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Abstract

The aggregate loss model has applications in various areas such as financial

risk management and actuarial science. The aggregate loss is the summation of all

random losses occurred in a period, and it is governed by both the loss severity and the

loss frequency. While the impact of the loss severity on aggregate loss is well studied,

less focus is paid on the influence of loss frequency on aggregate loss, which motivates

our study. In this thesis, we enrich the aggregate loss framework by introducing the

Poisson-Tweedie distribution as a candidate for modelling loss frequency, prove the

closedness of Poisson-Tweedie under binomial-thinning, investigate bias of parameter

and quantile estimation through simulation and apply our proposed model on real data

to demonstrate its advantage. The Poisson-Tweedie distribution family contains many

of the commonly used distributions for modelling loss frequency, thus making loss

frequency fitting more flexible and reduce the chance of model misspecification. Apart

from this feature, the Poisson-Tweedie family is also convolution closed, which allows us

to use the same distribution family to model frequency data over different time lengths.

The proven closedness under binomial thinning implies that the frequency distribution

remains in the same family of Poisson-Tweedie when the observations have a reporting

threshold, simplifying the parameter estimation for loss frequency. Through simulation

studies, we investigate and find the impact of misspecification of the loss frequency

distribution to the aggregate loss quantile, as well as a non-negligible bias of the

maximum likelihood estimator of the family index of Poisson-Tweedie. Finally, we

have applied our proposed model to Transportation Security Administration (TSA)

Claims data to demonstrate modelling capacity on real-world problems.
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Chapter 1

Introduction

Losses and damages are events associated with costs that have various underlying

causes. These losses occur individually from time to time. People who manage risk are

often interested in total loss occurring in a fixed time-period; aggregating the losses

by a certain time-period. For example, the aggregated yearly loss is typically referred

to as yearly loss.

In a set period, the aggregate loss is defined as the sum of randomly occurred

individual loss amounts (Klugman, Panjer, and Willmot 2012). The number of

losses in this period is referred to as the loss frequency and the loss amount is the

loss severity. Loss frequencies are non-negative integer random variables and loss

severities are non-negative continuous random variables. The loss severity is assumed

to be identically and independently distributed (i.i.d) within the given time-period

whereas the loss frequency is identically and independently distributed across time-

periods. Furthermore, loss severity and loss frequency are assumed to be independent

(Shevchenko 2011); this independence assumption can simplify the estimation for the

aggregate loss model as separate estimation procedures for loss frequency and loss

severity respectively (Panjer 2014).

Aggregate loss is often used in the insurance and financial industries to
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manage risks. Percentile based risk measures such as value at risk (VaR) and expected

shortfall (ES) are often used to make decisions in risk management. For example, in

banking, the aggregate loss model is used by the advanced measurement approaches

(AMA) for operational risk, to estimate regulatory capital. The 99.9th percentile

of the aggregate loss is used to calculate the regulatory capital in operational risk

(Kerwer 2005). Regulatory capital is used to mitigate the damage of large losses to

businesses. The AMA model in the New Basel Capital Accord (Basel II) is proposed

by the Basel Committee on Banking Supervision (Horbenko, Ruckdeschel, and Bae

2011).

The aggregate loss is a non-linear function of a loss frequency and a loss

severity distribution, it is usually difficult to derive a closed-form of the distribution of

the aggregate loss. Hence, it is a challenge to estimate any measure that relies on the

distribution of the aggregate loss such as risk measures. Usually, a direct numerical

approach is used to estimate the percentile from a large number of simulated data.

In literature, loss severity has been intensively studied. Many pieces of

literature list a series of commonly used distributions for modelling loss severity.

Contrary to well-established research on the distribution of loss severity, less attention

is paid to the loss frequency. Only a limited number of frequency distributions can

be found in Shevchenko (2011). Poisson Inverse-Gaussian as a candidate for loss

frequency can be found in Willmot (1987). It is noted that a single distribution may

not be enough to fit the various count data well and may lead to misspecification,

which consequently leads to poor estimation of the risk measures of the aggregate loss.

The limited choice of distribution of loss frequency in the existing analysis

of the aggregate loss model motivates us to enlarge the set of candidates of the

frequency distribution. We consider the Poisson-Tweedie family, which covers several

of the commonly used loss frequency distributions (e.g., Poisson, Negative Binomial,

Poisson Inverse-Gaussian). We expect this three-parameter distribution family to

enhance model fitting for loss frequency in the aggregate loss model. Moreover, for
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the Poisson-Tweedie family, it has a nice property of convolution closed with regards

to family index parameter, which means that the frequencies of daily, weekly, monthly,

quarterly and yearly loss are all within the Poisson-Tweedie family, implying no change

of frequency modelling.

We verify that different frequency distributions contribute differently to

percentile estimates of the aggregate loss through simulation with the same levels of

frequency mean, variance and severity distribution respectively. As a result, a wrong

specification of either loss frequency or loss severity will deteriorate the accuracy

of the insurance premium or regulatory capital because the risk measures used to

find the level of regulatory assets are based on the aggregate loss distribution. In

this thesis, we find that our proposed aggregate loss model with Poisson-Tweedie

frequency outperforms aggregate loss models with Poisson, Negative Binomial and

Poisson Inverse-Gaussian frequency, when applied to a TSA claims dataset.

A special and important case in aggregate loss is the incomplete data due

to reporting thresholds. For example, in banking, the Basel Committee on Banking

Supervision (BCBS), a group of banking supervisory authorities, specifies that institu-

tions must define minimum loss thresholds (Kerwer 2005). The reporting threshold is

currently set at EUR 20,00o In Europe (EBA 2019), which means that loss events

lower than EUR 20,000 are not reported to regulators. The consequence of the re-

porting threshold is that loss frequency and loss severity are no longer independent.

As shown in our simulation study, naively ignoring the reporting threshold will lead

to accuracy issues in estimation with the aggregate loss now. The major theoretical

contribution of this thesis is to prove that Poisson-Tweedie is closed under binomial

thinning, which makes frequency modelling convenient for incomplete data with a

reporting threshold. In particular, the Poisson-Tweedie family index does not change

under binomial thinning, which suggests all Poisson-Tweedie special cases (Poison,

Negative-Binomial, Poisson Inverse-Gaussian, etc.) are also closed under binomial

thinning.
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For parameter estimation, we derive the maximum likelihood estimation

(MLE) for the aggregate loss model concerning both complete and incomplete data.

The biases of estimators have been investigated by a simulation study. We apply

our proposed aggregate model to a real case and demonstrate the advantage of

our model over aggregate loss models with Poisson, Negative Binomial and Poisson

Inverse-Gaussian loss frequency.

In a simulation study, comparing the impact of loss frequency on the percentile

of the aggregate loss distribution, we find that misspecifying the frequency distribution

can lead to underestimation or overestimation of the percentile of the aggregate loss

distribution. We also perform a simulation study to analyze bias in the estimation

process, which reveals that when fitting loss frequency, the mean and variance can

be captured well, but a non-negligible bias for the Poisson-Tweedie parameter a is

observed. Consequently, further study is suggested to reduce this bias.

We apply the proposed model to Transportation Security Administration

(TSA) Claims Data and find that the Poisson-Tweedie family fits better than common

frequency distributions such as Poisson and Negative Binomial. We also fit the

proposed model for incomplete data with hypothetical reporting thresholds (i.e.,

manually specifying a reporting threshold and removing observations less than the

threshold). In these situations, the Poisson-Tweedie distributions, with estimated

family parameters close to the previous fit for full data, are obtained. This further

supports the applicability of the proposed model, according to the proven closedness

property of Poisson-Tweedie under binomial thinning.

This thesis is organized as follows. In Chapter 2, we introduce the proposed

model in detail and describe the maximum likelihood estimation of the aggregate

loss, including the special case with a reporting threshold. In Chapter 3, we discuss

and provide results of simulation methods for analyzing aggregate loss distribution

percentile estimates and bias in parameter estimations. In Chapter 4, we apply

Poisson-Tweedie distribution as the frequency estimation to Transportation Security

4



Administration Claims data. In Chapter 5, we summarize our findings and discuss

future work.
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Chapter 2

Aggregate Loss Models with

Poisson-Tweedie Loss Frequency

The aggregate loss model has applications in various areas such as financial risk

management and actuarial science. In this chapter, we establish the theoretical and

computational foundation of the thesis. The Poisson-Tweedie family of distribution

will be incorporated into the framework of the aggregate loss model because it can unify

several widely used distributions for the loss frequency. We discover the closedness

of Poisson-Tweedie under binomial thinning; this property is particularly useful for

incomplete data caused by a reporting threshold.

The estimation of the aggregate loss will also be discussed. To calculate the

risk measures used by financial institutions to manage risk and satisfy regulators, we

seek to estimate the right side percentiles of the aggregate loss distribution.
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2.1 Aggregate Loss Model

Within a single period, the aggregate loss L can be expressed as a random sum as

follows:

L =
N∑
j=1

Xj, (2.1)

where N is the total number of loss events observed in a certain period, Xj is the

amount of loss for the jth event. Usually, to study the statistical properties of aggregate

loss, N is referred to as frequency and is described by a non-negative discrete random

variable. Xj , for all j, is considered as the loss severity and modelled by a non-negative

continuous distribution. Loss frequency and loss severity are typically assumed to be

independent.

The severity of loss, Xj, are assumed to be identically and independently

distributed (i.i.d.) for j = 1, 2, . . . , N with density fX(x; β). The support of the

loss severity is [0,+∞). The loss severity is well studied with distributions from the

exponential family with positive support (Shevchenko 2011; Cummins et al. 1990; Jin,

Provost, and Ren 2014; Griffiths and Mnif 2017).

Our research will utilize the log-normal distribution exclusively as the loss

severity since the focus of this research is to examine alternate distributions for loss

frequency. The log-normal distribution is one severity distribution commonly used in

aggregate loss distribution (Papush, Patrik, and Podgaits 2001; Karam and Planchet

2012; Cummins et al. 1990; Griffiths and Mnif 2017). The log-normal has the form

fX(x;µ, σ) = 1
xσ
√

2π
exp

(
−(ln(x)− µ)2

2σ2

)
(2.2)

for µ ∈ (−∞,+∞) and σ > 0.

The number of claims, N , is assumed to have mass fN(n; θ). Values of loss

frequency are in the set {0, 1, 2, 3, . . .}. Distributions available for frequency includes

Poisson, Negative Binomial, Binomial, Geometric and Panjer class (Panjer 2006;

Karam and Planchet 2012; Griffiths and Mnif 2017). Loss frequency has a limited
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number of distributions available for modelling. Thus, we propose a new candidate,

Poisson-Tweedie, for modelling loss frequency in the aggregate loss model (El-Shaarawi,

Zhu, and Joe 2011; Bonat et al. 2016; Kokonendji, Demétrio, and Dossou Gbete

2004).

The idea of an extended Poisson and Tweedie family has been investigated

in Smyth and Jørgensen (2002). Their research extends the Poisson and Gamma

distributions with Tweedie’s compound Poisson model for continuous random variables

which allows for the direct estimation of the aggregate loss. Furthermore, in Kokonendji,

Demétrio, and Dossou Gbete (2004), the Poisson-Tweedie distribution was introduced

for discrete random variable to enlarge available distribution for count data. El-

Shaarawi, Zhu, and Joe (2011) introduced a new parameterization and recursive

algorithm for the probability mass function of the Poisson-Tweedie distribution. This

parameterization and algorithmic probability mass function makes the study and

analysis of distributions considered in our thesis convenient.

Under the assumption that the loss frequency N and the loss severity are

independent within a period. The mean and variance of the aggregate loss can be

determined as follows:

E(L) = E

 N∑
j=1

Xj

 = E(N)E(X), (2.3)

and

V ar(L) = V ar

 N∑
j=1

Xj


= E

V ar
 n∑
j=1

Xj|N = n

+ V ar

E
 n∑
j=1

Xj|N = n


= E(NV ar[X]) + V ar(NE[X])

= E(N)V ar(X) + V ar(N)E(X)2. (2.4)
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In practice, financial institutes are often interested in the right tail percentile

of the aggregate loss. For example, value at risk (VaR) and expected shortfall (ES)

are two commonly used risk measures based on the percentile of the distribution.

We define the qth percentile of a random variable X as 0.01× q = Pr(X ≤ x)

where x is the value of the percentile for 0 ≤ q ≤ 100.

Value at Risk (VaR) measures a potential loss for given normal market

conditions for a given time frame. The relation between VaR and the aggregate loss L

is

Pr(L ≤ V aRα) = α (2.5)

where L is the aggregate loss, V aRα is the loss amount of the VaR statistic and

α ∈ [0, 1] is the confidence level. The time-period length of the VaR statistics is

the same as the time length of the aggregate loss. The loss amount V aRα is then

equivalent to the α× 100th percentile of the aggregate loss.

The expected shortfall is the average of losses greater than a percentile level.

Similar to VaR, ES is also composed of a time-period, a confidence level α and a loss

amount. It is used to measures the average loss if the loss exceeds the Value at Risk

(VaR breach). We define ES as

E[L|L ≥ V aRα]. (2.6)

2.2 Poisson-Tweedie Family for Loss Frequency

Using the parameterization of El-Shaarawi, Zhu, and Joe (2011), we define Poisson-

Tweedie distribution with parameters PT(a,b,c) which has mean µN = bc/(1− c)1−a

and variance σ2
N = bc(1 − ac)/(1 − c)2−a . We selected this parameterization due

to the convenience in studying various distributions covered by the Poisson-Tweedie

family and the provided algorithm to calculate the probability mass function. The

probability generating function, the power series representation of the probability

9



mass funciton, of Poisson-Tweedie is defined as

GN(s) = exp
{
b

a

[
(1− c)a − (1− cs)a

]}
(2.7)

where |s| ≤ 1. According to El-Shaarawi, Zhu, and Joe (2011), the three-parameter

Poisson–Tweedie family PT (a, b, c) has the probability mass function such that the

probability mass pk+1 is a linear combination of probability mass p0, p1, · · · , pk, stated

as follows:

Pr(N = 0) = p0 =

 eb[(1−c)a−1]/a, a 6= 0

(1− c)b a = 0,

Pr(N = 1) = p1 = bcp0,

Pr(N = k + 1) = pk+1 = 1
k + 1

(
bcpk +

k∑
j=1

jrk+1−jpj

)
, k = 1, 2, 3, . . . , (2.8)

where

r1 = (1− a)c, rj + 1 = (j − 1 + a

j + 1 )crj, j = 1, 2, 3, . . . , k − 1,

and

−∞ < a ≤ 1, 0 < b <∞ and 0 < c ≤ 1

El-Shaarawi, Zhu, and Joe (2011) defines parameter a of Poisson-Tweedie

to be the family index, where the value of a determines to which distribution the

Poisson-Tweedie family corresponds.

For example, the Poisson-Tweedie family includes Poisson (a = 1), Poisson

Inverse-Gaussian (a = 0.5), Negative Binomial (a = 0), and Polya-Aeppli (a =

−1). Thus, a Poisson-Tweedie family unifies these individual distribution families.
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Parameters b and c are associated with the mean and variance, given by:

µ = bc

(1− c)1−a (2.9)

and

σ2 = bc(1− ac)
(1− c)2−a . (2.10)

Note that Panjer classes (both (a, b, 0) and (a, b, 1)) also include Poisson and

Negative Binomial distribution families as special cases. However, the probability mass

pk+1 of the Panjer class depends on pk, whereas pk+1 of Poisson-Tweedies depends on

p0, p1, . . . , pk. Therefore, in general, the Poisson-Tweedie family and the Panjer class

do not overlap.

2.3 Binomial Thinning for Modelling Data With

Reporting Threshold

In practice, insurance and banking institutes often have claim policies and reporting

practices such that losses less than the threshold are not reported. For example, a

deductible is an amount a policyholder needs to pay before the insurance provider

covers the additional costs. For the insurance provider, the claims with severity

below the deductible threshold are not observed. European banks are subject to

financial reporting standards. The regulatory committee Basel Committee on Banking

Supervision (BCBS) assigns a threshold of EUR 20,000 for reported losses in operational

risk for banks in Europe (EBA 2019). With a reporting threshold, small losses are

not disclosed. Hence, we do not know how many events are missing or the size of

the missing losses. This creates a complication as the loss severity X and the loss

frequency N are no longer independent. Suppose that losses below the threshold H

11



are not reported. In insurance, the observed severity is defined as

X∗ =

 X −H X ≥ H

Unreported X < H
.

Without loss of generality, we can define the observed severity as

XH =

 X X ≥ H

Unreported X < H
. (2.11)

It is easy to see that XH = X∗ +H.

Loss frequency under a reporting threshold H is then

NH =

 I1 + · · ·+ IN N > 0

0 N = 0
, (2.12)

where I1, . . . , IN are independent and identically Bernoulli random variables, defined

as

Ij =

 1, X ≥ H

0, X < H
(2.13)

for j = 1, 2, 3, . . . and pH = Pr(X ≤ H) = Pr(Ij = 0) = FX(H; β) (i.e., the

probability that the claim is less than the threshold). Typically H is given while pH
can be determined after severity fitting. The process to derive the above new frequency,

NH , which is a random sum of Bernoulli random variables, is called binomial thinning

operation (Zhu 2002). Since the occurrence of a loss is reported depends on whether

the loss is greater than the threshold, frequency is dependent on the loss severity

parameters and the reporting threshold. The assumption that frequency and severity

are independent is violated.

Under a reporting threshold, the domain of the severity is H ≤ XH < ∞
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with the density of reported severity XH

fXH
(x; β) = fX(x; β)

1− FX(H; β) = fX(x; β)
1− pH

, H ≤ x <∞

(Shevchenko 2011). The mass function of reported frequency, NH , can be derived with

the probability generating function (pgf) GNH
(s) = GN(GI(s)) where GN(s) is the

pgf of the frequency distribution and GI(s) is the pgf of the Bernoulli distribution

mentioned before (Shevchenko 2011). When the distribution of frequency is closed

under binomial thinning, the reported frequency, NH , has the same form of the

probability mass function (pmf) as the case without reporting threshold, thus, the

pmf of NH can be expressed as fN (n; γ) where γ = g(θ,β) is a vector transformation

of the frequency parameters, the severity parameters and the threshold H.

The Poisson-Tweedie is closed under binomial-thinning, as proved in The-

orm 1.

Theorem 1. Assume N ∼ PT (a, b, c), {I1, I2, . . .}
i.i.d.∼ Bernoulli(1− pH). Denote

NH =

 I1 + · · ·+ IN N > 0

0 N = 0
,

which is binomial thinning of N . Then NH ∼ PT
(
a, b(1− c · pH)a, c(1−pH)

1−c·pH

)
.

Proof. Given the general probability generating function of frequency under binomial

thinning

GNH
(s) = GN(GI(s)),

and incorporating the Poisson-Tweedie probability generating function,

GN(s) = exp
{
b

a

[
(1− c)a − (1− cs)a

]}
,
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the probability generating of Poisson-Tweedie NH is

GNH
(s) = GN(G(s))

= GN(pH + (1− pH)s)

= exp
{
b

a

[
(1− c)a − (1− c(pH + (1− pH)s))a

]}
= exp

{
b

a
(1− c · pH)a

[
(1− c(1− pH)

1− c · pH
)a − (1− c(1− pH)

1− c · pH
s)a
]}
.

Thus NH follows PT
(
a, b(1− c · pH)a, c(1−pH)

1−c·pH

)
.

Therefore, the probability mass function of binomial thinned Poisson-Tweedie

can be derived using the same recursive algorithm with different parameters.

2.4 Parameter Estimation

In this section, we show how MLE can be used to estimate parameters of the aggregate

loss distribution and to simulate the aggregate loss distribution. From this, we discuss

the use of MLE for typical statistics of data such as the mean, variance, parameters

and percentile of the distribution.

Assume we observe T periods (T = 1, 2, 3, ...) of losses. Ni are the identically

and independently distributed loss frequencies period i = 1, 2, . . . , T with mass

fN (n; θ). Further, Xi,j are the identically and independently distributed loss severities

in period i for j = 1, 2, . . . , Ni with density fX(x; β).

2.4.1 Data Structure

The data use for analysis of aggregate loss takes the following form:
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Period Loss Frequency Loss Severity

1 n1 x1 = (x1,1, x1,2, x1,3,. . . , x1,n1)

2 n2 x2 = (x2,1, x2,2, x2,3,. . . , x2,n2)

3 n3 x3 = (x3,1, x3,2, x3,3,. . . , x3,n3)

. . . . . . . . .

T nT xT = (xT,1, xT,2, xT,3,. . . , xT,nT
)

where n1, n2, n3, ..., nT are the observed loss frequencies in each time-period and

x1,1, ..., xT,nT
are loss severities.

2.4.2 Estimation Method For Observations Without Report-

ing Threshold

We apply the MLE method for estimating parameters of interest. Recall the loss

severity X has density fX(x; β) and the loss frequency N has mass fN (n; θ). Therefore,

the likelihood of the aggregate loss can be derived as follows:

L(θ,β;n1, ..., nT , x1,1, ...xT,nT
) =

T∏
i=1

fN(ni; θ)
ni∏
j=1

fX(xij; β)


=
(

T∏
i=1

fN(ni; θ)
) T∏

i=1

ni∏
j=1

fX(xij; β)
 . (2.14)

The log-likelihood is then

l = logL(θ,β;n,x) = log
( T∏

i=1
fN(ni; θ)

) T∏
i=1

ni∏
j=1

fX(xij; β)


=
T∑
i=1

log fN(ni; θ) +
T∑
i=1

ni∑
j=1

log fX(xij; β). (2.15)
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Taking the partial derivative with respect to β and θ yields the following two estimating

equations:

∂l

∂β
= ∂

∂β

T∑
i=1

log fN(ni; θ) + ∂

∂β

T∑
i=1

ni∑
j=1

log fX(xij; β)

= ∂

∂β

T∑
i=1

ni∑
j=1

log fX(xij; β) (2.16)

and

∂l

∂θ
= ∂

∂θ

T∑
i=1

log fN(ni; θ) + ∂

∂θ

T∑
i=1

ni∑
j=1

log fX(xij; β)

= ∂

∂θ

T∑
i=1

log fN(ni; θ). (2.17)

Equating these partial derivatives to zero leads to the the following estimating equa-

tions: 
∂
∂θ

∑T
i=1 log fN(ni; θ) = 0

∂
∂β

∑T
i=1

∑ni
j=1 log fX(xij; β) = 0

. (2.18)

The solutions, β̂ and θ̂, of these equations are the maximum likelihood estimators of

β and θ, respectively.

Because of the independence of N and X, we can apply MLE to frequency

fitting and severity fitting individually.

2.4.3 Estimation Method for Observations with Reporting

Threshold

We also consider MLE for parameter estimation under the circumstance with a

reporting threshold and assume the loss frequency distribution is closed under binomial

thinning. Recall that the distribution of the loss frequency under binomial thinning is

then

fNH
(n) = fN(n; γ)
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where γ = g(θ,β), a function of θ and β.

The likelihood of the reported data under a reporting threshold is

L(θ,β;n1, ..., nT , x1,1, ...xT,nT
) =

T∏
i=1

fN(ni; γ)
ni∏
j=1

fXH
(xij; β)


=
(

T∏
i=1

fN(ni; γ)
) T∏

i=1

ni∏
j=1

fXH
(xij; β)

 . (2.19)

The log-likelihood is then

logL(θ,β;n1, ..., nT , x1,1, ...xT,nT
) = log

( T∏
i=1

fN(ni; γ)
) T∏

i=1

ni∏
j=1

fXH
(xij; β)


=

T∑
i=1

log fN(ni; γ) +
T∑
i=1

ni∑
j=1

log fXH
(xij; β). (2.20)

Taking partial derivatives with regards to θ and β yields

∂l

∂θ
= ∂

∂θ

(
T∑
i=1

log fN(ni; γ)
)

= ∂

∂θ

(
T∑
i=1

log fN(ni; g(θ,β))
)

=
(
∂g(θ,β)
∂θ

)(
T∑
i=1

∂

∂g(θ,β) log fN(ni; g(θ,β))
)

=
(
∂γ

∂θ

)(
T∑
i=1

∂

∂γ
log fN(ni; γ)

)
(2.21)
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and, similarly,

∂l

∂β
= ∂

∂β

 T∑
i=1

ni∑
j=1

log fXH
(xij; β)


+
(
∂γ

∂β

)
∂

∂γ

(
T∑
i=1

log fN(ni; γ)
)

= ∂

∂β

 T∑
i=1

ni∑
j=1

log fX(xij; β)
1− FX(H; β)


+
(
∂γ

∂β

)
∂

∂γ

(
T∑
i=1

log fN(ni; γ)
)

(2.22)

Equating these partial derivatives to zero leads to the following estimating equations


(
∂g(θ,β)
∂θ

)
∂
∂γ

(∑T
i=1 log fN(ni; γ)

)
= 0

∂
∂β

(∑T
i=1

∑ni
j=1 log fX(xij ;β)

1−FX(H;β)

)
+
(
∂g(θ,β,H)

∂β

)
∂
∂γ

(∑T
i=1 log fN(ni; γ)

)
= 0

. (2.23)

Simplifying them further leads to the following estimating equations:


∂
∂γ

∑T
i=1 log fN(ni; γ) = 0

∂
∂β

∑T
i=1

∑ni
j=1 log fX(xij ;β)

1−FX(H;β) = 0
. (2.24)

Thus, we can find the MLE of β independently of the frequency distribution by

maximizing
T∑
i=1

ni∑
j=1

log fX(xij; β)
1− FX(H; β) (2.25)

Using the estimate of severity distribution parameter, β̂, we find the MLE of θ by

maximizing
T∑
i=1

log fN(ni; γ) (2.26)

with respect to γ and then solving for θ̂ in γ̂ = g(θ̂, β̂). It is also possible to find the

MLE of θ directly by maximizing

T∑
i=1

log fN(ni; g(θ,β)|β = β̂). (2.27)
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From (2.26), we observe that the frequency distribution parameter estimation

takes into account the severity distribution parameters, and thus, the loss severity is

no longer independent of the loss frequency.

2.4.4 Percentile of Aggregate Loss Distribution

Note that the aggregate loss defined in (2.1) is a random sum and its distribution

usually has complicated or no closed-form depending on the distribution of loss

frequency and loss severity. Thus, it is difficult to analytically evaluate the percentile

of the aggregate loss distribution. This percentile is used to calculate risk measures

such as value at risk, expected shortfall or other measures of interest. One of the

methods used in banking and insurance is to estimate the percentile using simulated

aggregate loss (Heckman 1983; Shevchenko 2011). The procedure to simulate the

aggregate loss is as follows:

1. We simulate a loss frequency, N , based on estimated loss frequency parameters.

2. We simulate n loss severities x1, ..., xn, using the estimated severity parameters.

3. The simulated aggregate loss is calculated as ∑n
i=1 xi.

4. Repeat steps 1 to 3 M times (based on the accuracy desired for a given statistic).

5. Empirically estimate the percentile by ordering the simulated aggregate losses

from smallest to largest and find the value corresponding to the percentile

position. Calculate VaR and ES with the estimated percentiles.

The number of periods M required for simulation depends on the accuracy

needed and percentile to be estimated. A higher percentile (i.e., 95th percentile)

requires more repetitions to simulate. One method to determine M is to increase the

number of repetitions, M , until the desired risk measure converges (the difference of

the risk measure between the number of repetitions becoming smaller than a defined

value).
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2.4.5 MLE for Log-Normal Severity and Poisson-Tweedie

Frequency

Following from Section 2.4.2, we apply the estimation method when the claim severity

X follows a log-normal distribution and the loss frequency N follows a Poisson-Tweedie

distribution with parameters (a,b,c). Tthe probability generating function defined in

Section 2.2. The loss severity follows a log-normal distribution with density specified by

(2.2). When there is no reporting threshold, we can apply MLE to separately estimate

the severity and frequency parameters. Given observed frequencies n1, n2, . . . , nT and

observed severities x1,1, x1,2, . . . , xT,nT
, parameter estimation involves the following

two steps:

1. Estimate severity parameters

(µ̂, σ̂) = arg max
(µ,σ)

T∑
i=1

nT∑
j=1

logfX(xi,j;µ, σ). (2.28)

2. Estimate frequency parameters

(â, b̂, ĉ) = arg max
(a,b,c)

T∑
i=1

logfN(ni; a, b, c). (2.29)

When a reporting threshold H exists, such that losses under the reporting

threshold are not recorded, we can apply the estimation from Section 2.4.2. Theorem 1

states Poisson-Tweedie is closed under binomial thinning with parameters

γ = g(a, b, c, µ, σ) = (a, b
(

1− c · pH
)a
,
c(1− pH)
1− c · pH

) (2.30)

where

pH = Pr(X < H) =
∫ H

−∞
fX(s;µ, σ)ds = FX(H;µ, σ). (2.31)

The method of estimating parameters is:
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1. Estimate severity parameters

(µ̂, σ̂) = arg max
(µ,σ)

T∑
i=1

nT∑
j=1

log fX(xi,j;µ, σ)
1− FX(xi,j;µ, σ) . (2.32)

2. With the estimated parameters µ̂,σ̂ estimate pH by calculating

p̂H = FX(H; µ̂, σ̂). (2.33)

3. Estimate frequency parameters

(â, b̂, ĉ) = arg max
(a,b,c)

T∑
i=1

logfN
(
ni; a, b

(
1− c · p̂H

)a
,
c(1− p̂H)
1− c · p̂H

)
. (2.34)

This MLE method of our proposed aggregate loss distribution parameters

will be applied in the following simulation study in Chapter 3 and data application in

Chapter 4.
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Chapter 3

Simulation Study

In financial risk management, we wish to accurately predict losses since an under-

estimation would expose us to unnecessary financial burden and an overestimation

typically leads to a loss of potential profit. In particular, we expect that due to the

different characteristics between distributions, different loss frequency distributions will

contribute differently to the estimation of the aggregate loss distribution percentiles.

This implies that a misspecification of the loss frequency can lead to an inaccurate

estimation of the aggregate loss distribution. We also wish to investigate bias in

the MLE of the Poisson-Tweedie parameters. To this end, we employ simulation

studies for the aggregate loss percentiles among different frequency distributions and

for Poisson-Tweedie parameter estimation with both complete and incomplete data

due to the reporting threshold.

3.1 Percentile of Aggregate Loss Distribution Un-

der Different Loss Frequency Distributions

To study aggregate loss percentiles among different frequency distributions, we specify

the same mean and variance for both frequency (number of claims) and severity (size

of the claim) and then observe the impact of different frequency distributions on the
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aggregate 95th percentile and the expected shortfall (above 95th percentile). The

Poisson-Tweedie probability mass function algorithm is programmed according to

(El-Shaarawi, Zhu, and Joe 2011). The Poisson-Tweedie mass under binomial thinning

is also programmed according to Theorem 1 with the algorithm given in Appendix

A. The algorithm for calculating the probability mass function of Poisson-Tweedie is

tested against available known distributions including Poisson and Negative Binomial

distributions. These steps are as follows

1. We use the Poisson-Tweedie distribution family to generate frequency random

numbers of different distributions based on the family index a. We set different

levels of mean and variance and determine Poisson-Tweedie parameters b and c

based on the chosen mean and variance. We generate loss frequency ni for T

periods, that is, T Poisson-Tweedie random numbers.

2. Based on chosen severity distributions, we simulate ∑T
i=1 ni (simulated from step

1) loss severity random variables and aggregate them by period.

3. The percentile of the aggregate loss can be empirically approximated with a large

number of periods. The number of periods T can be determined by increasing the

number of periods until the specified risk measure converges (when the difference

between the risk measure for increasing the number of periods becomes smaller

than a defined number).

We choose Poisson (Poisson-Tweedie parameter a = 1), Negative Binomial

(Poisson-Tweedie parameter a = 0) and Poisson Inverse-Gaussian (Poisson-Tweedie

parameter a = 0.5) discrete distributions to study. For frequency, we chose means of

2, 10 and 30 number of claims per period. The variance is 5 times the mean except for

Poisson distribution. The Poisson-Tweedie parameter equivalent of Poisson, Negative

Binomial and Poisson Inverse-Gaussian will be set according to the relationship

between parameters and frequency mean and variance (see Section 2.2).

We specified a Log-Normal distribution for the claim severity currency unit.
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The parameter µ measures the mean log of the data and σ measures the standard

deviation of the log of the data. We set the severity parameters at Log-Normal(7,0.1),

Log-Normal(8,0.2), and Log-Normal(9,0.3) with claim size listed in Table 3.1. Real

data may have a much higher mean and variance for both frequency and severity

distributions. However, for our purpose, we chose these mean values to try to reduce

the number of simulations needed. Since we are interested in the impact of loss

frequency distributions, we minimize the impact of the loss severity distribution on

the tail percentile of the aggregate loss distribution. The σ parameter of the log-

normal distribution is chosen to minimize the impact the severity variance has on

the aggregate loss so that we can use fewer simulations to obtain better accuracy.

There is a total of 27 different combinations of frequency and severity distribution

parameter levels. For each combination, we perform a Monte Carlo simulation with

T = 1000000 periods of loss frequency and loss severities for each simulated loss

frequency value. The number of periods is chosen such that at the 0.95 aggregate loss

percentile, the convergence is within one percent tolerance, that is, if T = 1000000

periods output loss1 for the chosen risk measure and T = 1000001 periods output

loss2, then loss2−loss1
loss1

< 0.01. The resulting percentile estimates of the aggregate loss

is compared between distributions.

From the results of the simulation in Table 3.1, we can observe that difference

exists in tail estimates of the aggregate loss with different frequency distributions

when the mean and the variance are kept at a fixed level. For example, at all levels of

severity and loss frequency mean of 2 losses per period, we observe that Poisson (PT

a = 1) has the smallest 0.95 percentile followed by Poisson Inverse-Gaussian (PIG)

(PT a = 0.5) and Negative Binomial (PT a = 0) has the largest 0.95 percentile At a

frequency mean of 10, Negative Binomial and PIG have very similar 0.95 percentile

values while Poisson has the smallest 0.95 percentile value. At a frequency mean

of 30, PIG has the 0.95 percentile greater than Negative Binomial. Poisson has

the smallest 0.95 percentile at all levels compared with other distributions. This

observation suggests that some underlying interaction may exist between the shape of
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the severity distribution and the frequency distribution on how frequency distribution

contributes to percentile estimates of the aggregate loss. For all combinations of loss

severity and loss frequency parameters, the value of 95% expected shortfalls show that

Poisson has the smallest 95% ES followed by Negative Binomial and PIG having the

largest 95% ES. We also notice that as the level of frequency average increases, the

relative difference between the percentile estimate of aggregate loss with different loss

frequency distribution decreases. This suggests that Poisson Inverse-Gaussian has a

thicker right tail than Negative Binomial.
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Table 3.1: Tail Risk Statistics of Simulated Aggregate Loss

Sev. Parameter Sev. Mean Sev. SD Freq. Dist. Freq. Parameter Freq. Mean Freq. SD 0.95 Percentile 95th ES

Poisson PT(1,2,1) 1.414214 5167.54 6041.38

NB PT(0,0.5,0.8) 3.162278 9167.23 13564.58

PIG PT(0.5,0.75,0.89)

2

3.162278 8643.60 13758.27

Poisson PT(1,10,1) 3.162278 17089.86 18861.57

NB PT(0,2.5,0.8) 7.071068 26023.06 32150.42

PIG PT(0.5,3.75,0.89)

10

7.071068 26025.69 33473.44

Poisson PT(1,30,1) 5.477226 43347.18 46193.42

NB PT(0,7.5,0.8) 12.247449 57783.77 66324.21

Log-Norm(7,0.1) 1102.13 110.49

PIG PT(0.5,11.25,0.89)

30

12.247449 58273.90 68190.74

Poisson PT(1,2,1) 1.414214 14139.89 16821.92

NB PT(0,0.5,0.8) 3.162278 25545.15 37477.62

PIG PT(0.5,0.75,0.89)

2

3.162278 23643.64 38056.28

Poisson PT(1,10,1) 3.162278 47463.30 52391.75

NB PT(0,2.5,0.8) 7.071068 71959.92 89108.17

PIG PT(0.5,3.75,0.89)

10

7.071068 71987.61 92717.04

Poisson PT(1,30,1) 5.477226 120054.57 128052.10

NB PT(0,7.5,0.8) 12.247449 159589.59 183054.16

Log-Norm(8,0.2) 3041.18 614.37

PIG PT(0.5,11.25,0.89)

30

12.247449 160902.07 188249.00

Poisson PT(1,2,1) 1.414214 40202.58 47997.21

NB PT(0,0.5,0.8) 3.162278 71372.17 104776.05

PIG PT(0.5,0.75,0.89)

2

3.162278 66164.66 105993.96

Poisson PT(1,10,1) 3.162278 133497.28 147907.74

NB PT(0,2.5,0.8) 7.071068 200926.27 248375.53

PIG PT(0.5,3.75,0.89)

10

7.071068 201795.63 259492.82

Poisson PT(1,30,1) 5.477226 336978.36 360090.22

NB PT(0,7.5,0.8) 12.247449 446163.66 511940.22

Log-Norm(9,0.3) 8476.05 2601.12

PIG PT(0.5,11.25,0.89)

30

12.247449 449077.76 524886.07
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Figure 3.1: Aggregate Loss Percentiles (50th, 80th, 95th)
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As shown in Figure 3.1, we see that at different percentile levels, the effects

of frequency distribution on aggregate loss percentile value are also different. For

example, with Log-Norm(8,0.2) claim severity and frequency mean of 30 claims per

period show that the value of 50th percentile aggregate loss with Negative Binomial

(PT(0,b,c)) frequency is greater than with Poisson (PT(1,b,c)), with Poisson-Inverse

Gaussian (PT(0.5,b,c)) having the smallest estimate. At the 95th percentile aggregate

loss estimate, the Negative Binomial frequency has the greatest estimate, followed by

Poisson Inverse-Gaussian, with Poisson having the smallest estimate. This simulation

shows that the frequency average has an impact on how different frequency distribution

affects the aggregate loss percentile estimates. This phenomenon may be derived

from the interaction between loss severity distribution shape and loss frequency on

aggregate loss percentile estimates.

Further studies may include investigating the interaction between loss severity

distribution shape and loss frequency on the percentile estimates of the aggregate

loss, as well as the impact of different loss frequency on percentile estimates of the

aggregate loss under very large means of loss frequency.

3.2 Bias Investigation of Parameter Estimators for

Loss Frequency

We investigate the bias of maximum likelihood estimators of the frequency parameter

for observations without threshold (complete data) and with a threshold (incomplete

data) respectively.

We apply the Monte Carlo simulation to assess whether bias exists in esti-

mating frequency parameters for both complete data and data and incomplete data

using the maximum likelihood method. We focus on the shape parameter of the

Poisson-Tweedie distribution (parameter a) and the estimated frequency mean and

variance. Using simulation, we obtain information on the bias of estimates. For the
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investigation of bias in MLE estimation of Poisson-Tweedie using the algorithm from

El-Shaarawi, Zhu, and Joe (2011):

1. Simulate T periods of loss frequency based on given Poisson-Tweedie parameters.

2. Estimate Poisson-Tweedie parameters with the simulated sample according to

(2.29).

3. Repeat steps 1 and 2, K times to obtain a set of estimated parameters. K is

chosen such that the average estimated parameters converge when repetitions

increase (when the difference of the parameters for increasing repetitions becomes

smaller than a defined value).

For the investigation of bias in MLE estimation of Poisson-Tweedie under

binomial thinning:

4. Simulate loss severity based on the simulated frequency from step 1 and the

given Log-Normal parameter.

5. Apply a reporting threshold by removing loss severity based on the chosen

threshold H and calculate the loss frequency under binomial thinning by adding

up the number of losses in each period.

6. Perform naive MLE estimation of Poisson-Tweedie parameters according to

(2.29). Naive estimation to perform estimation without accounting for the

reporting threshold and estimate assuming the reporting threshold does not

exist.

7. Account for the reporting threshold and estimate parameters according to (2.32),

(2.33) and (2.34)

8. Repeat step 4 to 7 K times, the same number as in step 3 for convenience.

For frequency, we set the shape parameter a of the Poisson-Tweedie distribu-

tion at certain intervals between -2 to 1 (a=-2, -1.5, -1, -0.5, 0, 0.2, 0.4, 0.5, 0.6, 0.8

and 1). We choose a mean of 50 claims per period and a variance of 250 to observe

overdispersed models (except for a = 1 as this corresponds to Poisson distribution) to

keep the number of required calculations relatively small. Here we specify a severity
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distribution of Log-Norm(8,3) and choose the number of periods to be 100. This

chosen parameter has a higher loss severity variance and standard deviation since

we are only interested in frequency parameters in this simulation. The loss severity

mean is 268,337.30 and the standard deviation is 24,153,462. We specify reporting

thresholds at severity levels of 100, 250, 500, 750, and 1000. We repeat this process

K = 100000 times for each combination of frequency parameter, total periods and

threshold level. This number of repetitions gives stable average parameter estimation

at more than 3 decimal places. The estimates using simulated data (i.e. parameter

estimates, mean and variance of estimated frequency, etc.) are compared with the

true values to determine if any bias

3.2.1 Observations Without Reporting Threshold

Base on our simulation, we believe that bias does exist in some aspects of parameter

estimation. The number of repetitions, K = 100000, gives us an average Poisson-

Tweedie parameter a estimate tolerance of less than 3 decimal places.
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Table 3.2: Summary Statistics of Simulated Parameter a

Actual a E(â) SD(â)
Bias

Estimate - Actual

Bias

Relative %

-2.00 -1.20 1.98 0.80 39.99

-1.50 -1.12 1.93 0.38 25.39

-1.00 -1.00 1.86 0.00 -0.48

-0.50 -0.82 1.72 -0.32 -64.33

0.00 -0.49 1.43 -0.49 N/A

0.20 -0.28 1.21 -0.48 -241.50

0.40 0.00 0.88 -0.40 -99.95

0.50 0.17 0.66 -0.33 -65.22

0.60 0.37 0.43 -0.23 -39.06

0.80 0.74 0.06 -0.06 -7.85

1.00 0.82 0.06 -0.18 -18.24

(1) (2) (3) (4) (5)

(2)-(1) (4)
|(1)| ∗ 100%

From Table 3.2, we observe that bias exists in estimating the Poisson-Tweedie

parameter a. We also find that the higher the value of the parameter a, the lower the

empirical variance (the variance of the 100,000 sample estimates). The low empirical

variance of the parameter estimate at actual parameter a = 0.8 and a = 1 suggest that

the bias is consistent at those levels. The results also suggest there could be a pattern

or some association between the theoretical value and the bias of the Poisson-Tweedie

parameter a. We observe underestimation when theoretical a > −1 and overestimation

when theoretical a < −1.

• When a = 0 (i.e., Negative-Binomial), the bias could reach -0.5. Such under-

estimation would cause the fitted frequency distribution to have a lighter tail
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than it would be, and further tend to underestimate the tail percentile of the

aggregate loss distribution.

• When 0 < a ≤ 1, the bias is negative. Similarly, both frequency and aggregate

loss distributions tend to underestimate tails.

• When −1 < a ≤ 0, the bias is still negative and we would underestimate

aggregate loss tail percentiles.

• when a < −1, the bias is positive and we would overestimate aggregate loss tail

percentiles.

Table 3.3 suggests that the MLE Poisson-Tweedie estimate of the mean

and variance of the loss frequency does not have any bias. The difference between

sample and estimate is less than 2% for both mean and variance. The Poisson-Tweedie

parameter a = 1 corresponds with the Poisson distribution which has equal variance

property, thus we observe that the sample variance is equal to the sample mean.

Table 3.3: Summary Statistics of Simulated Frequency

Theoretical Parameter a Sample Mean Estimated Mean Sample Variance Estimated Variance

-2.0 49.995 49.973 249.970 251.297

-1.5 49.995 49.974 249.969 251.084

-1.0 49.995 49.976 249.972 250.815

-0.5 49.995 49.979 249.964 250.426

0.0 49.995 49.984 249.964 249.916

0.2 49.995 49.987 249.959 249.700

0.4 49.995 49.990 249.953 249.589

0.5 49.996 49.992 249.947 249.663

0.6 49.996 49.993 249.939 249.943

0.8 49.996 49.995 249.876 252.838

1.0 49.998 49.996 49.995 52.585

In general, we find that while estimating frequency using Poisson-Tweedie

and MLE, the estimated mean and variance do not seem to have any bias. However,

there is a difference between the estimated parameter a and the theoretical value of
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parameter a. Based on the results in Section 3.1, the percentile-based estimates would

also be different from the true value.

3.2.2 Observation With Reporting Threshold

The missing percentage of data, pH , is estimated according to Section 2.4.3. The

theoretical threshold is calculated from the true parameters, the sample threshold is

calculated from simulated data and the estimated threshold is calculated from the

estimated parameters.

Table 3.4: Estimating Threshold

Threshold Level H Theoretical Threshold % Sample Threshold % Estimated Threshold % Estimated Threshold SE (%)

100 12.89 12.89 12.90 0.86

250 20.44 20.44 20.46 1.36

500 27.59 27.59 27.61 1.88

750 32.28 32.28 32.30 2.24

1000 35.79 35.79 35.81 2.51

After estimating the missing percentage, Table 3.4 shows the estimate to be

extremely close to the sample and the theoretical missing percentage. We do notice

that the estimated threshold standard error increases as the threshold increase. As

more information is removed, we can expect the uncertainty to also increase.

In frequency estimation, if we do not take into consideration the binomial

thinning effect, increasing the threshold of data removal will decrease the estimated

Poisson-Tweedie parameter a (Table 3.5). This effect is added on top of the bias in

estimating full data. The empirical variance of the parameter estimate also increases

as the threshold increases.
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Table 3.5: Naive Estimation of Poisson-Tweedie Parameter a

Theoretical Threshold 12.89 % 20.44 % 27.59 % 32.28 % 35.79 %

Theoretical a
Bias of

Estimated a

(Variance of Estimated a)

Bias of

Estimated a

(Variance of Estimated a)

Bias of

Estimated a

(Variance of Estimated a)

Bias of

Estimated a

(Variance of Estimated a)

Bias of

Estimated a

(Variance of Estimated a)

-2.0
0.75

( 2.2 )

0.72

( 2.38 )

0.69

( 2.53 )

0.68

( 2.6 )

0.67

( 2.7 )

-1.5
0.33

( 2.14 )

0.3

( 2.31 )

0.27

( 2.47 )

0.26

( 2.55 )

0.25

( 2.63 )

-1.0
-0.05

( 2.06 )

-0.08

( 2.22 )

-0.12

( 2.37 )

-0.13

( 2.45 )

-0.14

( 2.52 )

-0.5
-0.37

( 1.91 )

-0.39

( 2.05 )

-0.43

( 2.21 )

-0.44

( 2.27 )

-0.46

( 2.34 )

0.0
-0.54

( 1.59 )

-0.57

( 1.72 )

-0.6

( 1.85 )

-0.62

( 1.91 )

-0.63

( 1.98 )

0.2
-0.52

( 1.35 )

-0.55

( 1.47 )

-0.59

( 1.59 )

-0.61

( 1.65 )

-0.62

( 1.71 )

0.4
-0.44

( 1 )

-0.47

( 1.1 )

-0.5

( 1.2 )

-0.52

( 1.26 )

-0.54

( 1.31 )

0.5
-0.36

( 0.76 )

-0.39

( 0.85 )

-0.42

( 0.95 )

-0.44

( 1 )

-0.46

( 1.05 )

0.6
-0.26

( 0.51 )

-0.29

( 0.57 )

-0.31

( 0.65 )

-0.33

( 0.7 )

-0.35

( 0.74 )

0.8
-0.07

( 0.08 )

-0.08

( 0.1 )

-0.1

( 0.12 )

-0.11

( 0.14 )

-0.11

( 0.16 )

1.0
-0.18

( 0.06 )

-0.18

( 0.06 )

-0.18

( 0.07 )

-0.21

( 0.07 )

-0.2

( 0.07 )
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Table 3.6: Statistics of Simulated Frequency Without Accounting for Reporting

Threshold

H 100 250 500 750 1000

Theoretical Threshold 12.89 % 20.44 % 27.59 % 32.28 % 35.79 %

Theoretical a
Estimated Mean

(Estimated Variance)

Estimated Mean

(Estimated Variance)

Estimated Mean

(Estimated Variance)

Estimated Mean

(Estimated Variance)

Estimated Mean

(Estimated Variance)

Sample Mean

(Sample Variance)

(Sample Poisson Variance)

43.55

(195.26)

(43.53)

39.78

(166.34)

(39.76)

36.2

(141.01)

(36.19)

33.86

(125.54)

(33.84)

32.1

(114.52)

(32.09)

-2
43.53

(196.37)

39.76

(167.33)

36.19

(141.88)

33.84

(126.33)

32.09

(115.26)

-1.5
43.53

(196.21)

39.76

(167.19)

36.19

(141.76)

33.84

(126.24)

32.09

(115.17)

-1
43.53

(196)

39.76

(167.01)

36.19

(141.61)

33.84

(126.11)

32.09

(115.06)

-0.5
43.54

(195.69)

39.77

(166.74)

36.19

(141.39)

33.85

(125.9)

32.09

(114.87)

0
43.54

(195.3)

39.77

(166.41)

36.19

(141.11)

33.85

(125.66)

32.09

(114.65)

0.2
43.54

(195.12)

39.77

(166.26)

36.19

(140.97)

33.85

(125.53)

32.09

(114.53)

0.4
43.55

(195.02)

39.77

(166.15)

36.2

(140.88)

33.85

(125.44)

32.1

(114.44)

0.5
43.55

(195.06)

39.77

(166.18)

36.2

(140.9)

33.85

(125.44)

32.1

(114.45)

0.6
43.55

(195.25)

39.78

(166.33)

36.2

(141.01)

33.86

(125.54)

32.1

(114.53)

0.8
43.55

(197.45)

39.78

(168.16)

36.2

(142.52)

33.86

(126.86)

32.1

(115.72)

1
43.55

(45.81)

39.78

(41.84)

36.2

(38.09)

33.86

(35.65)

32.1

(33.79)

Without considering binomial thinning, Table 3.6 shows that we estimate

the sample frequency mean and variance instead of the theoretical mean and variance.

In our simulation, we underestimate both mean and variance.
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Table 3.7: Estimated Poisson-Tweedie Parameter a Accounting for Binomial Thinning

Theoretical Threshold 12.89 % 20.44 % 27.59 % 32.28 % 35.79 %

Theoretical a
Bias of

Estimated a

(Variance of Estimated a)

Bias of

Estimated a

(Variance of Estimated a)

Bias of

Estimated a

(Variance of Estimated a)

Bias of

Estimated a

(Variance of Estimated a)

Bias of

Estimated a

(Variance of Estimated a)

-2.0
0.95

( 1.7 )

1

( 1.65 )

0.91

( 1.85 )

0.98

( 1.8 )

0.98

( 1.78 )

-1.5
0.52

( 1.66 )

0.57

( 1.61 )

0.49

( 1.8 )

0.55

( 1.76 )

0.54

( 1.75 )

-1.0
0.12

( 1.59 )

0.16

( 1.55 )

0.08

( 1.74 )

0.14

( 1.68 )

0.13

( 1.68 )

-0.5
-0.22

( 1.48 )

-0.18

( 1.44 )

-0.26

( 1.63 )

-0.21

( 1.57 )

-0.22

( 1.57 )

0.0
-0.43

( 1.24 )

-0.41

( 1.22 )

-0.48

( 1.4 )

-0.44

( 1.34 )

-0.46

( 1.37 )

0.2
-0.44

( 1.07 )

-0.43

( 1.06 )

-0.49

( 1.22 )

-0.47

( 1.18 )

-0.49

( 1.21 )

0.4
-0.39

( 0.8 )

-0.39

( 0.81 )

-0.44

( 0.95 )

-0.42

( 0.92 )

-0.45

( 0.96 )

0.5
-0.32

( 0.62 )

-0.33

( 0.64 )

-0.38

( 0.76 )

-0.37

( 0.73 )

-0.39

( 0.79 )

0.6
-0.24

( 0.42 )

-0.25

( 0.44 )

-0.29

( 0.54 )

-0.29

( 0.52 )

-0.31

( 0.58 )

0.8
-0.07

( 0.07 )

-0.08

( 0.09 )

-0.09

( 0.11 )

-0.1

( 0.12 )

-0.11

( 0.14 )

1.0
-0.34

( 0.06 )

-0.47

( 0.02 )

-0.49

( 0.01 )

-0.49

( 0.01 )

-0.49

( 0.01 )

Table 3.7 shows that while there is no obvious association between the

threshold level and the estimated parameter a. The parameter a bias effect of

estimating data with threshold using this method is similar to estimating data without

threshold. The empirical variance of the parameter estimate also increases as the

threshold increases. It is interesting to note that for some values of parameter a, the

variance decreases at 32.28% threshold. Comparing Table 3.5 and Table 3.7, we find

that for some values of a, the bias of the naive estimation is smaller than the bias of

the estimation accounting for the reporting threshold. This is due to the fact that

naive estimation adds another bias to the bias of the parameter estimation. For these

values of a, the effects of the biases may cancel out and give the impression that the

bias is lower.
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Table 3.8: Summary Statistics of Simulated Frequency Accounting for Reporting

Threshold

Theoretical Threshold 12.89 % 20.44 % 27.59 % 32.28 % 35.79 %

Theoretical a
Estimated Mean

(Estimated Variance)

Estimated Mean

(Estimated Variance)

Estimated Mean

(Estimated Variance)

Estimated Mean

(Estimated Variance)

Estimated Mean

(Estimated Variance)

Sample Mean

(Sample Variance)

(Sample Poisson Variance)

43.55

(195.26)

(43.53)

39.78

(166.34)

(39.76)

36.2

(141.01)

(36.19)

33.86

(125.54)

(33.84)

32.1

(114.52)

(32.09)

-2
49.98

(251.6)

50

(251.86)

50.02

(252.13)

50.04

(252.47)

50.06

(252.87)

-1.5
49.98

(251.37)

50

(251.65)

50.02

(251.92)

50.04

(252.27)

50.06

(252.65)

-1
49.99

(251.11)

50

(251.36)

50.02

(251.63)

50.05

(252)

50.07

(252.38)

-0.5
49.99

(250.69)

50

(250.94)

50.03

(251.2)

50.05

(251.56)

50.07

(251.92)

0
49.99

(250.16)

50.01

(250.4)

50.03

(250.67)

50.05

(251.03)

50.07

(251.38)

0.2
50

(249.92)

50.01

(250.15)

50.03

(250.4)

50.06

(250.74)

50.08

(251.09)

0.4
50

(249.77)

50.02

(249.97)

50.04

(250.21)

50.06

(250.54)

50.08

(250.87)

0.5
50

(249.81)

50.02

(250)

50.04

(250.24)

50.06

(250.56)

50.08

(250.88)

0.6
50

(250.06)

50.02

(250.21)

50.04

(250.45)

50.06

(250.76)

50.08

(251.08)

0.8
50.01

(252.95)

50.02

(253.1)

50.04

(253.33)

50.07

(253.67)

50.09

(253.96)

1
50.01

(53.81)

50.02

(55.06)

50.04

(55.78)

50.07

(56.24)

50.09

(56.64)

Table 3.8 shows that when we take into account the binomial thinning of

frequency, we estimate the theoretical mean and variance instead of the sample mean

and variance. Except for Poisson (a=1) estimated variance, all results are within 2%

of true value. The Poisson variance overestimates the true variance up to more than

10%.

In this simulation study, we find that the frequency mean and variance can

be estimated with negligible or no bias. However, the Poisson-Tweedie family index

parameter a seems to have a bias. When theoretical parameter a is less than −1, the

estimate tends to overestimate the true value. This would cause aggregate loss right
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tail percentiles to be overestimated. When theoretical parameter a is greater than

−1, the estimate tends to underestimate the true value which would cause aggregate

loss tail percentiles to be underestimated. For data with reporting threshold, directly

estimating the frequency will underestimate the mean, variance and parameter a.

Higher levels of the threshold have a greater impact on the underestimation. The

method provided in Section 2.4.3 can estimate the missing data percent, frequency

mean and variance and severity parameters without bias. Higher threshold levels will

contribute to higher variance (calculated with simulated sample). Bias is still present

in Poisson-Tweedie MLE estimation of parameter a.
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Chapter 4

Application

The Transportation Security Administration (TSA) is a United States agency focused

on air traffic security in the United States. It was created in response to the September

11, 2000 attack as a centralized organization that provides security for United States

transportation systems. The TSA claims data includes claims against TSA for injury,

loss or damage of property during passenger’s screening process. We apply our

proposed model on this dataset to illustrate the use of Poisson-Tweedie as the loss

frequency distribution. The data does not seem to have a reporting threshold, thus

we apply thresholds at 10, 20, and 30 USD to study parameter estimation with real

incomplete data.

4.1 Analysis of TSA Claims Data using Aggregate

Loss Model with Poisson-Tweedie Frequency

4.1.1 Data Description

TSA data for the years of 2002 to the end of 2015 was obtained from the Department

of Homeland Security website (https://www.dhs.gov/tsa-claims-data).
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Table 4.1: TSA Data Variable Description

Variable Name Variable Description

Claim.Number claim identification number

Date.Received date that the claim is recieved by TSA

Claim.Type The type of damage (i.e., passenger injury, property damage)

Item.Category The category of the damaged object (i.e., electornics, clothing)

Claim.Amount the dollar amout requested for compensation in USD

Close.Amount the dollar amout given for compensation in USD

Disposition

the status of the claim, includes "Approved",

"Claim entered", "Canceled",

"Closed as a contractor claim",

"Denied", "In litigation",

"In review", "Insufficient" or

"Settled"

The data contains “claim number”, “date received”, “claim type”, “item

category”, “close amount” and “disposition”. Data from 2002 to 2006 also have “claim

amount”. Our variables of interest are defined in Table 4.1. In total there are 286,952

observations from 2002 to 2015. The variables of interest for this analysis are the date

received, close amount, claim amount, and the disposition. Date received is the date

that the claim is received by TSA. Close amount is the final amount TSA pays out to

claimants. The claim amount is the amount requested by the claimant. Disposition is

a categorical variable that indicates the outcome of the claim, whether the claim is

settled, approved in full or denied. In this study, we use the date that the claim is

received and the payout of the claim. Only claims that are settled or approved in full

were used. We use the closed amount for loss severity. If the closed amount is missing,

then the claim amount is used. Observations with missing payments are removed.

After applying these filters, the resulting number of observations is 81,065. We then
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aggregated claims by day, week, month and quarter.

Time plots for the entire time frame indicate an unexplained spike in frequency

before 2005 and clear seasonality in 2013 to 2015. But, the data from 2008 to 2012 in

Figure 4.1 shows a relatively stable period in terms of frequency which is suitable for

analysis, even though we observe a slight dip in frequency between the end of 2009

and early 20101. Hence, we only use the data from 2008 to 2012. Our cleaned data

has 15882 observations.

We apply the aggregate loss model defined in (2.1) to the TSA claim data

where the frequency is calculated by counting the number of claims within each

time-period and the severity is given by the close amount.

The frequency summary statstics are shown in Table 4.2.

Table 4.2: Summary Statistics of TSA Claims Frequency (Number of Claims)

Min. 25th Percentile Median Mean 75th Percentile Max. SD Variance

Daily 0 0.00 8.0 8.69 14.00 48 8.11 65.70

Weekly 6 50.00 61.0 60.62 71.00 111 15.08 227.36

Monthly 74 233.25 265.5 264.70 303.75 396 55.81 3114.79

Quarterly 500 679.50 834.0 794.10 922.75 967 134.85 18184.94

1We suspect the dip in loss frequency in 2009 may be related to the lagged effect of the 2008 US
Housing crisis which negatively affected the US economy
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Figure 4.1: Periodic TSA Claim Frequency Scatter Plot

Figure 4.1 shows the scatter plot for different frequency period lengths. We

observed a dip at around 2009 to 2010.
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Figure 4.2: Periodic TSA Claim Frequency Histogram

We will mainly focus on monthly data since daily data are highly zero-inflated

(a very large number of periods with no losses as shown in Figure 4.1(e) ), weekly

data have high autocorrelation at lag 4 (monthly correlation) and quarterly data lack

a sufficient number of observations. We use a Poisson-Tweedie distribution PT(a,b,c)

to model the number of claims for monthly data.

And now we will discuss loss severity summary statistics listed in Table 4.3.

Table 4.3: Summary Statistics of TSA Claims Severity (USD)

Min. 25th Percentile Median Mean 75th Percentile Max. SD

1 40 99.99 243.31 246.15 25000 598.39

The minimum claim amount over the given time-period is 1 USD with 3
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observations. There are 502 observations with a claim amount of less than 10 USD.

These are typically for locks, travel accessories, food, currencies that are lost or

damaged. There does not seem to be any reporting threshold and the data source

does not indicate any threshold exists.
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Figure 4.3: TSA Claim Severity

The scatter plot for the closed claim amount (the observed severity in figure

4.3(a)) shows that claim severity has not changed between 2008 and 2012. Figure 4.3(b)

shows that the severity is positively skewed, thus we select one of the commonly used
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positive skewed distribution Log-Normal(µ,σ) to model the claim amount (Papush,

Patrik, and Podgaits 2001; Karam and Planchet 2012; Cummins et al. 1990). Also in

the same histogram, we see sharp spikes at every 50 USD increment amounts with

a very significant spike at the 500 USD amount. Further analysis shows that at the

500 USD amount, the losses are from damaged or lost personal electronic devices and

pieces of jewelry. At the 100 USD amount, the common lost or damaged items are

luggage, cosmetics and clothes. We suspect these spikes are related to how common

certain items get damaged or lost and their perceived value.

We then apply the Maximum Likelihood Estimation method outlined in

(2.28) and 2.29 to estimate parameters, moments and quantiles of aggregate losses.

4.1.2 Estimation of Model Parameters

We estimate the model parameters for the Poisson-Tweedie and Log-Normal distribu-

tions by fitting the data with maximum likelihood estimation described in section 2.4.5.

We are interested in the family index, parameter a in PT(a,b,c) and the estimated

mean and variance. Parameters b and c depend on the parameter a, mean and variance,

thus it is more convenient to compare parameter a, mean and variance.

Table 4.4: Fitted Frequency Statistics (Number of Claims)

â

(SE)
Frequency Mean Frequency SE Frequency Variance

Monthly
-1.14

(0.57)
264.21 58.53 3426.18

In Table 4.4, we provide all the estimates for Poisson-Tweedie parameters in

terms of the family index parameter a, the estimated parameters are not close to any

commonly used distributions such as Poisson (a=1), Poisson Inverse-Gaussian (a=0.5)

and Negative-Binomial (a=0). Thus, Poisson-Tweedie may be more appropriate for
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this data than Poisson and Poisson-Inverse Gaussian. The frequency mean, variance

and standard error estimated from fitted parameters are very close the sample mean,

variance and standard deviations in Table 4.2.

In Table 4.5 we calculate the 95% confidence interval of parameter a using

the standard error of the fit.

Table 4.5: â 95% Confidence Interval

â 95% Lower Bound â 95% Upper Bound

Monthly -2.26 -0.03

We estimate 95% confidence interval of parameter a using â ± Crit ∗ SE(â)√
T

where â is the estimate value of parameter a, SE(â) is the standard error of estimated

parameter a, T is the total number of periods used in the estimation and Crit is

the 95% critical value based on the assumed distribution of the estimated parameter

(Normal for T ≥ 50 and Student t-distribution for T ≤ 50 based on asymptotic

normality of MLE). Poisson, Negative Binomial and PIG distribution values of a are

not withing the the 95% confidence interval of the parameter a. This reinforces our

assumption that these distributions will not be a good fit for this data set.

Table 4.6: Goodness-of-Fit of Monthly Distribution Fit

Poisson-Tweedie Negative Binomial Poisson Inverse-Gaussian Poisson

Negative Log-Likelihood 328.87 330.44 334.24 595.25

AIC 663.74 664.88 672.49 1192.50

BIC 670.02 669.07 676.68 1194.59

From Table 4.6, we find that fitting frequency data with Poisson-Tweedie

distribution results in the smallest negative log-likelihood for monthly data, and the

AIC and BIC show that Poisson Tweedie and Negative Binomial are the best fits.
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As mentioned earlier, we will focus our study on monthly data.
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Figure 4.4: Comparison of Estimated Monthly Frequency with Different Distributions

Selecting monthly data for further analysis, we observe that the histogram

of the sample loss frequency in Figure 4.4(a) seems to be somewhat symmetric. The

sample dispersion (sample variance over sample mean) is 11.76, indicating that Poisson

distribution is not a good fit. From Figure 4.4(b) and (c), we observe that the fitted

Negative Binomial and Poisson Inverse-Gaussian are slightly more right-skewed than

Poisson-Tweedie. Based on the results from Table 4.6, this implies that fitting with

Poisson-Tweedie is more effective when the data is symmetric.
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Table 4.7: Fitted Statistics of TSA Claims Frequency

Sample Mean Sample SE Sample Variance ˆ̄N SE(N̂) var(N̂) 95% V aR(N̂)

Monthly 264.7 55.81 3114.79 264.21 58.53 3426.18 366

From Table 4.7, we observe that the estimated mean and variance matches

the sample mean and variance and implies that our proposed method can estimate the

first two moments accurately. The 95% value at risk of the frequency means that 95%

of the time there will be less than 366 claims per month. This may help management

in allocating manpower to deal with the claims.

We consider estimating the aggregate loss parameters with Log-Normal

distribution as mentioned Section 2.1. We also consider the Lomax distribution which

is a special case of the Pareto Type II distribution with density

fX(x;α, λ) = αλα

(x+ λ)α+1

for x ≥ 0, α > 0 and λ > 0.

Additional we look at the Gamma distribution defined as

fX(x; k, θ) = xk−1e−x/θ

θαΓ(α)

for x > 0, and a, θ > 0. The results are listed in Table 4.8.

Table 4.8: Fitted Statistics of Severity Data

First Parameter Estimate Second Parameter Estimate AIC BIC

Log-Normal(µ, σ) 4.59 1.31 199579.2 231339.2

Lomax(α, λ) 2.01 247.35 200517.6 232277.6

Gamma(k, θ) 0.38 1471.65 210687.7 242447.7
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Based on our goodness-of-fit, we select the log-normal distribution for further

analysis as this distribution has the lowest AIC and BIC, which implies it has the best

performance.

4.1.3 Quantile Estimation of Monthly Aggregate Loss

The aggregate loss distribution of monthly data is estimated using the fitted dis-

tributions Poisson-Tweedie(-1.37,3.68,0.9) and Log-Normal(4.59,1.31). We apply

Monte-Carlo simulation to create 100,000 months to approximate the aggregate loss

distribution as shown in Figure 4.5.
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Figure 4.5: Estimated Monthly Loss of TSA Claims (Aggregated by Month)

We find that the estimated monthly aggregate loss distribution has mean

of 61,616.43 and standard error of 15,864.73. The estimated 0.95 monthly Value at

Risk (VaR) is 89,533.42 USD and the estimated 0.95 monthly Expected Shortfall

(ES) is 98,570.69 USD. We also estimated VaR and ES directly with kernel density
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estimation and obtained VaR of 90,140.09 and ES of 96,838.23 which is very close to

the estimate of our proposed method. The kernel density estimate for VaR is higher

than our proposed method and the kernel density estimate for ES is lower. However,

with only 60 observations issues with boundaries that may affect the tail estimates

and affect the validity of the kernel estimates. Here, we demonstrated the application

of our proposed model with Poisson-Tweedie loss frequency on real data.

4.2 Analysis of Reporting Threshold for TSA

Claims Data

As mentioned earlier, the TSA claim data is the full data without any truncation or

reporting threshold. We are also able to analyze the effect of incomplete observations

with this data set by introducing reporting thresholds. We can choose $10, $20 and

$30 as the claim threshold to simulate data with incomplete data since typically only

the threshold is known and the percent of reporting threshold is unknown. These

thresholds corresponds with 3.16%, 11.26%, and 18.88% data removed respectively.

This means that the injured party, in this case, travellers that incurred personal or

property damage due to TSA, cannot make a claim under the threshold amount and

we do not observe any claims under the threshold amount. In our application, we

remove claims under the specified amount to create the reporting threshold. Here,

we will examine the performance of the estimation method in 2.4.5 for analyzing

incomplete data. In particular we would like to use the method in 2.32 to estimate

the underlying severity distribution first by maximizing the objective function:

(µ̂, σ̂) = arg max
(µ,σ)

T∑
i=1

nT∑
j=1

log fX(xj;µ, σ)
1− FX(xj;µ, σ)

where fX(x; β)) is the assumed severity distribution, pH = P (X < h) = FX(H; β)

and ∑T
i=1 ni is the total number of observed claims with reporting threshold.

Note pH is usually unknown in our model and needs to be estimated. In this
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data set, however, we can compute the actual observations removed by the chosen

reporting threshold.

4.2.1 Parameter Estimation of Monthly Data

While estimating pH using the method in (2.33), the percent of data missing, we find

that this value is higher by around 2% than the actual removed amount with results

in Table 4.9. This means that we would expect to obtain higher mean, variance and

right tail estimates.

Table 4.9: Estimate of Removed data

Actual pH %

From Sample Estimation

Estimated p̂H %

From Parameter Estimation

Threshold at 10 USD 3.161 5.762

Threshold at 20 USD 11.264 13.646

Threshold at 30 USD 18.877 20.189

Table 4.10: Severity Parameter Estimation

µ̂ σ̂

Full Data 4.59 1.31

Naive Estimation

10 USD Threshold 4.68 1.25

20 USD Threshold 4.87 1.12

30 USD Threshold 5.02 1.04

Accounting for Incomplete Data

10 USD Threshold 4.50 1.40

20 USD Threshold 4.51 1.38

30 USD Threshold 4.54 1.37
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From Table 4.10 we observe that while ignoring the reporting threshold,

we observe that µ̂ is higher than full data estimate while σ̂ is lower than full data

estimate when there is a reporting threshold. However, when we account for the

reporting threshold, the opposite occurs. This effect can be seen in Figure 4.6. While

ignoring the reporting threshold, we obtain lower loss severity mean and lighter right

tail. While accounting for the reporting threshold, the resulting distribution has a

higher mean and heavier right tail. The difference between full data estimate and

naive estimate is intensified when the reporting threshold increases.
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Figure 4.6: Comparison of Estimated Severity Distribution with Full and Incomplete

Data

We proved that Poisson-Tweedie is closed under the binomial thinning process.

When the underlying distribution is PT(a,b,c), under Binomial-Thinning, the resulting

distribution is PT (a, b
(

1− c · pH
)a
, c(1−pH)

1−c·pH
), where pH = P (X < h) = FX(h) is the
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percent of removed claims. We can apply this estimation method and compare it with

naive estimation.

Table 4.11: Comparison of Monthly Frequency Parameter Estimation

Parameter a Parameter b Parameter c

Full Data -1.14 5.48 0.85

Naive Estimation

10 USD Threshold -1.52 4.58 0.81

20 USD Threshold -1.79 4.05 0.79

30 USD Threshold -1.47 4.92 0.80

Accounting for Incomplete Data

10 USD Threshold -1.22 5.33 0.84

20 USD Threshold -1.28 5.01 0.84

30 USD Threshold -1.23 4.94 0.85

From Table 4.11, we find that we underestimate â with and without account-

ing for the reporting threshold. The naive estimate greatly underestimates parameter

a and the method which accounts for the reporting threshold greatly improves the

estimate.
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Figure 4.7: Comparison of Estimated Monthly Frequency Distribution with Full and

Incomplete Data
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Table 4.12: Comparison of Monthly Frequency Summary Statistics

Mean Variance

Full Data 264.70 3114.79

Sample

10 USD Threshold 256.33 2907.85

20 USD Threshold 234.88 2533.39

30 USD Threshold 214.73 2143.11

Naive Estimation

10 USD Threshold 256.48 3072.12

20 USD Threshold 235.21 2645.38

30 USD Threshold 214.63 2359.99

Accounting for Incomplete Data

10 USD Threshold 271.95 3500.17

20 USD Threshold 271.56 3501.05

30 USD Threshold 268.38 3544.46

From Table 4.12 we find that with naive estimation, our model underestimates

the frequency mean and variance which makes sense because the sample mean and

variance of the binomial thinned frequency are smaller than the mean and variance of

the full frequency data. When we account for the reporting threshold, the estimated

mean is fairly close to the sample mean and we estimate a larger variance than full

data estimation. This gives us a fatter tail and a higher estimate of right tail quantile

estimates.

4.2.2 Quantile Estimation of Monthly Aggregate Loss

We apply Monte-Carlo simulation with frequency parameters from Table 4.11 and

severity parameters from Table 4.9 to estimate distributions of incomplete data at
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various levels. The aggregate losses are approximated with 100,000 periods for all

levels of reporting threshold with and without accounting for the threshold.

Table 4.13: Summary Statitics of Estimated Monthly Aggregate Loss Under Different

Reporting Thresholds and Estimation Methods

Min. 25th Percentile Median Mean 75th Percentile Max. SE(L̂)

Full Data 15,239.37 50,368.88 60,446.78 61,616.43 71,464.31 230,022.65 15,864.73

Naive Estimation

10 USD Threshold 11,466.16 49,235.00 58,671.93 59,715.66 69,051.55 147,106.48 14,841.40

20 USD Threshold 10,694.76 47,547.73 56,452.26 57,277.85 66,092.45 145,880.75 13,830.34

30 USD Threshold 12,829.48 46,358.03 55,196.33 56,082.03 64,842.38 132,546.82 13,780.36

Accounting for Reporting Threshold

10 USD Threshold 13,345.88 53,322.64 64,019.59 65,476.18 75,996.46 214,906.84 17,216.74

20 USD Threshold 12,330.39 52,701.15 63,331.72 64,631.35 74,992.83 224,264.45 16,887.44

30 USD Threshold 10,878.22 52,140.00 62,699.48 64,022.39 74,429.95 218,821.43 16,801.29

From Table 4.13 we find that using naive estimation, all quantile levels,

standard error and variance are lower than estimates for full data. The higher the

level threshold, the greater the difference between estimates using incomplete data

and using full data. While taking into account for reporting threshold, our estimates

for quantiles larger than 50%, mean and variance with incomplete data are greater

than the estimates with full data. Part of this may be due to our overestimation of

pH . The effect of this overestimation is then amplified through subsequent parameter

estimations which cause this overestimation. These estimates accounting for reporting

threshold does not seem to be affected by the level of the threshold.
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Figure 4.8: Comparison of Estimated Aggregate Loss Distribution with Full and

Incomplete Data

Figure 4.8 shows the difference between aggregate loss distribution estimation

with full data, naive estimation with incomplete data and estimation which accounts

for incomplete data. The estimated distributions of the aggregate loss accounting for

the reporting threshold have higher mean and heaver right tail than the distribution for

full data. The opposite is true for estimated distributions ignoring the threshold. The

intensity of this effect increases as the threshold increases. Overall while accounting

for the reporting threshold, the shape of the aggregate loss distribution is close to

estimating with full data and stable for different levels of reporting threshold, that is,

the shape of the aggregate loss distribution does not change with the threshold level.

Figure 4.8 shows the difference between aggregate loss distribution estimation

with full data, naive estimation with incomplete data and estimation which accounts

57



for incomplete data. The estimated distributions of the aggregate loss accounting for

the reporting threshold have higher mean and heaver right tail than the distribution for

full data. The opposite is true for estimated distributions ignoring the threshold. The

intensity of this effect increases as the threshold increases. Overall while accounting

for the reporting threshold, the shape of the aggregate loss distribution is close to

estimating with full data and stable for different levels of reporting threshold, that is,

the shape of the aggregate loss distribution does not change with the threshold level.
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Chapter 5

Conclusion

The aggregate loss model with the Poisson-Tweedie frequency family extends existing

candidates of loss frequency, and such extension would reduce the chance of frequency

misspecification. For this proposed aggregate loss model we use MLE to estimate

parameters and conduct simulations to investigate various concerns. For observations

with a reporting threshold, where observations smaller than the threshold are not

reported, the loss frequency experiences a binomial thinning process. Another benefit

of using Poisson-Tweedie frequency in aggregate loss is that this distribution family is

closed under binomial thinning.

From our limited simulation, we observe that different frequency distribution

contributes differently to the percentile estimate of the aggregate loss. The effect of

the frequency distribution on the aggregate loss is different at each percentile level

and for each frequency mean level. The severity parameters have some interaction

with how frequency distribution contributes to the aggregate loss, however, more

investigation is required to determine the exact effect.

During the simulation, we found that the Poisson-Tweedie algorithm tends to

underestimate parameter a when the frequency average is low (around 4). We suspect

that this may be due to many values of the generated random variable are 0 during
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the simulation and lower values of the Poisson-Tweedie parameter a corresponds

with higher zero-inflated distributions. These two properties may have caused the

optimization algorithm to overestimate how zero-inflated the data is.

In the limited simulation study of parameter estimation with Log-Normal

severity and Poisson-Tweedie frequency, we find that the first two moments of frequency

can be estimated without bias. However, the Poisson-Tweedie family index parameter

a seems to have a bias. When theoretical parameter a is less than −1, overestimation

occurs. This would cause aggregate loss right tail percentiles to be overestimated.

When theoretical parameter a is greater than −1, underestimation occurs which

causes the aggregate loss right percentiles to be underestimated. With the reporting

threshold, directly estimating the frequency will underestimate the mean, variance

and parameter a. Higher levels of the reporting threshold have a greater impact on

the underestimation. The method in section 2.4.3 can estimate the missing data

percent, frequency mean and severity parameters without bias. Higher threshold levels

will contribute to higher variance (calculated with simulated sample). Bias is still

present in Poisson-Tweedie MLE estimation of parameter a. More simulation can be

performed to determine if any further bias or technical issues exist.

The reporting threshold levels in the simulation are specified so that unre-

ported data are less than 40%. We do so because that higher threshold levels will

introduce more uncertainty and increase variance. For very high thresholds, only rare

events are observed. This creates problems for estimation due to a lack of observations.

While estimating data, we found a technical issue with this algorithm. When

the frequency mean is around 12,000 and the dispersion index (variance divided by

mean) is around 1200, some levels of the Poisson-Tweedie parameters results in the

estimate of P (N = 0) is rounded to 0 which cause all subsequent estimates P (N = 1),

P (N = 2), P (N = 3), · · · to also be 0. Therefore, alternative approaches to calculating

the probability of Poisson-Tweedie mass is in future consideration.

The application of our aggregate loss model with Poisson-Tweedie frequency
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on the TSA Claims data suggest the frequency distribution is not the commonly used

Poisson, Negative Binomial or Poisson Inverse-Gaussian distribution at daily, weekly,

monthly and quarterly periods. Furthermore, we introduced data incompleteness by

removing claims under specified severity thresholds. Directly estimating the distribu-

tion using MLE shows bias and the frequency mean and variance is underestimated.

Our result using the method from (2.34) gives conservative estimates (similar mean

and greater variance) at all levels of missing data for monthly period loss frequency.

The estimated frequency parameters accounting for the reporting threshold is closer

to the full data estimated parameters than naive estimation.

Due to our limited simulation study, we were not able to fully capture

relationships between loss severity, loss frequency and the aggregate loss. Future

research can include studying the effect of different loss frequency distribution on

aggregate loss percentile estimates at high levels of frequency mean. This relationship

was not completely captured as the maximum frequency mean we had chosen was

30. Additional frequency parameters can be used to help determine any interaction

between severity distribution and how different aggregate loss distributions impact

the aggregate loss percentile estimates. For parameter estimation, future studies may

include performing simulation studies with additional parameter levels to further

determine the behaviour of the parameter a bias.

We find that the aggregate loss model with the Poisson-Tweedie frequency

family can be applied to real-world data to estimate aggregate percentile statistics of

interest. We believe our proposed model can aid users in banking and insurance by

providing more flexibility in estimating aggregate loss model parameters.
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Appendix A

Derivation of Probability Generating Function Un-

der Binomial Thinning

The probability generating function of Bernoulli random variable I with p = 1− pH is

given by

GI(s) = pH + (1− pH)s.

We clarify the proof in Shevchenko (2011), page 191. The probability generating

function of NH is then

GNH
(s) =

∞∑
k=0

Pr [NH = k]sk

=
∞∑
k=0

( ∞∑
n=k

Pr [I1 + I2 + · · ·+ In = k|N = n] Pr [N = n]
)
sk

= Pr [N = 0] + Pr [I1 = 0|N = 1] Pr [N = 1] + · · ·

+ Pr [I1 = 1|N = 1] Pr [N = 1]s+ · · ·
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= Pr [N = 0]

+ (Pr [I1 = 0|N = 1] Pr [N = 1] + Pr [I1 = 1|N = 1] Pr [N = 1]s)

+ . . .

=
∞∑
n=0

Pr [N = n]
(

n∑
k=0

(
n

k

)
· (1− pH)kpn−kH sk

)

=
∞∑
n=0

Pr [N = n] (pH + (1− pH)s)n

=
∞∑
n=0

Pr [N = n](GI(s))n

= GN(GI(s)),

where GN(s) is the probability generating function of the count distribution.

Derivation of Poisson-Tweedie Algorithm Under Bi-

nomial Thinning

Following El-Shaarawi, Zhu, and Joe (2011), we find the probability mass function for

the reported frequency NH .

Let

B0 = b

a
(1− c · pH)a, B1 = c(1− pH)

1− c · pH
.

Then

GNH
(s) = exp{B0((1−B1)a − (1−B1s)a)}.

Taking partial derivative of logGNH
(s) with respect to s gives

log(GNH
(s)) = B0((1−B1)a − (1−B1s)a)

∂ log(GNH
(s))

∂s
= −B0a(1−B1)a−1(−B1) = aB0B1(1−B1s)a−1.

Apply the chain rule,
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∂ log(GNH
(s))

∂s
= ∂GNH

(s)
∂s

1
GNH

(s)) =
G′NH

(s)
GNH

(s) ,

to obtain the following equation:

G′NH
(s)

GNH
(s) = aB0B1(1−B1s)a−1.

That is

aB0B1GNH
(s) = (1−B1s)a−1G′NH

(s).

Let

A0 = aB0B1, GNH
(s) = p0 + p1s+ p2s

2 + p3s
3 + · · · .

Then we have

G′NH
(s) = p1 + 2p2s+ 3p3s

2 + · · ·

aB0B1GNH
(s) = A0GNH

(s) = A0[p0 + p1s+ p2s
2 + p3s

3 + · · · ]

= A0p0 + A0p1sA0 + p2s
2 + A0p3s

3 + · · · .

Also

(1−B1s)a−1 = 1− (1− a)B1s−
(1− a)a

2! B2
1s

2 − (1− a)a(1 + a)
3! B3

1s
3 − · · ·

= 1− r1s− r2s
2 − r3s

3 − · · · ,

where

r1 = (1− a)B1, rj+1 = (j − 1 + a

j + 1 )B1rj, j = 1, 2, . . . .

Then

67



(1−B1s)a−1G′NH
(s) = [1− r1s− r2s

2 − r3s
3 − · · · ] · [p1 + 2p2s+ 3p3s

2 + · · · ]

= (p1 + 2p2s+ 3p3s
2 + · · · )

− r1s(p1 + 2p2s+ 3p3s
2 + · · · )

− r2s
2(p1 + 2p2s+ 3p3s

2 + · · · )

− · · ·

= p1 + (2p2s− r1p1s) + (3P3s
2 − r12p2s

2 − r2p1s
2) + · · ·

Equating aB0B1GNH
(s) = (1−B1s)a−1G′NH

(s), we obtain

A0p0+A0p1sA0+p2s
2+A0p3s

3+· · · = p1+(2p2s−r1p1s)+(3P3s
2−r12p2s

2−r2p1s
2)+· · · .

From GNH
(S), we have

p0 = GNH
(0) = exp{B0[1−B1]a − 1} when a 6= 0.

When a = 0, applying the L’Hospital rule

lim
a→0

b

a
(1− c · pH)[(1−B1)a − (1−B1s)a)]

= (1− c · pH)b lim
a→0

(1−B1)a − (1−B1s)a
a

= (1− c · pH)b lim
a→0

(1−B1)a log(1−B1)− (1−B1s)a log(1−B1s)
1

= (1− c · pH)b[log(1−B1)− log(1−B1s)].

Thus,

lim
a→0

GNH
(s) = exp{(1− c · pH)b[log(1−B1)− log(1−B1s)]}

= ( 1−B1

1−B1s
)(1−c·pH)b,

and

p0 =

 exp{B0[1−B1]a − 1} a 6= 0,

(1−B1)(1−c·pH)b a = 0.
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Equating the terms of s in A0GNH
(s) = (1 − B1s)a−1G′NH

(s), we obtain p1 = A0p0

and

A0pks
k = ((k + 1)pk+1 − r1pk−1 − r2pk−2 − · · · )sk

A0pk = (k + 1)pk+1 −
k∑
j=1

jrk+1−jpj

pk+1 = 1
k + 1(A0pk +

k∑
j=1

jrk+1−jpj), k = 1, 2, 3, . . . .

We obtain a recursive algorithm for estimating the probability of Poisson-

Tweedie under binomial thinning.
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Appendix B

Core Code for Simulation and Estimation

We program the core algorithm for Poisson-Tweedie probability mass function in C++

below.

#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
NumericVector dPTzero(const int & x,

const double & a,
const double & b,
const double & c){

if (x < 0) stop("Error: x must be non-negative integer");
double pzero= pow((1-c) , b);
if (a != 0) pzero=exp(b*( pow ((1-c) , a)-1)/a);
NumericVector p (x+1);
p[0]=pzero;
if (x > 0){

double pinit=b*c*pzero;
p[1] = pinit;
if (x > 1) {

NumericVector r( x );
r[0]=(1-a)*c;
for(int k=1; k<x; k++){

r[k]=(((double)k+1)-2+a)/((double)k+1)*c*r[k-1];
}
double temp;
for( int i=1; i<x; i++ ){
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temp = 0;
for( int j=0;j<i;j++ ){

temp = temp + ( (double)j + 1 )*r[i-1-j]*p[j+1];
}
p[i+1] = ( 1/( (double)i + 1)*(b*c*p[i] + temp) );

}
}

}
return p;

}

The core algorithm is loaded into R and called by wrapper functions. Func-

tions for density, probability, quantile and random number generation are programmed

in R.

#density
dPT=function(x=0,a=0.5,b=1,c=0.5){

p=dPTzero(max(x),a,b,c)
return(p[x+1])

}

# probability
pPT=function(q,a=0.5,b=1,c=0.5){

if(min(q)<0){
return("error: q must be non-negative integer")

}
else{

p=dPTzero(max(q),a,b,c)
out=cumsum(p)
return(out[q+1])

}
}

#quantile

qPT=function(p,a=0.5,b=1,c=0.5){
if(p<0 || p>1){

return("error: p must be a probability")
}
else{

mu=b*c/(1-c)^(1-a)
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k.upper=ceiling(mu/(1-max(p)))
p.dens=dPTzero(k.upper,a,b,c)
p.cumu=cumsum(p.dens)
out.rand=NULL
for(i in 1:length(p)){

out.rand=c(out.rand,sum(p.cumu<=p[i]))
}
return(out.rand)

}
}

# random number generator
rPT=function(n,a=0.5,b=1,c=0.5){

rand.unif=runif(n)
r.max=max(rand.unif)
p0=0
j=0
while(r.max>p0){

p.dens=dPTzero(j,a,b,c)
p0=sum(p.dens)
j=j+1

}
p.cumu=cumsum(p.dens)
countcompare=function(x){

return(sum(p.cumu<=x))
}
out.rand=sapply(rand.unif,countcompare)
return(out.rand)

}

Similar as above, we create density and probability functions for Poisson-

Tweedie under binomial thinning given earlier in Appendix A.

# core algorithm for PT under Binomial Thinning
dPTrunc.0=function(x=0,a=0.5,b=1,c=0.5,fl=0.3){

b.trunc=b*(1-c*fl)^a
c.trunc=(c*(1-fl))/(1-c*fl)
dPTzero(x,a,b.trunc,c.trunc)

}

# density
dPTrunc=function(x=0,a=0.5,b=1,c=0.5,fl=0.3){
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p=dPTrunc.0(max(x),a,b,c,fl)
return(p[x+1])

}

#probability
pPTrunc=function(q,a=0.5,b=1,c=0.5,fl=0.3){

if(min(q)<0){
return("error: q must be non-negative integer")

}
else{

p=dPTrunc.0(max(q),a,b,c,fl)
out=cumsum(p)
return(out[q+1])

}
}

Regarding the aggregate loss model with Log-Normal severity and Poisson-

Tweedie frequency, the code for data simulation, model fitting and quantile estimation

are listed below.

# set parameters
#periods
m=100
#PT parameter
a=1
b=2
c=1
#Log-Norm Parameter
mu=8
sigma=3
#reporting threshold
h=1000
# simulate frequency
sim.freq <- rPT(m, a,b,c)
# simulate severity
sim.severity <- rlnorm(sum(sim.freq),

meanlog = mu,
sdlog = sigma)

# separate severty into periods
split.severity <- split(sim.severity,

rep(1:length(sim.freq),
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sim.freq))
# remove data based on threshold
listremovespecial=function(x,h){
if(length(x)>1){

if(length(x[x>h])>0){
return(x[x>h])

}
else{return(NULL)}

}
if(x>h){

return(x)
}
else{

return(NULL)
}
}
# truncate data by threshold h
# to simulate data with reporting threshold
split.cut=lapply(split.severity, listremovespecial,h=h)
cut.freq <-rep(0, m)
cut.freq[as.numeric(names(split.cut))]=lengths(split.cut)
cut.severity=sim.severity[sim.severity>h]

# estimating severity of full data
x.full=sim.severity
fn.sev <- function(theta) {

if(theta[1]<0 || theta[2]<0){Inf}
else{

-sum(log(dlnorm(x, theta[1], theta[2])))
}

}
init.sev=c(mean(log(x.full)), sd(log(x.full)))
model.sev=optim(init.sev, fn.sev, hessian=TRUE)

# estimating frequency of full data
ni.full=sim.freq

fn.freq <- function(theta) {
if(theta[1]>1 || theta[2]<=0 || theta[3]<=0 || theta[3]>1){Inf}
else
{-sum(log(dPT(ni.full,theta[1],theta[2],theta[3])))}

}

mean.freq=mean(ni.full)

74



D.freq=var(ni.full)/mean.freq
init.a=0.5
init.c=(D.freq-1)/(D.freq-init.a)
init.c=max(0.1,min(1,init.c))
init.b=mean.cut2*(1-init.c)^(1-init.a)/init.c
init.b=max(0.1,init.b)
init.freq=c(init.a,init.b,init.c)

model.freq=optim(par = init.freq,
fn = fn.freq,
gr = NULL,
method = "Nelder-Mead",
hessian = TRUE

)

#estimating data with reporting threshold
#estimating severity
x.cut=cut.severity

fn.sev <- function(theta) {
if(theta[1]<0 || theta[2]<0){Inf}
else{

-sum(log(dlnorm(x.cut,theta[1],theta[2])))+
length(x.cut)*(log(1-plnorm(h,theta[1],theta[2])))

}
}

init.sev.cut=c(mean(log(x.cut)),sd(log(x.cut)))
model.cut.sev=optim(init.sev.cut, fn.sev, hessian=TRUE)
ph=plnorm(h,model.sev.cut$par[1],model.sev.cut$par[2])

#estimating frequency with reporting threshold
ni.cut=cut.freq
fn.cut.freq <- function(theta) {

if(theta[1]>1 || theta[2]<=0 || theta[3]<=0 || theta[3]>1){Inf}
else
{-sum(log(dPTrunc(ni.cut,theta[1],theta[2],theta[3],ph)))}

}

init.a=0.5
init.c=(D.cut2-1)/(D.cut2-init.a)
init.c=max(0.1,min(1,init.c))
init.b=mean.cut2*(1-init.c)^(1-init.a)/init.c
init.b=max(0.1,init.b)
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init.cut.freq=c(init.a,init.b,init.c)

model.cut.freq=optim(par = init.cut.freq,
fn = fn.cut.freq,
gr = NULL,
method = "Nelder-Mead",
hessian = TRUE)

# estimating quantile of full data aggregate loss
# using 100000 periods
est.freq <- rPT(100000, model.freq$par[1],

model.freq$par[2],
model.freq$par[3])

# aggregate sum function
aggsum=function(x,mu,sigma){

if(x==0){return(0)}
else{

return(sum(rlnorm(x,
meanlog = mu,
sdlog = sigma)))

}
}
# simulate severity and then aggregate
est.agg=sapply(est.freq,aggsum,

mu=model.sev$par[1],
sigma=model.sev$par[2])

# 0.95 VaR
var95=quantile(est.agg,0.95)
# 0.95 ES
es95=mean(quantile(est.agg,seq(0.95, 1, 0.000005)))

Loops for simulation study can be run in parallel to save time. The following

code demonstrates parallel computing in R.

#set total number of repetitions

total=100000

library(doParallel)

# get number of cores, set number depending on hardware
ncores = 4
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# registers the number of cores for parallel processing
registerDoParallel(cores=ncores)
# this how many cores are available, and how many you have requested.
print(ncores)
# you can compare with the number of actual workers
getDoParWorkers()
# file to save data
conn <- file("saveddata.csv", "w")
wtab <- function(conn, d) {

write.table(d, conn, sep = ",",
row.names = FALSE,
col.names = FALSE)

conn
}
#Parallel Loop, load packages to parallel process as needed
foreach(k=1:total,

.packages="",

.init=conn,

.combine='wtab') %dopar% {
#run code inside loop
#return code output in matrix row format and saves output to file
#by row
return(codeoutput)

}
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