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Abstract

In this paper, we study the convergence rates of the multinomial trees

constructed by [Costabile, Leccadito, Massabó and Russo, Journal of Com-

putational and Applied Mathematics, 256 (2014), 152 - 167 ] for European

option pricing under the regime-switching jump-diffusion model, which is

named as CLMR tree. We also extend the CLMR tree to the pricing of

Asian options under the models. Numerical examples are carried out to

confirm the theoretical results and the accuracy of computation.
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Chapter 1

Introduction

1.1 Montivation

The classical Black-Scholes formula for option pricing uses a Geometric

Brownian Motion model to capture price dynamics of the underlying asset.

However, it is well known that the stochastic variability in the market

parameters is not reflected in the BS model. In recent years, considerable

attention has been drawn to regime-switching models which can solve this

problem. Furthermore, the necessity of taking into account large market

movements, as well as a great amount of information arriving suddenly(i.e.

a jump) has led to add the jump into the regime-switching model. And

that is called regime-switching jump diffusion model. And the following

figure gives the simulated path of the stock price under regime-switching

jump-diffusion model.
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Figure 1.1: In this figure, the circle represents the time when there is a jump and the
crossing represents the time when the regime switches. Regime 1 represents the case of
high volatility and regime 2 represents the case of low volatility.

Therefore we introduce the mathmatical defination of regime-switching

jump-diffusion model.

Let α(t) be a continuous-time, homogeneous and stationary Markov chain

on the state space D = {0, 1, . . . ,M} with a generator A, a (M+1)×(M+1)-

size real matrix, whose elements are constants satisfying ail ≥ 0 for i 6= l

and
∑M

l=0 ail = 0 for i ∈ D. On a filtered probability space (Ω, F , P), the
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asset price follows the following process

S(t) = eX(t),

where X(t) is specified as the following regime-switching jump-diffusion

model,  dX(t) = [εl − λlml]dt+ σldW (t) + dJ(t),

X(0) = lnS(0),
(1.1)

where for each regime l ∈ D, εl = rl − σ2
l /2, ml := E[eZ

l
1 − 1], σl is the

volatility and W (t) is a standard Brownian motion under the pricing measure.

Furthermore, J(t) represents the cumulative jumps by time t,

J(t) =

N(t)∑
k=1

Z
α(τk)
k ,

where τk denotes the k-th jump time of the Poisson process N(·). The

Poisson process {N(t), t ≥ 0} has regime-dependent intensity λα(t), i.e., if

the current regime is α(t) = l, then the time until the next jump is given

by an exponential random variable with mean 1/λl. For each l ∈ D, let Z l
k,

k ≥ 1 be a sequence of independent identically distributed (i.i.d.) random

variables with the known distribution function Fl(z), not necessarily of

the normal type, that specifies the jump sizes when the regime is l. Note

that here we consider a very general model setup allowing different jump

distributions Fl(·) for different regimes l.
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1.2 Literature Review

In financial literature, regime-switching models have been prevalently applied

in order to allow Lévy processes to switch in a finite state space. Among the

contributions in the field of option pricing, it is worth mentioning M. Konikov

(2002), who introduce an extension of the variance-gamma model in which

the parameters switch, according to a two-state Markov chain, between two

fixed sets of values at infinitesimal time intervals. Furthermore, they evidence

that more than two states should be considered for the Lévy processes, but

the mathematical approach they use cannot easily accommodate more than

two states for option valuations. To overcome this limit, Elliott and Osakwe

(2006) extend their work to more than two states introducing a multi-state

Markov switching model where the underlying process is a jump process with

parameters that may switch among drift/compensator pairs. C. Albanese

and Rubisov (2003) develop a model similar to the one of M. Konikov (2002)

except that switches occur only at finite time intervals, deriving as well

closed form formulae for European options. A different approach, which

uses a Markov chain with a progressively denser state space to approximate

a continuous time stochastic volatility model with jumps, has been proposed

by Chourdakis (2004) who in this way obtains option prices in semi-closed

form.

Among the contributions in option pricing that consider a regime-

switching model with jumps, it is worth mentioning Yuen and Yang (2009)

who, after generalizing the Naik (1993)’s model to more than two regimes,

4



provide a trinomial lattice to price options under a jump diffusion Markov

regime-switching model. Indeed, as in Naik (1993), the underlying asset

process presents jumps only during the switches among states with the

jump size depending upon the state before and after the switching and the

current asset price. J.X. Jiang and Nguyen (2016) develops a recombining

tree method for European option pricing with state-dependent switching

rates. J. Ma and Zhu (2018) prove the convergence rates of the tree method

in J.X. Jiang and Nguyen (2016). I. Florescu and Sewell (2013) study the

system of PIDEs for option pricing in regime-switching jump diffusion model.

Furthermore, a more general tree method is proposed by M. Costabile and

Russo (2014), who construct a multinomial approach that is flexible enough

to accommodate an arbitrary distribution for the jump-components and an

arbitrary number of regimes both for the diffusion and the jump component.

The method is easily to be applied to price European and American options.

As for the pricing of Asian options, Yuen and Yang (2012) construct a

trinomial tree method to price the Asian option and equity-indexed an-

nuities with regime-switching models (no jump-diffusion). D. Dang and

Sewell (2016) use the system of PIDEs to price the Asian options in regime-

switching jump-diffusion models. The trinomial tree method has not been

studied in the literature for the Asian option pricing with regime-switching

jump-diffusion models.
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1.3 Contributions of the Thesis

In this paper, we prove the convergence rates of the CLMR tree proposed by

M. Costabile and Russo (2014) by establishing the high-order equivalence

with the finite difference methods. Moreover, we apply the CLMR trees to

the Asian option pricing. To the best of our knowledge, this paper is the first

attempt on the tree methods for Asian option pricing under regime-switching

jump-diffusion models.

1.4 Basic Concepts about Option Pricing

Option

This thesis will focus on only one specific type of derivatives - options. These

are contracts that give the holder the right to buy or sell an underlying asset

at a certain point in time for a certain price, both specified when purchasing

the option. This is in contrast with other derivatives - forwards and futures,

where the holder is obligated to buy or sell the underlying asset.

We identify two types of options. A call option gives the holder the right

to buy the underlying asset by a certain date for a certain price. A put

option gives the holder the right to sell the underlying asset by a certain

date for a certain price. The price in the contract is called strike price and

the expiration date is called maturity.

6



European Option

A European Call Option is a financial contract that gives its holder the

right to buy an asset for a prescribed price at a prescribed future date. On

the contrary, a European Put Option gives the holder the right to sell the

asset for a prescribed price at a prescribed future date. When an option is

being traded, it involves two parties, namely the writer and the holder. The

writer of a call option must sell the asset if the holder chooses to exercise

the option. Similarly, the writer of the put option is obliged to buy the asset

if the holder of the put chooses to exercise the right to sell the asset.

If the prescribed time for the European call option is T , the strike price is

K and the price of asset is ST , then the holder will buy the asset if ST > K,

otherwise they do not exercise the option. The holder realises a profit of

ST − K by buying the asset for K, and selling it on the market for ST .

Therefore the holders profit or payoff is

max(ST −K, 0).

On the other hand if K > ST , the holder of the put will buy the asset and

exercise the the right of selling the asset. The payoff in that case is

max(K − ST , 0).

Asian Option

Unlike the case of European Options where the payoff depends only on

the price of the underlying at the last day of holding the option, an Asian
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Option is an option for which the payoff depends on the average of the price

of the underlying asset.

Now there are different ways of taking the average, resulting in different

kinds of payoff structures and hence different types of options. We can have

an Asian option written on a stock with price St at time t t which can be

exercised at time T with strike price K by taking the arithmetic average

for the period [t0, T ]. In such a case we can define a fixed strike Asian call

option payoff as

(
1

T − t0

∫ T

t0

Sudu−K)+.

The fixed strike put payoff is therefore

(K − 1

T − t0

∫ T

t0

Sudu)+.

Numerical Methods for Option Pricing

Numerical methods are mathematical tools designed to give approximate

but accurate solutions to various numerical problems. Most often used

methods are iterative methods that converge to a satisfactory result with a

certain assumed level of approximation by iterating in a finite number of

steps from the initial conditions. In this project, we deal with interpolation

and solutions to continuous-time stochastic differential equations describing

financial phenomena like interest rate. As we can only represent problems

with finite amount of data, we need to discretize these problems by finding

values in a finite number of points in a problem domain. We use numerical

methods to solve problems that do not have an analytical solution, e.g.

8



some differential equations cannot be solved exactly. While using numerical

methods, it is important to address the numerical stability of the used

algorithm to estimate and control round-off errors arising from the use of

floating point arithmetic.

Binomial Tree

A most basic numerical method for pricing options involves the construction

of trees or lattices. A binomial tree (see (1.2)) is a numerical method, which

allows to graphically represent the possible values that an option may take

at different nodes or time periods. The value of the option depends on the

underlying stock or bond, and computing values on the nodes is based on the

probability that the price of the underlying asset will decrease or increase.

The main advantage of binomial trees is that they are analytically tractable.

This means that price valuation for a derivative can be performed on each

node for every time step. This gives more flexibility and allows pricing of

path-dependent derivatives, such as exotic options, having more complex

cashflows.

Figure 1.2: Illustration of a binomial tree

9



Trinomial Tree

The trinomial option pricing model (an example is shown on fig. (1.3)) is

an alternative numerical method for constructing trees, with the difference

that it consolidates another possible value per single time period. This

makes the trinomial model even more relevant to real life situations, as it

ensures the possibility that the value of the underlying asset may not change

over a time period (taking the mid path on the tree). Calculations for a

trinomial tree are analogous to those for a binomial tree. On the other hand,

this constraint is less of concern in current computing environment with

abundant and efficient compute capabilities.

Figure 1.3: Illustration of a trinomial tree

10



Monte Carlo simulations

Monte Carlo method is an important numerical methods. It is mainly used

to calculated the integral using random experiment method, i.e. transform-

ing the integral to the expectation of a random variable f(x), which has

distribution F (x).

Suppose we want to calcute

A =

∫ 1

0

f(x)dx.

It’s easy to rewrite the equation into

A = E[f(X)]

where X follows uniform distribution. Then we can generate N uniform

random number Xi and use the estimator

Â =
1

N

N∑
1

f(Xi)

to calculate this integral. If N → ∞, then by law of large numbers, Â is

close to A.

In financial mathematics, Monte Carlo method is often used to sample

different paths to obtain the expected payoff of the asset in a risk-neutral

world and are then discounted at this risk-free rate. Monte Carlo Methods

are particularly useful in the valuation of options with multiple sources of

uncertainty (multiple dimensions) They are suitable for pricing instruments

with complicated features, when the payoff depends on the path followed

11



by the underlying variables, as this makes them difficult to value through a

straightforward Black Scholes analytical model or tree-based computation.

The advantage of MC method is that it tends to be simple and flexible.

Since the algorithm is straightforward, coding becomes easy. What’s more,

it can be used to solve the high dimension problem while other numerical

methods don’t work. Finally, Monte Carlo algorithms are parallelizable,

in particular when various parts can be run independently. This allows

the parts to be run on different processors, therefore significantly reducing

the computation time. However, MC method has also received some criti-

cism.One common criticism is that he method is computationally intensive

and might be too slow to be competitive over an analytical solution or

other numerical techniques like trees. Another disadvantage is it may not

incorporate the fat tailed nature of return distributions, as well as things

like autocorrelation.

In this work, we use Monte Carlo method to verify the Asian Option

prices calculated by the CLMR trees.

Finite Difference Method

Finite difference Mehthods value a derivative by solving the differential

equation that the derivative satisfies. The differential equations are converted

into sets of difference equations and are solved iteratively. This is similar to

the trinomial trees method, since the computations also work back from the

end of the derivative maturity to the beginning. In fact, tree based methods,

if suitably parameterized, are a special case of the explicit finite difference

12



method. These type of methods can solve derivative pricing problems that

have, in general, the same level of complexity as those problems solved by

tree approaches, but, given their relative complexity, are usually employed

only when other approaches are inappropriate. Furthermore, like tree-based

methods, they are limited in terms of the number of underlying variables,

i.e. multiple dimensions, they can handle.

The remaining parts are arranged as follow. In Chapter 2, we present

the CLMR trees for the European options under the regime-switching jump-

diffusion models, prove the high-order equivalence with the perturbed FDMs,

and prove the convergence rates of CLMR trees and perturbed FDMs. In

addition, we make a remark on the relation between CLMR trees and the

multinomial trees of J.X. Jiang and Nguyen (2016). In Chapter 3, the

CLMR trees are developed to solve the Asian option pricing under the

regime-switching jump-diffusion models. In Chapter 4, numerical results

are given to verify the convergence rates of the CLMR trees and perturbed

FDMs, make a comparison of the CLMR trees with the multinomial trees of

J.X. Jiang and Nguyen (2016). Conclusions are given in the final Chapter.

13



Chapter 2

CLMR trees for European

options

In this section, we will prove the equivalence between the CLMR trees of

M. Costabile and Russo (2014) and the explicit perturbed FDMs for the

option pricing under regime-switching jump-diffusion model (1.1), and the

convergence rates of the perturbed FDMs and the CLMR trees.

Here we introduce the multinomial recombining tree of M. Costabile

and Russo (2014) for the European option with the price of the underlying

asset following the regime-switching jump-diffusion model (1.1). For ease of

exposition, we only study the case of two regimes, i.e., D = {0, 1}, where

regime 0 is the high volatility state and regime 1 is the low volatility one.

The algorithm is easily applicable to the case of more than two regimes.

Denote the length of the time steps as ∆t = T/n, with T being maturity

date, and βl = εl − λlml for all l ∈ D. Firstly we start our process at node

14



(0, 0) and the asset has logarithm value X(0, 0) = 0. Then for every regime,

the logarithm values of the asset price return at each node j at the i-th time

are all the same, i.e., X(i, j) = iβ0∆t+ j∆y, ∆y := σ̄
√

∆t and we choose

σ̄ =
√

3/2σ0 where σ0 is the asset volatility in regime 0. The successor

points at time (i+ 1)∆t are X(i+ 1, j + x) = (i+ 1)β0∆t+ (j + x)∆y with

x = −d, . . . , u, where d = max{dl : l ∈ D} and u = max{ul : l ∈ D}, and

dl, ul are the smallest integer numbers satisfying Fl(β0∆t+ (−dl + 0.5)∆y) < ε,

1−Fl(β0∆t+ (ul − 0.5)∆y) < ε,
(2.1)

where Fl(x) =

∫ x

−∞
fl(z)dz is the cumulative distribution function of Z l

i , ε is

a tolerance level by which the number of nodes at each time step is bounded.

Note that u and d are independent of X(i, j).

Moreover, the probabilities corresponding to the prices’ movement are

ql(x) =



dFl(1)λl∆t+ πul (1− λl∆t), if x = 1,

dFl(0)λl∆t+ πml (1− λl∆t), if x = 0,

dFl(−1)λl∆t+ πdl (1− λl∆t), if x = −1,

dFl(x)λl∆t, otherwise,

(2.2)

where

dFl(x) := P{Z l
i = x∆y} (2.3)

= Fl(β0∆t+ (x+ 0.5)∆y)−Fl(β0∆t+ (x− 0.5)∆y), x = 0,±1,±2, . . . ,±M,

where M is a sufficiently large positive integer such that the probability

dFl(x) = P{Z l
i = x∆y} is extremely small.

15



Figure 2.1: The approximation of the process (1.1) at the first time step in regime 0

Furthermore, for regime 0, we assign

πu0 = πm0 = πd0 = 1/3, (2.4)

which guarantees that the discrete approximating process has the same

local mean and the same local variance of the diffusion component in the

continuous process.

16



As for regime 1, the probabilities are

πu1 =
σ2

1∆t+ (β1 − β0)2(∆t)2 + (β1 − β0)∆t∆y

2(∆y)2
, (2.5)

πm1 = 1− σ2
1∆t+ (β1 − β0)2(∆t)2

(∆y)2
, (2.6)

πd1 =
σ2

1∆t+ (β1 − β0)2(∆t)2 − (β1 − β0)∆t∆y

2(∆y)2
. (2.7)

The multinomial value of European options with maturity T for regime 0

and regime 1 can be recursively calculated by, for i = 0, 1, . . . , n− 1,

V̂l(i, j) = e−rl∆t
1∑
c=0

plc

[
[πuc (1− λc∆t) + λc∆t dFc(j + 1)]V̂c(i+ 1, j + 1)

+[πmc (1− λc∆t) + λc∆t dFc(j)]V̂c(i+ 1, j)

+[πdc (1− λc∆t) + λc∆t dFc(j − 1)]V̂c(i+ 1, j − 1)

+
∑

k 6=1,0,−1

λc∆t dFc(k)V̂c(i+ 1, j + k)
]

(2.8)

with the European option’s payoff

V̂l(n, j) = max(S0 exp(X(n, j))−K, 0) (2.9)

for j = −nd, . . . , 0, . . . , nu, in which plc is the transition probability from

regime state l to state c for the time interval with length ∆t. It is given by

Taylor’s expansion

(plc)l,c∈D = eA∆t = I +
∞∑
c=1

(∆t)cAc/c!, (2.10)

where I is the identity matrix and A is the generator matrix of the Markov

chain process. Thus, we have

pll = 1 + all∆t+O
(
(∆t)2

)
, (2.11)

plc = alc∆t+O
(
(∆t)2

)
, l 6= c. (2.12)
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where alc ∈ A.

Remark 0.1. Jiang et al. in J.X. Jiang and Nguyen (2016) also establish a

multinomial tree method (MTM) for pricing options under regime-switching

jump-diffusion models. In this section, we provide a comparison between

CLMR trees and the MTM of J.X. Jiang and Nguyen (2016):

Vl(i, j) = e−rl∆t
m∑
c=1

plc

[ ∑
τ=u,m,d

(πτl (1− λl∆t) + λl∆tdFl(kτ ))Vl(i+ 1, j + kτ )

+
∑

k 6=ku,km,kd

λl∆tdFkVc(i+ 1, j + k)
]
. (2.13)

Both the two trees are needed to capture the diffusion and the jump compo-

nent. In CLMR trees the movements of the underlying asset price include

both the local drift and the local volatility. However, in Liu’s tree, we

don’t distinguish whether the change comes from a local change (due to the

continuous component) or from a jump (due to the occurring of a jump).

The ways of dealing with the regime switching of the two trees are

different. In Liu’s tree, as a result of efficiently capturing the possible mean-

reverting feature of the model, we should choose −∞ ≤ xl,1 ≤ xl,2 ≤ +∞

as the lower bound and upper bound for the state variable X when the

regime is l. Depending on the value x taken by Xi, one of the three cases

is chosen for Xi+1: x
l,1 ≤ x ≤ xl,2, x ≤ xl,1 and xl,2 ≤ x. The probabilities

πul , πml and πdl are different in these three cases. Hence the tree has at most

m(2Ki+ 1) nodes at the i-th time step, where K := max1≤l≤m ki. CLMR

trees approximate the diffusion part by a trinomial tree and add branches

to capture jumps, too. However, CLMR trees are mainly based on the

18



lattice for the highest volatility regime, and adjust the probability measure

to describe the underlying assets in the other regime. For the other regimes,

instead of generating new lattices, it simply adjusts branching probabilities

as suggested by Yuen and Yang (2010). That means instead of changing the

volatility if the regime state changes, it changes the risk-neutral probability,

so the multinomial tree is still a combined one. That means when using

CLMR trees to deal with the regime switching, we face less nodes than

Jiang, Liu and Nguyen’s trees. Hence the computational time of CLMR tree

will be shorter than that of the Jiang, Liu and Nguyen’s trees.

What’s more, as for the number of nodes at each time step, CLMR trees

require a tolerance level ε so that we can obtain the number of up and down

movements. However, Jiang, Liu and Nguyen’s tree only needs us directly

to give the number of moves ki, which may cause the artificial errors. Thus

CLMR trees are more precise than the Jiang, Liu and Nguyen’s trees in

respect of accuracy.

Yuen and Yang (2009) also study the European option under the regime-

switching jump-diffusion models. But the method investigated by Yuen and

Yang (2009) is the trinomial tree not the multinomial tree.
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Since we are supposed to prove the equivalence between CLMR trees

and perturbed FDMs, we denote xj ≡ j∆y. Then (2.8) can be re-written as

V̂l(i, xj) = e−rl∆t
1∑
c=0

plc

[
[πuc (1− λc∆t) + λc∆t dFc(j + 1)]V̂c(i+ 1, xj+1)

+[πmc (1− λc∆t) + λc∆t dFc(j)]V̂c(i+ 1, xj)

+[πdc (1− λc∆t) + λc∆t dFc(j − 1)]V̂c(i+ 1, xj−1)

+
∑

k 6=1,0,−1

λc∆t dFc(k)V̂c(i+ 1, xj+k)
]

= e−rl∆t
1∑
c=0

plc

[
(1− λc∆t)

·
(
πuc V̂l(i+ 1, xj+1) + πmc V̂l(i+ 1, xj) + πdc V̂l(i+ 1, xj+1)

)
+

M∑
k=−M

λc∆t dFc(k)V̂l(i+ 1, xk)
]

(2.14)

with V̂l(n, xj) = f(exj) (payoff function) for j = −d,−d + 1, . . . , u − 1, u;

i ∈ D and M is a sufficiently large positive integer.

Following I. Florescu and Sewell (2013), the value of European option

V̂ (x, t, l) with maturity date T , payoff f(ex) and regime state l satisfies the

following partial integro-differential equations (PIDEs)

∂V̂ (x, t, l)

∂t
+
σ2
l

2

∂2V̂ (x, t, l)

∂x2
+ (bl − λlκl)

∂V̂ (x, t, l)

∂x
− (rl + λl)V̂ (x, t, l)

+
1∑
c=0

alcV̂ (x, t, c) + λl

∫ ∞
−∞

V̂ (x+ y, t, l) dFl(y) = 0, (2.15)

with terminal condition V̂ (x, T, i) = f(ex), i ∈ D.

Denote ∆y = xj+1 − xj and V̂ i
j (l) ≈ V̂ (xj, ti, l). Then the explicit

finite difference method for solving the PIDEs (2.15) is given by, for i =
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0, 1, . . . , n− 1,

V̂ i+1
j (l)− V̂ i

j (l)

∆t
+
σ2
l

2

V̂ i+1
j+1 (l)− 2V̂ i+1

j (l) + V̂ i+1
j−1 (l)

(∆y)2
(2.16)

+

(
((εl − λlml)− (ε0 − λ0m0))2∆t

2σ̄2

)
V̂ i+1
j+1 (l)− 2V̂ i+1

j (l) + V̂ i+1
j−1 (l)

(∆y)2

+ ((εl − λlml)− (ε0 − λ0m0))
V̂ i+1
j+1 (l)− V̂ i+1

j−1 (l)

2∆y
− (rl + λl)V̂

i
j (l)

+
1∑
c=0

alcV̂
i+1
j (c) + λl

M∑
k=−M

V i+1
j+k (l) dFl(k) = 0,

with V̂ n
j (l) = f(exj) for j = −d,−d + 1, . . . , u − 1, u; l ∈ D. Since (2.16)

contains a perturbation term, it’s not a standard FDM. In this paper, we

call it perturbed FDM. And in J. Ma and Zhu (2018) it has been shown

that the convergence rate of perturbed FDM is the same as the standard

FDM in the following. Note that we have used the composite mid-point

quadrature rules to discretize the integrals in PIDEs (2.15) based on the

mesh nodes y = xk, k = 0,±1,±2, . . . ,±M .

Theorem 0.1. For the European option pricing with regime-switching

jump-diffusion model (1.1), the explicit perturbed FDM (2.16) is equivalent

to the CLMR tree by neglecting high-order term O((∆t)2) under condition

((β1 − β0)∆t∆y ≤ σ2
1∆t+ (β1 − β0)2(∆t)2 ≤ (∆y)2. (2.17)

Proof. With the set-up ∆y = σ̄
√

∆t, we rewrite the perturbed FDM (2.16)
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into the following form

V̂ i+1
j (l)− V̂ i

j (l)

∆t
+
σ2
l

2

V̂ i+1
j+1 (l)− 2V̂ i+1

j (l) + V̂ i+1
j−1 (l)

(σ̄
√

∆t)2
(2.18)

+

(
((εl − λlml)− (ε0 − λ0m0))2∆t

2σ̄2

)
V̂ i+1
j+1 (l)− 2V̂ i+1

j (l) + V̂ i+1
j−1 (l)

(σ̄
√

∆t)2

+ ((εl − λlml)− (ε0 − λ0m0))
V̂ i+1
j+1 (l)− V̂ i+1

j−1 (l)

2σ̄
√

∆t
− (rl + λl)V̂

i
j (l)

+
1∑
c=0

alcV̂
i+1
j (c) + λl

M∑
k=−M

V i+1
j+k (l) dFl(k) = 0,

Then we have the recursively form:

V̂ i
j (l) =

1

1 + (rl + λl)∆t

{[ σ2
l

2(σ̄)2
+

√
∆t

2σ̄

(
(εl − λlml)− (ε0 − λ0m0)

)
+

((εl − λlml)− (ε0 − λ0m0))2∆t

2σ̄2

]
V̂ i+1
j+1 (l)

+
[
1− σ2

l

(σ̄)2
− ((εl − λlml)− (ε0 − λ0m0))2∆t

(σ̄)2

]
V̂ k+1
j (l)

+
[ σ2

l

2(σ̄)2
−
√

∆t

2σ̄

(
(εl − λlml)− (ε0 − λ0m0)

)
+

((εl − λlml)− (ε0 − λ0m0))2∆t

2(σ̄)2

]
V̂ i+1
j−1 (l)

+ ∆t
1∑
c=0

alcV̂
i+1
j (c) + λl∆t

M∑
k=−M

V̂ i+1
j+k (l) dFl(k)

}
, l ∈ D, (2.19)

with V̂ n
j (i) = f(exj) for j = −d,−d+ 1, . . . , u− 1, u; i ∈ D.

Using (2.11), (2.12) and the relation
∑1

c=0 alc = 0 for l ∈ D, the CLMR
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trees (2.14) is rewritten as

V̂l(i, xj) = e−rl∆t(1− λl∆t)

[
πul V̂l(i+ 1, xj+1) + πml V̂l(i+ 1, xj) + πdl V̂l(i+ 1, xj−1)

+∆t
1∑
c=0

alc

[
πul V̂c(i+ 1, xj+1) + πml V̂c(i+ 1, xj) + πdl V̂c(i+ 1, xj−1)

] ]

+e−rl∆tλl∆t
M∑

k=−M

V̂l(i+ 1, xj+k) dFl(k) +O((∆t)2). (2.20)

The Taylor’s expansion gives that

e−rl∆t = 1− rl∆t+O((∆t)2).

Therefore we have

e−rl∆t(1− λl∆t) [1 + (rl + λl)∆t] = 1− r2
l (∆t)

2 − λl(rl + λl)(1− rl∆t)(∆t)2 +O((∆t)2)

= 1 +O((∆t)2).

So

e−rl∆t(1− λl∆t) =
1

1 + (rl + λl)∆t
+O((∆t)2). (2.21)

For regime 0,on one hand, we insert (2.4) and (2.21) into (2.20), we have

V̂0(i, xj) =
1

1 + (r0 + λ0)∆t

{
1

3
V̂0(i+ 1, xj+1) +

1

3
V̂0(i+ 1, xj) +

1

3
V̂0(i+ 1, xj−1)

+ ∆t
1∑
c=0

a0cV̂c(i+ 1, xj) + λ0∆t
M∑

k=−M

V̂0(i+ 1, xj+k) dF0(k)

}
+ O((∆t)2). (2.22)
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On the other hand, we can rewrite (2.19) with σ̄ =
√

3/2σ0:

V̂ i
j (0) =

1

1 + (r0 + λ0)∆t

{
1

3
V̂ i+1
j+1 (0) +

1

3
V̂ i+1
j (0) +

1

3
V̂ i+1
j−1 (0)

+ ∆t
1∑
c=0

a0cV̂
i+1
j (c) + λ0∆t

M∑
k=−M

V̂ i+1
j+k (0) dF0(k)

}
.

As for regime 1, we update (2.5), (2.6) and (2.7) as

πu1 =
σ2

1∆t+ ((ε1 − λ1m1)− (ε0 − λ0m0))2(∆t)2 + ((ε1 − λ1m1)− (ε0 − λ0m0))∆t∆y

2(∆y)2
,

πm1 = 1− σ2
1∆t+ ((ε1 − λ1m1)− (ε0 − λ0m0))2(∆t)2

(∆y)2
,

πd1 =
σ2

1∆t+ ((ε1 − λ1m1)− (ε0 − λ0m0))2(∆t)2 − ((ε1 − λ1m1)− (ε0 − λ0m0))∆t∆y

2(∆y)2
.

What’s more, substituting ∆y = σ̄∆t and the above formulas into (2.20),

we get

V̂1(i, xj) =
1

1 + (r1 + λ1)∆t

{[ σ2
1

2(σ̄)2
+

√
∆t

2σ̄

(
(ε1 − λ1m1)− (ε0 − λ0m0)

)
+

((ε1 − λ1m1)− (ε0 − λ0m0))2∆t

2σ̄2

]
V̂1(i+ 1, xj+1)

+
[
1− σ2

1

σ̄2
− ((ε1 − λ1m1)− (ε0 − λ0m0))2∆t

σ̄2

]
V̂1(i+ 1, j)

+
[ σ2

1

2σ̄2
−
√

∆t

2σ̄

(
(ε1 − λ1m1)− (ε0 − λ0m0)

)
+

((ε1 − λ1m1)− (ε0 − λ0m0))2∆t

2σ̄2

]
V̂1(i+ 1, xj−1) (2.23)

+ ∆t
1∑
c=0

a1cV̂c(i+ 1, xj) + λ1∆t
M∑

k=−M

V̂1(i+ 1, xj+k) dF1(k)

}
+O((∆t)2),

with V̂l(n, xj) = f(exj) j = −d,−d+ 1, . . . , u− 1, u; To ensure probability

(2.5)-(2.7) are nonnegative, it requires that (2.17) holds true. Comparing

(2.23) with (2.19) completes the proof. �
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Theorem 0.2. Set ∆y = σ̄
√

∆t. Then under condition (2.17), the CMLR

tree is stable.

Proof. From the theory for FDM (see Jiang (2005)), we know that both

σ̄2∆t

∆y2
≤ 1, (2.24)

and condition (2.17) are required to guarantee the stability of the FDM

(2.19) and thus the stability of the CLMR trees as they are equivalent (see

Theorem 0.1). In fact condition (2.24) is always satisfied as we have already

set ∆y = σ̄
√

∆t. �

Now we present the convergence rates of perturbed FDMs and CLMR

trees for pricing the European option under state-dependent switching rate

model (1.1).

Theorem 0.3. Assume the payoff function f is continuous. Let

γij(l) := V̂ (xj, ti, l)− V̂ i
j (l), γi(l) :=

(
γi−d(l), . . . , γ

i
u(l)
)′

ηij(l) := V̂ (xj, ti, l)− V̂l(i, xj), ηi(l) :=
(
ηi−d(l), . . . , η

i
u(l)
)′
.

Then under the set-up ∆y = σ̄
√

∆t and (2.17), the convergence rates of

the perturbed FDM (2.18) at time ti for pricing European option under

regime-switching jump-diffusion model (1.1) are estimated by

‖γi(l)‖∞ := max
j
|γij(l)| = |O(∆t)|, i = 0, 1, . . . , n− 1; l ∈ D, (2.25)

and the convergence rates of the CLMR are given by

‖ηi(l)‖∞ := max
j
|ηij(l)| = |O(∆t)|, i = 0, 1, . . . , n− 1; l ∈ D. (2.26)
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Proof. The proof of the perturbed FDM’s convergence rates (2.25) is similar

to the Theorem 3.3 in Ma and Zhu (2015).

Now we prove (2.26). To this end, we re-write the error of the CLMR

into the following form

ηij(l) = [V̂ (xj, ti, l)− V̂ i
j (l)] + [V̂ i

j (l)− V̂l(i, xj)]

= γij(l) + χij(l), (2.27)

where χij(l) := V̂ i
j (l)− V̂l(i, xj). Easily, we derive that

χij(l) =
1

1 + (rl + λl)∆t

{[ σ2
l

2σ̄2
+

√
∆t

2σ̄

(
εl − λlml

)
+

(εl − λlml)
2∆t

2σ̄2

]
χi+1
j+1(l)

+
[
1− σ2

l

σ̄2
− (εl − λlml)

2∆t

σ̄2

]
χi+1
j (l) (2.28)

+
[ σ2

l

2σ̄2
−
√

∆t

2σ̄

(
εl − λlml

)
+

(εl − λlml)
2∆t

2σ̄2

]
χi+1
j−1(l)

+∆t
1∑
c=0

alcχ
i+1
j (c) + λl∆t

M∑
k=−M

χi+1
j+k(l) dFl(k)

}
+ |O((∆t)2)|, l ∈ D.

Let χi(l) :=
(
χi−d(l), . . . , χ

i
u(l)
)′

. Since alc > 0 for l 6= c and all < 0, we have

‖χi(l)‖∞ ≤ 1

1 + (rl + λl)∆t

[
(1− all∆t+ λl∆t)‖χi+1(l)||∞ +

1∑
c=0,c 6=l

alc∆t‖χi+1(c)‖∞
]

+|O((∆t)2)|, l ∈ D. (2.29)

Denote vector Ψi = (‖χi(0)‖∞, ‖χi(1)‖∞)
′
. Then (2.29) can be re-written

into a vector form

Ψi ≤ DΨi+1 + |O((∆t)2)|1, (2.30)

where 1 = (1, 1)′ is a 2-dimension vector and D is a 2× 2 matrix

D =

 1− (a00 − λ0)∆t a01∆t

a10∆t 1− (a11 − λ1)∆t

 .
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Since each element of matrix D is nonnegative, iterating of inequality (2.30)

gives that

Ψi ≤ Dn−iΨn +

[
I +

n−i−1∑
m=1

Dm

]
|O((∆t)2)|1, (2.31)

where I is a 2× 2 identity matrix and

I +
n−i−1∑
m=1

Dm

=

 (n− i)− (n−i)(n−i−1)
2

(a00 − λ0)∆t (n−i)(n−i−1)
2

a01∆t

(n−i)(n−i−1)
2

a10∆t (n− i)− (n−i)(n−i−1)
2

(a11 − λ1)∆t


+

 |O((∆t)2)| |O((∆t)2)|

|O((∆t)2)| |O((∆t)2)|

 .
Since at the terminal time tn ≡ T the CLMR value equals the true option

value, we know that Ψn is a zero vector. Therefore from (2.31) using

∆t = T/n, we obtain that

‖χi(l)‖∞ = |O(∆t)|, i = 0, 1, . . . , n− 1; l ∈ D. (2.32)

Therefore, from (2.27), using triangle inequality and estimations (2.25) and

(2.32), we obtain that

‖ηi(l)‖∞ ≤ ‖γi(l)‖∞ + ‖χi(l)‖∞ = |O(∆t)|.

Thus the proof of this theorem is complete. �
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Chapter 3

CLMR trees for Asian options

In this section, we apply the CLMR trees to price Asian option when the

price of underlying asset follows a very general state-dependent regime-

switching jump-diffusion model (1.1) for which the tree methods have never

been studied in the literature. As we want to price the Asian option, the

average stock price plays a role that makes the pricing of the Asian option

more complex. The average security price depends on the path and can take

many different values that cannot be reflected by the tree nodes directly.

This causes the pricing of this strong path-dependent option to be a difficult

problem. When pricing the Asian options, we are going to use the idea of

Hull and White (1993) involving representative sets of values. The price of

the Asian option with the average stock price that equals to representative

sets of values is calculated. When pricing level is not the representative sets

of values, the linear approximation is used to obtain the option price.

We establish the multinomial recombing tree based on N time steps of
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length ∆t = T/N where T is the maturity date. And we study the case

of M + 1 regimes i.e., D = {0, 1, . . . ,M}. And just like in section 2, we

consider the case of 2 regimes i.e., D = {0, 1}. The algorithm is easily

applicable to the case of more than two regimes. At time step tk, there are

(u + d)k + 1 nodes in the lattice, where u and d are numbers of up-move

and down-move which can be calculated by (2.1), the nodes are counted

from the lowest stock price level. Sk,n denotes the stock price of the n-th

node at time step tk and in our tree. We let S0 = S0,0 be the initial stock

price. Denote jump extent a = exp(σ̄
√

∆t) and b = a−1. From CLMR tree,

we can write the stock price at k time step in the form of Sk,i = S0ekβ0∆tai,

i = −dk,−dk + 1, . . . , uk. Then we can calculate the representative sets of

values by the following method.

Instead of calculating the nodal value directly, we use a recursive method

in Yuen and Yang (2012) to find the highest average and lowest average of

the stock prices on each node of the CLMR trees. We consider an arbitrage

node (k, n), which represents the n-th node counted from the lowest stock

price at time step tk. At this node, one principle to find the highest average

stock price is that on condition that reaching the aimed node, the stock

price should increase with the largest extent au as early as possible and as

much as possible. For example, suppose u = d = 2, and if we want to find

the highest average stock price at node (3, 12), we should go up with the

extent a2 at time step t1 and t2. Then go up with the extent a at time step

t3. And similarly, when the average stock price achieves its lowest average

stock price, the stock price should decrease with the largest extent bd as
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early as possible and as much as possible.

We all know if n equals 0 or (u+ d)k, that means the stock will increase

with extent au or decrease with extent bd all the time, which implies the

highest average stock price will be the same as the lowest average stock

at this node. Let AShigh(k, n) and ASlow(k, n) be the highest and lowest

average stock price at node (k, n). And we assign the weight of the first

node and the last node a half of others. From Yuen and Yang (2012) we

can know that, compared with simple average, using this kind of adjusted

average can improve the consistency of approximating. Denote w = eβ0∆t.

Then since if n equals 0 or (u+ d)k, in all time the maximum average and

minimum average stock price level will be the same, i.e.,

AShigh(k, 0) = ASlow(k, 0) =
S0

k + 1

1− (wbd)k+1

1− wbd
, (3.1)

AShigh(k, (u+ d)k) = ASlow(k, (u+ d)k) =
S0

k + 1

(wau)k+1 − 1

wau − 1
.(3.2)

If n does not equal 0 and (u+d)k, the path of the stock price resulting in

the lowest average comes from (k − 1, n− u− d) just before reaching (k, n),

and the highest average comes from (k − 1, n). Then we can recursively

calculate the highest average and lowest average of an arbitrage node.

However, there still is a problem of this method: at node (k, n), if n < u+ d

or n > (u + d)(k − 1), then at time step tk−1, there does not exist nodes

(k−1, n−u−d) and (k−1, n). For example, if n = 1, obviously 1−u−d < 0

and there does not exist node (k − 1, 1 − u − d) in our CLMR trees; and

if n = (u + d)k − 1, similarly when time step is tk−1, there does not exist

node (k − 1, (u + d)k − 1) in our trees, either. Thus we should deal with
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this phenomenon specially, and we have:

ASlow(k, p) = ASlow(k, 0) +
S0

k + 1
bdkwk(ap − 1), (3.3)

AShigh(k, p) = b−pASlow(k, p) +
S0

k + 1

(
(1− b−p)(wkbdk−p + 1)

)
,(3.4)

AShigh(k, (u+ d)k − q) = AShigh(k, (u+ d)k)

+
S0

k + 1
aukwk(bq − 1), (3.5)

ASlow(k, (u+ d)k − q) = a−qAShigh(k, (u+ d)k − q)

+
S0

k + 1

(
(1− a−q)(wkauk−q + 1)

)
, (3.6)

where 0 < p < u+ d and 0 < q < u+ d.

After solving the above problem, we can have the recursive formula for

the arbitrary node (k, n) when u+ d ≤ n ≤ (u+ d)(k − 1):

ASlow(k, n) =
1

k + 1

[
kASlow(k − 1, n− u− d) + S0w

k−1(an−u−dk + wan−dk)
]
,(3.7)

AShigh(k, n) =
1

k + 1

[
kAShigh(k − 1, n) + S0w

k−1(an−d(k−1) + wan−dk)
]
. (3.8)

Then we can calculate the number of the representative values of each node

based on the idea of representative value in Hull and White (1993). The

representative levels are taken as the form S0e
mh, where m is an integer.

We first find the largest and smallest representative values at each node,

Mmin(k, n) = bln(ASlow(k, n)/S0)/hc , (3.9)

Mmax(k, n) = dln(AShigh(k, n)/S0)/he . (3.10)

We can see that Mmin(k, n) and Mmax(k, n) are the minimum and the

maximum value of m, and b·c and d·e are the floor and the ceiling integer
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functions, respectively. Since we know Mmin(k, n) and Mmax(k, n), we know

the range of m at each node (k, n). Then we have the average stock price at

each node which equals to all the representative values S0e
mh.

In our recombing trees, instead of changing the volatility if the regime

state changes, we change the risk-neutral probability, so the multinomial

tree is still a combined one and all the regimes share the same lattice. We

assume there are 2 regimes, then at each node there are 2 different derivative

values. Asian option value depends on the path of the stock price and we

use representative value to summarize it. Let V k
n,m,i be the value of Asian

options at the n-th node of time step tk with the representative level m

when the regime is i, and we let V k(n, s, i) be the value of the Asian options

with average stock price s. Then by definition, V k
n,m,i = V k(n, S0e

mh, i).

Therefore, on the delivery day, the call option price with strike price K

is

V N
n,m,i = (S0e

mh −K)+. (3.11)

The transition probability pij is given in Section 2.

Since the real average price might not be at the representative level, we

can use a linear approximation:

Let Ākn,m,i be the average stock price value of the n-th node in regime i

of time tk, and m = bln(Ākn,m,i)/hc which represents the representative level.
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Then we have the interpolation option value

V
k
(n, Ākn,m,i, i) =

Ākn,m,i − S0e
mh

S0emh(eh − 1)
V k(n, S0e

(m+1)h, i)

+
S0e

(m+1)h − Ākn,m,i
S0emh(eh − 1)

V k(n, S0e
mh, i) (3.12)

=
Ākn,m,i − S0e

mh

S0emh(eh − 1)
V k
n,m+1,i +

S0e
(m+1)h − Ākn,m,i
S0emh(eh − 1)

V k
n,m,i.

With the derivative price at delivery day we can use the following CLMR

trees formulas to calculate the Asian option price recursively:

V k
n,m,i = V k(n, S0e

mh, i)

= e−ri∆t
M∑
j=0

pij

[[
πuj (1− λj∆t) + λj∆t dFj(1)

]
·V k+1

(
n+ d+ 1,

kS0e
mh + Sk,nwa

k + 1
, j
)

(3.13)

+
[
πmj (1− λj∆t) + λj∆t dFj(0)

]
V
k+1
(
n+ d,

kS0e
mh + Sk,nw

k + 1
, j
)

+
[
πdc (1− λj∆t) + λj∆t dFj(−1)

]
V
k+1
(
n+ d− 1,

kS0e
mh + Sk,nwb

k + 1
, j
)

+
∑

γ 6=1,0,−1

λj∆t dFj(γ)V
k+1
(
n+ d+ γ,

kS0e
mh + Sk,nwa

γ

k + 1
, j
)]
.

That is the application of CMLR trees to the Asian (fixed-strike) option

pricing.

Remark 0.1. Yuen and Yang (2012) construct a trinomial tree to price the

Asian option, and here are the comparison between the Yuen-Yang’s tree

and the CLMR tree. Both the trees are based on the idea of representative

value raised by Hull and White (1993). In order to find the representative

value, CLMR trees use the recursive method of Yuen and Yang (2012).
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However, the Yuen-Yang’s tree aims at pricing Asian option under the regime-

switching model without jump diffusion while the CLMR tree approximates

the diffusion part by a trinomial tree and adds branches to capture the

jumps. Thus CLMR tree can price the option under regime-switching jump-

diffusion model. Therefore, the numbers of the nodes at every time step tk

are different: in the CLMR tree, there are (u+ d)k + 1 nodes at the k-th

time step while in the Yuen-Yang’s tree, there are 2k + 1 nodes at the k-th

time step. Accordingly, when calculating the highest average and lowest

average of the stock prices on an arbitrage node of the CLMR tree, the

CLMR tree should deal with more special nodes than the Yuen-Yang’s tree.

Theorem 0.1. Under condition (2.17), the convergence rate of Asian option

value computed by the CLMR tree model through (3.13) is |O(∆t)|.

Proof. Let V k(n, Ākn,m,i, i) be the be the value of the Asian options with

average stock price Ākn,m,i, let m = ln(Ākn,m,i)/h, and we can denote V k
n,m,i ≡

V k(n, Ākn,m,i, i). First we define the local interpolation error:

ξkn,m,i := |V k(n, Ākn,m,i, i)− V
k
(n, Ākn,m,i, i)|, k = 0, 1, . . . , N − 1; i ∈ D,

(3.14)

The Taylors expansion gives that

V k
n,m+1,i = V k

n,m,i +
∂V k

n,m,i(τ)

∂(S0eτh)
(S0e

(m+1)h − Ākn,m,i) +
1

2

∂2V k
n,m,i(τ)

∂(S0eτh)2
(S0e

(m+1)h − Ākn,m,i)2

V k
n,m,i = V k

n,m,i +
∂V k

n,m,i(τ)

∂(S0eτh)
(S0e

mh − Ākn,m,i) +
1

2

∂2V k
n,m,i(τ)

∂(S0eτh)2
(S0e

mh − Ākn,m,i)2.

where τ ∈ [m,m+ 1].
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Insert the above equation and (3.12) into (3.14), we have:

ξkn,m,i = |
(S0e

(m+1)h − Ākn,m,i)(Ākn,m,i − S0e
mh)

2

∂2V k
n,m,i(τ)

∂(S0eτh)2
| (3.15)

From P. A. Forsyth and Zvan (2002) we can assume that for any i, k, n,

there exists a number M , which is large enough and independent of ∆t,

such that |∂
2V k

n,m,i(τ)

∂(S0exh)2
| ≤ M ; and there exists A∗ such that the effect of

interpolation errors induced at S0e
τh > A∗ is negligible at t0. Then (3.15)

can be bounded as

ξkn,m,i ≤ |
(S0e

(m+1)h − Ākn,m,i)(Ākn,m,i − S0e
mh)

2
M |,

≤ |(S0e
(m+1)h − S0e

mh)2

2
M |,

≤M(A∗)2(1− e−h)2

(3.16)

At the k-th step, let the real value of Asian option of regime i ,node n

and representative value m be Rk
n,m,i, then we have
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Rk
n,m,i = e−ri∆t

M∑
j=0

pij

[[
πuj (1− λj∆t) + λj∆t dFj(1)

]
·Rk+1

(
n+ d+ 1,

kS0e
mh + Sk,nwa

k + 1
, j
)

(3.17)

+
[
πmj (1− λj∆t) + λj∆t dFj(0)

]
R
k+1
(
n+ d,

kS0e
mh + Sk,nw

k + 1
, j
)

+
[
πdc (1− λj∆t) + λj∆t dFj(−1)

]
R
k+1
(
n+ d− 1,

kS0e
mh + Sk,nwb

k + 1
, j
)

+
∑

γ 6=1,0,−1

λj∆t dFj(γ)R
k+1
(
n+ d+ γ,

kS0e
mh + Sk,nwa

γ

k + 1
, j
)]

+interpolation error + truncation error.

Let Ek
n,m,i = Rk

n,m,i − V k
n,m,i, we have

Ek
n,m,i = e−ri∆t

M∑
j=0

pij

[[
πuj (1− λj∆t) + λj∆t dFj(1)

]
·Ek+1

(
n+ d+ 1,

kS0e
mh + Sk,nwa

k + 1
, j
)

(3.18)

+
[
πmj (1− λj∆t) + λj∆t dFj(0)

]
E
k+1
(
n+ d,

kS0e
mh + Sk,nw

k + 1
, j
)

+
[
πdc (1− λj∆t) + λj∆t dFj(−1)

]
E
k+1
(
n+ d− 1,

kS0e
mh + Sk,nwb

k + 1
, j
)

+
∑

γ 6=1,0,−1

λj∆t dFj(γ)E
k+1
(
n+ d+ γ,

kS0e
mh + Sk,nwa

γ

k + 1
, j
)]

+interpolation error + truncation error.

And from (3.12) we have:

E
k
(n, Ākn,m,i, i) =

Ākn,m,i − S0e
mh

S0emh(eh − 1)
Ek
n,m+1,i +

S0e
(m+1)h − Ākn,m,i
S0emh(eh − 1)

Ek
n,m,i.(3.19)

Define

‖Ek(i)‖∞ := max
n,m
|En,m,i|, k = 0, 1, . . . , N − 1; i ∈ D, (3.20)
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Then from (3.18), we have

‖Ek(i)‖∞ = e−ri∆t
M∑
j=0

pij

[[
πuj (1− λj∆t) + λj∆t dFj(1)

]
‖Ek+1(j)‖∞(3.21)

+
[
πmj (1− λj∆t) + λj∆t dFj(0)

]
‖Ek+1(j)‖∞

+
[
πdc (1− λj∆t) + λj∆t dFj(−1)

]
‖Ek+1(j)‖∞

+
∑

γ 6=1,0,−1

λj∆t dFj(γ)‖Ek+1(j)‖∞
]

+interpolation error + truncation error

≤
M∑
j=0

pij‖Ek+1(j)‖+ interpolation error + truncation error

=
[
(1 + aii∆t)‖Ek+1(i)‖+ aij∆t‖Ek+1(j)‖

]
(3.22)

+interpolation error + truncation error.

Denote vector Ψi =
(
‖Ek(0)‖∞, ‖Ek(1)‖∞

)′
. Then (3.21) can be re-

written into a vector form

Ψi ≤ DΨi+1 + |O((∆t)2)|1 + interpolation error + truncation error,

(3.23)

where 1 = (1, 1)′ is a 2-dimension vector and D is a 2× 2 matrix

D =

 1 + a00∆t a01∆t

a10∆t 1 + a11∆t

 .
Since each element of matrix D is nonnegative, iterating of inequality (3.23)

gives that

Ψ0 ≤ DnΨn +

[
I +

n∑
m=1

Dm

]
|O((∆t)2)|1

+interpolation error + truncation error, (3.24)
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where I is a 2× 2 identity matrix and

I +
n∑

m=1

Dm

=

 (n− i) + n(n−1)
2

a00∆t n(n−1)
2

a01∆t

n(n−1)
2

a10∆t (n− i) + n(n−1)
2

a11∆t


+

 |O((∆t)2)| |O((∆t)2)|

|O((∆t)2)| |O((∆t)2)|

 .
Since at the terminal time tn ≡ T the CLMR value equals the true option

value, we know that Ψn is a zero vector. Therefore from (2.31) using

∆t = T/n, we obtain that

‖E0‖∞ = |O(∆t)|+ ‖E0‖I + ‖E0‖T . (3.25)

where ‖E0‖I is global interpolation error and ‖E0‖T is global truncation

error. From (3.16), we know

‖E0‖I =
N−1∑
k=0

‖ξkn,m,i‖∞ ≤ NM(A∗)2(1− e−h)2 = |O(
h2

∆t
)| (3.26)

So if we let h = C∆t, C is a constant, we have

‖E0‖I = |O(∆t)|, (3.27)

And from Theorem 2.3, we know

‖E0‖T = |O(∆t)|, (3.28)

Finally, rewrite (3.25) as

‖E0‖∞ = |O(∆t)|+ |O(∆t)|+ |O(∆t)| = |O(∆t)|. (3.29)
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Then we finish the proof.

�

39



Chapter 4

Numerical Results

Example 4.0.1. At first, We use this example to verify the convergence

rates of the CLMR tree. We take the regime-switching jump-diffusion of

Merton type in Costabile et al. M. Costabile and Russo (2014). In table 1,

we report the prices of European call options with maturity T = 1 year in a

two-regime economy for different numbers of time steps N . The risk-free rate

is r = 0.1 in both regimes, while the high-volatility regime is characterized

by σ0 = 0.6 and the low-volatility one by σ1 = 0.2. Other parameters are

taken as: S0 = 10, K = 10, a0,1 = a1,0 = 1, λ0 = λ1 = 7, Z l
k ∼ N(ηl, δl) for

l = 0, 1. The parameters are given as η0 = −0.02, η1 = −0.01125, δ0 = 0.2,

δ1 = 0.15. This example has explicit solution as in M. Costabile and Russo

(2014). The convergence rates are calculated by the commonly used formula

(see e.g., Ma and Zhu (2015)):

Rate = log

∣∣∣∣Error with number of time stepN1

Error with number of time stepN2

∣∣∣∣/ log

(
N2

N1

)
.
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Table 4.1: The convergence rates of the CLMR tree for Example 4.0.1, the exact option
value is 1.8542 for regime 0 and 1.3737 for regime 1.

N
Regime 0 Regime 1

Value Abs Error Rate Value Abs Error Rate
40 1.73608 0.11811 1.1 1.28852 0.08517 1.0
80 1.79871 0.05548 1.0 1.33050 0.04319 1.0
160 1.82734 0.02685 1.1 1.35159 0.02210 1.0
320 1.84126 0.01293 1.4 1.36296 0.01073 1.0
640 1.84927 0.00492 0.9 1.36827 0.00542 0.9
1280 1.85677 0.00256 – 1.37089 0.00280 –

Example 4.0.2. In this example, we consider the at-the-money American

put option under regime-switching jump-diffusion model in Costabile et

al. M. Costabile and Russo (2014). The parameters are taken as: r0 =

r1 = 0.08,σ0 = 0.3,σ1 = 0.1, T = 1, S0 = 40, K = 40, a0,1 = a1,0 = 0.5,

λ0 = λ1 = 5, Z l
k ∼ N(ηl, δl) for l = 0, 1. The parameters are given as

η0 = η1 = −0.025, δ0 = δ1 =
√

0.05. We choose the numerical example in

M. Costabile and Russo (2014) as our benchmark. The exact option value

is 2.9577 for regime 0 and 2.4703 for regime 1. The convergence rates are

calculated by the same formula as Example 4.1.

Table 4.2: The convergence rates of the CLMR tree for Example 4.0.2

N
Regime 0 Regime 1

Value Abs Error Rate Value Abs Error Rate
40 2.97130 0.01360 1.4 2.52493 0.05463 1.0
80 2.96283 0.00513 1.0 2.49846 0.02816 1.0
160 2.96032 0.00262 0.9 2.48474 0.01444 0.9
320 2.95914 0.00144 0.9 2.47815 0.00785 0.8
640 2.95845 0.00075 0.9 2.47470 0.00440 0.9
1280 2.95720 0.00041 – 2.47253 0.00223 –

41



Example 4.0.3. In this example we verify the convergence rates of the

CLMR trees and finite difference methods (FDMs). We consider the Euro-

pean option under the regime-switching jump-diffusion models (1.1) with

two regime economy D = {0, 1}. The interest rates at state 0 and 1 are

r0 = r1 = 0.05, while volatilities are σ0 = 0.25 and σ1 = 0.15 respectively.

The maturity date of the European call option is taken as T = 1, the strike

price K = 100 the initial values of underlying asset S0 = 92. Furthermore,

the generator matrix is taken as

A =

 −0.5 0.5

0.5 −0.5

 ,

or

B =

 −2/3 2/3

1/3 −1/3

 .

The jump diffusion is a double exponential type of Kou Kou (2002) with

regime dependency. The density function fl(z), l = 0, 1, for the double

exponential distribution for the jump sizes is given by:

fl(z) =

 plη1,le
−η1,lz, if z ≥ 0,

(1− pl)η0,le
η0,lz, if z < 0,

(4.1)

where η1,l > 1, η0,l > 0, and 0 < pl < 1. In this case, we have

ml =
(1− pl)η0,l

η0,l + 1
+

plη1,l

η1,l − 1
− 1.

The parameters for the jump density functions are taken as: η0,0 = η0,1 =

3.0775, η1,0 = η1,1 = 3.0365, p0 = p1 = 0.3445. In addition we choose the

intensities λ0 = 5, λ1 = 2.
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From the Table 4.3, we obtain that the convergence rates for both CLMR

trees and perturbed FDMs are about 1. What’s more, the absolute difference

between the option values computed by CLMR trees and perturbed FDMs,

which is denoted by “Diff” in the tables, is decreasing in N with rate 1. All

these results are consistent with the theoretical findings.

Example 4.0.4. In this example we verify the accuracy of the CLMR tree

for pricing arithmetic Asian option. We consider a two-regime economy and

the parameters are the same as Example (4.0.1). In Table 4 - Table 6 we

present the values of in-the money, at-the-money and out-the-money Asian

call option with strike price K = 100.

We also carried out Monte Carlo simulations with 200000 sample paths

and 1000 time step. In Table 7, we report, for selected values of S0, the

mean(the ’MC’ row) and the 95% confidence interval, obtained by taking

average of 10 simulation.

In the following tables, the ’Diff’ columns represent the difference between

the value from CLMR tree and the MC results and the ’Rate’ columns are

calculated by the formula in Example (4.0.1). It is clear that the results in

Table are in good agreement with the Monte Carlo result.

Remark 0.1. In order to asses the performances of the European and

Asian pricing formulas. We can use the data of real world to verify the

model. To estimate the parameters of the model is important. In Andersen

and Andreasen (2000), they proposed a method about fitting the jump

parameters using S&P 500 index. And for regime-switching parameters,
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Table 4.3: Comparisons of CLMR trees and FDMs for pricing European call option
under the regime-switching jump-diffusion model (1.1) for Example 4.0.3.

Regime 0 ( generator A)

N
CLMR FDM

Diff Rate
Value Abs Error Rate Value Abs Error Rate

40 36.75208 0.087849 0.8 36.48706 0.223257 1.0 0.265022 1.0
80 36.83993 0.051961 1.0 36.71031 0.111961 0.8 0.129614 0.9
160 36.89189 0.026296 1.4 36.82227 0.065056 1.4 0.069614 1.2
320 36.91818 0.009677 0.8 36.88733 0.025297 1.0 0.030854 1.0
640 36.92786 0.005482 1.3 36.91263 0.012865 1.0 0.015234 1.0
1280 36.93334 0.002168 – 36.92549 0.006407 – 0.007851 1.1
2560 36.93551 – – 36.93190 – – 0.003612 –

Regime 1 (generator A)

N
CLMR FDM

Diff Rate
Value Abs Error Rate Value Abs Error Rate

40 35.33844 0.067728 1.2 35.21259 0.135188 1.2 0.125855 1.0
80 35.40617 0.030275 0.8 35.34778 0.060515 0.9 0.058395 1.0
160 35.43645 0.016850 0.8 35.40829 0.031354 0.9 0.028155 1.0
320 35.45330 0.009977 1.1 35.43964 0.016951 1.1 0.013651 1.0
640 35.46327 0.004760 0.9 35.45660 0.008161 0.9 0.006677 1.0
1280 35.46803 0.002592 – 35.46476 0.004255 – 0.003276 1.0
2560 35.47062 – – 35.46901 – – 0.001613 –

Regime 0 (generator B)

N
CLMR FDM

Diff Rate
Value Abs Error Rate Value Abs Error Rate

40 36.872847 0.0870587 0.9 36.83927 0.103663 0.9 0.033572 1.0
80 36.959905 0.0463317 0.9 36.94293 0.054781 1.0 0.016967 1.0
160 37.006237 0.0240329 1.0 36.99762 0.028314 1.0 0.008507 1.0
320 37.030270 0.0116572 0.9 37.02603 0.013799 0.9 0.004235 1.0
640 37.041927 0.0065824 0.9 37.03983 0.007236 0.9 0.002113 1.0
1280 37.048159 0.0033689 – 37.04707 0.003915 – 0.001089 1.0
2560 37.051528 – – 37.05098 – – 0.000542 –

Regime 1 (generator B)

N
CLMR FDM

Diff Rate
Value Abs Error Rate Value Abs Error Rate

40 35.45690 0.119247 1.0 35.44267 0.126363 1.0 0.014230 1.0
80 35.57616 0.059672 1.0 35.56904 0.063196 1.0 0.007114 1.0
160 35.63582 0.030125 1.0 35.63223 0.031949 1.0 0.003590 1.0
320 35.66595 0.014865 1.0 35.66418 0.015759 1.0 0.001766 1.0
640 35.68081 0.007623 1.0 35.67994 0.008060 1.0 0.000872 1.0
1280 35.68844 0.003789 – 35.68800 0.004001 – 0.000435 1.0
2560 35.69223 – – 35.69200 – – 0.000223 –
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Ramponi (2012) first used real data to estimate the parameter.

For our model, we can fit the regime-switching jump diffusion model on

a set of observed call prices on the S&P 500 index to get realistic values

for the parameters. The average of the bid and ask Treasury bill discounts

can be used and converted to annualized risk-free rates. As for the dividend

rate q, following Ramponi (2012), it can be estimated by a non linear least

squares algorithm. For the jump parameters and local volatility, we can

follow Andersen and Andreasen (2000)’s method.

Table 4.4: The convergence rates of the CLMR trees for out-the-money Asian call option
with S0 = 60. MC values are 2.6418 for regime 0 and 0.9377 for regime 1.

N
Regime 0 Regime 1

Value Diff Rate Value Diff Rate
20 2.1501 0.4917 1.0 0.6386 0.2991 1.1
40 2.3873 0.2545 1.0 0.7975 0.1402 1.1
80 2.5101 0.1317 1.0 0.8713 0.0664 1.0
160 2.5798 0.062 1.1 0.9034 0.0343 1.0
320 2.6133 0.0285 – 0.9211 0.0166 –

Table 4.5: The convergence rates of the CLMR trees for at-the-money Asian call option
with S0 = 100. MC values are 19.5855 for regime 0 and 14.8243 for regime 1.

N
Regime 0 Regime 1

Value Diff Rate Value Diff Rate
20 18.7257 0.8598 0.9 14.0132 0.8111 1.1
40 19.1366 0.4489 1.0 14.4065 0.4178 1.0
80 19.3579 0.2276 1.1 14.6242 0.2001 0.9
160 19.4831 0.1024 1.0 14.7181 0.1062 1.1
320 19.5334 0.0521 – 14.7768 0.0475 –
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Table 4.6: The convergence rates of the CLMR trees for in-the-money Asian call option
with S0 = 140. MC values are 51.5671 for regime 0 and 48.8914 for regime 1.

N
Regime 0 Regime 1

Value Diff Rate Value Diff Rate
20 50.6716 0.8955 1.0 47.8573 1.0341 1.2
40 51.1104 0.4567 1.0 48.4326 0.4588 1.1
80 51.3302 0.2369 1.1 48.6739 0.2001 0.9
160 51.4481 0.119 1.2 48.7867 0.1047 1.1
320 51.5139 0.0532 – 48.8423 0.0491 –

Table 4.7: The convergence rates of the CLMR trees for fixed strike Asian call option
for Example 4.0.4.

Regime 0 Regime 1

S0 60 100 140 60 100 140

MC 2.6418 19.5855 51.5671 0.9377 14.8243 48.8914

95%CI [2.58,2.70] [19.41,19.76] [51.27,51.86] [0.91,0.97] [14.71,14.94] [48.69,49.10]

Stand Error 0.445 1.266 2.143 0.199 0.824 1.453
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this paper we introduce the regime-switching jump diffusion model and

the multinomial tree method established by M. Costabile and Russo (2014).

We prove the the convergence rates of CLMR tree by establishing the

equivalence of convergence between the multinomial tree model and the

finite difference method for European option pricing. In addition, we compare

the multinomial tree of CLMR M. Costabile and Russo (2014) with the tree

methods proposed by J.X. Jiang and Nguyen (2016). Moreover, we have

extended the CLMR tree to the price of fixed strike Asian option under

the regime-switching jump-diffusion model using the representative value

method in Hull and White (1993). We also prove the convergence rates.

Numerical examples are provided to verify the convergence rates. The option

prices calculated by the CLMR tree model are close to the prices obtained
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through Monte Carlo Method.

5.2 Future Work

In future work, we may focus on how to use the CLMR to hedge the Greeks

like Delta and Gamma. As we all know, for binomial tree, the numerical

Greeks are easy to calculated. For numerical Delta, we have

∆ =
fu − fd
Su − Sd

,

where f is the value of derivative and S is the stock price. For numerical

Gamma, we have

Γ =

fuu−fdd
Suu−Sud

− fud−fdd
Sud−Sdd

(Suu − Sdd)/2

However, under the regime-switching jump diffusion model implies that

the stock index and the money market account do not together form a

complete market, i.e. due to the regime switching risk, the market is

incomplete.

Following H.Yang (2010), assuming there are K regimes, then each of

the derivatives has k price information for the k regimes. Thus if we want to

hedge, we need add K − 1 derivatives to complete the market. Then we can

construct a unique risk neutral transition probability for pricing. However,

after adding K − 1 derivatives, it’s not easy for us to construct the portfolio

to hedge the option due to the complexity of the CLMR tree. So in future,

we may focus on the delta hedging and gamma hedging using this tree and

studying their convergence rate.
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Notes
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Appendix

clear

l=5;

lamda1=7;

lamda2=7;

yita1=-0.02;

yita2=-0.01125;

sigma1=0.2;

sigma2=0.15;

sg1=0.6;

sg2=0.2;

sg=sqrt(1.5)*sg1;

t=1;

q11=-1;

q12=1;

q21=1;

q22=-1 ;

n=40;
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h=1/n;

r1=0.1;

r2=0.1;

b1=r1-(sg1)2/2;

b2 = r2− (sg2)2/2;

l1 = 1;

l2 = 1;

k1 = exp(yita1 + sigma12/2)− 1;

k2 = exp(yita2 + sigma22/2)− 1;

a1 = b1− lamda1 ∗ k1;

a2 = b2− lamda2 ∗ k2;

p2u = ((sg2)2 + (a2− a1) ∗ (l1 ∗ sg) ∗ (h)0.5 + (a2− a1)2 ∗h)/(2 ∗ (l1 ∗ sg)2);

p2d = ((sg2)2− (a2− a1) ∗ (l1 ∗ sg) ∗ (h)0.5 + (a2− a1)2 ∗h)/(2 ∗ (l1 ∗ sg)2);

p2m = 1− (p2u+ p2d);

p1u = 1/3;

p1d = 1/3;

p1m = 1/3;

u = exp(sg ∗ h0.5);

d = 1/u;

p11 = exp(q11 ∗ h);

p12 = (1− p11);

p21 = (1− exp(q22 ∗ h)) ∗ (q21/(−q22));

p22 = 1− p21;

s0 = 100;
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k = 100;

fori = 1 : 1 : 2 ∗ l + 1;

pl1(i, i) = (N1(yita1, sigma1, a1 ∗ h + (i − l − 1 + 0.5) ∗ sg ∗ h0.5) −

N1(yita1, sigma1, a1 ∗ h+ (i− l − 1− 0.5) ∗ sg ∗ h0.5)) ∗ lamda1 ∗ h;

end

fori = 1 : 1 : 2 ∗ l + 1;

pl2(i, i) = (N2(yita2, sigma2, a1 ∗ h + (i − l − 1 + 0.5) ∗ sg ∗ h0.5) −

N2(yita2, sigma2, a1 ∗ h+ (i− l − 1− 0.5) ∗ sg ∗ h0.5)) ∗ lamda2 ∗ h;

end

x0 = 0;

forj = 1 : n+ 1;

fori = (n− j + 1) ∗ l + 1 : (n+ j − 1) ∗ l + 1;

x(i, j) = (j − 1) ∗ a1 ∗ h+ (i− (n ∗ l + 1)) ∗ sg ∗ h0.5;

S(i, j) = s0 ∗ exp(x(i, j));

end

end

forj = 1 : n+ 1;

fori = (n− j + 1) ∗ l + 1 : (n+ j − 1) ∗ l + 1;

s1vals(i, j) = max(s0 ∗ exp(x(i, j))− k, 0);

s2vals(i, j) = max(s0 ∗ exp(x(i, j))− k, 0);

end

end

forj = n : −1 : 1;

fori = (n− j + 1) ∗ l + 1 : (n+ j − 1) ∗ l + 1;
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s1vals(i, j) = exp(−r1∗h)∗p11∗ [svalsparts(s1vals, pl1, i, j, l) +p1u∗ (1−

lamda1 ∗ h) ∗ s1vals(i + 1, j + 1) + p1m ∗ (1 − lamda1 ∗ h) ∗ s1vals(i, j +

1) + p1d ∗ (1 − lamda1 ∗ h) ∗ s1vals(i − 1, j + 1)] + exp(−r1 ∗ h) ∗ p12 ∗

[svalsparts(s2vals, pl1, i, j, l) + p1u ∗ (1− lamda1 ∗h) ∗ s2vals(i+ 1, j+ 1) +

p1m ∗ (1− lamda1 ∗h) ∗ s2vals(i, j+ 1) + p1d ∗ (1− lamda1 ∗h) ∗ s2vals(i−

1, j + 1)];

s2vals(i, j) = exp(−r2∗h)∗p21∗ [svalsparts(s1vals, pl2, i, j, l) +p2u∗ (1−

lamda2 ∗ h) ∗ s1vals(i + 1, j + 1) + p2m ∗ (1 − lamda2 ∗ h) ∗ s1vals(i, j +

1) + p2d ∗ (1 − lamda2 ∗ h) ∗ s1vals(i − 1, j + 1)] + exp(−r2 ∗ h) ∗ p22 ∗

[svalsparts(s2vals, pl2, i, j, l) + p2u ∗ (1− lamda2 ∗h) ∗ s2vals(i+ 1, j+ 1) +

p2m ∗ (1− lamda2 ∗h) ∗ s2vals(i, j+ 1) + p2d ∗ (1− lamda2 ∗h) ∗ s2vals(i−

1, j + 1)];

end

end

s1vals(n ∗ l + 1, 1)

s2vals(n ∗ l + 1, 1)

clear;

T = 1;

n = 40;

S0 = 60;

K = 100;

h = 0.1;

u = 10;
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d = 10;

l1 = 1;

l2 = 1;

lamda1 = 7;

lamda2 = 7;

r1 = 0.1;

r2 = 0.1;

r = r1;

sg1 = 0.6;

sg2 = 0.2;

sg = sqrt(1.5) ∗ sg1;

b1 = r1− (sg1)2/2;

b2 = r2− (sg2)2/2;

yita1 = −0.02; yita2 = −0.01125;

sigma1 = 0.2;

sigma2 = 0.15;

dt = T/n;

m1 = exp(yita1 + sigma12/2)− 1;

m2 = exp(yita2 + sigma22/2)− 1;

beta = b1− lamda1 ∗m1;

beta2 = b2− lamda2 ∗m2;

p2u = 0.2;

p2m = 0.6;

p2d = 0.2;
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p1u = 1/3;

p1d = 1/3;

p1m = 1/3;

fori = 1 : 1 : u+ d+ 1;

pl1(i, i) = (N1(yita1, sigma1, beta ∗ dt + (i − d − 1 + 0.5) ∗ sg ∗ dt0.5) −

N1(yita1, sigma1, beta ∗ dt+ (i− d− 1− 0.5) ∗ sg ∗ dt0.5)) ∗ lamda1 ∗ dt;

end

fori = 1 : 1 : u+ d+ 1;

pl2(i, i) = (N2(yita2, sigma2, beta ∗ dt + (i − d − 1 + 0.5) ∗ sg ∗ dt0.5) −

N2(yita2, sigma2, beta ∗ dt+ (i− d− 1− 0.5) ∗ sg ∗ dt0.5)) ∗ lamda2 ∗ dt;

end

pl1(d, d) = pl1(d, d) + p1u ∗ (1− lamda1 ∗ dt);

pl1(d+ 1, d+ 1) = pl1(d+ 1, d+ 1) + p1m ∗ (1− lamda1 ∗ dt);

pl1(d+ 2, d+ 2) = pl1(d+ 2, d+ 2) + p1d ∗ (1− lamda1 ∗ dt);

pl2(d, d) = pl2(d, d) + p2u ∗ (1− lamda2 ∗ dt);

pl2(d+ 1, d+ 1) = pl2(d+ 1, d+ 1) + p2m ∗ (1− lamda2 ∗ dt);

pl2(d+ 2, d+ 2) = pl2(d+ 2, d+ 2) + p2d ∗ (1− lamda2 ∗ dt);

q11 = −1;

q12 = 1;

q21 = 1;

q22 = −1;

p11 = exp(q11 ∗ dt);

p12 = (1− p11);

p21 = (1− exp(q22 ∗ dt)) ∗ (q21/(−q22));
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p22 = 1− p21;

a = exp(sg ∗ sqrt(dt));

b = 1/a;

w = exp(beta ∗ dt);

trace(1) = 1;

fori = 2 : n+ 1

trace(i) = trace(i− 1) + (u+ d) ∗ (i− 1) + 1;

end

S(1) = S0;

fori = 1 : n

forj = 1 : (u+ d) ∗ i+ 1

S(trace(i) + j) = S0 ∗ wi ∗ (a(j − d ∗ i− 1));

end

end

MM(1, 1) = S0;

MM(2, 1) = S0;

F = ;

F1 = [S0; 0];

fori = 2 : n+ 1

MM(1, i) = ((i− 1) ∗ Fi− 1(1, 1) + S(trace(i− 1) + 1))/(i);MM(2, i) =

((i− 1) ∗ Fi− 1(1, end) + S(trace(i− 1) + (u+ d) ∗ (i− 1) + 1))/(i);

k = 0;

semh = [S0];

m = [0];
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while1

k = k + 1;

m = [mk];

semh = [semhS0 ∗ exp(k ∗ h)];

ifsemh(end) > MM(2, i);

break

end

end

k = 0;

while1

k = k − 1;

m = [km];

semh = [S0 ∗ exp(k ∗ h)semh];

ifsemh(1) < MM(1, i)

break;

end

end

Fi = [semh;m];

end

V 1 = ;

V 2 = ;

fori = 1 : length(Fn+ 1(1, :))

V 1n+ 1, 1(i) = max(Fn+ 1(1, i)−K, 0);

V 2n+ 1, 1(i) = V 1n+ 1, 1(i);
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end

fori = 2 : (u+ d) ∗ (n) + 1

V 1n+ 1, i = V 1n+ 1, 1;

V 2n+ 1, i = V 2n+ 1, 1;

end

fori = n : −1 : 1

forj = 1 : (u+ d) ∗ (i− 1) + 1

V 1i, j = ;

V 2i, j = ;

FF1 = Fi(1, :);

FF2 = Fi+ 1(1, :);

V alF = [];

FF1Next = zeros(u+ d+ 1, length(FF1));

CalF1 = zeros(u+ d+ 1, length(FF1));

CalF2 = zeros(u+ d+ 1, length(FF1));

CalF12 = zeros(u+ d+ 1, length(FF1));

CalF21 = zeros(u+ d+ 1, length(FF1));

forx = 1 : u+ d+ 1

FF1Next(x, :) = (i ∗ FF1 + S(trace(i) + j + x− 1))/(i+ 1);

UF = [];

DF = [];

forww = 1 : length(FF1Next(x, :))

kk = FF1Next(x,ww) ∗ ones(1, length(FF2));

ind = sum(kk > FF2);
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ifind == 0

ind = 1;

end

UF = [UF (V 1i+ 1, j + x− 1(ind+1)−V 1i+ 1, j + x− 1(ind))∗(FF1Next(x,ww)−

FF2(ind))/(FF2(ind+ 1)− FF2(ind)) + V 1i+ 1, j + x− 1(ind)];

DF = [DF (V 2i+ 1, j + x− 1(ind+1)−V 2i+ 1, j + x− 1(ind))∗(FF1Next(x,ww)−

FF2(ind))/(FF2(ind+ 1)− FF2(ind)) + V 2i+ 1, j + x− 1(ind)];

end

CalF1(x, :) = exp(−dt ∗ r1) ∗ pl1(x, x) ∗ UF ;

CalF12(x, :) = exp(−dt ∗ r1) ∗ pl2(x, x) ∗ UF ;

CalF2(x, :) = exp(−dt ∗ r2) ∗ pl2(x, x) ∗DF ;

CalF21(x, :) = exp(−dt ∗ r2) ∗ pl1(x, x) ∗DF ;

end

V alF1 = sum(CalF1);

V alF12 = sum(CalF12);

V alF2 = sum(CalF2);

V alF21 = sum(CalF21);

V 1i, j = p11 ∗ V alF1 + p12 ∗ V alF21;

V 2i, j = p21 ∗ V alF12 + p22 ∗ V alF2;

end

end

V 11, 1

V 21, 1
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