797
Aphanizomenon skuja ` = 5.6763n−1.034 0.7344
Aphanizomenon skuja (N-Fixing) ` = 0.0176n0.9848 0.347
Chlamydomonas reinhardtii ` = 0.9503n−0.732 0.823
Chlorella vulgaris ` = 5.5462n−1.349 0.8203
Coelastrum proboscideum ` = 0.8167n−0.77 0.8321
Microcystis aeruginosa ` = 0.9544n−0.699 0.7583

n15N Anabaena flos-aquae ` = 0.1108n0.065 0.8731
Anabaena flos-aquae (N-Fixing) ` = 0.1215n0.132 0.1855
Aphanizomenon flos-aquae ` = 0.167(n+2)−0.11 0.1052
Aphanizomenon flos-aquae (N-Fixing) ` = 0.1232n0.067 0.007
Aphanizomenon skuja ` = 0.3309(n+2)0.265 0.4426
Aphanizomenon skuja (N-Fixing) ` = 0.9501n0.742 0.5271
Chlamydomonas reinhardtii ` = 0.1532(n+1)0.258 0.7941
Chlorella vulgaris ` = 0.1309(n+1)0.065 0.0456
Coelastrum proboscideum ` = 0.1021n0.156 0.3811
Microcystis aeruginosa ` = 0.1395(n+1)0.251 0.4629

Table 3.1: The exponential relationships of n and `. Any manipulation added to the n
is to translate the data towards a positive direction to ensure that no negative n are used
when making the regression.

We finally correlated the permil fractionation factors for both C and N to the `

using the power function fit as done by Zhen and Zhu (2018), shown in Table 3.1. The

correlation coefficient between n13C and ` are between 0.6 to 1 for all species except

the three N-fixing cultures and the nitrate fed Anabaena flos-aquae. Anabaena flos-

aquae and Chlamydomonas reinhardtii are the only species with high R2 values when

regressing n15N and `. Some species required a horizontal translation in n15N to ensure

that the data used for the regression are positive in value. Aphanizomenon flos-aquae and

Aphanizomenon skuja (both in N-replete conditions) required all n to increase by 2h and

Chlamydomonas reinhardtii, Chlorella vulgaris and Microcystis aeruginosa required the

increase of 1h to all n15N. The regression equations show those manipulations.
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3.4 Discussion

This study determined the growth rates, and carbon and nitrogen stable isotopic

compositions of the media and laboratory cultures of seven different temperate freshwater

phytoplankton taxa using both N-replete and N-fixing conditions for the taxa capable

of fixing N2. We then used a modified mixing-model to determine the stable isotopic

composition of the newly created biomass between two sampling events and used that to

find the isotopic fractionation factors. We then found the relationship between the growth

rates of these species and the carbon and nitrogen fractionation.

Figure 3.1 shows a typical logistic growth curve for the species in this study. Most

of the species studied closely follow the logistic growth except for Aphanizomenon skuja

in nitrogen-fixing and nitrate replete conditions. The N-replete culture follows a dual-

limited system, where DIC is low in the beginning of the growth until Fe begins to run

low (see fig. 3.2 and B.3). This is seen in the lower n13C when the DIC concentrations

are low in the beginning of the growth. While both DIC and TDN are low in N-fixing

cultures, DOC in the media with N-replete cultures increases indicating the growth and

death of cells and the release of biologically derived DOM in the process (Loftus and

Johnson, 2019).

While growth for the species grown with nitrate appears to follow a predictable

pattern, it should be noted that the N-fixing species did not grow much, as evidenced by

the low A750. This is most likely due to the use of aquarium bubblers in the cultures to

keep the input of CO2 and N2 constant during the growth. The increased turbulence from

the bubblers resulted in the cyanobacteria not forming stable filaments to grow. This is

consistent with the findings from Moisander et al. (2002), which show that Anabaena and

Aphanizomenon carbon and nitrogen fixation activities decrease with increased shearing

forces. Bauer et al. (1995) and Herrero et al. (2016) note that in short-filament mutants of

Anabaena, heterocyst differentiation is often low or completely stopped resulting in very

low to no nitrogen fixation by the strains.

Bade et al. (2006) attempted to separate out the algae material from lake water

bulk samples and noted that water samples have much more particulate material than
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the desired biota from the lake water. The use of eq. 3.2 yielded a X value for the

newly accumulated POM between two sampling events. The difference in the isotopic

compositions between the measured bulk-POM and the new POM are noted in figs. 3.5

and 3.6. The differences between these two values indicates that bulk measurements may

not be the most accurate representation of the stable isotopic composition.

Determining a relationship between n and ` has been of interest to researchers

because that relationship will allow researchers to determine the growth rate of biota

in environmental samples without culture work (Burkhardt et al., 1999; Kukert and

Riebesell, 1998; Laws et al., 1997; Tanaka et al., 2008; Zhen and Zhu, 2018). This study

adds to this knowledge by using the power function model of relationship used by Zhen

and Zhu (2018) and applying it to the ten species and variants used in this study for

both n13C and n15N. All species grown in nitrate, except Anabaena flos-aquae, show a

moderate to good correlation of the ` to n13C. We used a similar correlation model as

Zhen and Zhu (2018), who found that ` = 1.32(1 + n)−0.52 for Microcystis from Lake

Taihu. If the relationship of the Lake Taihu Microcystis is to be compared with the

relationship of Microcystis aeruginosa presented in this study, the two equations follow a

similar pattern. However, the Lake Taihu strain consistently indicated that it had a higher

growth rate than the strain in this study.

We also explored the relationship of ` with n15N and we did not observe good

correlations. This may be because phytoplankton growth and decay play a large role in

the process of N-uptake and release, resulting in the X15N of the medium that is variable

during the culture process (Peterson et al., 2001; Zhen and Zhu, 2018). This makes it very

difficult to establish a relationship of n15N and `. In this study, we did not measure the

X15N-DIN and it was assumed to be constant either because the TDN concentrations were

very high or because there was no nitrate added.

In this study we found the relationships of n of newly accumulated biomass and

the growth rate of freshwater phytoplankton in culture. We show that using n13C can

give reasonably good correlations with the `. However, to use this method in the field

to study phytoplankton bloom growth, a few considerations will have to be made; what
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is the medium in which the phytoplankton are grown to establish these relationships,

what species are studied and do they reflect the biological make-up of the environment in

question, and what is the relationship of n13C and ` of N-fixing species which are limited

by N throughout the growth.

3.5 Conclusion

The goal of this study was to differentiate the isotopic composition of the newly

accumulated POM from the measured bulk sample and to examine if a correlation exists

between the growth rates of the phytoplankton species and the isotopic fractionation

factors. We did this by using a mixing-model calculation to determine the isotopic

composition of the newly accumulated biomass from the bulk sample shown in eq. 3.2.

We saw that the newly calculated isotopic composition for the biomass can be as much as

15h different than the bulk sample.

We then used the newly determined isotopic fractionation factors to develop

relationships between the growth rate of the phytoplankton species and the isotopic

fractionation factors. We found that moderate to good correlations (R2 > 0.7) can be

found with the growth rates of phytoplankton when grown with nitrogen and the n13C.

We show that by using these models it can be possible to determine growth rates

of environmental samples without resorting to laboratory studies by using this model

and this method. However, more work needs to be done to better this process, focusing

particularly on N-fixing species.
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Chapter 4

Inhibitory Effect of Ferrozine on

Phytoplankton Growth

Abstract

Cyanobacterial harmful algal blooms (cHABs) are an increasing and costly

problem in inland waters. These algal blooms cause economic and health damage

through production of foul compounds and toxins. Fe is an important micronutrient

needed for many biochemical pathways in phytoplankton. Cyanobacterial dominance

of phytoplankton is strongly affected by sediment redox and it is thought that the link

between redox and cyanobacteria dominance may be redox control of the availability of

Fe(II). This study examined inhibition of the growth of cyanobacterial and chlorophyte

cultures by the Fe(II)-chelator, ferrozine (FZ) to further inform on the possible role

of Fe(II) in cHAB formation. However, FZ additions to cell culture medium at eight

different FZ:Fe molar ratios ranging from 0.1 to 2000 did not inhibit the growth of

cyanobacteria significantly possibly due to the availability of Fe(II) due to photoreduction.

4.1 Introduction

Phytoplankton are a large diverse group of organisms that include chlorophytes,

cyanobacteria, diatoms and more (Simon et al., 2009). Their roles in nature are as
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diverse as their classifications. Some types of phytoplankton are N-fixers, calcifiers,

toxin producing or silicieous (Mutshinda et al., 2016). Harmful algal blooms (HABs)

and specifically cHABs in inland waters are an increasing problem (Pick, 2016). These

blooms pose a serious risk to public health and water quality (Downing et al., 2001).

cHABs have been associated with the availability of nutrients, specifically P (Kane

et al., 2014; Schindler, 1974). This has prompted efforts to control the loading P in lakes

since the late 1970s (Dolan and McGunagle, 2005). However, there has been a persistence

and increasing occurrences of HABs reported even in systems where P concentrations

are low necessitating better management practices that go further than P control (Pick,

2016; Verschoor and Molot, 2013; Winter et al., 2011). Existing evidence points to the

importance of Fe(II) availability as a potential control for cHABs (Molot et al., 2010;

Kranzler et al., 2014). Fe is an important micronutrient in cells because it is used in

major biochemical pathways (Shi et al., 2007). It is known that cyanobacteria have a

higher demand of Fe than their eukaryotic counterparts and can only transport Fe(II) into

the cells (Sunda and Huntsman, 2015; Molot et al., 2014). Thus, cyanobacterial growth

can be limited by Fe(II) access unless supply rates are high. Cyanobacteria have several

strategies to ensure that even in low Fe environments, the requirements can be met. These

include creation and excretion of siderophores, which have high affinities for Fe, these

bind to extracellular Fe and then the whole siderophore-Fe complex is transported into the

cell (Kranzler et al., 2011). Another strategy is to reduce Fe(III) to Fe(II) at the plasma

membrane and the subsequent uptake of the Fe(II) (Lis et al., 2015).

Ferrozine (FZ, 3-(2- pyridyl)-5,6-bis(4-phenylsulfonic acid)-1,2,4-triazine) is a

colourless iron-binding complex which turns purplish when bound to Fe(II) (Fig. 4.1)

(Stookey, 1970). Ferrozine has been used to quantify amount of Fe(II) colourometrically

because it preferentially binds Fe(II) over Fe(III) (Stookey, 1970; Verschoor and Molot,

2013) and has also been used to probe Fe(II) transport in cyanobacteria (Shaked et al.,

2004; Kranzler et al., 2011; Lis et al., 2015). Previous work by Molot et al. (2010)

showed that cyanobacteria are more sensitive to oxine (8-hydroxyquinoline), a strong Fe

oxidizing chelator, than chlorophytes when oxine was added to mesocosms.
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The objective of this study was to determine whether FZ could be used as an Fe(II)-

removing agent to shift phytoplankton dominance from cyanobacteria to chlorophytes.

This experiment was conducted by growing laboratory cultures of five different species of

cyanobacteria and chlorophytes at different ratios of FZ to Fe.

Figure 4.1: Chemical structure of Ferrozine

4.2 Materials and Methods

4.2.1 Experimental Organisms and Growth Conditions

Cultures of Anabaena flos-aqaue (CPCC 67), Aphanizomenon skuja (isolate from

Lake 227, ELA), Chlamydomonas reinhardtii (CPCC 243), Chlorella vulgaris (CPCC

90), and Microcystis aeruginosa (PCC 7005) were grown at 20◦C on a 12:12h light/dark

cycle at 100 `mol/m2/s in either BG-11 or BBM media containing varying molar ratios

of Fe (as FeCl3) and FZ (Table 4.1) (Rippka et al., 1979; Stein et al., 1973). N was added

at a final concentration of 17.6mM in BG-11 and 2.9mM in BBM and P was added at a

final concentration of 0.23mM in BG-11 and 1.72mM in BBM and both media contained

EDTA at concentration of 2.6`M in BG-11 and 27`M in BBM.

FZ:Fe ratios of 2000:1, 200:1 and 20:1 were used along with the others to mimic

ratios used in previous studies (Kranzler et al., 2011), who found inhibition of Fe uptake

in the unicellular Synechocystis sp. PCC 6803. The Fe(II)FZ3 complex is pH sensitive

and to maintain the pH between 7.8-8.1 (Lis et al., 2015), pH was measured and adjusted
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with 0.1M HCl if pH > 8.1 or with 0.1M NaOH if pH < 7.8. All cultures were grown in

duplicate.

Table 4.1: FZ to Iron molar ratios

Conc. Fe(`M) Conc. FZ (`M) FZ:Fe Molar Ratio
3 0 0:1
3 9 3:1
15 9 3:5
3 30 10:1
45 30 10:15
0.1 200 2000:1
1 200 200:1
10 200 20:1

4.2.2 Monitoring Growth

Growth was assayed by taking absorbance at 750nm (A750) using a Cary 100

spectrophotometer. A750 was selected for analysis of phytoplankton growth absorption at

750nm by photosynthetic pigments is minimal and is good indicator of particulate matter

(Borowitzka and Moheimani, 2013). A750 was used to compare growths at different molar

ratios of FZ:Fe in each species. Absorbance was converted into cell numbers for each

species by using previously determined linear relationships of absorbance to cell number

for each species (see Appendix A).

Growth rates (`) were found for each incubation were found using the growthcurver

(version 0.3.0) package in R (Sprouffske and Wagner, 2016). Statistical differences in

the mean growth rates within each species were found by using an ANOVA followed by

a Tukey’s HSD.

4.3 Results

Figures 4.2 - 4.6 show the change in cell number with time of the species studied at

different FZ:Fe ratios. While there are no incubations where there is no growth, it appears

as if growth is lower at FZ:Fe of 2000:1 and 200:1 in most of the species.
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Figure 4.2: Growth of Anabaena flos-aquae in different molar ratios of FZ:Fe. Line
connects mean cell numbers and points are duplicate measurements of each of two
incubations.

Fig. 4.7 shows the growth rates of the studied species at the different FZ:Fe molar

ratios. The lettered groupings obtained as a results of a Tukey’s HSD compares the

growth rates at varying FZ:Fe molar ratios within each species separately. The growth

rates for Anabaena flos-aquae, Aphanizomenon skuja, Chlamydomonas reinhardtii and

Microcystis aeruginosa are not significantly different from one another at any FZ:Fe

molar ratio. The growth rates for Chlorella vulgaris are variable. Visual inspection of

the Fe concentrations does not show an apparent pattern.
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Figure 4.3: Growth of Aphanizomenon skuja in different molar ratios of FZ:Fe. Line
connects mean cell numbers and points are duplicate measurements of each of two
incubations.

4.4 Discussion

Figures of growth for each species (Figs 4.2 - 4.6) and 4.7 do not show any

significant difference in the growth patterns of any of the phytoplankton species studied

except for the growth rates of Chlorella vulgaris. As cyanobacteria are strongly dependent

on Fe(II) (Kranzler et al., 2014), the growth rates of cyanobacteria (Anabaena flos-

aquae, Aphanizomenon skuja, and Microcystis aeruginosa) but not the eukaryotic algae

(Chlamydomonas rienhardtii and Chlorella vulgaris) were expected to be inhibited at

high molar ratios of ferrozine, e.g., higher than 10.

There are a few possible explanations why the growth of cyanobacteria in this study
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Figure 4.4: Growth of Chlamydomonas reinhardtii in different molar ratios of FZ:Fe.
Line connects mean cell numbers and points are duplicate measurements of each of two
incubations.

was not inhibited by the addition of FZ in contrast to inhibition of Synechocystis (Kranzler

et al., 2011). Perhaps the filamentous and colonial cyanobacteria strains used in this study

were able to scavenge Fe(II) with a ferrous siderophore that competed with ferrozine or

perhaps they have an ability to use ferrozine-bound Fe as a potential source of Fe(II),

reflecting a siderophore-like uptake (Kranzler et al., 2011). Another possible reason

for this result could be that EDTA, the chemical chelator which is used in media keep

metallic salts in solution could be out-competing the FZ for the available Fe-pool and the

phytoplankton could get iron through EDTA-chelation (see Ch.5) (Rippka et al., 1979;

Stein et al., 1973).

Kranzler et al. (2011) found contradictory results to this study using the unicellular
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Figure 4.5: Growth of Chlorella vulgaris in different molar ratios of FZ:Fe. Line
connects mean cell numbers and points are duplicate measurements of each of two
incubations.

cyanobacterium, Synechocystis sp. strain PCC 6803. This could be due to the differences

in growth conditions used. To reduce the photoreduction of Fe, Kranzler et al. (2011)

used red light growth conditions, while we used full spectrum lighting to mimic environ-

mental light conditions. The photoreduction of Fe, even at lower concentrations may have

been enough Fe(II) for the cyanobacteria used in this study to grow from.

4.5 Conclusion

The goal of this study was determine if FZ could be used to remove Fe(II) in cell

media to inhibit the growth of cyanobacteria but not eukaryotic algae. We found that
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Figure 4.6: Growth of Microcystis aeruginosa in different molar ratios of FZ:Fe. Line
connects mean cell numbers and points are duplicate measurements of each of two
incubations.

addition of FZ at eight different FZ:Fe ratios had no significant difference on the growth

of cyanobacterial species. This finding is in contradiction of Kranzler et al. (2011),

perhaps because of the different species that were studied or through the photoreduction

of Fe(III) to Fe(II).

Further work is required to study the efficacy and the impacts of Fe(II) removing

agents on HABs using conditions that are representative of the environment.
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Figure 4.7: Growth rates for each species grown at various FZ:Fe ratios. Colour
indicates concentration of Fe, error bars are standard deviation from the mean and lettered
groupings indicate statistically different mean growth rates for each species found by an
ANOVA.
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Chapter 5

Indirect Measurements of Fe-Chelation

Strengths of EDTA and Citrate using

Ferrozine for use in Cell Culture

Abstract

Iron is an important micronutrient involved in many different biochemical processes.

This makes Fe a key ingredient in cell culture to ensure the growth of the organisms being

studied. EDTA and citrate have been used in cell culture media as chelators to keep metal

ions soluble and bioavailable. However, EDTA has been reported to inhibit growth of

some species in cell culture because it is an oxidant. This study evaluated the relative

impacts of EDTA and citrate on the formation of the colourimetric iron-binding complex,

ferrozine (FZ). We found that citrate had no significant (p < 0.05) impact on colour

formation of FZ while EDTA did, most likely because it is an oxidizing agent rather than

a competitor for Fe(II). Citrate also binds other trace metals, so it may be better suited to

culture studies involving Fe(II) than the more widely used EDTA.
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5.1 Introduction

Iron is one of the most important elements for the growth of organisms. It has a

key role in important cellular functions like cellular respiration, photosynthesis and N-

fixation (Shi et al., 2007). Despite being one of the most abundant elements on Earth,

iron sometimes limits growth of plants and algae (Kean et al., 2015). This is because in

oxygenated environments, Fe exists primarily as Fe(III), which is not very soluble unless

bound to an organic chelator, thus rendering it unavailable for uptake by many species

(Stumm and Morgan, 1995; Miles and Brezonik, 1981).

Ethylenediaminetetraacetic acid (EDTA) is a molecule which is synthetic, organic

and polyprotic with the ability to form strong bonds with metal cations in solution,

making the cations soluble (Willet and Rittmann, 2003). It is known that EDTA increases

solubility of trace metals and is essential in cell culture for good growth of cells (Waris,

1953; Krauss, 1955; Satpati et al., 2016). While EDTA is non-toxic to humans, it has

been found to inhibit growth of cells in certain situations (Willet and Rittmann, 2003;

Andersen, 2005). EDTA can bind to Zn so effectively that Zn can be unavailable for

cellular uptake and use in DNA synthesis (Saryan and Petering, 1980). In another

study, it was noted that EDTA’s non-specific metal-binding might stop the growth of

biofilms (Chudzik et al., 2007). It is possible that in certain instances, EDTA might be

too strong of a chelator for a species to gain access to EDTA-bound trace metals, such as

Fe, especially if the EDTA/Fe ratio is high. EDTA has different affinities for forming the

metal-EDTA complexes and these are known.

Table 5.1: Formation constants ( 5 ) for metal-EDTA complexes. This constant is the
equilibrium constant for the reactionMn + Y4– −−−⇀↽−−− MYn–4. All values apply at 25◦C
and ionic strength of 0.1M unless indicated otherwise. a. 20◦C, ionic strength = 0.1M, b.
20◦C, ionic strength = 1M. Table from Harris (2010).

 5 for Metal-EDTA complexes

Ion log  5 Ion log  5 Ion log  5 Ion log  5

Li+ 2.95 Fe2+ 14.3 Tl+ 6.41 Pm3+ 16.9

Na+ 1.86 Co2+ 16.45 Pd2+ 25.6a Sm3+ 17.06
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Continuation of Table 5.1

Ion log  5 Ion log  5 Ion log  5 Ion log  5

K+ 0.8 Ni2+ 18.4 Zn2+ 16.5 Eu3+ 17.25

Be2+ 9.7 Cu2+ 18.78 Cd2+ 16.5 Gd3+ 17.35

Mg2+ 8.79 Ti3+ 21.3 Hg2+ 21.5 Tb3+ 17.87

Ca2+ 10.65 V3+ 25.9a Sn2+ 18.3b Dy3+ 18.3

Sr2+ 8.72 Cr3+ 23.4a Pb2+ 18 Ho3+ 18.56

Ba2+ 7.88 Mn3+ 25.2 Al3+ 16.4 Er3+ 18.89

Ra2+ 7.4 Fe3+ 25.1 Ga3+ 21.7 Tm3+ 19.32

Sc3+ 23.1a Co3+ 41.4 In3+ 24.9 Yb3+ 19.49

Y3+ 18.08 Zr4+ 29.3 Tl3+ 35.3 Lu3+ 19.74

La3+ 15.36 Hf4+ 29.5 Bi3+ 27.8a Th4+ 23.2

V2+ 12.7a VO2+ 18.7 Ce3+ 15.93 U4+ 25.7

Cr2+ 13.6a VO +
2 15.5 Pr3+ 16.3

Mn2+ 13.89 Ag+ 7.2 Nd3+ 16.51

End of Table

Citrate, first isolated in 1874, is a common molecule that has biological relevance.

It is found ubiquitously from lemons to human teeth in large proportions (Glusker,

1980). Citric acid is a weak chelating agent of various trace metals, including Fe

(Patterson, 1987). In bacteria, citric acid can function as an iron-scavenging siderophore.

Siderophores like rhizoferrin and staphyloferrin A have a citric acid molecular backbone

in the chelation site of the siderophores (Silva et al., 2009). Both citrate and EDTA are

used in cell culture media because they can bind metal ions and keep them soluble and

bioavailable (Klein and Manos, 1960; Gour et al., 2018; Andersen, 2005).

Ferrozine (FZ) is an iron-binding complex, specifically binding to Fe(II) (Stookey,

1970). FZ has been used in colourimetric assays to quantify Fe(II) and total Fe (Verschoor

and Molot, 2013; Jones and Lee, 2020). FZ has an absorption maximum at 562nm (Y =

2.79×104mol−1·L·cm−1) (Stookey, 1970). This colourimetric property of FZ can be used
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to estimate relative strengths of other Fe chelators compared to FZ.

The objective of this study was to evaluate the relative impacts of EDTA and citrate

on the formation of the FZ-Fe complex. The goals are to understand how EDTA and

citrate impact the oxidation of Fe in solution.

5.2 Materials and Methods

A solution of 10 mg/L of Fe (as FeCl3•6H2O, Sigma-Aldrich 236489) with 100

mg/L of FZ (Sigma-Aldrich 160601) had either EDTA (Sigma-Aldrich 324503) or citrate

(Sigma- Aldrich 71498) added to it in final concentrations of either 10mg/L, 100mg/L or

1000mg/L. One set of solutions had L-ascorbic acid (Sigma-Aldrich 255564) added it to

a final concentration of 10% w/v to reduce the Fe(III) to Fe(II) at pH 3. For controls, FZ,

Fe with L-ascorbic acid, and FZ with Fe were made and absorbance measurements were

blanked with either Fe only, or Fe and L-ascorbic acid only blanks. All solutions were

left at room temperature overnight and made in triplicate. After incubation, absorbance

at 562nm and pH was recorded. The pH was maintained close to 3 in Fe(II) solutions and

between 4 and 5.9 in Fe(III) solutions.

After analysis, a pair-wise two-way ANOVA was conducted grouped by the redox

state of Fe, chelator used and concentration of chelator followed by a post-hoc Tukey’s

HSD.

5.3 Results

Table 5.2 and Fig. 5.1 show the average pH and the average absorbance at 562nm of

the various samples. Absorbance at 562nm was higher in the presence of L-ascorbic acid,

indicating reduction of Fe(III) by the reagent. Some Fe(II) was produced without ascorbic

acid, perhaps from photoreduction generated from overhead lights. In all samples, citrate

did not have a significant affect on the absorbance while EDTA lowered the absorbance.

Table 5.3 shows the summary of the pair-wise two-way ANOVA by redox state

(containing L-ascorbic acid or not), competitor used (EDTA or citrate) and concentration
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Table 5.2: Average absorbance at 562nm corresponding to relative amounts of Fe
bound to FZ of samples containing EDTA or citrate at various concentrations. Standard
deviation indicated by ± of n = 3. Fe(II) redox state was obtained by adding L-ascorbic
acid, ± indicates standard deviation. ANOVA groupings indicate statistically different
mean absorbance for each treatment found by a two-way ANOVA followed by a Tukey’s
HSD.

Fe Redox Competing Conc. pH Avg. Abs ANOVA
State Chelator Chelator (mg/L) @ 562nm grouping
Fe(II) FZ-Fe Control 0 3.04 ± 0.05 1.5961 ± 0.0238 A
Fe(II) Citrate 10 2.99 ± 0.01 1.5400 ± 0.0545 A
Fe(II) Citrate 100 3.06 ± 0.06 1.6048 ± 0.0309 A
Fe(II) Citrate 1000 3.15 ± 0.08 1.5932 ± 0.0800 A
Fe(II) EDTA 10 3.01 ± 0.01 1.0699 ± 0.0806 B
Fe(II) EDTA 100 3.02 ± 0.02 0.2724 ± 0.0934 C
Fe(II) EDTA 1000 3.07 ± 0.06 0.0955 ± 0.0081 D
Fe(III) FZ-Fe Control 0 5.94 ± 0.12 0.7033 ± 0.0624 E
Fe(III) Citrate 10 5.11 ± 0.13 0.7025 ± 0.0282 E
Fe(III) Citrate 100 4.48 ± 0.04 0.6673 ± 0.0150 E
Fe(III) Citrate 1000 4.26 ± 0.02 0.6806 ± 0.0185 E
Fe(III) EDTA 10 5.94 ± 0.03 0.0263 ± 0.0113 F
Fe(III) EDTA 100 5.74 ± 0.06 0.0376 ± 0.0088 F
Fe(III) EDTA 1000 5.42 ± 0.01 0.0189 ± 0.0050 F

of competitor (10, 100, or 1000mg/L). The results indicate that all three of these

categorizations were significantly different from one another.

Table 5.3: Output of ANOVA comparing absorbance at 562 of FZ to different
competitors, at different concentrations and of different Fe redox state

term df sumsq meansq statistic p.value
IronRedox 1 5.22 5.22 2309 1.89 × 10−28

Competitor 2 8.01 4.01 1772 3.30 × 10−30

Conc.Comp 2 0.378 0.189 83.68 1.54 × 10−12

IronRedox:Competitor 2 0.506 0.253 111.8 4.45 × 10−14

IronRedox:Conc.Comp 2 0.333 0.166 73.63 7.06 × 10−12

Competitor:Conc.Comp 2 0.433 0.216 95.70 3.04 × 10−13

IronRedox:Competitor:Conc.Comp 2 0.482 0.241 106.7 7.98 × 10−14

Residuals 28 0.0633 0.00226
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Figure 5.1: Average absorbance at 562nm of FZ with different competitors added at
varying concentrations. Lettered groupings indicate statistically different (p < 0.05)
means as shown by the pair-wise two-way ANOVA followed by a Tukey’s HSD (results in
Table 5.2). Error bars indicate standard deviation in replicate absorbance measurements

5.4 Discussion

L-ascorbic acid is a strong reducer of Fe resulting in increased absorbance at 562nm

(Panel 1, Fig. 5.1) indicating the increased concentration of Fe(II) (Stookey, 1970). This

increase in absorbance is also shown in the FZ-Fe control where L-ascorbic acid was

added. There also is some reduction of Fe even without L-Ascorbic acid, possibly due

to photo-reduction of Fe(III) to Fe(II) (Miles and Brezonik, 1981). FZ is a reagent which

binds preferentially to Fe(II), which is the reason why the absorbance at 562nm is higher
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in Fe-reduced conditions (where L-ascorbic acid was included) than in the samples where

Fe was predominantly Fe(III) (Stookey, 1970).

These results show that citrate is a weaker binder of Fe(II) than FZ, in both Fe

treatments because it did not interfere with colour formation by complexed FZ.

In contrast, EDTA strongly interfered with the formation of the coloured FZ-Fe

complex which is consistent with its behaviour as an oxidant and Fe(III) chelator (Seibig

and van Eldik, 1997; Santana-Casiano et al., 2000; Jones et al., 2015). This has important

implications for studies of Fe(II) dynamics in cultures grown with EDTA because EDTA

may interfere with Fe(II) acquisition by oxidizing it to Fe(III) (Wubs and Beenackers,

1993; Jones et al., 2015).

This study is consistent with the findings of Fujii et al. (2015), who found that high

Ca and Mg concentrations led to greater Fe(II) formation through promotion of photo-

reductive dissociation of Fe(III) from EDTA. Then, the Ca and Mg likely bind to the

EDTA preventing it from oxidizing Fe(II). Both of these studies show that EDTA has the

ability to oxidize Fe(II).

5.5 Conclusion

The aim of this study was to examine the oxidative effects of EDTA and citrate on

Fe for use in cell culture media when studying Fe(II). We show that L-ascorbic acid is an

effective reducing agent of Fe, but also some reduction of Fe occurs without the presence

of acid as seen by the presence of the FZ-Fe complex without the addition of a reductant.

Citrate does not appear to oxidize or reduce Fe, while EDTA is capable of oxidizing Fe at

a rate that is a function of the concentration of EDTA. We also found that FZ is a stronger

Fe(II) chelating agent than citrate.

The findings of this work indicate that when conducting experiments involving

Fe(II), citrate may be better suited as a metal chelator than the more widely used EDTA.
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Chapter 6

Heterocyst Abundance is Dependent on

Cobalt Concentration in Temperate

Freshwater Cyanobacteria

Abstract

Harmful algal blooms (HABs) are on the rise in inland waters all over the world.

These HABs and specifically cyanobacterial harmful algal blooms (cHABs) cause

widespread harm and damage. Understanding the role of nutrients, specifically micronu-

trients such as Co is key in understanding how these blooms occur, dominate and can be

mitigated. The growth and nitrogen fixation rates of N-fixing cyanobacteria are known

to increase with increases in Co concentrations by a varying rate based on the measured

value. The impact of varying Co concentrations on the growth and heterocyst formation

of diazotrophic phytoplankton taxa was investigated, and examined along with previously

published data and field data from IISD-ELA. Our results indicate that increases in

the Co concentration from 0.17 to 170 nM has a major impact on the frequency of

heterocysts produced by four temperate freshwater N-fixing, filamentous cyanobacteria.

This study finds that Co availability may increase N-fixation rates by increasing number

of heterocysts within a cell population.
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6.1 Introduction

External loading of macronutrients such as phosphorus result in increases in

biomass and productivity of phytoplankton (Downing et al., 2001; Huisman et al., 2018;

Schindler, 2012). However, the impacts of micronutrient on phytoplankton biomass and

species dynamics are largely overlooked in freshwater systems due to a large focus on

factors such as phosphorus and nitrogen as factors that control harmful algal blooms

(Molot et al., 2014). Harmful algal blooms (HABs) and specifically cyanobacterial

harmful algal blooms (cHABs) can cause ecological and economic damage through

toxin production, creation of foul taste and odour compounds and through harm of

wildlife, livestock and humans (Downing et al., 2001; Wolk, 1996). There are many

indications that phytoplankton, especially harmful cyanobacteria, are sometimes limited

by low levels of micronutrients such as Fe, Mo, Mn, B, Co, or Zn (Goldman, 1966;

Baptista and Vasconcelos, 2006; Hawco and Saito, 2018; Fu et al., 2008; Downs et al.,

2008). These micronutrients are important cofactors in enzymes which are needed for

many metabolic processes (Graham et al., 2016; Andreini et al., 2008). Micronutrient

requirements differ amongst phytoplankton species, for example, N-fixing cyanobacteria

have a higher requirement for Mo and Fe because these metals are cofactors for their N-

fixing nitrogenase enzyme, that catalyzes the conversion of N2 to NH3 (Schindelin et al.,

1997).

Heterocysts are specialized cells that house the nitrogen fixation machinery in

filamentous cyanobacteria, designed with thick walls and high respiration rates to prevent

O2 from deactiviting nitrogenase (Kangatharalingam et al., 1992). During growth, the

heterocyst differentiation process is a complex series of cellular events following four

stages: induction, patterning, commitment and morphogenesis (Videau et al., 2016).

Induction of heterocyst differentiation is caused by N-limited conditions, which results

in the production of NtcA, a global nitrogen regulator (Harish and Seth, 2020). NtcA

then upregulates the production of HetR. Patterning is determined via HetR-dependent

upregulation of PatS which travels laterally to other vegetative cells and inhibits HetR

production in those cells, effectively stopping the differentiation process there (Xu et al.,
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2020). HetR also causes the synthesis of HetP which is thought to be the point at which

the process of heterocyst differentiation is irreversible (Harish and Seth, 2020). HetP

activates a series of proteins and transcription factors which change the morphology and

physiology of the cell to make the heterocyst microoxic and ideal for nitrogenase activity

(Kumar et al., 2010). Nitrogenase is then synthesized and can begin to fix nitrogen (Zhao

and Wolk, 2008).

Atomic or ionic Co is a cofactor of key enzymes such as methylmalonyl-CoA

mutase, methionine synthase and type II ribonucleotide reductase. Co is also needed to

form plant nodules in legumes (Ullrich, 1983). Cobalt is primarily found as a component

of vitamin B12, a cofactor in many metabolic pathways (Croft et al., 2006). Vitamin B12 is

only synthesized by some prokaryotes and species incapable of synthesizing it acquire it

from exogenous sources (Rodriguez and Ho, 2015). Some cyanobacteria can manufacture

a variant, pseudocobalamin (Helliwell et al., 2016). Thus, the dependency of most species

on external vitamin B12 can shape the phytoplankton community composition (Rodriguez

and Ho, 2015).

Increasing Co concentration has previously been shown to increase rates of

photosynthesis and N-fixation in bloom forming alga in Swedish estuaries, Azotobacter,

Rhizobium and in the phytoplankton Nostoc and Calothrix; where cells grown in 170nM

resulted in higher N content in cells than cells grown without Co (Goldman, 1966;

Granéli and Haraldsson, 1993; Holm-Hansen et al., 1954; Iswaran and Rao, 1964;

Hallsworth et al., 1960; Downs et al., 2008). However, how Co leads to increased rates

of N-fixation is unknown. Rodriguez and Ho (2015) characterised the influences of

Co and vitamin B12 on the marine diazotroph, Trichodesmium erythraeum and found

that Trichodesmium has an absolute requirement for Co. Hawco et al. (2020) quantified

the minimal Co usage in Prochlorococcus, a marine cyanobacterium and found that

Prochlorococcus can sustain growth with less than 50 Co atoms per cell. Kelly et al.

(2021) studied the growth rates and heterocyst frequencies of two Dolichospermum

species from Lake Taupō in New Zealand. They found that increasing trace metal (Co,

Mo, and Fe) concentrations increased heterocyst frequency.
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The objective of this chapter is to assess whether heterocyst formation is dependent

on the availability of Co. This was done by growing laboratory cultures of several species

of freshwater cyanobacteria at varying concentrations of Co and comparing these results

to Co concentrations and corresponding heterocyst frequencies in Lake 227 and with

other literature values.

6.2 Materials and Methods

6.2.1 Natural Cobalt Concentrations

Total epilimnetic cobalt concentration from lake water were obtained for the

year of 2017 from about 35 Canadian lakes from Saskatchewan, Manitoba, Ontario,

Quebec and New Brunswick. Samples were contributed by Helen Baulch (University

of Saskatchewan), Jennifer Korosi (York University), Scott Higgins (IISD-ELA), Karen

Kidd (McMaster University), Lewis Molot (York University), Sherry Schiff (University

of Waterloo), Jason Venkiteswaran (Wilfrid Laurier University), Dan Walters (Nipissing

University) and Arthur Zastepa (ECCC).

Unfiltered samples were collected into acid-washed tubes. Samples were acidified

with 0.3mL/15mL of concentrated HNO3 and analyzed with ICP-MS at Trent Water

Quality Centre. All acids used were trace metal grade.

6.2.2 Culture and Growth Conditions

Cultures of Anabaena flos-aqaue (CPCC 67), Aphanizomenon flos-aqaue (NIES

81), Aphanizomenon skujae (isolate from Lake 227) and Dolichospermum lemmermanii

(isolate from Lake Erie) were grown in BG-110 (BG-11 without inorganic N). A culture

of Microcystis aeruginosa (PCC 7005) was grown in BG-11. Phytoplankton were

grown at 20◦C on a 12:12h light/dark cycle at 100 `mol/m2/s in BG11 media containing

equivalent amount of FeCl3 instead of ferric ammonium citrate (Rippka et al., 1979).

Microcystis aeruginosa was used in this study as a non N-fixing control species. A 12:12h

light cycle was selected to mimic the circadian cycle of cyanobacteria and to ensure that
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N-fixation rates remained constant throughout the experiment (Chen et al., 1998).

All species were grown in BG-110 before inoculation. 1mL of exponentially

growing cells from the starter culture was used to inoculate duplicate metal-free plastic

tubes of BG110 or BG11 containing either 0.17, 17 or 170nM of CoSO4 as the final

concentration. To ensure that there was no trace metal contamination, all reagents used

were trace metal grade, all flasks and bottles were soaked in 10% HCl over 48 hours and

then in Milli-Q water for another 24 hours. Only acid-washed clear pipette tips were used

throughout this experiment. All media, glassware and supplies such as pipette tips were

UV sterilized under a Laminar flow hood for 15 minutes as autoclave steam can introduce

trace metal contamination (Keller et al., 1988).

Growth was assayed by taking absorbance readings at 750nm (A750) using a Cary

100 spectrophotometer. At 750nm, interference from photosynthetic pigments is minimal

and can be used as a consistent proxy for cellular growth (Chioccioli et al., 2014).

6.2.3 Heterocyst and Vegetative Cell Counts

Cell and heterocyst counts were done using a hemocytometer under the microscope

at 40X magnification. Heterocysts were stained with alcian blue, 0.015% (w/v) for 10

mins (Maldener et al., 2003). A minimum of five squares of the hemocytometer field were

counted for each replicate to obtain heterocyst and vegetative cell abundance. Heterocyst

frequency was calculated by dividing the number of heterocysts observed by the total

number of cells counted.

6.2.4 Calculations and Statistics

The A750 was plotted against time and the R package growthcurver(version 0.3.0)

was used to find the growth rate of each sample (Sprouffske and Wagner, 2016).The

package growthcurver finds the growth rate by finding the best fit of a given dataset to

the logistic growth equation (Eq 6.1).
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#C =
 

1 + (  −#0
#0
)4−AC

(6.1)

where #C is the A750 at a given time, K is the carrying capacity (maximum cell

biomass), #0 is the starting A750, r is the growth rate (`) and t is time. Eq. 6.1 is the

solution to Eq 1.9.

Heterocyst counts were calculated as percentage of total cell number and averaged

for each species at each concentration of Co. Statistical differences in these mean

heterocyst frequencies were found by using two-way ANOVA followed by Tukey’s HSD.

6.2.5 Field and Literature Review

To fully understand if Co could play a role in heterocyst differentiation, a literature

and field study review was also done. Biological data from IISD-ELA and metal

concentration from the same date were compared along with an extensive literature review

of culture studies where heterocyst frequency was quantified using defined media where

Co concentrations are specified.

Heterocyst frequencies and dissolved Co concentrations from Lake 227 were

obtained for the year of 2017. Lake 227 is a small (5ha, mean depth 4.4m, maximum

depth 10m), headwater lake that is artificially fertilized by P inputs, located at the IISD-

ELA in northwestern Ontario. The lake is dimictic, with thermal stratification defined in

the summer occurring at 1-3m. Lake 227 was fertilized with N and P (27:1 molar N:P)

from 1969 to 1974, with reduced N loading from 1975 to 1989 (9:1 molar N:P) and with

only P from 1990 to present (Findlay et al., 1994; Higgins et al., 2017; Molot et al., 2010).

A bloom of the N-fixing cyanobacteria, of the genus Aphanizomenon, typically occurs in

early summer of each year since 1990 (Schindler et al., 2008).

Dissolved Co concentration from lake samples was collected using 0.45`m

Sartorious syringe filters and measured at the Trent Water Quality Centre using ICP-MS.
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Figure 6.1: Mean epilimnetic dissolved Co concentrations in Canadian Lakes during the
field season of 2017. Error bars indicate standard deviation when multiple samples were
analyzed for a particular location during the year. Colours indicate the province of the
lake. Lake Winnipeg has been categorized in three geographic locations; North Basin,
South Basin and Narrows.
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6.3 Results

Fig. 6.1 shows the average dissolved cobalt concentration in 39 lakes across Canada

in the epilimnion. In all lakes, the mean total Co concentration is below 10nM.

Figure 6.2: Growth curves of phytoplankton species at varying concentrations of Co.
Line and points are the mean cell number and bars indicate deviation from the duplicates.

Fig. 6.2 does not indicate a large difference in the growth curves of the various

species with relation to concentration of Co. Table 6.1 lists the average growth rates for

each species at three different concentrations of Co. The growth rates are variable and

do not indicate any pattern in differences with relation to Co concentration. Growth rates

also exhibit a small range within each species: Anabaena flos-aqaue has the highest range

in average growth rates of 0.567 day−1, Aphanizomenon flos-aqaue with 0.437 day−1,

Aphanizomenon skuja with a range of 0.033 day−1, Dolichospermum lemmermannii has

a range of 0.438, and Microcystis aeruginosa has a range of 0.368 day−1.

81



Table 6.1: Average growth rates of the various phytoplankton species grown at varying
concentration of Co, ± indicate standard deviation from the mean of the duplicates.

Species [Co] (nM) Mean Growth Rate (day−1)
Anabaena flos-aquae 0.17 1.842 ± 0.18
Anabaena flos-aquae 17 1.275 ± 0.17
Anabaena flos-aquae 170 1.383 ± 0.09
Aphanizomenon flos-aquae 0.17 1.244 ± 0.15
Aphanizomenon flos-aquae 17 0.831 ± 0.27
Aphanizomenon flos-aquae 170 0.807 ± 0.13
Aphanizomenon skuja 0.17 0.908 ± 0.12
Aphanizomenon skuja 17 0.980 ± 0.22
Aphanizomenon skuja 170 0.875 ± 0.06
Dolichospermum lemmermannii 0.17 0.790 ± 0.16
Dolichospermum lemmermannii 17 1.028 ± 0.31
Dolichospermum lemmermannii 170 0.590 ± 0.09
Microcystis aeruginosa 0.17 0.853 ± 0.15
Microcystis aeruginosa 17 0.755 ± 0.19
Microcystis aeruginosa 170 1.123 ± 0.51

Fig. 6.3 shows the mean heterocyst frequency at varying concentration of Co.

Microcystis aeruginosa, a non-N-fixing cyanobacteria does not produce heterocysts and

is shown for comparison. The diazotrophic species have varying results in heterocyst

frequency, ranging from 4 to 9%. Lettered groupings as a result of a post-hoc test indicate

that the heterocystous frequencies at 0.17nM Co were significantly different from 17nM

in all four heterocystous species. The frequencies at 17 and 170nM were also significantly

different in Anabaena flos-aquae.

Table 6.2: Output of ANOVA of heterocyst frequencies compared to concentration of Co

term df sumsq meansq statistic p.value
[Co] (nM) 2 82.72 41.36 35.85 8.29 × 10−11

Residuals 57 65.75 1.15

Fig. 6.4 show the mean heterocyst frequencies of all the N-fixing species (no

Microcystis aeruginosa) pooled together at the different concentrations of Co. Table

6.2 shows the results of an ANOVA on the heterocyst frequencies observed at different

concentrations. There is a significant impact to heterocyst frequencies with rising Co

concentrations.
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Figure 6.3: Heterocyst frequencies as a percentage of total cell number of the species
studied. Each bar represents the mean heterocyst percentage of five counts, bars indicate
standard deviation and letters above indicate statistically different means as found by a
two-way ANOVA followed by a Tukey’s HSD.

6.4 Discussion

Our results indicate that Co can affect the frequency of heterocysts in N-fixing

populations. Previous studies have shown that cobalt influences the rates of nitrogen

fixation (Granéli and Haraldsson, 1993; Holm-Hansen et al., 1954; Iswaran and Rao,

1964; Hallsworth et al., 1960). However, these studies looked at parameters of nitrogen

fixation, using rates of nitrogenase activity or amount of N accumulated in biomass. Here,

we show that heterocyst frequency can be used as a response variable when assessing the
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Figure 6.4: Heterocyst frequencies as a percentage of total cell number pooled for all
diazotrophic species at the concentrations of Co studied. Each bar represents the mean
heterocyst percentage of five counts per species, bars indicate standard deviation and
letters above indicate statistically different means as found by an ANOVA followed by a
Tukey’s HSD.

role of Co in cyanobacterial growth and nitrogen fixation, to our knowledge only (Kelly

et al., 2021) have used this variable to study impacts of micronutrients on N-fixation.

Co is an important cofactor in a number of enzymes, however what role they play in

heterocyst function is difficult to tease apart. A systematic review by Pernil and Schleiff

(2019) of metalloproteins involved in heterocyst metabolism does not reveal a clear

requirement for cobalt within the system. The only potential role of cobalt that was

hypothesized was that Co2+ can replace Zn2+ in class II fructose-bisphosphate aldolase

(FbaA).

Cobalt and vitamin B12 can be a part of other key enzymes such as methionine

synthase, ribonucleotide reductase, methylmalonyl-CoA mutase and nitrile hydratase

(Ullrich, 1983). While synthesis of methionine and the subunits of DNA through

ribonucleotide reductase are important, there is no evidence that either of those are

upregulated in heterocysts (Qiu, 2018). Some species of cyanobacteria do not have genes

for methylmalonyl-CoA mutase or nitrile hydratase (Hawco et al., 2020).
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Vitamin B12-based riboswitches also have been found to regulate proteins associated

with heterocysts (Singh et al., 2018). Riboswitches are a regulatory part of an mRNA

molecule to which another molecule can bind, causing a change in production of

the protein that the mRNA coded for (Tucker and Breaker, 2005). Cobalamin-based

riboswitches have been found for a few genes annotated as "metal binding proteins" and

the hydrogenase/urease accessory protein encoding genes (hupE) (Singh et al., 2018).

HupE is a transmembrane accessory protein thought to be a Ni/Co transporter to facilitate

the Ni-dependent hydrogenase activity (Pernil and Schleiff, 2019; Hoffmann et al., 2006).

Mutants of HupE were unable to grow at all in medium containing a metal chelator, and

growth was only resumed when cobalt or methionine were added pointing to the overall

importance of methionine and its synthesis, not to the need for Co specifically in that

study (Hoffmann et al., 2006).

This study spans the range of cobalt concentrations found in counts of heterocyst

frequency of lake water cyanobacteria and laboratory culture studies (Tables 6.3, 6.4 and

Figs. 6.1, 6.2). Examinations of other studies where Co concentration was known and

Table 6.3: Heterocyst frequencies of cyanobacteria and dissolved Co concentrations
from Lake 227 at IISD-ELA during the summer of 2017. Heterocyst frequencies were
calculated from biomass data provided by IISD-ELA and unpublished Co concentrations
were provided by Dr. Lewis Molot.

Organism Date Sampling Depth [Co] (nM) Het. %
And Location Range (m)
Aphanizomenon skuja 2017-May-23 0-2 1.26 4.38
Lake 227 2017-May-23 2-4 1.05 2.94
IISD-ELA 2017-June-05 0-1 0.70 3.77

2017-June-05 0-1 0.76 4.19
2017-June-19 0-2.3 1.04 3.50
2017-June-19 2.3-4 1.07 3.81
2017-July-04 0-1 1.99 5.21
2017-July-04 1-3 2.07 6.92
2017-July-17 0-1.3 4.00 4.12
2017-July-17 1.3-3 0.90 4.08
2017-Aug-08 0-1.5 1.88 3.53
2017-Aug-08 1.5-4 2.26 4.02
2017-Aug-21 0-2 2.56 3.38
2017-Aug-21 2-3 1.56 3.26
2017-Sep-05 0-2.5 2.05 3.30
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Table 6.4: Mean reported heterocyst frequencies of cyanobacteria from the literature.
Literature heterocyst frequencies are reported for only wild-type species.

Organism [Co] (nM) Het. % Ref
Anabaena cylindrica 170 4.10 Jewell and Kulasooriya (1970)

170 4.70 Kulasooriya et al. (1972)
170 5.20 Ogawa and Carr (1969)
170 5.80 Nayak et al. (2007)

Anabaena fertilissima 170 7.40 Nayak et al. (2007)
Anabaena flos-aquae 170 3.20 Ogawa and Carr (1969)

170 9.20 Kangatharalingam et al. (1992)
Anabaena inequalis 170 5.36 Ogawa and Carr (1969)
Anabaena iyengarii 170 7.61 Nayak et al. (2007)
Anabaena laxa 170 5.10 Nayak et al. (2007)
Anabaena oryzae 170 8.45 Nayak et al. (2007)
Anabaena oscillarioides 170 4.28 Nayak et al. (2007)
Anabaena PCC7108 170 7.80 Nayak et al. (2007)
Anabaena PCC7120 170 6.50 Nürnberg et al. (2015)

170 7.22 Chaurasia and Apte (2011)
170 7.50 Berendt et al. (2012)
170 8.00 Videau et al. (2016)
170 8.67 Borthakur et al. (2005)
170 8.90 Rivers et al. (2018)

Anabaena PCC7122 170 8.03 Nayak et al. (2007)
Anabaena sp. 170 6.33 Ahad et al. (2015)
Anabaena sphaerica 170 5.49 Nayak et al. (2007)
Anabaena spiroides 170 4.33 Nayak et al. (2007)
Anabaena vaginicola 170 6.34 Nayak et al. (2007)
Anabaena variabilis 170 4.33 Ogawa and Carr (1969)

170 5.90 Nayak et al. (2007)
Aphanizomenon aphanizomenoides 42.03 3.17 de Figueiredo et al. (2011)
Aphanizomenon flos-aqaue 16 4.37 Rother and Fay (1979)
Aphanizomenon ovalisporum 170 8.43 Vasas et al. (2013)
Aphanizomenon sp. 42.03 3.72 Mohlin et al. (2012)

heterocyst frequency was measured for Anabaena and Aphanizomenon species shows a

minor increasing trend with a weak positive correlation ('2 = 0.36). The concentrations

of Co from Lake 227 spans the lower part of the range used in the experiments here (0.17

to 17nM) (see Fig. 6.2) and there is a large rise in heterocyst frequency between those

concentrations in all heterocystous species studied. Therefore, it can be concluded that

heterocyst frequency and consequently the N-fixation rates in lakes is probably affected

where low Co concentrations occur.
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Figure 6.5: Heterocyst frequency (% of all cells) of various freshwater Aphanizomenon
and Anabaena species from this study (�), field (4) and culture studies (◦) where Co
concentrations could be determined. The equation of the linear relationship is %�4C. =
(4.3 ± 0.3) + (0.013 ± 0.002) ×�>. �>=2., '2 = 0.36 and ? < 0.05. Second panel is same
data with log x-axis to better display the spread of the data. Tables 6.3 and 6.4 shows the
references where these values were obtained.
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There is a wide variability of heterocyst abundance observed at varying Co

concentrations in the field data as well culture data at the same concentrations (170nM).

The variability in data from Lake 227 might be explained by external factors such as

wind, temperature and lake mixing, all of which can influence algal bloom growth in

lakes (Wei et al., 2001). Perhaps the variability when many species are compared at the

same concentration of cobalt in culture maybe due to species-species variability but also

due to the morphological changes that occur in culture especially in heterocyst formation

(de Figueiredo et al., 2011). Some diazotrophic species that once formed blooms in N-

depleted waters have lost the ability to form heterocysts in culture, hence the variability in

heterocyst frequencies observed could be an artefact of that phenomenon (de Figueiredo

et al., 2011).

A similar study of impacts of low iron concentration on heterocyst formation by Aly

and Andrews (2016) found that iron deficiency led to a delay in heterocyst formation and

that only a prolonged iron starvation of about 11-14 days in culture led to a decrease in

heterocyst frequency. Fe is an important cofactor of many more processes in heterocysts

than cobalt (Pernil and Schleiff, 2019), so achieving cobalt starvation without shut down

of cellular growth due to inadequate methionine or dNTP synthesis could be difficult.

Hawco et al. (2020) have shown that the cellular demand for cobalt is very low at less than

50 atoms per cell.

Kelly et al. (2021) studied two species of Dolichospermum, Dolichospermum

planctonicum and Dolichospermum lemmermannii, the latter also being studied in this

work. They did not find a direct increase in heterocyst frequency with the addition of

Co in Dolichospermum lemmermanii, it was only when both Co and Fe were added

that heterocyst frequency increased. Although increasing Co did result in increased

heterocyst frequencies for Dolichospermum planctonicum. Kelly et al. (2021) suggested

that differences in species physiology may be attributable to the variations. In this

work, we found that increasing Co 100-fold from 0.17nM to 17nM increased heterocyst

frequencies significantly but not when the Co concentration increased to 170nM for

Dolichospermum lemmermannii. One of the possible reasons why the same species
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behaved differently could be due to how they were grown. Kelly et al. (2021) used

recently isolated phytoplankton from Lake Taupō, while we used species which had been

isolated from Lake Erie but have gone through many generations of being grown in lab

culture conditions.

6.5 Conclusion

We used field, literature and experimental data to examine whether heterocyst

formation is dependent on the availability of Co. We did this at 0.17, 17 and 170nM

of Co. 0.17 to 17nM appears to be the range of Co found in many Canadian lakes. We

found that increasing Co significantly increases the frequency of heterocysts found in

cell cultures of four diazotrophic cyanobacteria. When compared with literature and field

data, the relationship is confirmed although the correlation is weak.

These results suggest that in general Co plays a role in nitrogen fixation and the

possible mode of action is by the increased percentage of heterocysts. A major limitation

to fully understanding how Co impacts nitrogen fixation is the lack of knowledge about

Co and Co-dependent enzymes in the nitrogen fixation and heterocyst differentiation

process. Further work in understanding the biochemistry of Co in cyanobacteria is

required.

Understanding how Co can play a role in the synthesis of heterocysts and growth of

heterocystous cyanobacteria may lead to better understanding of bloom dynamics which

may help inform better management decisions in N-limited systems.
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Chapter 7

Smartphone App-based Measurements

of Temperate Freshwater Phytoplankton

Growth

Abstract

Harmful algal blooms (HABs) are increasingly reported and prove a challenge

to monitor. News reports, citizen reporting and ecosystem modelling have made

predicting and reporting the occurrence of HABs easier, but quantifying biomass quickly,

inexpensively and simply is still a challenge. Here, we have devised a unique and simple

strategy for sensitive and colourimetric estimation of algal biomass concentration. A

colourimetric smartphone app was used to record red, green, blue colour model (RGB)

values of algal cell culture of various species for estimation of algal biomass levels. A

good linear relationship (R2 = 0.90) between algal absorbance at 750nm and ('+�+�)/�

was obtained. Our results add to the increased number of substances quantified using

this method. This new method offers a promising and portable detection method for

phytoplankton with simple operation, fast response and very low cost.
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7.1 Introduction

Algal blooms are an ever increasing challenge to monitor and to solve (Pick, 2016).

Increased occurrences of harmful algal blooms (HABs) and specifically cyanobacterial

harmful algal blooms (cHABs) are now being reported in nutrient poor systems adding

to the challenge (Verschoor et al., 2017). News reports, citizen reporting and ecosystem

modelling have made predicting and reporting HABs easier, however the ability to

quantify phytoplankton biomass in the field is still lacking (Pick, 2016). HABs are a

nuisance and can negatively impact the tourism and fishing industries (Hudnell, 2010).

These blooms can produce foul smells and also produce toxins which can harm life

around the impacted area (Downing et al., 2001). Algal blooms have been observed

worldwide and are an increasing problem (Song et al., 2013; Pick, 2016).

To better monitor and understand the impacts of HABs and cHABs, a variety

of in situ field sampling and laboratory techniques have been used. Direct cell counts

by microscopy have been used extensively to quantify and identify phytoplankton.

It is, however, time consuming and is very dependent on the identification skill of

the observer (Butterwick et al., 1982). Indirect measurements of algal biomass are

commonly used such as turbidity measurements, chlorophyll a (ChlA) quantification

(via spectrophotometry, fluorometry or HPLC) and genetic quantification through

qPCR (Graham et al., 2016; Hu, 2014; Li et al., 2009; Almomani and Örmeci, 2016;

Liu et al., 2020). These techniques require expensive equipment (Butterwick et al.,

1982; Hu, 2014). ChlA extractions require time, chemicals such as methanol, ethanol or

acetone and transport to the lab from the field site (Gregor and Maršálek, 2004). While

spectrophotometric measurements of cell cultures have proved to be an effective proxy for

cell number for a variety of phytoplankton species, it also requires expensive equipment

(see Appendix A) (Erratt, 2017).

In vivo fluorometry (IVF) uses sondes and probes to measure the fluorometric

signal ChlA and phycobilisomes (PBS) within the water column. These probes are

able to generate and collect large amount of instantaneous data without the need to do

further laboratory analysis. However, the equipment is expensive and costs approximately
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$2000 for the most minimal model. The equipment is also temperamental and requires

meticulous calibration and handling (Pires, 2010). Moreover, several models are

ineffective at detecting cyanobacterial ChlA (L. Molot, personal communication).

While, there are numerous methods for quantifying phytoplankton biomass in

use, there are no effective yet simple and inexpensive ways of estimating phytoplankton

biomass that can be done with very little training available.

Smartphones are emerging as a powerful analytical tool for colourimetric, fluo-

rometric, chemiluminescence and bioluminescence (Peng et al., 2020). In this study,

we assess if an inexpensive smartphone app can be related to algal spectrophotometric

results. This method is portable and user-friendly.

7.2 Materials and Methods

7.2.1 Experimental Organisms and Growth Conditions

Algal cultures of Anabaena flos-aqaue (CPCC 67), Aphanizomenon flos-aqaue

(NIES 81), Aphanizomenon skuja (isolate from Lake 227), Dolichospermum lemmerman-

nii (isolate from Lake Erie), Microcystis aeruginosa (PCC 7005), Chlamydomonas rein-

hardtii (CPCC 243), Chlorella vulgaris (CPCC 90) and Coelastrum proboscideum (SAG

217-2) were obtained from various sources as listed in Table 1.3. These phytoplankton

species were selected to represent the various phytoplankton found in freshwater systems.

These phytoplankton were grown in batch culture in 250mL Ehrlenmeyer flasks at 20◦C

on a 12:12h light/dark cycle at 100 `<>;/<2/s in BG-11 or BBM medium containing

equivalent amount of FeCl3 instead of ferric ammonium citrate and equivalent amount

of CoSO4 instead of Co(NO3)2 (Rippka et al., 1979). The N2-fixing species: Anabaena

flos-aqaue, Aphanizomenon flos-aqaue, Aphanizomenon skuja and Dolichospermum

lemmermannii were also grown in BG-110 (BG-11 without inorganic N). A 12:12h light

cycle was selected to mimic the circadian cycle of cyanobacteria and to ensure that N-

fixation rates remained constant throughout the experiment (Chen et al., 1998). Blanks of

BG-11 and BG-110 were also made.
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7.2.2 Spectrophotometer Measurements

While phytoplankton cultures were growing, samples were withdrawn every 3

or 4 days for absorbance scans from 200nm to 800nm using a Cary 100 (Agilent) and

corrected with media blanks. Additionally, a series of dilutions of cell cultures were

analyzed by the spectrophotometer. A750 was selected for focus as 750nm is used as a

proxy for cell growth and is not subject to interference from photosynthetic pigments

(Chioccioli et al., 2014).

7.2.3 Smartphone Measurements

Figure 7.1: Colorimeter apparatus for measuring algal samples. a Photograph of the
apparatus created to hold and measure algal samples using a box. b Smartphone app user
screen for recording RGB values. c Results screen to indicate measured RGB values.
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A smartphone app called Colorimeter (Version 5.5.1; Lab Tools, São Carlos, São

Paulo, Brazil) was purchased on an Android smartphone (equipped with 12.2 megapixel

camera) (Ravindranath et al., 2018; Yuan et al., 2019). The app is user-friendly and does

not require a wi-fi or network connection.

At the same time that samples were analyzed by the spectrophotometer, samples

were analyzed for RGB using the Colorimeter app. Phytoplankton and media blank

samples were subsampled and placed in 5mL (12mm x 75mm) clear, polystyrene tubes.

A cardboard box with a white background was constructed with an opening on the top

to hold a sample tube inserted into the box and a section of the front of the box cut out

to allow for light to enter (Fig. 7.1a). A cool-white fluorescent lamp to provide a light

source was placed in front of the box. The smartphone was consistently placed 10 cm

away from the sample tube. RGB values were recorded for each sample.

7.2.4 Data Processing and Statistics

After the absorbance spectra and RGB values for the algal samples were obtained,

data was analyzed using R. The Colorimeter app reports different parameters in colour

space such as RGB, CIE, colour names and chroma (Lab Tools, 2018).

In order to determine the best relationship for the quantification of algal cells,

different relationships were analyzed including ', �, �, (' + � + �), (' + � + �)/',

(' + � + �)/� and (' + � + �)/� (Peng et al., 2020; Ravindranath et al., 2018; Yuan

et al., 2019). Furthermore, we compared relationships of A750 with raw RGB values, their

sums and the three ratios, and the blank-subtracted (zeroed) RGB values, their sums and

their ratios and the absorbance calculated from the RGB values and their ratios using the

equation 7.1, where �0 is the intensity of light measured through a blank solution and � is

the intensity of light measured through a sample solution (Peng et al., 2020; Doak et al.,

2010).

� = −;>610
�

�0
(7.1)
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Once a regression model between A750 and RGB value-based measurement

was found, the model was compared to cell numbers estimated by counting cells and

generating standard curves for each organism to correlate cell number to A750 (see

Appendix A). This conversion was done by substituting A750 in the linear regression

equation obtained by the RGB value with the modified factor of Cell Number / (slope of

A750 to Cell Number ± error). This modification was necessary as the linear regression to

convert to cell numbers has different slopes for all the species.

7.3 Results

Table 7.1 shows the statistical parameters associated with the different models of

correlating A750 to RGB parameters. The correlation coefficient, p-value and the AIC are

shown. AIC values are used to compare models among each other. The closer the AIC

value to 0, the better the fit is considered. Only two models have correlation coefficients

of more than 0.75, both being calculated by (R + G + B)/G. The blank-subtracted model

has an AIC value closer to 0 than the calculated abs model.

Fig. 7.2 shows the linear correlations between the A750 and (R + G + B)/G. Tables

7.2 and 7.3 show the linear models using only the zeroed values. The linear fit through the

origin has a better R2 and lower AIC. Fig. 7.3 shows the data just for zeroed A750 and (R

+ G + B)/G for all the species.

The best equation was:

' + � + �
�

= (−0.38915 ± 0.01159) × A750 (7.2)

Fig. 7.4 shows the linear relationship for each species and compares the closeness

of fit using RMSE. RMSE are also shown as a percentage of the range of the data for

each species. The RMSEs reported here span from 7.3 to 54.9% of the ranges of the data

presented for each species. The diazotrophic strains of Anabaena flos-aquae (54.9%)

and Aphanizomenon flos-aquae (26.2%) have the highest RMSE as a percentage of the

range in data, while the N-replete Aphanizomenon flos-aquae, Microcystis aeruginosa and
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Calculation Method RGB Parameter R2 p-value AIC
RGB R 0.1937 8.25 × 10−8 1142
Zeroed 0.2443 9.67 × 10−10 1048
Calculated abs 0.2533 4.23 × 10−10 -587
RGB G 0.1051 1.00 × 10−4 1100
Zeroed 0.2114 1.79 × 10−8 1010
Calculated abs 0.2108 1.90 × 10−8 -612
RGB B 0.4154 2.53 × 10−17 1144
Zeroed 0.6825 3.44 × 10−35 1058
Calculated abs 0.6554 8.41 × 10−33 -491
RGB (R + G + B) 0.2687 1.02 × 10−10 1412
Zeroed 0.4536 2.63 × 10−19 1327
Calculated abs 0.4488 4.71 × 10−19 -578
RGB (R + G + B) / R 0.1074 9.83 × 10−5 -291
Zeroed 0.6356 3.64 × 10−31 -443
Calculated abs 0.6193 6.84 × 10−30 -937
RGB (R + G + B) / G 0.7221 4.40 × 10−39 -442
Zeroed 0.8098 3.95 × 10−50 -483
Calculated abs 0.8057 1.65 × 10−49 -990
RGB (R + G + B) / B 0.4175 1.99 × 10−17 -33
Zeroed 0.7035 3.42 × 10−37 -125
Calculated abs 0.7379 8.80 × 10−41 -720

Table 7.1: Correlation coefficients (R2), p-values and AIC values of various linear
models of A750 and various RGB parameters. Zeroed values were found by subtracting
blank values from the samples and calculated abs values were determined by using Eq.
7.1. Models with R2 > 0.75 are highlighted.

Table 7.2: Linear relationship of blank corrected A750 to blank corrected (' + � + �)/�

term estimate stnd. error statistic p.value
y-intercept 0.015439 0.005489 2.812 0.00566
slope -0.428322 0.017935 -23.882 < 2 × 10−16

Residual Stnd Error 0.04034 Degrees of Freedom 134
R2 0.8098 Adjusted R2 0.8083
F-statistic 570.3 p-value < 2.2 × 10−16

AIC -483.3188

Chlamydomonas reinhardtii have RMSE as percentage of range lower than 10%.

The slope of the regression was found by substituting Cell Number / (slope of A750

to Cell Number ± error) for A750 in Eq. 7.2 resulting in:

' + � + �
�

=
−0.38915 ± 0.01159

(;>?4 > 5 �750 C> �4;; #D<14A ± 4AA>A
× �4;;#D<14A (7.3)
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Figure 7.2: Comparison of A750 to three different ways of calculating (' + � + �)/�.
Linear correlation coefficients of relationships are shown and all relationships have p <
2.2×10−16. Colours indicate species.
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Table 7.3: Linear relationship of blank corrected A750 to blank corrected (' + � + �)/�,
the linear regression is through the origin

term estimate stnd. error statistic p.value
slope -0.38915 0.01159 -33.59 < 2 × 10−16

Residual Stnd Error 0.04136 Degrees of Freedom 135
R2 0.8931 Adjusted R2 0.8923
F-statistic 1128 p-value < 2 × 10−16

AIC -477.5187

Figure 7.3: Relationship of A750 to (' +� + �)/�. Equation of the line is (' +� + �)/�
= -0.38915 × A750. R2 is 0.893. Colours indicate species.

7.4 Discussion

The goal of this experiment was to propose a new, inexpensive, portable and user-

friendly way to quantify algal biomass in vivo. We have demonstrated that this can be

done by using a cardboard box with a white background and two openings, an inexpensive

light source and the cheap smartphone app, Colorimeter.

It should be noted that linear regression forced through the origin yielded a better

R2 and a lower AIC than a linear regression with an intercept. Due to this better R2 the

linear relationship through the origin was selected as the optimal model. Fig. 7.4 shows

how a modified model (Eq. 7.3) can be used to relate cell number to the (R + G + B)/G,
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the RMSE shows the average deviation on the y-axis of each observation from the linear

regression as a percentage of the range of the values observed. Ten of the twelve species

studied have RMSEs less than 20% of the range of RGB-derived values observed, while

only two go over 25% and only one species with over 50% in RMSE. For the ten species

with lower than 20% RMSE of range, this method of quantification can be deemed

good. More validation and further study may be required into the two species with high

deviations.

For many analytical techniques, a R2 of 0.95 or over is desirable. However, given

that this proposed technology uses equipment that are not designed for analytical scientific

work, the obtained R2 of 0.90 is acceptable. This correlation can easily be made stronger

with the use of equipment such as a tripod to hold the smartphone at one consistent place

and angle during each sampling event.

Further validation of this method with environmental samples and samples

containing humic waters is needed.

7.5 Conclusion

The purpose of this study was to assess if a smartphone app can be used to quantify

algal biomass, eliminating the need for expensive laboratory equipment or chemicals to

extract pigments. This study shows that it is possible to use Colorimeter to measure the

algal biomass with a high correlation (R2 = 0.9) using Eq. 7.2. We also found that this

correlation to A750 can be applied to cell number by using Eq. 7.3.

Our results suggest that using smartphones to measure phytoplankton colorimet-

rically may be a promising method for rapid quantification of algal biomass in the field,

even by citizens. These results also add to the rapidly expanding list of coloured solutions

to be quantified using smartphones.

Further work to validate this method is necessary, especially with field samples.

This study only used cultures where the only particulate was algal biomass. The next step

from this study is to apply this work to environmental samples and use this technique to
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quantify algal biomass, or dissolved organic compounds which can give waters a coloured

appearance.

Ravindranath et al. (2018) and Peng et al. (2020) used this method to quantify Hg2+

and H2O2, respectively, in this study we showed this can be applied to algal biomass as

well. We believe this technique presents a great opportunity to quantify and characterize a

panoply of coloured materials.
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Figure 7.4: Relationship of cell number to (' + � + �)/� linear relationship for each
species. Equations of these lines vary as the new conversion is calculated based on the
species-specific conversion from A750 to cell number. Solid lines are regression lines,
dashed lined indicate error on the regression, circles are measured values. RMSE indicate
overall average deviation of the observed values from the regression and are presented
as a percentage of the range of the data for each species. Horizontal error bars indicate
potential error in estimating cell numbers.
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Chapter 8

SUMMARY AND FUTURE

RESEARCH

Harmful algal blooms are an increasing problem in more and more systems. This

project aimed to characterize different aspects of micronutrient dependent growth of

phytoplankton to better understand the often-overlooked drivers of algal blooms and taxa

within blooms.

We found in chapter 2 the Fe threshold concentrations of various phytoplankton

taxa, both eukaryotic and prokaryotic, both N-replete and nitrogen fixing. It was found

that N-fixing cyanobacteria in N-replete conditions had the lowest threshold for Fe,

followed by eukaryotic algae, followed by cyanobacteria and N-fixing cyanobacteria had

the highest threshold for Fe. Affinities for Fe at low Fe concentrations were also estimated

and found that cyanobacteria have the highest affinity for low iron concentrations. This

understanding of threshold concentrations and affinities allows us to better understand

species competition in a given environment. Future research could use this approach to

study more organisms or the influence of other nutrients such as Co or Mo.

Stable isotopic fractionation can be used to glean insight into the growth characteris-

tics of phytoplankton cultures (Chapter 3). We developed a model to determine the stable

isotopic composition of the newly grown biomass from the bulk sample in culture and

used this new isotopic signature to correlate the C and N isotopic fractionation factors to
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the growth rate of these cultures. Future research should focus on studying field samples,

with a focus on N-fixing species to better understand their growth.

Ferrozine is a chelator which preferentially binds to Fe(II) over Fe(III). In chapter

4, we attempted to see if ferrozine would inhibit cyanobacterial growth in culture as they

are dependent solely on Fe(II). It was found that phytoplankton are uninhibited by FZ in

their surroundings and will grow in the FZ:Fe ratios studied. In chapter 5, the impacts of

EDTA and citrate were explored on the formation of the colourimetric FZ-Fe complex.

We found that citrate does not oxidize or reduce Fe in solution while EDTA is capable of

oxidizing Fe. Future work involving Fe(II) should use citrate as a chelator than EDTA.

Cobalt is another micronutrient that not much is known about in cyanobacteria. In

chapter 6, we aimed to find the role of cobalt in the formation of the specialized nitrogen

fixing cells, heterocysts. The heterocyst differentiation process is complex and needs

many cofactors and regulatory proteins. Field samples from Lake 227 at IISD-ELA, a

literature review for culture studies and the study done here revealed a major role for

cobalt in controlling the amount of heterocysts produced. More work needs to be done

to understand cobalt biochemistry in cyanobacteria, especially with regards to nitrogen

fixation.

Much of this thesis and indeed much of the work with phytoplankton relies on

being able to measure biomass quickly and accurately. Chapter 7 introduces a simple,

inexpensive and sensitive way of measuring algal cell numbers and biomass with the

use of a smartphone app. Further work can be done to validate and develop this method

further such as testing it with environmental samples or samples with high background

DOM.

The overarching objective of this thesis was to assess the importance of micronutri-

ents such as Fe and Co in the development and growth of algal blooms. New techniques

were proposed as a way to elucidate uptake mechanisms, compare chelator strength,

and measure phytoplankton biomass accurately with a simple, portable and inexpensive

method.
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Appendix A

Conversion of Abs to Cell Number

A.1 Purpose

To convert absorbance units to cell numbers via linear models. These models were

used when cell numbers were presented.

A.2 Methods

Cultures of Anabaena flos-aqaue (CPCC 67), Aphanizomenon flos-aqaue (NIES

81), Aphanizomenon skujae (isolate from Lake 227) and Dolichospermum lemmermanii

(isolate from Lake Erie) were grown in both BG-11 and BG-110. Culture of Microcystis

aeruginosa (PCC 7005) was grown in BG-11 and cultures of Coelastrum proboscideum

(SAG 217-2), Chlorella vulgaris (CPCC 90) and Chlamydomonas reinhardtii (CPCC 243)

were grown in BBM. All species were grown at 20◦C on a 12:12h light/dark cycle at 100

`mol/m2/s in media containing equivalent amount of FeCl3 instead of ferric ammonium

citrate and equivalent amount of CoSO4 instead of Co(NO3)2 with (BG11) or without

(BG110) nitrate (Rippka et al., 1979; Stein et al., 1973). A 12:12h light cycle was selected

to mimic the circadian cycle of cyanobacteria and to ensure that N-fixation rates remained

constant throughout the experiment (Chen et al., 1998).

Absorbance scans were taken for a dilution series of each species from 200 nm to

800 nm using a Cary 100 (Agilent) spectrophotometer. A750 was selected as a proxy for
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cell concentration because at 750 nm, the interference from photosynthetic pigments is

minimal (Chioccioli et al., 2014; Borowitzka and Moheimani, 2013).

Cell counts were done on the same samples using a hemocytometer under the

microscope at 40X magnification. A minimum of five squares were counted for each of

the replicate and a calibration curve was constructed for each species. The linear models

were forced through the origin with the general equation:

#D<14A> 5 �4;;B = A750 × B;>?4 (A.1)

A.3 Results

Table A.1: The conversions for each species from A750 to cell number. R2 are indicated

Species Species Type Slope of Line % Error R2 p-value
Anabaena flos-aquae Cyanobacteria 87199488 ± 1233644 1.4% 0.996 < 2 × 10−16

Anabaena flos-aquae Cyanobacteria 4558954 ± 200900 4.4% 0.992 2.234 × 10−05

(N-Fixing)
Aphanizomenon flos-aquae Cyanobacteria 41843061 ± 1922319 4.6% 0.956 2.556 × 10−16

Aphanizomenon flos-aquae Cyanobacteria 2572011 ± 78403 3.0% 0.996 5.149 × 10−06

(N-Fixing)
Aphanizomenon skuja Cyanobacteria 35436153 ± 2433351 6.9% 0.955 4.654 × 10−08

Aphanizomenon skuja Cyanobacteria 3681562 ± 86554 2.4% 0.998 1.826 × 10−06

(N-Fixing)
Chlamydomonas reinhardtii Chlorophyte 2216571 ± 67617 3.1% 0.996 5.164 × 10−06

Chlorella vulgaris Chlorophyte 6046780 ± 83884 1.4% 0.997 < 2 × 10−16

Coelastrum proboscideum Chlorophyte 6297438 ± 256948 4.1% 0.965 < 2 × 10−16

Dolichospermum lemmermannii Cyanobacteria 190841800 ± 4557838 2.4% 0.994 1.448 × 10−12

Dolichospermum lemmermannii Cyanobacteria 15818843 ± 470152 3.0% 0.996 4.654 × 10−06

(N-Fixing)
Microcystis aeruginosa Cyanobacteria 54845244 ± 1303300 2.4% 0.990 < 2 × 10−16
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Figure A.1: Linear relationships of cell number to A750. Dashed lines indicate error in
slope estimates.
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Appendix B

Supplemental Data for Chapter 3

B.1 Results
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B.1.1 Growth Rates

Figure B.1: Growth rates (`) of each species calculated by using Eq. 3.1.
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B.1.2 Dissolved Nutrients

Figure B.2: Dissolved phosphorus concentrations during growth of each species.
Dissolved P is reported as mM of P. Species labelled with (-N) are grown without
inorganic N in the media and are N-fixing.
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Figure B.3: Dissolved iron concentrations during growth of each species. Dissolved Fe
is reported as `M of Fe. Species labelled with (-N) are grown without inorganic N in the
media and are N-fixing.
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Figure B.4: Dissolved organic carbon (DOC) concentrations during growth of each
species. DOC is reported as mM of C. Species labelled with (-N) are grown without
inorganic N in the media and are N-fixing. Precision is ±0.25mM C.
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B.1.3 C:N Ratios

Figure B.5: C:N elemental ratios during growth of each species. Species labelled with
(-N) are grown without inorganic N in the media and are N-fixing.
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B.1.4 Isotopic Composition

B.1.4.1 X13C-POC

Table B.1: Time series carbon isotopic composition for each species with X13C of DIC,
bulk POC and calculated new biomass POC (using Eq. 3.2). Stable isotopic fractionation
factor calculated between the DIC and the new POC are presented as U and n .

X13C- X13C- X13C-
Species Day A750 DIC POC�D;: POC#4F U n

Anabaena 0.00 0.0182 -4.72 -19.50
flos-aquae 8.02 0.0496 -4.21 -19.46 -19.43 1.0150 15.0

13.94 0.0921 0.35 -17.58 -15.38 1.0113 11.3
20.94 0.1682 2.39 -16.60 -15.41 1.0160 16.0
29.05 0.2451 1.91 -15.28 -12.40 1.0150 15.0

Anabaena 0.00 0.0039 -7.10 -19.94
flos-aquae 8.02 0.0096 -11.15 -18.30 -17.15 1.0102 10.2
(N-Fixing) 13.94 0.0116 -11.69 -18.10 -17.13 1.0061 6.1

20.94 0.0197 -11.53 -18.58 -19.27 1.0077 7.7
29.05 0.0287 -11.32 -18.89 -19.56 1.0082 8.2

Aphanizomenon 0.00 0.0121 -2.83 -18.71
flos-aquae 8.02 0.0714 -2.47 -20.13 -20.42 1.0180 18.0

13.94 0.1082 0.06 -21.03 -22.79 1.0208 20.8
20.94 0.1568 0.33 -21.01 -20.96 1.0215 21.5
29.05 0.2477 1.19 -22.35 -24.65 1.0256 25.6

Aphanizomenon 0.00 0.0055 -8.55 -19.31
flos-aquae 8.02 0.0223 -8.40 -18.44 -18.16 1.0098 9.8
(N-Fixing) 13.94 0.0258 -8.30 -17.79 -13.63 1.0053 5.3

20.94 0.0320 0.33 -19.81 -28.31 1.0206 20.6
29.05 0.0432 -8.63 -18.51 -14.82 1.0154 15.4

Aphanizomenon 0.00 0.0029 -1.90 -20.76
skuja 8.02 0.0756 -1.84 -16.95 -16.80 1.0152 15.2

13.94 0.1301 1.53 -17.59 -18.47 1.0169 16.9
20.94 0.1522 0.89 -19.27 -29.20 1.0317 31.7
29.05 0.3334 1.88 -21.24 -22.90 1.0243 24.3

Aphanizomenon 0.00 0.0032 -9.33 -21.17
skuja 8.02 0.0174 -8.69 -19.47 -19.09 1.0099 9.9
(N-Fixing) 13.94 0.0261 -8.15 -18.16 -15.53 1.0070 7.0

20.94 0.0309 -10.94 -17.97 -16.96 1.0090 9.0
29.05 0.0561 -6.02 -17.65 -17.25 1.0064 6.4

Chlamydomonas 0.00 0.0190 -8.86 -17.59
reinhardtii 8.02 0.0754 -4.29 -18.46 -18.75 1.0101 10.1

13.94 0.1011 -0.70 -19.97 -24.42 1.0206 20.6
20.94 0.1185 -0.09 -21.36 -29.42 1.0296 29.6
29.05 0.1508 0.87 -22.12 -24.93 1.0255 25.5

Chlorella 0.00 0.0164 -5.94 -18.43
vulgaris 8.02 0.0793 -5.52 -18.50 -18.52 1.0128 12.8

131



Continuation of Table B.1
X13C- X13C- X13C-

Species Day A750 DIC POC�D;: POC#4F U n

13.94 0.1180 -1.57 -18.80 -19.43 1.0142 14.2
20.94 0.1492 -1.41 -19.55 -22.38 1.0213 21.3
29.05 0.1892 0.45 -19.79 -20.69 1.0197 19.7

Coelastrum 0.00 0.0268 -10.47 -17.24
proboscideum 8.02 0.0851 -3.20 -19.75 -20.90 1.0107 10.7

13.94 0.1052 0.21 -19.19 -16.82 1.0139 13.9
20.94 0.1313 0.11 -20.67 -26.63 1.0276 27.6
29.05 0.1437 0.66 -20.99 -24.38 1.0251 25.1

Microcystis 0.00 0.0443 -6.73 -17.20
aeruginosa 8.02 0.1816 -0.37 -17.59 -17.71 1.0112 11.2

13.94 0.2278 0.25 -19.40 -26.55 1.0269 26.9
20.94 0.2759 0.02 -21.56 -31.76 1.0331 33.1
29.05 0.3491 1.18 -22.82 -27.58 1.0284 28.4
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B.1.4.2 X15N-PON

Table B.2: Time series carbon isotopic composition for each species with X15N of DIN,
bulk PON and calculated new biomass PON (using Eq. 3.2). Stable isotopic fractionation
factor calculated between the DIN and the new PON are presented as U and n .

X15N- X15N- X15N-
Species Day A750 DIN PON�D;: PON#4F U n

Anabaena 0.00 0.0182 -15.1 -15.38
flos-aquae 8.02 0.0496 -15.1 -15.26 -15.19 1.0001 0.1

13.94 0.0921 -15.1 -15.68 -16.18 1.0011 1.1
20.94 0.1682 -15.1 -16.79 -18.13 1.0031 3.1
29.05 0.2451 -15.1 -19.89 -26.67 1.0119 11.9

Anabaena 0.00 0.0039 0 -11.13
flos-aquae 8.02 0.0096 0 -12.50 -13.46 1.0136 13.6
(N-Fixing) 13.94 0.0116 0 -15.00 -27.00 1.0277 27.7

20.94 0.0197 0 -12.17 -8.13 1.0082 8.2
29.05 0.0287 0 -19.03 -34.08 1.0353 35.3

Aphanizomenon 0.00 0.0121 -15.1 -15.15
flos-aquae 8.02 0.0714 -15.1 -17.21 -17.63 1.0026 2.6

13.94 0.1082 -15.1 -16.11 -13.97 0.9989 -1.1
20.94 0.1568 -15.1 -17.10 -19.32 1.0043 4.3
29.05 0.2477 -15.1 -18.01 -19.58 1.0046 4.6

Aphanizomenon 0.00 0.0055 0 -12.61
flos-aquae 8.02 0.0223 0 -9.78 -8.85 1.0089 8.9
(N-Fixing) 13.94 0.0258 0 -11.77 -24.37 1.0250 25.0

20.94 0.0320 0 -12.44 -15.22 1.0155 15.5
29.05 0.0432 0 -11.52 -8.93 1.0090 9.0

Aphanizomenon 0.00 0.0029 -15.1 -14.96
skuja 8.02 0.0756 -15.1 -14.00 -13.96 0.9988 -1.2

13.94 0.1301 -15.1 -15.79 -18.28 1.0032 3.2
20.94 0.1522 -15.1 -16.71 -22.10 1.0072 7.2
29.05 0.3334 -15.1 -16.24 -15.84 1.0008 0.8

Aphanizomenon 0.00 0.0032 0 -10.12
skuja 8.02 0.0174 0 -9.71 -9.61 1.0097 9.7
(N-Fixing) 13.94 0.0261 0 -11.28 -14.42 1.0146 14.6

20.94 0.0309 0 -11.34 -11.70 1.0118 11.8
29.05 0.0561 0 -15.67 -20.98 1.0214 21.4

Chlamydomonas 0.00 0.0190 -15.1 -18.10
reinhardtii 8.02 0.0754 -15.1 -15.54 -14.67 0.9996 -0.4

13.94 0.1011 -15.1 -16.79 -20.48 1.0055 5.5
20.94 0.1185 -15.1 -17.54 -21.90 1.0070 7.0
29.05 0.1508 -15.1 -18.81 -23.45 1.0085 8.5

Chlorella 0.00 0.0164 -15.1 -15.87
vulgaris 8.02 0.0793 -15.1 -15.47 -15.37 1.0003 0.3

13.94 0.1180 -15.1 -16.47 -18.52 1.0035 3.5
20.94 0.1492 -15.1 -16.07 -14.55 0.9994 -0.6
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Continuation of Table B.2
X15N- X15N- X15N-

Species Day A750 DIN PON�D;: PON#4F U n

29.05 0.1892 -15.1 -16.91 -20.03 1.0050 5.0
Coelastrum 0.00 0.0268 -15.1 -15.53
proboscideum 8.02 0.0851 -15.1 -16.50 -16.95 1.0019 1.9

13.94 0.1052 -15.1 -16.29 -15.42 1.0003 0.3
20.94 0.1313 -15.1 -17.11 -20.41 1.0054 5.4
29.05 0.1437 -15.1 -17.87 -25.98 1.0112 11.2

Microcystis 0.00 0.0443 -15.1 -16.33
aeruginosa 8.02 0.1816 -15.1 -16.07 -15.99 1.0009 0.9

13.94 0.2278 -15.1 -15.83 -14.90 0.9998 -0.2
20.94 0.2759 -15.1 -16.82 -21.48 1.0065 6.5
29.05 0.3491 -15.1 -17.60 -20.53 1.0055 5.5
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