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Abstract 

Lakes are globally significant sources, sinks, and conduits of carbon. Cultural eutrophication of 

freshwater promotes the growth of phytoplankton blooms, which can transform, respire, and sequester 

large amounts of carbon. Analysis of stable carbon isotopes is a common tool to study the movement of 

carbon through the aquatic carbon cycle. The causes of temporal variability in δ13C values at different 

timescales are not well understood, and differ between lakes. In this study, I investigated diel, seasonal, 

and interannual variability in δ13C values of dissolved inorganic carbon (DIC) and particulate organic 

carbon (POC) in Lake 227, an artificially eutrophic lake at the IISD Experimental Lakes Area in 

northwestern Ontario, Canada. Weekly phosphorus additions to Lake 227 promote the growth of annual 

phytoplankton blooms. I interpreted hourly overnight change in δ13C-DIC values to determine the 

relative contributions of atmospheric gas exchange and ecosystem respiration (ER) to the DIC pool on a 

diel timescale. I also interpreted the drivers of temporal variability in δ13C-DIC and δ13C-POC values on 

weekly to seasonal timescales from regular sampling events during the ice-free season since 2010.  

Collecting δ13C-DIC samples overnight is labour-intensive and this study is one of few that reports 

overnight δ13C-DIC values for a lake. I collected hourly samples between sunset and sunrise on three 

occasions: during an epilimnion phytoplankton bloom dominated by cyanobacteria, a bloom composed 

of cyanobacteria and chlorophytes, and a period of biomass decline between the two blooms. 1 m 

samples represented conditions in the well-mixed epilimnion, and 3 m samples represented a depth of 

highly-concentrated biomass in the metalimnion. Overnight change in δ13C-DIC values varied between a 

3 ‰ increase and 18 ‰ decrease. The values of δ13C-DIC at 1 m were closer to the value of δ13C-DIC 

produced by ER during the blooms, but closer to the δ13C-DIC value in equilibrium with the atmosphere 

during the lower-biomass period. Gas exchange and lake metabolism calculations confirmed that ER was 

the dominant source of DIC to the epilimnion during the blooms. The rate of ER controls the overnight 

increase in [DIC] and decline in pH. Daytime pH tended to reach 9.5-9.7 during the blooms, which 
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allowed for a low rate of chemically enhanced diffusion (CED). Accounting for CED, the rate of gas 

exchange was lower or equal to the rate of ER during the ice-free season. The 3 m sampling depth acted 

as a closed system as lake metabolism drove changes in DIC concentration. Understanding diel 

variability in DIC concentration and δ13C-DIC is important for modeling values of photosynthetic 

fractionation, and interpreting seasonal δ13C-DIC and δ13C-POC values.  

Changes in weekly mid-morning δ13C-DIC and δ13C-POC values were driven by changes in the 

concentration of phytoplankton biomass. Phytoplankton blooms in Lake 227 lower the DIC 

concentration below equilibrium with the atmosphere. Lower DIC concentrations occurred in 

conjunction with high δ13C-POC values and low δ13C-DIC values. Since sampling began in 2010, when the 

epilimnion concentration of chlorophyll a was greater than 30 μg L-1 and the DIC concentration was less 

than 50 μg L-1, the range in δ13C-POC values was narrow: between -26 ‰ and -23 ‰. Outside of these 

thresholds, observed values of δ13C-POC were as low as -36 ‰. Similar relationships did not exist at 3 m, 

as the phytoplankton peak shifted vertically in the water column over each ice-free season. The lowest 

daytime δ13C-DIC values at 1 m corresponded with the lowest DIC concentrations, and the overnight 

δ13C-DIC values were also lowest when the DIC concentration was low during the phytoplankton blooms. 

DIC fixation caused pH to increase during the phytoplankton blooms, reducing the proportion of DIC that 

was dissolved CO2, and decreasing the amount of photosynthetic fractionation. These trends repeated 

across years, and should lead to a high, consistent δ13C value of the lake sediments.  

Lake 227 is an ideal setting to investigate the drivers of temporal variability in δ13C-DIC and δ13C-POC in a 

eutrophic lake. The concentration of biomass and phytoplankton species composition tends to repeat 

each year, and there is a long history of comprehensive physical, geochemical, and biological 

monitoring. The data I present in this thesis provide new insight into how changes in phytoplankton 

concentration and carbonate geochemistry drive temporal variability in δ13C values on diel, seasonal, 

and interannual timescales.   
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Chapter 1: Introduction 

Lakes are an active component of the global carbon (C) cycle, serving as sources of carbon to the 

atmosphere, sinks of carbon to lake sediments, and conduits of carbon to downstream water bodies 

(Cole et al., 2007; Tranvik et al., 2009). Globally lakes emit approximately 0.32-0.53 Pg C yr-1 to the 

atmosphere and bury 0.05-0.12 Pg C yr -1 in sediments (Anderson et al., 2020; Raymond et al., 2013; 

Tranvik et al., 2009). Lakes account for 2.2% of global land area, but these fluxes are 2-4 times less than 

the annual amounts of carbon accumulated in the ocean and buried in marine sediments: 2.2 Pg C yr-1 

and 0.2 Pg C y-1, respectively (Battin et al., 2009; Raymond et al., 2013). Phytoplankton are key to many 

of the biological and chemical processes of the aquatic carbon cycle, as they fix dissolved inorganic 

carbon (DIC) through photosynthesis, produce DIC through respiration, and ultimately bury organic 

carbon as cells die and settle at the bottom of lakes. In this work, I investigate the relationship between 

phytoplankton and DIC in the aquatic carbon cycle using stable isotope analysis.  

1.1 Algal Blooms 

The terms ‘algal bloom’ and ‘phytoplankton bloom’ are used by scientists and the general public to 

describe the visible accumulation of phytoplankton in a body of water (Watson et al., 2016). Algal 

blooms affect the drinking water quality, aquatic health, recreation potential, and the overall aesthetic 

of a variety of water bodies (Schindler & Vallentyne, 2008). They can be composed of a diverse algal 

community or dominated by one or more taxa; create an unpleasant surface scrum or congregate at 

depth; and be harmful to human, animal, and aquatic life or be a benign nuisance. Overall, algal blooms 

are a wide-reaching and diverse problem, becoming increasingly common globally due to nutrient 

pollution and climate change (Carpenter et al., 1998; Heisler et al., 2008).  
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Harmful algal blooms 

A harmful algal bloom (HAB) has the potential to be toxic to human, animal, and fish health, and is 

typically associated with the release of toxins by cyanobacteria as they die (Watson et al., 2015). 

Cyanobacteria, commonly referred to as ‘blue-green algae’, are a phylum of photosynthetic bacteria 

that macroscopically resemble eukaryotic algae. Colonizing (e.g. Microcystis spp.) and filamentous (e.g. 

Anabaena spp., Aphanizomenon spp.) taxa are common in freshwater blooms, although specific species 

and strains within these taxa may or may not produce toxins (Carpenter, 2008; Schindler & Vallentyne, 

2008). In addition to the potential for toxin release, cyanobacteria-dominated blooms can have negative 

effects on water taste and odour, and lead to shading, fouling, hypoxia, and reduced biodiversity in 

water bodies (Watson et al., 2015). The economic costs associated with HABs include increased 

healthcare, loss of tourism revenue from beach and lake closures, reduced aquaculture, loss of access to 

drinking water sources, and the associated costs of mitigation, monitoring, and water treatment 

(Hoagland & Scatasta, 2006). Researchers have estimated that the effects of HABs in Lake Erie alone cost 

$272 million annually in Canada (2015 Canadian dollars; Smith et al., 2019).  

The costs and harmful effects associated with algal blooms have spurred significant scientific research 

across disciplines and environments, leading to a more nuanced approach to preventing and managing 

blooms (Heisler et al., 2008). Major successes have occurred as a result of past research, including the 

reversal of hypoxia in Lake Erie during the 1970s through reduced loading of phosphorus (P; Charlton et 

al., 1993; Dove & Chapra, 2015). While phytoplankton biomass can be controlled by managing P, 

reduction is often difficult and algal blooms persist. Researchers have been studying the role of other 

macro- and micronutrients in bloom development and species composition to offer additional 

management strategies (Molot et al., 2014; Sunda, 2006; Van Dam et al., 2018).  
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Nutrient stoichiometry 

Phytoplankton require carbon, nitrogen (N) and P to grow. Marine phytoplankton cells are typically 

composed of C, N, and P in a molar ratio of 106:16:1, respectively, which indicates sufficient nutrient 

availability (Goldman et al., 1979; Redfield, 1958). The molar ratios C:N, C:P, and N:P of phytoplankton in 

freshwater systems are more variable than in the ocean, and tend to be greater than the Redfield ratio 

(Hecky et al., 1993). These ratios are indicators of nutrient deficiency, with ratios above a certain 

threshold indicating N or P limitation (Wetzel, 2001).  

Atmospheric exchange of CO2 provides a sufficient supply of DIC to promote the growth of 

phytoplankton in lakes (Schindler et al., 1972). The atmosphere also supplies lakes with dissolved N2, 

which diazotrophic phytoplankton taxa can fix in sufficient quantities to overcome N-limitation (Higgins 

et al., 2018). There is no gaseous form of P that enters lakes; natural weathering of phosphate-rich rocks 

supply lakes with varying amounts of P, and anthropogenic sources such as fertilizer and wastewater can 

contribute high amounts of N and P (Carpenter, 2008).  

Lakes with high nutrient supply and high rates of primary productivity are classified as eutrophic. 

Eutrophic lakes tend to be turbid, with an abundance of phytoplankton and aquatic plants in the 

epilimnion and a low-oxygen hypolimnion. Conversely, oligotrophic lakes are clear, have low nutrient 

concentrations and low rates of primary productivity, and high hypolimnetic oxygen concentrations. 

While naturally eutrophic lakes do exist, it is more common that human activities cause oligotrophic 

lakes to become eutrophic by releasing high amounts of N and P into waterways (Schindler & 

Vallentyne, 2008). This process, referred to as cultural eutrophication, results mainly from nutrient-rich 

agricultural run-off and wastewater effluent (Carpenter et al., 1998).  

The concentrations of dissolved C, N, and P in lakes are variable over time, and freshwater 

phytoplankton have adapted to access these elements when they are scare (Heisler et al., 2008). 
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Cyanobacteria may dominate blooms in lakes that have a low concentration of N or C. Some species of 

cyanobacteria have heterocyte cells, enabling them to fix atmospheric N2 and thrive in aquatic 

environments with low concentrations of NO3
- and NH4

+ (Flett et al., 1980; Paerl, 1990). All 

cyanobacteria rely on carbon concentrating mechanisms (CCMs) to support photosynthesis at low 

concentrations of dissolved CO2 (Badger & Price, 2003; Giordano et al., 2005). 

Carbon concentrating mechanisms 

Phytoplankton fix CO2 during photosynthesis. Uptake of dissolved CO2 into the phytoplankton cell can 

occur passively by diffusion, but phytoplankton also use CCMs to more effectively increase their internal 

CO2 concentration (Giordano et al., 2005). In lakes with low DIC concentrations, or alkaline lakes where 

the majority of DIC is HCO3
-, CCMs are necessary to saturate RuBisCO with CO2 for fixation. 

CCMs differ between cyanobacteria and eukaryotic algae, and also between taxa. Cyanobacteria 

concentrate HCO3
- in their cytosol and then convert HCO3

- to CO2 in their carboxysome (Badger & Price, 

2003). Most freshwater cyanobacteria can actively take up HCO3
- at low and high concentrations or 

convert CO2 to HCO3
- as it passes through the plasmalemma (Kaplan & Reinhold, 1999; Giordano et al., 

2005). Freshwater β-cyanobacteria are better able to transport CO2 and HCO3
- under changing 

conditions than marine α- and β-cyanobacteria, as freshwater cyanobacteria have adapted to the 

frequent changes in dissolved CO2 concentrations in lakes (Badger, 2003). Eukaryotic algae CCMs are 

diverse, and include membrane transporters, pyrenoids, photosynthetic pathways similar to C4 

photosynthesis, and secreting carbonic anhydrase between the plasma membrane and cell wall 

(Giordano et al., 2005). Low concentrations of dissolved CO2 in lakes may promote the growth of 

phytoplankton species with CCMs (Van Dam et al., 2018). 
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1.2 The Aquatic Carbon Cycle 

Primary production by phytoplankton is a key component of the aquatic carbon cycle, as phytoplankton 

fix, respire, and sequester carbon (Cole et al., 2007). Figure 1.1 summarizes some of the major reactions 

involving DIC, dissolved organic carbon (DOC), and organic matter (OM) in the aquatic carbon cycle. 

Allochthonous carbon originates from the atmosphere, surrounding catchment, and from groundwater 

and surface water inputs (Dillon & Molot, 1997). In-lake processes including photosynthesis, ecosystem 

respiration (ER), photolysis, and redox reactions involving methane produce autochthonous carbon by 

transforming allochthonous and autochthonous DIC, DOC, and OM (Bastviken et al., 2008; Molot & 

Dillon, 1997; Schindler & Fee, 1973). Aquatic carbon may be emitted back into the atmosphere as CO2, 

buried in lake sediments, or transported downstream (Cole et al., 2007).  

 

Figure 1.1: Summary of aquatic carbon sources, fates, and in-lake transformations in Lake 227. Lake 227 is a 
freshwater, thermally stratified lake with no groundwater inputs at the IISD Experimental Lakes Area in 
northwestern Ontario, Canada. 

Primary productivity in lakes 

Individual lakes can serve as net sources or sinks of carbon relative to the atmosphere (Cole et al., 1994). 

Whether a lake is a source or sink is related to its rate of net ecosystem production (NEP; Equation 1.1), 

the difference between gross primary productivity (GPP) and ER (Odum, 1956). Net autotrophic lakes 
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(GPP > R) are net sinks of carbon and tend to be eutrophic: larger standing crops of phytoplankton fix 

CO2 and sequester that carbon in lake sediments. Net heterotrophic lakes (GPP < R) are net sources of 

carbon emissions and tend to be oligotrophic, as ER is greater than the amount of CO2 sequestered by a 

smaller standing crop of phytoplankton (del Giorgio and Peters, 1993).  

𝑁𝐸𝑃 = 𝐺𝑃𝑃 − 𝑅                (1.1) 

The concentration of dissolved CO2 in a lake is linked to primary productivity in a way that is 

“bidirectional and intrinsically complex” (Vogt et al., 2017). Supersaturation of CO2 in oligotrophic lakes 

can lead to increased rates of GPP as phytoplankton fix more CO2 (Jansson et al., 2012). If GPP is already 

high, as in eutrophic lakes with anthropogenic inputs of N and P, large crops of phytoplankton fix 

enough dissolved CO2 during the day to cause undersaturation (Balmer & Downing, 2011; Schindler et 

al., 1972). Although phytoplankton can acquire sufficient DIC from the atmosphere to support 

phytoplankton blooms, access to DIC can become limiting on diel timescales as phytoplankton drawn 

down the concentration (Verspagen et al., 2014). In both oligotrophic and eutrophic lakes with sufficient 

allochthonous carbon inputs, dissolved CO2 can be supersaturated with respect to the atmosphere and 

promote higher rates of GPP (Bogard & del Giorgio, 2016; Dubois et al., 2009).   

The carbonate system 

The concentration of dissolved CO2 in any body of water is related to many of its chemical properties 

through the carbonate system, the species produced through a series of equilibrium reactions when CO2 

dissolves in water (Equation 1.2; Falkowski & Raven, 2007). Biological production and consumption of 

CO2, inputs from the atmosphere, and the interaction of water with the geology of the surrounding area 

control the concentration of CO2 and its ions (Wetzel, 2001). 

𝐶𝑂2(𝑎𝑞) + 𝐻2𝑂 ↔ 𝐻2𝐶𝑂3 ↔ 𝐻𝐶𝑂3
− + 𝐻+ ↔ 𝐶𝑂3

2− + 2𝐻+            (1.2) 
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Carbonic acid, H2CO3, exists in very low concentrations compared to CO2(aq). It is standard practice to 

combine [H2CO3] and [CO2] as one term, because [H2CO3] + [CO2(aq)] ≈ [CO2(aq)] (Stumm & Morgan, 1996). 

Total DIC is therefore the sum of dissolved CO2, HCO3
- and CO3

2-. The relative amounts of these three 

species vary with pH at a given temperature and pressure (Figure 1.2). Most freshwater lakes have a pH 

between 6 and 9, a range over which the fraction of DIC that is CO2 changes from nearly half to < 1% 

(Wetzel, 2001). As CO2 is added to water, the equilibria in Equation 1.2 shifts to the right, decreasing pH 

by causing an increase in [H+]. If CO2 is removed, pH increases. 

 

Figure 1.2: Distribution of the three dissolved carbonate species along a pH gradient at standard temperature and 
pressure. 

The carbonate system protects against environmentally hazardous pH swings by providing buffering 

capacity. HCO3
- and CO3

2- neutralize acids by accepting protons (Wetzel, 2001). Carbonate alkalinity is 

the sum of the concentrations of these ions and OH-, minus the concentration of H+ (Equation 1.3; 

Stumm & Morgan, 1996). Researchers measure carbonate alkalinity to determine the maximum amount 
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of acid that a system can neutralize before a substantial drop in pH. Systems with high carbonate 

alkalinity have a higher buffering capacity and can neutralize more acid.  

[𝐶𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑒 𝑎𝑙𝑘𝑎𝑙𝑖𝑛𝑖𝑡𝑦] = [𝐻𝐶𝑂3
−] + 2[𝐶𝑂3

2−] + [𝑂𝐻−] − [𝐻+]          (1.3) 

Increasing or decreasing [CO2](aq) does not explicitly affect carbonate alkalinity, because CO2 does not 

change the net charge balance in Equation 1.3. However, changes in [CO2](aq) tend to occur 

simultaneously with other reactions that do impact alkalinity. For example, photosynthesis consumes 

CO2(aq), but also NO3
-, NH4

+, and HPO4
2-; while the change in [CO2] does not consume H+ or OH-, the 

assimilation of the other ions does (Stumm & Morgan, 1996).  

HCO3
- and CO3

2- predominantly come from carbonate rocks that slowly dissolve in water. Hard water 

lakes are underlain by carbonate rocks like limestone, have high concentrations of HCO3
- and CO3

2-, a 

high buffering capacity, and are resistant to changes in pH when acid enters the system. Soft water lakes 

are underlain by silicate rocks like granite, and have a lower alkalinity and a lower buffering capacity 

(Wetzel, 2001); pH is sensitive to small changes in [DIC] in these systems (Figure 1.3). 

 

Figure 1.3: pH values at low alkalinity and low [DIC] values, similar to a soft water eutrophic lake (based on Figure 
4.10 in Stumm and Morgan, 1996). 
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Methane in the aquatic carbon cycle 

There is growing interest in aquatic methane (CH4) production as a source of CH4 to the atmosphere 

(DelSontro et al., 2018; Sanches et al., 2019). CH4 that does not escape to the atmosphere can also be a 

source of dissolved CO2 in lakes. Bacteria ferment organic matter under anoxic conditions, producing 

CH4 and CO2 in the anoxic hypolimnion and at the sediment-water interface (Equation 1.4).  

𝐶𝐻3𝐶𝑂𝑂𝐻 →  𝐶𝐻4 + 𝐶𝑂2                      (1.4) 

In the oxygenated water column, anoxic CH4 oxidation converts CH4 to CO2 (Equation 1.5).  

𝐶𝐻4 + 2𝑂2 →  𝐶𝑂2 + 2𝐻2𝑂                           (1.5) 

CH4 production in eutrophic lakes is low compared to primary production (Rudd & Hamilton, 1978). I will 

focus on ER and gas exchange with the atmosphere as the dominant sources of CO2 in this work.  

  



 
 

10 
 

1.3 Environmental Stable Isotopes 

Analysis of environmental stable isotopes is a technique to study the movement and transformations of 

nutrients through ecosystems. Isotopes are atoms of an element that have the same number of protons 

but differ in the number of neutrons. One isotope of an element may be predominant, with one or more 

isotopes occurring less abundantly. For example, 98.9 % of carbon atoms have an atomic mass of 12, 

1.1 % have an atomic mass of 13, and < 0.0001 % have an atomic mass of 14. To differentiate between 

isotopes, the sum of protons and neutrons is indicated with a superscript (e.g. 13C). 

Isotopes may be radioactive or stable. Radioactive isotopes decay over time to different elements, while 

stable isotopes do not decay. A stable environmental isotope is any stable isotope involved in 

biogeochemical cycling in the natural environment, including hydrogen, carbon, nitrogen, oxygen, 

silicon, sulfur, iron and strontium (Sulzman, 2007). The natural abundance of these isotopes can be 

measured in gas, water, and solid phases by isotope ratio mass spectrometry (IRMS). The sample is first 

ionized, and the resulting ion beam then travels along a curved track bent by a magnetic field. Heavier 

isotopes will separate from the lighter isotopes along the track, and the isotopes are sorted into Faraday 

cups according to their mass-to-charge ratio (Sulzman, 2007). 

Researchers measure the ratio of two stable isotopes and report the value relative to an international 

standard. The reporting convention for isotope values is to express the ratio as a delta value (δ) in units 

of per mil (‰). δ13C is reported relative to the standard Pee Dee Belmnite (VPDB), a Cretaceous fossil 

(Equation 1.6; Brugnoli & Farquhar, 2000). The 13C:12C ratio of PDB is high relative to the natural range, 

and with the exception of carbonate rocks, most δ13C values are negative (Falkowski & Raven, 2007). 

𝛿13𝐶 =
(13𝐶/12𝐶)𝑠𝑎𝑚𝑝𝑙𝑒

(13𝐶/12𝐶)𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
− 1               (1.6) 

There are measurable differences in δ values across environmental pools. Both heavy and light isotopes 

are involved in physical, biological, and chemical processes, but they are transformed at different rates. 
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This phenomenon is an isotope effect (Brugnoli & Farquhar, 2000). If a reaction does not go to 

completion, one or more isotope effects cause one pool to contain more of the heavy isotope relative to 

the other. The isotopic fractionation factor, α, is the ratio of the heavy to light isotope ratio (R) for each 

pool (Equation 1.7; Farquhar et al., 1989). In the case of carbon, Equation 1.7 could represent a phase 

change between gaseous and dissolved CO2, the conversion of dissolved CO2 to HCO3
-, or assimilation of 

dissolved CO2 through photosynthetic fixation.  

𝛼𝐴/𝐵 =
𝑅𝐴

𝑅𝐵
=

1+𝛿𝐴

1+𝛿𝐵
                              (1.7) 

α values tend to be very close to 1, so in this work I present them as a deviation from 1, ε, in units of per 

mil (‰; Equation 1.8; Farquhar & Richards, 1984).  

𝜀𝐴/𝐵 = 𝛼𝐴/𝐵 − 1                (1.8) 

There are two types of isotope effects that cause isotopic fractionation: equilibrium and kinetic isotope 

effects. Equilibrium isotope effects are temperature-dependent and occur during reversible reactions 

(Brugnoli & Farquhar, 2000). The substance with the higher oxidation state, molar mass, or density 

tends to be associated with a higher δ value in reactions at equilibrium, and ε increases with decreasing 

temperature. 13CO2 is an exception to this pattern, as δ13C-CO2(g) is higher than δ13C-CO2(aq) in equilibrium 

with the atmosphere (Falkowski & Raven, 2007). 

Kinetic isotope effects arise from reactions that occur in one direction, where a substrate is converted 

into a new product (Brugnoli & Farquhar, 2000). The δ value of the product tends to be lower, as lighter 

isotopes have a higher molecular collision frequency than their heavier counterparts and will react more 

quickly (Falkowski & Raven, 2007). Fixation of CO2 by RuBisCO in phytoplankton cells is associated with a 

kinetic isotope effect of up to -28 ‰ (Sharkey & Berry, 1985).  
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Researchers commonly measure stable carbon isotopes of dissolved CO2, DIC, DOC, CH4, and particulate 

organic carbon (POC) in lakes to determine where the carbon originated, the fate of carbon in aquatic 

ecosystems, and how carbon moves through the aquatic food web. Predictable amounts of isotopic 

fractionation occur during reactions that transform carbon in aquatic ecosystems, and many of the 

sources and sinks of carbon have a distinct isotopic value that researchers can measure. From these 

measurements and known isotopic fractionation factors, researchers can infer the sources and 

transformations of carbon in an aquatic ecosystem. 

1.4 IISD Experimental Lakes Area 

I conducted my research at the International Institute for Sustainable Development Experimental Lakes 

Area (IISD-ELA) in northwestern Ontario, 90 km east of Kenora. This research station, comprised of 58 

small boreal lakes and their watersheds, is “the world’s freshwater laboratory”. In the 1960s, concerns 

about freshwater pollution led to the Fisheries Research Board of Canada founding the Experimental 

Lakes Area (Schindler, 2009). Researchers perform physical and chemical manipulations on several small 

lakes to study whole-ecosystem responses to change, allowing for interactions that could not take place 

in a laboratory experiment. Other pristine lakes are monitored as part of a Long-Term Ecological 

Research program (LTER), which allows researchers to investigate how lakes are changing without direct 

human influence, and to compare the conditions in experimental lakes to a control lake.  

History of Lake 227 

Lake 227 (L227) is the site of the longest-running experiment at IISD-ELA. Since 1969, each week during 

the ice-free season researchers have added nutrients to the lake to promote the growth of 

phytoplankton. L227 was initially chosen for this experiment because its DIC concentration was very low, 

and researchers wanted to test whether phytoplankton blooms could grow with abundant access to N 

and P, but very little carbon (Schindler, 2012). The lake quickly became eutrophic, demonstrating that 
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the atmosphere provided sufficient CO2 to allow for the excess growth of phytoplankton (Schindler et 

al., 1972).  

The initial fertilization regime in L227 was a molar N:P ratio of 29:1, similar to loading in the Great Lakes. 

Researchers decreased the ratio in 1975 to 11:1, and from 1990 onwards they only added P (Hendzel et 

al., 1994). Reductions in N additions led to increases in N-fixing cyanobacteria, which now comprise the 

majority of the phytoplankton biomass (Schindler et al., 2008).   

In addition to the eutrophication experiment, L227 has been the site of a food web manipulation study 

(Elser et al., 2000). Researchers added pike to the lake in 1993 to consume all other fish, and then fished 

out the pike in 1996. There have been no fish in L227 since the food web manipulation study.  

After more than 50 years, L227 continues to be an important site for phytoplankton bloom research. 

Ongoing work includes studying the role of iron in bloom formation and phytoplankton community 

composition; the utility of floating wetlands for P removal; monitoring the response of phytoplankton to 

N removal; and continuing to study the impact of phytoplankton on the aquatic carbon, nitrogen, and 

phosphorus cycles.  
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Chapter 2: Site Description and Sample Analysis 

L227 was the principle study site for the research presented in this thesis. There is a wealth of 

geochemical, meteorological, and limnological data available from IISD-ELA from a sampling regime that 

began in 1969. The University of Waterloo Environmental Geochemistry Lab (EGL) has supplemented 

this dataset with dissolved and particulate carbon isotope data since 2010. The sample collection and 

analysis techniques shared by the subsequent chapters are summarized in this section. 

2.1 Site Description 

L227 (49°42’N, 93°42’W) is a 5 ha, bowl-shaped boreal headwater lake with a maximum depth of 10 m 

(Figure A1). The lake is underlain by granitic bedrock and has no known groundwater inputs. Ephemeral 

streams can flow into the lake during snowmelt or following periods of prolonged rain, but otherwise 

hydrologic inputs come from rain and overland flow from the catchment. There is one outflow point on 

the north side of the lake that drains into a wetland.  

Fertilization experiments 

L227 has been the site of an on-going eutrophication experiment since 1969 (Schindler et al., 2008). 

Researchers fertilize the lake by adding nutrients to the epilimnion on a weekly basis from ice-off until 

fall turnover, increasing the total dissolved P concentration to approximately 6-10 μg L-1 during the ice-

free season. Initially, researchers added N and P at a molar ratio of 29:1; this was decreased to 11:1 

starting in 1975, and since 1990 L227 has been fertilized with P only (Hendzel et al., 1994). Researchers 

reduced N inputs in 1975 to test whether low N:P would favour N-fixing species of phytoplankton, and 

then ceased N fertilization in 1990 to test whether reducing N inputs to a lake is an effective strategy to 

control phytoplankton blooms (Higgins et al., 2018; Schindler et al., 2008). 

The current fertilization regime promotes the growth of two annual phytoplankton blooms with 

predictable community compositions (Higgins et al., 2018). N-fixing cyanobacteria dominate the first 
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bloom, which tends to peak in the epilimnion and metalimnion in late June. Following the first bloom, 

phytoplankton biomass declines sharply at both depths, and the second bloom builds gradually from 

mid-July until mid-September. The phytoplankton density of the second bloom is lower than the first, 

and dominated by cyanobacteria and chlorophytes. L227 is an ideal site to study biogeochemical 

relationships under two different phytoplankton community compositions, but otherwise similar 

physical conditions and nutrient loads. 

Ice dates and thermal stratification 

IISD-ELA records ice-off and ice-on dates from Rawson Lake, a 54-hectare lake adjacent to the field 

station. Ice-off is the date when no significant ice remains on the lake, and ice-on is the date when 

Rawson Lake is approximately 80% covered by ice. Ice-off typically occurs between mid-April and early 

May, and the ice-free season typically lasts until early November. Smaller, shallower lakes nearby, such 

as L227, tend to have ice-off and ice-on dates approximately one week earlier than Rawson Lake.  

Following ice-off, the surface of L227 warms quickly and the lake becomes thermally stratified by early- 

to mid-May. The thermocline, where the water temperature changes by more than 0.25 °C/0.25 m, 

marks the bottom of the epilimnion (Spence et al., 2018); for most of late spring and summer, the 

epilimnion depth is 0.5-1.5 m. The metalimnion starts below the epilimnion, and ends at the depth 

where 1 % surface PAR is reached, typically 3-4m (Sandilands, 2018). In early to late fall the surface of 

the lake cools, which leads to mixing. Since 2010, autumn mixing in L227 has typically begun between in 

early- to mid-September, but as late as early November.  

2.2 Sample Collection 

Researchers collected all samples relevant to this thesis from the L227 centre buoy (CB), a permanent 

buoy marking the deepest point in the lake. IISD-ELA collects depth-integrated samples from the 

epilimnion and metalimnion with an integrated sampling device. A standard L227 profile for most 
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geochemical parameters consists of integrated epilimnion and metalimnion samples, and discrete 

samples from 4, 6, 8 and 10 m depths. Instead of integrated epilimnion and metalimnion samples, I 

collected discrete samples for isotopic analysis from 1 m and 3 m depths, as well as the standard 4, 6, 8, 

and 10 m depths, with a gear pump and a weighted line of calibrated tubing. I flushed the tubing with 

lake water from the chosen depth and pumped water directly into sample bottles, then stored the 

samples on ice in the dark before bringing them back to the IISD-ELA field station for processing.  

All researchers collected samples from L227 in mid-morning, between 08:00 and 11:00 CST. In 

productive lakes, where photosynthetic activity during the day causes diel cycles in various geochemical 

parameters, mid-morning samples do not represent the maximum or minimum values in a diel cycle 

(Dubois et al., 2009; Bogard & del Giorgio, 2016). 

Historical geochemical data 

IISD-ELA researchers have sampled L227 monthly or bi-weekly for a suite of physical and geochemical 

parameters during the ice-free season since 1969. Of particular relevance to this study are temperature, 

DIC, chlorophyll a (Chl a), and pH data. Schindler et al., 2008 and Stainton et al., 1977 have described 

detailed fertilization, sample collection and analysis methods.  

Stable carbon isotopes 

I collected samples for δ13C analysis of DIC and POC weekly as water column profiles during the ice-free 

season in 2017 and 2018. Researchers from IISD-ELA and the EGL also collected these samples 

approximately monthly during the ice-free season from 2010-2016, collecting additional sporadic 

isotope samples in December and March of some years.  

All researchers collected δ13C-DIC samples in duplicate in 60 mL glass serum bottles with no headspace, 

and we preserved each sample with at least 5 uL of 100% w/v ZnCl2 solution per 1 mL of water. The 

University of Waterloo Environmental Isotope Lab (EIL) injected the samples with a helium headspace, 
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shook the samples for 90 minutes, and analysed the equilibrated gas for δ13C by GC-CF-IRMS with an 

Agilent 6890 gas chromatograph coupled to a MicroGas-IsoPrime mass spectrometer (Agilent, Santa 

Clara, CA; Elementar UK Ltd., Manchester, UK) or MAT-253 gas isotope ratio mass spectrometer 

(Thermo Fisher Scientific, Waltham, MA).  

All researchers collected 1L of water for δ13C-POC analysis and filtered it through a Whatman QM-A filter 

(Sigma-Aldrich, St. Louis, MI) using a vacuum pump at the IISD-ELA field station. We baked the QM-A 

filters at 550 °C prior to filtering to remove any organic material, and then dried the filters in a 

desiccator overnight after filtering. The EIL packed approximately 1/8 of each filter into an Elemental 

Microanalysis D1002 tin sample cup (Elemental Microanalysis Ltd., UK) and analysed the samples by EA-

IRMS on a Carlo Erba 1108 EA coupled to a DeltaPlusXL continuous flow IRMS (Carlo Erba, Milan, Italy; 

Thermo Fisher Scientific, Waltham, MA). δ13C-DIC and δ13C-POC values are reported relative to VPBD 

with a precision of ± 0.2 ‰.    

Instrumentation 

I deployed a HOBO RX3000 weather station (Onset Computer Corp., Bourne, MA) with instruments at 

1 m above the lake surface on a raft stationed several metres southeast of CB. The weather station 

recorded air temperature, pressure, relative humidity, PAR, and wind speed at 10-minute intervals from 

July-September 2018. IISD-ELA supplied additional local climate data, including temperature, windspeed 

at 10 m, air pressure, and relative humidity from the Rawson Lake meteorological station located 2 km 

west of L227 (Environment Canada Climate ID 6036904).  

I deployed a YSI EXO2 sonde (YSI Inc., Yellow Springs, OH) at 1 m on CB from July-September in 2017 and 

2018 and from May-October in 2019. Every 15 minutes the sonde recorded temperature, pH, specific 

conductivity, and concentrations of dissolved oxygen (DO), Chl a, and phycocyanin, a pigment indicating 

the presence of freshwater cyanobacteria (Kasinak et al., 2014). I collected weekly profiles of the same 
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parameters with it at 0.25-0.5 m intervals from surface to bottom. I also deployed a U26 HOBO logger 

(Onset Computer Corp., Bourne, MA) at 2.5 m on CB from June-September in 2018 and 2019. The logger 

recorded water temperature and DO concentration at 10-minute intervals in the metalimnion, where 

DO is supersaturated for most of the summer. 
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Chapter 3: Ecosystem respiration controls DIC return in a eutrophic boreal lake 

3.1 Introduction 

Lakes are widely recognized as significant sites of carbon processing, sequestration, and emissions in the 

global carbon cycle (Cole et al., 2007). Supersaturation of CO2 in the majority of lakes causes global net 

CO2 emissions of approximately 0.53 Pg C-CO2 annually, a flux equivalent to 74% of the net annual 

anthropogenic greenhouse gas emissions of Canada (Environment and Climate Change Canada, 2019; 

Tranvik et al., 2009). Estimating the flux of CO2 from lakes to the atmosphere requires a detailed 

understanding of aquatic carbon budgets: the balance of autochthonous and allochthonous carbon 

inputs to lakes and subsequent transport to the atmosphere, sediments, or downstream (Chapin et al., 

2006).  

Considerable work has been done to quantify the relative contributions of allochthonous and 

autochthonous carbon to aquatic food webs (Bade et al., 2004; Karlsson et al., 2007; Soloman et al., 

2011). This is appropriate for oligotrophic lakes, where the dominant source of carbon can be the 

surrounding catchment (Wilkinson et al., 2013), but not for eutrophic lakes, where the high amount of 

phytoplankton biomass is more active in autochthonous production and cycling of DIC (Balmer & 

Downing, 2011; Pacheco et al., 2014). As climate change and nutrient pollution are projected to increase 

aquatic primary productivity (Paerl and Huisman, 2009), understanding the role of phytoplankton 

blooms in aquatic carbon budgets is necessary to estimate the global flux of CO2 from lakes (DelSontro 

et al., 2018).  

The aquatic carbon cycle is dynamic, and sources of DIC change on diel, seasonal, and decadal scales 

(Hanson et al., 2006). Gas exchange with atmospheric CO2 and respiration by aquatic organisms and 

microbes are abundant sources of DIC to the epilimnion of stratified eutrophic lakes, with diffusion of 

DIC from the hypolimnion, DIC inputs from streamflow and groundwater, oxidation of methane from 

lake sediments, and photolysis of DOC serving as additional minor sources (Molot & Dillon, 1997; 
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Schindler & Fee, 1973; Whiticar, 1999). The relative contributions of atmospheric CO2 and ER to the 

epilimnetic and metalimnetic DIC pools, where phytoplankton are most abundant, are the focus of this 

chapter.  

Gas exchange is the dominant source of atmospheric CO2 in natural waters with a pH below 8 (Stumm & 

Morgan, 1996; Wanninkhof, 1985). The rate of gas exchange is dependent on the CO2 concentration 

gradient between the air and water, and a modelled temperature-dependent gas exchange coefficient, 

kCO2 (Raymond et al., 1997; Wanninkhof, 1993). Chemically enhanced diffusion (CED), an increase in the 

rate of CO2 diffusion by the factor β, can occur in eutrophic lakes during periods of low wind and high pH 

as a result of the reaction between CO2 and excess OH- (Equation 3.1; Bade & Cole., 2006; Emerson, 

1975). By transforming CO2 into HCO3
-, this reaction maintains a very high concentration gradient 

between atmospheric and dissolved CO2.   

𝐶𝑂2 + 𝑂𝐻− ↔ 𝐻𝐶𝑂3
−                (3.1) 

ER in the water column encompasses CO2 production by aquatic organisms in the surface mixed layer of 

a lake (Equation 3.2; Williams & del Giorgio, 2005; Woodwell & Whittaker, 1968). Researchers estimate 

ER in the water column and from sediments using bottle experiments with an added 14C or 18O tracer, 

whole-lake carbon budget analysis, or high-frequency DO or CO2 measurements (Peeters et al., 2016). 

Bottle experiments with added 14C do not capture high rates of primary productivity when samples are 

collected during periods of low DIC concentration (Schindler and Fee, 1973). Continuous DO 

measurements do not account for anaerobic processes such as fermentation that can contribute 

significantly to the CO2 pool, leading to an over-estimation in carbon sequestration (Bogard and del 

Giorgio, 2016). Changes in dissolved CO2 concentration can be easily measured with modern CO2 probes 

(Peeters et al., 2016), however the sources of CO2 are not evident from these measurements. 

𝐶6𝐻12𝑂2 + 6𝑂2  → 6𝐶𝑂2 + 6𝐻2𝑂              (3.2) 
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Carbon stable isotope values of DIC (δ13C-DIC) reflect the relative contributions of dissolved CO2 sources 

to a lake. δ13C values of two major CO2 sources, the atmosphere and ER, can be directly measured from 

air and particulate organic matter (POM), respectively. The chemical reactions involved in gas exchange, 

CED, and ER are associated with equilibrium and kinetic isotope effects that cause a known amount of 

isotopic fractionation, predictably changing the source δ13C value. DIC in the water column is a mixture 

of CO2 sources, and the δ13C-DIC value reflects the relative contributions of each source. Because 

photosynthesis does not occur at night, the changes in δ13C-DIC during the period between sunset to 

sunrise are indicative of the relative contributions of the major DIC sources to replenishing the DIC pool. 

Measuring δ13C-DIC values between sunset and sunrise provides an opportunity to exploit diel changes 

in δ13C-DIC to learn about the sources of DIC to the epilimnion and metalimnion.  

There are very few studies that measure diel δ13C-DIC values, likely due to the inconvenience of 

accessing field sites overnight or the assumption that diel variability is negligible. Studies investigating 

diel cycles in productive rivers found that δ13C-DIC values decreased overnight and increased during the 

day by 1.5-5 ‰: variations that researchers attributed to biological processes rather than gas exchange 

of CO2 (Parker et al., 2005; Gammons et al., 2011). In eutrophic Lake Taihu, researchers found that diel 

δ13C-DIC variability was far greater than weekly variability (Van Dam et al., 2018). They attributed the 

fluctuations to isotope effects of GPP and ER, but they did not explore gas exchange as a cause of these 

changes despite high pH values. In oligotrophic and mesotrophic lakes in Quebec, Dubois et al. (2009) 

determined that groundwater anaerobic respiration of littoral sediments was a source of excess CO2 

that caused supersaturation. They analysed weekly early-morning DIC concentrations and δ13C-DIC 

samples, and suggested that kinetic isotope fractionation during CO2 degassing to the atmosphere led to 

higher δ13C-DIC values. These studies demonstrate that there is variability in values of δ13C-DIC on a diel 

timescale due to the different fractionation factors of multiple processes that increase or decrease [DIC]. 

Variability in δ13C-DIC values on short timescales can provide insight into the sources of DIC to aquatic 
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systems, and how these sources set the measured value of δ13C-DIC. In this chapter, I interpret overnight 

pH, [DIC], and δ13C-DIC values in a eutrophic lake to (1) estimate the relative contributions of 

atmospheric and respired carbon to determine what sets the morning δ13C-DIC value of this lake, and to 

(2) evaluate if those estimates agree with existing techniques to model DIC inputs to lakes.  
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3.2 Materials and Methods 

See Chapter 2 for a detailed description of the field site, sampling regime, and analysis techniques. 

Overnight sampling 

To measure δ13C-DIC values and assess the sources of DIC without the influence of photosynthesis, I 

collected samples at night from L227 on three occasions: July 10-11, 2018, September 5-6, 2018, and 

June 26-27, 2019. These dates reflect overnight conditions in the epilimnion during one period of 

biomass decline, and two periods of high biomass with different phytoplankton community 

compositions, respectively. In June and July the phytoplankton community was dominated by 

cyanobacteria, and in September the community was composed of a more diverse group of 

phytoplankton, including cyanobacteria and chlorophytes.  

During each sampling event I measured temperature, pH, and concentrations of DO, Chl a, and 

phycocyanin with a YSI EXO2 sonde, and I collected samples for analysis of DIC concentration and 

δ13C-DIC. I collected all measurements and samples hourly from CB between sunset and sunrise, from 

both 1 m and 3 m depths to target high biomass zones in the epilimnion and metalimnion. To allow for 

immediate δ13C-DIC sample preservation, I collected all samples manually as described in Chapter 2 from 

a boat stationed at CB. While in the field I stored the samples on ice in the dark, and upon return to the 

field station I transferred the samples into a refrigerator until analysis.  
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3.3 Calculations and Modelling 

CO2 flux and chemical enhancement 

For all calculations I set the concentration of CO2 in the atmosphere to 410 ppm, the average 

concentration at the Mauna Loa Observatory for May-September in 2018 and 2019 (Tans & Keeling, 

2020). I modeled the hourly rate of diffusive flux (F) of atmospheric CO2 to L227 with Fick’s law 

(Equation3.3). I calculated the equilibrium concentration of CO2 from the temperature-dependent Henry 

constant, kH (Sander, 2015), and measured values of air pressure; and the concentration of aqueous CO2 

from pH, [DIC], and temperature-dependent dissociation constants (Harned & Davies, 1943; Harned & 

Scholes, 1941). To calculate gas exchange (k600) and the gas- and temperature-specific transfer velocity 

(kCO2) I used the k.cole and k600.2.kGAS functions of LakeMetabolizer version 1.5.0 in R version 3.6.1 (R 

Core Team, 2019; Winslow et al., 2016) with 10 m wind speed data from the IISD-ELA meteorological 

station 2 km west of L227. 

𝐹 = 𝑘𝐶𝑂2
𝛽 (𝐶𝑂2𝑎𝑞

− 𝑘𝐻 × 𝑝𝐶𝑂2)              (3.3) 

The chemical enhancement factor, β, in Equation 3.3 is the additional flux due to chemical 

enhancement: the reaction between CO2 and OH- (Equation 3.4; Bade & Cole, 2006). If no chemical 

enhancement occurs, β = 1 and all flux is attributed to atmospheric exchange. Under high-pH and low-

wind conditions β > 1, increasing F by a factor of β. Values of β vary with pH, water temperature, and 

wind speed, but for summer bloom conditions at L227 (water temperature 20-23 °C, pH up to 9.7, low 

wind) the anticipated range of β is 1-4 (Bade & Cole, 2006). 

I calculated β from values of wind speed at 10 m and water temperature and pH at a depth of 1 m 

following the method of Hoover and Berkshire (1969) as presented by Bade and Cole (2006). The 

authors calculated diffusivity (D) according to Jähne et al. (1987); defined the boundary layer (z) as 

D/kCO2 (Lewis and Whitman, 1924); and defined τ with dissociation constants for 𝐶𝑂2 → 𝐻𝐶𝑂3
− and 
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𝐻𝐶𝑂3
− → 𝐶𝑂3

2− by Harned and Davis (1943) and Harned and Scholes (1941), respectively. Following 

Bade and Cole (2006), I defined <r> as the combined rate of the reactions 𝐶𝑂2 + 𝐻2𝑂 → 𝐻2𝐶𝑂3 and 

𝐶𝑂2 + 𝑂𝐻− →  𝐻𝐶𝑂3
− with rate constants from Wang et al. (2010) that I corrected for temperature 

with the Eyring equation.  

𝛽 =
𝜏

(𝜏−1)+{𝑡𝑎𝑛ℎ[(〈𝑟〉𝜏𝐷−1)1/2𝑧]/[(〈𝑟〉𝜏𝐷−1)1/2𝑧]}
             (3.4) 

Lake metabolism 

I calculated rates of GPP, NEP, and ER in R (R Core Team, 2019) as mg O2 L-1 d-1 using the metab.kal 

function in the LakeMetabolizer package (Winslow et al., 2016). I used 10 m wind speed data from the 

IISD-ELA meteorological station; the k600.col and k600.2.kgas.base functions to calculate the gas 

transfer coefficient (k) for O2; and the o2.at.sat.base function and measured water temperature data to 

calculate the equilibrium DO concentration. Instead of using the ts.meta.depths function to estimate z, 

the bottom of the epilimnion, I applied the IISD-ELA definition of the bottom of the epilimnion: a change 

in temperature of more than 0.25 °C over 0.25 m (Spence et al., 2018). 

Unit conversion 

The values I calculated from Fick’s law have units of mmol CO2 m-2 h-1, and the values I modelled with 

LakeMetabolizer have units of mg O2 L-1 d-1. To compare flux and ER values, I converted both into units 

of μmol CO2 L-1 d-1. To convert the rate of atmospheric CO2 flux I divided the hourly rates by z, the 

bottom of the epilimnion, and summed the hourly rates for each day. I converted ER values from their 

original units to μmol O2 L-1 d-1, then multiplied the molar value by a respiratory quotient of 0.81 mol 

CO2 produced/mol O2 consumed. This respiratory quotient is suitable for freshwater phytoplankton in 

net autotrophic lakes (Berggren et al., 2012; see also Williams & del Giorgio, 2005).  
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Isotope end-member values 

I calculated the δ13C values of three DIC sources to L227: atmospheric gas exchange, CED, and ER. The 

amount of isotope fractionation during each process varies (Table 3.1). To calculate the δ13C value of DIC 

originating from atmospheric CO2, I added the values of equilibrium and kinetic isotope fractionation 

during the dissolution of CO2 to the atmospheric δ13C-CO2 value, then accounted for the equilibrium 

isotope effects of redistribution among the three carbonate species at the measured temperature and 

pH (Bade et al., 2004; Mook et al., 1974; Zhang et al., 1995). The δ13C value of atmospheric CO2 is 

approximately -8.5 ‰ (Morales-Williams et al., 2020; Scripps CO2 Program, 2020), and passive diffusion 

of gaseous CO2 across the lake surface causes combined kinetic and equilibrium isotopic fractionation of 

approximately -2 ‰, depending on the water temperature (Zhang et al., 1995). The δ13C value of 

dissolved CO2 originating from the atmosphere was therefore approximately -10.5 ‰. At a pH of 7-9.5 

and a lake temperature of 20 °C, most of the dissolved CO2 becomes HCO3
-, increasing the value of 

δ13C-DIC.  

When pH is higher than approximately 8, CED causes isotope fractionation between CO2(aq) and HCO3
- in 

the reaction 𝐶𝑂2 + 𝑂𝐻− → 𝐻𝐶𝑂3
− (Emerson, 1975; Herzceg, 1987). Researchers typically cite -15 ‰ as 

the value of kinetic isotopic fractionation during CED (Bade and Cole, 2006; Bontes et al., 2006; Lammers 

et al., 2017). Bade and Cole (2006) presented an alternate approach for modelling chemically enhanced 

fractionation (CEF), where β13 is the enhancement factor for the diffusion of 13CO2 (Equation 3.5). I 

calculated β13 by multiplying the parameters in Equation 3.4 by relevant equilibrium and kinetic isotope 

fractionation factors given by Zhang et al. (1995) and described by Bade and Cole (2006). CEF is 

calculated as an isotopic fractionation factor (refer to the calculation of ε, Equation 1.5): the sum of CEF 

and the δ13C value of dissolved CO2 originating from the atmosphere is equal to the value of δ13C-HCO3
- 

originating from CED. Because DIC is predominantly HCO3
- when CED occurs, the δ13C-HCO3

- value is the 
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end-member value for DIC originating form CED. pH, temperature, and wind speed affect the magnitude 

of CEF (Figure A2).  

𝐶𝐸𝐹 = [(𝛽13/𝛽) − 1]                             (3.5) 

I set the endmember for ER as the δ13C-POC value on the day of sampling. In a eutrophic lake such as 

L227, where the majority of particles are phytoplankton, the δ13C-POC value reflects the δ13C value of 

phytoplankton (Higgins et al., 2018). ER is associated with very little isotopic fractionation of carbon, 

causing the production of DIC with a δ13C value close to that of the POC (Finlay, 2003; Venkiteswaran et 

al., 2013). 

Table 3.1: Summary of the values of isotope fractionation (εA/B) between two pools of carbon, A and B, for three 
processes contributing dissolved inorganic carbon (DIC) to L227: gas exchange, chemically enhanced diffusion, and 
respiration. Values for εA/B during gas exchange are for 21 °C as listed in Table 1 in Zhang et al., 1995. I calculated 
the values of chemically enhanced fractionation as outlined in Bade and Cole, 2006: -12.2 ‰ is the lowest value 
given the maximum pH and water temperatures and minimum wind speed for L227.  

Process 
Type of isotope 
fractionation 

A B 
Isotope 
fractionation (εA/B) 

Gas exchange  
Equilibrium Atmospheric 

CO2 
Dissolved 
CO2 

-1.1 ‰  

Kinetic -1.0 ‰  

Chemically enhanced 
diffusion 

Kinetic (chemically 
enhanced fractionation) 

Dissolved CO2 HCO3
- 0 ‰ to -12.2 ‰ 

Respiration  N/A Phytoplankton  DIC 0 ‰ 
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3.4 Results 

Three overnight sampling events represented overnight geochemical changes that can occur during 

three stages of the annual phytoplankton blooms in L227 (Figure 3.1; vertical dashed lines highlight the 

overnight sampling events in figures throughout). I postponed the first planned sampling event in late 

June 2018 due to heavy rain, and instead sampled during the cyanobacteria-dominated bloom on June 

26-27, 2019. Although the June 2019 sampling event is a proxy for the same period in June 2018, Chl a in 

the epilimnion was lower during the June 2019 sampling event than it was the previous year (Figure A3). 

The concentration of phycocyanin in the epilimnion was similar for the same period in both years (not 

shown). The second event, July 10-11, 2018, occurred when phytoplankton biomass was declining after 

the first seasonal cyanobacteria bloom. The last event, September 5-6, 2018, occurred during the 

sustained high-biomass period toward the end of the summer. 

 

Figure 3.1: Phytoplankton cell density by phylum in L227 during the 2018 ice-free season. Dashed lines mark 
overnight sampling events. Note that the June sampling event took place in 2019 under similar conditions. 
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Lake profiles during diel sampling events 

The thermal, chemical, and biological structure of L227 differed between the three sampling events 

(Figure 3.2). The lake was thermally stratified for each sampling event, with a well-mixed epilimnion, and 

peaks in pH, DO, and pigments indicating biomass (Chl a and phycocyanin) at or near the thermocline.  

 

Figure 3.2: Summary of daytime temperature, dissolved oxygen, pH, Chl a, and phycocyanin values in L227 prior to 
or during the overnight sampling events. I measured all values from the centre buoy with a YSI EXO2 sonde.  

The concentration of phycocyanin was highest at 1 m during the June 2019 sampling event, and highest 

at 3 m during the July 2018 sampling event. The July diel sampling event followed a decline in 1 m 

phycocyanin and Chl a concentration (Figures A3 and A4), and a decline in phytoplankton cell density in 

the epilimnion and metalimnion (Figure 3.1). The peak in cyanobacteria shifted down in the water 

column to a depth of 3-3.5 m, where the phycocyanin concentration increased for several weeks before 

reaching a peak in mid-July (Figure A4). The concentration of biomass at 3 m continued to exceed 

biomass at 1 m until the end of August 2018.  
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The concentration of Chl a at 1 m was highest during the September 2018 sampling event, when a 

greater proportion of chlorophytes were present in the epilimnion. Like phycocyanin, Chl a was lowest in 

the epilimnion during the July sampling event. For both July and September, Chl a was higher at 3 m 

than it was in the epilimnion.  

Overnight trends in pH, [DIC], and δ13C-DIC 

The daytime profiles of L227 did not reflect the conditions of the lake during a 24-hour period (Figure 

3.3). There was diel variation in pH, [DIC], and δ13C-DIC throughout the summer, but the overnight trend 

in each parameter was not consistent across the three sampling events. 

 

Figure 3.3: Summary of overnight pH, DIC concentration and δ13C-DIC values in L227 during three half-diel 
sampling events. Hour 0 is midnight CST. 
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The magnitude of pH change over a 24-hour cycle varied on a daily timescale (Figures A5 and A6). pH at 

1 m was relatively stable overnight during the June and July sampling events, decreasing by < 0.5 pH 

units between sunset and sunrise. The average overnight pH was 8.5 for the June event and 7.0 in July, a 

difference that affected the distribution of carbonate species. Less than 1% of the DIC pool was CO2 at 

sunrise in June, while 18% of the DIC pool was CO2 at sunrise in July. During the September sampling 

event pH decreased from 9.5 to 7.5 overnight, causing the proportion of dissolved CO2 in the DIC pool to 

increase from < 1% at sunset to 6.6% by sunrise.  

The DIC concentration increased overnight at 1 m during all diel sampling events. Unlike the 

observations of Schindler and Fee (1973), who measured consistent overnight increases in [DIC] of 

approximately 35-40 μmol L-1 in L227 over two months, the magnitude of [DIC] increase at 1 m was 

variable during our 2018 and 2019 diel sampling events. The DIC concentration was highest and 

increased the most, from 50 μmol L-1 to 100 μmol L-1, during the lower epilimnetic biomass period in 

July. During the higher biomass periods in June and September, [DIC] was < 20 μmol L-1 in the evening 

and increased to 25 μmol L-1 and 54 μmol L-1, respectively, by sunrise (Figure 3.3). There was a negative 

linear relationship between [DIC] and pH measurements at 1 m during the higher epilimnetic biomass 

sampling events only (June r2 = 0.62 and September r2 = 0.91; p < 0.05). 

Both pH and [DIC] remained relatively stable at 3 m in June and September, with similar values during 

each sampling event: average overnight [DIC] was 94 μmol L-1 and pH was approximately 7. In July, when 

biomass at 3 m was highest, pH and [DIC] were highly variable overnight. Although the values did not 

steadily increase or decrease overnight, there was a negative linear relationship between [DIC] and pH 

at 3 m during the July sampling event only (r2 = 0.50, p < 0.05).  

Trends in δ13C-DIC tended to mirror those in [DIC]. As [DIC] increased overnight during the July sampling 

event at 1 m and 3 m, δ13C-DIC decreased. In June at 1 m and 3 m and in September at 3 m, when [DIC] 
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was relatively constant overnight, there was also very little overnight change in the δ13C-DIC values 

(Figures 3.3, 3.4, A7). The exception to this trend was at 1 m during the September sampling event; prior 

to 01:00, [DIC] and δ13C-DIC remained relatively constant, but as [DIC] increased after 01:00, δ13C-DIC 

increased.  

δ13C-DIC values were lower at 1 m than at 3 m for each sampling event. The highest values of δ13C-DIC 

for both depths and the greatest magnitude of overnight change in δ13C-DIC occurred during the July 

sampling event. During the two blooms, δ13C-DIC was relatively constant overnight at both depths.  

Overnight δ13C-DIC values in relation to end-member δ13C-DIC values 

For the range of pH values during the three overnight sampling events and a water temperature of 

20 °C, the range of isotope end-member values for DIC originating from gas exchange was -1.9 ‰ to 

+0.7 ‰. The range of δ13C values for DIC originating from CED at a water temperature of 20 °C and wind 

speed of 0.17 m/s, the lowest wind speed at 10 m above the lake surface, was -10.5 ‰ to -22.6 ‰ 

(Figure 3.4). The ER end-member values at 1m were -22.2 ‰ and -24.2 ‰ during the overnight sampling 

events in June and September, respectively, and -27.7 ‰ during the July overnight sampling event. The 

3 m δ13C-POC values were lower than the corresponding 1 m values by -2.5 ‰ to -7.1 ‰ (Figure A7).  

The 1 m δ13C-DIC values at 1m fell within the end-member values for gas exchange and ER (Figure 3.4). 

In June and September, the 1 m δ13C-DIC values also fell between the ER and CED end-members. The 

δ13C-DIC values were highest in the evening during the July sampling event, reaching equilibrium with 

atmospheric δ13C-CO2 values. During the July and September sampling events, the measured δ13C-DIC 

values were much closer to the values of δ13C-DIC respired by phytoplankton or δ13C-DIC originating 

from CED. Most of the δ13C-DIC values were 15-20 ‰ lower than the gas exchange end-member values. 

The 3 m δ13C-DIC values for all three sampling events were higher than the ER end-members by 18-46 ‰ 

(Figure A7). While the ER end-member was relatively consistent between sampling events, δ13C-DIC was 
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much higher during the July 2018 sampling event, when biomass and pH were highest. Refer to Chapter 

4 for additional results pertaining to isotopic fractionation between DIC and POC in L227.  

 

Figure 3.4: Summary of overnight δ13C-DIC and pH values from 1 m at the L227 centre buoy (points), and δ13C-DIC 
end-member values for atmospheric gas exchange, chemically enhanced diffusion (CED), and ecosystem 
respiration (ER). Refer to the text for descriptions of calculations to determine end-member values. 

L227 as a CO2 source and sink 

L227 was a sink of atmospheric CO2 during the overnight sampling events in June and September, and 

changed from a sink to a source of atmospheric CO2 during the overnight sampling event in July (Figure 

3.5). The hourly rate of CO2 flux into L227 was highest during the June and September sampling events, 

but decreased between sunset and sunrise during all three sampling events. The flux of CO2 into the lake 

decreased overnight as [CO2] increased and approached equilibrium with the atmosphere.  

The concentration of dissolved CO2 was closest to equilibrium with the atmosphere during the July 

overnight sampling event, when the concentration of phytoplankton in the epilimnion was declining. 
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Before midnight the average flux was 0.1 mmol m-2 h-1 and the lake acted as a CO2 sink. After midnight 

the lake began emitting CO2, and the average flux was -0.2 mmol m-2 h-1. DIC in the epilimnion increased 

by 3.32 mol between sunset and sunrise, but net DIC emissions from the epilimnion were 0.02 mol.  

 

Figure 3.5: Overnight values of β (the chemical enhancement factor) and atmospheric CO2 flux in the surface of 
L227 during three diel sampling events. Positive values indicate a flux of CO2 into the lake from the atmosphere. 
Hour 0 is midnight CST. 

During the higher-biomass sampling events, [CO2] was consistently below equilibrium with the 

atmosphere. pH and [DIC] were relatively constant overnight during the June sampling event, causing 

the gradient between surface water and atmospheric CO2 to also remain relatively constant; CO2 flux 

into the lake was approximately 0.5 mmol m-2 h-1 all night (Figure 3.5). Total DIC in the epilimnion 

increased by 0.45 mol between sunset and sunrise, and based on the hourly rate of flux, gas exchange 
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accounted for 40% of this increase. In September, as [DIC] increased and pH decreased overnight, the 

flux of atmospheric CO2 decreased from 0.9 mmol m-2 h-1 to 0.3 mmol m-2 h-1 (Figure 3.5). DIC in the 

epilimnion increased by 2.54 mol between sunset and sunrise, and gas exchange accounted for 12% of 

the increase.  

The hourly rates of gas exchange overnight were not equal to the mid-morning rate of gas exchange 

based on the 09:00 value of [DIC] and pH. Calculating the average daily rate of atmospheric CO2 flux into 

L227 based on the average overnight rate of flux and the hourly flux at 09:00 CST gave different results 

(Table 3.2). For the June and July sampling events, the daily rates I calculated from the 09:00 sampling 

event were greater than the rates based on hourly sampling points at night.  

Table 3.2: Summary of average daily flux of CO2 from the surface of L227 reported in units of mmol m-2 d-1 and 
μmol L-1 d-1. The average daily flux is calculated using two methods: the average of all overnight flux measurements 
(n = 10-12), and from a single measurement at 09:00 CST. Flux values are based on the depth of the bottom of the 
epilimnion: 1.25 m on June 26, 2019; 1.5 m on July 10, 2018, and 1.75 m on September 5, 2018. 

The overnight sampling events were the only occasions I collected DIC samples at a high temporal 

resolution. However, assuming a relatively constant alkalinity, I calculated CO2 concentration at 1 m 

from continuous 2018 pH data (Figure A8). Alkalinity in the epilimnion of L227 was 76-137 μeq L-1 during 

the ice-free season in 2018 (not shown). From late July until mid-September, [CO2] followed a daily 

pattern: the highest [CO2] value occurred between 05:00 and 10:00, and the lowest [CO2] value occurred 

between 15:00 and 20:00. The concentration of CO2 was often below equilibrium with the atmosphere 

for the whole day, at times approaching 0 μmol L-1, and the daily rate of CO2 flux into L227 was 8.8-22 

mmol m-2 d-1 (5.8-13.2 μmol L-1 d-1; Figure A9). Even the highest daily rates of atmospheric invasion that I 

calculated during the blooms were lower than the rates Schindler and Fee (1973) calculated during their 

Sampling Event Daily rate of atmospheric CO2 flux  

Average overnight hourly flux Hourly flux at 09:00 CST 

mmol m-2 d-1 μmol L-1 d-1 mmol m-2 d-1 μmol L-1 d-1 

June 10.9 8.7 17.4 14.0 

July -0.97 -0.65 -13.0 -8.7 

September 13.9 8.0 14.6 8.3 
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diel studies of L227: between 24-60 mmol m-2 d-1. Near the beginning and end of the second bloom, 

[CO2] approached or exceeded equilibrium in the morning only. By the end of September, [CO2] in L227 

was consistently greater than the atmosphere, and the lake served as a source of CO2 to the 

atmosphere.  

Chemical enhancement in L227 

CED, which increases the rate of CO2 flux into a lake when pH is high (Equation 3.3), occurred to some 

degree while L227 was thermally stratified: the CED model rarely predicted a β value of 1 (Figure A6). β 

is sensitive to changes in pH, and therefore shifted throughout the day as pH increased or decreased. 

When pH was 7.0-8.5 during the June and July sampling events, β was consistently 1.2-1.5. During the 

September sampling event, when pH was 7.5-9.5, β decreased from 2.2 to 1.2 as pH declined overnight 

(Figure 3.5). There was very low to no wind during each sampling event, which allowed for a thicker 

boundary layer, but the pH conditions were only high enough for chemical enhancement > 1.5 from 

21:00 on September 5 until 01:00 on September 6. As pH declined overnight, so did β and the rate of 

atmospheric CO2 flux into the lake.  

The average wind speed at 1 m above the surface of L227 was typically between 0.5 and 1.5 m/s in 

2018, with overnight wind speeds generally lower than during the day. The daily maximum pH was 

always > 9.4 during the phytoplankton blooms, but the daily minimum pH varied by up to 2.5 pH units, 

6.7-9.2 (Figure A5). Daily periods of high pH allowed for the conditions promoting CED to occur during 

the afternoon and evening when pH was highest, potentially increasing the flux of CO2 for several hours.  

The range of possible β values between late July and early September 2018 was 1-2.9 (Figure A6). pH, 

and therefore β values, were highest during the blooms in the late afternoon and overnight.    
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Primary productivity and ecosystem respiration 

Biological activity in L227 contributed DIC at a higher rate than gas exchange. Daily rates of GPP and ER 

in L227 during the ice-free season in 2018 and 2019 ranged from 18-228 μmol O2 L-1 d-1 and 6-163 μmol 

CO2 L-1 d-1, respectively (Figures A9, A10), while the daily rates of gas exchange with the atmosphere 

were 5.8-13.2 μmol CO2 L-1 d-1 (Figure A9). These values of ER are comparable to measurements 

researchers have previously made in L227: 2.4-122 μmol DIC L-1 d-1 (Schindler & Fee, 1973). GPP tended 

to be higher than ER in 2018: daily rates of NEP were 0-31 μmol O2 L-1 d-1. L227 was net autotrophic, as 

the phytoplankton consumed more CO2 than the ecosystem respired. In 2019, L227 was net autotrophic 

during the cyanobacteria-dominated bloom, but a second bloom did not occur; the lake was 

predominantly net heterotrophic following the decline of phytoplankton in the epilimnion. Daily rates of 

NEP were between 101.5 and -155.8 μmol O2 L-1 d-1 (Figure A10). 

Based on the rates of ER that LakeMetabolizer generated for the June 2019 and September 2018 

overnight sampling events, the majority of DIC added to the epilimnion of L227 between sunset and 

sunrise originated from ER. The rates of ER during the blooms were 13 μmol CO2 L-1 d-1 on June 27, 2019, 

and 53.1 μmol CO2 L-1 d-1 on September 6, 2018. ER generated 53% of the DIC increase overnight during 

the June sampling event, and 70% of the DIC increase during the September sampling event. No ER rate 

is available for the July 2018 overnight sampling event.  

GPP and ER were linearly positively related both years for the time periods displayed in Figure 3.6 (r2 = 

0.75, r2 = 0.87, respectively; p << 0.05). The ranges of GPP and ER were smaller during the cyanobacteria 

and chlorophyte-dominated bloom in August 2018 than during the cyanobacteria-dominated bloom in 

June 2019. The concentration of biomass as phycocyanin was lower during the August 2018 bloom than 

the June 2019 bloom, and more evenly distributed over the range of GPP and ER values. During the June 

2019 bloom, the concentration of phycocyanin was highest at relatively lower rates of GPP and ER.  
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Figure 3.6: The relationship between gross primary productivity (GPP), ecosystem respiration (ER), and daily pH 
change (r2 values range from 0.39-0.52, p << 0.01). Values of GPP are in μmol O2 L-1 d-1, and values of ER are in 
μmol CO2 L-1 d-1. The two triangles represent the September 6, 2018 and June 27, 2019 values (no productivity data 
is available for the July sampling event), and the size of the points reflects the daily maximum concentration of 
phycocyanin. The 2019 values span June 15-July 7, and the 2018 values span July 26-September 11. Only a single 
cyanobacteria-dominated bloom occurred in 2019, and a sensor malfunction prevented data recording prior to July 
26, 2018.  

The daily rates of GPP and ER were linearly related to the net daily pH change (Figure 3.6). Daytime pH 

was 8-9.5 throughout the epilimnion and metalimnion during periods of higher biomass, and 6-7 during 

periods of lower biomass (Figure A4). Maximum daily pH at 1 m was typically highest in the evening 

before sundown, reaching 9.5 during the blooms in August 2018 and June 2019, and decreased 

overnight by 0.5-2.5 pH units (Figure A5). The minimum daily pH occurred between 05:00 and 07:00 

each day. There was no relationship between the daily change in pH and the daily rate of GPP or ER on 

the previous or subsequent day.  
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3.5 Discussion 

Ecosystem respiration controls DIC recharge and sets the morning δ13C-DIC value during phytoplankton 
blooms in the epilimnion 

I chose the timing of the diel sampling events to capture the geochemical conditions in L227 during 

three different stages of the epilimnetic phytoplankton blooms: a cyanobacteria-dominated bloom in 

early summer, a mid-summer decline in epilimnetic biomass, and a late-summer bloom dominated by 

cyanobacteria and chlorophytes (Figure 3.1). However, the high-frequency pH measurements revealed 

that the geochemical conditions during any one of these stages were not consistent from day to day 

(Figure A5). I captured three distinct combinations of overnight pH and DIC conditions in the epilimnion 

instead: a strong decline in pH with a moderate [DIC] increase (September 2018); steady, moderate pH 

with very little [DIC] increase (June 2019); and steady, low pH with a relatively high[DIC] increase (July 

2018). Similar geochemical conditions can arise in the epilimnion throughout the ice-free season while 

the lake is thermally stratified.  

The pH value was an indicator of a [DIC] increase in L227. At a constant alkalinity, an increase in [DIC] 

causes pH to decline (Figure 1.3). According to Le Chatelier’s principle, an increase of CO2 on the left side 

of the reaction 𝐶𝑂2 + 𝐻2𝑂 ↔ 𝐻𝐶𝑂3
− + 𝐻+ leads to an increase in H+ on the right side, and therefore a 

decline in pH. At night, when there is no removal of DIC by primary productivity, CO2 increases and pH 

decreases. High rates of CO2 return should lead the pH to drop overnight, while low rates of CO2 return 

would leave the pH value high. The role of GPP and ER in depleting and replenishing the DIC pool has 

been noted in eutrophic lakes (Balmer & Downing, 2011; Van Dam et al., 2018; Wang et al., 2016), 

heterotrophic lakes (Bade et al., 2004; Bogard & del Giorgio, 2016), and in other freshwater 

environments such as streams (Rocher-Ros et al., 2019). To investigate the connection between GPP, R, 

and the DIC pool in L227, I used the magnitude of daily pH change as a proxy for CO2 production or 

consumption.  
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The overnight decline in pH was as large as 2.5 pH units: during blooms the pH at 1 m reached 9.5-9.7 by 

the late afternoon, but pH did not consistently return to neutral (Figure A5). During the June overnight 

sampling event, low DIC inputs led to almost no change in pH at 1 m, while during the September diel 

sampling event, higher DIC inputs caused pH to drop overnight (Figure 3.3). On days when the pH did 

not return to neutral, there was likely an insufficient increase in [DIC] to cause a pH decline.  

The 1 m pH was low and stable during the July overnight sampling event despite the increase in [DIC] 

(Figure 3.3). At a constant, low alkalinity, a small change in [DIC] shifts the pH between 7-9; outside of 

this pH range, a greater change in [DIC] is necessary to shift the pH. The combination of low alkalinity 

and low [DIC] values that I measured in L227 constrain the range of possible pH values to be 

approximately 7-9.5 (Figure 1.3). During the July overnight sampling event, the daytime pH was already 

at the bottom of this range; the overnight inputs of DIC were not sufficient to cause a decrease in pH 

from 7 (Figure A4). In September, when daytime productivity and pH were higher than in July, a smaller 

overnight increase in [DIC] caused the pH to decline rapidly from 9.5 to 7.5.  

Low-alkalinity, low-DIC lakes are more susceptible to diel changes in pH. Prior to 1990, additions of 

NaNO3 kept alkalinity in the epilimnion of L227 between 150-300 μeq L-1 from May-October, relatively 

higher than the range of 50-150 μeq L-1 that has occurred from May-October since the late 1990s (Flinn, 

2012). In contrast to the findings of this study, Schindler and Fee (1973) measured consistent epilimnion 

pH values of 10 overnight in the summer of 1972. Diel pH changes such as those I observed in this study 

have likely occurred in the epilimnion of L227 since the 1990s, when N fertilization with NaNO3 stopped.  

The positive linear relationships between the difference in maximum and minimum pH and the daily 

rates of both GPP and ER during blooms in 2018 and 2019 (Figure 3.6) suggest that lake metabolism 

controls diel cycles of [DIC] decline and increase in L227. These relationships could arise because pH 

drops overnight when a high rate of ER increases the amount of DIC in the lake, or because the rate of 
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carbon fixation increases if the morning pH is lower and [DIC] is higher. Since GPP and ER are daily rates, 

and there is a positive linear relationship between the daily rates of GPP and ER, it is difficult to discern 

from sensor data whether the rate of GPP influences the rate of ER or vice versa.  

The low daily rates of gas exchange and CED provide additional evidence that lake metabolism controls 

DIC recharge. The rates of gas exchange that I calculated for the overnight sampling events and 

estimated from pH and alkalinity measurements were up to 8.4 times less than the corresponding daily 

rate of ER (Figure A9). The daily rate of gas exchange was relatively consistent compared to the 

fluctuations in ER; on days when the rates of gas exchange and ER were comparable, both rates were 

low. I included the chemical enhancement factor when calculating the rates of gas exchange, as CED 

occurred daily during the phytoplankton blooms when pH was relatively high (Figures A6, A9). Despite 

the occurrence of CED, diel pH fluctuations limited the number of hours that CED could occur to the late 

afternoon and evening (Figure A6), and the chemical enhancement factor and rate of CO2 flux were too 

low for CED to contribute a high percentage of DIC. Since CED accounts for a small proportion of the 

daily DIC increase, the large kinetic isotope fractionation associated with CED has a negligible effect on 

the overall δ13C-DIC value of L227. ER controls the length of time CED can occur by causing a decline in 

pH overnight. 

The amount of DIC recharge and the relative contributions of each DIC source affected the magnitude 

and direction of δ13C-DIC change overnight. Of the three overnight sampling events, the smallest 

overnight change in [DIC] and δ13C value occurred during the June 2019 sampling event (Figure 3.3). The 

total input of DIC on this night was lower compared to the other two sampling events due to the low 

rate of ER. Without this source, the [DIC] increase and change in the δ13C-DIC value were both low. CED 

did not increase the rate of gas exchange sufficiently to increase [DIC]; the increase in δ13C-DIC values 

along the CED end-member line overnight is likely coincidental (Figures 3.4, 3.5). Conversely, the 

relatively high DIC inputs during the July overnight sampling event led to a greater change in the 
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δ13C-DIC value. There was sufficient ER to cause the lake to become a source of CO2 to the atmosphere 

overnight and to cause the δ13C-DIC value to decline.    

There was a general trend in δ13C-DIC values overnight and between the three overnight sampling 

events: δ13C-DIC was closer to the ER end-member value during the blooms, and closer to the gas 

exchange end-member value between the blooms (Figure 3.4). These δ13C-DIC values reflected the 

probable dominant source of DIC during the three sampling events, but did not reflect photosynthetic 

fractionation that should have caused δ13C-DIC values to increase during the day leading up to the 

sampling event (see Van Dam et al., 2018). The preferential fixation of 12C-CO2 during photosynthesis 

and subsequent leakage of relatively more unfixed 13C-CO2 caused δ13C-DIC to increase from -9.8 ‰ at 

09:00 to 0 ‰ at 20:00 on July 10, 2018. The high concentration of phytoplankton biomass during the 

blooms drew down the daytime [DIC] to a lower value than during the lower-biomass period, but there 

was no corresponding increase in the δ13C-DIC value (Figure 3.3). Because the concentration of aqueous 

CO2 approached 0 μmol L-1 during the bloom events, the lower amount of photosynthetic fractionation 

could be due to fixation of HCO3
-. Although there is little fractionation involved in either the passive 

uptake of CO2 or the active uptake of CO2 or HCO3
-, researchers have observed less fractionation 

between DIC and phytoplankton when phytoplankton fix HCO3
- (Morales-Williams et al., 2017). 

Cyanobacteria readily take up HCO3
- and can convert HCO3

- to CO2 in carboxysomes with very little 

leakage out of the cell (Badger & Price, 2003; Sharkey & Berry, 1985; Wang et al., 2016). If nearly all of 

the HCO3
- taken up was converted to CO2 and fixed, 13CO2 would be fixed instead of accumulating in the 

cell or leaking out (Fielding et al., 1998). This would have the effect of minimizing the difference 

between δ13C-DIC and δ13C-POC in the evening, which occurred on June 26, 2019 and September 5, 

2018. See Chapter 4 for a discussion of phytoplankton carbon concentrating mechanisms and seasonal 

changes in photosynthetic fractionation in L227.  
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Microstratification can prevent gas exchange on diel timescales  

With greater amounts of DIC recharge, [DIC] and δ13C values did not always change incrementally or in 

the expected direction between sunset and sunrise. The concentration of DIC doubled overnight and the 

δ13C-DIC values spanned 10 ‰ during the July and September 2018 sampling events (Figure 3.3). Rather 

than a steady hourly change, the greatest shift in each parameter during both sampling events 

happened between midnight and 02:00 CST. These changes could be the result of microstratification 

developing at the surface of the water column during the day and collapsing as air temperature 

decreased at night. Under sunny, low-wind conditions, a thin layer of warm water at the surface of a 

lake can become thermally stratified, separating it from the rest of the epilimnion (Hanson et al., 2008). 

As the surface water cools and becomes denser at night, it sinks and mixes with the warmer water 

below it, increasing the CO2 concentration throughout the epilimnion (Åberg et al., 2004).  

Microstratification could explain the sudden increase in [DIC] shortly after midnight on July 11 and 

September 6, 2018 (Figure 3.3). On both nights, the air cooled by more than 10 °C between the highest 

afternoon and lowest morning measurements, while the water temperature at 1 m depth decreased by 

less than 2 °C over the same time period (not shown). As the surface water cooled, it might have mixed 

with the rest of the warmer water in the epilimnion and introduced accumulating CO2 from atmospheric 

gas exchange. Detailed water temperature measurements throughout the top 1 m of the water column 

would be necessary to confirm the presence and degree of microstratification (see Hanson et al., 2008), 

but the YSI profile I collected on August 14, 2018 suggested that microstratification occurs in L227 

(Figure A4). By 09:00 CST at a depth of 0.25 m the temperature was 22.8 °C, while the temperature from 

0.5 m to 1.5 m was 23.5 °C. The pH was also slightly lower at the surface, suggesting that there was 

some separation between the surface layer and the rest of the epilimnion.  
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The unusual pattern of δ13C-DIC change overnight in September could also be explained by 

microstratification. If microstratification was established while the pH was above 9, CED likely occurred 

in the surface layer and caused δ13C-DIC to decrease. The influx of DIC with a lower δ13C value between 

midnight and 01:00 could be the result of the surface layer mixing with the epilimnion water beneath it. 

Following 01:00, the increasing values of δ13C-DIC suggest that gas exchange continued to be the 

dominant source of DIC (Figures 3.3, 3.4). This trend is at odds with the modeled rates of ER and gas 

exchange, which indicate that ER was the dominant source of DIC. However, if significant 

microstratification developed for an extended period, neither method to estimate the rate of gas 

exchange with the atmosphere would be valid. For example, if a shallow mixing layer of 0.25 m 

developed at the top of an epilimnion 1.75 m deep, the rate of gas exchange for the evening of 

September 5, 2018 would be 3.6 μmol L-1 h-1 instead of 0.51 μmol L-1 h-1  

Daily variation in lake metabolism controls DIC increases and δ13C values at discrete depths in the 
metalimnion 

The thermal structure of the water column created different DIC consumption and recharge conditions 

at 3 m compared to the well-mixed epilimnion. 3 m was typically near the bottom of the metalimnion, 

where gas exchange with the atmosphere would not occur, and diffusion of DIC from the hypolimnion 

was negligible (Schindler & Fee, 1973). This depth was also approximately 1 m above the anoxic 

boundary during the sampling period, making CH4 oxidation an unlikely source of CO2. Since biomass 

was abundant at 3 m during the overnight sampling events, ER was the only likely DIC source.  

The vertical movement of phytoplankton in the water column over the season made the three nights 

difficult to compare. Based on the concentration of phycocyanin, in June the cyanobacteria peak was 

above 3 m, in July the peak was at 3 m, and in September the peak was below 3 m. Unlike in June and 

September, the high concentration of phycocyanin and Chl a at 3 m on July 10, 2018 likely contributed 

to a high ER rate. The DIC concentration increased overnight, and δ13C-DIC decreased from the highest 
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value of the summer: +15.6 ‰. The elevated δ13C-DIC values at 3 m can be explained by photosynthetic 

fractionation alone. The metalimnion is not a closed system because ER serves as a continuous source of 

DIC, but assuming a closed system makes the Rayleigh equation applicable. If the photosynthetic 

fractionation factor was -20 ‰, phytoplankton would need to fix 65% of the available DIC to cause an 

increase in δ13C-DIC from -5.3 ‰ to +15.6 ‰: the values I measured at 09:00 and 20:00 CST on July 10, 

2018. There was a 54% decrease in [DIC] over the same time period.  

While δ13C-DIC decreased relatively steadily during the July overnight sampling event, mixing in the 

thermocline obscured the trend in increasing [DIC]. On the morning of July 10, 2018, 3 m was near the 

steep bottom of the thermocline. The change in temperature between 2.75 m and 3.25 m was 3.6 °C, 

and the change in pH was 2.4 pH units. Mixing with water 0.25 m above or below 3 m likely caused shifts 

in temperature and pH values within this range. 0.25 m gradations were labelled on the sampling line 

and sonde, so human error was not responsible for the shifts. Since δ13C-DIC did not fluctuate, the value 

was similar above and below 3 m. While [DIC] was not stable, the source of DIC return was likely the 

same throughout this part of the metalimnion. Vertical shifts in the thermocline and phytoplankton 

biomass make it more challenging to model geochemical processes at depths below the epilimnion, and 

are responsible for fluctuations in [DIC] and δ13C values at hourly, daily, and seasonal timescales.  

Carbon balance calculations for productive lakes require high-resolution data 

These results demonstrate the value in collecting high-resolution sensor and isotope data in L227. By 

sampling hourly at two different depths I captured changes in pH, [DIC], and δ13C-DIC values that were 

not apparent from weekly or even daily sampling events. High-frequency sampling also revealed 

potential diel changes in the thermal structure of the lake, which can influence estimates of ER and gas 

exchange rates by over-estimating the depth of the mixing layer that interacts with the atmosphere 

(Coloso et al., 2011). Because the changes in δ13C-DIC values reflected the input of the actual DIC 
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sources rather than theoretical rates, isotope values were useful in interpreting the extent that both ER 

and gas exchange contributed to the DIC pool overnight in the well-mixed epilimnion, and the extent 

that ER contributed to the DIC pool overnight at 3 m.  

Single measurements of [DIC] do not scale up to an accurate daily rate of CO2 flux in productive lakes. A 

single mid-morning sample could lead to an over-estimation of daily CO2 flux into the lake if [DIC] was 

low from carbon fixation, or an over-estimation of CO2 flux out of the lake if [DIC] remained high until 

later in the day. A single calculation of β could have a similar effect in lakes with pH values that increase 

sufficiently to promote CED on short timescales. Poor estimates of the daily rate of atmospheric gas 

exchange cannot be compared to daily rates of ER. LakeMetabolizer requires regular DO and water 

temperature measurements from automatic loggers to calculate daily rates of GPP, NEP, and ER in units 

of mg O2 L-1 d-1, assuming that the rate of ER is constant over 24 hours (Winslow et al., 2016). To 

compare the daily rates of ER and gas exchange, both should be a daily rate. The increasing availability 

of automated sensors for measuring dissolved [CO2] will allow for more accurate daily flux 

measurements in freshwater systems.  

In addition to high-frequency sampling, recording water temperature at a higher spatial resolution is 

necessary for modelling in-lake processes affecting CO2. Models that estimate the rates of lake 

metabolism and gas exchange are based on physical and geochemical measurements at a discrete depth 

in the surface mixed layer, and apply the rate over the volume of the whole layer. These models make 

two tenuous assumptions about the surface mixed layer: that it is a relatively constant depth over short 

timescales, and that it is open to the atmosphere (e.g. Bade & Cole, 2006; Winslow et al., 2016). The 

depth of the surface mixing layer can change at an hourly timescale, affecting the conversion between 

areal and volumetric rates of lake metabolism and gas exchange (Coloso et al., 2011). Warm, low-wind 

conditions can cause microstratification at the surface that confines gas exchange to a shallower depth 

than the mixing depth, also rendering the calculated rate of flux into the lake inaccurate (Coloso et al., 
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2011; Hanson et al., 2008). These issues can be better accounted for by deploying thermistor chains to 

identify the depth of the surface mixing layer and periods of surface microstratification.  

The high-resolution sensor data also provided context for interpreting the overnight δ13C-DIC data. Since 

the daily rate of gas exchange with the atmosphere was typically much lower than the rate of ER, I was 

able to eliminate CED as a major DIC source. The continuous pH measurements revealed that the long 

periods of high pH necessary for prolonged, high rates of CED did not occur. The dissolution of 

carbonate minerals in hard water lakes allows for higher alkalinity and [DIC] at pH values of 10-11, 

leading to chemical enhancement factors of 10-15 (Kragh & Sand-Jensen, 2018). The amount of isotope 

fractionation during CED can be up to -15 ‰, leading to potentially low δ13C-DIC values (Bade & Cole, 

2006). In this low-alkalinity system with variable, moderate pH, the low δ13C-DIC values during the 

blooms were more likely due to ER or HCO3
- uptake than CED.  

The high-frequency δ13C-DIC samples were laborious to collect, but demonstrated that δ13C-DIC values 

can change on hourly timescales in productive, soft water lakes. Seasonal trends, such as a decrease in 

DIC or increase in δ13C-DIC during periods of intense phytoplankton growth, appear at lower temporal 

resolution, but hide potential diel changes in these parameters. Like diel variability in [DIC], the potential 

for diel cycles in δ13C-DIC can impact the interpretation of mid-morning values. For example, modelling 

photosynthetic fractionation from a single δ13C-DIC value is ineffective if δ13C-DIC changes by 10 ‰ over 

a day. Sampling at a daily, weekly, or greater timescales may not offer sufficient temporal resolution to 

interpret the dynamic role of DIC in the aquatic carbon cycle in this type of lake.   
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3.6 Conclusions 

In this study, I examined three different field situations where [DIC] increased overnight in the 

epilimnion of a eutrophic lake: a small increase at moderately high pH, a high increase at neutral pH, and 

a moderate increase as pH declined from high to neutral. The magnitude of [DIC] increase and the 

amount of pH change overnight differed at daily timescales during two seasonal phytoplankton blooms 

with different phytoplankton community compositions. Weekly mid-morning sampling did not capture 

the daily [DIC] decline or the overnight [DIC] increase that occurred in the epilimnion, or the potential 

for the lake to act as a temporary source of CO2 to the atmosphere. 

During the two phytoplankton blooms, lake metabolism regulated the amount of DIC in the epilimnion 

of L227 to a greater extent than gas exchange with the atmosphere. Overnight δ13C-DIC values and 

modelled daily rates of ER and gas exchange both indicated that a greater proportion of DIC inputs 

originated from ER during the phytoplankton blooms. The high-pH, low-wind conditions in L227 allowed 

for periods of CED, but low rates of gas exchange and a limited number of hours when CED could occur 

did not support CED as a major source of DIC to L227. Microstratification in the epilimnion may have 

further reduced the capacity for gas exchange by limiting the depth that DIC originating from gas 

exchange could diffuse into the lake.  

Diel variation in pH, [DIC], and δ13C-DIC values in the epilimnion of L227 was common during the 

summer months. Continuous measurements of pH and [CO2] would allow for a robust understanding of 

diel variation in the carbonate system and atmospheric gas exchange. In lieu of a probe with the 

capability to measure [CO2], the sensitivity of pH to changes in DIC makes continuous pH measurements 

a good proxy for overnight DIC recharge in low-alkalinity, low-DIC lakes. A combined dataset of 

continuous pH, [CO2], DO, temperature, and windspeed measurements allows for convenient modelling 

of gas exchange with the atmosphere, lake metabolism, and CED. Monitoring water temperature at a 
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higher spatial resolution near the top of the epilimnion could clarify the role of microstratification in 

hindering DIC recharge on a diel timescale.  

Collecting δ13C-DIC samples at a high temporal resolution is time-consuming, expensive, and laborious. 

While overnight δ13C-DIC samples can support the identification of sources to the DIC pool, using 

automated sensors to collect data for common models is a more practical solution. Diel δ13C-DIC 

measurements are uncommon in the literature, and the range of overnight fluctuation that I reported is 

higher than the ranges measured in previous studies. Understanding that diel variability in δ13C-DIC can 

arise in eutrophic lakes at a magnitude similar to seasonal variation is important for designing studies 

that rely on δ13C-DIC measurements.  

Lakes that are highly productive during summer months may alternate between acting as a CO2 source 

or sink. At a daily timescale, there may be a flux of CO2 out of the lake overnight during periods of lower 

biomass, while at a seasonal timescale, the lake may only serve as a sink of CO2 during summer 

phytoplankton blooms. Data collected at high temporal resolution, including overnight, is necessary to 

avoid over- or under-estimating the capacity of eutrophic lakes to serve as sources or sinks of CO2 in 

regional carbon budgets.  
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Chapter 4: Biomass concentration drives seasonal variability in δ13C-DIC and δ13C-POC 

4.1 Introduction 

Lakes are a globally significant source, sink, and conduit of carbon (Cole et al., 2007; Tranvik et al., 2009). 

To develop small- and large-scale carbon budgets, there is interest in quantifying the amount of carbon 

that lakes emit and sequester. Measuring stable isotope values of carbon is a popular but complex 

method for interpreting how carbon moves through the aquatic carbon cycle. In particular, temporal 

variability in δ13C values of DIC and phytoplankton occurs at different timescales with a number of 

causes. We need to understand how temporal variability in δ13C arises to better interpret carbon stable 

isotope data. 

DIC is the sum of all dissolved CO2, HCO3
-, and CO3

2- in a body of water, the distribution of which is 

dependent on pH (Figure 1.2). In a lake with a low concentration of DIC, δ13C-DIC can vary on a diel 

timescale as primary productivity consumes DIC during the day, and [DIC] increases overnight (Chapter 

3). Seasonal variability in δ13C-DIC occurs as phytoplankton blooms grow and consume DIC, or if the 

sources of DIC change over time. The magnitude of diel variability in δ13C-DIC can be greater than the 

magnitude of seasonal variability (Van Dam et al., 2018). 

Phytoplankton produce, store, and transform carbon as part of the aquatic carbon cycle. In eutrophic 

lakes, where particles are predominantly phytoplankton, the value of δ13C-POC depends on the 

concentration and δ13C value of DIC, the isotopic fractionation during DIC uptake and fixation, and the 

changes in these values as POC accumulates and settles out of the water column over time (Gu & 

Schelske, 2006; Hayes, 1993; Lehmann et al., 2004). Temporal variability of δ13C-POC occurs over longer 

timescales than δ13C-DIC because phytoplankton cells assimilate DIC over days to weeks, incorporating 

DIC of different δ13C values.  
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The isotopic fractionation between the carbon source and phytoplankton cell during carbon uptake and 

fixation (εp) varies by species and by lake (Bade et al., 2006; Falkowski, 1991). Isotopic fractionation by 

RuBisCo is approximately -29 ‰ in green algae and -22 ‰ to -25 ‰ in cyanobacteria, but among 

autotrophs the known range in εp is -11 to -29 ‰ (Falkowski & Raven, 2007; Thomas et al., 2019). εp 

would be approximately equal to the fractionation by RuBisCO if CO2 only diffused into the 

phytoplankton cell, but most freshwater phytoplankton employ carbon concentrating mechanisms 

(CCMs) to actively take up CO2 or HCO3
- (Kaplan & Reinhold, 1999; Giordano et al., 2005). CCMs can 

reduce net isotopic fractionation and result in a higher δ13C value of phytoplankton (Hayes, 1993; 

Sharkey & Berry, 1985). The δ13C of cyanobacteria, in particular, tends to be higher than other 

phytoplankton taxa (Bontes et al., 2006; Lammers et al., 2017; Pel, 2003; Vuorio et al., 2006). 

CCMs include the production of the enzyme carbonic anhydrase (CA) to convert HCO3
- into CO2 outside 

or inside the cell, and the active uptake of HCO3
- or CO2 (Giordano et al., 2005). As phytoplankton lower 

[DIC] during blooms, CCMs may “turn on”, resulting in lower εp and higher δ13C-POC values (Hoins, 2016; 

Morales-Williams et al., 2017). This reduction can occur because cells take up HCO3
-, or because external 

CA converts HCO3
- to CO2 outside the cell for CO2 uptake. The equilibrium isotope fractionation between 

CO2 and HCO3
- is approximately 8 ‰ (Mook et al., 1974), and the kinetic isotope fractionation in the CA-

mediated conversion of HCO3
- to CO2 is 10 ‰ (Paneth & O’Learly, 1985). The similar values of 

fractionation in these reactions means that a higher δ13C-POC value of phytoplankton does not 

specifically indicate whether cells are taking up CO2 or CA-mediated HCO3
- (Reibesell and Wolf-Gladrow, 

1995; Takahashi et al., 1990).  

While intense primary productivity and CCMs leads to higher δ13C-POC values when [DIC] is low, DIC 

drawdown in unbuffered waters also causes high pH values and chemically enhanced diffusion (CED). 

CED is the reaction of CO2 with OH- to form HCO3
-, where the newly formed HCO3

- has a lower δ13C 

values, and results in CEF up to -12.2 ‰ in L227 (see section 3.2; Bade & Cole, 2006; Herzceg, 1987). 
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Takahashi et al. (1990) and Lammers et al. (2017) suggested that CED contributed to lower δ13C-DIC 

values mid-summer in their respective eutrophic study lakes, but also measured the highest δ13C-POC 

values at this time.  

Changes in the value of δ13C-DIC on different timescales, succession of dominant phytoplankton taxa, 

fluctuating [DIC] and pH, use of CCMs, and the rate of phytoplankton turnover can all contribute to 

variability in δ13C-POC, making it difficult to interpret individual measured values, let alone to predict 

what seasonal variability will be. The objectives of this chapter are (1) to identify the causes of recurring 

seasonal trends in δ13C-DIC and δ13C-POC in a eutrophic lake, and (2) to evaluate how temporal 

variability of δ13C-POC affects interpretations of δ13C values of lake seston and sediments.  
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4.2 Materials and Methods 

See Chapter 2 for a detailed description of L227, sample collection procedures, and analysis techniques.  

Stable carbon isotopes 

In 2017 and 2018, I collected weekly samples for δ13C-DIC and δ13C-POC analysis from 1 m and 3 m 

depths in L227. 1 m samples represented the well-mixed epilimnion, while 3 m samples targeted higher 

biomass that accrues at the bottom of the metalimnion during the ice-free season. Researchers from the 

EGL collected monthly 1 m samples from L227 in 2010 and 2011 (see Flinn, 2012) and intermittent 

samples from 2012-2016.  

I started weekly sampling in early May of 2017 and 2018, shortly after ice-off, and ended sampling in 

early September, shortly before fall turnover and before the end of the second bloom. In 2018 and 2019 

I also conducted three half-diel sampling events to investigate how δ13C values change overnight. I 

targeted the cyanobacteria-dominated bloom on June 26-27, 2019; the cyanobacteria and chlorophyte 

bloom on September 5-6, 2018, and the declining biomass period between the two blooms on July 10-

11, 2018. I measured δ13C-DIC hourly at 1 m and 3 m between sunset and sunrise for all three sampling 

events, and during the June 2019 sampling event I also collected δ13C-POC samples at 21:00, 1:00, and 

5:00. Refer to Chapter 3 for the detailed results of the half-diel sampling events. 

Geochemical analysis 

As part of the IISD-ELA LTER program, researchers collected routine geochemical samples biweekly or 

monthly from L227 over the same sampling period. For this chapter, I supplemented my stable isotope 

data with biomass counts, Chl a measurements, and concentrations of suspended C. N, and P from the 

IISD-ELA database. I assumed a well-mixed epilimnion and matched the integrated epilimnion samples 

from the IISD-ELA database with 1 m stable isotope measurements for 2010-2016. If sampling by 

IISD-ELA and the EGL did not occur on the same day, I matched samples from within the same week. In 



 
 

54 
 

2017 and 2018, I submitted discrete samples from 1 m and 3 m for analysis of Chl a and suspended C, N, 

and P concentrations to the IISD-ELA chemistry lab.   

No data is available for some geochemical parameters for the 2013 and 2014 field seasons due to a 

federal government-imposed funding cut and shutdown of the field station. In this chapter I focus on 

2010, 2011, 2017, and 2018, where the most complete datasets exist for stable isotope values, nutrient 

concentrations, and biomass counts.   
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4.3 Calculations 

Stoichiometry and nutrient deficiency 

I calculated the molar ratios of particulate C:N, C:P, and N:P from suspended C, N, and P data. I assumed 

that all particles were phytoplankton, as L227 has high phytoplankton biomass for most of the ice-free 

season (Higgins et al., 2018). This is a common assumption for eutrophic lakes (Bade et al., 2006; Van 

Dam et al., 2018). Particulate nutrient ratios of freshwater phytoplankton are an indicator of the degree 

of N or P deficiency (Table 4.1; Healey & Hendzel, 1980).  

Table 4.1: Thresholds for nitrogen (N) and phosphorus (P) deficiency in freshwater phytoplankton (μmol/μmol). 
This table is a modified version originally presented by Hecky et al. (1993), based on data from Healey & Hendzel 
(1980). 

Photosynthetic fractionation 

There are several methods for approximating εp (see Morales-Williams et al., 2017, Van Dam et al., 

2018, Wang et al., 2016). The simplest method is to measure both δ13C-DIC and δ13C-POC, and calculate 

the difference (Equation 4.1). In lakes that are saturated in CO2, the difference between δ13C-CO2 and 

δ13C-POC or a simple model can approximate εp (e.g. Bade et al., 2006; Gu et al., 2006). Due to 

equilibrium fractionation, δ13C-CO2 is 8-10 ‰ lower than δ13C-HCO3
-, and consequently also lower than 

δ13C-DIC when pH > 5 (Mook et al, 1974). 

 𝜀𝑝 ≈ ∆𝛿13𝐶𝑃𝑂𝐶−𝐷𝐼𝐶 = 𝛿13𝐶𝐷𝐼𝐶 − 𝛿13𝐶𝑃𝑂𝐶                          (4.1) 

In a lake with a higher pH, where most of the DIC is HCO3
-, the difference between δ13C-DIC and 

δ13C-POC is more representative of εp (Lehmann et al., 2004; Van Dam et al., 2018). If nearly all DIC is 

HCO3
-, δ13C-DIC and δ13C-HCO3

- are approximately equal. The pH in L227 was > 9 during the day for most 

Molar ratio Deficient nutrient 
Threshold for nutrient deficiency 

None Moderate Severe 

C:N N < 8.3 8.3-14.6 > 14.6 

C:P P < 129 129-258 > 258 

N:P P < 22 N/A > 22 
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of the sampling period, and ~90% of DIC was HCO3
-. For this reason, I approximated εp as in Equation 4.1. 

These values are the apparent photosynthetic fractionation, εapp. This approximation is limited by 

changes in δ13C-DIC and δ13C-POC values on different timescales. While the value of δ13C-DIC can change 

on a diel timescale (see Chapter 3), the value of δ13C-POC is the average value for phytoplankton 

growing over days or weeks (Bade et al., 2006).   
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4.4 Results 

Seasonal trends in particulate nutrient stoichiometry 

Chl a in L227 was consistently much higher than in nearby unfertilized lakes. In oligotrophic L442, a 

reference lake 13 km northwest of L227, Chl a in the integrated epilimnion did not exceed 2 μg L-1 in the 

summer of 2018 (not shown). Immediately following ice-off in 2018, Chl a in L227 was 10 μg L-1 at 1 m. 

The concentration of Chl a changed on a weekly timescale, increasing at 1 m from 13 μg L-1on June 4 to 

60.7 μg L-1 on June 26; by July 10, Chl a fell to 14 μg L-1 (Figure 4.1). Chl a at 1 m then increased at a 

slower rate until sampling stopped on September 4, reaching 59.7 μg L-1 before fall turnover.  

 

Figure 4.1: Summary of 2018 Chl a and suspended molar nutrient ratios from 1 m and 3 m in L227. The dashed 
lines indicate thresholds for moderate and severe nutrient deficiency (Hecky et al., 1993). Values below the 
bottom-most dashed line indicate no deficiency. 
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As the first epilimnetic bloom migrated down in the water column in early July 2018, Chl a at 3 m 

increased above the concentration at 1 m. On July 10, Chl a at 3 m reached a peak of 115 μg L-1, 

exceeding all other measurements. For most of the summer the metalimnion ended at 3 m, where Chl a 

was highest and light levels reached 1% of surface PAR.  

Temporal variability in suspended C:N:P occurred with shifts in Chl a at discrete depths (Figure 4.1). 

During the first bloom, when Chl a was highest at both depths, C:N remained low. N-fixing cyanobacteria 

were most prevalent during the first bloom (Figure 3.1), and were able to fix N2 from the atmosphere to 

avoid N deficiency (Table 4.1; Healey & Hendzel, 1980; Hecky et al., 1993). High C:N prior to the first 

bloom and during the second bloom indicated moderate N deficiency at all depths. 

C:P and N:P values indicated there was P deficiency in phytoplankton for most of the ice-free season. 

Prior to the first bloom, there was moderate P deficiency at both depths (Figure 4.1). One week after 

June 19, the date by which Chl a increased in the epilimnion and metalimnion, C:P and N:P increased 

above the threshold for severe P deficiency (Table 4.1; Healey & Hendzel, 1980; Hecky et al., 1993). 

Higgins et al. (2018) observed similar trends in temporal variability of Chl a and particulate nutrient 

stoichiometry in their analysis of 2011 data from L227. 

Inter-annual trends in chlorophyll a concentrations and δ13C values 

Temporal variation in the concentration and δ13C values of particulate carbon in L227 were related to 

temporal variation in Chl a and [DIC] (Figure 4.2). Corresponding Chl a, [DIC], and δ13C-POC data was 

available for five field seasons: 2010, 2011, and 2016-2018. For these five years of data, δ13C-POC values 

at 1 m ranged from approximately -35 ‰ to -23 ‰ (Figures 4.2, 4.3). The lowest δ13C-POC values 

occurred before ice-off and after fall mixing, and increased as the lake thermally stratified, 

phytoplankton density increased, and [DIC] decreased at the beginning of the ice-free season (Figure 
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4.3). The highest δ13-POC values occurred during the early-summer bloom dominated by cyanobacteria, 

but δ13C-POC tended to remain relatively high while Chl a was highest and [DIC] was lowest (Figure 4.2).  

The relationship between δ13C-POC and Chl a was positive, but not linear (Figure 4.2). At lower Chl a, the 

range of observed δ13C-POC value was greater than 10 ‰; above 30 μg L-1 of Chl a, the range of 

observed δ13C-POC values was less than 3 ‰. As Chl a increased above 25 μg L-1, values of δ13C-POC 

approached an asymptote of approximately -22.5 ‰. This pattern repeated for the four years with 

weekly to monthly sampling points: 2010, 2011, 2017, and 2018. There was a negative relationship 

between daytime [DIC] and δ13C-POC (r2 = 0.75, p < 0.01). The highest δ13C-POC values occurred when 

[DIC] was below 50 μmol L-1.  

 

Figure 4.2: The relationship between δ13C-POC, Chl a, and [DIC] in the surface mixed layer of L227 from 2010-2018. 
Researchers collected all δ13C-POC samples from a depth of 1 m at CB. [DIC] and Chl a samples in 2010-2016 are 
from the integrated epilimnion, while samples in 2017-2018 are from 1 m. 
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There was no relationship between δ13C-POC and Chl a at 3 m over multiple seasons (Figure A11). 

However, in 2017 and 2018, years with a full suite of 3 m samples, there was a similar pattern between 

the progression of the phytoplankton bloom and the δ13C-POC values (Figure 4.3). During the first 

bloom, δ13C-POC increased from the low values prior to thermal stratification. As Chl a in the surface 

mixed layer decreased between the two blooms, there was a period of up to three weeks where 

δ13C-POC at 3 m decreased by approximately 5 ‰. When the concentration of Chl a increased at 3 m 

over July and August, δ13C-POC values increased again and were higher than during the first bloom. 

Although there are incomplete datasets for other years, the existing data for 2012, 2014 and 2016 

followed the same trend.  

 

Figure 4.3: Seasonal values of δ13C-POC in L227 from 2010-2018. Researchers collected all δ13C-POC samples 
from a depth of 1 m or 3 m at CB, or from under-ice for January-March sampling events. 
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There was also a significant negative linear relationship between [DIC] and δ13C-POC at 3 m in 2018 only 

(Figure A11; r2 = 0.62, p < 0.01). The majority of the δ13C-POC values were -25 ‰ to -27.5 ‰, and mid-

morning [DIC] ranged from 40-100 μmol L-1.  

Seasonal dynamics of stable carbon isotope values and apparent photosynthetic fractionation 

Between May and September of 2018, δ13C-POC at 1 m in L227 ranged from -30.0 ‰ to -23.6 ‰ (Figure 

4.4). During the bloom peaks δ13C-POC was -25.0 ‰ to -23.6 ‰, and week-to-week variation was < 2 ‰. 

δ13C-POC was lowest in May and as biomass declined in July.  

 

Figure 4.4: Weekly measured values of δ13C-DIC and δ13C-POC and calculated values of δ13C-CO2 and HCO3
- at 1 m 

and 3 m in L227 over the 2018 ice-free season. The black dotted line is the δ13C-DIC value in equilibrium with 
atmospheric δ13C-CO2 at the measured daytime pH and temperature values (Zhang et al., 1995). Dashed lines 
highlight the three overnight sampling events, and grey circles are the hourly δ13C-DIC measurements made 
between sunset and sunrise on these nights. Note that the June 26-27, 2019 sampling event is superimposed on 
June 26, 2018 for reference. The 1 m δ13C-DIC value on June 27, 2019 was -11.9 ‰ at 09:00; I could not collect a 3 
m sample, but based on the diel values it was likely similar to or higher than the 2018 value.  
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At 3 m, δ13C-POC values ranged from -36.0 ‰ to -17.1 ‰, but for most of the sampling period δ13C-POC 

values were between -30.8 ‰ and -25.3 ‰ (Figure 4.4). On June 26, 2018, during the peak of the cyano-

dominated bloom in the epilimnion and metalimnion, δ13C-POC at 1 m was -23.6 ‰ while δ13C-POC at 

3 m was -30.0 ‰. As the phycocyanin peak shifted down to 3 m in mid-July (Figure A4), δ13C-POC quickly 

increased from -30.8 ‰ to -17.1 ‰ between July 10 and July 17 (Figure 4.4). δ13C-POC declined 

to -24.1 ‰ by July 24, and for the rest of the sampling period week-to-week variation remained low. 

Average δ13C-POC before July 17 was -28.7 ‰, and -25.6 ‰ after July 17.  

There was no diel variability in the samples I collected for δ13C-POC analysis during the June 2019 

overnight sampling event. Variation between the three nighttime sampling points for each depth was 

< 1.  

Like δ13C-POC values, δ13C-DIC values at 1 m and 3 m appeared to be relatively stable while the lake was 

thermally stratified (Figure 4.4). However, the range in measured δ13C-DIC values during the diel 

sampling events was greater than the range of weekly 09:00 values. In July 2018 the daytime 1 m and 3 

m δ13C-DIC values were lower than the overnight values, while in June 2019 and September 2018 the 

daytime δ13C-DIC values were closer to or higher than the average overnight value.  

The range of daytime δ13C-DIC values over the 2018 sampling period was -15 ‰ to 0 ‰ at 1 m, 

and -14 ‰ to +5 ‰ at 3 m (Figure 4.4). During the day, δ13C-DIC values at 1 m were consistently lower 

than equilibrium with the atmosphere. The only sampling event where δ13C-DIC was in equilibrium with 

the atmosphere was the evening of the lower-biomass diel sampling event in July; by sunrise, δ13C-DIC 

was lower and returned to below equilibrium. 

For most of the ice-free season, the pH in L227 was high enough that the majority of DIC was HCO3
- 

(Figure A3). Although pH decreased overnight, several hours after sunrise the pH was elevated, [DIC] 

was low, and DIC was predominantly comprised of HCO3
- (Figures A3, A6). During the blooms, the 
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calculated values of δ13C-HCO3
- at both depths were approximately equal to δ13C-DIC (Figure 4.4). 

Leading up to the blooms and during the period between the blooms, δ13C-HCO3
- was up to 9 ‰ higher 

than δ13C-DIC; δ13C-CO2 was typically 5-9 ‰ lower than δ13C-DIC.  

The range of εapp was 11-29 ‰ at 1 m, and 13-36 ‰ at 3 m (Figure 4.5). Once the lake was thermally 

stratified, εapp at 1 m was consistently lower than εapp at 3 m. There was a positive correlation between 

εapp and [DIC] at 1 m (r2 = 0.71, p << 0.01), but not at 3 m. 

Throughout June, August, and September, when biomass was elevated at 1 m, the apparent 

photosynthetic fractionation between δ13C-CO2 and δ13C-POC (εapp-CO2) at 1 m was very low during mid-

morning sampling (Figure 4.4). At 3 m, εapp-CO2 approached 0 in early August as the concentration of 

biomass increased at this depth. εapp at 1 m and 3 m was highest before the first bloom began and Chl a 

began to increase in early June.  
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Figure 4.5: Summary of the relationships between [DIC] and Chl a, δ13C-DIC, δ13C-POC, and εapp in L227 at 1 m and 
3 m from May-September, 2018. 
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4.5 Discussion 

Biomass increases drive temporal variability in δ13C-POC by lowering [DIC] 

The diel, weekly, and historical geochemical and isotope dataset for L227 show that while geochemical 

parameters such as pH and [DIC] vary on short timescales, seasonal patterns in δ13C-POC repeat over 

multiple years. The recurring phytoplankton blooms drive changes in δ13C-POC while the lake is 

thermally stratified by lowering [DIC] (Figure 4.5). δ13C-POC and [DIC] are related by photosynthetic 

fractionation: if δ13C-DIC increases, εp decreases, or both values change as a result of phytoplankton 

fixing DIC and decreasing the overall concentration, there should be an increase in the δ13C-POC value. 

There is isotopic fractionation of up to -29 ‰ during the RuBisCO step of CO2 fixation, as 12C-CO2 reacts 

more quickly than 13C-CO2; excess 13C-CO2 leaks from the cell, and δ13C-DIC of the lake increases over 

time (Falkowski & Raven, 2007; Sharkey & Berry, 1985). When there is less DIC available to fix, 

phytoplankton fix relatively more 13C-DIC and εp decreases.  

The concentration of biomass in L227 is limited by the amount of P added to the lake. The particulate 

nutrient ratios indicated P limitation in the epilimnion and metalimnion nearly every week while the lake 

was thermally stratified (Figure 4.1). Because the P load is relatively consistent each year, so is the 

biomass concentration; interannual variation in average annual Chl a has been low since the P-only 

fertilization regime began in 1990 (Schindler et al., 2008). Phytoplankton have sufficient access to 

atmospheric CO2 and cyanobacteria have sufficient access to N through N fixation to maintain high 

concentrations of biomass, so access to P controls the amount of biomass growth (Higgins et al., 2018; 

Schindler et al., 1972). While phytoplankton growth is not limited by [DIC], the decline in [DIC] as the 

bloom develops leads to changes in δ13C-DIC and δ13C-POC values that reflect shifts in DIC sources and 

speciation.  
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The concentration of biomass was a strong influence on [DIC] at 1 m in L227, and [DIC] was related to 

the values of δ13C-DIC, δ13C-POC, and εp at this depth (Figure 4.5). I measured the lowest δ13C-DIC values 

when [DIC] was low (Figure 4.5). The same pattern occurred during the overnight sampling events: I 

measured the lowest δ13C-DIC values on the evenings of the sampling events when epilimnion biomass 

was highest (see Chapter 3, Figure 3.3). This relationship does not demonstrate an increase in δ13C-DIC 

with high rates of fixation (e.g. Lehmann et al., 2004). Since [DIC] did not increase substantially during 

the high-biomass overnight sampling events, input from DIC sources with low δ13C values was likely not 

responsible for the low measured values of δ13C-DIC. Instead, low [DIC] and δ13C-DIC values in 

conjunction with high δ13C-POC values could be evidence of HCO3
- serving as the dominant substrate for 

carbon fixation. The cyanobacteria CCM allows for active uptake of HCO3
- and CO2, both of which are 

stored as HCO3
- in the cytosol (Giordano et al., 2005). HCO3

- is less prone to leakage than CO2 and CO2 

leakage may be reduced when [DIC] is low (Fogel & Cifuentes, 1993; Sharkey & Berry, 1985). A reduction 

in CO2 leakage could promote fixation of relatively more 13C-CO2, leading to an increase in δ13C-POC 

values, a decrease in δ13C-DIC values, and a decrease in εapp when [DIC] is lowest.  

Active uptake of HCO3
- when [DIC] is low might also explain why δ13C-POC values reached a maximum of 

approximately -23 ‰ at 1 m over multiple summers. When the biomass concentration is high enough to 

draw down [DIC] and increase pH sufficiently for HCO3
- to be the dominant DIC species, εp should be 

lowest and δ13C-POC should increase. δ13C-POC was highest and εapp was lowest during both blooms in 

the epilimnion. The upper limit of δ13C-POC at 1 m might occur because the concentration of biomass 

does not fix a sufficient amount of DIC to lower εp further. The epilimnion is well-mixed and exposed to 

the atmosphere, providing a constant but insufficient source of DIC. Seasonal shifts in [DIC] driven by 

the concentration of phytoplankton in L227 control the pH, and therefore the relative amounts of CO2 

and HCO3
-. 
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Photosynthetic fixation caused δ13C-DIC values to increase when the biomass concentration in the 

epilimnion was at a summer low, but also when the biomass concentration reached a peak at 3 m. 

Evening δ13C-DIC values reached some of the highest observed values of the summer during the July 10, 

2018 diel sampling event. There was no subsequent increase in the value of δ13C-POC at 1 m, possibly 

because the higher supply of DIC allowed εp to remain high. At 3 m, where [DIC] was lower, 

phytoplankton fixed DIC with a high δ13C value and caused the value of δ13C-POC to increase by 13.7 ‰ 

in up to one week (Figures 3.3, 4.4). This was the highest value I measured for any depth that season. At 

3 m on the evening of July 10, εapp was 42 ‰, while on the morning of July 11 εapp was 29 ‰. Likely εp 

was lower than both values. With the possibility for a wide range of δ13C-DIC values on an hourly 

timescale, and the time lag of up to a week for δ13C-POC to reflect the higher δ13C-DIC values, it is 

difficult to estimate what the value of εp was and if it was consistent when the biomass concentration 

was highest at 3 m. 

The concentration of biomass and DIC has a greater effect on δ13C-POC in L227 than seasonal succession 

of phytoplankton taxa. The value of εp for carbon fixation by cyanobacteria is lower than other 

phytoplankton taxa (Bontes et al., 2006; Lammers et al., 2017; Pel, 2003; Vuorio et al., 2006). If seasonal 

succession affects εp in L227, the magnitude of εapp should be greater and the value of δ13C-POC could be 

lower during the late-summer cyanobacteria- and chlorophyte-dominated bloom than during the early-

summer cyanobacteria-dominated bloom. I found the opposite: δ13C-POC was nearly identical during 

both blooms at 1 m in 2011, 2017, and 2018, and δ13C-POC was higher during the second bloom in 2017 

and 2018 (Figure 4.3). The changes in 1 m δ13C-POC values tracked the three stages of the 

phytoplankton bloom in L227, with higher δ13C-POC values during the blooms than during the lower-

biomass period between the blooms. If εapp was not similar between the two blooms, the difference was 

not apparent from δ13C-POC values alone. The concentrations of biomass and DIC appeared to drive the 

shifts in δ13C-POC.  
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Temporal variability in δ13C-POC is minimized over seasonal timescales 

Weekly variability in δ13C-POC values was low in L227 compared to diel or weekly variability in δ13C-DIC 

(Figure 4.4). The low weekly variability masked complex changes in the aquatic C cycle driven by ER and 

pH changes (see Chapter 3). The weekly δ13C-POC values remained relatively constant at both 1 m and 

3 m when the lake was thermally stratified and the concentration of phytoplankton was high, and the 

summer ranges between years were similar. Organic matter deposited as sediments during the summer 

phytoplankton blooms should reflect a relatively representative δ13C-POC value for the season, as the 

greatest accumulation of sediments in L227 occurs during the productive summer months (Wolfe et al., 

1994).  

The δ13C-POC values at 1 m were similar between weeks and between years during the phytoplankton 

blooms (Figures 4.3, 4.4). The range of measured δ13C-POC values at 1 m was less than 3 ‰ when Chl a 

was greater than 30 μg L-1 and [DIC] was less than 50 μmol L-1 (Figure 4.2). These values are well below 

maximum Chl a, 60 μg L-1, and minimum [DIC], 13 μmol L-1, leading to the appearance of an asymptote 

approaching -23 ‰. The range in δ13C-POC values was over 10 ‰ when Chl a was low, [DIC] was 

relatively high, and δ13C-DIC values were more variable, but this range should have less of an impact on 

the δ13C value of lake sediments as it represents a smaller amount of organic material.  

The concentration of phytoplankton also influenced the δ13C-POC values at 3 m, but there was no 

relationship between the two parameters over one or multiple years (Figure A11). This is likely because 

the depth of peak phytoplankton biomass changed over the course of each summer (see phycocyanin 

concentration in Figure A4). The highest δ13C-POC value I measured at 3 m in 2018 was -17.1 ‰ on July 

10, which corresponded with one of the highest Chl a measurement of the year (Figure A11). I measured 

a similar peak of -20.2 ‰ at 3 m on August 8, 2017, which followed a two-week period of high Chl a in 

the metalimnion. There could be a relationship between Chl a and δ13C-POC at the Chl a peak, but since 
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the maximum concentration of peak phytoplankton biomass in the water column over the summer, I did 

not capture a relationship at the 3 m sampling depth. If a bloom shifts position in the water column, 

targeted sampling at the depth of highest phytoplankton biomass may be necessary to track how δ13C of 

the bloom changes over time.  

The vertical shift of cyanobacteria deeper in the water column led to the greatest rate of change in 

δ13C-POC. There was an increase of 13.7 ‰ at 3 m between July 10 and July 17: from -30.8 ‰ 

to -17.1 ‰ (Figure 4.4). July 10 was the first time the phycocyanin peak occurred at 3 m; prior to July 10 

the peak was shallower (Figure A4). Intense productivity associated with higher biomass at 3 m likely 

increased the value of δ13C-DIC for a prolonged period; in particular, the evening δ13C-DIC values of up to 

+15 ‰ on July 10 demonstrate that phytoplankton were likely fixing DIC with a very high δ13C value 

during this week (Figure 4.4).  

Van Dam et al. (2018) suggested that diel variability in δ13C-POC should be considered in the context of 

sediment core δ13C-POC values. I only collected overnight δ13C-POC samples during the June 2019 

sampling event. Although δ13C-POC was constant over this sampling event, so was δ13C-DIC (Figure 3.3). 

Based on these measurements, it is not conclusive that δ13C-POC is constant in L227 on a diel timescale. 

The lag in δ13C-POC change at 3 m between July 10 and July 17, 2018 suggests that changes in δ13C-DIC 

on diel timescales are not immediately reflected in δ13C-POC. The high δ13C-POC values did not persist 

for more than a week and would not be reflected in the sediment δ13C value. Estimating δ13C-DIC or εp 

from the sediment δ13C value would remain difficult, as diel variability in the speciation, concentration, 

and δ13C value of DIC cause shifts in εp.  

Understanding the contemporary drivers of temporal variability in δ13C-POC is necessary for interpreting 

sediment core δ13C values. Flinn (2012) reported the most recent δ13C values for a L227 sediment core. 

Since the NaNO3 additions stopped in 1990, the δ13C value of the sediments has decreased from 
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approximately -28.5 ‰ to pre-fertilization values of -31 ‰ (see Figure 4.11 in Flinn, 2012). The author 

suggested that the sediment δ13C values reflect the change in alkalinity since N fertilization stopped, 

rather than any changes in productivity. The δ13C value of surficial sediments in L227 was approximately 

-30 ‰ in July 2010, which reflected the δ13C-POC values of seston in the top 4 m of the water column 

that year (see Figure 4.4 in Flinn, 2012). 10 years have passed since δ13C-POC sampling began in earnest, 

and it would be valuable to confirm whether more recent sediment samples reflected the higher δ13C 

values of seston that were prevalent during summer sampling events since 2010. If δ13C values of late-

summer surficial sediments or recent summer varves at the top of a sediment core are still 

approximately -30 ‰ instead of the higher values typical of the epilimnion, POC from the metalimnion, 

POC from another source, or diagenetic effects could be more important in setting the δ13C value of the 

sediments.  
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4.6 Conclusions 

Temporal variability in the dissolved and particulate carbon pools of L227 arises from change in the 

phytoplankton concentration when the lake is thermally stratified. As the phytoplankton blooms 

develop and Chl a increases, [DIC] decreases. Seasonal change in [DIC] drives changes in δ13C-DIC and 

δ13C-POC, which affects the magnitude of εapp. Diel change in [DIC] and δ13C-DIC does not have an 

observable effect on δ13C-POC, which remains relatively constant at 1 m and 3 m throughout the 

summer.  

Temporal variability in δ13C-DIC is higher than δ13C-POC on both hourly and weekly timescales, leading to 

short term variability in εapp. Because δ13C-POC is relatively constant during blooms, εapp for a sampling 

event is dependent on δ13C-DIC. In low-alkalinity eutrophic systems, infrequent sampling is likely 

insufficient to make strong interpretations about εp from δ13C-DIC values. Weekly mid-morning sampling 

events still revealed significant relationships between [DIC] and Chl a, δ13C-DIC, δ13C-POC, εapp, and pH, 

despite the potential for diel variability in [DIC].  

Large increases in phytoplankton biomass, both as a result of phytoplankton growth and vertical 

migration of phytoplankton, cause the fastest increases in δ13C-POC and the highest values of δ13C-POC. 

While δ13C-POC can change by up to 13.7 ‰ in a week, this magnitude of change is uncommon and 

short-lived. Since δ13C-POC is relatively constant during periods of high biomass, organic matter that 

settles to the lake bottom from the top 3-4 m of the lake should reflect the high δ13C-POC values 

observed during the phytoplankton blooms. Researchers have found that diel variability in δ13C-POC can 

occur, and this should be investigated further to aid in interpreting the δ13C-POC values of sediment 

cores.  

The concentration of phytoplankton had a greater effect on δ13C-POC than phytoplankton species 

composition. Constant access to DIC from the atmosphere might supply sufficient DIC to maintain a 



 
 

72 
 

higher value of εp in the epilimnion relative to 3 m. Lower [DIC] at 3 m in late summer forces 

phytoplankton to fix relatively more 13C-DIC, increasing δ13C-POC. A consistent supply of phosphorus 

leads to a similar biomass concentration each summer; these phytoplankton blooms create repeated 

seasonal patterns in epilimnion δ13C-POC values, while vertical shifts of the biomass peak leads to 

variability in the measured δ13C-POC values at 3 m. Understanding what sets the δ13C-POC value on a 

seasonal timescale will aid in interpreting the δ13C values of lake sediment.  
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Chapter 5: Conclusions 

5.1 Tools for monitoring and modelling DIC in the aquatic carbon cycle 

For this study, I deployed automated loggers, collected weekly geochemical and stable carbon isotope 

profiles, and collected hourly [DIC] and δ13C-DIC samples on three occasions to investigate the sources 

of DIC and temporal variability in δ13C-DIC and δ13C-POC in L227. I combined my high-resolution data 

from 2018 with historical data from 2010-2017, and I analysed the geochemical and carbon stable 

isotope datasets with geochemical models, a two end-member isotope mixing model, and linear models.  

Automatic loggers allowed for modeling the rates of GPP, ER, gas exchange, and CED with existing 

models in R. The 1 m GPP and ER rates I modeled with LakeMetabolizer revealed that both parameters 

vary on diel timescales, regardless of the density of the bloom. The rates were straightforward to model 

with readily available meteorological, temperature, and DO data, and were in the range of productivity 

estimates from previous bottle experiments. The rates of GPP and ER provided context for interpreting 

variability in δ13C-DIC values and calculating the relative contributions of ER and gas exchange to the DIC 

pool.  

The models for gas exchange and CED were also simple to reproduce in R. I estimated [DIC] at 15-minute 

intervals from continuous pH data and biweekly alkalinity data, and modelled the daily rates of CO2 flux 

into or out of L227. I modeled β from pH, temperature, and windspeed data. Microstratification at the 

lake surface might have impacted my estimates of gas exchange, as I based my calculations on data 

recorded at 1 m. Additional temperature loggers deployed at the surface could confirm the presence 

and extent of microstratification, so that future research can model more accurate rates of gas 

exchange.  

The continuous record of pH in L227 during the summer was valuable when analysing the δ13C data. 

There was no indication from daytime values that pH could vary by up to 2.5 pH units over 24 hours, and 
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decreasing pH at night served as a useful proxy for an increase in [DIC]. From pH I was able to calculate 

the chemical enhancement factor and estimate values of gas exchange at regular intervals. Calculations 

such as DIC speciation and the chemical enhancement factor are sensitive to changes in pH, so care 

must be taken to monitor and re-calibrate pH probes deployed for long periods of time.  

There was value in collecting sonde profiles at high spatial and temporal resolution. The weekly sonde 

profiles at 0.25 m intervals revealed that cyanobacteria migrate to the bottom of the metalimnion over 

the ice-free season. Integrated sampling methods can cause dilution of phytoplankton samples when 

phytoplankton are congregated at a narrower range in depth, leading to the perception of a population 

crash. Surface samples may not be indicative of bloom dynamics in lakes where the bloom is not 

contained near the surface.  

The overnight sampling events showed that diel change in the values of δ13C-DIC may or may not occur. 

The hourly overnight δ13C-DIC measurements provided context for interpreting the mid-morning 

δ13C-DIC values, which were not as high as expected given the potential for high photosynthetic 

fractionation when biomass is high. Less frequent sampling over a 24 period, including dawn, mid-day, 

and at night, is a more practical way to investigate the drivers of diel change in δ13C-DIC values.  

Geochemical models for gas exchange, CED, and lake metabolism are easy to use and require input from 

common data loggers. Future study of the aquatic carbon cycle at L227 should include continuous 

recording of temperature, DO, and pH at 1 m, and potentially at the depth of highest phytoplankton 

biomass. An automatic logger capable of recording [CO2] would be beneficial for accurately measuring 

overnight change in DIC.  

5.2 Relative contributions of DIC sources to L227 

Gas exchange and ER are the main sources of DIC to L227, but the relative contributions of each source 

vary on daily timescales. Lake metabolism controls DIC in the epilimnion during the blooms, while gas 



 
 

75 
 

exchange is a more important source during the lower-biomass period. CED can double or triple the rate 

of gas exchange during the day when pH is above 9, but the rate of gas exchange remains low.  

ER was the dominant source of DIC during the phytoplankton blooms, but the daily rate of ER is not 

consistent on a daily timescale. The positive linear relationship between ER and the magnitude of daily 

pH change indicates that the rate of ER drives an increase in [DIC], which causes pH to decrease 

overnight. The low values of δ13C-DIC when the concentration of Chl a is highest could reflect higher 

rates of ER during phytoplankton blooms. 

Gas exchange contributes a consistent, low daily amount of DIC to L227. Despite the potential for CED to 

double the rate of gas exchange with the atmosphere for an extended period on most summer days, the 

rate of gas exchange is low compared to ER. L227 tends to act as a sink for atmospheric CO2, but during 

the lower-biomass period in the epilimnion the lake can serve as a CO2 source to the atmosphere.  

The concentration of DIC does not increase consistently between sunset and sunrise, despite 

photosynthesis stopping; there can be a relatively small or large increase overnight, and the increase can 

occur quickly. Microstratification at the surface could impede gas exchange with the atmosphere in 

L227, or the rate of ER could be low. When the overnight change in [DIC] is low, there is little change in 

the δ13C-DIC value. The lack of change in [DIC] and δ13C-DIC values overnight makes it difficult to 

interpret the low values.  

5.3 Temporal and spatial variability in δ13C-DIC and δ13C-POC values 

Values of δ13C-DIC and δ13C-POC vary at different timescales and by depth in L227. δ13C-DIC values 

varied on hourly to weekly timescales, and changes were related to the daily amounts of primary 

productivity. Changes in δ13C-POC occurred on weekly timescales or greater and were related to 

increases and decreases in phytoplankton biomass as blooms developed and shifted in the water 

column.  
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This study is one of very few that report overnight values of δ13C-DIC in a lake. The potential range of 

δ13C-DIC values on a diel timescale is higher than in existing studies. The value of δ13C-DIC can remain 

relatively consistent overnight or decrease by up to 18 ‰ between sunset and sunrise. On a diel 

timescale, variation in [DIC] controls δ13C-DIC. A high daytime rate of productivity and low [DIC] cause 

the value of δ13C-DIC to increase as phytoplankton preferentially fix 12C-CO2. Strong diel fluctuations in 

the value of δ13C-DIC could affect calculations of εapp, as δ13C-POC values change at a slower rate. During 

the epilimnion blooms, when pH is high enough during the day that most of the DIC pool is HCO3
-, 

δ13C-DIC remains low. Efficient CCMs that reduce CO2 leakage and isotopic fractionation by RuBisCO 

when [DIC] is low could explain why δ13C-DIC does not increase during epilimnion blooms. 

This study is also one of few that reports δ13C-POC samples for multiple seasons spanning 10 years. 

Understanding interannual variability in δ13C-POC is of interest for interpreting sediment core δ13C 

values. Interannual variability in δ13C-POC is low during the ice-free season, with similar δ13C-POC values 

and patterns in change at 1 m and 3 m. A consistent supply of P allows phytoplankton blooms to 

develop each year. On a seasonal timescale, the concentration of biomass drives increases and 

decreases in [DIC], which in turn controls the values of δ13C-DIC, δ13C-POC, and εapp. The values of 

δ13C-POC remain relatively consistent while L227 is thermally stratified; large changes in δ13C-POC values 

at a discrete depth do not span multiple weeks. A consistent, high value of δ13C-POC during summer 

phytoplankton blooms should result in high sediment δ13C values, but this has not occurred in L227. 

Sediment δ13C analysis of surficial sediment and a more recent core should be conducted to determine if 

the δ13C value of seston is comparable to that of the sediments. 

The spatial distribution of phytoplankton affects δ13C-POC values at discrete depths. The greatest rate of 

change and highest δ13C-POC value occurred when the phytoplankton bloom descended to 3 m. The 

high δ13C-POC value did not persist for more than 2 weeks at this depth, but vertical migration could 

have led to higher δ13C-POC at depths where I did not collect samples. Sampling at a higher spatial 
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resolution during the blooms or targeting discrete depths with the highest concentration of biomass 

would confirm whether the δ13C-POC value of the most concentrated area of the bloom varies with 

time.  

These results highlight the importance of choosing a monitoring regime or long-term dataset that best 

aligns with the research question. Eutrophic, soft water lakes are susceptible to diel fluctuations in [DIC] 

and may require higher temporal resolution for some monitoring parameters. Sampling at a higher 

spatial resolution or targeting the depth of the biomass peak over time may be necessary to study 

blooms situated below a well-mixed epilimnion.  
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Appendix A: Supplemental Figures 

Figure A1: Bathymetric map of Lake 227. The centre buoy marks the deepest point in the lake, 10 m. 
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Figure A2: Theoretical values of chemically enhanced fractionation (CEF) over a range of pH values at six 

different wind speed and water temperature conditions. The darker colour in each group represents the 

modelled value of CEF at 25 °C, and the lighter colour at 10 °C. The three 10 m wind speeds represent 

the minimum, median, and maximum wind speeds at the IISD-ELA meteorological station from May 1-

September 30, 2018.  
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Figure A3: Weekly DIC and Chl a concentrations for 1 m and 3 m (2018) and the integrated epilimnion and metalimnion (2019) in L227. Dashed 

lines mark the overnight sampling events, and grey circles indicate the overnight values of [DIC]. In 2018 we sampled L227 weekly, while in 2019 

IISD-ELA researchers sampled the lake monthly as part of their long-term ecological research (LTER) program. 
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Figure A4: 2018 weekly concentration profiles of phycocyanin, a pigment indicating the concentration of 

cyanobacteria (BGA, μg L-1); dissolved oxygen (DO, mg L-1); and pH for the top 5 m of L227. Orange 

circles represent the bottom of the epilimnion (temperature change greater than 0.25 °C/0.25 m), and 

orange squares represent the bottom of the metalimnion (1% light). I took measurements at 0.25 m 

intervals at the deepest part of the lake (10 m). There is little change in these parameters below 5 m. 

 

 



 
 

82 
 

Figure A5: Daily maximum and minimum pH values for July 26-September 11, 2018 recorded from 1 m 

depth at the L227 centre buoy. 
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Figure A6: Measured pH values and calculated values of the chemical enhancement factor (β) and 

chemically enhanced fractionation (CEF) at 1 m every 6 hours in L227 during the summer of 2018. Prior 

to July 25 there was no continuous data recording, and we recorded manual pH measurements weekly 

at approximately 10:00 CST.  
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Figure A7: Summary of overnight δ13C-DIC and pH values from a depth of 3 m at the L227 centre buoy 

(points), and δ13C-DIC end-member values for ecosystem respiration (ER; lines). The δ13C-DIC end-

member for ER is equal to the δ13C-POC value on the day of sampling. 
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Figure A8: Dissolved CO2 concentration at 1 m in L227 during the summer of 2018. I calculated [CO2] 

from continuous pH and temperature measurements, and bi-weekly integrated epilimnion alkalinity 

values. I assumed that the epilimnion was well mixed, that alkalinity was constant on a diel timescale, 

and that change in alkalinity from day to day linear. I applied the function 𝐠𝐞𝐨𝐦_𝐬𝐦𝐨𝐨𝐭𝐡(𝐦𝐞𝐭𝐡𝐨𝐝 =

 ‘𝐥𝐨𝐞𝐬𝐬’, 𝐲 ~ 𝐱) to improve visibility of the diurnal pattern. The dashed line is 14 uM CO2, the 

approximate value of dissolved CO2 in equilibrium with the atmosphere. Note the logarithmic scale. 
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Figure A9: Daily rates of ecosystem respiration and gas exchange at 1m in L227 from July 27-September 

11, 2018. I modelled ecosystem respiration values from continuous dissolved oxygen and temperature 

data with the R package LakeMetabolizer (Winslow et al., 2016). I estimated gas exchange values from 

alkalinity and pH measurements at different timescales (see section 3.4, L227 as a CO2 source and sink, 

in the text). Gas exchange estimates account for chemically enhanced diffusion.  
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Figure A10: Rates of gross primary productivity (GPP), net ecosystem productivity (NEP) and ecosystem 

respiration (ER) at 1 m in L227 at centre buoy during late summer 2018, and from May-September 2019. 

I converted the rate of R from μmol O2 L-1 d-1 produced to μmol CO2 L-1 d-1 consumed with a respiratory 

quotient of 0.81 (Berggren et al., 2012).  
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Figure A11: The relationship between δ13C-POC, Chl a, and [DIC] at 3 m in L227 from 2011-2018. 

Researchers collected all δ13C-POC samples from a depth of 3 m at CB. Chl a and [DIC] samples in 2011-

2016 are from the integrated metalimnion, while samples in 2017-2018 are from 3 m.  
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