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Abstract 

Zebrafish are extremely social and aggregate in groups to form shoals. This social 

behaviour has been studied in the wild and in a laboratory setting, yet the mechanisms 

underlying the behaviour are unknown. There is evidence to suggest that the dorsal lateral 

telencephalon might play a role in shaping shoaling behaviour, being involved in 

modulating social behaviours and social reward associated with shoaling. In the current 

thesis, I adapted and combined several existing methods for performing lesions on the 

dorsal lateral telencephalon to create my own method to measure the role of the dorsal 

lateral telencephalon in social reward and shoaling behaviour. I predicted that the social 

reward associated with shoaling would be reduced by the lesions, thus that experimental 

fish would swim farther away from controls, which would disrupt the collective moment 

of the group.  

Two experimental groups, a control group, and a sham-lesioned group were 

behaviourally tested. The groups involved one focal fish that either received a lesion, 

sham-lesion or randomly picked control swimming with four other fish that did not have 

surgery. The group’s movements were tracked and recorded for 20 minutes over three 

consecutive days. Common measures of shoaling such as the nearest neighbour distance, 

inter-individual distance, and polarization were computed. Overall, as predicted, both 

experimental groups appeared to swim farther away from sham and control groups, 

although this effect was only seen in the first trial. There was no difference in 

polarization across groups. Overall, I found that the lesions to the dorsal lateral 

telencephalon have an effect on shoaling behaviour under certain conditions.  
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Chapter 1: Introduction  

Zebrafish are a shoaling fish, meaning that they spend the majority of their time in 

groups, and are increasingly commonly used to study collective behaviour (Miller & 

Gerlai, 2011). They are also a common model organism in genetics and developmental 

biology (Howe et al., 2013). However, there has been very little study of the mechanisms 

that underlie social behaviours, such as shoaling, in fish. The purpose of this thesis was to 

explore one area of the zebrafish brain, the dorsal lateral telencephalon, and its role in 

shaping shoaling behaviour. 

1.1 Social Learning and Social Cognition   

Sociality is common across a wide variety of species and is defined as the degree 

to which animals interact or form long-term associations and complex social relationships 

with one another (Brakes, 2019; Wey, Blumstein, Shen, & Jordán, 2008). Sociality is 

found wherever the costs are exceed by the total benefits of association (Silk, 2007). 

Sociality provides both advantages and disadvantages to individuals, such as increased 

mating opportunities or enhanced foraging time due to a decrease in required vigilance. 

One disadvantage of grouping is increased competition between group members (Silk, 

2007).  

By being social, animals can acquire information about their environment by 

observing another conspecific or by directly interacting with them; this is called social 

learning (Hoppitt & Laland, 2013). Individuals that acquire information from 

conspecifics this way are known as ‘observers’, while their conspecifics and other group 

members are referred to as ‘demonstrators’ (Brown & Laland, 2003), though this 

distinction may mean little in the wild, where all individuals are likely to both 
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demonstrate and observe most of the time. Social learning has been widely studied in 

animals and is observed in almost every species that interacts socially (Brown & Laland, 

2003). Social learning is beneficial for transferring environmental information between 

individuals and may minimize the costs, in time and effort, that an individual pays for the 

acquiring that information (Geng & Peterson, 2019). Social cognition, on the other hand, 

refers to the set of mechanisms used to develop, process, and react to the newly acquired 

or updated information derived from social interactions (Shettleworth, 2010; Frith, 2008).   

1.2 Zebrafish  

The zebrafish (Danio rerio) is a freshwater teleost, part of the Cyprinid family 

(Spence, Gerlach, Lawrence, & Smith, 2008). Zebrafish are found mostly in Myanmar, 

Bangladesh and northeastern India, but can also be found in southeast and south Asia 

(Engeszer, Patterson, Rao, & Parichy, 2007). Danio originates from dhani, which is 

Bengali and translates to “of the rice field” (Spence et al., 2008). Zebrafish are commonly 

found in shallow bodies of water next to rice paddies, where the water depth lowers the 

chances of predation (Spence et al., 2006). Zebrafish in the wild have been found in 

environments with a wide range of temperatures, pH levels, vegetation cover, and water 

flow (Graham, Keyserlingk, & Franks, 2018). They are most commonly found in slow 

moving waters that range from 24.6  to 38    (Engeszer et al., 2007). Zebrafish are 

considered to be omnivorous and consume zooplankton, nematodes and a wide variety of 

insects that fall onto the surface of the water (Spence, Fatema, Ellis, Ahmed, & Smith, 

2007b; McClure et al., 2006). In the wild, Zebrafish are often found in groups and the 

size of the group may depend on the speed of the water flow (Graham, Keyserlingk, & 

Franks, 2018). In fast-flowing water, large groups of ~300 fish have been observed; in 
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slow-moving water, groups of 6 to 7 fish are more common; and in still water, groups of 

up to 22 individuals are observed (Graham, Keyselingk, & Franks, 2018). 

Zebrafish are usually less than 40 mm long (from the snout to the fork of the tail; 

Spence et al., 2008). The striped pattern seen on adult zebrafish starts to form during the 

juvenile stage, when melanophores, which form the dark stripes, and xanthophores and 

iridophores, which form the lighter areas, arrange themselves into a striped like pattern 

(McGown & Barsh, 2016). Zebrafish display some sexual dimorphism. Males are 

torpedo-shaped, leaner and their fins and belly are gold in colour; females have a more 

rounded belly and usually have very little gold on their undersides, sometimes none at all 

(Wixon, 2000; Fontana, Mezzomo, Kalueff, Rosemberg et al., 2018).   

Within the past 40 years, zebrafish have rapidly become a useful model for 

research in vertebrates. They are inexpensive, easy to experimentally manipulate, small, 

and breed in large quantities (Kalueff & Cachat, 2016). Zebrafish have been used as a 

model to study development, as their embryo and early hatchling stage is transparent 

(Teame et al., 2019; Meyers, 2018). For example, zebrafish have been used as a model to 

study fetal alcohol syndrome (Bilotta, Barnett, Hancock, & Saszik, 2004) and cardiac 

development associated with human heart disease (Bakkers, 2011).  Zebrafish have also 

been used to study regenerative properties. Unlike mammals, that have restricted 

regenerative properties for only a few organs and tissues, zebrafish are capable of fully 

regenerating several organs and tissues, including the heart (Raya et al., 2003; Poss et al., 

2002), kidney (Reimschuessel, 2001), and spinal cord (Becker et al., 1998). They have 

also been used to study neurodegenerative diseases, such as scoliosis (Boswell & Ciruna, 

2017) and Parkinson’s disease (Matsui & Takashi, 2017). Zebrafish are also a common 
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model organism in genetics; the zebrafish genome has been sequenced (Howe et al., 

2013) and a range of studies  using several genetic tools have followed (Howe et al., 

2013, 2017). Zebrafish have also been used in behavioural studies to examine locomotion 

(Müller & van Leeuwen, 2004), and learning and memory in both larvae (Roberts, Bill, & 

Glanzman, 2013; Best et al., 2008) and adults (Gerlai, 2011, 2016; Sison & Gerlai, 2010). 

Zebrafish utilize social learning and transmit social information in a number of 

different ways. For example, zebrafish that observe conspecifics show improved foraging 

success and specific place preference (Zala & Määttänen, 2013), faster escape times and 

a preference for the escape route from an artificial predator (Lindeyer & Reader, 2010), 

and faster learning in observational conditioning tasks (Suboski, Bain, Carty, McQuoid, 

Seelen & Seifert, 1990). Examples of social interactions that have been researched in 

zebrafish are social relationships (Larson, Malley & Melloni, 2006), social learning 

(Lindeyer & Reader, 2010), and social recognition and preference (Madeira & Oliveira, 

2017; Al-Imari & Gerlai, 2007).   

1.3 Shoaling  

Shoaling is when a group of fish swim together in an unstructured way (Faucher 

et al., 2010). This behaviour in zebrafish is innate and a preference for shoaling with 

conspecifics is determined early on by visual and olfactory experience (Spence et al., 

2008; Friedrich et al., 2010). Shoaling facilitates social learning (Moretz et al., 2007). 

Fish generally prefer to shoal to with other individuals that are of the same species, 

phenotype (such as a scale pattern), colour, size, and that are parasite free (Krause et al., 

2000; Peichel 2004; Miller & Gerlai, 2011). For example, when zebrafish were presented 

with computer-animated conspecifics that varied in stripe pattern, they preferred to shoal 
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with the pattern that best matched their own. Therefore, stripes function as a shoaling cue 

(Rosenthal & Ryan, 2004). Zebrafish can also learn a preferred stripe pattern and prefer 

to shoal with conspecifics that have the same pattern as those they were raised with, 

independent of their own colouration (Spence et al., 2008). Qin, Wong, Seguin, & Gerlai, 

(2014) found that zebrafish shoaled with live stimulus fish and animated computer-

generated zebrafish, but not with moving objects that were the same dimensions as a 

zebrafish but lacked specific features of a fish. Zebrafish can also recognize kin and 

prefer to shoal with familiar over unfamiliar kin, and with unfamiliar kin over 

conspecifics that are not kin (Spence et al., 2008). Kin are most likely recognized through 

olfactory cues (Spence et al., 2008). In addition, the attractiveness of a shoal – how 

motivated an individual is to join it – is influenced by how active the shoal is and its size 

(Spence et al., 2008). Zebrafish prefer to shoal with groups that are more numerous, 

though that preference is modulated by the activity level of the group (Pritchard, 

Lawrence & Krause, 2001). Male zebrafish prefer to shoal with females; females prefer 

to shoal with the larger group, independent of sex (Spence et al., 2008).  

Shoaling is beneficial: it provides better mating selections and enhanced foraging 

opportunities (Engeszer, Ryan, & Parichy, 2004; Wright, Ward, Croft, & Krause, 2006). 

Shoaling also provides protection against predators by several mechanisms. One is the 

‘dilution effect’: in a larger group, each individual has a lower chance of being targeted 

by a predator (Inman & Krebs, 1987). Similar-looking fish in large groups also confuse 

predators by making it challenging for the predator to focus on a single individual 

(‘predator confusion’; Krakauer, 1995). Finally, larger shoals have a better chance of 

detecting a predator, and detecting them earlier (the ‘many eyes’ hypothesis). However, 
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the detection rate eventually plateaus as group size increases (Roberts, 1995). Being in a 

group may also have costs, such as having to share any resources the group finds, direct 

competition for food (kleptoparasitism) or mates, and the possibility that predators 

preferentially target larger groups (Krause & Ruxton, 2002). 

Zebrafish develop a tendency to shoal as soon as 6 days post-fertilization 

(Meshalkina et al., 2018), though there are some conflicting findings (Buske & Gerlai, 

2011). Shoal cohesion intensifies between the first and third month of life, which means 

that distances between shoal members decrease over this time (Meshalkina et al., 2018; 

Buske & Gerlai, 2011). Larval zebrafish are able to shoal, but only show preferences for 

specific traits (see above) when they are juveniles; these preferences do not change once 

they are determined (Engeszer, Barbiano, Ryan & Parichy, 2007). When two-week old 

larvae were placed in a U-shaped area with a compartment at either end – a control 

compartment containing no fish, and an experimental compartment with fish of the same 

age – the larvae showed a weak preference for the compartment containing conspecifics 

(Dreosti et al., 2015). However, when the larvae were tested just one week later, at three 

weeks old, the preference for the social compartment was very robust (Dreosti et al., 

2015). The adaptive reasons for shoaling being age-dependent are not known (Buske & 

Gerlai, 2011). It is possible that an increase in body size during development makes 

individuals more susceptible to detection by predators, or increases their need to forage 

on richer food patches, both of which would tend to promote shoaling (Buske & Gerlai, 

2011).  

1.4 Measures of Shoaling   
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In the lab, shoaling is commonly measured in one of two ways. The first 

technique is to allow the focal fish to freely swim with a group of conspecifics and 

measure their distances from one another (Qin et al., 2014); this is the method adopted 

for behavioural testing in the current thesis. The second technique is to separate a test fish 

from a group of conspecifics which acts as a social stimulus by a transparent barrier, and 

quantify the focal individual’s response in terms of their distance from the conspecific 

compartment (Qin et al., 2014). This procedure has the advantage that the behaviour of 

the focal individual is easier to track and control, but is obviously far less natural than the 

alternative. 

There are several standard measures of shoal cohesion in freely-interacting 

groups. The most common three in the literature, also used in this thesis, are the nearest 

neighbour distance (NND), inter-individual distance (IID), and polarization. While NND 

and IID are highly correlated, because they are both measurements of distances between 

group-members, they can vary independently, for example if a small internally cohesive 

subgroup splits off from the main shoal (Miller & Gerlai, 2011). The NND is the distance 

between a focal fish and the shoal member closest to them (Buske & Gerlai, 2011). Each 

fish only has one nearest neighbour, so this calculation is independent of shoal size 

(Buske & Gerlai, 2011). Generally, shoaling species swim approximately one body 

length away from their nearest neighbour (Faucher et al., 2010). The IID is the mean 

distance between a focal fish and all the other fish in the group; thus, this measurement is 

dependent on shoal size as well as on the distribution of the group (Buske & Gerlai, 

2011). In the current thesis, all conditions consisted of 5 individuals, so IIDs can be 

directly compared between conditions and conditions. Both NND and IID measure the 
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tightness of a shoal  (Miller & Gerlai, 2007). Finally, polarization is the degree to which 

all the members of the group are facing in the same direction (Miller & Gerlai, 2012). It 

is technically defined as the magnitude of the summed vector of the bearings of all the 

fish, and ranges from 0 to 1, with 1 indicating that the individuals in the group are all 

facing the same direction and 0 indicating the opposite. Polarization distributions of 

zebrafish groups tend to be bimodal (see below) and larger groups tend to be less 

polarized than smaller groups (Miller & Gerlai, 2012).  

1.5 Schooling  

Schooling is when a group of fish swim together in a highly polarized and 

synchronized manner (Faucher et al., 2010). Therefore, by definition, all schools are 

shoals (Faucher et al., 2010). Schooling increases protection from predation by, for 

example, enhancing predator confusion, and also improves the ability of the group to stay 

together while traveling (Kasumyan & Pavlov, 2018). Fish use their lateral line to 

coordinate their movements and spatial orientation while schooling (Kasumyan & 

Pavlov, 2018; Ghysen & Dambly-Chaudière, 2004; Montgomery, Coombs, & Baker, 

2001). The lateral line is a sensory system found in all fish that allows them to sense 

changes in water pressure, such as those produced by other fish’s movements, at close 

range, approximately 1-2 body lengths away (Butler & Maruska, 2016). The lateral line is 

separate from but connected to the fish auditory system, which can detect changes in 

pressure from a greater distance (Butler & Maruska, 2016).  

Fish strongly prefer to be part of a school in which all the members are able to 

swim at a similar top speed. If a fish is too slow, it risks being separated from the group 

(Killen, 2017). Schools swim at a faster speed than shoals, but the fish are further apart 
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from each other (Gerlai, 2014). As noted above, groups’ switching between schooling 

and shoaling leads to polarization distributions that are usually bimodal – one mode 

representing schooling (high polarization), the other shoaling (low polarization; Miller & 

Gerlai, 2012).  There may be benefits to moving in one mode over the other under 

various circumstances, such as increased predator confusion or faster predator avoidance 

when in a school, or decreased foraging interference when in a shoal (Miller & Gerlai, 

2007, 2008).  

1.6 Telencephalon Anatomy  

 For this thesis, I focused on the dorsal lateral telencephalon of the zebrafish brain, 

a region often assumed to be homologous to the mammalian hippocampus, and explored 

its role in social behaviour. 

 The teleost brain is typically 0.4 - 2 mm thick and 4.5 mm long (Kotrschal, Van 

Staaden & Huber, 1998; Vernier, 2017; Friedrich, Jacobson, & Zhu, 2010). It can be 

divided into three main areas: the midbrain, the forebrain and the rhombencephalon. The 

telencephalon is located in the forebrain, along with the diencephalon (Yamamoto, 2009). 

The telencephalon itself can be divided into two regions: area ventralis and area dorsalis. 

There are five regions to the area ventralis: the supracommissural, the ventral, dorsal, 

lateral and commissural areas (Yamamoto, 2009). There are six regions to the dorsalis 

area: the nucleus taenia, central, ventral, dorsal and lateral, posterior areas (Yamamoto, 

2009). The telencephalon plays an important role in vision, olfaction, memory, ingestion, 

and mating behaviour (Menke, Spitsbergen, Wolterbeek & Woutersen, 2011). Several 

studies have shown that the telencephalon is capable of regenerating after being lesioned 
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(Marz, Schmidt, Rastegar, Strahle, 2011; Kishimoto, Shimizu, Sawamoto, 2012; 

Ohnmacht et al., 2016; Skaggs et al., 2014).  

Bshary et al. (2014) note that the dorsal lateral part of the telencephalon could be 

both homologous to the mammalian hippocampus, as well as being part of a larger social 

decision-making network (SDMN). The SDMN is thought to regulate social behaviour 

and decision-making in vertebrates and consists of two main components: the social 

behaviour network and the mesolimbic reward system (Bshary, Gingins, & Vail, 2014; 

Cabrera-Álvarez et al., 2017). The SDMN is composed of two main sub-networks: the 

social behaviour network and the basal forebrain reward system. Two structures are 

involved in both networks; the supracommissural part of the ventral pallium and the 

ventral part of the ventral telencephalon, which are homologous to the extended 

amydgala and lateral septum, respectively. Teles et al. (2015) presented two possible 

explanations of how social information is represented in the brain. The first theory, 

“functional specialization”, hypothesizes that specific regions throughout the brain are 

necessary for specific cognitive behaviours (Teles et al., 2015). The second theory, 

“functional connectivity”, hypothesizes that different cognitive abilities are subserved by 

networks of specific regions (Teles et al., 2015). Both theories could possibly be working 

in parallel.  

Both c-fos and egr-1 (both immediate early genes) are expressed in the dorsal 

lateral telencephalon, ventral telencephalic area, and the preoptic area when zebrafish are 

engaged in ostensibly social tasks, such as interacting with a single conspecific or a 

mirror, providing some evidence that these structures work in parallel to support social 

interactions, and supporting the “functional connectivity” hypothesis (Teles et al., 2015). 
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The dorsal lateral telencephalon has also been identified as part of the basal forebrain 

reward system, itself part of the mesolimbic reward system in teleost fish, which the 

hippocampus is part of in mammals (Bshary et al., 2014; O’Connell & Hofmann, 2011). 

The dorsal lateral telencephalon both receives and outputs information through structures 

that are also involved in the basal forebrain reward system. These are the posterior 

tuberculum, the medial part of the dorsal telencephalon, the central part of the ventral 

telencephalon and the dorsal part of the ventral telencephalon (Bshary et al., 2014). These 

areas are thought to be homologous to the mammalian ventral tegmental area, basolateral 

amygdala, striatum and nucleus accumbens (Bshary et al., 2014). In mammals, the 

hippocampus is often considered to contain a cognitive map of the environment 

(O’Connell & Hofmann, 2011). It is possible that the dorsal lateral telencephalon 

functions in a similar way, by modulating the memory of a rewarding stimulus. This is 

not yet known and will be examined in the current thesis.  It has been argued that visual 

contact with a conspecific (Sison & Gerlai, Gómez-Laplaza & Gerlai, 2010, Al-Imari & 

Gerlai, 2008), locating a conspecific (Scerbina, Chatterjee, & Gerlai, 2012), or shoaling 

with conspecifics (Buske & Gerlai, 2011; Al-Imari & Gerlai, 2007) are all rewarding to 

isolated zebrafish, which is why reward-related areas of the brain are important in the 

regulation of social behaviours. It has also been noted that the dorsal telencephalon and 

related areas (the supracommissural nucleus of the ventral telencephalon, the 

periventricular nucleus of the posterior tuberculum, and the anterior tuberal nucleus) 

serve to process sensory information from the lateral line about the motions of nearby 

conspecifics (Butler & Maruska, 2016). 
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In mammals, the hippocampus is considered to be required for relational learning, 

such as spatial learning (Shapiro & Eichenbaum, 1999; Floresco, 2014). When the 

hippocampus is lesioned, mammals are impaired on spatial memory tasks (Morris, 1981; 

Clark, Broadbent, & Squire, 2007). In addition, the CA2 region of the hippocampus is 

specifically engaged in regulating social behaviour and memory (Hitti & Siegalbaum, 

2014; Stevenson & Caldwell, 2014). Despite lacking a hippocampus that shares key 

anatomical features with mammals, specifically the tri-synaptic circuit (dentate gyrus-

CA3-CA1; Salas et al., 2006), zebrafish can nonetheless successfully perform tasks that 

are hippocampus-dependent in mammals, such as spatial learning (Sison & Gerlai, 2010), 

place conditioning (Eddins, Petro, Williams, Cerutti, & Levin, 2009), episodic-like 

memory (Hamilton et al., 2016), and alternation memory tasks (Cognato et al., 2012). 

Goldfish with lesions of the lateral telencephalon show similar impairments in a trace-

conditioning task to those produced by hippocampal lesions in mammals (Portavella, 

Torres, & Salas, 2004). Blocking NMDA receptors in the goldfish telencephalon, using 

the antagonist MK-801, leads to impairments in spatial learning (Gómez et al., 2006), 

paralleling similar findings in mice (Morris et al., 1986). Similarly, in zebrafish MK-801 

reduces shoal cohesion and disrupts shoaling behaviour (Meshalkina et al., 2018; 

Echevarria, Hammack, Pratt, & Hosemann, 2008). 

1.7 The current thesis 

To the best of my knowledge, the role of the dorsal lateral telencephalon in 

shoaling and schooling of zebrafish has not been studied previously. In one of the few 

existing related studies, Shinozuka & Watanabe (2004) aspirated the dorsal lateral 

telencephalon of goldfish and measured shoaling behaviour using a common paradigm 
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(see above) in which the test fish is separated from a conspecific group by a transparent 

barrier. The researchers found no difference in shoaling tendency between fish with 

lesions of the dorsal lateral telencephalon, fish with lesions of the dorsal medial 

telencephalon, and sham-lesioned conditions.  

My research focused on examining the effects of dorsal lateral lesions of the 

telencephalon and underlying mechanisms associated with shoaling behaviour in groups 

of zebrafish. Specific lesions of this area of the brain have only very rarely been 

performed in such small fish (e.g., Skaggs, Goldman, & Parent, 2014), and so a large part 

of my work consisted in developing and perfecting a robust lesion method (Chapter 2). I 

then placed single lesioned fish in groups of non-lesioned conspecifics and quantified 

their social behaviour over several days (Chapter 3). 

1.8 Summary 

Zebrafish spend a large amount of their time shoaling and schooling, yet the 

mechanisms associated with these behaviours remain poorly understood. There is 

evidence to suggest that the dorsal lateral telencephalon plays a role in managing and 

maintaining social behaviours in fish, and thus is likely to be involved with shoaling, 

possibly by modulating the social reward from shoaling. I hypothesize that lesioning the 

dorsal lateral telencephalon will reduce the social reward associated with shoaling, 

reducing zebrafish’s motivation to shoal. I therefore expect to see lesioned fish 

swimming further away from their groups than controls. This may also lead to a broader 

disruption of the collective movement of the group, which may result in differences in 

schooling, 
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Chapter 2: Development of Lesion Methods 

The methods I developed for performing lesions of the dorsal lateral 

telencephalon are a mix of several methods found in the literature (see below). Some of 

these have been previously applied to zebrafish but most come from work on other, 

larger, fish (mostly goldfish), and had to be adapted for the much smaller zebrafish brain. 

Zebrafish were used in the current because they are extremely social, while goldfish have 

a weaker tendency to shoal (Magurran & Pitcher, 1982). Several different approaches – 

for example, how to properly restrain the fish during surgery – were tried and abandoned. 

Here, I present the final method, which was used for all the fish that then progressed to 

the behavioural experiments (Chapter 3). 

2.1 Subjects 

Wild-type adult zebrafish (Danio rerio) were obtained from a local pet store (Big 

Al’s, Kitchener, ON). Before the experiment began, fish were housed in an automated 

high-density fish rank (Pentair Aquatic Habitats) in groups of 10. Adult zebrafish were 

used because of their tendency to naturally form tight and cohesive shoals. Fish were fed 

once or twice a day with either brine shrimp or commercially bought fish flakes. 

Lesioned and sham-lesioned fish were subcutaneously injected with unique colour 

combinations of visible elastomer tags (VIE, Northwest Marine Technologies) 5 days 

before the experiment began. Sex was not determined before testing. Fish were placed on 

a 12-hour light/dark cycle. The temperature of the water for housing was 25°C ± 2°C and 

the salinity was 500 - 600 ppm.  

2.2 Surgery 
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Fish were food deprived for 24 hours before surgery began. On the day of 

surgery, fish were netted into a 5.1” x 2.8” x 2.6” knockout tank containing 200 ml of 

125 mg/L MS-222 (Sigma-Aldrich) for approximately 10 minutes, one at a time. A tail 

pinch was used to test if the subject was anaesthetized. Once the fish was unresponsive to 

a tail pinch, they were moved to a 1.9” x 3” x 1.3” surgical chamber that was held in a 

stereotaxic apparatus. The chamber was packed with 30 g of aquarium sand wetted with 

the MS-222 solution to hold the fish in place. Each lesioned fish was injected over the 

course of 52 seconds with either 2 L or 2.5 L of 15 mM Quinolinic Acid (QA; amount 

based on Skaggs, Goldman, & Parent, 2014) into both their left and right dorsal lateral 

telencephalons. Sham-lesioned fish were injected with either 2 L or 2.5 L of sterile 

saline at the same locations. Injection location was determined relative to the position of 

the eyes as well as using the Neuroanatomy of the Zebrafish Brain: A Topological Atlas 

(Wullimann et al., 1996) as a guide. Injections were given at a depth of 2 mm below the 

surface of the skin (Skaggs et al., 2014). After injection, the fish was netted into a 20” x 

10” x 12” recovery tank, which was half filled with system water and 60 g of ocean salt 

(Instant Ocean) to increase the salinity of the water to 1000 ppm. Following surgery, the 

subject’s behaviour was observed closely for recovery. Fish were netted back into their 

home tanks and watched for 5 days following surgery. All procedures were approved by 

the Wilfrid Laurier University Animal Care Committee (Animal Use Protocol R14007). 

2.3 Lesions 

Though exocitoxic brain lesions in fish are not common, they have been 

performed before in a few teleosts such as goldfish and zebrafish. Satio & Watanabe 

(2003) outlined procedural methods for precision stereotaxic surgery in goldfish. They 
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used ear bars fitted with rubber plates to hold the fish in place. To adapt this for 

zebrafish, because they are significantly smaller than goldfish, we used a custom surgery 

chamber and sand to hold the fish in place. In addition, Satio & Watanabe (2003) inserted 

a mouthpiece into the goldfish’s mouth, to administer a constant flow of MS-222. My 

adaptation was to combine 5 ml of MS-222 with the sand in the surgery chamber, so that 

the sand to not only acted as an agent to hold the fish in place but also ensured that the 

MS-222 solution continued to flow through their gills. Several other options for doing 

lesions were considered, such as aspiration and electrical lesions, but we ultimately 

decided on an excitotoxic lesion given the easy accessibility of the required materials and 

the time restrictions. In addition, we believed that excitotoxic lesions were easier to 

perform. The novelty of excitotoxic lesions in zebrafish allowed us to adapt previous 

methods to construct a new method that worked efficiently for us.     

Lesions were performed by injecting 2,3 Pyridinedicarboxylic acid (quinolinic 

acid, QA, Sigma-Aldrich) into the fish’s brains. QA is an N-methyl-D-aspartate (NMDA) 

receptor agonist (Lugo-Huitón et al., 2013). QA causes neurotoxicity by increasing 

glutamate concentration, inhibiting its reuptake by astrocytes; this results in cell death 

(Lugo-Huitón et al., 2013; Vaz, Outeiro, & Ferreira, 2018). The mammalian 

hippocampus contains numerous NMDA receptors, making it susceptible to QA 

neurotoxicity; this is also true for the dorsal lateral telencephalon of teleost fish (Lugo-

Huitón et al., 2013; Skaggs et al, 2014). In addition, we chose to inject QA because 

Skaggs et al. (2014) indicated an amount that made the most accurate lesion within the 

dorsal lateral telencephalon, which we used as a reference.   
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Skaggs et al. (2014) found that 2 days post-surgery a blood clot begins to form at 

the site of the lesion; at 7 days post-surgery, the brain tissue begins to repair itself, and by 

14 days post-surgery, the site is significantly repaired. Their staining showed that radial 

glial stem cells migrate to the lesion site; this signifies the beginning of neurogenesis. 

Because of this ability of the zebrafish brain to regenerate lesioned areas, some of the fish 

in my experiment (group E2) were tested behaviourally between 4 and 6 days post-

surgery and were euthanized on the 6
th

 day following testing, to avoid imaging lesions 

that had begun to repair. I note that it is not known whether the regeneration of brain 

lesions in fish also restores the function of those brain areas. 

2.4 Conditions  

A total of 195 fish were run under one of four conditions (E1, E2, control or 

sham). We divided our experimental conditions into two separate conditions, E1 and E2. 

In condition E1 (n=7), the fish received 2 L of 15 mM QA to their left and right dorsal 

lateral telencephalons to a depth of approximately 2 mm. During the three days of 

behavioural testing, these fish were paired with a group of conspecifics drawn each day 

from a tank containing approximately 10 fish. Thus, they were probably tested with at 

least some different fish each day. Fish in group E1 underwent behavioural testing about 

one month after surgery, making it possible that their lesion sites had regenerated by then. 

In the second experimental condition, E2 (n=11), the fish received 2.5 L of 15 

mM QA into their left and right dorsal lateral telencephalons to a depth of approximately 

2 mm. Each fish was housed in a tank with 4 control fish for 24 hours before the group 

was behaviourally tested, so that these fish underwent all their behavioural testing with 
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the same 4 conspecifics for all three trials. The first trial occurred on the 4
th

 day post-

lesion; trials continued until the 6
th

 day post-lesion. 

Fish in the sham condition (n=10) received an injection of sterile saline into their 

left and right dorsal lateral telencephalons to a depth of approximately 2 mm. The sham 

fish were also put into groups with 4 other fish that did not receive surgery 24 hours 

before they were behaviourally tested, and went through all their behavioural testing with 

those conspecifics. Their first trial occurred on the 4
th

 day post sham-lesion; trials 

continued until the 6
th

 day post sham-lesion.  

The control condition was composed of 5 fish that did not undergo surgery. The 

first batch of control groups (n=6) were run similarly to group E1: fish were tested with 

partners from the same tank, but the tank contained more than 5 fish, making it 

impossible to know if the same fish were run in all three trials. The second batch of 

control groups (n=5) were run similarly to the fish in group E2: group of 5 fish were 

formed 24 hours before the fish were tested and went through all behavioural tests 

together.  
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Chapter 3: Behavioural Experiments 

3.1 Introduction  

In my behavioural testing, groups of 5 fish each were placed into a circular tank 

and allowed to swim freely together for 20 minutes on three consecutive days. Groups of 

5 fish were used because groups of 6 to 7 fish are commonly seen in the wild (see above). 

This approach, which allows fish to interact freely and swim together, has several 

obvious advantages when compared to other methods commonly used in the literature on 

shoaling, such as allowing a stimulus fish to interact with a group of conspecifics only 

through a transparent divider (Ferandes, Rampersad, Jones, & Eberhart, 2018), using 

replicas such as a robotic fish (Butail, Bartolini & Portfiri, 2013), or displaying computer 

generated conspecifics on a monitor (Saverino & Gerlai, 2008). These alternative 

methods are sometimes used when individuals cannot be tracked when swimming 

together. However, by tagging the fish and using automated tracking software, we were 

able to identify each focal fish in the group. I characterized movement within the group 

by several common measures: the nearest neighbour distance (NND), the interindividual 

distance (IID), and the polarization of the group.   

3.2 Methods  

3.2.1 Apparatus  

Fish were housed in groups of 5 for at least 24 hours before behavioural testing 

began. Fish were assigned to one of three possible conditions: lesioned, sham-lesioned, or 

control. Lesioned conditions included one fish that had undergone the lesion surgery (see 

Chapter 2) and four other fish which did not have surgery. Sham-lesioned groups 

included one fish that had undergone the sham-lesion surgery (see Chapter 2) and four 
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other fish that did not have surgery. Finally, the control condition consisted of five fish 

that did not have surgery.  

The testing arena was a circular white tank, 60 cm in diameter, filled to a depth of 

9 cm with system water drawn from the housing rack. Trials were recorded using a video 

camera (Sony handycam FDR-AX100) mounted directly above the tank. A UV lamp was 

placed to one side of the testing tank, to make the fluorescent tags more visible. The test 

apparatus was surrounded by a white curtain and white walls. A TV monitor connected to 

the camera was placed outside the curtain, to monitor the trials. During the last 5 minutes 

of the trial, I videotaped the group for about 30 seconds with my iPhone and pointed with 

my finger to which fish was tagged, while doing so it is possible that I scared the fish. 

The videos helped identify which fish was the lesioned or sham-lesioned (tagged) fish; 

these videos were correlated to the data videos and made identifying the tagged fish for 

later coding much easier.  

3.2.2 Procedure 

 Each day, for 3 consecutive days, fish were gently netted from their home tank 

into a bucket filled with system water drawn from the housing rack. They were then 

immediately netted into the testing tank and left there to interact for 20 min. At the end of 

the trial, the fish were netted from the testing tank into the bucket and then returned to 

their home tanks. Fish were fed at the end of the day, after all trials were complete. All 

trials were run between 10:00 and 17:00 h, during the light cycle. 

3.2.3 Analysis  

Videos were imported to a desktop computer and converted to shorten the video 

to 10 minutes, eliminating the first 5 minutes to account for the habituation period, and 
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the last 5 minutes. Videos were then tracked using idTracker (Perez-Escudero et al., 

2014). The tracking software assigns unique identities to each fish. The tagged (lesioned 

or sham-lesioned) fish was then identified by eye with the help of the videos that I took 

on my iPhone during the trials. Specific characteristics, for example, body length and size 

were noted to assist in correct identification. I then noted the identity assigned by the 

tracking software to the tagged fish. In the control condition, where none of the fish were 

tagged, I chose a random individual to serve as the focal fish in each file. The data files 

containing trajectories were imported into RStudio and a custom script was used to 

extract our measures of shoaling (see Appendix A). NND and IID were calculated for 

each fish in each frame and then averaged across frames for each trial, giving a single 

score per individual per trial. Polarization was calculated for each frame of each trial and 

the distribution of values for each trial was saved. Movement in the third dimension 

(depth) was not tracked, which is common  in such experiments (e.g., Miller & Gerlai, 

2007). We did not predict that our lesions would alter fish’s swimming depth.  

Statistical analyses on these measures were conducted in R, Microsoft Excel, and 

Mathematica (Wolfram Research).A significance value of 0.01 was used for all analyses. 

In the control condition, two trials had NND and IID values that appeared to be 

outliers. I used the influence.ME package (Nieuwenhuis, Pelzer & Grotenhuis, 2017) in R 

to calculate Cook’s distance and used that to estimate the influence these data points 

might have on the mixed linear model. The appropriate cut-off distance was determined 

by dividing 4 by the number of trials across all conditions (117), which equals 0.03. The 

two data points under consideration both had distances exceeding this value, and were 

therefore removed from all further analyses. 



SOCIAL BEHAVIOUR AND COGNITION IN ZEBRAFISH     
 

22 

Polarization distributions, which are usually bimodal (Miller & Gerlai, 2012), 

were subjected to a Maximum Likelihood Estimation procedure, to extract the modes of 

the distribution. Each distribution was fit with a model consisting of a single, two, or 

three, normal distributions. The best model was selected using the Akaike Information 

Criterion (which penalizes models that have more parameters). The best-fit values for the 

mean, variance, and amplitude of each component were saved and used for further 

analysis.  

3.2.4 Histology  

Once the third and final day of behavioural testing was completed, fish were 

euthanized with 250 mg/L of MS-222. 15 minutes after the last opercular movement, they 

were removed from the solution and sacrificed by decapitation just in front of their gills. 

The entire head of the fish was then post-fixed in 4% paraformaldehyde for 24 hours at 

4  . Tissue was then preserved in increasing sucrose solutions (15%, 30%) for 72 hours 

in a fridge at 4  . After 96 hours the tissue was sectioned at 40, 50 and 60 microns using 

a cryostat at -20   onto slides that had been coated with gelatin. Slides were put in a 

4   fridge overnight to allow the optimal cutting temperature compound (OCT 

compound) on the slides to fully dry. The slides were stained approximately 24 hours 

later with a 0.5% cresyl violet solution and immediately cover-slipped with Permount 

(Fisher Chemical). Slides were then left to dry in a fume hood for 7 days before imaging. 

Photographs of the tissue were taken by microscope (Olympus BX43, with an attached 

XM10 camera and cellSens imaging software), at a magnification of 10x. Brains of fish 

from the control condition were also stained and imaged for comparison. Figure 3.1 

shows sample slices from a lesioned, sham-lesioned, and control brain, as well as the 
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corresponding labeled slice from the Neuroanatomy of the Zebrafish Brain: A 

Topological Atlas (Wullimann et al., 1996). Appendix B gives sample slices from 7 

individual lesioned fish (all from group E2). We could not identify a clear lesion in the 

remaining 3 fish.   

3.3 Results  

As noted above, two different batches of control and experimental conditions 

were treated differently from one another in the time between surgery and testing, the 

composition of conspecific conditions, and in details of the surgery. However, because 

the behavioural test all the conditions went through was the same, I wanted to see if it 

would be possible to combine the experimental and/or control groups into one condition. 

A Wilcoxon test was used, because of our small sample sizes, and because the data were 

not normally distributed. I found a significant difference between the experimental 

condition (E1 vs. E2) in both NND (z = -3.38, p < 0.001) and IID (z = -3.11, p < 0.01). 

There was no significant difference between the control condition for either NND (z = -

0.80, p = 0.42) or IID (z = -0.92, p = 0.36). Due to this, data from the two experimental 

groups, E1 and E2, were analyzed separately; the control condition were combined into 

one group. 

It was hypothesized that lesioned individuals would either be less motivated or 

less capable of maintaining normal movement patterns, and thus likely keep a greater 

distance from the other four fish in their group. It is also possible that the altered 

behaviour of the manipulated fish would have general effects on the collective movement 

of the group.  
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I first examined whether groups had different movement patterns as a function of 

condition (Experimental, Control, or Sham), or day (trial). Differences in NND and IID 

across conditions were tested using repeated measures mixed models. A total of 115 trials 

were available for analysis after removing two outliers (see methods). Trial and condition 

were entered into the model as fixed effects and group identity as a random effect. The 

best-fit models for both NND and IID did not include an interaction effect between trial 

and condition (comparison of AIC scores. NND: with interaction, 981.12; without 

interaction, 990.77; IID: with interaction, 1153.3; without interaction, 1162.3). For 

pairwise comparisons, all conditions were compared to controls, and trials 2 and 3 were 

compared to trial 1. 

In the model for NND (Figure 3.2, left panel), condition E1 was significantly 

different from the control condition (t(36) = 3.27, p = 0.002), as was the sham condition 

(t(36) = -2.69, p = 0.01). Thus, lesions had an effect on NND: fish in the E1 condition 

were generally farther away from their nearest neighbours, compared to the control 

condition. Conversely, conditions containing sham-lesioned fish swam closer to their 

nearest neighbours than fish in the control condition. Condition E2 was not significantly 

different from control (t(36) = -0.77, p = 0.44). In addition, there was a significant effect 

of the trial, with trials 2 and 3 being different from trial 1 (Trial 1 vs. 2: t(73) = 2.43, p = 

0.002; trial 1 vs. 3: t(73) = 3.48,  p = 0.0008) trials. Thus, as trials progressed, fish moved 

farther away from their nearest neighbors, as expected. Post-hoc testing revealed a 

significant difference between the two experimental conditions (t(35) = 3.98, p = 0.002) 

and between group E1 and the sham-lesioned condition (t(35) = 5.63, p < 0.0001). 
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In the model for IID (Figure 3.2, right panel), condition E1 was significantly 

different from controls (t(37) = 3.34, p = 0.002) but the sham condition was not (t(37) = -

2.07,  p = 0.046), and neither was the E2 condition (t(37) = -0.26, p = 0.79) . The third 

trial was significantly different from the first (t(74) = 3.04, p = 0.003), but trial two was 

not (t(74) = 1.87, p = 0.06). Post-hoc tests revealed, as for the NND, a significant 

difference between the two experimental conditions (t(35) = 3.60, p = 0.005) and 

between group E1 and the sham-lesioned condition (t(35) = 5.15, p = 0.0001). 

Next, I explored differences in polarization between conditions. The polarization 

of a group is a measure of the degree to which all the fish are moving in the same 

direction. It is therefore not calculated at the individual level. Polarization ranges from 0 

(everyone is facing in different directions) to 1 (everyone facing the same direction). I 

constructed distributions of polarization for each trial (examples are shown in figure 3.3).  

Since measures of polarization are not independent of each other (because the 

polarization frequently changes slowly; Miller & Gerlai, 2012), comparing distributions 

of polarization to each other tends to artificially inflate the significance of differences 

between them. Instead, since the majority of the polarization distributions in our data 

appeared, from visual inspection, to consist of three distinct components (see Figure 3.3), 

we used a Maximum Likelihood Estimation procedure (Miller & Gerlai, 2012) to detect 

whether the distribution really had three distinct components, and to extract the 

parameters of these components (see Methods for details). One file from group E1 had to 

be excluded as it could not be fit. All tested distributions, in all four conditions, were tri-

modal, as identified by the three-component model having the lowest AIC score. Table 

3.4 gives the means of the modes of the three distributions for each condition. 



SOCIAL BEHAVIOUR AND COGNITION IN ZEBRAFISH     
 

26 

 To identify differences between conditions in their polarization, I calculated the 

time each group spent in each mode of their polarization distribution. The intersections 

between the best-fit components were used as thresholds and all the data were placed into 

one component or another. From this, I calculated, for each trial, what proportion of the 

trial the group spent in their high, medium, or low polarization mode. Figure 3.4 shows a 

sample distribution with its modes and thresholds. I then constructed distributions of the 

time spent in each mode by fish in each condition of the experiment (Figure 3.5). In all 

conditions, fish spent about half their time in the medium mode (Control: 47.8%; E1: 

51.5%; E2: 50.4%; Sham: 50.1%) and the rest of their time approximately equally 

divided between the high and low polarization modes. I compared the time spent in each 

mode across groups (Table 3.4). There were no significant differences between any 

groups on any mode. 

 The analysis above deals with group-wide effects. It is possible, however, that 

manipulated (lesioned or sham-lesioned) fish behave differently than control fish, but that 

their behaviour does not alter the behaviour of the group as a whole. Therefore, to further 

analyze the NND and IID scores, I ranked each individual by their NND and IID scores 

relative to those of their group-mates in each trial. So, each individual in each trial 

received a ranking of 1-5 for both NND and IID, 1 indicating the greatest distance within 

the group. I then compared the mean rankings of the focal individuals in each condition 

(in E1 and E2, the lesioned fish; in the Sham groups, the sham-lesioned fish; and in the 

Control groups, a randomly selected individual; Figure 3.6). Rank frequencies were 

computed by dividing the total number of occurrences of a ranking by the total number of 

data points in each condition (i.e., the frequencies represent the proportion of all trials on 
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which the focal fish had that ranking). The ranking data were compared across conditions 

using Fisher’s exact test (which is preferable to the chi-squared test when the expected 

counts in some cells of the contingency table are less than 5). Table 3.5 shows the test 

results for the NND rankings; Table 3.6 shows the IID tests. There were no significant 

differences between any two groups.  

Finally, I created another measure of the focal fish’s behaviour relative to its non-

manipulated group-mates by dividing their NND or IID by the mean of the other 4 fish. 

For this measure, the NND- or IID-ratio, values larger than 1 indicate that the focal fish 

was farther from the group than the rest of the fish in the group were from each other. 

The ratio is therefore normalized within each group, allowing me to test any effects of my 

manipulations (lesions) while controlling for any variation introduced by the specific 

context within which that fish was tested (the other individuals in its group). This specific 

measurement allows us to quantify the focal fish’s social behaviour in relation to the 

other members of their group, instead of quantifying overall group behaviour. Figure 3.7 

shows the NND (left) and IID (right) ratios for all conditions and trials. A mixed-model 

repeated measures ANOVA revealed, for both the NND and IID ratios, a significant 

effect of trial (NND: F(2, 105) = 9.85, p = 0.0001; IID: F(2, 105) = 6.99, p = 0.001), but 

not of condition (NND: F(3, 105) = 1.18, p = 0.32; IID: F(3,105) = 1.77, p = 0.16). There 

was no significant interaction between trial and condition in either case (NND: F(6, 105) 

= 0.93, p = 0.48; IID: F(6, 105) = 1.05, p = 0.40). To further explore the effect of trial on 

the distance ratios, I ran a one-way ANOVA for the effect of trial only on the data for 

each condition separately. Though no results were significant, for both NND and IID, 

groups E1 and E2 had strongly trending trial effects (NND: E1, F(1, 19) = 6.17, p = 0.02; 
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E2, F(1, 31) = 5.75, p = 0.02; IID: E1, F(1, 19) = 8.06, p = 0.01; E2: F(1, 31) = 5.41, p = 

0.03), whereas the control and sham-lesioned groups showed no effects (NND: control, 

F(1, 31) = 3.45, p = 0.07; sham, F(1, 28) = 0.15, p = 0.70; IID: control, F(1, 31) = 1.72, p 

= 0.20; sham, F(1, 28) = 0.04, p = 0.85). These results, combined with an examination of 

figure 3.7, suggest that the lesioned focal fish, but not the sham-lesioned or control fish, 

swam farther from the rest of the group than the other fish did, but only on the first trial. I 

discuss these results further in the next chapter.  
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Tables: 

 

Table 3.1: Means and standard deviations (in brackets) for NND as a function of 

condition (rows) and testing trial (columns). 

 

Condition/Trial 1 2 3 

Control 70.61 (± 40.29) 62.74 (± 23.13) 71.11 (± 24.07) 

E1 73.33 (± 17.14) 85.24 (± 23.00) 88.90 (± 21.62) 

E2 53.14 (± 16.72) 61.23 (± 14.84) 63.01 (± 18.46) 

Sham 45.19 (± 8.56) 50.83 (± 9.21) 50.28 (± 9.52) 

 

 

Table 3.2: Means and standard deviations (in brackets) for IID as a function of condition 

(rows) and testing trial (columns). 

 

Condition/Trial 1 2 3 

Control 146.66 (± 89.01) 117.46 (± 46.31) 138.00 (± 47.06) 

E1 143.00 (± 36.21) 167.28 (± 46.62) 178.27 (± 46.20) 

E2 108.56 (± 34.09) 122.55 (± 30.20) 127.95 (± 42.58) 

Sham 93.12 (± 18.55) 105.65 (± 21.58) 100.98 (± 21.29) 

 

Table 3.3: Means and standard deviations (in brackets) of the modes of the three 

components of the polarization distribution for each condition. 

 

Condition/Component 1 2 3 

Control 0.24 (± 0.02) 0.56 (± 0.04) 0.90 (± 0.05) 

E1 0.24 (± 0.05) 0.57 (± 0.05) 0.92 (± 0.04) 

E2 0.24 (± 0.01) 0.56 (± 0.03) 0.89 (± 0.02) 

Sham 0.24 (± 0.02) 0.56 (± 0.02) 0.92 (± 0.03) 

 

Table 3.4: T-tests comparing time spent in the low, medium, and high polarization modes 

by condition. The table gives the test statistic followed by the p-value in brackets for each 

comparison. No values were significant at α = 0.01. 

 

Group 
E2 Control Sham 

Low Med Hi Low Med Hi Low Med Hi 

E1 2.62 

(0.01) 

0.52 

(0.61) 

2.64 

(0.01) 

1.16 

(0.25) 

1.43 

(0.16) 

0.96 

(0.34) 

1.26 

(0.21) 

0.74 

(0.46) 

0.64 

(0.53) 

E2    1.50 

(0.14) 

0.86 

(0.39) 

1.58 

(0.12) 

1.79 

(0.08) 

0.13 

(0.90) 

2.47 

(0.02) 

Control       0.16 

(0.87) 

0.91 

(0.37) 

0.48 

(0.63) 
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Table 3.5. Comparisons of NND rankings across conditions. The table gives p-values for 

the Fisher’s exact tests comparing every two conditions to each other. 

 

Condition E1 E2 Sham 
Control 0.62 0.90 0.22 
E1  0.65 0.41 
E2   0.05 
 

 

 

Table 3.6. Comparisons of IID rankings across conditions. The table gives p-values for 

the Fisher’s exact tests comparing every two conditions to each other. 

 

Condition E1 E2 Sham 
Control 0.22 0.36 0.37 
E1  0.95 0.16 
E2   0.14 
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Figures: 

 

Figure 3.1: Brain section examples. Sections from A) a control fish; B) a lesioned fish; 

and C) a sham-lesioned fish. Images taken at 10X magnification. Slices sectioned at 

50  m. Orange arrows in B and C show lesion sites. D) the corresponding slice shown in 

the zebrafish brain atlas (Wulliman et al., 1996; slice #71). Dl, dorsal lateral 

telencephalon (T); Dc, dorsal central T; Dm, dorsal medial T; Dp, posterior dorsal T; 

LOT, lateral olfactory tract; MOT, medial olfactory tract; Vc, central nucleus of the 

ventral telencephalon (VT); Vd, dorsal nucleus of the VT; Vl, lateral nucleus of the VT; 

Vv, ventral nucleus of the VT. 
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Figure 3.2: Boxplots of mean NND (left) and IID (right) by condition and trial number. 

Colours represent trials (red = trial 1; green = trial 2; blue = trial 3). C = control; E1 = 

experimental group 1; E2 = experimental group 2; Sh = sham-lesioned. 
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Figure 3.3: Sample polarization distributions from the four conditions (one file from each 

condition): Control (green), Experimental 1 (red), Experimental 2 (orange), and Sham-

lesioned (blue). All the distributions appear to be tri-modal (see text for details). 
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Figure 3.4: A sample polarization distribution (in black; from condition E2; this is the 

same distribution as is shown in figure 3.3 in orange), with its best-fit model components 

(red, green, and blue). The intersections between the components, shown as vertical grey 

lines, were used to partition the data into modes. 
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Figure 3.5: Distributions of time spent in each mode of the polarization distribution, by 

condition. A: E1; B: E2; C: Control; D: Sham-lesioned. The distributions show the 

proportion of the trial that the group spent in each mode of their polarization distribution. 
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Figure 3.6: Frequency graphs of NND (left), and IID (right). The figure shows how often 

the focal fish occupied each rank, compared to the other group members. Rank 1 

indicates the greatest distance in the group, rank 5 the smallest. 
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Figure 3.7. Focal fish distances relative to the mean of the group. The figure shows the 

ratio of the NND (left) or IID (right) of the focal fish, divided by the mean NND or IID of 

the other 4 fish in its group. Values larger than 1 indicate that the focal fish was farther 

from the group than the average. Colours represent trials (red = trial 1; green = trial 2; 

blue = trial 3). C = control; E1 = experimental group 1; E2 = experimental group 2; Sh = 

sham-lesioned. 
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Chapter 4. Discussion 

 

In this thesis, I set out to quantify the effects of lesions to the dorsal lateral 

telencephalon on shoaling behaviours in zebrafish. A widely accepted framework for 

considering the neural basis of social behaviours in fish, the social decision-making 

network (SDMN) approach (Bshary et al., 2014) suggests that this area of the brain is a 

component in the fish reward system, most likely mediating the rewarding effects of 

being close to conspecifics – being part of a group. For this reason, I considered it the 

most likely site at which to perform a lesion that would have a disruptive effect on 

shoaling. 

First, I developed, from scratch, a method for performing these lesions in 

zebrafish. Brain lesions have only rarely been performed in such small fish. The method I 

developed will allow for lesions to any region of the brain. Figure 3.1B shows a sample 

brain slice from a lesioned fish in which the damage to the dorsal lateral telencephalon is 

clearly visible. The sample brain slice is from the E2 condition. E1 was our first batch of 

fish, in which the sections were too thin and we were not able to properly transfer them to 

the slide.  

To test the effects of these lesions, I performed a behavioural experiment in which 

groups of 5 fish, one of which was manipulated (either lesioned or sham-lesioned) were 

allowed to swim together in a circular tank for 20 min on three consecutive days. These 

groups were compared to groups in which all the fish were not lesioned. Since lesions of 

the zebrafish brain can regenerate over the course of a few weeks (e.g., Ohnmacht et al., 

2016), some of the experimental fish were tested just 4 days after their surgeries (E2), 

while others were given a full month to recover from the surgery (E1), but also possibly 
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enough time for the lesion site to grow back. I note that it is not known whether the areas 

of the brain that grow back also recover their function, or how long that might take (for 

example, it is possible that although glial cells can migrate into the site and differentiate 

into neurons within about 3 weeks, it takes them much longer to form functional synapses 

onto other brain regions). 

In my behavioural tests, the manipulated fish were tagged so that they could be 

identified in the videos and their behaviour compared to their group mates. For control 

groups, a randomly selected individual in each trial was selected as the focal fish. The 

collective motion of the group was quantified using common measures: the distance 

between an individual and its nearest neighbor (NND), the mean distance between an 

individual and all the other fish (IID), and the polarization of the group. I explored the 

effects of having a lesioned fish in the group on the overall group dynamics, as well as 

comparing each focal fish to the behaviour of its group-mates. 

Overall, fish in condition E1 – whose manipulated member had a longer time 

between surgery and behavioural testing – showed a larger NND and IID than groups in 

any other condition (Figure 3.2). This suggests that lesions of the telencephalon do have a 

disruptive effect on the dynamics of shoaling, causing shoals to become less cohesive.  

The fact that I found this result in condition E1 but not in condition E2, who 

received their behavioural testing very shortly after surgery, suggests that behaviour takes 

some time to settle down after surgery as the short time between surgery and behavioural 

testing in the E1 condition might have an effect on overall behaviour. It is also possible 

that other details of the procedure that differed between the groups led to the behavioural 

differences.  
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As expected based on earlier literature (e.g., Miller & Gerlai, 2012), over the 

course of the three trials, fish moved further apart from each other, as reflected in 

increasing NNDs and IIDs across all conditions. However, when I compared the 

behaviour of the focal fish to that of its group-mates, I found a nearly significant effect of 

trial on both NND and IID only in groups E1 and E2, not in the control or sham groups. 

In other words, lesioned fish appeared to swim further from their group than the group 

average distance, but only on the first day. On the second and third trials, there was no 

difference in distance between the lesioned fish and their group-mates, in any condition. 

This might suggest that fish are able to somehow compensate for the loss of function 

produced by the lesion. It is also possible that the group as a whole began to shoal less 

tightly (as seen in figure 3.2), and the lesioned fish simply did not adjust their distances, 

bringing them into line with the rest of the group. A third alternative is that the effects of 

the lesion may only appear under conditions of stress. It has been hypothesized that the 

loosening of the shoal with repeated exposure to the same arena are a result of 

habituation (Miller & Gerlai, 2012). Thus, if the fish were more stressed on the first trial, 

this might have caused the lesioned fish to increase their distance from the group. It is not 

clear why the lesion would only affect the fish when highly stressed, but I note that our 

understanding of the neural bases of fish behaviour is overall very poor, a point also 

emphasized by Bshary et al. (2014). In addition, it is not clear why there is a ranking 

effect (as seen in figure 3.6), where the sham focal fish is ranked first most often, 

meaning that the focal fish was the farthest distance away from the rest of their group the 

most often. It is possible that the lesion could have caused this effect; though it is likely 

this effect would go away if the groups were tested more. As mentioned in chapter 2, sex 
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was not determined during our study. Sex differences are not a common measure in 

studies that examine shoaling and schooling in zebrafish, although it has been noted that 

both female and male zebrafish fish prefer to shoal with females (Spence et al., 2008). It 

is possible that in shoals that were a closer distance, such as the sham group, the focal 

fish was a female, while other groups such as the E1 and E2 group; the focal fish was a 

male.  

Another potential reason for the results that we found could be due to the dorsal 

lateral telencephalon being homologous to the hippocampus. While the hippocampus is 

necessary for spatial orientation, it is not likely that the lesion affected the fish’s ability to 

orient themselves. Zebrafish also use their lateral line to orient themselves in relation to 

others around them. However, my apparatus did not direction measure spatial ability in 

relation to an individual’s external environment.  

Finally, I also examined the polarization of the groups as they were swimming. In 

all my data, polarization distributions were tri-modal, with groups spending about half of 

their time in a medium-polarization state and dividing the remaining time approximately 

equally between schooling (a highly polarized state) and disorder (very low polarization). 

This is different from what I expected based on the literature: polarization distributions 

are usually bimodal (Miller & Gerlai, 2011). It is possible that the size of my tank, which 

was smaller than those used in past work to allow for tracking of individual identities, 

accounts for this. I found no differences between any conditions in any aspect of their 

polarization. This suggests that however lesions of the telencephalon affect distances 

between the members of a group, they do not impact the polarization of the group. Such a 

separation between the mechanisms of cohesion and polarization has been observed 
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before in the effects of some drugs on zebrafish shoaling (Miller, Greene, Dydinski & 

Gerlai, 2013). 

In summary, though I did not find as clear-cut an effect of lesions on shoaling 

behaviour as I would have liked, I did show that lesions of the telencephalon disrupt 

social behaviours under some conditions. Thus, the dorsal lateral telencephalon does have 

a role in modulating social behaviours, such as shoaling in zebrafish. This thesis did not 

directly test memory, although because the dorsal lateral telencephalon plays a role in 

different aspects of memory it is possible the lesion could have affected this. Future work 

could examine various memory tasks in which the lesion may show an effect in zebrafish 

such as an episodic-like memory task, spatial memory task or a recognition memory task. 

I also developed a robust method for performing lesions of the zebrafish brain that will be 

useful in future studies.    
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Appendix A: R code  

 
# This R script takes input from IDTracker and calculates: 

# nearest neighbour distances, interindividual distances, and polarization.  

 

# The data from IDTracker gives coordinates for each target. Each row is in the form: 

# X1, Y1, P1, X2, Y2, P2... Xn, Yn, Pn 

# where Xi and Yi are the coordinaes of the ith target, and Pi is the probability of it 

having been 

# tracked correctly. n is the number of targets present. 

 

# This script is designed for experiments where one focal individual is different from 

the others; 

# it compares that individual to all the others (in my experiments, one fish had a brain 

lesion).  

# The ID of the focal individual can be set at the top of the script, or the script can 

choose one at random. 

# The script assumes the video was filmed at 10 fps, for downsampling. You can change 

this below. 

 

# Free to use and modify. Hailey Katzman, 2019. 

 

 

library("readxl") #package for reading in Excel files 

 

 

setwd("mydrive/mypath/")                #enter the path to the tracking file 

mydata <- read.csv("datafile.csv")      #enter the file name 

 

numtargets <- length(mydata[1,])/3      #returns the number of animals tracked 

if(numtargets != round(numtargets)){    #if number of columns in data is not divisible by 

3 - something wrong.  

  print("Error in data file - wrong number of columns") 

} 

 

mylesion <- sample(1:numtargets, 1)  #randomly selects one target to compare (see above). 

replace with number for manual choice 

myframes <- length(mydata[[1]])      #returns the total number of frames in the video  

indep <- round((myframes*2)/(600))   #downsampling constant. If the video was 10 fps, 

this is 1 per 2 sec. 

 

 

#find the nearest neighbour distance (NND): 

 

mydist <- function(x1, y1, x2, y2) {  #returns the distance between two points 

  a=(x2-x1)^2 

  b=(y2-y1)^2 

  c=sqrt(a+b) 

  return(c) 

} 

 

nn <- function(ID, frame) {              #returns NND for one individual (by index) in 

one frame 

  colx1 = paste("X", ID, sep="")  #X coordinate of ID  

  coly1 = paste("Y", ID, sep="")  #Y coordinate of ID  

  coordx1 = mydata[[frame,colx1]] #X coordinates of all  

  coordy1 = mydata[[frame,coly1]] #Y coordinates of all 

  everyone = c(1:numtargets) 

  others = everyone[-ID]          #eliminate ID from list to compare 

   

  dlist <- c()   #list of distances from all the other targets 

  for(val in others){ 

    dlist <- c(dlist, mydist(coordx1, coordy1, mydata[[frame,paste("X",val,sep="")]], 

mydata[[frame,paste("Y",val,sep="")]])) 

  } 

  nnd <- min(dlist) #return the shortest distance 

  return(nnd)  

} 

 

allnns <- vector("list", numtargets)   #all the NND values 
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nnmeans <- c()                  #mean NND for each target 

for(i in 1:numtargets){ 

  temp = mapply(nn, i, 1:myframes)  #NND for target i in all frames 

  allnns[i] = list(temp)            #add to list 

  nnmeans = c(nnmeans, mean(temp, na.rm=TRUE))  #save the mean 

} 

 

dsnns <- vector("list", numtargets)   #all the NND values, downsampled 

for(i in 1:numtargets){ 

  temp = allnns[[i]][seq(1, length(allnns[[i]]),indep)]  #downsampled NND list for target 

i 

  dsnns[i] = list(temp)               #add to list 

} 

 

# compare the NND of the focal target to the others, using a KS test (on downsampled 

data). 

nonlesionnn <- unlist(dsnns[-mylesion])  #NNDs of everyone but the focal target  

nncomparison <- ks.test(dsnns[[mylesion]], nonlesionnn) 

 

#plot the distributions of NND: 

plot1 <- density (dsnns[[mylesion]], na.rm = TRUE)  #distribution for focal target (black 

line) 

plotnon <- density(nonlesionnn, na.rm = TRUE)      #distribution for others (red line) 

plot(plot1, col="black") 

lines(plotnon, col="red") 

 

gmNND <- mean(nnmeans)  #gran mean of NND values (mean across targets) 

 

 

#Calculate inter-individual distance (IID) 

 

iid<-function(ID, frame) {     #calculates IID of one target in one frame 

  colx1 = paste("X", ID, sep="") #X coordinate of ID  

  coly1 = paste("Y", ID, sep="") #Y coordinate of ID  

  coordx1 = mydata[[frame,colx1]] #X coordinates of all targets  

  coordy1 = mydata[[frame,coly1]] #Y coordinates of all targets  

  everyone = c(1:numtargets)  

  others = everyone[-ID]       #eliminate ID from list to compare 

   

  dlist <- c()   #list of distances from all the other targets 

  for(val in others){ 

    dlist <- c(dlist, mydist(coordx1, coordy1, mydata[[frame,paste("X",val,sep="")]], 

mydata[[frame,paste("Y",val,sep="")]])) 

  } 

  ii <- mean(dlist) #return the mean distance 

  return(ii)  

} 

 

alliis <- vector("list", numtargets)   #all the IID values 

iimeans <- c()                  #mean NIID for each target 

for(i in 1:numtargets){ 

  temp = mapply(iid, i, 1:myframes)  #IID for target i in all frames 

  alliis[i] = list(temp)            #add to list 

  iimeans = c(iimeans, mean(temp, na.rm=TRUE))  #save the mean 

} 

 

dsiis <- vector("list", numtargets)   #all the IID values, downsampled 

for(i in 1:numtargets){ 

  temp = alliis[[i]][seq(1, length(alliis[[i]]),indep)]  #downsampled NND list for target 

i 

  dsiis[i] = list(temp)               #add to list 

} 

 

# compare the IID of the focal target to the others, using a KS test (on downsampled 

data). 

nonlesionii <- unlist(dsiis[-mylesion])  #IIDs of everyone but the focal target  

iicomparison <- ks.test(dsiis[[mylesion]], nonlesionii) 

 

#plot the distributions of IID: 

plot1 <- density (dsiis[[mylesion]], na.rm = TRUE)  #distribution for focal target (black 

line) 
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plotnon <- density(nonlesionii, na.rm = TRUE)      #distribution for others (blue line) 

plot(plot1, col="black") 

lines(plotnon, col="blue") 

 

gmIID <- mean(iimeans)  #gran mean of NND values (mean across targets) 

 

      

#calculate polarization of the group 

 

myangle <- function(x1, y1, x2, y2){ #returns a heading from 2 datapoints 

  dx<-c(x2-x1) 

  dy<-c(y2-y1) 

  theta<-atan2(dy,dx) 

  return(theta) 

} 

 

myvector <- function(X1,Y1,X2,Y2){  #returns a unit vector pointing to heading, from 2 

points  

  ang <- myangle(X1,Y1,X2,Y2) 

  dx <- cos(ang) 

  dy <- sin(ang) 

  return(c(dx,dy)) 

} 

 

frameangle <- function(frame){   #find the polarization in one frame 

  mynumerator <- numtargets   #number of angles that could be found 

   

  vecs <- vector("list", numtargets)   #movement vectors for all targets 

  for(i in 1:numtargets){ 

    temp = 

myvector(mydata[[frame,paste("X",i,sep="")]],mydata[[frame,paste("Y",i,sep="")]],mydata[[

frame-1,paste("X",i,sep="")]],mydata[[frame-1,paste("Y",i,sep="")]]) 

    vecs[[i]] = temp 

    if(is.na(temp[1])){   #no movement or missing values can lead to missing vectors 

      mynumerator <- mynumerator - 1 

    } 

  } 

   

  if(mynumerator <= 1){  #return vector mgnitude, if it can be calculated 

    return(NaN) 

  } else { 

    dxsum <- Reduce("+", unlist(vecs)[c(TRUE,FALSE)])  #sum of the dxs 

    dysum <- Reduce("+", unlist(vecs)[c(FALSE,TRUE)])  #sum of the dys 

    sumsize<-sqrt((dxsum^2)+(dysum^2))   #final vector 

    return(sumsize/mynumerator) 

  } 

} 

 

allpols <- mapply(frameangle,2:myframes)   #find the polarization in all frames 

 

#plot the distribution of polarization: 

plot1 <- density (allpols, na.rm = TRUE) 

plot(plot1, col="black") 

 

 

acff<-acf(allpols, na.action = na.pass, lag.max = 200)   #find the autocorrelation 

function 

downconst <- which(acff$acf<=0.1)[1] - 1   #new downsampling constant: first lag where 

ACF <= 0.1 

 

#downsample the polarization (for stats) using the ACF results 

polpts <- c(2:myframes)[seq(1, myframes, downconst)] 

pol <- mapply(frameangle, polpts) 

pol <- write.csv(pol,"outfile.csv", row.names=FALSE)  #save the data to file 
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Appendix B: QA lesions: Brain section examples. Sections from A) ID1, Scale: 200  m 

B) ID2, Scale: 200  m C) ID3, Scale: 1 mm D) ID4, Scale: 1 mm E) ID5, Scale: 1 

mm F) ID6, Scale: 1 mm G) ID7, Scale: 1mm. Images taken at 10X magnification. 

Slices sectioned at 60  m. Blue arrows indicate lesion sites. 
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