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Abstract 

Anthropogenic climate change presents a potential threat to maple syrup production in Canada. 

To mitigate risks associated with climate change, information about the biological changes that 

may occur in a warming climate are necessary. This project studied one component- sap flow- 

that in part determines the economic viability of maple syrup production. A temperature-based 

sap flow model was used to project the start of the sap flow season in southern Ontario, and GIS 

applications were used to aggregate the results. The start of the sap flow season was projected for 

early, mid, and late-century periods under two climate change scenarios, RCP4.5 and RCP 8.5, 

using data from the Canadian Regional Climate Model (CRCM) CORDEX experiments. In both 

scenarios, a majority of the study area experienced an earlier start to sap flow; the northernmost 

extent of the sugar maple range saw the greatest shift to earlier sap flow dates, particularly in the 

RCP8.5 scenario. Some areas around the Great Lakes did not meet the criteria for sap flow to 

begin for the mid-century and late-century periods in both scenarios. For the mid-century period, 

the RCP4.5 scenario showed sap flow beginning earlier for most of the province- excluding the 

northernmost areas- than RCP8.5. For the late-century period, RCP8.5 showed a greater shift in 

sap flow dates than RCP4.5. The results suggest that maple syrup producers will need to take 

adaptive measures to respond to shifts in the sap flow season.  
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1.0 Introduction 

 

Anthropogenic climate change is expected to significantly impact Ontario’s forests 

(Colombo et al. 2007). Changes in temperature, precipitation, and disturbances (e.g. pathogens 

and forest fires) may alter both the health and distribution of species (Dale et al., 2001). The 

economic value of forests, in both timber and non-timber products, is expected to be affected by 

climate change.  Ochuodho et al. (2012) found that in most economic and climate change 

scenarios, the forestry sector in most of Canada will experience a significant economic loss - in a 

worst case scenario, climate change impacts on forests could result in Ontario losing over $200 

billion in GDP by the end of the century. 

The geographical range of 130 tree species in North America is estimated to move an 

average of 700km northward over the course of the century due to climate change (McKenney et 

al., 2007). Studies of both flora and fauna around the world suggest that the geographic 

distribution of species will shift; for species adapted to narrow climatic conditions, ranges will 

contract in some cases.  

Maple syrup, produced primarily by sugar maple (Acer saccharum) trees, is one product 

whose production will likely be impacted by a changing climate (Murphy et al., 2012). In the 

short term, changing temperatures will affect sap flow in maples, and in the longer term, a 

changing climate could result in a shift in the geographical range of maples (Brown et al., 2015). 

The current range of sugar maples is shown in Figure 1.   

Canada accounts for 71% of the world’s maple syrup production, mostly in Québec; 

Ontario produces 5% of Canada’s maple syrup products (Agriculture and Agri-food Canada, 

2019).  In 2018, Ontario produced 465,000 gallons of syrup, valued at slightly under $24 million 
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CAD (Agriculture and Agri-Food Canada, 2019). In addition to its economic value, maple syrup 

also holds historical and cultural significance to Canadians (Murphy et al. 2012). 

While there is 

considerable research 

examining the impact of 

climate change on forest 

ecosystems (e.g. Dale et al., 

2001; Aitken et al., 2008; 

Matthews et al., 2013), there 

are few studies looking at 

sugar maples specifically, and 

even fewer that discuss 

biological and phenological responses of sugar maples to climate change. Among these studies, 

nearly all are focused on Québec or the northeastern United States, and only Brown et al. (2015) 

studies Ontario specifically. Existing literature has found that producers have already begun to 

tap sugar maples earlier in the season (Houle, 2019), and that adaptive measures will become 

increasingly important to ensure the continued economic viability of maple syrup production 

(MacIver et al., 2006; Skinner et al., 2010). The timing of sap flow is critical to producers, as 

tapping too early or too late results in reduced volumes of sap collected (MacIver et al., 2006).  

This project seeks to fill some of this knowledge gap by examining the impact of climate 

change on the spring sap flow regimes of sugar maples, upon which maple syrup production 

relies. This research focuses exclusively on Ontario. This will provide an assessment to the 

industry about the spatial patterns of changes in sap flow regimes resulting from climate change.  

Figure 1: Current sugar maple range. USGS, 2020. 
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1.1 Research Goal  

 

The purpose of this research is to forecast the potential impacts of climate change on sap 

flow regimes in maple syrup-producing trees in Ontario. 

1.1.1 Research Objectives 

 

1. Synthesize current literature on climate and climate change impacts on sugar maples to 

identify optimum maple sap flow conditions.  

2. Acquire, edit and transform regional climate data for two representative concentration 

pathways (RCP4.5 and RCP 8.5) into a format suitable for input into a Geographic 

Information System (GIS). 

3. Using a temperature-based optimum sap flow conditions model the start of sap flow 

seasons based on forecasted spring temperatures  

4. Produce maps showing the spatiotemporal patterns of changes in sap flow regimes for 

Ontario  

5. Assess and evaluate the sap flow model and its projections.  

2.0 Literature review 

 

2.1 Climate change 

 

Climate change is arguably the most pressing modern environmental issue; shifts in the 

global climate system have the potential to alter or damage both human and natural systems. 

Though public discourse often centres on the change in the mean global surface temperature, the 

tangible impacts of climate change are more complex than global averages. In addition to shifts 

in temperatures and precipitation, changes in winds, tropical storms, atmospheric circulation, and 
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the cryosphere are expected (Stocker et al., 2013). Changes are expected to be highly 

heterogeneous, with the greatest temperature changes occurring in the Arctic (Fyfe et al., 2013; 

Stocker et al., 2013). 

Canada is expected to see considerable changes in climate. In Ontario, projections 

suggest that even under a very low forcing scenario, the province could be warmer by an average 

of 1.7°C by the end of the century; in a high forcing scenario, the average change is 6.3°C 

(Zhang et al., 2019). The province as a whole is expected to have more precipitation, particularly 

in the Great Lakes region (McDermid et al., 2015; Zhang et al., 2019; Zhang et al., 2020). The 

projections in both the McDermid et al.(2015) and Zhang et al. (2019) studies were based on 

findings from the Intergovernmental Panel on Climate Change (IPCC).  

2.2 Climate modelling 

 

The IPCC is an international group of scientists and policy makers who produce 

Assessment Reports (AR)  that synthesize the literature discussing the physical science of 

climate change, vulnerability and adaptation to climate change, and mitigation options. The most 

recent reports are AR4 (2007) and AR5 (2013). The World Climate Research Programme brings 

modelling groups from around the world together to participate in the Coupled Model 

Intercomparison Project (CMIP); simulations from CMIP models are the basis for the 

Assessment Reports.  Each modelling group participating in CMIP develops their own climate 

model(s) to contribute to the project. The CMIP models vary in complexity from basic energy-

balance models to more sophisticated Earth system Models (ESMs) (Flato et al., 2013). CMIP 

phase 3 (CMIP3) was the group of models used in AR4. AR5 used both CMIP3 and CMIP5 

models. A total of 25 and 51 models were included in CMIP3 and CMIP5, respectively.   
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Climate models are simplifications of the global climate system. In the past decade, our 

understanding of the complexities of the global climate system has improved significantly, and 

this improvement in understanding has resulted in better climate models.  CMIP3 used coupled 

Atmosphere-Ocean General Circulation Models (AO-GCMs), which model the dynamics of 

interactions of land, ocean, atmosphere and sea ice (Flato et al., 2013). Earth System Models 

(ESMs) are currently the most detailed and sophisticated models available; these models include 

biogeochemical feedbacks, such as the carbon cycle, in addition to the dynamics in AO-GCMs. 

Some ESMs are of “intermediate complexity”, which may not include all of the biogeochemical 

components of full ESMs, but may include other smaller-scale features such as ice sheets to 

answer specific questions (Flato et al., 2013). Most of the models in CMIP5 are ESMs.  

Climate models run at very large scales, typically with a resolution of 1-2° (~110-225 

km) over land and 1° over the ocean (Flato et al., 2013). In some cases, AO-GCMs or ESMs 

cannot answer local and regional scale questions, so climate models must be downscaled (see 

section 2.2.2).  

2.2.1 Climate change scenarios 

 

The IPCC has developed multiple climate change scenarios for both AR4 and AR5. The 

AR4 emissions scenarios were developed in the Special Report on Emissions Scenarios (SRES) 

(Nakicenovic et al., 2000). Four model “families” were developed, representing varying levels of 

development, investment in technology, population, and wealth distribution: A1, A2, B1, and 

B2. SRES A2 represents a high emissions scenario, SRES A1 represents a moderate emissions 

scenario, and B2 represents a low emissions scenario. The B2 scenario is also moderate 

emissions, but the A1 family is more commonly used in the literature. The A1 family was based 
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on rapid development, significant investment and advancement in technology, high international 

mobility, and a population that peaks at 9 billion in 2050 and declines to 7 billion by 2100. The 

A2 family was based on heterogeneous economic growth across regions, continual population 

growth that reaches 15 billion by 2100, and a lack of improvement in equitable income 

distribution on a global scale. The B1 family was based on similar assumptions as the A1 family, 

but assumes more investment in environmental and social protection instead of in economic 

growth.  

 While the SRES scenarios represented a number of different narratives about global 

social and political possibilities, they did not explicitly include climate change mitigation 

strategies (van Vuuren et al., 2011a). For AR5, new scenarios were developed- Representative 

Concentration Pathways (RCPs) that included different levels of mitigation, and were based on 

the amount of radiative forcing (W/m2) in their scenarios. As in SRES, 4 scenarios were 

developed: RCP8.5, RCP6, RCP4.5, and RCP2.6. RCP 2.6 is based on very strong mitigation 

policy and a decline in GHG emissions before 2100 (van Vuuren et al., 2011b). RCP4.5 assumes 

some mitigation policy- GHG emissions pricing- to stabilize forcing at 4.5 W/m2 (Thomson et 

al., 2011). RCP 8.5 is a modified A2 scenario which assumes no climate policy (Riahi et al., 

2011). RCP6, like RCP4.5, is a moderate scenario, though RCP 4.5 is more commonly used in 

the literature.  Because RCP scenarios are based on the level at which radiative forcing stabilizes, 

they are not purely based on GHG emissions; for example, RCP6 can be seen as either having 

medium baseline emissions, or as having high mitigation.   

2.2.2 Downscaling techniques and Regional Climate Models 

 

Current climate models, coupled Atmosphere-Ocean General Circulation Models (AO-

GCMs), have grid scales of several hundred kilometres (Meehl et al., 2007). They do not capture 
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meso- and local-scale phenomena, such as orographical controls on local climate patterns. 

Regional climate models seek to capture more local-scale processes. Climate models are 

inherently uncertain, and the level of uncertainty tends to increase at finer scales (Giorgi et al., 

2009). As such, techniques for creating regional climate projections has been and continues to be 

an area of considerable research (Flato et al., 2013; Giorgi et al., 2009). In order to create 

regional climate models, observations or numerical simulations need to be downscaled; 

Rummukainen (2010) likens regional climate models to a magnifying glass for GCMs.  

There are two broad categories of downscaling techniques for regional models: 

dynamical downscaling and statistical downscaling. Dynamical downscaling is physics-based, 

and is modeled at higher resolutions than GCMs. Statistical downscaling requires statistical 

relationships between large-scale predictors and meso- to local-scale predictands to be 

established, and these relationships are applied to output from GCMs (Giorgi et al., 2009). While 

statistical downscaling has many benefits (Fowler et al., 2007), only dynamical downscaling will 

be discussed here, as this technique used to create regional climate models (RCMs).  

Dynamical downscaling uses lateral boundary conditions from a GCM to produce a 

regional climate model or limited-area model (LAM). Some approaches “nest” a finer-resolution 

climate model within a GCM over a region of interest, while LAMs are exclusively for a given 

region, though boundary conditions are still taken from global GCMs (Rockel, 2015), and are 

still “nested” within a GCM (Environment and Climate Change Canada, 2015). Dynamical 

downscaling has also been an area of considerable research in the past decade, and this has 

resulted in several improvements (Flato et al., 2013). The primary development in the field has 

been the coupling of regional climate models with oceans, and in some cases sea ice and 

biogeochemistry (Artale et al., 2010; Smith et al., 2011). Coupled RCMs offer significant 
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improvement in quality for many processes, such as precipitation and lake effects (Flato et al., 

2013). 

There have been significant improvements in RCMs in recent years, in part because of 

integrating RCMs with earth systems models, not just atmospheric climate models (Rockel, 

2015). This follows the development of Coupled Earth-Atmosphere GCMs in the past decade 

that incorporate processes such as land surface and vegetation. However, evaluating the value of 

regional downscaling as a whole is challenging because most studies are not replicated, and so 

each have their own methods, observational datasets, variables being studied, and region(s) being 

studied (Flato et al., 2013). 

The Canadian Regional Climate Model (CRCM) is a LAM that is designed to work over 

any specified domain on the globe (Environment and Climate Change Canada, 2015). The 

CRCM uses boundary conditions from a GCM (in this case the Coupled General Circulation 

Model (CGCM) developed by the Canadian Centre for Climate Modelling and Analysis 

(CCCMA)). Experiments run using the RCP4.5 and RCP8.5 scenarios are available at 

resolutions of ~45 km2 and ~25 km2. Data from the CRCM with a ~25 km2 resolution was used 

for this study.  

2.2.3 GIS as a tool for analyzing climate change impacts 

 

GIS has been an invaluable tool in environmental studies for many years. Nearly two 

decades ago, Mackey (1996) stated that “GIS and environmental modelling provide new 

capabilities for analysing the space/time distribution of ecological phenomena.” The role of GIS 

in environmental analysis has continued to grow, and has been adopted as a tool in many 
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disciplines, including conservation (van der Wel et al., 2004), natural hazards (Pradhan, 2010; 

Raj and Sasipraba, 2010), and meteorology (Dyras et al., 2005).  

GIS has already proven to be an important tool for understanding climate change. In a 

2009 study, Mearns et al. developed a framework for assessing climate change impacts, and 

identified GIS as a critical tool. Aside from the scientific value GIS tools offer, another principle 

benefit of using GIS is that it is an exceptionally useful way to communicate climate change to 

policy makers and the public. O’Neill and Hulme (2009) found that GIS-based visualization 

tools were effective in engaging the public with climate change. Shaw et al. (2009) found that 

GIS (along with other visualization tools) were highly effective in fostering participatory 

approaches to climate change. 

GIS tools are beneficial not just in their analytical capacity, but also in the flexibility of 

their end use. GIS tools do not necessarily have to produce maps or other visuals, but their ability 

to do so (and usually fairly easily with proper data availability) makes it an attractive tool for 

researchers whose work is based in informing public policy, industry, or the general public. In 

the case of climate change impacts, this is a particularly important feature in an analysis tool 

since it allows complex climate science to be presented in a clear and accessible way.  

GIS is a useful tool in this study because it allows for assessment of changes at local 

scales instead of broadly defined regions. Studies that aggregate data based on regional 

definitions often obscure intra regional variation and transitions between regions. Mapping 

results is also an important way to make results helpful to a non-academic audience: maps can be 

interpreted more easily than tabular visualizations.  
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2.3 Climatic influences on sugar maple health and syrup production 

 

Maple syrup yields vary widely from year to year; fluctuations in temperature and 

moisture result in variation in sap volume, sap sugar content, and the length of the sap flow 

season (Bauce & Allen, 1991; Bertrand et al., 1994; Duchesne et al., 2009; Duchesne & Houle, 

2014). Sap flow occurs in sugar maples when there are below freezing nighttime temperatures 

and above freezing daytime ones, with the optimum range being -5° and +5°C (MacIver et al., 

2006). To be commercially viable, the sugar sap concentration needs to be high (2-3%); if the 

sugar concentration is lower, it takes more sap (and consequently more energy) to produce a 

given volume of maple syrup (Wilmont et al., 1995). For commercial production, the volume of 

sap flow is also important, and this is affected by climatic conditions and tree health (Duchesne 

et al., 2009; Wilmont et al., 1995).  

Duchesne et al. (2009) found that mean January and April temperatures, along with 

maximum February and March temperatures accounted for 84% of the annual variation in yield 

from 1985-2006 period, which was marked by an overall decline in maple syrup yield (mL of 

sap/tap/year). While winter conditions are a key determinant of maple product yields, summer 

droughts and low autumn soil water recharge are also detrimental to sugar maple health (Bauce 

& Allen, 1991). As such, an understanding of the past and current climatic influences on tree 

health is a necessary prerequisite to diagnosing the impacts of climate change on maple syrup 

(and other maple product) production. 

2.3.1 Freeze stress 

 

Robitaille et al. (1995) found that trees that were subjected to deep soil freezing had 

significantly lower sap flow rates, lower sap volume, and lower total sugar per tree for at least 
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two years after their experiment; they posited that this was related to poor health, including 

branch dieback (and consequent thinning of the canopy). Several past sugar maple diebacks, as 

well as other northern hardwood diebacks, have been the result of climatic variability, 

particularly freeze stress on root systems (Bertrand et al., 1994; Auclair et al., 1996; Cleavitt et 

al., 2008). Soil freezing events are associated not with just low temperatures, but a lack of snow 

cover (Bauce & Allen, 1991; Bertrand et al., 1994). Thus, wintertime snowmelt and thaw events 

can actually increase the risk freeze damage. Other research suggested that snow depth was as 

important a factor as snow cover, as shallow snow kept soil warmer, but close to 0ºC, making it 

more susceptible to freeze-thaw events (Decker et al., 2003). 

Root freezing and thaw-freeze events have been found to be a precursor to sugar maple 

decline and dieback, though not necessarily a cause. Rather, freeze stress events have a 

deleterious effect on tree health, weakening and predisposing them to diebacks as a result of 

other stressors, such as drought (Auclair et al., 1996). However, Bertrand et al. (1994) found that 

a lack of snow cover in a forest stand resulted in lowered soil water content, so freeze stress itself 

can result in moisture stress. Further, Boutin and Robitaille (1993) found that root-level freezing 

stress is followed by a rapid acidification of the soil, which in itself can lead to tree decline. 

Other research has suggested that much of the damage done by soil freeze events stems from 

direct cellular damage to roots as opposed to physical damage from frost heaving (Cleavitt et al., 

2008).  

2.4 Climate change impacts on hardwood forests 

 

Climate change will have (and has already had) a greater impact in winter than in 

summer in temperate zones (Kreyling, 2010; Zhang et al., 2019). Given the critical role that 
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wintertime climatic conditions have on sugar maple health, such climatic shifts could have 

significant impacts on tree health and sap production.  

A general northward migration of sugar maples (and most other species) is expected, 

though Aitken et al. (2008) note that the migratory response to climate change is unlikely to 

occur quickly enough because of the rapidity of anthropogenic climate change. Brown et al. 

(2015) used a GIS-based approach to determine suitable maple habitat in Ontario, in current 

maple syrup-producing regions. They suggest that in the south and west, habitat changes from 

mostly suitable for maples to mostly unsuitable for maples over the 21st century, though some 

portions in the northernmost syrup-producing regions have more suitable maple habitat towards 

the end of the century. However, the results are based on physical characteristics, and do not take 

into account local adaptation strategies or improvements in technology.  

2.4.1 Phenological changes 

 

Phenology refers to the timing of natural events, such as when flowers bloom or when 

leaves begin to turn. Changes in phenology have the potential not just to change the timing of 

bud break (which marks the end of the sap flow season in sugar maples), but also the health and 

distribution of trees (Chiune and Beaubien, 2001; Chiune, 2010). Though phenology can be 

complex to forecast (Ibáñez et al., 2010), changes in it can have significant effects on both 

individual species as well as entire ecosystems (Groffman et al., 2012).  

There have already been significant phenological changes in hardwood forests during the 

1956-2010 period, such as the start and length of the growing season (Groffman et al., 2012). 

Soil and below-ground phenology has changed more quickly (i.e. is happening earlier) than plant 

phenology in northern hardwood forests (Groffman et al., 2012). There is consensus that 
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warming winter temperatures in the future will result in further phenological shifts to earlier in 

the season (Ibáñez et al., 2010; Kreyling, 2010).  

It is expected that phenological shifts will result in soil warming to biologically 

productive levels earlier in spring (Chuine & Beaubien, 2001; Kreyling, 2010; Groffman et al., 

2012), but if above-ground phenological changes in plants are not synchronous with this, it could 

lead to overall nutrient depletion in an ecosystem (Groffman et al., 2012). Thus, advanced and 

extended growing seasons may not translate to healthier or more productive trees.  

Chuine and Beaubien (2001) found that in species distribution modelling, the models 

they tested were only accurate when survival and reproductive success of species were a function 

of phenology, suggesting that understanding phenological shifts are crucial to projecting future 

species distributions. Interestingly, research undertaken nearly a decade after that study, there is 

still considerable uncertainty about phenological changes, such as the rate of change and whether 

different components of an ecosystem will change synchronously (Groffman et al., 2012; 

Dormann et al., 2012; Aitken et al., 2008).  

2.5 Climate change impacts on maple syrup production 

 

Determining the impact of climate change on maple syrup production is important for the 

industry. Several studies have suggested that maple syrup yield could be reduced in the future, 

though few have quantified this. Duchesne et al. (2009), who used AR4 projected future 

temperature data to quantify expected changes in syrup yield, found that it could be reduced by 

15 and 22% in 2050 and 2090, respectively, due to climate change (these are the median values 

of multiple emissions scenarios and multiple climate models). However, the issue is complex; 

the authors note that if the period of sap production were to occur 12 and 19 days sooner in 2050 
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and 2090, respectively, then current yields could be maintained. This is consistent with a sap 

flow study, based on temperature data from 2 AR4 emissions scenarios, that found by shifting 

sap collection schedules to earlier in the season, there is no net loss of sap flow days (Skinner et 

al., 2010). However, the Skinner et al. (2010) study was designed to assess these changes in the 

Northeastern United States, so they may not be applicable in a Canadian context.  

There has already has been advancement in budbreak in sugar maples (i.e. budbreak is 

happening earlier), which suggests that maples are to some extent already adapting to a changing 

climate. However, sap flow for maple products requires daytime temperatures of above freezing, 

followed by below freezing nights; thus, significant warming could still pose a threat to 

production, even if phenological changes occur (Goff & Bergeron, 2011).  

Duchesne and Houle (2014) suggest that generally, climate change may favour maple 

production further north, but negatively affect production at lower latitudes. This is consistent 

with changes in risk of freeze damage: in more southerly latitudes, increases in winter 

temperatures could result in temperatures hovering close to 0ºC, increasing the vulnerability of 

roots to freeze damage. While studies exist on impacts of heat stress and drought on overall tree 

health, these factors are not generally assessed in relation to sap flow. Brown et al. (2015) found 

that under both moderate and high emissions scenarios, the area of suitable sugar maple habitat is 

lessened considerably at both mid- and late- century (see Figure 1) in current maple syrup 

producing regions (the potential for sugar maples to migrate to areas that do not currently 

support them was not assessed).  

The vulnerability of sugar maples (and forests in general) to climate change is dependent 

on a number of factors, including the ability for species to locally adapt to changing climates. 

Leading edge populations (i.e. high altitude or high latitude) trees are likely to experience less 
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stress from climate change because gene flow from central populations would pass along alleles 

pre-adapted to a warmer climate (Aitken et al., 2008). Further, Goff and Bergeron (2014) find 

that in addition to natural adaptations, there are a number of forest management practices that 

can improve forest resilience to climate change. Assisted migration by planting tree stands 

further north, and selectively breeding sugar maples to better withstand changing climatic 

conditions were two of the options presented in the study. Murphy et al. (2012) and Goff and 

Bergeron (2014) also identified monitoring and regulatory changes as potential adaptive 

strategies, but these would apply to policymakers rather than individual producers.  

The vulnerability of maple syrup producers to climate change will depend not just on 

adaptive measures to maintain forest health, as noted above, but also on adapting to changes in 

the timing of the sap flow season. Beginning sap collection earlier in the year may be necessary 

to ensure that sufficient volumes of sap are collected before buds break and the sugar content in 

the syrup becomes too low.  

2.6 Assessing research gaps  

 

There is a considerable body of research that establishes ideal climatic conditions for 

optimum health and sap flow in sugar maples, as well as climatic factors that can be deleterious 

to tree health and sap flow. There is also a fair amount of research discussing the potential 

impacts of climate change in maple syrup producing regions. However, there is much less 

research connecting climate change with maple syrup production, and even less connecting 

climate change to sap flow. Indeed, only a few studies were found that explicitly discussed sap 

flow, and the study areas were restricted to either or the Northeastern United States. In most 

studies, spring temperatures are the primary or exclusive indicator of sap flow. Only one study, 

Houle (2019), used a full range of indicators to determine the likelihood of a given week being 
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ideal for sap flow. However, even in that study, it is acknowledged that temperature is the single 

most important predictor of sap flow.  

There is a major research gap in examining the impact of climate change on maple syrup 

production in general, but there is virtually no information that pertains directly to Ontario, with 

the exception of Brown et al. (2015), but this study discusses changes in suitable habitat for 

maples rather than impacts on maple syrup production itself. There is then, a need for more 

research on climate change impacts on sap flow specific to Ontario. This project can provide 

stakeholders with information about both what changes in sap flow are expected to occur in 

current syrup-producing regions and provide insight into whether these regions are still ideal 

habitats for maple trees in the future. Results generated from this research can be used as a tool 

for identifying potential areas where specific adaptive strategies should be utilized.  

3.0 Methods 

 

3.1 General approach 

 

This research used a sap flow model, based on the optimum temperature range of -5°C to 

5°C, to determine the beginning of sap flow seasons for early (2005-2015), mid-century (2045-

2055), and late-century (2085-2095). Prior to running the sap flow model, the climate data had to 

be transformed into a format compatible with GIS software. The projections were completed 

using the RCP4.5 emissions scenario (low-medium radiative forcing) and RCP8.5 emissions 

scenario (high radiative forcing), and the results were aggregated and displayed using a GIS 

application. The process is shown in Figure 2.  
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3.1.1 Study Area 

 

This project will focus on projecting the future sap flow conditions in southern Ontario. 

The study area is focused on the current Ontario Maple Syrup Producers’ Association (OMSPA) 

boundaries. OMSPA does not have a clear limit to the extent of the northernmost syrup 

producing regions, so the extent of maple habitat as established in Brown et al. (2015) is used as 

the northern border.  

3.1.1 Sap flow model 

 

The sap flow model projected the beginning of the sap flow season based on optimum 

diurnal temperatures of  -5°C overnight and +5°C during the day (MacIver et al., 2006). The 

beginning of sap flow is determined as the first date that meets the condition of a minimum 

temperature between -5°C and 0°C, and a maximum temperature above 0°C and less than 5°C. 

Sap flow depends on the process of freezing temperatures at night followed by above freezing 

during the day, so using the range -5°C to 5°C without building in logic for freezing and below 

freezing temperatures could have produced false positives.  

The beginning of sap flow is not well-defined in the literature; it is usually described 

loosely as early spring. Producers typically begin collecting sap around the beginning of March, 

but there is considerable variation year-to-year depending on temperatures (Legault et al, 2019). 

Existing studies on the start of sap flow in Canada (Houle et al., 2015; Houle, 2019; Legault et 

al., 2019) show sap flow beginning earlier, but no results indicate that it is expected to begin in 

January, or that producers begin tapping in January even if sap flow conditions are ideal. To 

avoid artificially early start dates of sap flow, a further rule that February 1st was the earliest 

acceptable day for the beginning of sap flow was included as well.  
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The sap flow model is designed to determine the onset of sap flow. It does not evaluate 

the quantity of sap or sap sugar content, nor does it take into account potential frost damage or 

other events that may affect the health of trees. 

 

3.2 Data sources 

 

The principal datasets needed to complete this project were the temperature projections 

for the 21st Century for the AR5 RCP4.5 and RCP 8.5 scenarios (daily minimums and 

maximums) from the CRCM CORDEX runs. These regional datasets cover all of North 

America, and come in 5-year data arrays; only the files for relevant years 2006-2015, 2046-2055 

and 2086-2095 were used in this study. The data has a 25 km2 resolution, and comes in NetCDF 

Figure 2: Data processing flow diagram.  
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format. The map projection used in these files was a rotated pole coordinate system; this means 

that the North Pole is not in the usual position, but rather near the equator. In order to analyze 

and display the results from the sap flow model, the data had to be transformed from a rotated-

pole to standard latitude-longitude coordinates.  

The data from the CORDEX experiments begin with the period 2006-2010. The 10-year 

periods for early, mid, and late century were based on 2006 being the earliest available year with 

data, and having equal intervals (40 years) between each period.   

All of the temperature data from the CRCM is modelled - the temperatures for the 2006-

2015 period are not observed values, so there are differences in the baseline values between the 

two scenarios.  

4.0 Results 

 

4.1 RCP 4.5 Scenario 

 

4.1.1 Beginning of Sap Flow  

 

During the 2006-2015 period, a majority of the province experienced the beginning of 

sap flow during the first 3 weeks of February, with a general trend of earlier in the south and 

later further north. In the northernmost extent of sugar maple habitat, the beginning of sap flow 

can occur as late as the first week of March. By mid-century, most of the study area, even the far 

north, sees sap flow begin by mid-February. The spread in the onset of sap flow dates increases 

slightly for the late-century period, but the latest instance of onset of sap flow does not exceed 

mid-February in part of the study region (Figure 3).  
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Figures 4a and 4b show the 

percent change in sap flow start dates 

for the mid-century and late-century 

periods relative to the early-century 

baseline. The change from the early to 

mid-century periods sees a few small 

areas with large changes in the start of 

sap flow season. However, a majority 

of the study area sees sap flow begin 

10-15% earlier than in the 2006-2015 

period.  

Towards the end of the century, there are very few areas with an onset of sap flow later in 

the season, and the increase does not exceed 3% in most cases. The trend towards earlier onset of 

sap flow in most of the study area is less pronounced than the results from mid-century, with 

most areas seeing the start of sap flow only slightly below the 2006-2015 period – less than 10% 

earlier in most places. In some areas, the onset of sap flow is slightly later for the 2086-2095 

period than for the 2046-2055 period, but the magnitude of the difference is negligible (2-3 days 

difference). 

 In both the mid-century and late-century periods, there are areas where the criteria of a 

minimum temperature between -5°C and 0°C and a maximum temperature above 0°C and less 

than 5°C are not met in one or more years of the period. A few isolated spots are impacted by 

Figure 3: Model projections of the first Julian day of ideal sap 
flow conditions under the IPCC RCP4.5 scenario for early, mid, 
and late century periods. Circles represent outlier values, 
asterisks represent extreme outlier values. 
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mid-century, but by late century a pattern emerges of most of the southern shore of Lake Huron 

and Georgian Bay no longer experiencing ideal sap flow conditions.  

4.2 RCP 8.5 Scenario 

 

4.2.1 Beginning of Sap Flow  

 

The onset of sap flow for the 2006-2015 

period varied considerably geographically, with 

the northernmost part of the sugar maple range 

seeing the start of sap flow 4-5 weeks later than 

the rest of the province. The latitudinal gradient 

for the onset of sap flow became smaller over the 

course of the century. The north still generally 

sees later onset of sap flow, but the difference 

between the south and the north narrows to 2-3 

weeks for most of the study area during the 2046-

2055 period. Toward the end of the century, the difference between the onset of sap flow in north 

and the south is approximately two weeks (Figure 5). In Figure 5, the outlier values for the early-

Figure 5: Model projections of the first Julian day of ideal 
sap flow conditions under the IPCC RCP8.5 scenario for 
early, mid, and late century periods. Circles represent 
outlier values, asterisks represent extreme outlier values. 

Figure 4: Percent change in earliest day of sap flow between A) the early to mid-century periods, and B) between the early and 
late-century periods under the IPCC RCP4.5 scenario. Cells with a no data value experienced one or more years where the 
conditions for ideal sap flow were not met.  
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century period are all located in the northernmost extent of the study area. For the late-century 

period, the outlier values are all located along the shore of Lake Erie (see section 5.3).  

In both the mid and late century periods, the northern region of the study area sees a 

noticeably larger change (Figures 6a and 6b). In the mid-century period, sap flow begins 30-50% 

earlier than the 2006-2015 period in the north, while changes in most of southwestern Ontario 

are negligible (±5%). By mid-century, several areas along southern Lake Huron did not meet the 

criteria for sap flow in at least one year.  

Towards the end of the century, sap flow begins 10-20% earlier for most of the study 

area, excluding the northernmost region, where it begins 30-50% earlier, and the southernmost 

region, where sap flow criteria is either not met, or is taking place much later. The change 

approaches 100% in some areas around Lake Erie (~4 weeks later).  

5.0 Analysis 

 

5.1 End of Sap Flow Season 

 

The end of the sap flow season for maple syrup producers occurs once buds break, as this 

results in the sugar content of the sap becoming too low for economical syrup production. 

Figure 6: Percent change in earliest day of sap flow between A) the early to mid-century periods, and B) between the early 
and late-century periods under the IPCC RCP8.5 scenario. Cells with a no data value experienced one or more years where 
the conditions for ideal sap flow were not met.  
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MacIver et al. (2006) determined that sugar maples come out of dormancy after 10 consecutive 

days with minimum temperatures above 0°C and/or 10 consecutive days with maximum 

temperatures above 10°C.  

Experiments were run using both the minimum and maximum temperature rules. The 

resulting end dates were markedly different between the two experiments. While the general 

trend in both cases was earlier end dates in most of the study area, the condition of 10 days with 

a minimum temperature above 0°C was reached much earlier than the condition of 10 days with 

a maximum temperature over 10°C in some regions.  This was particularly noticeable for the 

2086-2095 period.  

The expectation was that the results from the two experiments would provide a window 

for the end of sap flow. However, the large differences meant that this window spanned several 

weeks for some areas – too long to make a meaningful assessment of when the end of the season 

would be. The results of the experiments suggest that a model based only on temperature is 

inadequate for determining the end of the sap flow season.   

A 2019 study by Houle used a complex probabilistic model to determine the onset and 

length of the sap flow season for regions in Quebec for given weeks throughout the spring. 

Despite using a comprehensive set of variables, the margin of error for the end dates of sap flow 

was large enough to alter the sign of the change in the length of the sap flow season in most of 

the regions. The results suggest that even with a more complex model, the drivers for bud break 

are not fully understood, and more research in this area is warranted. Houle notes, however, that 

while determining exact dates for sap flow is unlikely to be accurate, the general trends in 

models are useful to producers and can provide a framework for adaptive planning.  
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5.2 No DataValues 

 

Cells that were assigned a no data value had at least one year in the ten-year periods 

where the criteria for sap flow was not met. While the threshold for assigning a no data value 

was one year, a majority of the cells had multiple years where sap flow criteria was not met. In 

both the RCP 4.5 and RCP 8.5 scenarios, there were cells that had no years that met the 

conditions for sap flow for the late-century period.  

All of the cells not meeting the sap flow criteria are located along the Great Lakes, with 

the highest concentration along Lake Huron. This pattern suggests that lake effects change under 

any radiative forcing scenario. The model only assessed whether cells met the criteria, so further 

investigation into whether changes in minimum or changes in maximum temperature are the 

primary driver for not meeting sap flow conditions.  

It is also interesting to note that the cells not meeting sap flow criteria, while concentrated 

around the same areas, do have some variation between the two radiative forcing scenarios. At 

mid-century, the RCP 8.5 scenario has more than double the number of cells not meeting sap 

flow criteria than the RCP 4.5 scenario. For the late-century period, the RCP 4.5 scenario has 

more cells not meeting sap flow criteria than the RCP 8.5 scenario because of an additional 

cluster of cells around Georgian Bay.  

5.3 Comparison of RCP 4.5 and RCP 8.5 

 

The results of the experiments show that the change in sap flow start dates is more linear 

for the RCP 8.5 scenario than for the RCP 4.5 scenario. In the RCP 8.5 scenario, there is a clear 

trend of an earlier onset of sap flow over the course of the century, whereas in the RCP 4.5 

scenario, the mid-century period shows earlier start dates than the late-century period. 
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The spread in data is also quite different 

between the two scenarios. In the RCP4.5 scenario, 

the difference between the earliest and latest 

instances of sap flow is smallest in the mid-century 

period and increases for the late-century period. For 

RCP 8.5, the range of values becomes consistently 

smaller over time.  

The larger changes in mid-century for the 

RCP 4.5 scenario is likely because in that scenario, 

radiative forcing reaches its maximum of 4.5W/m2 

around mid-century and then levels off (Figure 7). In that case, it is logical that conditions 

stabilise by the late-century period since the radiative forcing peaked and then remained at a 

consistent level for several decades prior. In the RCP 8.5 scenario, radiative forcing increases 

over the century, reaching 8.5W/m2 at 2100. Since there is no stabilisation of radiative forcing, 

the linear-type trend in earlier sap flow dates is to be expected.  

The patterns for the start of sap flow differ spatially between the two scenarios as well. In 

the RCP 4.5 scenario, there is a clear trend of an earlier sap flow season in the north for the mid-

century period, but by the late-century period, the change is much smaller, and in some parts the 

sap flow season begins slightly later. In the RCP 8.5 scenario, there is a strong and consistent 

signal that the northern region of the study area will experience sap flow earlier. Some parts of 

the north see sap flow begin about 50% earlier in mid-century, and the changes late-century 

show a similar limit of sap flow beginning about 50% earlier. The late-century period shows a 

Figure 7: Radiative forcing in the RCP scenarios. From 
van Vuuren et al., 2011) 
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larger portion of the north approaching the start of sap flow about 50% earlier than the mid-

century period.  

Many of the differences between the two scenarios are likely due to RCP 4.5 having a 

consistent level of radiative forcing from mid-century onward, but it is also important to note that 

the two scenarios are not directly comparable – underlying assumptions about consumption, 

economics, and land use are not the same (van Vuuren et al., 2011). While both radiative forcing 

and GHG emissions are higher in RCP8.5 for the entire 21st century, emissions from land use 

change, specifically deforestation, are markedly higher in RCP4.5, and the emissions from 

deforestation peak in 2050 (Clark et al., 2007, Smith et al., 2006, Wise et al., 2009). The mid-

century results for RCP4.5 may partially be explained by this difference in the two scenarios.  

The general patterns are largely consistent with the literature showing that higher 

latitudes will warm faster than lower latitudes; a study by Zhang et al. (2020) found that even 

within the Great Lakes Basin, warming was greatest in the north.  The difference in late-century 

conditions between the two scenarios suggests that stabilising radiative forcing around mid-

century may avoid large changes in the start of sap flow later in the century. Conversely, 

continued pressure on natural systems with increasing radiative forcing may push further 

changes.  

The presence of areas seeing later start dates for sap flow, in some cases directly adjacent 

to areas seeing earlier dates, indicates that there may be increased climatic variability in both 

RCP scenarios. An assessment of variability in temperatures would be an area for further 

research, as this would help to determine the consistency of sap flow, and not just the onset.  
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There is currently very little literature that explores changes beyond 2100, but coming the 

RCP 4.5 and RCP 8.5 scenarios beyond 2100 may offer some further insight into what effect a 

consistent level of radiative forcing, as is modelled in RCP 4.5, has on systems in the long-term 

relative to increasing radiative forcing.  

5.4 Adaptive Strategies  

 

From an industry-wide viewpoint, increasing production further north in Ontario will 

likely need to be part of an adaptive strategy. Some studies (e.g. Skinner et. al., 2010) have found 

that Minnesota is likely to become more suitable for maple syrup production over the course of 

the century. While OMSPA does not currently include the area around the Minnesota border as a 

syrup-producing region, there may be potential to expand production there.  

Within the existing syrup-producing region in Ontario, producers will need to be 

prepared for an earlier start to sap flow in most regions. Since conditions change from year-to-

year, experienced producers are already well-equipped to make decisions on when to begin 

tapping trees. While this study was unable to successfully project end dates, the existence of cells 

not meeting criteria for sap flow to begin does indicate that some areas in the south are likely to 

see a significant shift in how consistently and for how long sap flows. Producers in those areas 

will most likely require technological solutions in addition to tapping earlier.  

An important tool available to producers is vacuum technology and tubing to collect sap, 

rather than traditional taps and buckets. Vacuum technology allows producers to begin collecting 

sap earlier than traditional collection methods, and ensures a more consistent supply of sap that is 

less reliant on ambient temperatures (Snyder et al., 2019). Implementing this technology will 

likely become increasingly important for producers to remain competitive. In addition to 
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technological interventions, many producers are already implementing forest management 

strategies to improve tree health, which ensures trees are more productive (Snyder et al., 2019; 

Kuehn et al., 2017). 

5.0 Conclusion 

 

The results of the experiment show that there will be significant changes to the start of 

the sap flow season in most of Ontario, irrespective of RCP scenario, and a majority of the 

province will experience sap flow earlier in the year.  In a lower radiative forcing scenario, the 

largest changes occur in the mid-century period, and stabilise more at the late-century period as 

radiative forcing stabilises as well. Under a higher forcing scenario, changes continue through 

the end of the century. Areas along Lake Huron and parts of Lake Erie do not meet the criteria 

for ideal sap flow conditions. In these areas, it is possible that maple syrup production will not be 

possible, or that volumes will be too low to be economically viable.   

The methods used in this research are valuable as a baseline for when sap flow can be 

expected to start in Ontario, but it does not assess the quality or quantity of sap, both of which 

dictate the economic value of the syrup. The model also does not effectively determine end dates 

of sap flow. More complex sap flow models do exist in the literature, but none have studied 

Ontario. The existing literature also lacks GIS-focused analysis, so variation within defined 

regions is difficult to assess. Future research combining more sophisticated sap flow models with 

a GIS-focused analysis would be extremely valuable in determining where specific adaptive 

strategies could be implemented in Ontario (and in other maple syrup-producing regions).  

Further research into temperature fluctuations may also be helpful to assess the consistency of 

sap flow for producers who do not have access to vacuum technologies, or who choose to 
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continue using traditional methods for sap collection. Forest management strategies to protect 

sugar maples from known stressors like freeze-thaw damage will become increasingly important 

for producers, particularly around the Great Lakes, where sap flow conditions are not being met 

by mid-century in both RCP scenarios.  
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