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ABSTRACT 
 

The loss of permafrost has produced a wholesale conversion from forest to wetland, and many 

studies have analyzed the effects of permafrost thaw-induced land cover change on the 

hydrology and ecology of landscapes within the Taiga Plains. The permafrost thaw driven areal 

shrinkage of forested plateaux and their replacement by treeless wetlands is well documented, 

and the co-occurrence of permafrost and black spruce forest cover is the basis for areal 

estimates of the former. However, field studies conducted at a peatland dominated landscape 

near Fort Simpson, NWT indicate that tree canopy may persist following the loss of permafrost 

and the gradual drying and succession of the previously treeless bog landscape. Such treed 

bogs are present on the borders of thawed plateaux and within larger and more established bog 

complexes. These features are typically characterized by stunted black spruce (Picea mariana), 

ground lichen (Cladonia spp.), and sphagnum hummocks (Sphagnum Spp). A total of four sites, 

each containing a bog, treed bog and peat plateau were chosen based on a supervised image 

classification completed within the basin. A geophysical investigation was completed to 

determine permafrost presence, depth of seasonal ice was measured along transects at each 

site, a series of wells were installed to measure hydrological response and discrete soil moisture 

measurements were taken immediately following snowmelt to characterize differences in 

moisture retention. Treed bogs are permafrost free features that intersect peat plateaux and 

bogs in terms of their hydrology. It is not clear whether these features represent a temporary 

state of succession for drier bogs, or if they will remain as permanent features on the landscape.  

Understanding the succession of northern landscapes due to climate warming provides an 

important step in predicting the trajectory of change in the north. This work provides new 

insights regarding the future of post-thaw landscapes within the Taiga Plains. 

Keywords: permafrost thaw, landscape transition, hydrology, cold regions, climate warming, 

Scotty Creek 
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CHAPTER 1.0:  

General Introduction 
 

1.1 Introduction and background  

Permafrost is a product of cold climates, typically where mean annual air temperature 

(MAAT) is below 0oC, and can be defined as ground that remains at or below 0oC for two or 

more consecutive years (Mackay 1972). Permafrost distributions may be either continuous or 

discontinuous in nature, but within the discontinuous permafrost zone permafrost may underlie 

between 10% and 90% of the landscape. This zone can be further broken down into sporadic-

discontinuous and extensive-discontinuous permafrost distributions. As climate warming is 

occurring disproportionally in northern latitudes, permafrost is experiencing increasing rates of 

thaw (Payette et al., 2004; Quinton and Connon, 2017). Although MAAT provides a good 

analogue to determine permafrost extent over a large spatial scale, distributions may be 

spatially limited to variables such as vegetation, soil moisture, and snow cover. For example, 

within the sporadic-discontinuous zone permafrost distributions are generally restricted to 

peatlands, where the insulative properties of the peat maintains the thermal offset required to 

sustain permafrost, as MAAT in sporadic-discontinuous zone typically approaches 0°C. 

Permafrost in these regions is typically found beneath treed peat plateaux which are raised 1-

2m above the surrounding low elevation wetlands. Permafrost-free features (i.e. collapse-scar 

bogs and fens) within this region are low elevation, saturated, and are regarded as canopy free 

(Vitt et al. 1994; Beilman et al. 2001) 

1.2 Permafrost Degradation   

Permafrost degradation is defined as a natural decrease in the vertical or horizontal 

thickness of a permafrost body (Brown, 1970); in discontinuous permafrost peatland complexes, 
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it is often dominated by a combination of intense lateral and horizontal degradation to the 

permafrost body. As northwestern Canada  rapidly warms, permafrost degradation is resulting in 

concomitant changes to the ecology (Baltzer et al. 2014; Shur & Jorgenson 2007), hydrology 

(Connon et al. 2014; Connon et al. 2015; Walvoord & Kurylyk 2016), and carbon cycling (Helbig 

et al. 2016) of northern landscapes, such that landscape transition is occurring rapidly (Payette 

et al. 2004; Quinton & Connon 2017). Ground subsidence, waterlogging, and the tilting of black 

spruce (Picea Mariana) trees are a byproduct of the intense thaw described above, and the 

extensive conversion of forested plateau to treeless wetland has been well documented 

(Robinson & Moore 2000; Quinton et al. 2011; Baltzer et al. 2014). The areal shrinkage of treed 

peat plateaux and their replacement by treeless wetlands has been widely observed throughout 

northern regions (Quinton et al. 2011; Chasmer & Hopkinson 2016; Jorgenson & Osterkamp 

2005; Robinson & Moore 2000), and many studies have focused on tracking the landscape-

wide implications of these changes. Earlier studies have used manual delimitation and a black 

spruce canopy (Picea mariana) as a proxy for determining permafrost distributions (Tutubalina 

& Rees 2001; Chasmer et al. 2010; Quinton et al. 2011), as it has been established that black 

spruce canopy cover typically only exists atop dry peat plateaux (Vitt et al. 1994; Beilman et al. 

2001), while later studies used a combination of canopy, spectral and topographic 

characteristics to classify landcover types (Tutubalina & Rees 2001; Chasmer et al. 2011; 

Chasmer et al. 2014). Manual delimitation is often more labor intensive but less complex, as it 

involves outlining areas of black spruce canopy manually. Because of this, it would often 

overestimate the percentage of landscape that may contain permafrost. Solutions such as 

completing a classification using multi-spectral imagery are often more complex, but studies 

have noted increases in landscape classification accuracies (Nguyen et al. 2009; Chasmer et al. 

2014). Nonetheless, estimates of permafrost distributions remain useful for understanding 

landscape change under warming climate conditions.  
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1.3     Landscape Succession  

The peatlands of northwestern Canada were first established as fens following the 

retreat of the Laurentide ice sheet, which occurred between 8000 years and 9000 years before 

present (BP) (Zoltai 1993; Zoltai 1995). Bog development within this region was initiated 5000 

years BP, with the first sign of permafrost occurring around 3700 years BP (Zoltai 1993). The 

degradation and subsequent aggradation of permafrost bodies in southern peatlands has 

occurred frequently since 3700 years BP, and was often triggered by a large disturbance such 

as a fire, with the degradation-aggradation observed to operate over a period as short as 600 

years (Zoltai 1993). Currently, permafrost degradation is the dominant mechanism in 

northwestern Canada due to anthropogenic warming, often resulting in dramatic landscape 

change (Camill 2005; Jorgenson & Osterkamp 2005; Payette et al. 2004). Aggradation 

mechanisms are primarily driven by the succession of Sphagnum from aquatic species (S. 

riparium) to lawn species (S. angustfolium, and S. fuscum), the subsequent establishment of a 

black spruce canopy, and the insulating properties of dry Sphagnum peat (Vitt et al. 1994; Zoltai 

& Tarnocai 1975). As these successional processes occur, there is a spatial and temporal 

transition from inundated collapse-scar communities to that of hummocky communities that 

grow above the local water table (Vitt et al., 1994; Camill, 1999). The establishment of hummock 

terrain provides drier conditions to support the growth of black spruce saplings by preventing the 

inundation of the rooting network. Both the insulating properties of peat as well as the 

development of a canopy plays a key role in the development of permafrost, as it a For 

example, tight clusters of canopy cover may intercept early snowfall, allowing the frost table to 

penetrate to a greater depth due to the insulative properties of peat near the surface (Zhang 

2005; Zoltai 1972; Camill 2000). As this process advances, the frost table may penetrate to 

such a depth that it does not completely thaw the following summer. Such processes have been 
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investigated in chronological cores at many sites throughout northern peatlands (Zoltai, 1993), 

and have been observed in peatland sites in southern NWT (Chasmer & Hopkinson 2016; 

Pelletier et al. 2017).  Although it is unlikely the climate within the southern discontinuous region 

is in a period conducive to permafrost aggradation, the processes involved in the localized 

succession of the landscape may continue to operate under a warming climate. 

 

1.4 Hydrology of discontinuous permafrost regions  

Permafrost presence places a strong control on the local hydrology within the 

discontinuous permafrost region. For example, within regions of high relief, many studies have 

documented the relationship between permafrost presence and aspect, such that north facing 

slopes contain permafrost and produce runoff, while south facing slopes are often well-drained 

and permafrost free (Carey & Woo 2001; Carey & Woo 1999; Woo et al. 2008; Ishikawa et al. 

2005). Within the peatland portion of the discontinuous permafrost zone, relief is low, and 

therefore the permafrost presence is a function of the insulating properties of vegetation (Brown 

1970), such that each landcover type has a distinct hydrological function on the landscape 

(Quinton et al. 2003; Hayashi et al. 2004; Wright et al. 2008). The scope of this work is limited to 

low-relief peatlands within the sporadic-discontinuous permafrost zone. Peat plateaux are 

elevated features that, during high yield events such as snowmelt, will direct large quantities of 

runoff into lower elevation features due to the steep elevational gradient and hillslope runoff 

processes (Wright et al. 2008). Because of this, landcover induced gradients between peat 

plateaux and low elevation features are prevalent throughout peatland complexes. Runoff from 

peat plateaux is highest during spring snowmelt due to the increased availability of water and 

shallower frost table depths allowing the water table to occupy a zone of uniformly high 

hydraulic conductivity (Wright et al. 2008; Quinton et al. 2009), and lowest in the summer as 

they are often in a moisture deficit throughout the summer period. Collapse-scar wetlands are 
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low elevation storage features within the basin, as they receive inputs from either precipitation 

or runoff from higher elevation peat plateaux, which is then retained as storage, lost to 

evaporation, or routed laterally through a series of connected collapse-scar wetlands (Hayashi 

et al., 2004; Wright et al., 2009; Connon et al., 2015). Runoff from collapse-scar wetlands is 

typically limited due to the very low hydraulic conductivity of the permafrost bodies that surround 

them. Drainage channels between bogs within discontinuous permafrost peatlands have been 

observed in both northern Manitoba and Alberta (Thie 1974; Vitt et al. 1994), but were recently 

quantified within Scotty Creek by following a modified conceptual runoff model of ‘fill-and-spill’ 

proposed by Spence and Woo (2003). Because it was hypothesized that runoff between bogs 

could only occur during high yield events, it was suggested a ‘threshold concept’ be utilized, 

such that runoff between cascading bogs can only occur if the storage capacity of the upstream 

bog is first met (Connon et al. 2015). It is hypothesized that increases to the runoff contributing 

area occur following the loss of permafrost (Connon et al. 2015), resulting in lower elevation 

peripheral channels that cascade several collapse-scar bog features during high-yield events 

contributing to the basin drainage network (Connon et al. 2015; Haynes et al. 2018).The near-

surface water table and saturated conditions typically present within collapse-scar bogs may 

prevent the establishment of a canopy cover. Flow in the headwaters of the Lower Liard river 

valley is typically restricted to channel fens (Hayashi et al. 2004). These features are typically 

bordered by peat plateau’s and transport water to the basin outlet.  

 

1.5 Landscape Trajectory  

As air temperatures rise and discontinuous permafrost peatlands experience further 

degradation, increasing hydrologic connectivity between landscapes and the succession of 

Sphagnum communities within larger bog complexes may provide ideal conditions for the 

establishment of canopy, such that the re-emergence of canopy cover is an important and 
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emerging trend within northern peatlands (Murphy et al. 2009; Kettridge et al. 2013; Waddington 

et al. 2015). Several studies have suggested both climate warming in northern peatlands and 

the anthropogenic drainage of temperate peatlands may lead to the re-establishment of shrub 

and canopy conditions (Jeglum & He Fangliang 1995; Pellerin & Lavoie 2000; Lohila et al. 2011; 

Waddington et al. 2015), while studies within the discontinuous permafrost zone have suggest 

similar trends due to dewatering and landscape succession (Ketteridge et al., 2013; Chasmer 

and Hopkinson, 2016; Carpino et al., 2018) . Carpino et al., (2018) examined forest growth and 

reduction along a latitudinal gradient (58 – 62°N) and found that peatlands below 60° N 

experienced forest expansion rather than loss whereas the dominant process above this parallel 

was canopy loss. It is hypothesized that this growth is driven by landscape-scale drying, while 

the canopy loss above 60°N is driven by permafrost thaw, and that such landscape succession 

occurring below 60°N will shift northward with rises in mean annual air temperature. Similar 

trends in runoff and canopy loss have also been noted within the broader Taiga Plains (Connon 

et al. 2014; M. Helbig et al. 2016; Chasmer & Hopkinson 2016). Additionally, Vitt et al. (1994) 

analyzed the stratigraphy of bogs within peatlands of three Canadian provinces, and found drier 

conditions present within bogs containing hummocky Sphagnum spp. that were capable of 

supporting small black spruce trees. Further, studies completed in the sporadic-discontinuous 

permafrost region have noted decreases in the water levels of hydrologically connected bogs 

over a 15-year period (Haynes et al. 2018), while a study within the same region noted 

landscape-wide canopy re-emergence in areas that have already experience significant 

permafrost thaw (Chasmer & Hopkinson 2016). Currently, it is hypothesized that a combination 

of landscape-wide dewatering and successional processes within bogs are leading to the re-

establishment of canopy cover. 

Recent field observations at Scotty Creek Research station (SRCS) suggest that canopy 

cover may exist independently of permafrost distributions. The exact mechanism leading to the 
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formation of treed bogs remains unclear, but it its hypothesized that these features formed 

following the succession of a previously thawed landscape. Regardless, understanding the 

succession of northern landscapes under a warming climate provides an important step in 

understanding the trajectory of northern peatlands. Other studies have examined the transition 

from treed peat plateaux to treeless collapse-scar wetlands or “treeless bogs”, but few have 

examined the re-establishment of canopy of northern peatlands. This research seeks to gain a 

more throughout understanding of treed collapse-scar wetlands or “treed bogs” within the 

discontinuous permafrost zone, as well as provide insights regarding post thaw landscapes 

within discontinuous permafrost peatlands. This research question is analyzed and addressed 

through four key research objectives: 

1) Determine ground ice presence or absence beneath treed bogs, as it is currently 

unknown as to whether treed bogs contain permafrost. 

2) Examine variations in the snowpack retention, depth of refreeze, soil moisture, and 

water level of treed bogs compared to more well-studied landcover types such as 

treeless bogs and peat plateaux.  

3) Determining both the presence and spatial extent of treed bogs within in a small are of 

interest based on their spectral and physical properties derived from remotely sensed 

datasets, and  

4) Present a conceptual diagram described the formation and significance of treed bog 

formation on the landscape. 
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CHAPTER 2.0: 

Characterizing the hydrological role of treed bogs in the zone of 

discontinuous permafrost, Northwest Territories, Canada 
 

2.1 Abstract 

Permafrost loss in the Taiga Plains has produced a wholesale conversion from forest to 

wetland, and many studies have analyzed the effects of permafrost thaw-induced land cover 

change on the hydrology and ecology of landscapes, such that the shrinkage of forested 

plateaux and their replacement by treeless wetlands is well documented. However, field studies 

conducted at a peatland dominated landscape near Fort Simpson, NWT indicate that tree 

canopy may persist within locally elevated collapse-scar wetlands. Such treed bogs are present 

on the borders of thawed plateaux and within larger and more established bog complexes. 

These features are typically characterized by stunted black spruce (Picea mariana), ground 

lichen (Cladonia spp.), and sphagnum hummocks (Sphagnum spp). A total of four sites, each 

containing a bog, treed bog and peat plateau were selected based on field visits and inspection 

of areal imagery. A geophysical investigation was completed to determine permafrost presence, 

depth of seasonal ice was measured along transects at each site, a series of wells were 

installed to measure hydrological response and discrete soil moisture measurements were 

taken immediately following snowmelt to characterize differences in moisture retention. Treed 

bogs are permafrost free features that intersect peat plateaux and collapse-scar bogs in terms 

of their hydrology, and its hypothesized they formed following the colonization of hummock 

forming Sphagnum spp. and the gradual dewatering of peatlands. Understanding the 

succession of northern landscapes due to climate warming provides an important step in 

predicting the trajectory of change in the north. This work provides new insights regarding the 

future of post-thaw landscapes within the Taiga Plains. 
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2.2 Introduction 

Climate warming in northwestern Canada is leading to rapid permafrost degradation and  

changes to both the cycling and storage of water and energy (Quinton et al. 2011; Shur & 

Jorgenson 2007).  Rates of climate warming are highest in arctic and sub-arctic regions 

(Payette et al. 2004; Tarnocai 2009), and as a result, these regions are particularly vulnerable to 

permafrost thaw and the associated landscape transitions (Camill 2005).  

Peatlands occupy 12 percent of Canada, nearly all of which (97%) are located in the 

sub-arctic and boreal regions (Tarnocai 2009).   The discontinuous permafrost region occurs 

where the mean annual air temperature (MAAT) is between 0o and -5o C (Osterkamp & 

Romanovsky 1999). Where its occurrence is discontinuous or sporadic, permafrost is restricted 

to relatively dry organic-covered terrains which can maintain the large thermal offset required to 

sustain permafrost, where the MAAT approaches (Halsey et al., 1995) or even exceeds (Halsey 

et al. 1995; Shur & Jorgenson 2007) 0°C. In this environment, permafrost typically occurs below 

peat plateaux, which are raised 1 to 2 m above the surrounding permafrost-free, treeless 

wetlands including channel fens and collapse-scar wetlands (Beilman 2001; Vitt et al. 1994). 

The slightly higher elevation of the plateaux allows them to maintain an unsaturated layer and 

therefore sufficiently dry conditions to support a mature black spruce (Picea mariana) canopy 

(Vitt et al. 1994; Beilman et al. 2001). However, permafrost thaw results in subsidence, 

inundation of the plateau ground surface, and loss of the tree canopy (Zoltai 1993; Beilman 

2001; Quinton et al. 2011; Baltzer et al. 2014) 

In discontinuous permafrost regions, permafrost bodies below peat plateaux thaw by the 

deepening of the permafrost table (vertical thaw) and by the recession of their edges (lateral 

thaw) (Jorgenson et al. 2010; Walvoord & Kurylyk 2016), while the formation of a supra-

permafrost talik may enable permafrost thaw throughout the entire year (Connon et al. 2018). 

Zoltai (1993) described a cyclical process whereby plateaux develop within permafrost free 
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treeless wetlands, and after a period of several centuries, develop low elevation collapse-scar 

wetlands. Throughout this process, the relative proportions of permafrost and permafrost-free 

terrains were assumed to remain relatively constant. However, climate warming in recent 

decades has disrupted this balance such that the rate of permafrost loss greatly exceeds the 

rate of permafrost development.  Permafrost thaw results in ground surface subsidence, 

inundation, and loss of canopy cover (Baltzer et al. 2014), and ultimately a conversion of forest 

to wetland with implications to drainage processes and pathways (Connon et al. 2014, 2015), 

ecology (Baltzer et al. 2014), and carbon cycling (Helbig et al. 2016), and biogeochemical 

cycling (Gordon et al. 2016). 

Recent studies have identified specific mechanisms by which permafrost thaw affects 

water flux and storage processes. For example, Connon et al. (2014) described the process of 

‘bog capture’ whereby permafrost thaw and resulting subsidence of the terrain enables wetlands 

to coalesce. In other cases, wetlands may remain as distinct features, but permafrost thaw may 

generate ephemeral flow path between wetlands, allowing water to drain from one to the other 

along a cascade of hydrologically connected wetlands (Connon et al. 2015). Permafrost thaw 

therefore increases the hydrological connectivity among wetlands (Quinton et al. 2019), the 

runoff contributing area (Connon et al. 2015), and the annual basin runoff (Haynes et al. 2018). 

Recent studies also suggest that continued permafrost thaw is leading to the gradual 

dewatering of northern peatlands (Quinton & Connon 2017; Waddington et al. 2015; Haynes et 

al. 2018; Quinton et al. 2019), which may allow the re-establishment of canopy cover 

(Ketteridge et al., 2013; Chasmer and Hopkinson, 2016; Carpino et al., 2018). 

At Scotty Creek, Northwest Territories (NWT), Canada, treed collapse-scar wetlands 

occur between permafrost plateaux and permafrost-free treeless wetlands (Quinton et al. 2019). 

The relatively young age of their trees (Haynes et al. in prep) suggests that treed collapse-scar 

wetlands evolve from treeless wetlands rather than from peat plateaux (Carpino et al. in prep).  
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The mechanisms for this transition, described by Zoltai (1993) are driven by the succession of 

Sphagnum spp. communities, the establishment of a black spruce (Picea mariana) canopy, and 

the insulating properties of Sphagnum peat-forming communities (Halsey et al. 1995). As 

Sphagnum communities succeed from aquatic species (S. riparium) to lawn species (S. 

angustfolium, and S. fuscum), there is an evolution from inundated aquatic or lawn communities 

to that of raised hummock communities (Camill, 1999). As these communities’ change, they 

elevate the ground surface above the local water table, acting as a refuge for black spruce 

saplings. The very low thermal conductivity of dry peat limits thaw during summer, while the 

relatively shallow snow depth over hummocks within clusters of canopy enables greater ground 

cooling during winter and conditions favourable for permafrost aggradation (Shur & Jorgenson 

2007; Zoltai 1993). Although ice lenses and permafrost provide dry conditions necessary for 

tree growth, the drying of collapse-scar wetlands, and the vertical growth of Sphagnum 

communities may also provide conditions that are favorable to the growth of a black spruce tree. 

The processes described above allow for the formation of such treed collapse-scar wetlands 

appear to persist in a collapse-scar bog landscape that would previously be unable to maintain 

trees.  

The rate and pattern of the wetland to forest transition is not well understood in 

discontinuous high boreal environments. In temperate peatlands climate warming has enabled  

re-emergence of forest due to landscape-wide dewatering (Jeglum and He Fangliang, 1995; 

Pellerin and Lavoie, 2000; Lohila et al., 2011), while similar trends have been observed within 

the Taiga Plains (Carpino et al. 2018; Chasmer & Hopkinson 2016).  This study seeks to 

characterize the hydrological function of treed collapse-scar wetlands or ‘treed bogs’ as well as 

quantify both their extent and trajectory within Scotty Creek. This will be accomplished through 

the following specific objectives: 1) use geophysical methods to determine the presence or 

absence of ground ice or permafrost below treed bogs; 2) examine variations in snow cover 
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characteristics, depth of refreeze, soil moisture, and hydrostatic water level of treed bogs and 

adjacent treeless bogs and peat plateaux; 3) define the spatial extent of treed bogs within in a 

small area of interest based on their spectral and physical properties derived from remotely 

sensed datasets; and 4) present a conceptual model describing the formation, expansion and 

hydrological implication of treed bogs.   

2.3 Study Site  

Field studies were conducted at Scotty Creek Research Basin located 50km south of 

Fort Simpson, NWT located within the southern Taiga Plains ecozone (Figure 1). Scotty Creek 

is a 152km2 basin and is typical to other watersheds in the lower Liard River Valley. The basin is 

underlain by discontinuous-sporadic permafrost (Quinton et al. 2011) (~40% coverage) and the 

headwaters are dominated by large peatland complexes, while the northern portion of the basin 

is dominated by mineral rich uplands intermixed with low elevation peatlands. The region has 

long, cold winters (average January temperature of -24.2oC) and short, warm summers 

(average July temperature of 17.4oC) with a mean annual air temperature (MAAT) of -3.2oC 

(MSC, 2019). In Scotty Creek, permafrost is typically restricted to forested peat plateaux, where 

the insulative properties of Sphagnum spp. produce the required thermal offset to sustain 

permafrost (Halsey et al. 1995). Permafrost in the basin is relatively warm and thin, with an 

average thickness between 5 and 10 m (McClymont et al. 2013). The permafrost bodies are 

interspersed by permafrost-free wetlands, which take the form of channel fens and collapse-

scar bogs. Technically speaking, the entire peat plateau – wetland complex is classified as a 

bog (NWWG, 1988); the topographic depressions of the wetlands allow for internal drainage 

from the raised peat plateaux to the collapse-scar bogs, meaning that inputs into collapse-scar 

bogs are not strictly meteoric. Peat plateaux (43.0%), collapse-scar bogs (26.7%), channel fens 

(21.0%), and lakes (9.3%) are the four predominant landcover types within the headwaters of 

the basin (Quinton et al. 2011), each of which can be defined by their distinctive hydrological 
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roles and vegetation (Robinson & Moore 2000; Quinton et al. 2009). Peat plateaux are raised 

features (1 to 2 m) that contain woody vegetation with dense canopy coverage of Picea mariana 

(Halsey et al. 1995), often containing various herbaceous and lichen species (Vitt et al. 1994), 

and produce runoff into surrounding wetlands (Quinton et al. 2003).  Collapse-scar bogs or 

“treeless bogs” are typically circular depressions within peat plateaux. The ground surface of 

collapse-scar bogs is typically about 1 m below the adjacent plateaux  and these features are 

colonized by Sphagnum spp. mosses such as S. riparium, S. fuscum, and S. angustfolium 

(Robinson & Moore 2000). Collapse-scar bogs or “Treeless bogs” receive meteoric inputs, as 

well as lateral inputs from higher elevation peat plateaux. Because of this gradient, collapse-

scar bogs are storage features within the plateau – wetland complex of the basin. Channel fens 

are geogenous features that receive water from both the surface and subsurface, and therefore, 

contain minerotrophic vegetation such as true mosses (bryophyta) and peat mosses (Vitt et al. 

1994). Fens are linear  features ranging between 50 – 100 m in width, and act as the primary 

method of water transport within the headwaters of the basin (Quinton et al. 2003). Treed 

collapse-scar bogs or “Treed bogs” are the same elevation as the surrounding collapse-scar 

features, and can be characterized by S. fuscum hummocks, ground lichen (Cladonia spp.), 

Labrador tea (Rhododendron groenlandicum), and sparse black spruce coverage (Picea 

mariana).  

2.4 Methods 

2.4.1 Site selection 

A treed bog, surrounding collapse-scar bog, and peat plateau were selected based on 

visual inspection that occurred in September 2017. The criteria for the initial treed bog site 

selection included (1) examining for the presence of a black spruce canopy, and (2) evaluating 

whether the site could be considered low elevation. For this analysis, a treed bog site was 

considered low elevation if it was similar to that of an adjacent treeless bog. Site 1 was 
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investigated prior to installing instrumentation, and the treed bog at Site 1 was met the criteria 

described above. Treed bogs within Sites 2 – 4 were selected based on an initial landcover 

classification prior to physical investigation, while site selection for treeless bogs and peat 

plateaux was based on previous knowledge of these well studied landcover types. The initial 

site classification is described in detail in Appendix A. In total, four treed bogs sites were 

selected. Sites 1 and 2 contain a treed bog, an adjacent treeless bog, and a peat plateau, while 

Sites 2 and 4 are isolated within larger bog complexes and are not located near a stable 

plateau.  Site 1 (Figure 1c) was the most intensively measured of all four study sites. 

2.4.2 Geophysical Investigation   

ERT measurements were completed at Site 1 only due to logistical constraints. Site 1 is 

a small connected treeless bog with an adjacent treed bog and peat plateau, and two 

geophysical transects were selected and ranged in length from 25 m to 183 m (Figure 1c). 

Transect (a) was 183 m long and was established to be spatially representative of all three 

landcover types, while transect (b) was 25 m long and was established near areas of denser 

canopy within the treed bog. ERT measurements are effective in permafrost environments due 

to differences in electrical resistivity between frozen and unfrozen materials (Kneisel et al. 

2008). In an ERT survey, resistivity values are collected from transects of electrodes to produce 

a 2D-model of the subsurface.  A Wenner electrode configuration was chosen to acquire ERT 

data (Kneisel 2006) due to the high-water content of peatlands and the relatively low current 

emitted from the electrodes in the survey. This array configuration combines reasonable vertical 

and horizontal resolution and has higher signal strength than other arrays, which may be 

required due to the high ice content and resistivity of the permafrost body. An electrode spacing 

of 1 m was used to ensure adequate vertical and horizontal accuracy, and differential GPS 

(dGPS; Lecia Viva Series, GS10) measurements were collected at each electrode position to 

add vertical ground elevations in the final resistivity plot. An AGI SuperSting 8-channel ERT 
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system with 56 electrodes was used to collect resistivity data. After the resistivity values were 

collected, the data were processed using inversion software to produce a cross-section of the 

subsurface. EartherImager 2D Inversion Software was used to complete the conversion of 

resistivity data.  

 2.4.3 Snowpack Characteristics 

To determine how snowmelt varied between the three landcover types, snow survey 

transects were completed every 2 to 3 days between mid-March and the beginning of snowmelt, 

and every day during snowmelt to capture daily snowmelt. Snow depth was determined by 

inserting a metal ruler into the snowpack, and snow density was measured with a GeoScientific 

ESC-30 snow tube sampler (inner diameter of 30 cm). Because there is a greater variance in 

depth than density, depth measurements were taken every 5 m while density measurements 

were taken every 10 m. The transect was 175 m and was comprised of five density 

measurements in each landcover type at Site 1 and was selected to be representative of each 

landcover type studied here. The collected depth and density values were then used to compute 

SWE (snow water equivalent) throughout the melt period. Unfortunately, SWE measurements 

were stopped pre-maturely, thus linear interpolation was used to determine the snow depth and 

SWE for the remaining snowmelt period for each landcover type (± 1 day). 

Areal extent of snow cover represents the proportion of the landcover feature that is 

covered in snow at a given time. Unmanned aerial vehicle (UAV) flights were completed every 

day during snowmelt using a DJI Phantom 3 Professional, and images were mosaicked using 

Pix4D (Pix4D S.A., Switzerland) at a spatial resolution of 0.0348m.  An iso-cluster unsupervised 

image classification was completed to distinguish between snow covered and snow free areas. 

Confusion matrices were computed for each day to test the accuracy of the unsupervised image 

classification using ArcGIS (Esri, Redlands, California). The SCA classification for each day was 

then overlain with the supervised image classification described below and was used to 
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determine the percentage (%) of snow cover for each landcover type over the duration of 

snowmelt (Figure 4) (For more information regarding the SCA image collection, refer to 

Appendix A).  

2.4.4 Seasonal ground freeze and thaw 

In order to assess the seasonal ground thaw of each landcover type, depth of refreeze 

and active layer measurements were completed immediately following snowmelt. If the active 

layer had not frozen to the underlying permafrost (i.e. presence of a talik), the thickness of the 

seasonally frozen layer was assumed to be the active layer thickness. If the ground experienced 

complete refreeze to the permafrost, active layer thickness was assumed to be the maximum 

depth of thaw as measured in August (Connon et al., 2018). In each land cover type, this 

measurement will give insight towards how vegetation or soil moisture may impact the thermal 

regime of the subsurface. Measurements to determine the thickness of the seasonally frozen 

layer were completed by inserting a frost probe into the ground, and the process was repeated 

until the probe broke through the seasonal ground ice layer, at which point a measurement was 

taken and considered the depth of the seasonal ground ice layer. These measurements were 

taken along a total of four 25m transects through each landcover type, as well as along the 

geophysical transects at site 1 immediately following snowmelt. Rate of thaw was subsequently 

recorded at each point on a daily basis by measuring the depth from the ground surface to the 

top of the seasonally frozen layer. Ground temperature was measured using five temperature-

moisture (TM) probes connected to data loggers (EM50, METER Environment, USA) were 

placed at five depths (5/10/15/20/25cm) in each landcover type at Site 1. Only the temperature 

data from 10 cm below the surface is presented here. The accuracy of the temperature 

measurements is ± 1oC (For more information regarding active layer measurements and ground 

temperature, refer to Appendix A).  

.  
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2.4.5 Soil Moisture  

Discrete soil moisture measurements were collected at all four study sites using a 

handheld Hydrosense II (Campbell Scientific, Edmonton, AB) time domain reflectometry (TDR) 

metre. The Hydrosense II TDR provides a depth-integrated soil moisture measurement of the 

top 20 cm. A total of five soil moisture transects were selected through each landcover type. 

Measurements were taken at 5 m intervals along a 25 m transect through each land cover 

feature (Figure 1). At each measurement location, four measurements were taken in a radial 

direction and combined to calculate an average value of near-surface soil moisture. Twenty 

points were also taken within plateau features with a talik.  Three temperature-moisture (TM) 

probes connected to data loggers (EM50, METER Environment, USA) were placed at five 

depths (5/10/15/20/25cm) in the upper soil horizon to capture continuous near surface variability 

in soil moisture throughout the summer at Site 1.  One set of EM50s was installed in the 

plateau, one in the treeless bog, and one in the treed bog. The EM50 units measure and record 

soil moisture and ground temperature at 30-minute intervals. Both probes were calibrated 

according to the manual with samples of peat collected from Scotty Creek.   

2.4.6 Water level fluctuations and hydrograph recession 

To examine differences in water table fluctuations, nine slotted 1.5 m PVC wells were 

instrumented with total pressure transducers (Hobo, U20) and were installed at all four study 

sites (Figure 1). The wells were perforated at 25 cm intervals down the entire length of the PVC 

and were installed by auguring and removing peat until the well could be installed at the desired 

depth (~ 1.25 m below the surface). A well was installed in each treed and treeless bog, as well 

as on a single plateau at Site 1 immediately following melt. Pressure measurements from each 

transducer were logged and recorded at 30-minute intervals on an internally contained data 

logger. Depth of the water table below the ground surface was determined by subtracting the 

average ground elevation measured in the spring by the water table elevation throughout the 
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time series. To support this calculation and determine water table depth, dGPS measurements 

were collected to obtain high-quality elevation and water table measurements at each well 

location (± 2cm) (For more information regarding well installation and measurements, refer to 

Appendix A).  

Recession analysis was completed to compare the rate of water table recession 

following precipitation events, and is commonly completed to characterize the recession of a 

stream hydrograph using the simple empirical relationship between discharge and time 

(Tallaksen 1995). Studies have also utilized it to characterize the recession of ground water 

within aquifers, as well as the water table recession in peatlands (Menberu et al. 2016; 

Bourgault et al. 2017). In this study, recession coefficients were determined using water table 

elevation and a simple exponential equation: 

[1]                                                           𝑄𝑡 =  𝑄𝑜𝑒−𝑎𝑡 

Where 𝑄𝑡 is water table elevation (masl) at time 𝑡 after the start of the recession, 𝑄𝑜 is the water 

table elevation (masl) at the start of the recession, 𝑒 is the natural logarithm, 𝑎 is the recession 

coefficient (day-1) and 𝑡 is time. Analysis of recession coefficients was evaluated for 5-days or 

up to the following precipitation event. To characterize how each site responds throughout the 

measurement period, the master recession curve (MRC) was determined using the same 

exponential relationship above. The MRC represents the compilation of multiple recession 

curves throughout the time series into a single curve that provides an average characterization 

of hydrological response (Posavec et al., 2006). Because of this, the MRC represents the most 

probable recession under given scenario (Nathan & McMahon 1990; Posavec et al. 2006) (For 

more information regarding the recession analysis, refer to Appendix A). Rainfall was measured 

using a tipping bucket rain gauge at a nearby (500 m) meteorological station and was calibrated 

at 1 tip 0.25 mm-1. The rain gauge was connected to a Campbell Scientific CR1000 datalogger 

and measured total tips over 30-minute intervals  
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2.4.7 Image classification and analysis   

Remote sensing-based classifications landscape have been widely utilized for a variety 

of studies within discontinuous permafrost regions. Previous analysis have used the presence of 

a tree canopy as a proxy for determining the spatial extent of permafrost in Scotty Creek and 

other areas of low-relief discontinuous permafrost terrains (Chasmer et al. 2011; Quinton et al. 

2011; Pastick et al. 2015). Due to the unique characteristics of treed bogs, canopy coverage 

may not always be an appropriate variable for determining permafrost extent. Although manual 

delineation is often a simpler approach, it would likely under-estimated permafrost distributions 

as it relied solely on canopy cover. Other basin-wide studies within Scotty Creek have used 

exclusively multi-spectral imagery to complete classifications (Quinton et al. 2003; Quinton et al. 

2011), while a recent classification completed by Chasmer et al., 2014 utilized the integration of 

multi-spectral imagery and LiDAR derived products within Scotty Creek. In this analysis, a 

supervised image classification using WorldView-2 8-band imagery and an object-based 

analysis of LiDAR data was completed to determine the extent of treed bogs within a small AOI. 

The supervised image classification used a support vector machine (SVM) algorithm to 

determine the extent of treed bogs features. Twenty-five training sites were used for peat 

plateaux, fens and treeless bogs as these features are easily interpreted from aerial imagery. 

Only ten treed bog training sites could be selected as only a select few sites were verified as 

such in the field. Open water was masked out of the final imagery to reduce discrepancy within 

the classification. SVM was chosen as the classification method as it is less susceptible to 

correlated bands, as well as an unbalanced number or size of training sites. Because both the 

area and number of training sites were variable for each landcover type, this was the optimal 

classification technique. Once the supervised classification was completed, a low pass filter 

(3x3) and boundary clean tool were used to reduce noise and ‘speckle’ of the classified spectral 

product. To complete the topographic classification, LiDAR derived products (DEM, CHM, and 

canopy gap fraction) were used to classify each landcover type. Topographic position index 
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(TPI) as used to detrend the DEM and highlight topographically high (>0.100076) and low 

(≤0.100076) features. This method utilizes neighbourhood based focal statistics to determine 

the mean elevation within a specified area. A circular neighbourhood (125 m) was optimal as it 

best highlighted high and low elevation features. In terms of canopy height and gap fraction, 

thresholds were determined iteratively using a manual interpretation of the imagery and 

thresholds for all products used are summarized below (Appendix D).Once thresholds were 

established, the topographic and multi-spectral classifications were combined using a series of 

Boolean decisions (For more information regarding classification methods, refer to Appendix A). 

The final classification for each landcover type was then combined into the final classified raster 

(Figure 10). Classification accuracy was determined by using a confusion matrix on a per 

landcover basis with 250 assessment points distributed throughout the final classified raster, 

and Cohen’s Kappa was used to determine how the classification performed in comparison to 

chance. The AOI for this analysis was selected as it is representative of the peatland landscape 

within the headwaters of the basin.  

2.4.8 Statistical Analyses  

Comparison of mean SWE, thickness of the seasonally frozen layer, and recession 

slope between each landcover type in this study was achieved using a one-way analysis of 

variance test (Appendix C). Because there was not a common variance amongst thickness of 

the seasonally frozen layer data, a Welch one-sided test was used due to the relaxed common 

variance assumption. Data was tested for normality using a Shapiro-Wilks test. A logarithmic 

transformation had to be completed on SWE data to ensure a normal distribution.  All statistical 

tests were completed using the R statistical environment (R core development team, version 

3.5.2). Level of significance (α) for statistical comparisons was set to α < 0.05. 



21 
 

2.5 Results and discussion 

2.5.1 Geophysical Investigation  

The electrical resistivities measured in the upper 50 cm of the treed and treeless bog 

portion of Transect 1 are indicative of drier peat, while the higher resistivities (>500Ωm) within 

the upper 50 cm of the peat plateau are due to the high ice content of the active layer (Figure 2). 

Variations in resistivity within the active layer are easily interpreted due to the stark transition 

between the low resistivities of the thawed active layer and high resistivities of the permafrost 

body. There are non-substantial differences between treeless bogs and treed bogs below 1m, 

and the resistivities found below this depth (<100Ωm) are generally consistent with permafrost 

free conditions composed of unfrozen peat and clay-rich till deposits. The peat substrate 

transitions to clay mineral soil at approximately 2.5 to 3.0 m below the surface. Resistivities of > 

5000 Ωm approximately 50 cm below the ground surface of the peat plateau are interpreted as 

permafrost, which is consistent with frost probe measurements. ERT Transect 2 (Figure 2) is 

shorter in length (28 m) and was measured in August 2018. This transect measured to a depth 

of approximately 4 m below the ground surface. Again, low resistivities below 1 m were 

interpreted as permafrost free conditions, whereas the low resistivities at the start of this 

transect are consistent with drier surface peats (Lewkowicz et al. 2011). The high resistivities 

near the end of Transect 2 (between electrodes 22 and 28) are indicative of pore ice, which 

suggest the presence of ice bulbs beneath the surface. Observations with a frost probe 

indicated that this ice was on average 58 cm below the surface and on average 11 cm thick 

(n=8). As these measurements were taken in late August 2018, it is likely that this ice persisted 

throughout the entire summer period. 

These results indicate that treed bogs are free of permafrost with no notable differences 

between the subsurface stratigraphy between treed and treeless bogs. Previous geophysical 

investigations completed  within Scotty Creek (McClymont et al. 2013), and in other regions of 
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discontinuous permafrost (Lewkowicz et al. 2011) found similar resistivities within collapse-scar 

bogs and peat plateaux. McClymont et al. (2013) noted high resistivities (> 5000 Ωm) beneath 

the ground surface of peat plateaux within Scotty Creek, which is consistent with the resistivities 

measured within the peat plateaux at Transect 1. The same study by McClymont et al. (2013) 

notes low resistivities (<100 Ωm) both below the permafrost body and within open bogs, which 

are consistent with saturated peat and mineral soil substrates. Lewkowicz et al. (2011) found 

that permafrost bodies within sporadic-discontinuous peatland sites had resistivties ~2000 Ωm 

due to potential high unfrozen water content, while permafrost-free organic layers had very low 

resistivities. 

2.5.2 Snowpack Characteristics  

All three features gain and lose SWE differently due to variability in land cover 

characteristics such as canopy cover and hummocky terrain. Plateaux had the highest SWE 

(117 mm ± 18 mm) and snowpack depth (65 cm ± 5 cm), while the treeless collapse-scar bogs 

had the lowest SWE (97 mm ± 11 mm) and snowpack depth (57 cm ± 5 cm). This difference 

was not significant (p = 0.06). Both the SWE (105mm ± 10mm) and snowpack depth (59cm ± 7 

cm) of treed bogs was in between treeless bogs and peat plateaux, but there was not a 

statistically significant difference between treed bogs and any other landcover type (p > 0.05).  

In forested regions, land cover properties strongly influence snow accumulation. For example, 

peat plateaux support sparse forest stands and therefore support deeper snow packs compared 

to treeless bogs (Figure 3), as open areas are more susceptible to both redistribution and wind-

blown sublimation (Golding & Swanson 1986; Pomeroy et al. 2002).  In a dense stand of boreal 

black spruce (Picea mariana) trees, snow accumulation is typically lower beneath the canopy 

(Pomeroy et al. 2002), but this effect is dependent on the effective Leaf Area Index (LAI) of the 

canopy. At Scotty Creek, the LAI of the black spruce canopy cover is lower than the LAI of black 

spruce reported by studies in other cold regions (Pomeroy et al. 2002) (For more information 
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regarding SWE accumulation and LAI, refer to Appendix B), resulting in higher accumulation 

compared to open areas.  Previous studies conducted at Scotty Creek found similar trends, 

where the lowest SWE values were found in treeless bogs and the highest within peat plateaux 

(Haughton 2018). The snowpack within treed bogs is intermediary between treeless bogs and 

peat plateaux and the sparse canopy cover within these features may prevent the redistribution 

and sublimation observed in areas that are lacking canopy cover, while still allowing interception 

to occur in pockets of more densely packed canopy.  

At the beginning of the April, the peat plateaux consistently had the highest SWE, while 

treeless bogs had the lowest. When melt intensifies (>5 mm day-1), treeless bogs experience 

the most rapid volumetric loss in SWE, while treed bogs and peat plateaux experience similar 

losses. At the end of the measurement period, treed bogs (86 mm ± 29 mm) retained the 

greatest SWE, while treeless bogs had the least (70 mm ± 21 mm) (Figure 3). Once again, there 

was no statistical difference between any of the landcover types (p > 0.05). After 26-April, SWE 

was computed using a linear interpolation and a similar trend emerges such that melt occurs 

more quickly in open area’s (i.e. treeless bogs) and less quickly in treed landscapes (i.e. treed 

bogs and peat plateaux). The areal loss of snow cover was also more rapid in treeless bogs 

compared treed bogs and peat plateaux (Figure 3). Early in the analysis, peat plateaux had the 

largest SCA (90%), followed by treed bogs (87%) and treeless bogs (86%). By the end of the 

SCA measurements, approximately 33% of peat plateaux ground surfaces were still covered by 

snow, while treed bogs were 17% snow covered, and treeless bogs just 3% snow covered. The 

overall accuracy of the classification on 25-Apr was 88% (Kappa = 0.76) and increased to 98% 

for the remaining classified images (Appendix E). A detailed breakdown of the accuracy 

assessment is included in Appendix B. 

During snowmelt, long and shortwave radiation and turbulent fluxes strongly influence 

the rate at which the loss of snowpack occurs (Sicart et al. 2004). In open areas (i.e. treeless 
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bogs) there is an increase in solar radiation, a greater loss of long-wave radiation, as well as 

increased contributions from turbulent fluxes due to lack of canopy cover (Marks et al. 1998), 

and because of this, open areas have an earlier onset of snowmelt relative to treed areas 

(Harding & Pomeroy 1996; Davis et al. 1997). When canopy cover is present, there is a 

reduction in both the turbulent and radiative fluxes that may contribute to snowmelt and a 

resultant decrease in the snowmelt rate (Sicart et al. 2004). These trends have been widely 

observed throughout Scotty Creek (Haughton 2018; Quinton et al. 2019), as well as in similar 

environments throughout northern regions (Sicart et al. 2004; Hardy et al. 2004).  At Scotty 

Creek, snowmelt is driven by incoming shortwave radiation such that melt rates in treeless 

landscapes occurs earlier and quicker than in in treed areas.(Haughton 2018; Quinton et al. 

2019), where turbulent fluxes contribute between 12% and 32% of energy available for melt, 

and 70% to 80% of net radiation is available for melt energy. Although four component radiation 

was not measured, stable plateaux typically receive  80% of the total incoming shortwave 

radiation that is received by a treeless bog (Connon et al. 2018). The increase in incoming 

shortwave radiation due to canopy thinning on an unstable plateaux (Connon et al. 2018; 

Chasmer et al. 2011) may provide an estimate of the interactions between canopy cover and 

incoming shortwave radiation within treed bogs. The intermediate depletion of the snowpack of 

treed bogs is likely due to variable amounts of shortwave radiation and sublimation compared to 

peat plateaux and treeless bogs due to the presence of a sparse canopy within these landcover 

types.  

2.5.3 Seasonal ground freeze and thaw 

Plateaux with taliks or “unstable plateau” have the greatest average depth of refreeze 

(60 cm ± 10 cm) (Figure 5). There was a statistically significant (p < 0.05) difference in re-freeze 

depths between treeless bogs (38 cm ± 7 cm) and both other land cover types, while there was 

not a significant difference between treed bogs (56 cm ± 13 cm) and plateaux (60 cm ± 10 cm). 
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Furthermore, the winter ground temperatures (10 cm below the surface) of treed bogs and peat 

plateaux were similar (Figure 6). The ground temperatures at 10 cm depth within the treeless 

bog at Site 1 remained isothermal (just below 0oC) for the entire winter, while both treed bogs 

and peat plateaux are frozen for most of the winter. The treeless bog remained just below 

freezing at 10 cm depth for the entire winter, while the peat plateau was the quickest to freeze 

(~2-weeks), and treed bogs dropped below the isothermal period after approximately three 

months. Thaw rates among landcover features also varied. For example, treeless bogs thawed 

the quickest, losing their ground ice within 1-3 weeks of snowmelt, while ground ice within the 

treed bogs persisted much longer throughout the summer, with six of the twenty measurement 

points retaining ice for the entire summer.  

 Despite treed bogs being devoid of permafrost, the thermal and hydrological conditions 

allow the freezing front to penetrate to a depth similar to that of an unstable plateau, creating a 

mechanism for potential inter-annual ice bulbs. The variation in ground temperatures between 

treed and treeless bogs suggests significant variations in the both the subsurface and heat 

conduction properties of treed bogs. For example, soil moisture exerts a strong control on the 

thermal properties of peatlands (Atchley et al. 2016), as the high porosity of peat allows for large 

seasonal and annual changes in volumetric water content. The depth integrated soil moisture of 

the treed bog was lower than that of the treeless bog site, which lowers the amount of energy 

loss needed to freeze the substrate. The peat plateau was the driest of the three land cover 

types at 10 cm depth, and therefore was the quickest to freeze. The ground ice within treed 

bogs also persisted much longer throughout the spring and summer compared to treeless bogs. 

The extended thaw period within treed bogs is likely due to both the larger depths of refreeze 

and the subsequently higher energy requirements needed to completely thaw the substrate. In 

terms of peat plateaux, SWE and lower soil moisture are hypothesized to result in larger depths 

of refreeze compared to other landcover types in this study. As plateaux become unstable, the 
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active layer may not refreeze entirely to the frost table, resulting in the formation of a supra-

permafrost talik.  A recent model produced by Devoie et al. (2019) demonstrated that soil 

moisture, SWE, ground heat flux, and timing of snowfall play the largest roles in talik formation 

and reduced refreeze depths within unstable peat plateaux at Scotty Creek. The larger refreeze 

depths within treed bogs may be impacted similarly, such that lower soil moisture values, 

ground heat flux, and denser canopies result in larger refreeze depths compared to treeless 

bogs. 

2.5.4 Soil Moisture  

Discrete soil moisture measurements varied amongst all land cover features immediately 

following snowmelt. Unstable plateaux (with a talik) had a depth integrated VWC of 58% ± 4%, 

whereas treed bogs had a lower VWC average of 38% ± 4%. The driest conditions were found 

in peat plateaux not exhibiting thaw, with an average VWC of 30% ± 4%, while treeless bogs 

were the most saturated with an average VWC of 68% ± 2%. Over the measurement period, the 

VWC of treeless bog was consistently above 60%, while peat plateaux were consistently the 

driest of the landcovers (Appendix F). Treed bogs were in-between peat plateaux and treeless 

bogs, supporting the hypothesis that soil moisture differences exist between these landcover 

types, while unstable plateaux had a higher VWC than treed bogs throughout the measurement 

period (Appendix F). At Site 1, where soil moisture was continuously monitored, the most 

saturated conditions were present within the treeless bog and the driest conditions were 

recorded within the peat plateau (Figure 7). Treed bogs were consistently more saturated than 

plateaux, but less saturated than treeless bogs at all measurement depths. For example, 

treeless bogs are completely saturated at 15 cm below the ground surface, while treed bogs did 

not become saturated until 25 cm below the surface. Peat plateaux remained driest throughout 

the entire summer, and only experience higher levels of saturation in the lower 25 cm where 

further infiltration is limited by the frost table.   
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The soil moisture conditions present within each land cover type will be indicative of its 

approximate hydrological role. Collapse-scar wetlands act as depressional storage features 

(Beilman et al., 2001), and therefore, it is expected that they have the highest integrated VWC 

due to the water table often being at or near the surface (Figure 7).  Due to the elevation 

gradient between plateaux and lower elevation features, peat plateaux are often well drained 

features with a distinctly low near-surface VWC (Figure 7). Talik development within peat 

plateaux can dramatically alter its hydrological regime and may result in a higher VWC due to a 

decrease in the elevational gradient and subsequent pooling of runoff (Connon et al. 2018). In 

terms of treed bogs, several studies have noted increased rates of peat accumulation and net 

vertical growth of collapse-scar wetlands within the boreal peatlands (Robinson & Moore 2000; 

Turetsky et al. 2000; Camill et al. 2001; Turetsky et al. 2007). Although soil moisture conditions 

appear to be drier within treed bogs, the lower volumetric values may be a product of this 

vertical growth above the water table, as both treeless and treed bogs remain completely 

saturated for 2 – 3 m below the surface. Therefore, the slight elevational difference of the 

surface above the water table within may provide the drier surface conditions and may be ideal 

for the growth of drier vegetation communities such as hummocky Sphagnum spp. and black 

spruce trees (Camill 1999; Vitt et al. 1994; Beilman 2001). 

2.5.5 Water level fluctuations and hydrograph recession   

 At each well location, the elevation of the water table was higher within treed bogs 

compared to treeless bogs (Figure 8). The peat plateau had the highest water table elevation 

and is also elevated above adjacent lower elevation landcover types (i.e. collapse-scar treed 

and treeless bogs, fens), and because of this, lower elevation landcover receive runoff due to 

the stark hydraulic gradients.(Wright et al. 2008; Hayashi et al. 2004). The elevated water tables 

within treed bogs may result in a small hydraulic gradient to lower elevation treeless bogs, as 

the perched water table and higher ground elevation is indicative of their presence within the 
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peatland portion of this basin (Wright et al. 2008), however, the gradients could not be 

quantified in this study. The water table positions were also deeper below the ground surface in 

treed bogs and closer to the surface in treeless bogs (Figure 8).  

 The single peat plateau well had the largest recession coefficient (Figure 9), which is 

expected as these features act as runoff generators within the peatland portion of the basin 

(Wright et al. 2009) due to their larger hydraulic gradients.Treeless bogs experienced the 

smallest recession coefficient of all three landcover types, whereas the water table recession 

within treed bogs was higher. The difference in recession coefficients between treed and 

treeless bogs was statistically significant (p < 0.05). The peat plateau well was excluded from 

the statistical analysis due to its small sample size (n=1), but the mean recession coefficient 

was an order of magnitude larger compared to treed and treeless bogs (Figure 9). The MRC’s 

for treed bog sites were steeper and shorter compared to treeless bogs, indicating that water 

table recession within treed bogs are generally both shorter and more rapid. However, it should 

be noted that the MRC of the treeless bog at Site 4 was more rapid that the adjacent treed bog, 

which indicates potential variability in the water table response of treed bog sites.   

 The more rapid water table recession of treed bogs compared to treeless bogs could be 

a result of multiple mechanisms. Specific yield strongly influences the response of the water 

table within peatlands, and represents the ratio of volume of water that is yielded by gravity 

drainage by the volume of the block of soil (Price et al. 2003). In peatlands, a high specific yield 

is typically found in the upper horizons of peat (i.e. acrotelm peat) where pore space is high and 

it can be more easily drained by gravity; whereas low specific yield is often observed in the 

lower horizons of decomposing peat (i.ie catotelm peat) where pore space is smaller (Price et 

al. 2003). If the water table is within the catotelm, it will respond more rapidly to inputs and 

recede more quickly, and if the opposite is true, the water table response will be muted and 

recessions will be slower (Price et al. 2003). At Scotty Creek, the specific yield of the peat 
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substrate decreases with depth, as the pore space within decomposed peat layers are smaller 

(Quinton & Gray 2003). Although specific yield was not measured for this study, the larger mean 

water table recession within treed bogs suggests possible variation in specific yield, as the 

water table is lower below the surface and may reside in more decomposed peat. 

Evapotranspiration (ET) can also influence the recession of the water table, as it represents one 

of the most significant energy fluxes in peatlands (Wu et al. 2010; Lafleur et al. 2005; 

Waddington et al. 2015). Although ET was not directly measured here, ET contributions from 

black spruce at Scotty Creek are generally poor (Warren et al. 2018), and it is unlikely that ET 

caused additional water table drawn down due to extremely poor transpiration rates (For more 

information regarding ET in permafrost peatlands, refer to Appendix B). However, possible 

relationships between water table recession and specific yield should be explored further, as it 

provides a possible distinction between the treed and treeless bogs due to lower water table 

position and more rapid recession within treed bogs.  

2.5.6 Image classification and analysis   

A supervised image classification was completed using Worldview-2 and LiDAR imagery 

within the peatland portion of Scotty Creek. Peat plateaux covered 40% of the 16.8 km2 

classified area, and fens represent 32%, treeless bogs 12%, treed bogs 12%, and uplands 4% 

(Figure 10). It should be noted that open water was not classified in the final product. The 

overall accuracy of this classification was 85.3% (Kappa = 0.79) (Appendix F), and therefore 

misclassifications were limited to 14.7% (A detailed breakdown of the accuracy assessment is 

included in Appendix B). An early classification by Quinton et al. (2011) utilized manual 

delineation based on visual representation of canopy cover as a proxy for permafrost 

distributions within a smaller portion of the larger AOI selected in this study (1.0 km2). The 

authors reported that peat plateaux represent 43.0% of the classified area, while collapse-scar 

bogs and channel fens represented 26.7% and 21.0% respectively. As their classification only 
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accounted for canopy cover, it is likely that the classification over-estimated the area occupied 

by plateau as a portion of this landscape would have been treed but permafrost free. Although 

the authors did not quantify accuracy or error rate, previous studies using manual delineation 

have noted accuracies ranging between 40% and 70% (Chasmer et al. 2014). An updated 

classification of the basin using a combination of Worldview-2 multi-spectral imagery and LiDAR 

determined that uplands represented 48% of the basin, followed by peat plateaux (20%), bogs 

(19%), fens (12%) and lakes (2%) (Chasmer et al. 2014). The overall accuracy of this 

classification was 91% and averaged ~88% for each landcover type. Although the classification 

methodologies were similar to this study, there were discrepancies between the two 

classifications. The relative proportions of landscapes within the respective AOIs and the 

introduction of a new landcover type may ultimately lead to the discrepancies. The AOI 

presented here was more similar to the study area used by Quinton et al. (2011), as it focused 

on peatlands near the headwaters of the basin, and therefore there were more similar landcover 

proportions. Nevertheless, the classification completed in this study determined that that treed 

bogs are a relatively widespread feature within the peatland portion of the basin.  

2.5.7 Conceptual model of landscape succession 

Various characteristics differentiate treed and treeless bogs. For example, treed bogs 

accumulate deeper snowpack’s, have greater depth of seasonal frost, and demonstrate 

differences in moisture retention and hydrological response properties. The differences between 

these two landcover types also encompass ecological factors such as tree density, species, and 

age (Haynes et al., in prep). Many studies have noted the widescale expansion of collapse-scar 

wetlands following rapid permafrost thaw within the Taiga Plains (Robinson & Moore 2000; 

Quinton et al. 2011; Baltzer et al. 2014; Zoltai 1993), while also hypothesizing on the impacts of 

such changes on the cycling of water and energy (Shur & Jorgenson 2007; Quinton et al. 2011; 

Helbig et al. 2016). A recent study completed by Helbig et al. (2016) hypothesized that 
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widescale forest loss and wetland expansion may lead to a net cooling effect due to increased 

albedo in the winter and increased ET in the summer. Similarly, Haughton et al. (2018) noted 

wetland expansion would lead to a delayed but rapid onset of snowmelt, resulting in a 

decreased lag time and a flashier hydrograph at the basin outlet. The gradual de-watering of 

peatlands, increasing productivity, and canopy re-establishment are a less established and 

emergent trend in discontinuous permafrost peatlands (Kettridge et al. 2013; Baltzer et al. 2014; 

Chasmer & Hopkinson 2016). For example, a notable decrease in water levels of hydrologically 

connected collapse-scar wetlands within Scotty Creek occurred over a 14-year period, (Haynes 

et al. 2018), while forest expansions has been observed in southern regions of the Taiga Plains 

where permafrost thaw had already advanced (Carpino et al. 2018). More importantly, remote 

sensing analysis within Scotty Creek noted minor increases in woody vegetation/shrub growth 

within locally elevated wetlands (Chasmer & Hopkinson 2016). 

The conceptual diagram presented here (Figure 11) outlines the observed differences in 

snow cover, ground ice, canopy cover, ground elevation, and water table between the three 

distinct landcover types in this analysis, as well as outlines the trajectory of post-thaw 

landscapes and the formation of treed bogs. Here it is proposed that both spatial and temporal 

transitions will eventually lead to re-establishment of canopy cover within previously treeless 

permafrost-free landscapes within the Southern Taiga Plains. In the winter and early spring, 

treed bogs accumulated a deeper snowpack and had lower melt rates as they maintained their 

snowpack longer than treeless bogs. During the same period, peat plateaux had the largest 

snowpack and longest melt period (Figure 3). This difference in melt rate is likely due to the 

interception of short-wave radiation as there is sporadic canopy cover within treed bogs. 

Because of this, it is unlikely that melt will occur as rapidly as proposed by Haughton et al. 

(2018), but instead will occur gradually leading potential increases in lag time as well as a more 

muted basin hydrograph. However, the impact of the deeper and longer-lasting seasonal ice 
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observed in the late spring within treed bogs may direct freshet to the basin outlet more rapidly 

than in situations where treeless bogs are dominant. Similarly, canopy re-establishment within 

permafrost-free landscapes will eventually lead to a reduction in albedo similar to that of an 

unstable treed peat plateaux, which may impact the hypothesized increases in albedo and 

associated regional cooling following widescale wetland expansion noted by Helbig et al. 2016. 

As the water table was deeper below the surface in treed bogs throughout the summer, 

the near surface soil moisture of the treed bog sites was lower than treeless bogs (Figure 7). 

Overtime, it would be plausible to estimate that continued landscape-wide dewatering (Haynes 

et al. 2018) and the upward growth of hummock forming species (Camill 1999) will continue to 

lower near surface soil moisture conditions throughout the summer, resulting in drier conditions 

that may further promote canopy re-establishment. However, soil moisture values may initially 

increase following permafrost thaw due to ground subsidence and inundation. Vegetation, depth 

of snow, and antecedent soil moisture all impact the thermal gradient that drives heat extraction 

and subsequent downward movement of the freezing front in the winter. This upward growth 

combined with the insulative properties of peat and drier surfaces may create conditions ideal 

for the larger depths of refreeze observed in this study (Figure 5). However, in the current 

climate it is unlikely that multi-year ice will develop below hummocks, although in some cases 

(and as demonstrated in this study and by Vitt et al. 1994), ice may persist for an entire 

summer. In terms of energy transfer, ET will likely increase following the expansion of treeless 

wetlands due to higher transpiration rates of Sphagnum spp. bogs (Warren et al. 2018; Helbig et 

al. 2016). However, a transition from treeless to treed wetlands may result in a subsequent 

reduction in ET, as contributions from black spruce within Scotty Creek are generally poor due 

to nutrient poor conditions (Warren et al. 2018; Baltzer et al. 2014). For example, Warren et al. 

(2018) found lower ET rates within peat plateaux compared to Sphagnum spp. dominated open 

bogs. Vascular vegetation may also reduce rates of ET as canopies shelter the surface from 
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turbulence and reduce the amount of radiation reaching the surface (Lafleur, 2008). Therefore, 

such a spatial transition may reduce ET rates in the long-term in regions like Scotty Creek.  

Although the formation of treed bogs remains largely unknown, it is hypothesized that 

treed bogs are at a stage in the biophysical succession of collapse-scar wetlands, such that 

under a cooler climate the same processes would lead to the development of raised peat 

plateaux. However, the length of the transitional period from a treed permafrost-free landscape 

to treed permafrost landscape is vast. For example, Zoltai (1993) determined that permafrost 

free landscapes have taken upwards of 600 years to regenerate permafrost following a large-

scale disturbance, while Camill (1999) found that the succession of Sphagnum spp. can lead to 

canopy re-establishment in a period as short as 50 to 80 years. Its assumed that the large 

disparity in time scales is due to the wide-scale canopy cover required for permafrost 

regeneration (Camill 1999). Currently, it is unclear as to whether landscape-wide dewatering or 

Sphagnum spp. succession will occur more quickly in Taiga Plains region, but a notable level of 

landscape dewatering was observed within a 14-year period at Scotty Creek (Haynes et al. 

2018), while Sphagnum spp. succession can take much longer following permafrost thaw 

(Camill 1999).  As the treeless bog landscapes continue to age, the growth of treed bogs within 

their center lawns is a plausible trajectory and would have significant implications for future 

water resources in the discontinuous permafrost zone of the Taiga Plains. Here, it is proposed 

that upward growth combined with the observed landscape wide dewatering will allow for 

canopy re-establishment and the subsequent development of treed bogs. 

2.6 Conclusion 

This study improves the understanding of treed wetland landscapes within the peatland-

dominated zone of discontinuous permafrost. Here it is demonstrated that treed bogs are 

permafrost-free and represent a new landcover type that appear to have evolved from a 

previously treeless collapse-scar bog but have not yet developed mature black spruce canopies. 
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The snow depth, soil moisture, and thickness of the seasonally frozen layer of treed bogs 

intersected both treeless bogs and peat plateaux, and a difference in water table elevation may 

result in hydraulic gradients between treed and treeless bog sites. There was also a notable 

difference in both the water table elevation and recession of treed and treeless bogs, suggesting 

either differences in the specific yield due to different water able positions, or differences in 

energy transfer. Because of these findings, it is proposed that treed bogs become a recognized 

landcover type within the discontinuous permafrost zone of the Taiga Plains. Future work should 

seek to gain a better understanding of the historical significance of treed bogs on the landscape, 

as well as understanding the trajectory of these features under a warming climate.  
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CHAPTER 3.0: Conclusion and future research 

 

3.1 Summary and Conclusions  

Rapid climate warming in northern Canada is leading to accelerated permafrost thaw 

and resultant landscape change. Because of this, it is increasingly important to understand how 

these landscapes are changing under warming conditions. Within the discontinuous permafrost 

zone, canopy cover was historically used as a proxy for determining permafrost extent (Quinton 

et al. 2011; Baltzer et al. 2014; Chasmer et al. 2010; Thie 1974), as it was hypothesized that a 

black spruce canopy could only persist atop raised peat plateaux. Rapid permafrost thaw often 

results in ground subsidence, inundation of the peat surface, and removal of the canopy due to 

saturation of the rooting network (Robinson & Moore 2000; Baltzer et al. 2014). Although these 

are well documented processes within the discontinuous permafrost zone, they did not appear 

to apply to treed bogs as these features are characterized by a sparse black spruce canopy, 

ground lichen, Sphagnum hummocks, and are low elevation. Previous studies have focused on 

understanding rapid canopy loss and permafrost thaw (Payette et al. 2004; Camill 2005; Baltzer 

et al. 2014), but few have examined how landscapes within the discontinuous zone are spatially 

and temporally transitioning under a warming climate. This research sought to provide an initial 

understanding on treed bogs in the context of discontinuous permafrost peatlands.  

Prior to this analysis, permafrost presence beneath treed bogs was unclear. Geophysical 

investigations have been widely adopted to complete permafrost investigations in a wide variety 

of environments such as peatlands and continuous permafrost environments (Lewkowicz et al. 

2011; McClymont et al. 2013; Kneisel 2006; Kneisel et al. 2008). In this study, high quality ERT 

data was used to determine that treed bogs are permafrost free features, and the resistivies 

found beneath treed bogs and treeless bogs were similar. Given that these features are treed 
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but are permafrost free, this research sought to understand how their physical characteristics 

differ from treeless bogs and peat plateaux. For example, variables such as snowpack 

characteristics, depth of seasonal frost, ground temperature, and soil moisture were examined, 

and were found to vary between treeless and treed bogs. Interestingly, the depth of seasonal 

frost and the ground temperatures of treed bogs was similar to that of an unstable plateau, 

indicating similarities in heat conduction properties. This research also examined water table 

fluctuations and recession, and once again, that water table recession was generally quicker in 

treed compared to treeless bogs, and it determined that observed differences in water table 

elevation between treed and treeless bogs that may result in a series of hydraulic gradients. 

Variations in specific yield at different water table positions between landcover types represents 

the most plausible explanation for the observed differences in the recession coefficients. 

Finally, this research hypothesized on the formation of treed bogs within the 

discontinuous permafrost zone and provide and estimate for how widespread these features are 

throughout the headwaters of Scotty Creek. Early work that focused on peatland succession 

(Vitt et al. 1994; Zoltai 1993; Camill 1999) was used as a framework for presenting the formation 

of permafrost free treed bogs within this environment, such that the succession of Sphagnum, 

the establishment of black spruce, and the dewatering of these landscapes may provide the 

ideal conditions for the formation of treed bogs. This research also examined how widespread 

treed bogs are throughout the small AOI in the headwaters of the basin and determine that 

treed bogs represent a greater portion of the landscape than treeless bogs. This study focused 

on examining and characterising a previously unrecognized landcover type within the peatland 

portion of the southern discontinuous permafrost zone, and because of this analysis, it is 

proposed that treed bogs be recognized as their own landcover type within the discontinuous 

permafrost zone.  
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3.2 Future Research 

This study sought to gain a better understanding of treed low elevation features within 

the discontinuous permafrost zone. Despite this, there are still many unanswered questions 

surrounding treed bogs on this landscape. For example, it was hypothesized that the formation 

of treed bogs occurred due to a combination of; (i) the successional processes of Sphagnum 

dominated peatlands, and (ii) the dewatering of the peatland portion of the basin. Nonetheless, 

the origin of treed bogs within this landscape is still largely unknown and would represent a 

significant step in understanding their true importance on the landscape. Reconstructing the 

history of these features would not only provide insights on their formation but would also 

provide insight into their permanence as a landcover type. Although there was no permafrost 

found beneath any of the treed bogs in this study, altered thaw processes occurring within an 

existing peat plateau may be an alternative hypothesis leading the formation of treed bogs, such 

that canopy cover persisted after thaw had occurred. Several questions remained unanswered 

regarding the current impact of treed bogs on the landscape. Although this paper examined 

differences between hydrological variables such as soil moisture and recession coefficients 

between landcover types, it did not examine how energy transfer influenced these variables 

throughout time. For example, evapotranspiration is one of the most significant energy fluxes 

within northern peatlands, and because of this, the impact of canopy cover within a treed bog on 

energy transfer should be examined. Other variables such as canopy health and persistence 

should also be explored, as the health, age, and productivity of the canopy cover remains 

suspect. Finally, just as the formation of these features is important, the permanence and 

trajectory of treed bogs on the landscape also remains unknown. This research determined that 

treed bogs are widespread throughout the headwaters of Scotty Creek, but future research 

should focus on gaining a more thorough understanding of how these landscapes continue to 

evolve under a rapidly warming climate, and should specifically examine the role treed bogs 
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play in future landscapes under a warming climate. This will provide a significant insight into the 

future of post-thaw landscapes within the discontinuous permafrost zone of the Taiga Plains. 
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Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: (a) Location of Scotty Creek, located 50km south of Fort Simpson, NWT. (b) Aerial imagery (Worldview-2) with each 
geophysical transect, soil moisture transects, and well locations plotted at each study site. (c) Each treed bog feature (sites 1-4) 
highlighted with high-quality ortho-mosaic imagery. 
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Figure 3: SWE and SCA measurements. SWE. Snowmelt commences on April 23rd and is denoted by the dotted line. Pre-melt 
measurements were taken for approximately 15 days, while melt measurements were taken for 5 days. The error bars represent 
the standard deviation of the average SWE measurement for each landcover type. After the final measurement (April 26th), linear 
interpolation was used to complete melt for each feature and is denoted with the dashed line. It should be noted that the snow-
free day for each landcover type is approximated to ± 1 day using areal imagery and field notes, and. Snow covered area 

(SCA%) is plotted near the end of the period to depict the areal loss of the snowpack and is denoted by the dotted lines.  
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Figure 4: Mosaiced drone images of classified snow cover for three study sites throughout the snowmelt period. Images were 
captured daily and were classified using an iso cluster unsupervised image classification. Snow cover for each day is depicted in 
light blue. April 25th is the baseline for the analysis. 
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Figure 5: Thickness of seasonal frost for all three land cover types. Peat plateau and treed bog were not 
statistically different (p = 0.5). The thickness of seasonal frost in the treeless bog had statistically 
significant (p < 0.05) differences than the other two land cover types. The notches within each boxplot 
represents an approximate 95% confidence interval of the median. If the notches do not overlap, there is 
evidence of a statistically significant difference.  
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Figure 6:  Daily ground temperature at 10cm depth at three locations within Site 1; b) Length of the isothermal period for each land cover type 

between October 2018 and April 2019. An offset was applied to each dataset to align the observed zero-curtain to the actual zero-curtain (-
0.02oC). 
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Figure 7: Continuous soil moisture VWC (m3/m3) record at 5 discrete depth intervals (5cm, 10cm, 15cm, 20cm, 25cm, 30cm) for each 
landcover type. Data was collected for a year between June 2018 and June 2019. Data was removed at 5 cm from the treeless bog due to 
contact issues with the sensor, and the abrupt changes in VWC in mid-August occurred due to the sensors being disturbed and fixed less 
than a week later 
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Figure 8: Mean water table measurements between May and June 2018 were recorded every 30-min at each well using a pressure 
transducer and are denoted as the solid line. The dotted line denotes the mean ground elevation (n = 4) surrounding each corresponding 
well and was measured in the summer of 2018 using dGPS. Precipitation events (greater than 0.2mm) are depicted in the first plot. The 
average water table depth was 9 cm at the treeless bog wells and 12.5 cm at the treed bog wells 
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Figure 9: a) Master recession curve trendlines for each treed and treeless bog well. The single peat plateau well was not plotted 
due differences in magnitude. b) A summary of each individual precipitation event and its corresponding mean recession coefficient 
for each landcover classification.  
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Figure 10: Supervised image classification of Scotty Creek within a small subset of the peatland portion of the basin. 
The classification was completed using Worldview-2 and LiDAR imagery.   



49 
 

 

Figu
re

 1
1

:  C
o

n
cep

tu
al d

iagram
 d

isp
layin

g d
iffere

n
ces in

 m
easu

red
 sn

o
w

 d
ep

th
, d

ep
th

 o
f seaso

n
al ice, an

d
 w

ater ta
b

le elevatio
n

 b
e

tw
een

 each
 lan

d
co

ver typ
e, as w

e
ll 

as th
e fo

rm
atio

n
 o

f treed
 b

o
gs th

ro
u

gh
 b

o
th

 tim
e an

d
 sp

ace. C
u

rren
tly, it is p

ro
p

o
se

d
 th

at treed
 b

o
gs fo

rm
 d

u
e to

 th
e u

p
w

ard
 gro

w
th

 o
f Sp

h
a

g
n

u
m

 sp
p

. an
d

 th
e 

grad
u

al d
ew

aterin
g o

f lan
d

scap
e

s. Each
 p

an
el o

f th
e fo

u
r p

an
e

ls rep
re

sen
t th

e ap
p

ro
xim

ate seaso
n

 in
 w

h
ich

 th
e d

ata co
llectio

n
 o

ccu
rred

.  Th
e arro

w
 d

e
n

o
tin

g tim
e 

rep
re

sen
ts th

e tem
p

o
ral tran

sitio
n

 o
f lan

d
scap

e
s, w

h
ile th

e arro
w

s d
ep

ictin
g u

p
w

ard
 gro

w
th

 re
p

re
sen

ts th
e sp

atial tran
sitio

n
 o

f tree
d

 b
o

gs. A
ll d

ata w
as p

lo
tted

 re
lative 

to
 th

e gro
u

n
d

 elevatio
n

 p
o

in
ts.   



50 
 

References 

 

Atchley, A.L., Coon, E.T., Painter, S.L., Harp, D.R. & Wilson, C.J. 2016. Influences and 
interactions of inundation, peat, and snow on active layer thickness. Geophysical Research 
Letters 43 : 5116–5123. DOI: 10.1002/2016GL068550 

Baltzer, J.L., Veness, T., Chasmer, L.E., Sniderhan, A.E. & Quinton, W.L. 2014. Forests on 
thawing permafrost: Fragmentation, edge effects, and net forest loss. Global Change Biology 20 
: 824–834. DOI: 10.1111/gcb.12349 

Beilman, D.W. 2001. Plant community and diversity change due to localized permafrost 
dynamics in bogs of western Canada. Canadian Journal of Botany 79 : 983–993. DOI: 
10.1139/cjb-79-8-983 

Beilman, D.W., Vitt, D.H. & Halsey, L.A. 2001. Localized Permafrost Peatlands in Western 
Canada: Definition, Distributions, and Degradation. Arctic, Antarctic, and Alpine Research 33 : 
70. DOI: 10.2307/1552279 

Bourgault, M.A., Larocque, M. & Garneau, M. 2017. Quantification of peatland water storage 
capacity using the water table fluctuation method. Hydrological Processes. DOI: 
10.1002/hyp.11116 

Brown, R.J.E. 1970. Permafrost in Canada; its influence on Northern development, 

Camill, P. 2000. How much do local factors matter for predicting transient ecosystem dynamics? 
Suggestions from permafrost formation in Boreal peatlands. Global Change Biology. DOI: 
10.1046/j.1365-2486.2000.00293.x 

Camill, P. 1999. Peat accumulation and succession following permafrost thaw in the boreal 
peatlands of Manitoba, Canada. Écoscience 6 : 592–602. DOI: 
10.1080/11956860.1999.11682561 

Camill, P. 2005. Permafrost thaw accelerates in boreal peatlands during late-20th century 
climate warming. Climatic Change 68 : 135–152. DOI: 10.1007/s10584-005-4785-y 

Camill, P., Lynch, J.A., Clark, J.S., Adams, J.B. & Jordan, B. 2001. Changes in biomass, 
aboveground net primary production, and peat accumulation following permafrost thaw in the 
boreal peatlands of Manitoba, Canada. Ecosystems. DOI: 10.1007/s10021-001-0022-3 

Carey, S.K. & Woo, M.K. 1999. Hydrology of two slopes in subarctic Yukon, Canada. 
Hydrological Processes. DOI: 10.1002/(SICI)1099-1085(199911)13:16<2549::AID-
HYP938>3.0.CO;2-H 

Carey, S.K. & Woo, M.K. 2001. Slope runoff processes and flow generation in a subarctic, 
subalpine catchment. Journal of Hydrology 253 : 110–129. DOI: 10.1016/S0022-
1694(01)00478-4 

Carpino, O.A., Berg, A.A., Quinton, W.L. & Adams, J.R. 2018. Climate change and permafrost 
thaw-induced boreal forest loss in northwestern Canada. Environmental Research Letters 13 : 
084018. DOI: 10.1088/1748-9326/aad74e 

Carpino, O., Haynes, K., Connon, R., Craig, J., Devoie, É., Quinton, W. 2020.The trajectory of 
landcover change in the discontinous permafrost one, northwestern Canada. In prep 



51 
 

Chasmer, L. & Hopkinson, C. 2016. Threshold loss of discontinuous permafrost and landscape 
evolution. Global Change Biology 23 : 2672–2686. DOI: 10.1111/gcb.13537 

Chasmer, L., Hopkinson, C. & Quinton, W. 2010. Quantifying errors in discontinuous permafrost 
plateau change from optical data, Northwest Territories, Canada: 1947-2008. Canadian Journal 
of Remote Sensing. DOI: 10.5589/m10-058 

Chasmer, L., Hopkinson, C., Veness, T., Quinton, W. & Baltzer, J. 2014. A decision-tree 
classification for low-lying complex land cover types within the zone of discontinuous 
permafrost. Remote Sensing of Environment 143 : 73–84. DOI: 10.1016/j.rse.2013.12.016 

Chasmer, L., Quinton, W., Hopkinson, C., Petrone, R. & Whittington, P. 2011. Vegetation 
Canopy and Radiation Controls on Permafrost Plateau Evolution within the Discontinuous 
Permafrost Zone, Northwest Territories, Canada. Permafrost and Periglacial Processes 22 : 
199–213. DOI: 10.1002/ppp.724 

Connon, R., Devoie, É., Hayashi, M., Veness, T. & Quinton, W. 2018. The Influence of Shallow 
Taliks on Permafrost Thaw and Active Layer Dynamics in Subarctic Canada. Journal of 
Geophysical Research: Earth Surface 123 : 281–297. DOI: 10.1002/2017JF004469 

Connon, R.F., Quinton, W.L., Craig, J.R., Hanisch, J. & Sonnentag, O. 2015. The hydrology of 
interconnected bog complexes in discontinuous permafrost terrains. Hydrological Processes 29 
: 3831–3847. DOI: 10.1002/hyp.10604 

Connon, R.F., Quinton, W.L., Craig, J.R. & Hayashi, M. 2014. Changing hydrologic connectivity 
due to permafrost thaw in the lower Liard River valley, NWT, Canada. Hydrological Processes 
28 : 4163–4178. DOI: 10.1002/hyp.10206 

Devoie, É.G., Craig, J.R., Connon, R.F. & Quinton, W.L. 2019. Taliks: A Tipping Point in 
Discontinuous Permafrost Degradation in Peatlands. Water Resources Research. DOI: 
10.1029/2018WR024488 

Davis, R.E., Hardy, J.P., Ni, W., Woodcock, C., McKenzie, J.C., Jordan, R. & Li, X. 1997. 
Variation of snow cover ablation in the boreal forest: A sensitivity study on the effects of conifer 
canopy. Journal of Geophysical Research Atmospheres. DOI: 10.1029/97jd01335 

Golding, D.L. & Swanson, R.H. 1986. Snow distribution patterns in clearings and adjacent 
forest. Water Resources Research. DOI: 10.1029/WR022i013p01931 

Gordon, J., Quinton, W., Branfireun, B.A. & Olefeldt, D. 2016. Mercury and methylmercury 
biogeochemistry in a thawing permafrost wetland complex, Northwest Territories, Canada. 
Hydrological Processes. DOI: 10.1002/hyp.10911 

Halsey, L.A., Vitt, D.H. & Zoltai, S.C. 1995. Disequilibrium response of permafrost in boreal 
continental western Canada to climate change. Climatic Change 30 : 57–73. DOI: 
10.1007/BF01093225 

Harding, R.J. & Pomeroy, J.W. 1996. The energy balance of the winter boreal landscape. 
Journal of Climate. DOI: 10.1175/1520-0442(1996)009<2778:TEBOTW>2.0.CO;2 

Hardy, J.P., Melloh, R., Koenig, G., Marks, D., Winstral, A., Pomeroy, J.W. & Link, T. 2004. 
Solar radiation transmission through conifer canopies. Agricultural and Forest Meteorology. 
DOI: 10.1016/j.agrformet.2004.06.012 

Haughton, E. 2018. Permafrost thaw-induced forest to wetland conversion : potential impacts on 
snowmelt and basin runoff in northwestern Canada By. 



52 
 

Hayashi, M., Quinton, W.L., Pietroniro, A. & Gibson, J.J. 2004. Hydrologic functions of wetlands 
in a discontinuous permafrost basin indicated by isotopic and chemical signatures. Journal of 
Hydrology 296 : 81–97. DOI: 10.1016/j.jhydrol.2004.03.020 

Haynes, K., Smart, J., Disher, B., Carpino, O., Quinton, W. 2020. The role of hummocks in re-
establishing black spruce forest following permafrost thaw. In prep.  

Haynes, K.M., Connon, R.F. & Quinton, W.L. 2018. Permafrost thaw induced drying of wetlands 
at Scotty Creek, NWT, Canada. Environmental Research Letters 13 : 114001. DOI: 
10.1088/1748-9326/aae46c 

Helbig, M., Pappas, C. & Sonnentag, O. 2016. Permafrost thaw and wildfire: Equally important 
drivers of boreal tree cover changes in the Taiga Plains, Canada. Geophysical Research 
Letters. DOI: 10.1002/2015GL067193 

Helbig, Manuel, Wischnewski, K., Kljun, N., Chasmer, L.E., Quinton, W.L., Detto, M. & 
Sonnentag, O. 2016. Regional atmospheric cooling and wetting effect of permafrost thaw-
induced boreal forest loss. Global Change Biology 22 : 4048–4066. DOI: 10.1111/gcb.13348 

Ishikawa, M., Sharkhuu, N., Zhang, Y., Kadota, T. & Ohata, T. 2005. Ground thermal and 
moisture conditions at the southern boundary of discontinuous permafrost, Mongolia. 
Permafrost and Periglacial Processes. DOI: 10.1002/ppp.483 

Jeglum, J.K. & He Fangliang 1995. Pattern and vegetation-environment relationships in a boreal 
forested wetland in northeastern Ontario. Canadian Journal of Botany. DOI: 10.1139/b95-067 

Jorgenson, M.T. & Osterkamp, T.E. 2005. Response of boreal ecosystems to varying modes of 
permafrost degradation. Canadian Journal of Forest Research 35 : 2100–2111. DOI: 
10.1139/x05-153 

Jorgenson, M.T., Romanovsky, V., Harden, J., Shur, Y., O’Donnell, J., Schuur, E.A.G., 
Kanevskiy, M. & Marchenko, S. 2010. Resilience and vulnerability of permafrost to climate 
change. Canadian Journal of Forest Research 40 : 1219–1236. DOI: 10.1139/X10-060 

Kettridge, N., Thompson, D.K., Bombonato, L., Turetsky, M.R., Benscoter, B.W. & Waddington, 
J.M. 2013. The ecohydrology of forested peatlands: Simulating the effects of tree shading on 
moss evaporation and species composition. Journal of Geophysical Research: Biogeosciences 
118 : 422–435. DOI: 10.1002/jgrg.20043 

Kneisel, C. 2006. Assessment of subsurface lithology in mountain environments using 2D 
resistivity imaging. Geomorphology 80 : 32–44. DOI: 10.1016/j.geomorph.2005.09.012 

Kneisel, C., Hauck, C., Fortier, R. & Moorman, B. 2008. Advances in geophysical methods for 
permafrost investigations. Permafrost and Periglacial Processes 19 : 157–178. DOI: 
10.1002/ppp.616 

Lafleur, P.M., Hember, R.A., Admiral, S.W. & Roulet, N.T. 2005. Annual and seasonal variability 
in evapotranspiration and water table at a shrub-covered bog in southern Ontario, Canada. 
Hydrological Processes 19 : 3533–3550. DOI: 10.1002/hyp.5842 

Lewkowicz, A.G., Etzelmüller, B. & Smith, S.L. 2011. Characteristics of discontinuous 
permafrost based on ground temperature measurements and electrical resistivity tomography, 
Southern Yukon, Canada. Permafrost and Periglacial Processes 22 : 320–342. DOI: 
10.1002/ppp.703 

Lohila, A., Minkkinen, K., Aurela, M., Tuovinen, J.P., Penttilä, T., Ojanen, P. & Laurila, T. 2011. 



53 
 

Greenhouse gas flux measurements in a forestry-drained peatland indicate a large carbon sink. 
Biogeosciences. DOI: 10.5194/bg-8-3203-2011 

Mackay, J.R. 1972. The World Of Underground Ice. Annals of the Association of American 
Geographers 62 : 1–22. DOI: 10.1111/j.1467-8306.1972.tb00839.x 

Marks, D., Kimball, J., Tingey, D. & Link, T. 1998. The sensitivity of snowmelt processes to 
climate conditions and forest cover during rain-on-snow: a case study of the 1996 Pacific 
Northwest flood. Hydrological Processes. DOI: 10.1002/(SICI)1099-
1085(199808/09)12:10/11<1569::AID-HYP682>3.0.CO;2-L 

McClymont, A.F., Hayashi, M., Bentley, L.R. & Christensen, B.S. 2013. Geophysical imaging 
and thermal modeling of subsurface morphology and thaw evolution of discontinuous 
permafrost. Journal of Geophysical Research: Earth Surface 118 : 1826–1837. DOI: 
10.1002/jgrf.20114 

Menberu, M.W., Tahvanainen, T., Marttila, H., Irannezhad, M., Ronkanen, A.K., Penttinen, J. & 
Kløve, B. 2016. Water-table-dependent hydrological changes following peatland forestry 
drainage and restoration: Analysis of restoration success. Water Resources Research. DOI: 
10.1002/2015WR018578 

Murphy, M., Laiho, R. & Moore, T.R. 2009. Effects of Water Table Drawdown on Root 
Production and Aboveground Biomass in a Boreal Bog. Ecosystems 12 : 1268–1282. DOI: 
10.1007/s10021-009-9283-z 

Nathan, R.J. & McMahon, T.A. 1990. Evaluation of automated techniques for base flow and 
recession analyses. Water Resources Research. DOI: 10.1029/WR026i007p01465 

Nguyen, T.N., Burn, C.R., King, D.J. & Smith, S.L. 2009. Estimating the extent of near-surface 
permafrost using remote sensing, Mackenzie Delta, Northwest Territories. Permafrost and 
Periglacial Processes. DOI: 10.1002/ppp.637 

Osterkamp, T.E. & Romanovsky, V.E. 1999. Evidence for warming and thawing of 
discontinuous permafrost in Alaska. Permafrost and Periglacial Processes 10 : 17–37. DOI: 
10.1002/(SICI)1099-1530(199901/03)10:1<17::AID-PPP303>3.0.CO;2-4 

Pastick, N.J., Jorgenson, M.T., Wylie, B.K., Nield, S.J., Johnson, K.D. & Finley, A.O. 2015. 
Distribution of near-surface permafrost in Alaska: Estimates of present and future conditions. 
Remote Sensing of Environment. DOI: 10.1016/j.rse.2015.07.019 

Payette, S., Delwaide, A., Caccianiga, M. & Beauchemin, M. 2004. Accelerated thawing of 
subarctic peatland permafrost over the last 50 years. Geophysical Research Letters 31 : 1–4. 
DOI: 10.1029/2004GL020358 

Pellerin, S. & Lavoie, C. 2000. Peatland fragments of southern Quebec: Recent evolution of 
their vegetation structure. Canadian Journal of Botany. DOI: 10.1139/b99-186 

Pelletier, N., Talbot, J., Olefeldt, D., Turetsky, M., Blodau, C., Sonnentag, O. & Quinton, W.L. 
2017. Influence of Holocene permafrost aggradation and thaw on the paleoecology and carbon 
storage of a peatland complex in northwestern Canada. The Holocene 095968361769389. DOI: 
10.1177/0959683617693899 

Pomeroy, J.W., Gray, D.M., Hedstrom, N.R. & Janowicz, J.R. 2002. Prediction of seasonal 
snow accumulation in cold climate forests. Hydrological Processes 16 : 3543–3558. DOI: 
10.1002/hyp.1228 



54 
 

Posavec, K., Bačani, A. & Nakić, Z. 2006. A visual basic spreadsheet macro for recession curve 
analysis. Ground Water. DOI: 10.1111/j.1745-6584.2006.00226.x 

Price, J.S., Heathwaite, A.L. & Baird, A.J. 2003. Hydrological processes in abandoned and 
restored peatlands: An overview of management approaches. In Wetlands Ecology and 
Management. DOI: 10.1023/A:1022046409485 

Quinton, W., Berg, A., Braverman, M., Carpino, O., Chasmer, L., Connon, R., Craig, J., Devoie, 
É., Hayashi, M., Haynes, K., Olefeldt, D., Pietroniro, A., Rezanezhad, F., Schincariol, R. & 
Sonnentag, O. 2019. A synthesis of three decades of hydrological research at Scotty Creek, 
NWT, Canada. Hydrology and Earth System Sciences 23 : 2015–2039. DOI: 10.5194/hess-23-
2015-2019 

Quinton, W.L. & Connon, R.F. 2017. Toward Understanding the Trajectory of Hydrological 
Change in the Southern Taiga Plains , NWT , Canada. 1–10. 

Quinton, W.L. & Gray, D.M. 2003. Subsurface drainage from organic soils in permafrost terrain : 
the major factors to be represented in a runoff model. Proceedings of the Eighth International 
Conference on Permafrost. 

Quinton, W.L., Hayashi, M. & Chasmer, L.E. 2009. Peatland Hydrology of Discontinuous 
Permafrost in the Northwest Territories : Overview and Synthesis. Canadian Water Resources 
Journal 34 : 311–328. 

Quinton, W.L., Hayashi, M. & Chasmer, L.E. 2011. Permafrost-thaw-induced land-cover change 
in the Canadian subarctic: Implications for water resources. Hydrological Processes 25 : 152–
158. DOI: 10.1002/hyp.7894 

Quinton, W.L., Hayashi, M. & Pietroniro, A. 2003. Connectivity and storage functions of channel 
fens and flat bogs in northern basins. Hydrological Processes 17 : 3665–3684. DOI: 
10.1002/hyp.1369 

Robinson, S.D. & Moore, T.R. 2000. The influence of permafrost and fire upon carbon 
accumulation in high boreal peatlands, Northwest Territories, Canada. Arctic, Antarctic and 
Alpine Research 32 : 155–166. DOI: 10.2307/1552447 

Shur, Y.L. & Jorgenson, M.T. 2007. Patterns of permafrost formation and degradation in relation 
to climate and ecosystems. Permafrost and Periglacial Processes 18 : 7–19. DOI: 
10.1002/ppp.582 

Sicart, J.E., Essery, R.L.H., Pomeroy, J.W., Hardy, J., Link, T. & Marks, D. 2004. A Sensitivity 
Study of Daytime Net Radiation during Snowmelt to Forest Canopy and Atmospheric 
Conditions. Journal of Hydrometeorology. DOI: 10.1175/1525-
7541(2004)005<0774:ASSODN>2.0.CO;2 

Tallaksen, L.M. 1995. A review of baseflow recession analysis. Journal of Hydrology. DOI: 
10.1016/0022-1694(94)02540-R 

Tarnocai, C. 2009. The Impact of Climate Change on Canadian Peatlands. Canadian Water 
Resources Journal 34 : 453–466. DOI: 10.4296/cwrj3404453 

Thie, J. 1974. Distribution and Thawing of Permafrost in the Southern Part of the Discontinuous 
Permafrost Zone in Manitoba. 27 : 189–200. 

Turetsky, M.R., Wieder, R.K., Vitt, D.H., Evans, R.J. & Scott, K.D. 2007. The disappearance of 
relict permafrost in boreal north America: Effects on peatland carbon storage and fluxes. Global 



55 
 

Change Biology. DOI: 10.1111/j.1365-2486.2007.01381.x 

Turetsky, M.R., Wieder, R.K., Williams, C.J. & Vitt, D.H. 2000. Organic matter accumulation, 
peat chemistry, and permafrost melting in peatlands of boreal Alberta. Écoscience. DOI: 
10.1080/11956860.2000.11682608 

Tutubalina, O. V. & Rees, W.G. 2001. Vegetation degradation in a permafrost region as seen 
from space: Noril’sk (1961-1999). Cold Regions Science and Technology. DOI: 10.1016/S0165-
232X(01)00049-0 

Vitt, D.H., Halsey, L.A. & Zoltai, S.C. 1994. The Bog Landforms of Continental Western Canada 
in Relation to Climate and Permafrost Patterns. Arctic and Alpine Research 26 : 1. DOI: 
10.2307/1551870 

Waddington, J.M., Morris, P.J., Kettridge, N., Granath, G., Thompson, D.K. & Moore, P.A. 2015. 
Hydrological feedbacks in northern peatlands. Ecohydrology 8 : 113–127. DOI: 
10.1002/eco.1493 

Walvoord, M.A. & Kurylyk, B.L. 2016. Hydrologic Impacts of Thawing Permafrost—A Review. 
Vadose Zone Journal 15 : 0. DOI: 10.2136/vzj2016.01.0010 

Warren, R.K., Pappas, C., Helbig, M., Chasmer, L.E., Berg, A.A., Baltzer, J.L., Quinton, W.L. & 
Sonnentag, O. 2018. Minor contribution of overstorey transpiration to landscape 
evapotranspiration in boreal permafrost peatlands. Ecohydrology 11 : e1975. DOI: 
10.1002/eco.1975 

Woo, M.-K., Kane, D.L., Carey, S.K. & Yang, D. 2008. Progress in permafrost hydrology in the 
new millennium. Permafrost and Periglacial Processes 19 : 237–254. DOI: 10.1002/ppp.613 

Wright, N., Hayashi, M. & Quinton, W.L. 2009. Spatial and temporal variations in active layer 
thawing and their implication on runoff generation in peat-covered permafrost terrain. Water 
Resources Research 45 : 1–13. DOI: 10.1029/2008WR006880 

Wright, N., Quinton, W.L. & Hayashi, M. 2008. Hillslope runoff from an ice-cored peat plateau in 
a discontinuous permafrost basin, Northwest Territories, Canada. Hydrological Processes 22 : 
2816–2828. DOI: 10.1002/hyp.7005 

Wu, J., Kutzbach, L., Jager, D., Wille, C. & Wilmking, M. 2010. Evapotranspiration dynamics in 
a boreal peatland and its impact on the water and energy balance. Journal of Geophysical 
Research: Biogeosciences 115 : 1–18. DOI: 10.1029/2009JG001075 

Zhang, T. 2005. Influence of the seasonal snow cover on the ground thermal regime: An 
overview. Reviews of Geophysics 43 : RG4002. DOI: 10.1029/2004RG000157 

Zoltai, S.C. 1993. Cyclic Development of Permafrost in the Peatlands of Northwestern Canada. 
Arctic and Alpine Research 25 : 240–246. DOI: 10.2307/1551820 

Zoltai, S.C. 1972. Palsas and Peat Plateaus in Central Manitoba and Saskatchewan. Canadian 
Journal of Forest Research 2 : 291–302. DOI: 10.1139/x72-046 

Zoltai, S.C. 1995. Permafrost Distribution in Peatlands of West-Central Canada during the 
Holocene Warm Period 6000 Years BP. Geographie physique Et Quaternaire 49 : 45–54. DOI: 
10.7202/033029ar 

Zoltai, S.C. & Tarnocai, C. 1975. Perennially Frozen Peatlands in the Western Arctic and 
Subarctic of Canada. Canadian Journal of Earth Sciences. DOI: 10.1139/e75-004 



56 
 

 

Appendix A: Additional information on methods  

Site selection and methodology   

To determine additional study sites within Scotty Creek (Sites 2 – 4), a supervised image 

classification was created using multi-spectral Worldview-2 imagery. A maximum-likelihood 

algorithm classification was created using ArcGIS, and a small number of training sites were 

used for each landcover type (n = 5). This initial classification served as a tool to determine 

other sites within the study area that may be considered treed bog based on their spectral 

properties, as these sites could not be assessed in person due to logistical constraints, and as 

such, no accuracy assessment was completed on this classification. LiDAR products such as 

digital elevation models (DEM) and canopy height models (CHM) were also used to determine 

areas that were both low elevation and treed. Sites were not selected to achieve wide-spread 

spatial representation throughout the small AOI (area of interest), but instead were selected 

based on a combination of the classification and closeness to other sites within Scotty Creek. A 

geophysical investigation was conducted at all four study sites to gain a more thorough 

understanding of subsurface properties. Only the ERT (electrical resistivity tomography) 

measurements will be presented here.  

Snowpack Characteristics 

Due to drone flights occurring at different times throughout the day, shadows are present 

during some of the images. To deal with this discrepancy, three classes were used to classify 

the shadows as snow cover for the first three days of analysis. After this point, two classes were 

selected to represent ‘snow-cover’ and ‘snow-free’ area. In total, 50 random points were 

distributed based on stratified random sampling, where the points were randomly distributed 
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within each class with an equal number of points (n=25) in each class. Points were then verified 

as either ‘snow-covered’ or ‘snow-free’ based on visual observation of each SCA drone image. 

Seasonal ground freeze and thaw 

End of summer thaw depth measurements were conducted on the portion of transects 

that crossed peat plateaux and was used to determine the extent of the active layer when it 

reaches its maximum thaw depth. These measurements are completed similarly to depth of 

refreeze, but the frost probe is inserted into the ground until it reaches the frost table and cannot 

penetrate any further. Ground temperature and soil moisture were measured using five 

temperature-moisture (TM) probes connected to data loggers (EM50, METER Environment, 

USA), but because the primary purpose of these probes is too measure soil moisture, the 

accuracy of the temperature measurements is ± 1oC. An offset was applied to each dataset to 

align the observed zero-curtain to the actual zero-curtain (-0.02oC) commonly observed by 

other cold regions studies (Woo 2012; Quinton & Baltzer 2013). 

Water level fluctuations and hydrograph recession 

For the well installations, a black iron pipe was installed adjacent to each PVC pipe into 

the underlying mineral soil (~2 – 3 m below the surface) and was used as an anchor point for 

the pressure transducer. These anchor points were installed to prevent the vertical movement of 

the transducer due to heaving of the peat surface throughout the summer months. A 

measurement of the well casing, top of Anchor point, and water table was taken, as well as five 

measurements of the ground surface surrounding the well. To determine water level, Barometric 

pressure was collected within 1 km of the study site and was subtracted from the total pressure 

to provide a depth of water above the pressure transducer in the well.   

Typically, Recession analyses will evaluate the recession of the hydrography until 

baseflow conditions are met on the hydrograph. Because this analysis was conducted in 
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peatlands, a baseflow condition could not be adequately established and as such, the recession 

limb for each land cover feature was evaluated for 5 days or up to the following precipitation 

event. In total, four precipitation events (>10 mm) were examined for the analysis and are 

summarized in Figure 9. Too create MRC curves, an adapted match stripping method was 

used, such that recession segments are superimposed into overlapping segments, resulting in a 

general characterization of water table recession for each landcover type at all four sites 

(Posavec et al. 2006). 

Image classification and analysis   

To distinguish topographically elevated landscapes, the mean of the TPI product 

(0.100076) was used to determine the cut-off between high and low elevation features. A TPI 

value greater than the mean was classified as ‘high elevation’ and everything below this 

threshold was classified as ‘low elevation’. Thresholds for both canopy gap fraction and canopy 

height were both determined iteratively using manual interpretation of the imagery. For example, 

the upland regions had both taller and more dense canopies characteristics and were therefore 

assigned higher canopy and gap fraction thresholds. Treeless bogs have very little canopy 

cover, and the CHM and gap fraction characteristics determined to reflect these characteristics. 

A similar process was used for both peat plateaux and treed bogs. The classification for fens 

and treed bogs relied on spectral properties, as the canopy and topographic characteristics 

were difficult to discern from other landcover types. The classification of a small portion of 

upland was weighted towards canopy characteristics as it was difficult to characterize 

topographically. To complete the accuracy assessment, a set of random points were generated 

for each landcover class and were verified using a combination of ground truth data and visual 

observations of high-quality areal imagery. The results of the matrix were then evaluated for 

overall accuracy and misclassification rates. Additionally, Cohen’s Kappa was used to 

determine how the classification performed in comparison to chance. 
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Appendix B: Additional discussion   

Snowpack Characteristics 

In a dense stand of boreal black spruce (Picea mariana) trees, snow accumulation is 

typically lower beneath the canopy (Pomeroy et al. 2002), but this effect is dependent on the 

effective Leaf Area Index (LAI) of the cover. For example, Baltzer et al. (2014) measured the 

effective LAI of peat plateaux to investigate thermal implications of radiation on ground thaw,  

and measured an effective LAI ranging between 0.8 and 2.0 depending on the distance from the 

plateau-wetland interface, while a black spruce canopy studied by Pomeroy et al. (2002) in 

Prince Albert Model Forest (Saskatchewan, Canada) had an effective LAI of 4.1. Because of the 

lower effective LAI of the black spruce forest studied here, accumulation of SWE is higher than 

forests in other regions with a denser forest canopy. The presence of canopy strongly influences 

the melt of a snowpack, as it reduces both turbulent fluxes as well as radiative fluxes. For 

example, Harding & Pomeroy (1996) found reported far lower incoming shortwave radiation 

below a dense pine canopy, as well as reductions in turbulent fluxes that would typically result in 

sublimation and redistribution of the snowpack. As the LAI of a forest increases, there is a 

steady decline in the amount of snowmelt energy reaching the snowpack and a resultant 

decrease in the snowmelt rate (Sicart et al. 2004). Although reductions in shortwave radiation 

and subsequent reductions in melt rate are the dominant trend, longwave radiation increases 

may offset reductions in shortwave irradiance, this effect is known as the ‘radiative paradox’ 

(Ambach 1974; Giesbrecht & Woo 2000; Pomeroy et al. 2009). Despite this, studies a have 

noted the contribution of longwave radiation, but shortwave reductions and reduced melt remain 

the dominant trend for snowmelt below canopies (Haughton 2018; Link & Marks 1999).   

Overall, the unsupervised classification accurately classified ‘snow-free’ and ‘snow-

covered’ areas (Figure 4). The overall accuracy on 25-Apr was 88% (Kappa = 0.76) and 
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increased to 98% for the remaining classified images (Appendix E). For example, the overall 

accuracy on 25-Apr was 88% (Kappa = 0.76), and then increased to 98% on 26-Apr (Kappa 

=0.96) and remained that accurate for the 27-Apr, 28-Apr, and 01-May classified images 

(Appendix E). The lower accuracies on 25-Apr favored type I error, where darker snow cover 

surrounding the base of some trees were classified as ‘snow-free’ when they were instead 

‘snow-cover’. This error only persisted for the first classified image. It should be noted that 

additional error rates may also be introduced due to the presence of snow cover beneath the 

black spruce crowns as this snow cover would not be visible in the images.  Although this error 

may be negligible, it may result in under-represented SCA estimates within treed areas of the 

classification. Before snowmelt intensified, SCA was similar at all site types. Due to windy 

weather conditions, UAV flights could only be completed between 23-Apr and 01-May, and 

snowmelt had completed by 04-May. 

Water level fluctuations and hydrograph recession 

Although ET was not directly measured in this study, the difference in ET between open bogs 

and a treed landscape can be significant (Warren et al. 2018), and may be influenced by factors 

such as canopy cover and the depth of the water table below the moss surface (Lafleur 2008; 

Hayward & Clymo 1982; Lafleur et al. 2005; Kellner 2001).  For example, ET flux from a black 

spruce canopy can be significantly lower than surrounding wetland environments due to the 

considerably lower photosynthetic and transpiration rates of black spruce (Warren et al. 2018; 

Strilesky & Humphreys 2012; Murphy et al. 2009).  Although ET was not measured for this 

study, ET contributions from black spruce within Scotty Creek are generally poor due to 

moisture availability and nutrient poor conditions on peat plateaux resulting in low productivity. 

For example, Warren et al. (2018) found lower ET rates within peat plateaux compared to 

Sphagnum dominated open bogs. This effect is compounded as plateaux degrade and the 

rooting zone floods, causing further reductions to productivity (Baltzer et al., 2014; Patankar et 
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al., 2015). Studies in temperate peatlands have noted similar findings. For example, Strilesky 

and Humphreys (2012) assessed ET between a temperate treed and open bog near Ottawa, 

Ontario for an entire hydrological year and demonstrated lower ET rates in the treed bog 

compared to the treeless portion of the same bog. This effect was most pronounced in the 

summer months when the water table (and moisture availability) was the lowest. 

Image classification and analysis   

The classification performed most well when classifying fens and peat plateaux, with accuracies 

ranging between 97% and 93%. The classification for fens favored type I errors, where at times 

treeless bogs were classified as fens. Similarly, peat plateau’s also favored type I errors. 

Treeless bogs had higher accuracies that ranged between 94% to 67%. The classification of 

treeless bogs was most susceptible to type II errors, where other landcover types were 

misclassified as treeless bog. The classification performed well when classifying treed bogs as 

the accuracies were between 81% and 68%, which favored Type II errors, as other landscapes 

such as treeless bogs and fens would sometimes be misclassified as treed bogs. Although the 

classification performed well, the accuracy assessment utilized points rather than defined areas, 

which would introduce further bias into the accuracy assessment of the classification, as any 

misclassifications surrounding the boundaries of features or any misclassifications that didn’t 

overlap with that specific point would not have been captured. For example, despite the uplands 

appearing to have high accuracies (between 100% to 71%), the placement of random accuracy 

assessment points may have not captured the true error in the classification of this landcover. 

This bias would have been compounded by the small area of upland relative to other landcover 

types within the AOI.  Therefore, these accuracy assessments should be regarded with caution. 

Unfortunately, due to logistical constraints, the uplands within the northern part of the AOI could 

not be ground verified. 
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Appendix C: Statistical analysis of SWE, depth of refreeze and slope recession analysis. 

All tests were run at a 95% confidence interval. 
 

 

 

 

 

 

 

 

 

 

 

 

Variable Landcover  Residual df F-value P-value 

SWE – April 7th     

 ANOVA 15 3.081 0.0757 

 treed bog – plateau   0.3201 

 treeless bog – plateau   0.0643 

 treeless bog – treed bog   0.6085 

SWE – April 26th     

                    ANOVA  15 0.554 0.5860 

treed bog – plateau   0.5682 

treeless bog – plateau   0.7714 

treeless bog – treed bog   0.9382 

Depth of Refreeze    

 ANOVA 67 37.34 < 0.001 

 treed bog – plateau   0.5680 

 treeless bog – plateau   < 0.001 

 treeless bog – treed bog   < 0.001 

Slope Recession     

 ANOVA 30 18.4 < 0.001 

 treed bog – treeless bog   < 0.001 
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Appendix D: Topographic, canopy, and spectral thresholds used for each landcover type 

within the image classification. Variables with dashes were not used to classify that landcover. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Peat plateau Fen Treed Bog  Treeless Bog  Upland 

Topographic position index 
 

> 0.100076 ≤ 0.100076 ≤ 0.100076 ≤ 0.100076  

Canopy height 
 

> 1.2 m and ≤ 7 m ≤ 3.6 m  > 1.2 m and ≤ 7 m ≤ 1.2 m ≥ 7 m 

Canopy gap fraction 
 

0.61 – 0.96 0.96 – 1 0.61 – 0.96 0.96 – 1 < 0.61 

Spectral classes  25 25 10 25  
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Appendix E: Confusion matrices of predicted ‘snow-free’ and ‘snow-covered’ area 

compared to actual ‘snow-free’ and ‘snow-covered’ area of all drone images used for the SCA 
analysis. Classification accuracies are presented with overall accuracy, misclassification rate, 
and Kohen’s Kappa. 
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Appendix F: Confusion matrix of predicted landcover type compared to actual landcover 

type within the classification AOI. Classification accuracies are presented with overall accuracy, 
misclassification rate, and Kohen’s Kappa. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n = 251 Peat plateau Fen Treed bog Treeless bog Upland Total Accuracy 

Peat Plateau 85 2 7 2 4 100 85       
Fen 0 65 4 10 0 69 83    
Treed bog 3 1 25 2 0 31 81  
Treeless bog 0 1 1 29 0 31 94  
Upland  0 0 0 0 10 10 1  
Total 88 37 69 43 14   

Accuracy 97 94 68 67 71      

P
re

d
ic
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d

  

Overall Accuracy: 85.3 % 

Misclassification: 14.7 % 

Kohen’s Kappa: 0.79 

 

Actual   
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Appendix G: Discrete soil moisture points collected between 14-May and 01-June for 

each landcover type (n=20). Data was collected with a hydrosense-2 handheld soil moisture 
probe. 
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