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Abstract 

 

In addition to the typical electron transport system in animal mitochondria responsible for 

oxidative phosphorylation, some species possess an alternative oxidase (AOX) pathway, which 

causes electrons to bypass proton pumping complexes. Although AOX appears to be 

energetically wasteful, studies have revealed its wide taxonomic distribution, and indicate it 

plays a role in environmental stress tolerance. AOX discovery in animals is recent, and further 

research into its expression, regulation, and physiological role has been impeded by the lack of 

an experimental model organism. DNA database searches using bioinformatics revealed an AOX 

sequence present in the arthropod Tigriopus californicus. Multiple sequence alignments 

compared known AOX proteins to that of T. californicus and examined the conservation of 

amino acid residues involved in AOX catalytic function and post-translational regulation. The 

physiological function of a native AOX has never been identified in an animal that produces it, 

but I hypothesize that AOX protein levels will change in response to environmental stress in T. 

californicus. In order to test this hypothesis, copepods were exposed to five different 

temperatures (6, 10, 15, 22 and 28°C), and extended periods of light/dark. Samples were taken 

after 24 hours (acute) and 1 week (chronic) of incubation at each stress treatment. In conclusion, 

T. californicus possesses the necessary residues required for AOX function. Furthermore, 

Western blots demonstrate that there are fluctuations in AOX expression when exposing T. 

californicus to temperature stress. In contrast, during light stress AOX is constitutively expressed 

when animals were subjected to changes in their circadian rhythms. AOX has been most 

thoroughly characterized in a number of plants; however, the physiological function of a native 

AOX has never been identified in an animal that produces it. This is the second study to confirm 

AOX protein expression in an animal and is the first study to look at a native AOX protein in an 
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animal and its response to biotic stress. By understanding why T. californicus possesses AOX, 

we can better understand why some other organisms, including humans, do not express or have 

lost the AOX gene. More thorough investigation of AOX in copepods may aid in the 

development of a drug that can be added to fish aquaculture to exterminate parasitic copepods 

and prevent the loss of economically valuable fish. 
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1. Introduction 

1.1 Cellular Respiration and the Alternative Oxidase Pathway 

Living cells need to make energy, in the form adenosine triphosphate (ATP), in order to 

sustain life. This is accomplished through a process called cellular respiration, which is a 

biochemical pathway that releases energy from chemical bonds, stores the energy as ATP, and 

uses it for essential life processes (Hirsch et al., 2002). ATP is biosynthesized through the 

controlled breakdown of organic molecules. In most animals, organic molecules go through 4 

main stages in order to synthesize ATP: 1) glycolysis, 2) pyruvate oxidation, 3) the citric acid 

cycle, 4) oxidative phosphorylation (Morris, 2013). The first three stages produce a small 

quantity of ATP directly through substrate level phosphorylation, and also reduce nicotinamide 

adenine dinucleotide (NAD+) to NADH and flavin adenine dinucleotide (FAD) to FADH2. The 

role of NADH and FADH2 is to shuttle electrons that are released from the breakdown of organic 

substances to the electron transport system (Morris, 2013).  The electron transport system (ETS) 

is embedded in the inner membrane of the mitochondria and is comprised of protein complexes. 

The four complexes, numbered I, II, III, and IV, shuttle electrons and at the same time create a 

proton gradient across the inner mitochondrial membrane (Lodish et al., 2008). The ETS accepts 

the electrons from NADH and FADH2. As electrons move down the ETS, energy is released and 

used to pump protons out of the matrix of the mitochondria and into the intermembrane space, 

thereby creating a gradient. ATP synthase allows the protons to return to the matrix, from the 

intermembrane space, through the use of the proton-motive force, which transduces energy into 

ATP (Lodish et al., 2008). ATP is used as an energy source in a multitude of intracellular 

processes. 
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The alternative oxidase (AOX) pathway is a distinctive pathway of electron withdrawal, 

which causes the electrons to bypass complexes III and IV, of the ETS, and results in cyanide-

resistant respiration (Rogov et al., 2016) (Figure 1). AOX catalyzes the oxidation of reduced 

ubiquinol (i.e. it is a terminal quinol oxidase that reduces oxygen to water) and is situated in the 

ETS, in the mitochondria of certain organisms (McDonald, 2008; Rogov et al., 2016). The 

pathway’s ability to reduce oxygen to water requires a transition metal, such as iron (Moore et 

al., 2013). This pathway introduces a branch point at ubiquinone, bypassing two sites of proton 

translocation within the ETS and as a result yields less ATP per oxygen consumed (McDonald 

and Vanlerberghe, 2004). AOX was previously considered to only be possessed by fungi, plants, 

and protists, but recently it was discovered in certain animals (McDonald and Vanlerberghe, 

2004; McDonald 2008). 

1.2 Physiological Role(s) of AOX 

AOX is widely distributed in nature, but its physiological function(s) remains ambiguous. 

It is energetically wasteful for an organism to use AOX in terms of ATP biosynthesis, the 

operation of AOX dissipates the energy of the electrons that it uses as heat. Researchers have 

hypothesized numerous advantages conferred by AOX in order to explain its broad taxonomic 

distribution. One confirmed benefit AOX provides to some plants is thermogenesis, which is 

defined as the production of heat by an organism (Angioy et al., 2004). The heat generated 

through thermogenesis facilitates the emission of an odour that aids in pollination by attracting 

insect pollinators (Angioy et al., 2004). Despite this finding, it is unknown why AOX is present 

in non-thermogenic plants, a group making up the bulk of plant species (McDonald, 2008).  

Previous studies indicate that AOX likely plays a role in the ability of organisms to 

tolerate various environmental stresses. Research has shown that there is an increase in AOX 
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mRNA expression, when plants are exposed to cold stress, which contributes to the tolerance of 

plants to cold (Li et al., 2011). Furthermore, it has been demonstrated that when the AOX 

pathway is up-regulated during cold stress, it leads to a 20% reduction in plant growth in 

Arabidopsis plants (Fiorani et al., 2005). When plants face conditions of cold stress, the AOX 

pathway may serve an essential role in controlling the balance between antioxidant defenses and 

metabolism (Li et al., 2011). 

Another hypothesized advantage that AOX confers to cells is controlling reactive oxygen 

species (ROS) production (Møller, 2001). ROS are chemically reactive molecules of oxygen that 

damage macromolecules, and AOX may limit their generation by acting as an overflow pathway 

in the ETS (Møller, 2001). ROS such as superoxide, the hydroxyl radical, and hydrogen peroxide 

are formed in organisms through normal metabolic processes (Maxwell et al., 1999).  In 

eukaryotic cells, the majority of ROS comes from the mitochondria (Maxwell et al., 1999). A 

study conducted by Maxwell et al. in 1999 demonstrated that AOX serves to keep mitochondrial 

ROS formation low in plant cells. It was proposed that this is done through a second oxidase 

(namely AOX) downstream of the ubiquinone pool, in the ETS, which maintains upstream 

electron transport components in a more oxidized state, leading to a lower generation of ROS by 

preventing the over reduction of electron carriers (Maxwell et al., 1999).  

The fungal phytopathogen Ustilago maydis has also been shown to possess alternative 

oxidase (Juárez et al., 2006). A study conducted by Juárez et al. (2006) found that one of the 

metabolic roles of AOX in U. maydis is the prevention of ROS production. It has been 

extensively reported that AOX makes a significant contribution to the prevention of ROS 

production (Czarna and Jarmuszkiewicz, 2005; Maxwell et al., 1999; Robson and Vanlerberghe, 

2002). Juárez et al. (2006) also discovered that AOX increases the metabolic plasticity of the 
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cell, and enables it to avoid metabolic collapse when placed in conditions that impairs the 

cytochrome pathway. Similar to other cosmopolitan organisms, U. maydis is subjected to 

numerous changes in environmental parameters. During U. maydis cell culturing, when assay 

temperatures were increased to 28°C, there was a 3.5-4.3 increase in AOX function (Juárez et 

al., 2006). Juárez et al. (2006) concluded that AOX allows the mitochondrial metabolism to be 

active when subjected to biotic and abiotic stressors that can limit the activity of the cytochrome 

pathway. These hypotheses propose that organisms that contain cells which express AOX may 

be able to respond effectively to a wide range of abiotic environmental stressors. 

1.3 AOX Protein Structure and Regulation 

AOX is a mitochondrial, membrane bound protein that catalyzes the oxidation of 

ubiquinol while reducing oxygen to water (Pennisi et al., 2016). AOX is not inhibited by 

cyanides, which are frequently used to inhibit cytochrome c oxidase (McDonald and 

Gospodaryov, 2018). This inability to be inhibited by cyanide is due to AOX not possessing 

heme or copper; instead it contains a di-iron centre (Moore et al., 2013). AOX is instead 

inhibited by salicylhydroxamic acid and alkylated gallates (Rogov et al., 2016). AOX is a 

homodimeric protein which is categorized within the group of di-iron carboxylate proteins 

(Berthold et al., 2002). Each monomer is composed of six long helices and four short helices, 

which are arranged in an antiparallel fashion (Figure 2) (Moore et al., 2013). Being composed of 

a di-iron centre and four helices (Figure 3), alternative oxidase is associated with the inner 

mitochondrial membrane (McDonald, 2008). Located in the four helices are highly conserved 

amino acids that are confirmed to play a role in the enzymatic function and regulation of the 

AOX protein. There are several glutamate (Glu, E) and histidine (His, H) residues required for 

the activity of AOX, as they are responsible for coordinating the di-iron centre (Figure 3) 
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(Siedow & Umbach, 1995). This finding has been confirmed in multiple studies using AOXs 

found in plants such as Sauromatum guttatum (Albury et al., 2002) and Arabidopsis thaliana 

(Berthold et al., 2002) and the protist Trypanosoma brucei (Kido et al., 2010).  

1.4 AOX in Animals  

Previously, AOX was deemed limited to such organisms as bacteria, plants, fungi and 

protists, but not long ago it was discovered in some animals (McDonald and Vanlerberghe, 2004; 

McDonald 2008). The presence of an AOX gene was discovered just over a decade ago 

(McDonald & Vanlerberghe, 2004). Over the past couple of decades extensive sequencing and 

analysis of animal genomes has uncovered a non-conventional mitochondrial respiratory system 

enzyme (McDonald & Gospodaryov, 2018). AOX sequences have been identified in a multitude 

of animal phyla, including Placozoa, Porifera, Cridaria, Annelida, Echinodermata, Mollusca, 

Nematoda, Hemichordata and Chordata (McDonald & Gospodaryov, 2018). The expression of 

AOX mRNA was originally confirmed in several tissues in the Pacific oyster Crassostrea gigas 

(McDonald & Vanlerberghe, 2004). AOX is present in the simplest multicellular animal, 

Trichoplax adhaerens, and several members of the phylum Chordata (McDonald et al., 2009). 

One research paper identified the alternative enzymes in mitochondria isolated from Artemia 

franciscana nauplii (Rodriguez-Armenta et al., 2018). Subjection of A. franciscana to cyanide 

and octyl-gallate, which causes inhibition of the organism’s mitochondrial oxygen consumption, 

suggests that alternative oxidase is present (Rodriguez-Armenta et al., 2018). Work on animal 

AOX has been limited by the lack of an animal model in which to conduct experiments. 

Recently, AOX was identified in members of the phylum Arthropoda, in several species of 

copepods. 
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1.5 Copepods 

With over 12,000 species, copepods are one of the most numerous multicellular 

organisms on Earth (Lee et al., 2005). The success of these crustaceans is dependent on their 

high reproductive rates and fast development times. Similar to other crustaceans, copepods have 

separate sexes, with males and females that differ in their sexually dimorphic characteristics, 

which develop during the copepodid stage. Typically, females are larger than males and live-

longer than males. Conversely, males are smaller, short-lived, and their fifth legs are highly 

modified, possessing antennules that are used during mating (Lee et al., 2005). The species 

Tigriopus japonicas is reproductively active after 21 days of development under laboratory 

conditions (Raisuddin et al., 2007). In aquatic ecosystems, the male copepod typically locates 

their female counterpart, by using chemoreceptors present in the body (Sehgal, 1983). The male 

swims after the female and catches her with his modified antennule (Fraser, 1936). The period of 

copulation lasts anywhere between a few minutes to a couple of days (Sehgal, 1983). The 

fertilization of the female’s eggs does not occur until after the male and female separate and the 

eggs leave the female’s oviducts. The number of eggs that can be carried by a single female 

varies with seasonal characteristics (temperature, food availability, etc.) (Sehgal, 1983). 

Normally, females are highly reproductive and carry multiple broods of eggs, which develop 

following a single mating interaction (Koga, 1970). The brood size can very between 30-50 

nauplii, depending on the species of copepod (Raisuddin et al., 2007). The fertilized eggs are 

carried in either one sac (calanoids) or two sacs (cyclopoids).  When females lay their eggs, they 

either deposit their eggs freely into the surrounding environment or gravid females carry them 

affixed to their genital segment in egg masses until the nauplii are hatched.  
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1.6 Copepods and Their Role in the Ecosystem 

 Numerous marine fisheries yield small pelagic eggs. The larvae that hatch from these 

small eggs require a source of live food shortly after the commencement of exogenous feeding 

(Lee et al., 2005). Copepods play an essential role in the aquatic food chain. They constitute an 

intermediate trophic level between bacteria, algae and protozoans on the one hand and are prey 

to small and large plankton eaters, which consists of mainly fish (Sehgal, 1983). Several research 

studies suggest that harpacticoid copepods are a better food source in marine aquaculture 

compared to other zooplankton such as rotifers or brine shrimp (Lee et al., 2005). Specifically, 

harpacticoids have a higher concentration of unsaturated fatty acids compared with other live 

feeds used in mariculture (Lee et al., 2005).  

 Harpacticoid copepods promote the rapid growth and/or high reproductive rates in fishes 

and invertebrates (Cutts, 2002). One study done by Volk et al. (1984) demonstrated that food 

conversion efficiency was higher in juvenile Oncorhynchus keta fed the harcapticoid copepod 

Tigriopus californicus in comparison to when they were fed calanoid copepods or amphipods. 

They ascribed this difference to the higher caloric content of T. californicus compared with 

amphipods and a lack of escape response compared with calanoid copepods. Indeed, harpacticoid 

copepods serve as a vital food resource for many species of marine fish (Coull, 1990). 

Throughout a fish’s lifetime they undergo an ontogenetic shift from a diet composed largely of 

harpacticoid copepods to larger-bodied prey (McCall & Fleeger, 1995).  On the other hand, for 

some fish, harpacticoid copepods may serve as prey for the entire lifetime of certain marine 

fishes (Tipton & Bell, 1988).  

1.7 Copepods and Environmental Stress 

Copepods face a wide variety of environmental stresses that are both abiotic (e.g. 
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fluctuating in salinity levels, temperature levels, and day/night cycles) and biotic (i.e. 

competition and predation) (Burton & Lee, 1994). Within the life cycle of many copepods there 

is a dormancy or suppressed development feature, which is utilized when faced with 

environmental stress (Seebens et al., 2009). Depending on the species, this suppressed 

development might occur at the embryonic, naupliar, copepodid or adult phase of their life cycle 

(Seebens et al., 2009). Dormancy encompasses a range of suppressed development, whether it is 

quiescence or diapausing (Ortells et al., 2005). Quiescence is defined as a prompt response to 

adverse environmental conditions (Zhou et al., 2016). In general, copepods experiencing 

quiescence resume development as soon as the immediate environmental condition is alleviated 

(Zhou et al., 2016). For example, when a warm water species of copepod is subjected to cold 

temperature, its developmental rate begins to slow down, but once placed back into its naturally 

occurring temperature its developmental rate begins to speed up again. Conversely, diapause 

refers to an organism undergoing a biochemical, physiological, and/or endocrinal adaptation and 

females who are pregnant begin to produce diapausing eggs (Lee et al., 2005). Diapausing eggs, 

also known as resting eggs, are encysted embryos in an arrested state of development (Montero-

Pau et al., 2008). In order for aquatic invertebrates to cope with the unpredictability of their 

environments, they produce resting eggs. These eggs face a wide range of environmental 

extremes and have developed mechanisms to survive these conditions (Carlisle, 1968). 

Diapausing will only halt following the completion of a refractory phase that could last days to 

months on end. During the above mentioned refractory phase, copepods will not resume 

development even if conditions become favourable. These eggs can face a wide range of 

environmental extremes and have developed mechanisms to survive these conditions (Carlisle, 

1968). This stage will allow the encysted embryos to withstand their harsh environment and they 
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will remain in this dormancy stage (Caceres, 1998). There is one very important distinction 

between quiescence and diapausing, diapausing eggs of copepods are able to survive long-term 

(several months) even when exposed to toxic chemicals such as hydrogen sulfide, whereas 

copepods undergoing quiescence are not capable of surviving long periods of time especially 

when exposed to toxic chemicals (Lee et al., 2005).  

1.8 Tigriopus as a Model Organism 

Harpacticoid copepods, which belong to the genus Tigriopus, are a subclass of Copepoda 

and belong to the phylum Arthropoda. Copepoda are the second largest Crustacean taxa and over 

12,000 species of copepods exist (Raisuddin et al., 2007). Furthermore, copepods are of high 

ecological importance as they are one of the most dominant taxa in aquatic zooplankton 

communities, making up 70% of the ocean’s biomass (Wells, 1984). Copepods tend to be more 

abundant in still bodies of water, such as pools and ponds (Sehgal, 1983). Tigriopus 

encompasses four well studied model species (T. brevicornis, T. californicus, T. fulvus and T. 

japonicus) and numerous other less studied species.  

Over the past couple of decades, there has been an increasing interest in the copepod 

genus Tigriopus, with a substantial number of publications having focused on these organisms 

(Raisuddin et al., 2007). There are multiple characteristics that make Tigriopus a favorable 

model organism for environmental studies. The majority of the species of Tigriopus spp. are 

small in size (i.e. an adult’s length is approximately 1.0 mm) and they possess a discernible 

brown orange colour, but their colour is highly depend on their diet (Harris, 1973). Similar to all 

copepods, Tigriopus spp. goes through 12 post-embryonic stages of development: 6 naupliar 

stages, 5 copepodid stages and an adult stage (Figure 4) (Fraser, 1936).  
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 T. californicus is an intertidal species of copepod that inhabits rock pools on the Pacific 

coast of North America (Burton and Lee, 1994). Due to T. californicus’ intertidal habitat, it is 

constantly being exposed to ever changing environmental stressors including: temperature, 

salinity, predation, and oxygen levels (Burton and Lee, 1994). Copepods reproduce sexually and 

fertilized eggs are held in a sac and against the urosome of the females (Marini and Sapp, 2003). 

This sac appears dark brown in colour, in comparison to the rest of the organism’s body. The 

brood size of a gravid T. californicus female is 174.2 eggs, when they are acclimated to 

temperatures between 10-15C (Powlik et al., 1997). These copepods emerge from eggs as a 

nauplius, which is composed of six stages, N1-N6 (Kvile, 2015). During the nauplius stages this 

organism experiences periods of growth and changes to their overall body shape (Kvile, 2015). 

The nauplius stages are followed by six copepodid stages, which are characterized by growth to a 

maximum size of approximately 1 mm in length (Marini and Sapp, 2003). Furthermore, the 

animals appear segmented, with prominent antennae and five sets of legs (Kvile, 2015). Between 

each of the six developmental stages the copepods continue to grow and shed their exoskeletons 

(Marini and Sapp, 2003). It is not until the 5th copepodid stage that the gender of the copepod can 

be identified (Marini and Sapp, 2003). When T. californicus copepods are exposed to 

environments possessing higher temperatures and salinities their average lifespan is 21 days 

(Powlik et al., 1997). Conversely, when they reside in habitats that possess lower temperature 

and salinity levels they can survive approximately 30 days (Powlik et al., 1997). 

T. californicus is characterized by a short generation time, small space requirements, and 

many genetically divergent populations which can be cross-bred in the laboratory (Burton and 

Feldman, 1981). These attributes make T. californicus an emerging model organism in biology 

for the study of environmental stress responses in animals. 
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1.9 Heat Shock Proteins: Structure and Function 

Heat shock proteins (HSPs) are highly conserved and present in all prokaryotic and 

eukaryotic organisms (Li and Srivastava, 2004). They are characterized as stress-inducible 

molecular chaperones and are proteins which range in size from 12 to 43 kDa (Seo et al., 2006). 

Molecular chaperones are proteins that aid in the folding, unfolding, and assembly of other 

molecular structures (Seo et al., 2005). Furthermore, HSPs have a molecular mass of 200-800 

kDa when organisms are subjected to stressful conditions. This is caused by the interaction 

between small HSP subunits, which results in the formation of a multimer, which is crucial for 

chaperone activity (MacRae, 2000). The products of these genes are responsible for protecting 

cellular proteins and repairing DNA damage (Kim and Hagiwara, 2011). When animals 

experience thermal stress, heat shock proteins are induced to help the organism survive (Dutton 

and Hofmann, 2009). The role of HSPs are to assist in the refolding of stress denatured proteins, 

thereby preventing them from aggregating in the cell and permitting the cell to cope with the 

environmental stress (Wang et al., 2013). HSPs constitute a large family of proteins that are 

classified based on their molecular weight (e.g. HSP20, HSP70, HSP90, etc.).   

1.10 Housekeeping Genes 

A housekeeping or reference gene or genes are those that are expressed ubiquitously and 

constitutively by different cell types and are utilized when normalizing data, whether it be for 

protein expression or reverse transcription quantitative polymerase chain reaction (qRT-PCR) 

(Reboucas et al., 2013). Housekeeping genes act as internal standards that allow for the 

normalization of signals and enable different samples to be compared to one another by 

eliminating variations arising due to technical reasons, such as differences in the amount of 

sample loaded and transfer efficiency (Ferguson et al., 2005). One of the best-known 
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housekeeping genes in literature is tubulin, along with glyceraldehyde-3-phosphate 

desidrogenase (GAPDH), β-actin, and several ribosomal proteins (RPL) (Reboucas et al., 2013, 

Ferguson et al., 2005).  

1.11 Gaps in the Literature 

In addition to the typical electron transport system in animal mitochondria responsible for 

oxidative phosphorylation, in some species there exists an alternative oxidase (AOX) pathway, 

which permits an alternate root of electron exit. The discovery of AOX in animals is recent and 

further research into its expression, regulation, and physiological role has been impeded by the 

lack of a versatile experimental model organism. The physiological function of a native AOX 

has never been identified in an organism that produces it. DNA database searches using 

bioinformatics revealed an AOX sequence present in the organism Tigriopus californicus. T. 

californicus is a marine invertebrate copepod which inhabits rock pools located along the west 

coast of North America and is subjected to daily fluctuation in environmental stressors. This 

makes T. californicus an excellent organism for the investigation of animal AOX in order to gain 

a deeper understanding of its physiological function and its role in temperature regulation and 

light stress. It has been previously confirmed that T. californicus possesses an alternative oxidase 

(AOX) gene, transcribes AOX mRNA, and translates AOX protein (Tward et al., 2019). 

Unfortunately, the function of AOX and T. californicus is unknown. Based on previous research 

on plants and fungi, it is thought that the AOX pathway provides metabolic flexibility and gives 

the organism the ability to survive under a multitude of environmental stressors.  

2. Purpose 

 The first purpose of this thesis is to analyze the primary sequence of the AOX protein in 

T. californicus by comparing it to AOX protein sequences from other organisms. This will allow 



 22 

us to determine if it possesses several conserved residues that are required in order for enzyme 

function. In addition, this analysis may reveal protein characteristics that are unique to animal 

AOXs and/or the AOXs of arthropods and copepods. The second purpose of this research project 

is to determine if the AOX protein is expressed in the copepod T. californicus and whether AOX 

protein levels change in response to temperature and light stress. T. californicus will be exposed 

to varying environmental temperatures (6, 10, 22, and 28°C), which will be particularly stressful 

to the animal, in comparison to its usual habitat temperature, in our lab, of 15°C. Furthermore, 

copepods were exposed to acute (24 hours) and chronic (1 week) level of light and dark 

exposure. This may help to determine whether AOX may play a role in the ability of T. 

californicus to tolerate environmental stress. These experiments may also provide insight into the 

loss of AOX in some animal species throughout the span of evolution (McDonald et al., 2009; 

McDonald and Vanlerberghe, 2004). For example, the human genome does not contain AOX, 

and the information gathered from our research may eventually contribute to the treatment of 

mitochondrial dysfunctions and disorders in humans using AOX gene therapy (Kemppainen et 

al., 2013). As well, it may lead to insights that could aid in the development of anti-parasitic 

drugs for use in fish aquaculture that can be used to kill parasitic copepods that live on the skin 

of economically valuable fish species. 

2.1 Rationale and Objectives 

In the past 30 years, there has been a large increase in the interest in the copepod genus 

Tigriopus as a model organism. Due to this increase in literature regarding Tigriopus, it makes T. 

californicus an excellent model organism for the study of protein level fluctuations when 

subjected to acute and chronic thermal and light stress. The objectives of this study are to: 
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1. Develop and use protocols to subject copepods to thermal and light stress control and 

experimental treatments in the lab. 

2. Develop and use protocols for the isolation of DNA and its use in polymerase chain 

reactions (PCR) and for the isolation of total proteins from T. californicus animals 

subjected to control and experimental conditions and the analysis of protein levels of 

AOX using SDS-PAGE and Western blots. 

3. Sequence the genes encoding AOX, GAPDH, EF1, -tubulin, 16S and HSP 20, 70 and 

90 in T. californicus using DNA isolation, polymerase chain reaction (PCR) using gene-

specific primers, cloning vectors, and bacterial transformation and selection. These 

sequences will be translated into their amino acid equivalents and compared to other 

organisms’ protein sequences for the same gene. 

4. Identify any patterns present between the presence of AOX, the expression of the protein, 

and the thermal and light stress response of T. californicus. This will permit an 

investigation into how the translation of the AOX gene changes with fluctuations in 

environmental temperature and light exposure.  

2.2 Hypothesis 

 Based on previous research conducted on AOX protein sequences and individual residue 

function in other organisms, I hypothesize that the AOX protein of T. californicus will be 

enzymatically active due to the presence of the conserved glutamate, histidine, tryptophan and 

alanine residues necessary for protein activity. Furthermore, I hypothesize that T. californicus 

possesses AOX in order to acclimate to a wide variety of environmental stressors. More 

specifically, I expect that AOX protein levels will change with exposure of the animals to 

fluctuating temperatures and light exposure.  
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Figures 

 

Figure 1: The electron transport system and the position of the AOX protein embedded in the 
inner mitochondrial membrane. Complex I, NADH dehydrogenase; Complex II, succinate 
dehydrogenase; Complex III, cytochrome bc1 complex; Complex IV, cytochrome c oxidase; e-, 
electrons; IMM, inner mitochondrial membrane; cyt c, cytochrome c; UQ, ubiquinol pool; e-, 
electron, AOX, alternative oxidase.  
 
 
 
 



 30 

 
Figure 2: AOX dimer interaction with the mitochondrial membrane. Helices α1 to α6 are 
associated with chain A, and helices α1∗ to α6∗ are associated with chain B (taken from 
Moore et al., 2013). 
 

 
Figure 3: Structure of the active site in AOX. Diiron atoms are shown as spheres, and four 
glutamate and two histidine residues, which are important for diiron binding, are depicted 
as green sticks (taken from Moore et al., 2013). 
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Figure 4: Different stages of development of the copepod Tigriopus japonicas, maintained under 

the following culturing conditions: 21 C, 12 h light:12 h dark cycle and salinity 32ppt. The first 

6 stages (N1-N6) are nauplius stages and the later six stages (second row) represent the 

copepodite stages (taken from Raisuddin et al., 2007). 
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CHAPTER 2 

Optimizing the growth and cultivation of the copepod Tigriopus californicus 
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Abstract 

The harpacticoid copepod, Tigriopus californicus, is easily maintained under lab 

conditions, has short generation times, and is typically used for experiments involving marine 

food chains, chemical ecology in aquatic environments, and providing predictions on the past 

history and future status of marine ecosystems (Sehgal, 1983). Optimal conditions for culturing 

include multiple 400 mL habitats on a 12 hour light:dark cycle at a salinity of 16 g/L while 

regulated at a temperature of 15°C. The habitats should be cleaned and fed weekly with 0.01 g of 

Nutrafin Basix Staple Tropical Fish Food and 0.005 g of Spirulina Natural fish food, per habitat. 

Due to the ease of maintaining these animals and the wide range of experimental usages, T. 

californicus is an excellent experimental model organism and can adapt to a wide range of 

environmental stressors. T. californicus is characterized by small space needs and genetically 

divergent populations which can be cross-bred in the laboratory; attributes which make T. 

californicus an exemplary model organism to be studied. 
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1. Introduction 

Numerous marine fishes yield small pelagic eggs which larvae will hatch from and they 

require a source of live food once exogenous feeding begins. Research has indicated that 

harpacticoid copepods are an excellent alternative food resource in larval fish mariculture and 

can either replace or supplement brine shrimp and/or rotifers (Lee at al., 2005). Currently, there 

are over 3000 species in the order Harpacticoida, which is one of 10 orders in the subclass 

Copepoda (Huys and Boxshall, 1991). Similar to other crustaceans, copepods have separate 

sexes, with males and females differing based on sexually dimorphic characteristics that develop 

during the late stages of copepodid (Lee et al., 2008). Adult harpacticoid copepods are on 

average 1 mm in body length, 350 m in width and possess a dry mass of approximately 3 g 

(Rhee et al., 2009). Due to their small size, harpacticoid copepods serve as a pertinent food 

source. Fishes will eventually undergo an ontogenetic shift, which is a shift in their diet, from 

primarily consuming harpacticoids to larger-bodied prey. This shift normally occurs once the 

fishes reach a standard body length of approximately 35 mm, but this does not discount the fact 

that harpacticoid copepods may serve as prey for their entire life. This is due to the fact that 

similar to other types of copepods, harpacticoids promote rapid growth and a high reproductive 

rate in fishes and invertebrates. Copepods have invaded a significant variety of aquatic 

environments and microhabitats (Reid, 2001).  

One study conducted by Volk et al. (1948) demonstrated that food conversion efficiency 

in juvenile Oncorhynchus keta fed the harpacticoid Tigriopus californicus was greater than when 

fed calanoid copepods or amphipods. Furthermore, Kreeger et al. (1991) looked at the nutritional 

value of newly hatched Artemia that were fed with either lipid microspheres and/or the 

harpacticoid copepod T. californicus. It was discovered that shrimp survival, growth, and the 
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number of females brooding offspring were not significantly different between feeding groups. 

What was found, was that the number of viable offspring produced was significantly improved 

by adding lipid microspheres and T. californicus the Artemia diet (Kreeger et al., 1991). This 

finding was attributed to the fact that both the lipid microspheres and T. californicus are a high 

source of essential fatty acids (Kreeger et al., 1991).   

Interest in the copepod genus Tigriopus has escalated in an unprecedented manner and a 

considerable number of publications have focused on this genus (Raisuddin, et al., 2007). T. 

californicus is a marine invertebrate which inhabits high intertidal and supralittoral rock pools 

located along the west coast of North America (Burton and Lee, 1994). Given the location of T. 

californicus' intertidal habitat, it is subject to daily fluctuating abiotic stressors such as 

temperature, salinity, oxygen levels, and biotic stressors including competition (Burton and Lee, 

1994; McAllen et al., 1999). The tidepools T. californicus resides in are particularly harsh 

habitats of supralittoral splash pools that can experience temperatures as high as 40C and 

salinities of 139 ppt (Powlick 1999; Kelly et al., 2012).  

T. californicus can be easily propagated in the laboratory over a multitude of generations 

(Leong et al., 2018). Harpacticoid copepods have high reproductive potential, rapid development 

rates and a low age of first reproduction (Cutts, 2002). Rates of egg production by female 

copepods are influenced by numerous factors, including temperature, which predominantly leads 

to an increase in the overall number of eggs produced per female per day until saturation is 

reached (Ianora, 1998). Beyond that optimal temperature increases lead to a decrease in egg 

production rates. The highest reproductive rate was seen at 17°C when female’s longevity was 

intermediate (Lee et al., 2008). This is due to high temperatures causing reductions in female 

copepods longevity, so that even if egg production rates increase, the reproductive rate of 
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females declines (Uye, 1981).  

Copepods are located in a vast array of aquatic environments, including oceans, ponds, 

hydrothermal vents and many other fresh and salt water conditions (Boxshall and Walter, 2019). 

Harpacticoid copepods are able to withstand extreme temperature and salinity conditions (Powlik 

et al., 2017). Most copepods, however, are unable to tolerate low oxygen conditions and aeration 

of cultures is very desirable to these organisms (Wetzel et al., 2001). All species of Tigriopus are 

prominently located in shallow supratidal rock pools which undergo irregular tidal flooding 

(Raisuddin et al., 2007). Research has demonstrated that T. japonicas demonstrates excellent 

survival in acute toxicity tests at temperatures up to 35°C and salinities ranging from 15 to 45 ppt 

(Kwok and Leung, 2005). These copepods’ strong adaptability to a wide range of conditions is 

highly favourable when it comes to using this organism in ecotoxicity and environmental 

genomic studies to understand the natural variability in coastal areas (Raisuddin et al., 2007).  

Not only are these organisms known to adapt to a wide variety of environments and 

withstand extreme temperature and salinity ranges, but they can also feed on an array of food 

items in their natural environments, including diatoms and particulate organic matter (Raisuddin 

et al., 2007). These aspects make copepods easy to maintain under lab conditions, in addition to 

their short generation times. Moreover, harpacticoid copepod densities in mass culture can be 

more than 100,000/L, thereby exceeding the success to date of calanoid copepods (Stottrup, 

2000). This can be attributed to a multitude of traits the harpacticoid copepod possesses, 

including: high reproductive potential, rapid development rates, and a low age of first 

reproduction (Cutts, 2002).  

One of the most important steps in being able to conduct any of these experiments is to 
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first find appropriate habitat parameters in which to grow the organism. Living organisms are 

products of their environment, changes in their habitat induces changes in the chemical 

composition of organisms (Corner and O’Hara, 1986). The ability to establish large cultures in 

the laboratory is a necessity for any organism that is going to be adopted as a model system. We 

provide a simple procedure for growing and cultivating copepods, specifically of the species 

Tigriopus californicus, for experimental purposes. The advantages of this protocol include the 

low maintenance and space requirements of T. californicus, as well as, their perseverance 

through unfavourable conditions.  

Although a lot of research is done on copepods in the scientific community, there is not 

much information regarding habitat development and maintenance, and the rearing of the 

copepods in the lab. The purpose of this study was to optimize the growth conditions for T. 

californicus in the lab in order to generate sufficicient biomass to perform DNA and protein 

extractions. The main objective of this chapter is to give detailed descriptions for developing and 

maintaining copepod habitats in the lab. Furthermore, copepod maintenance procedures were 

developed that controlled the environment and mitigated stress on the organism. 

2. Materials and Methods  

2.1 Salt Water Preparation 

A large (2L) container was filled with 1.5L of filtered Milli-Q water and subsequently 

placed onto a stir plate with a magnetic stir bar. The stir plate was turned on (moderate-high 

setting) and 84 g of instant ocean salt was added. An analytical or top loading balance was used 

to measure the mass of the salt. The solution was left to mix for approximately 5-7 minutes or 

until all the salt had dissolved. The entire solution was poured into a 2L graduated cylinder and 
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topped up to the 2L mark with Milli-Q filtered water. This salt water solution can be stored in 

large bottles for future use. (Note: This procedure creates 2L of 42g/L salt water) (Figure 1).  

2.2 Habitat Set-Up 

 To start a new habitat for T. californicus a 400mL beaker with 150-200mL of prepared 

salt water is needed. Approximately 50-100 animals, at different life stages, should be added to 

the new habitat (Figure 2). Tigriopus californicus animals were obtained from J&L Aquatics 

Canada, Vancouver, British Columbia. The animals arrived in an approximately 150mL bottle 

containing approximately 1000-2000 individuals at various life stages. The habitat should be 

covered with a shallow petri dish in order to limit water evaporation and the prevent foreign 

substances from entering the habitat. Following habitat set-up, the beakers were placed into an 

incubator, regulated at 15°C on a 12 hour light:dark cycle. 

2.3 Habitat Clean-up (Perform weekly) 

First, an aspiration system is used to remove the top algae layer of each habitat, 

approximately the top 10 mL of each habitat (the algae layer appears as a film-like light green 

layer, due to the food source the copepods are fed). A disposable pipette is then used to remove 

the chunks of algae at the bottom of each habitat. This step is done with caution in order to not 

suck up and withdraw and copepods from the habitat. The contents of the beaker are poured over 

a filter into a waste container, allowing for the collection of animals in the filter. Pouring was 

halted prior to the remaining algae in the beakers started to flow into the filter (leaving 

approximately 40 mL of water in the habitat). The filter containing the copepods is placed into a 

deep petri dish containing prepared salt water. A new disposable pipette is used to transfer the 

extracted copepods from the filter back into the habitat. Each habitat is topped off with prepared 

salt water until the total volume of water in the beaker is approximately 200 mL. The disposable 
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pipette is used to flush the sides of the beaker with salt water from the habitat to ensure all 

copepods are submerged in the habitat (Figure 3). Each clean habitat is covered with a petri dish 

and placed back into an incubator. Note: When habitats start to become heavily populated with 

copepods (200 - 250 animals), create more habitats by transferring the copepods from the filter 

into two separate beakers to create one additional habitat (approximately every 3 weeks). 

2.4 Copepod Feeding (perform weekly) 

 The prepared salt water solution from section 2.1 is used to make the food solution to be 

added into each beaker. 50 mL of salt water solution, for each habitat, is poured into a large 

beaker (2L). Beaker is placed on a stir plate with a magnetic stir bar. Using an analytical balance, 

0.01 g of Nutrafin fish food is measured for each habitat. Measured Nutrafin fish food is then 

placed into a mortar and the pestle is used to grind it as fine as possible. A stir plate is turned on 

at a moderate to high speed and the ground-up Nutrafin is added to the salt water solution. Next, 

the analytical balance is used again to weigh out 0.005g of Spirulina Natural fish food for each 

habitat, and is subsequently added to the salt water solution already containing the Nutrafin fish 

food. The solution is left to thoroughly mix for approximately 7 minutes. A 50 mL graduated 

cylinder is used to administer 50mL of the prepared food mixture into each habitat (Figure 4). 

3. Results 

T. californicus was subjected to three temperature conditions: 6°C, 15°C and 28°C. When 

subjected to 6°C the copepods were slow moving, and reproduction rates were much lower in 

comparison to 15°C. When T. californicus habitats were held at 28°C, there was evaporation and 

salt crystals appeared on the beakers. These only appeared at 2 weeks if beakers were not 

cleaned and water not changed. This lead to decreased population size, with very few organisms 

being able to survive week to week. It was observed that a couple of days after the water change, 
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the water levels had been decreasing due to evaporation taking place. As a result, the copepods 

had become stressed from the external factor of evaporation; this was noted as stressful to the 

copepods because of the observed decrease in population density. In order to bring the habitat 

back to stable conditions (i.e. salinity of the water), the habitats had been cleaned and water 

changed every week. This was done to mitigate any environmental stressors that can contributing 

to decreases in population of the organism.  

4. Discussion 

The copepod T. californicus is found on the Pacific coast of North America. T. 

californicus inhabits splash/tide pools at seashores that are covered at high tide and uncovered at 

low tide. Since the splash pools are isolated from the ocean a number of environmental factors 

vary, such as temperature and salinity. T. californicus have evolved adaptive mechanisms, which 

allow the organism to survive in a wide range of environments (McDonough and Stiffler, 1981). 

The reduction in water levels, due to evaporation, lead to an increase in salinity of the 

water. This is similar to the field based observation of dry out in intertidal pools (Burton and 

Feldman, 1981; Burton and Lee, 1994). The drying out of pools is caused by evaporation from 

solar heat and is seen as an abiotic stressor contributing to the overall survival of T. californicus 

in both field and laboratory cultures (Willett, 2010). The results from the temperature conditions 

demonstrated that T. californicus survived longer at 15°C than at 28°C and repopulated more at 

15°C than at 6°C. Throughout the experiment there was never complete population death, a 

couple copepods were always able to survive as long as the water was changed weekly. A 

possible explanation for this is that T. californicus inhabits intertidal pools, which are constantly 

subjected to extensive fluctuations in salinity, evaporation and experiences a range of 

temperatures between 4°C - 35°C (Edmands and Deimler, 2004; Powlik, 1999; Schoville et al., 
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2012). In support of the above finding that more copepods were present in habitats at 15°C 

compared to 28°C, a lab based study found that there was a decline in T. californicus 

survivorship when temperature levels increased from 15°C to 25°C (Edmands and Deimler, 

2004; Kontogianis, 1973). 

Zooplankton have developed methods to deal with extreme environmental stress, in order 

to sustain their populations in the future. In order for aquatic invertebrates to cope with the 

unpredictability of their environments, such as a change in temperature, oxygen levels, salinity, 

or drought, they produce resting eggs. This stage will allow the encysted embryos to withstand 

their harsh environment and they will remain in this dormancy stage until the resting eggs 

encounter favourable conditions (Caceres 1998). This fact can lend as a possible explanation for 

the small population size seen at 6°C. Copepods might have experienced immense environmental 

stress when exposed to 6°C, that instead of reproducing they lay resting eggs. However, Powlik 

et al. justified in their 1997 paper that an appropriate range for constant culturing of T. 

californicus was between 2°C- 5°C (Powlik et al., 1997). The documented range for culturing T. 

californicus was much more representative of the small scale changes the copepod experiences 

in the intertidal pools, compared to holding the species at a variable constant temperature at 

15°C-25°C (Powlik et al., 1997).  

5. Conclusions and Future Directions 

 This work demonstrates that the optimal temperature to keep copepod habitats at is 15°C. 

Furthermore, the habitat’s water should be changed every week in order to remove any 

additional algae that may have grown and to mitigate increases in salinity levels, through 

evaporation. T. californicus is an emerging model organism due to its short generation time, low 

space requirements, and the fact that the species has numerous genetically divergent populations 
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that are capable of being crossed in the laboratory (Burton & Feldman, 1982). By developing a 

method to clean and maintain copepod habitats, that alleviates the amount of stress the organism 

experiences, it can allow for further study of genes’ functions and regulation. For example, these 

procedures will allow for the study of AOX through manipulation of environmental factors in a 

laboratory setting that will increase stress and in turn cause fluctuations in AOX expression.  
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Figures 

 

Figure 1: Materials needed to create salt water for copepod habitats. 

 

Figure 2: Materials required to construct a new copepod habitat. 

 

Figure 3: Procedure for cleaning a copepod habitat and removing as much algae as possible. 
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Figure 4: Food supplies needed to feed a 400 mL beaker copepod habitat each week. 
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CHAPTER 3 

Identification, expression, and DNA sequence analysis of alternative oxidase in Tigriopus 

californicus 
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Abstract 

In addition to the typical electron transport system in animal mitochondria responsible for 

oxidative phosphorylation, some species possess an alternative oxidase (AOX) pathway, which 

causes electrons to bypass proton pumping complexes. Although AOX appears to be 

energetically wasteful, studies have revealed its wide taxonomic distribution. AOX discovery in 

animals is recent, and further research into its expression, regulation, and physiological role has 

been impeded by the lack of an experimental model organism. DNA database searches using 

bioinformatics revealed an AOX sequence present in the arthropod Tigriopus californicus. 

Multiple sequence alignments compared AOX proteins and examined amino acid residues 

involved in AOX catalytic function and post-translational regulation. The AOX protein sequence 

of T. californicus contains amino acid residues required for catalytic activity. Furthermore, the 

AOX protein sequence of T. californicus contains a conserved C-terminal motif which is highly 

characteristic of animal AOXs. Identifying an effective housekeeping gene for use as a control is 

required to investigate the transcription levels of AOX in an animal model using real-time PCR. 

This research is making strides towards understanding the role and physiological function AOX 

plays in animal models, as AOX transcription levels have never been analyzed in an animal.  
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1. Introduction 

Sequencing copepod genomes is of high importance due to copepods being one of the 

most abundant organisms on the planet and playing a critical role in marine and freshwater 

environments (Barreto et al., 2018). In spite of the diversity and abundance of copepods, the first 

copepod genomes were published only a few years ago (Kang et al., 2017). Some of the 

challenges in sequencing genes from copepods are due to their small size and hard exoskeleton. 

The majority of DNA extraction procedures require a large mass of tissue. In order to better 

understand the importance of copepods and study specific genes in copepods, such as AOX and 

heat shock proteins, a DNA extraction procedure that accounts for their small size and hard 

exterior needs to be developed.  

Alternative oxidase (AOX) is a terminal oxidase that presents a branch point in the 

electron transport system (ETS) at the level of ubiquinone. AOX is an alternate route of electron 

exit by causing electrons to bypass complexes three and four, which are two of the three proton 

pumping complexes in the ETS, and using the electrons for its own reduction of oxygen. Overall, 

this causes less adenosine triphosphate (ATP) to be synthesized per oxygen molecule consumed 

and is energetically wasteful (Moore and Siedow, 1991). AOX is an interfacial membrane 

protein located on the matrix side of inner mitochondrial membrane (Rogov et al., 2016). In 

contrast to complexes I, III, and IV of the ETS, AOX does not translocate protons when 

electrons are transported through the complex. Therefore, AOX is not coupled with ATP 

synthesis and energy accumulation; instead the energy is released as heat (Rogov et al., 2016). 

Despite the fact that AOX is energetically wasteful, it has a wide taxonomic distribution in some 

plants, fungi, animals, protists and bacteria (McDonald and Vanlerberghe, 2004). 
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Even though there are certain areas pertaining to AOX that have been thoroughly 

researched, there are still numerous avenues for future research regarding this protein. The 

discovery of plant AOX was made in 1975, and since then plants, more specifically flowering 

plants, have been the main organism of study when it comes to AOX (McDonald et al., 2009). In 

2003, AOX was first discovered in prokaryotes, and in 2004 the first animal sequence was 

discovered (McDonald and Vanlerberghe, 2004). Recently, an AOX gene was detected in the 

copepod T. californicus (Tward et al., 2019). 

Public molecular databases indicate that AOX exists in several animal species due to 

either the presence of AOX DNA or mRNA (McDonald and Vanlerberghe, 2004; McDonald et 

al., 2009). Several studies have heterologously expressed the AOX from the sea squirt Ciona 

intestinalis in human cell lines, mice, and fruit flies and the AOX from the Pacific oyster 

Crassostrea gigas has been expressed in the yeast Saccharomyces cerevisiae (Robertson et al. 

2016; Rodriguez-Armenta et al., 2018; Hakkaart et al., 2006; El-Khoury et al., 2013; 

Kemppainen et al., 2014). These studies have demonstrated that the heterologously expressed 

AOXs are correctly targeted to the mitochondria and are functional enzymes. While this is useful 

information, what is lacking is the study of an AOX enzyme in an organism that contains the 

gene in its genome and naturally expresses the protein. T. californicus has been identified as a 

suitable organism for such studies due to the presence of a naturally occurring AOX gene in this 

species. By naturally occurring, we mean that the AOX gene will be studied in the organism that 

produces it. 

The AOX gene is encoded by the nuclear genome and the gene structure has been 

investigated most thoroughly in plants (Vanlerberghe & McIntosh, 1997). In plant genomes, 

AOX has two subfamilies, AOX1 and AOX2. The gene that encodes AOX1 is transcribed in 
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response to certain types of stress such as parasite attacks, oxidative, and temperature stress 

(Rogov et al., 2016, Costa et al., 2012).  In contrast, AOX2 is often expressed during different 

stages of plant development, and its expression is inducible and controlled by other processes 

(Considine et al., 2002, Rogov et al., 2016). When it comes to the presence of AOX in fungi, it 

has been found to be less diverse in comparison to plants, containing only one of the two 

subfamilies (Albury et al., 2009). The expression of this gene is highly dependent on the 

functional state of the mitochondria in the fungus that is expressing it (Rogov et al., 2016). The 

existence of a multitude of AOX sequences found in evolutionary distant organisms can be 

helpful in determining which amino acids are important for the folding and the function of the 

protein (Rogov et al., 2016). In animals, the AOX sequence has been found to have a unique C-

terminus that can be used to distinguish animal AOXs from those of other kingdoms (McDonald 

et al., 2009). 

It has been confirmed, through electron paramagnetic resonance technology, that AOX 

belongs to the family of di-iron carboxylate proteins and is dimeric (Moore et al., 2008). Each 

monomer in AOX is composed of six long helices (1-6) and four short helices (S1-S4) 

which are arranged in an antiparallel fashion (Moore et al., 2013). Helices 2, 3, and 4 from 

both monomers make up the dimer interface, which contains six highly conserved residues in all 

AOX sequences and eight residues that indicate that a dimeric structure is common to all AOXs 

(Moore et al., 2013). 

In AOX’s oxidized state, the two iron atoms, located in each active site, are linked by a 

hydroxo bridge and ligated by four highly conserved glutamate residues (Moore et al., 2013). 

The di-iron carboxylate proteins are characterized by a series of highly conserved glutamate 

(Glu, E) and histidine (His, H) residues (Chapter 1, Figure 3), which are required for the co-
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ordination of the di-iron centre of the AOX enzyme (Siedow et al., 1995). The AOX protein 

structure in organisms from a wide variety of kingdoms have highly conserved Glu and His 

residues at specific position in the protein sequence (McDonald, 2008). In addition to the Glu 

and His residues, a conserved tyrosine residue is required for AOX activity (Chapter 1, Figure 3) 

(Moore and Albury, 2008). One study observed a hydrophobic region of the AOX protein that is 

thought to play a key role in binding ubiquinol (Chapter 1, Figure 2) (Albury et al., 2009). 

Furthermore, Crichton et al. (2009) identified a conserved tryptophan (TrpI) residue which is 

thought to play a pertinent role in anchoring AOX to the inner mitochondrial membrane. Recent 

studies have proposed that ThrI and CysII affect the catalytic cycle of AOX with respect to its 

interaction with oxygen (Crichton et al., 2005). As well, Gln I (Q-27) and Tyr II (Y-60) are 

highly conserved and reside within the dimer interface and substitution of either of these residues 

with another residue would lead to significant inhibition due to their role in helix-helix 

interaction (Chapter 1, Figure 2) (Moore et al., 2013). The AOX gene possesses three highly 

conserved tyrosine (Tyr, Y) residues which each play a crucial role in electron transport (Moore 

et al., 2013). Tyrosine I (Y-38) is associated with ubiquinol binding, but it has been 

demonstrated that a mutation occurring to this Tyr does not lead to a complete loss of function 

(Moore et al., 2013). Due to its position in the AOX four-helix bundle, forming a hydrogen bond 

with a conserved His and being far enough away from the di-iron center, this suggests that it 

most likely stabilizes the structure of the oxidase rather than being directly involved in ubiquinol 

binding (Moore et al., 2013). Tyrosine III (Y-108), which is located on one of the helices, is 

likely involved in hydrogen bonding networks rather than in electron transport. This finding was 

supported by the observation that if tyrosine III (Y-108) was switched out with an alanine 

residue, AOX would still retain some of its activity, which would not be the case if the residue 
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was pivotal for electron transfer (Moore et al., 2013). Conversely, tyrosine II is highly 

conserved, as it is essential for AOX’s catalytic cycle (Albury et al., 2002). Tyr II (Y-60) is 

buried deep within the four-helix bundle and close to the di-iron center. Mutational analysis has 

shown that this residue (Tyr II, Y-60) is crucial to the enzymatic activity of all AOXs by way of 

electron transport (Chapter 1, Figure 3) (Albury et al., 2002). Alanine (Ala, A) also plays a 

critical role in the substrate-binding cavity. Both Ala I (A-56) and Tyr II (Y-60) are situated very 

close to the active site (6 Å), hence why there can be no substitutions for these residues (Moore 

et al., 2013). The crystal structure of AOX in the protist Trypanosoma brucei has been examined 

and led to insights regarding the structure and catalytic cycle of AOX (Shiba et al., 2013).  

The physiological role of AOX is still under investigation, but it is known to play a role 

in thermogenesis in some angiosperms (Grant et al., 2008; Seymour and Matthews, 2006). 

Furthermore, AOX has also been shown to reduce the generation of reaction oxygen species 

(ROS) (Møller, 2001) which can lead to oxidative damage to the mitochondria and other cellular 

components (Maxwell et al., 1999). In eukaryotic cells, the majority of ROS comes from the 

mitochondria (Maxwell et al., 1999). Therefore, AOX may play a role in aiding in the balancing 

of carbon metabolism, electron flow, and ATP biosynthesis. 

Heat shock proteins 

 

Heat shock proteins (HSP) are synthesized in all organisms and are highly conserved 

proteins that respond to various environmental stressors such as temperature fluctuations, 

chemical exposure, and hypoxia (Rhee et al., 2009). The majority of HSPs are involved in 

assembly and folding of proteins (Fink, 1999). When exposed to stressful conditions, HSPs move 

to the cell nucleus where they mend and protect nuclear proteins while consecutively minimizing 

protein aggregation to mitigate genetic damage (Rhee et al., 2009).  
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HSP20 contains an A-crystallin and an B-crystallin domain, which are domains that 

are shared by certain small heat shock proteins and cause them to share a significant degree of 

sequence homology (MacRae, 2000), and have been shown to play a role in modulating cellular 

defense systems in response to environmental stressors in Tigriopus japonicus (Seo et al., 2006). 

The HSP20 gene produces a transcript of 1014 base pairs and the protein consists of 174 amino 

acid residues (Seo et al., 2006). One study on the copepod Tigriopus japonicus showed that there 

is a positive correlation between the up-regulation of HSP20 mRNA expression and increasing 

temperatures (Seo et al., 2006).  Furthermore, Seo et al. (2006) demonstrated that T. japonicus 

HSP20 mRNA expression increased when subjected to changes in water temperature, but not 

upon fluctuations in salinity. Another study confirmed this finding that expression of the heat 

shock protein family led to increases in thermal tolerance upon exposure of the organism to heat 

shock (Arrigo and Landry, 1994). Schoville et al. (2012) stated that the role of HSP20 in 

Tigriopus californicus is to respond specifically to heat stress. One study exposed T. japonicas to 

three different temperatures (4, 10 and 30°C) and took samples after 5, 10, 20, 30, 60, 90, 120, 

and 180 minutes (Seo et al., 2006). It was concluded then when T. japonicas was exposed to 4°C 

it showed the largest gene expression of HSP20 after 30 minutes and when exposed to 30°C the 

largest gene expression of HSP 20 was after 90 minutes (Seo et al., 2006). 

In order to measure the transcription levels of any gene, a well-defined housekeeping 

gene is required to serve as a means of standardizing the data. Housekeeping genes, also known 

as reference genes, are expressed in a stable and non-regulated constant level, and are primarily 

involved in processes essential for the survival of cells (Kozera and Rapacz, 2013). Furthermore, 

the most important attribute of a reference gene is that its expression level is unaffected by 

experimental factors. Housekeeping genes will bring to light the variability resulting from 



 56 

imperfections of the technology being used and ensure that any variation in the amount of 

genetic material will also affect the housekeeping gene to the same extent. The use of a 

housekeeping gene leads to an increase of resolution and greater accuracy of the results when 

making definitive statements regarding fluctuations in the transcription of other genes (Kozera 

and Rapacz, 2013).  

We hypothesize that T. californicus’ AOX protein sequence will possess the conserved 

residues, which are required in order for the protein to function. Prior to being able to test the 

hypothesis an effective and efficient method to isolate DNA from copepods has to be 

established. Furthermore, we hypothesize that when comparing T. californicus’ AOX sequence 

to the AOX sequences of other organisms, such as plants and animals, the crucial amino acids 

required for enzymatic function will be conserved across domains.  

 The purpose of this study is to: 1) confirm the presence of an AOX gene in the copepod 

Tigriopus californicus; 2) sequence the AOX gene of T. californicus; 3) compare the amino acid 

composition of the AOX of T. californicus to those of other copepods, animals, and plants and 4) 

to identify if the AOX enzyme is active in T. californicus based on the presence or absence of the 

conserved glutamate, histidine, tryptophan, and alanine residues necessary for protein activity. 

Bioinformatics were used to perform a molecular database search to identify the AOX gene from 

closely related copepods and other organisms in order to address the above objectives. To 

validate our bioinformatics results, polymerize chain reaction (PCR) was utilized to amplify the 

HSP and housekeeping genes using gene specific primers.  
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2. Materials and Methods 

2.1 Procedure of the HotSHOT DNA Isolation Method Applied to Copepods 

 Currently in the literature there is no effective and efficient method to isolate 

DNA from a small number of copepods. Montero-Pau et al. (2008) developed the HotSHOT 

(Hot Sodium Hydroxide and Tris) DNA extraction procedure, which provides DNA from resting 

eggs in a range of taxa that can be further used in PCR (polymerase chain reaction) 

amplification. The HotSHOT method is a reliable, simple, and cheap DNA extraction approach 

which can be altered for use in other aquatic invertebrates with resting eggs (Ishida et al., 2012). 

Resting eggs have a similar hard exterior to a copepod’s exoskeleton. Therefore, the HotSHOT 

method may be able to be used in the isolation of DNA from copepods and enable the 

investigation of genes including AOX, heat shock proteins (HSP) and housekeeping genes. 

In order to isolate DNA, ~20-30 copepods were individually isolated from a habitat. In a 

microcentrifuge tube, 150 µL of an alkaline lysis buffer (25 mM NaOH, 0.2 mM of EDTA, pH 

8) was dispensed. Under a microscope, an individual copepod was transferred into the 

microcentrifuge tube, carrying over as little water as possible. A sterile pipette tip was used to 

crush open the copepod against the wall of the microcentrifuge tube. The sample was then 

incubated for 30 minutes at 95°C and subsequently cooled on ice for 3-4 minutes. 150 µL of 

neutralizing solution (40 mM of Tris-HCl, pH 5.0) was added to the microcentrifuge tube and the 

tube was vortexed. Afterwards, the tube was placed in a table top centrifuge for approximately 

10 seconds. The DNA sample was placed in a freezer at -20°C for long-term storage. During 

every use, the sample was allowed to thaw and was centrifuged to get all of the debris from the 

copepod’s exoskeleton at the bottom of the tube (pellet). The DNA sample was taken from the 

supernatant.  
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2.2 Quantification of DNA using a Spectrophotometre 

The concentration of a DNA sample can be determined by the use of UV 

spectrophotometry. DNA absorbs UV light very efficiently making it possible to detect and 

quantify it at concentrations as low as 2.5 ng/µl. The nitrogenous bases in nucleotides have an 

absorption maximum at about 260 nm. Using a 1-cm light path, the extinction coefficient for 

nucleotides at this wavelength is 20. Based on this extinction coefficient, the absorbance at 260 

nm in a 1-cm quartz cuvette of a 50 µg/ml solution of double stranded DNA is equal to 1. The 

concentration of DNA can be calculated using the following equation: 

DNA concentration (µg/ml) = (OD 260) x (dilution factor) x (50 µg DNA/ml)/(1 OD260 unit) 

 

The sample is prepared by placing 995µl of nuclease free water and 5µl of DNA sample 

in an eppendorf tube (dilution factor is 200). This sample was placed in the spectrophotometer 

along with a blank sample (1000µl of nuclease free water) to get a reading for each sample at 

A260 and A280 using quartz cuvettes.  

2.3 Primer Design 

  In order to conduct PCR, primers were designed for T. californicus genes based on 

cDNA sequences. Molecular database searches revealed putative T. californicus AOX, -

Tubulin, 16S, EF1, GAPDH, HSP20, HSP70, and HSP90 sequences using BLAST (Basic Local 

Alignment Search Tool) at the National Center for Biotechnology Information (NCBI) 

(http://www.ncbi.nlm.nih.gov/). The Primer3 program (http://frodo.wi.mit.edu/primer3) was 

utilized for the design of each of the primers for amplification of heat shock proteins 20, 70 and 

90 and all housekeeping genes from T. californicus. The custom primers were sent to Invitrogen 

(Invitrogen Life Technologies, Carlsbad, CA, USA) to be produced for use in the PCR protocol. 
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All heat shock, AOX (developed by Jaspreet Singh) and housekeeping gene primers are 

summarized in Tables 1 and 2. 

2.4 Polymerase Chain Reaction 

 In order to evaluate the validity and reliability of the DNA extraction protocol, a 

fragment of each heat shock gene was amplified. Three primers for each heat shock protein gene 

were developed and used in PCR. PCR was conducted using the GoTaq Green Master Mix (2x) 

(Promega), which contains a dye so the sample is ready for gel electrophoresis after PCR. Each 

PCR reaction contained: nuclease free water (25 µL), GoTaq Green Master Mix 2x (12.5 µL), 

forward and reverse primers (2 µL of each at 10 µM), and DNA extract (sample, 5 µL, all source 

DNA was taken from the same sample) (Table 3). These substances should be added in this order 

into a sterilized PCR tube, in order to prevent contamination. For the negative control the Taq 

DNA polymerase is left out. When adding these substances to the PCR tube the tubes should be 

held in a cold tube rack in order to keep all substances cold and to prohibit any reactions from 

occurring too early. To prevent and minimize the cross-contamination between samples, new 

sterilized pipette tips should be used between adding each substance to each PCR tube.  

 To amplify the heat shock protein and housekeeping genes, a PCR program was 

developed (Figure 1). First, the thermal cycler was heated to 94°C and held there for 3 minutes. 

To optimize amplification conditions, the thermal cycler was programmed for 40 cycles of 

amplification. Each cycle consisted of 30 seconds at 94°C for denaturation, 1 minute at 45°C for 

annealing, and 2 minutes at 68°C for elongation (the final elongation step was extended for 7 

minutes during the last cycle in order to allow DNA strand synthesis to finish completely) (Table 

4). While running/setting up the thermal cycler program the lid temperature was set to 100°C to 

prevent evaporation. For the annealing step the temperature was set at 45°C because the Tm 
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(melting temperature at which half of the DNA strands are single stranded) for all primers is 

60°C. 

2.5 DNA Gel Preparation 

In order to make a DNA gel in order to visualize PCR products, a small gel tank, small 

gel tray, gel comb and gel caster are needed (Figure 2). The small gel tray is placed into the gel 

case and tightened until the tray is firmly in place. The gel comb is inserted into the gel case. 

Next a mixture of TAE buffer (1 mL), Milli-Q water (49 mL), agarose (0.60 g), and ethidium 

bromide (2 µL) is made in an Erlenmeyer flask. The Erlenmeyer flask is placed in the microwave 

for an initial 45 seconds, in order to dissolve the agarose. The flask was removed from the 

microwave using hot gloves, the contents were swirled, and placed back in microwave for 10 

seconds. This step was repeated until the solution began to bubble. The hot flask is then left to sit 

until it is warm enough to touch without burning your hand. The gel solution is then slowly 

poured into the gel tray, to prevent any bubbles from being in the gel. It is left to sit for 

approximately 30 minutes, in order for it to solidify into a gel.  

2.6 DNA Gel Electrophoresis 

First, the gel tray was placed on the gel stage of the tank, with the gel comb still in place. 

Next, 1x TAE (Tris base, acetic acid and EDTA) running buffer (5 mL TAE buffer, and 245 mL 

MilliQ water) is poured into the tank until the gel was completely covered with solution (Figure 

3). Following this step, the comb is removed and the wells were topped off with 1x TAE running 

buffer (a thin layer of buffer covering the gel). The first well was loaded with 3 µL of DNA 

ladder (GeneDirex, 100bp DNA Ladder Ready To Use), and the subsequent wells were loaded 

with 12 µL of each PCR sample. The gel was run at 80 V for approximately 1 hour and 20 

minutes. Once the blue stain had run 75% of the way through the gel the run was stopped. The 
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DNA gel was imaged on a VersaDoc, with the following setting: Nucleic Acid Gels, Ethidium 

Bromide. PCR fragments were visualized on the DNA gel at different sizes, depending on the 

gene fragment (Refer to Table 1 and 2 for exact locations of the different gene fragments based 

on expected cDNA product size). 

2.7 Extraction of DNA products From the DNA Gel 

Prior to imaging the DNA gel a ruler was placed beside it in order to pinpoint exactly 

which part of the gel was going to be excised. A clean scalpel was used to cut the piece from the 

gel and follow-up pictures were taken in order to make sure of three things: 1. The right section 

of the gel was excised, 2. That the wanted DNA fragment was taken, and 3. That there is no 

excess agarose around the extracted section. Eppendorf tubes were weighed before and after 

placing the gel fragment in them. The QIAquick Gel Extraction Kit (Qiagen) was utilized for this 

procedure. For every 100 mg of gel, 300 µL of buffer QG is added into the eppendorf tube 

containing the piece of extracted DNA gel. The tubes were incubated at 50°C for 10 minutes, 

during which the tubes were vortexed every 2-3 minutes to help dissolve the gel. Following the 

dissolving of the gel pieces the solution should be yellow in color. 100 µL of isopropanol is then 

added to the eppendorf tube for every 100 mg of gel. Next, the QIAquick spin column is placed 

in a 2 mL collection tube and the solution is placed inside the spin column, in order to bind the 

DNA. The spin column and collection tube were placed in the centrifuge for 1 minute at 13,000 

rpm. The flow through is discarded as hazardous waste. 500 µL of Buffer QG is added to the 

column and again centrifuged for 1 minute at 13,000 rpm, and flow through is discarded 

appropriately. The column is then washed with 750 µL of Buffer PE and centrifuged (1 minute 

and 13,000 rpm). The spin column is placed into a clean 1.5 mL Eppendorf tube and 50 µL of 

Buffer EB is added to the column in order to elute the DNA. Prior to centrifuging for 1 minute 
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(13,000 rpm), the column is left to stand for 4 minutes in order to increase the yield of purified 

DNA. DNA samples are then stored in the -20°C freezer until they are ready to be used.  

2.8 Luria Broth Agar Plates Preparation 

1 L of Milli-Q filtered water, 25 g of LB (Luria broth) medium, and 15 g of agar are 

added to a media jar (Figure 4). The media jar containing the solution is placed in the autoclave 

on a liquid 30 cycle. Once removed from the autoclave, the contents are left to cool to room 

temperature. 1 mL of ampicillin mixture (0.1 g of ampicillin stock and 1 mL of Milli-Q filtered 

water) is added to the media jar containing the solution. Prior to pouring the plates the work 

station was sufficiently cleaned with 70% ethanol, as well, a Bunsen burner was lit to remove 

any contaminants in the air. Furthermore, the lip of the media jar was placed on top of the flame 

to get rid of any contaminants that might have attached while the media jar is open. The lip of the 

media jar was placed on top of the flame between pouring every 5 plates to prevent any 

contamination. The LB solution was poured into each petri plate until it was approximately ¾ of 

the way full and plate lids were placed on top immediately after pouring. Plates were left to 

solidify and stored inverted in the fridge to prevent any condensation from getting onto the 

solidified media. Once the plates were ready to be used, they were placed in a laminar flow 

cabinet. 45 µL of X-Gal (5-Bromo-4-Chloro-3-Indolyl β-D-Galactopyranoside) and 45 µL of 

Isopropyl β-D-1-thiogalactopyranoside (IPTG) are added to the plate, spread evenly around the 

whole plate and left until the substances have been absorbed by the media in the plate. 

2.9 Plasmid pGEM-T Easy Vector Map 

 Please refer to Figure 5 for picture of pGEM-T Easy Vector map and sequence reference 

points. There are two points on this plasmid which are important for selection of transformed 

strains. The first is the ampicillin resistance gene; the media used for the plates contains 
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ampicillin to make sure that only a bacterial strain which contains a plasmid with an ampicillin 

gene (this acts as a selection marker) can grow. The second aspect of the plasmid which was 

manipulated is the LacZ gene. The LacZ gene codes for a protein called beta-galactosidase, 

which generates a blue coloured product when it reacts with the X-Gal substrate. In a successful 

transformation, the PCR product is inserted into the LacZ gene thereby halting the production of 

beta-galactosidase. Therefore, if the colony on the agar plate is blue, it indicates that the PCR 

product did not insert into the plasmid. Conversely, if the colony is a shade of white, it indicates 

that the PCR product has successfully inserted itself into the plasmid.  

2.10 Ligation of PCR products into the pGEM-T-Easy Vector  

First, the tubes containing the pGEM-T Easy Vector and Control Insert DNA were 

centrifuged to make sure all contents were at the bottom of the tubes. Next, standard ligation 

reactions were set up, on ice, by adding 1 µL of Nuclease Free Water, 5 µL of 2 Rapid Ligation 

Buffer, 1 µL of pGEM-T Easy Vector, 2 µL of each PCR product, and 1 µL of T4 DNA Ligase 

(added last). For the positive control, all contents are the same except, instead of adding 2 µL of 

PCR product, 2 µL of control insert DNA is added (Table 5). The contents in each tube were 

mixed, centrifuged and left to incubate for 1 hour at room temperature.  

2.11 Transformation of E. coli Using the pGEM-T-Easy Vector Containing PCR Inserts 

Following the incubation period, 2 µL of each ligation reaction is added to a sterile 

polypropylene tube while on ice. Next, 50 µL of JM109 High Efficiency Competent Cells 

(Promega) were added to each polypropylene tube. The tubes were very gently mixed and left in 

ice for 20 minutes. Each polypropylene tube containing cells was then heat shocked at 42C for 

45-50 seconds. Immediately following the heat shock step, samples were returned to ice for 2 
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minutes. 950 µL of Super Optimal broth with Catabolite repression (SOC) medium is then added 

to each tube and incubated for 1.5 hours at 37C with shaking (150 rpm). Two plates were used 

to spread each sample, the first one contained 50 µL of the transformation culture and the second 

one had 100 µL of the transformation culture. Different amounts were used on the two plates to 

ensure that one plate would not have an over-abundance of growth and a white colony would be 

able to be isolated easily. Plates were wrapped with parafilm, incubated for 24 hours at 37C and 

subsequently placed in a fridge at 4C to facilitate blue colour development.  

2.12 Liquid Culturing of Transformed E. coli 

500 mL of Milli-Q filtered water and 12.5 g of LB medium were added to a media jar. 

The media jar containing the solution was placed in the autoclave on a liquid 30 cycle. Once 

removed from the autoclave the contents were left to cool to room temperature. Prior to isolation 

of a white colony from each plate and the placement of it in liquid LB medium, the work station 

was sufficiently cleaned with 70% ethanol, as well, a Bunsen burner was lit to remove any 

contaminants in the air. Furthermore, the lip of the media jar containing liquid LB media was 

placed on top of the flame to get rid of any contaminants that might have attached while the 

media jar was open. 5 mL of liquid LB media was added to each sterile polypropylene tube. 

Plates containing blue and white colonies were removed from the fridge and placed on the sterile 

bench top. An inoculation loop was used to isolate a white colony from each plate. Prior to the 

isolation, the inoculation loop was placed over the Bunsen burner flame in order to kill off any 

bacteria or contaminants. It was then left to cool for approximately 30 seconds and then used to 

scrape one white colony off of the plate. It was then placed inside the sterile polypropylene tube 

containing the SOC medium. These steps were repeated until each sterile polypropylene tube 
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contained one white colony from its corresponding plate. Tubes were placed in incubator for 24 

hours at 37C with shaking (150 rpm). 

2.13 Isolation of Plasmid DNA 

 The 5 mL bacterial cultures contained in the polypropylene tube were spun down in an 

eppendorf tube 1mL at a time. In order to do this the centrifuge was set to 8000 rpm for 3 

minutes at room temperature. Following each spin, the supernatant was disposed of as 

biohazardous liquid waste and the pellet remained at the bottom of the eppendorf tube. Once all 

five spins were done, all the liquid supernatant was removed and the bacterial pellet remained. 

The QIAGEN QIAprep Spin Miniprep Kit was used to isolate the plasmid DNA. First, 250 µL of 

Buffer P1, containing RNase A, was placed in the eppendorf tube to re-suspend the cells. 250 µL 

of Buffer P2 was subsequently added and mixed, by inverting the tube six times, until the 

solution became blue. Buffer P2 caused the cells to lyse and released the DNA into the solution. 

This reaction cannot last longer then 5 minutes because it will destroy other components of the 

cell such as lysosomes, which would release digestive enzyme that can destroy the DNA. To stop 

this reaction, 350 µL of Buffer N3 is added and mixed immediately by inversion 6 times until the 

solution becomes clear. The tubes are then placed in the centrifuge for 10 minutes at 13,000 rpm 

and room temperature, in order to move all the cellular debris to the bottom (DNA is located in 

supernatant). Following centrifugation, 800 µL of the supernatant is placed in the QIAprep 2.0 

spin column. The spin columns are placed in the centrifuge for 60 seconds to spin at 13,000 rpm 

at room temperature. This centrifuge step will allow the DNA to stick to the column and the 

liquid waste will go into the collecting tube and is subsequently disposed of. The column is then 

washed with 0.5 mL of Buffer PB and placed back in the centrifuge for 60 seconds at 13,000 rpm 

and room temperature. This wash with Buffer PB will remove any endonucleases that were 
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present in the JM109 High Efficiency Competent Cells that were used during the transformation 

steps. The flow through was collected in the waste container and disposed of as biohazardous 

liquid waste. 0.75 mL of Buffer PE is then added and centrifuged for 60 seconds at 13,000 rpm 

and room temperature. This buffer washes out any unwanted particles that might be in the spin 

column. Flow through in the collected tube is again discarded appropriately, and the spin column 

is subsequently placed back in the centrifuge to remove any residual wash buffer. The waste 

container is disposed of properly and the spin column is placed in a clean eppendorf tube. 50 µL 

of nuclease free water is placed on the center of the spin column and left to sit for 1-2 minutes. 

Subsequently the sample is centrifuged for 1 minute at 13,000 rpm and room temperature. This 

will elute the DNA from the spin column and the DNA sample will now be contained in the 

eppendorf tube. The eppendorf tubes with the DNA samples are then stored in the fridge at 4C. 

The DNA samples were sent to the SickKids TCAG DNA Sequencing Facility for sequencing. 

7.0 µL sample containing 50 ng of purified template DNA was placed in a sterile eppendorf tube 

with 0.7 µL of one of the primers for the DNA sequence (either the forward or reverse primer).  

3. Results 

3.1 Molecular analysis of T. californicus AOX 

 The HotSHOT method, developed for diapausing eggs, proved to be an effective DNA 

isolation method for copepods when the isolated DNA was subsequently used to conduct PCR. 

Conversely, when performing ligations and inserting the DNA into a plasmid more DNA was 

needed. Therefore, the HotSHOT method was implemented with a couple of alterations. First, 

the number of copepods was increased to ~25-30 instead of from a single copepod. Second, all 

solutions added into the eppendorf tube were tripled in volume (alkaline lysis buffer and 

neutralizing solution). Third, the copepods are sonicated (10 seconds sonication, 10 seconds on 
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ice 3) instead of broken open with a sterile pipette tip (Table 6). 

3.2 Primer Design Efficacy 

In order to conduct PCR, primers were designed for T. californicus genes based on cDNA 

sequences from closely related species. Overall, 28 primers were developed for nine different 

genes (Tables 1 and 2). The majority of the primer sets (17/28) either produced no PCR product 

or produced multiple PCR products as visualized on DNA gels. Successful primers were 

identified for 16S (Primer sets 16S-1, -3 and -4), HSP20 (HSP20A, B and C) HSP70 (HSP70A, 

B, and C) HSP90 (HSP90A) and elongation factor 1 (EF1) (EF1-B); Table 7 summarizes the 

success of each primer set. Furthermore, for the genes that displayed a single PCR product of the 

correct size on the DNA gel, only three were ligated and cloned successfully. Subsequently, 

when samples were sent to The Centre for Applied Genomics (TCAG) at Sick Kids Hospital to 

be sequenced, none of the genes came back successfully sequenced. Table 7 summarizes the 

success of each primer set. 

3.3 Heat Shock Proteins’ Primers Efficacy 

HSP20-A, B and C primers (Table 1) were successful at isolating a specific segment of 

the copepod genome (Figure 6). These segments were found to be the correct length as based on 

the expected cDNA product size (HSP20-A, 376bp; HSP20-B, 308bp; HSP20-C, 307bp). When 

undertaking ligation and cloning, only the sample containing the HSP20-C primers worked. This 

product was then sent off to be sequenced at TCAG DNA Sequencing Facility, but they were 

unable to successfully sequence the gene.  

The next heat shock protein that we attempted to sequence, in T. californicus, was 

HSP70. Three primers (Table 1) were developed (HSP70-A, B and C) based on other closely 
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related organisms’ HSP70 gene sequences (Table 1). All three primers were able to successfully 

isolate gene segments that were the correct product size (HSP70-A, 205bp; HSP70-B, 219bp; 

HSP70-C, 206bp) (Figure 7). We were unable to ligate and clone the HSP70 products and 

therefore they could not be send off for sequencing.  

 Another heat shock protein that we looked at was HSP90. Three sets of primers were 

developed based on HSP90 gene sequenced in closely related organisms to our copepod, T. 

californicus (Table 1). Only one of the three primers sets was effective at replicating the correct 

segment of DNA (HSP90-A, 394bp). HSP90-B (320bp) and HSP90-C (306bp) produced 

multiple bands on the DNA gel and therefore could not be ligated and cloned (Figure 7). When 

attempting to ligate and clone the HSP90-A sample, we were unsuccessful.  

3.4 Housekeeping Genes’ Primers Efficacy 

A multitude of different housekeeping genes were looked at in order to sequence one in 

T. californicus. The first housekeeping gene that was looked at was GAPDH (glyceraldehyde 3-

phosphate dehydrogenase). Three sets of primers were developed (GAPDH-1, 2 and 3) based on 

GAPDH sequences in closely related copepods (Table 2). All primers were unsuccessful at 

replicating any segments of DNA from T. californicus. Therefore, this led to no products being 

displayed on the DNA gel (Figure 8). This made us conclude that GAPDH would not work as a 

housekeeping gene in our model organism based on the primers that have been developed.  

The next housekeeping gene we attempted to sequence was EF1α. Three primers were 

designed based on closely related organisms’ sequences in the NCBI database (Table 2). When 

undertaking PCR, primer sets EF1α-1 and EF1α-2 produced multiple sequences on the DNA 

gels, while the EF1α-3 primers produced no products. Consequently, ligation, cloning and 

sequencing could not be attempted.  
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In addition, we tried to sequence another gene in the EF1 complex, in the copepod T. 

californicus. Of the three primer sets (Table 2) developed (EF1-A, B and C), only EF1-B 

generated one band on the DNA gel of the correct product size (241bp) (Figure 9). Primer sets 

EF1-A and C produced multiple bands down the DNA gel and therefore could not be analyzed 

further (Figure 9). The sample containing the EF1-B primers was ligated and cloned and set to 

the TCAG DNA Sequencing Facility at SickKids Hospital, but they were unable to successfully 

sequence the gene.  

Another housekeeping gene that was looked at was -Tubulin. All three primer sets that 

were developed were ineffective at isolating the specific product of interest (Table 2). Primer 

sets -Tubulin-1, 2 and 3 produced multiple bands down their respected lanes of the DNA gel 

(Figure 9). Ligation, cloning and sequencing were therefore not attempted.  

The next housekeeping gene that we attempted to sequence was 16S. Three primer sets 

were developed based on DNA sequences found in the NCBI database of closely related 

organisms (Table 2). All three primer sets did not work in isolated a DNA fragment (Figure 10). 

These primers could not be used to sequence the 16S gene from T. californicus. Next, we 

attempted to sequence this gene by using bioinformatics. A sequence alignment was done to 

align the specific 16S gene sequence found in closely related organisms to the entire genome of 

T. californicus (Figure 10). This led to the identification of one section of the T. californicus 

genome that had a high similarity of base pairs to the 16S gene sequence found in another 

closely related arthropod (Figure 10). This segment of the T. californicus genome was then used 

to develop primers to isolate the 16S gene (Table 2). Four primer sets were developed (T. cal 

16S-1, 2, 3 and 4) and three of the four were successful at isolating the correct product through 

PCR (T. cal 16S-1, 330bp; T. cal 16S-3, 282bp; T. cal 16S-4, 286bp) (Figure 11). The T. cal 
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16S-2 primer set produced multiple products on the DNA gel (Figure 11). Ligation and cloning 

was not attempted for these samples, instead DNA samples containing the working primers were 

sent to be sequenced directly at the TCAG DNA Sequencing Facility at SickKids Hospital. The 

sequencing facility was unable to sequence the gene of interest.  

3.5 Identification of Novel AOX Sequences in Copepods 

A molecular database search, using the National Center for Biotechnology Information’s 

(NCBI) BLAST (Basic Local Alignment Search Tool) (https://blast.ncbi.nlm.nih.gov/Blast.cgi), 

revealed the presence of a putative AOX sequence in seven different copepods species (Table 8). 

The copepod species are representative of three different orders (Calanoida, Cyclopoida, and 

Harpacticoida) and five different families. All the predicted AOX protein sequences contain at 

least 3 or more of the 4 iron-binding motifs which contain conserved glutamate (Glu, E) and 

histidine (His, H) residues required for the enzyme’s functional activity (Chapter 1, Figure 3) 

(McDonald et al., 2009).  

3.6 In Silico Analyses of the Tigriopus californicus AOX Sequence 

 A putative T. californicus AOX DNA sequence of 551bp was found through a molecular 

database search (Table 9). The putative T. californicus cDNA sequence (Table 9) was translated 

using the ExPASy Translate Tool (http://web.expasy.org/translate/) into the predicted protein 

sequence summarized in Table 10. The predicted protein from T. californicus contained 3 of the 

4 iron binding motifs, which are highly conserved glutamate and histidine residues required for 

AOX’s enzymatic function in other organisms (McDonald et al., 2009).  

 Comparison of the AOX protein sequence from T. californicus to AOX protein sequences 

in plants (Figure 12), animals (Figure 13) and other copepods (Figure 14), demonstrated highly 

conserved regions across a multitude of organisms (Table 11). Protein sequence comparison 
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indicates that the glutamate (Glu, E) and histidine (His, H) residues required for AOX activity 

are completely conserved (Figures 12-14). Other residues that may be important in AOX 

catalysis including Q27/GlnI, Y38/TyrI, H46/HisII, Y60/TyrII, and Y108/TyrIII (numbering as 

per the T. californicus sequence) are conserved in all organisms analyzed, except that C. 

glacialis does not possess TyrIII (Y-108) (Figure 14). When looking at the copepod protein 

sequence, the C-terminal motif (N-P-[YF]-X-P-G-[KQE]), specific to animals, is highly 

conserved (McDonald et al., 2009) (Figures 13 and 14). T. californicus and T. japonicus possess 

a very similar motif with two variations (N-P-F-E-K-G-K) (Figure 9). 

3.7 Amino Acid Conservation in AOX 

When analyzing the core regions of the AOX protein in all the organisms it can be seen 

that all of the iron-binding residues which are imperative for AOX activity are conserved (Figure 

11-13). Our results confirm that ArgI (R-3), LeuI (L-6) and GlnI (Q-27), amino acids that have 

been shown to be universally conserved in the dimer interface, are present across all AOX 

sequences examined (Figure 12-14). As well, a key tyrosine residue (Y-60/TyrII) involved in 

AOX activity is conserved in all organisms examined (Figures 12-14). Conversely, Isoleucine-

24, which was previously thought to be conserved in the AOX protein structure, was only 

present in 14 of the 25 AOX sequences analyzed. Arginine-19 is another amino acid originally 

thought to be conserved amongst all AOX protein sequences, but it is not present in two of the 

organisms looked at, C. glacialis and M. tecatiformis (Figures 13 and 14). Along with the above 

mentioned universally conserved residues required for AOX’s function, there are several other 

residues that have been demonstrated in previous research studies to be conserved in the AOX 

protein sequence. Table 12 outlines 23 of the 29 universally conserved residues in AOX protein 

sequences (this list includes the aforementioned residues). Only 23 residues are outlined due to 
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other six not being present in the protein region that was being analyzed. 

4. Discussion 

4.1 DNA Isolation from the Copepod T. californicus 

 The HotSHOT method was used to isolate DNA from the study organism T. californicus. 

This method was originally invented to isolate DNA from diapausing eggs. Due to the similar 

hard exterior of both diapausing eggs and copepods I predicted that this method could be used to 

isolate DNA from copepods. Despite the fact that there are numerous other ways to isolate DNA 

from copepods, the HotSHOT method has superior features, such as being a single tube 

procedure, which allows for increased efficiency and minimized risk of cross contamination. 

Although following the HotSHOT method led to isolation of DNA, the sample did not contain 

enough DNA to successfully use in PCR. When alterations were made to the HotSHOT method 

(increase in the number of copepods, sonication, and increased volume of solution), DNA was 

able to be successfully used in PCR. After performing DNA quantification on samples obtained 

using the HotSHOT method and the adjusted HotSHOT method, there was a 25-fold increase in 

the amount of DNA isolated (20 ng/µL and 500 ng/µL, respectively) (Table 6). We have 

demonstrated that this method of DNA extraction is consistent and reliable for DNA 

quantification and PCR amplification in copepods. The HotSHOT method was originally thought 

to only be able to isolate DNA from a variety of resting eggs (Ishida et al., 2012), but with the 

above changes, this reliable, simple and cheap DNA extraction approach can be used for other 

aquatic invertebrates. In summary, the altered HotSHOT method is a rapid, inexpensive, high-

performance technique for PCR-quality DNA extractions from copepods, which avoids cross-

contamination and, as larger volumes are used, it allows for more PCR reactions per sample. 

This DNA extraction methodology will facilitate the application of large-scale screening 



 73 

molecular techniques in several areas of molecular ecology, from population genetics to 

barcoding studies. 

4.2 The Taxonomic Distribution of AOX in Copepods 

 It had been initially thought that the AOX gene was not present in arthropods due to a 

gene loss event and because arthropod and vertebrate species require maximal muscle force from 

their aerobic ATP stores to survive in stressful conditions (Fernandez-Ayala et al., 2009; 

McDonald and Vanlerberghe, 2006; McDonald et al., 2009; Vanlerberghe, 2013). We have 

demonstrated that multiple species of copepods, from around the world, possess AOX in their 

genomes (Table 8).  The first discovery of AOX in arthropods was from the brine shrimp 

Artemia franciscana (Rodriquez-Armenta et al., 2018). Previously, it was hypothesized that due 

to a gene loss event, AOX was not present in arthropods (McDonald et al., 2009), but the data 

displayed in Figure 9 disproves that hypothesis.  

 Next, to ensure that the AOX sequence recovered from the arthropod T. californicus was 

from an animal species and not from contamination (e.g. from a microbial symbiont or 

pathogen), that could have taken place throughout the experiment, the sequence was translated to 

its predicted protein sequence and analyzed. All animal AOX protein sequences possess a 

specific C-terminal motif (N-P-[YF]-X-P-G-[KQE]), which is highly conserved (McDonald et 

al., 2009). T. californicus and T. japonicus possesses a very similar motif with two variations (N-

P-F-E-K-G-K) (Figure 14) (McDonald et al., 2009). To confirm this finding, when comparing T. 

californicus’ AOX sequence to plant AOX sequences (Figure 12), it can be seen that none of the 

plants possess the same C-terminal motif.  
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4.3 AOX Protein Similarities and Differences Between Organisms 

 When looking at all organisms’ AOX core regions it can be seen that all of the iron-

binding residues required for AOX activity are conserved in the sequences (Figures 12-14) 

indicating that these proteins should be catalytically active. Moore et al. (2013) identified six 

residues within the dimer interface that are universally conserved. Three of these six residues are 

located in the N-terminus and the other three are located in the core and C-terminal regions. In 

regard to the three in the core and C-terminal regions, our results confirm the finding (Figures 7-

9) that ArgI (R-3), LeuI (L-6) and GlnI (Q-27) are highly conserved across all AOX sequence in 

all organisms. Furthermore, Moore et al. identified eight residues that are conserved and play an 

important role in the dimeric structure of all AOXs. The majority of these residues are located in 

the N-terminal region and cannot be seen in our sequence alignment, but the last two (R-19 and 

I-24) are located within the sequence alignment. Arginine-19 is preserved in all organisms 

looked at except C. glacialis and M. tecatiformis (Figures 13 and 14). In contrast, Isoleucine-24 

is not as conserved as previously thought, with only 14 of the 25 analyzed AOX protein 

sequences containing this residue. Previous research stated that a dimeric structure is not 

universally conserved in all AOX sequences; in order to explore this feature, the other six 

residues would have to be analyzed for conservation in the AOX protein sequence (Chaudhuri et 

al., 2005; Umbach and Siedow, 1993).  

A key tyrosine residue (Y-60/TyrII) involved in AOX activity is conserved in all 

organisms examined (Figures 12-14). Therefore, at the functional level it is likely that the AOXs 

of all organisms, in all kingdoms, share a similar catalytic mechanism (McDonald, 2009). At a 

structural level, it is evident that a tryptophan residue (Y-38/TyrI) that is thought to a play a role 

in AOX structure is conserved amongst all organisms analyzed (Figures 12-14). All organisms’ 
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AOX sequences, used in the multiple sequence alignment, display three of the highly conserved 

amino acid residues that have been thought to be involved with ubiquinol-binding (Q-27/GlnI, 

Y-38/TyrI, H-46/HisII) (Moore et al., 2013). The binding site for ubiquinol on AOX is the 

reducing substrate of the protein (Moore et al., 2013).  

 Along with the above mentioned universally conserved residues, there are numerous 

other residues that have been shown in previous studies to be preserved in AOX protein 

sequences in numerous organisms. Table 12 outlines 23 of the 29 universally conserved residues 

in AOX protein sequences (this list includes the aforementioned residues). Only 23 residues are 

outlined due to other six not being present in the protein region that was being analyzed. Of the 

23 residues listed in the table almost all of them are completely preserved in all protein 

sequences except three organisms: E. messerschmidtii, C. glacialis, and M. californianus 

(Figures 12-14). E. messerschmidtii was only missing one of the 23 residues, Proline I (P-15) 

(Figure 13). C. glacialis was only missing one residue in its sequence (Glycine I/G-50) and the 

last three of the 23 residues (Histidine III/H-131, Asparagine II/N-135) due to the AOX gene 

only being a partial sequence (Figure 9). When comparing T. californicus’ and C. glacialis’ 

nucleotide sequences more closely it can be seen that there is a single nucleotide insertion 

mutation. There is an additional adenine nucleotide in the C. glacialis sequence (caaagtatt) when 

compared to the T. californicus sequence (caagtatt). This insertion mutation has led to a 

frameshift when translating the RNA to protein. When a single adenine is removed from the C. 

glacialis sequence it allows for the conservation of the reading frame and preserves the highly 

conserved tyrosine amino acid residue. C. glacialis is read caaagtatt instead of caagtatt as 

translated in T. californicus, this leads to the amino acid output in C. glacialis being KV instead 

of KY, as seen in T. californicus. M. californianus does not possess the correct last two 
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conserved residues, Asparagine II/N-135 and Histidine IV/H-136 (Figure 8). When further 

examining the differences between the T. californicus and M. californianus there appears to be a 

nucleotide deletion in the M. californianus DNA sequence towards the C terminus. There is one 

less guanine nucleotide in the M. californainus sequence (cgggggtcaatcaccccc) when compared 

to the T. californicus sequence (cggcttgtgaatcacacc). By inserting a guanine into the M. 

californainus nucleotide sequence (cggggggtcaatcaccccc) it not only preserves the last two 

conserved amino acid that are characteristic of all AOX enzymes, but it also restores the last half 

of the C-terminal motif which is characteristic of animal AOXs (PGK) (Figure 15). When a 

single guanine is added to the M. californainus sequence it allows for the conservation of the 

reading frame and preserves the highly conserved asparagine and histidine amino acid residues 

(Figure 10). M. californainus is read cggggggtcaatcac instead of cgggggtcaatcacc. With the 

addition of this single nucleotide it leads to the amino acid output in M. californainus being 

RGVNH instead of RGSIT. It is unknown whether these mutations exist in the animals 

themselves, or whether they are the result of poor sequencing methods. 

 When comparing AOX protein sequences amino acid by amino acid, it can be seen that 

T. californicus’ sequence was similar to sequences from other Maxillopoda sequences (Table 

13). But when comparing the T. californicus sequence to both plant and other animal AOX 

protein sequences, there was comparable percent similarities (Table 13).  

5. Conclusions 

In summary, we have altered a previously developed effective and efficient protocol in order to 

extract PCR-quality DNA from T. californicus, which avoids cross-contamination and, as larger 

volumes are used, it allows for more PCR reactions per sample. This technique can be applied to 

large-scale screening of organisms in several areas of research, such as: molecular ecology, 



 77 

population genetics and barcoding studies. We have successfully developed primers for 16S 

(Primer sets T. cal 16S-1, -3 and -4), HSP20 (HSP20A, B and C) HSP70 (HSP70A, B, and C) 

HSP90 (HSP90A) and EF1 (EF1-B). When comparing T. californicus’ AOX sequence to other 

organisms’ AOX sequences, we found that the protein structure possessed the highly conserved 

amino acids required for the functionality of AOX. Furthermore, T. californicus’ AOX protein 

sequence possessed the C-terminal motif that is highly characteristic of all animal AOX 

sequences studied to date. T. californicus has been demonstrated to be a good organism for the 

investigation of animal AOX when attempting to gain deeper understanding of its physiological 

function. Future work should endeavor to sequence the entire AOX gene from T. californicus. A 

full sequence would allow for the testing of hypotheses and predictions regarding conserved 

residues in the N-terminal region of the protein.  

6. Future Directions 

By developing a multitude of working primers for both housekeeping genes and other 

genes known to play a role in helping the organism survive under different environmental 

stressors, this brings researchers one step closer to being able to perform real-time PCR (RT-

PCR) on T. californicus. Finding an effective housekeeping gene is necessary to investigate the 

transcription levels of AOX in an animal model. This research is making strides towards 

understanding the role and physiological function AOX plays in animal models, as AOX 

transcription levels have never been analyzed in an animal. By understanding why T. 

californicus possesses AOX, we can better understand why some other organisms, such as 

humans, do not express it or have lost the AOX gene. The study of animal AOX may ultimately 

lead to the treatment of mitochondrial dysfunction and disorders in humans using AOX gene 

therapy. 
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Figures 

 

Figure 1: Polymerase chain reaction (PCR) is a method to detect and amplify specific DNA 

sequences based on the primers used. GoTaq Green Master Mix 2x, nuclease free water, DNA 

extract and forward and reverse primers are all added into a single PCR tube. The PCR tube is 

placed in a thermal cycler where it is subjected to changing temperatures to amplify a specific 

DNA sequence. 1) Solution is heated to 94°C to cause the DNA strands to separate (denature). 2) 

Solution is then cooled to 45°C to allow primers to bind to the template DNA strands 

(annealing). 3) Solution is heated to 68°C to permit the synthesis of the new strands (extension).  

DNA, Deoxyribonucleic acid; PCR, Polymerase chain reaction 

(lb.bioninja.au, 2018) 

 

 

Figure 2: DNA gel preparation. 1) A mixture of agarose, 1x TAE buffer and ethidium bromide is 

placed in an Erlenmeyer flask in the microwave. 2) Once the solution begins to bubble it is 

removed from microwave and left to cool and subsequently poured into the gel tray with gel 

comb. 3) Left to solidify (~30 minutes) and gel comb is removed (Nslc.wistl.edu, 2018). 

TAE buffer, Tris base, acetic acid and EDTA buffer 
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Figure 3: DNA gel electrophoresis. 1) Gel is placed into gel tank and the DNA samples and 

100bp DNA ladder is loaded into the wells. The gel is run at 80V until the DNA is 

approximately 75% down the gel (running from cathode side to anode side) 

(Bio1151.nicerweb.con, n.d.). 2) The gel is taken out of the gel tank and placed in the VersaDoc 

(Boi-Rad) and imaged (Diamet.lv, n.d.). 

 

 

Figure 4: Preparation of Luria Broth agar plates. 1) Luria Broth medium and agar solution are 

mixed in a media jar and autoclaved to remove any contaminants. 2) Sufficiently clean the work 

station where the plate will be poured and light a Bunsen burner to remove and contaminants 

from the air. 3) Add ampicillin into the medium and pour the solution into petri dishes (3/4 full). 

4) Cover petri dishes and leave it to solidify. 5) Add X-Gal and IPTG to each plate and evenly 

spread it around the whole plate (leave to absorb into media). 6) Add the transformation culture 

and spread it evenly around the whole plate, cover plate and wrap in parafilm. 7) Plates are 

incubated for approximately 24 hours at 37°C. The final product will have both light white 

(DNA inserted properly) and blue (DNA did not insert) colonies. 

IPTG, Isopropyl β-D-1-thiogalactopyranoside; LB, Luria Broth; X-Gal, 5-Bromo-4-Chloro-3-

Indolyl β-D-Galactopyranoside 
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Figure 5: pGEM-T Easy Vector map and sequence reference points. When DNA insertion is 

successful, the DNA inserts into the LacZ gene thereby halting the production of β-galatosidase 

(colony is light white). If DNA insertion is unsuccessful, the LacZ gene continues to make β-

galatosidase (colony is blue). (pGEM-T and pGEM-T Easy Vector Systems, 2015)  
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Figure 6: Agarose gel electrophoresis (2% agarose) of PCR amplified products using AOX and 

HSP20 primers and T. californicus isolated DNA. 3 µL of DNA ladder (GeneDirex, 100bp DNA 

Ladder Ready To Use), and the subsequent wells were loaded with 12 µL of each PCR sample. 

The gel was run at 80 V for approximately 1 hour and 20 minutes. Expected product sizes are 

displayed in Table 1. 

 

Legend 

1. 3 µL DNA ladder (GeneDirex, 100bp DNA Ladder Ready To Use) 

2. 12 µL of PCR sample (DNA sample A, AOX1 primers) 

3. 12 µL of PCR sample (DNA sample B, AOX1 primers) 

4. 12 µL of PCR sample (DNA sample A, AOX2 primers) 

5. 12 µL of PCR sample (DNA sample B, AOX2 primers) 

6. 12 µL of PCR sample (DNA sample A, HSP20A primers) 

7. 12 µL of PCR sample (DNA sample B, HSP20A primers) 

8. 12 µL of PCR sample (DNA sample C, HSP20A primers) 

9. 12 µL of PCR sample (DNA sample A, HSP20B primers) 

10. 12 µL of PCR sample (DNA sample B, HSP20B primers) 

11. 12 µL of PCR sample (DNA sample C, HSP20B primers) 

12. 12 µL of PCR sample (DNA sample A, HSP20C primers) 

13. 12 µL of PCR sample (DNA sample B, HSP20C primers) 

14. 12 µL of PCR sample (DNA sample C, HSP20C primers) 

15. 3 µL DNA ladder (GeneDirex, 100bp DNA Ladder Ready To Use) 
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Figure 7: Agarose gel electrophoresis (2% agarose) of PCR amplified products using HSP70 and 

HSP90 primers and T. californicus isolated DNA. 3 µL of DNA ladder (GeneDirex, 100bp DNA 

Ladder Ready To Use), and the subsequent wells were loaded with 12 µL of each PCR sample. 

The gel was run at 80 V for approximately 1 hour and 20 minutes. Expected product sizes are 

displayed in Table 1. 

 

Legend 

1. 3 µL DNA ladder (GeneDirex, 100bp DNA Ladder Ready To Use) 

2. 12 µL of PCR sample (DNA sample A, HSP70A primers) 

3. 12 µL of PCR sample (DNA sample B, HSP70A primers) 

4. 12 µL of PCR sample (DNA sample A, HSP70B primers) 

5. 12 µL of PCR sample (DNA sample B, HSP70B primers) 

6. 12 µL of PCR sample (DNA sample A, HSP70C primers) 

7. 12 µL of PCR sample (DNA sample B, HSP70C primers) 

8.  

9. 12 µL of PCR sample (DNA sample A, HSP90A primers) 

10. 12 µL of PCR sample (DNA sample B, HSP90A primers) 

11. 12 µL of PCR sample (DNA sample A, HSP90B primers) 

12. 12 µL of PCR sample (DNA sample A, HSP90C primers) 

13. 12 µL of PCR sample (DNA sample B, HSP90C primers) 

14. 12 µL of PCR sample (DNA sample B, HSP90B primers) 

15. 3 µL DNA ladder (GeneDirex, 100bp DNA Ladder Ready To Use) 
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Figure 8: Agarose gel electrophoresis (2% agarose) of PCR amplified products using GAPDH 

primers and T. californicus isolated DNA. 3 µL of DNA ladder (GeneDirex, 100bp DNA Ladder 

Ready To Use), and the subsequent wells were loaded with 12 µL of each PCR sample. The gel 

was run at 80 V for approximately 1 hour and 20 minutes. Expected product sizes are displayed 

in Table 2. 

 

Legend 

1. 3 µL DNA ladder (GeneDirex, 100bp DNA Ladder Ready To Use) 

2. 12 µL of PCR sample (DNA sample A, GAPDH-1 primers) 

3. 12 µL of PCR sample (DNA sample B, GAPDH-1 primers) 

4. 12 µL of PCR sample (DNA sample A, GAPDH-2 primers) 

5. 12 µL of PCR sample (DNA sample B, GAPDH-2 primers) 

6. 12 µL of PCR sample (DNA sample A, GAPDH-3 primers) 

7. 12 µL of PCR sample (DNA sample B, GAPDH-3 primers) 

8. 3 µL DNA ladder (GeneDirex, 100bp DNA Ladder Ready To Use) 
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Figure 9: Agarose gel electrophoresis (2% agarose) of PCR amplified products using -Tubulin 

and EF1 primers and T. californicus isolated DNA. 3 µL of DNA ladder (GeneDirex, 100bp 

DNA Ladder Ready To Use), and the subsequent wells were loaded with 12 µL of each PCR 

sample. The gel was run at 80 V for approximately 1 hour and 20 minutes. Expected product 

sizes are displayed in Table 2. 

  

Legend 

1. 3 µL DNA ladder (GeneDirex, 100bp DNA Ladder Ready To Use) 

2. 12 µL of PCR sample (DNA sample A, -Tubulin-1 primers) 

3. 12 µL of PCR sample (DNA sample B, -Tubulin-1 primers) 

4. 12 µL of PCR sample (DNA sample A, -Tubulin-2 primers) 

5. 12 µL of PCR sample (DNA sample B, -Tubulin-2 primers) 

6. 12 µL of PCR sample (DNA sample A, -Tubulin-3 primers) 

7. 12 µL of PCR sample (DNA sample B, -Tubulin-3 primers) 

8.  

9. 12 µL of PCR sample (DNA sample A, EF1-A primers) 

10. 12 µL of PCR sample (DNA sample B, EF1-A primers) 

11. 12 µL of PCR sample (DNA sample A, EF1-B primers) 

12. 12 µL of PCR sample (DNA sample B, EF1-B primers) 

13. 12 µL of PCR sample (DNA sample A, EF1-C primers) 

14. 12 µL of PCR sample (DNA sample B, EF1-C primers) 

15. 3 µL DNA ladder (GeneDirex, 100bp DNA Ladder Ready To Use) 
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16.  

Figure 10: DNA Sequence alignment between T. californicus’ entire mitochondrial genome 

(only portion aligned shown) and C. sinicus’s 16S gene sequence. 
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Figure 11: Agarose gel electrophoresis (2% agarose) of PCR amplified products using 16S 

primers and T. californicus isolated DNA. 3 µL of DNA ladder (GeneDirex, 100bp DNA Ladder 

Ready To Use), and the subsequent wells were loaded with 12 µL of each PCR sample. The gel 

was run at 80 V for approximately 1 hour and 20 minutes. Expected product sizes are displayed 

in Table 2. 

 

Legend 

1. 3 µL DNA ladder (GeneDirex, 100bp DNA Ladder Ready To Use) 

2. 12 µL of PCR sample (DNA sample A, T. cal 16S-1 primers) 

3. 12 µL of PCR sample (DNA sample B, T. cal 16S-1 primers) 

4. 12 µL of PCR sample (DNA sample A, T. cal 16S-2 primers) 

5. 12 µL of PCR sample (DNA sample B, T. cal 16S-2 primers) 

6. 12 µL of PCR sample (DNA sample A, T. cal 16S-3 primers) 

7. 12 µL of PCR sample (DNA sample B, T. cal 16S-3 primers) 

8. 12 µL of PCR sample (DNA sample A, T. cal 16S-4 primers) 
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Figure 12: A multiple-sequence alignment from the second iron-binding site to the end of the 

AOX protein from a variety of plant models. The black arrows denote the iron-binding residues 

(GluII, GluIII, GluIV, HisI, HisIII), the green arrows point to residues important for AOX 

activity (GlnI, TyrI, HisII, AlaI, TyrII, TyrIII). 

 

Figure 13: A multiple-sequence alignment from the second iron-binding site to the end of the 

AOX protein from a variety of animal models. The black arrows denote the iron-bonding 

residues (GluII, GluIII, GluIV, HisI, HisIII), the green arrows point to residues important for 

AOX activity (GlnI, TyrI, HisII, AlaI, TyrII, TyrIII). 
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Figure 14: A multiple-sequence alignment from the second iron-binding site to the end of the 

AOX protein from a variety of arthropods belonging to Maxillopoda. The black arrows denote 

the iron-bonding residues (GluII, GluIII, GluIV, HisI, HisIII), the green arrows point to residues 

important for AOX activity (GlnI, TyrI, HisII, AlaI, TyrII, TyrIII). 

 

 

 

Figure 15: Sequence alignment from the second iron-binding site to the end of the AOX protein 

from T. californicus and M. californianus. As well, M. californianus+g accounts for the deletion 

mutation. Black arrows denote two highly conserved residues characteristic of AOX. 
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Tables 

Table 1: The custom primers that were made to amplify the AOX and HSP 20, 70 and 90 genes 

from T. californicus. Three different forward and reverse primer sets were created for each 

sequence in order to generate cDNA products ranging from 200- 500bp in size. AOX primers 

were developed by Jaspreet Singh. 

AOX, Alternative Oxidase; HSP, Heat Shock Protein 
Primer 

Name 
Forward Primer 

Sequence (5' → 3') 

Reverse Primer 

Sequence (5' → 3') 

Expected 

cDNA Product 

Size (bp) 

Tm 

AOX1 CCTGACTCAATGGCTGTTCA CAAAATGACTTCCCGCATCT 232 60 

AOX2 TGCCACAGATTTGTTGGGTA TTCTCAACCTCCGTTCGTTT 344 60 

AOX3 GGATCCACACTCTCCTGGAA CTCAACCTCCGTTCGTTTTT 503 60 

HSP 20A AATGAGCTCAGAACGCGACT TTGAAGAACTCCTCCGCTGT 376 57 

HSP 20B AAAGCTCTGCCTCAAACCAA ATCCTTTTCTCAGGCGCATA 308 60 

HSP 20C AAGCTCTGCCTCAAACCAAA ATCCTTTTCTCAGGCGCATA 307 60 

HSP 70A GCGATCTGCTTCTTTTGGAC CCCAACAAATGGTTGTCCTT 205 60 

HSP 70B AGCGATCTGCTTCTTTTGGA CAAGTCAAATTTGCCCAACA 219 60 

HSP 70C AGCGATCTGCTTCTTTTGGA CCCAACAAATGGTTGTCCTT 206 60 

HSP 90A GTGATCCGCAAGAACTTGGT CGAGGTTCTTGCCATCGTAT 394 60 

HSP 90B CGAGGATGAAGGAGAACCAA CACGATCACCTTCTCCACCT 320 60 

HSP 90C GAACATCAAATTGGGCATCC GTGACGGACACGAGGTTCTT 306 60 
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Table 2: The custom primers that were made to amplify different housekeeping genes from T. 

californicus. Three different forward and reverse primer sets were created for each sequence in 

order to generate cDNA products ranging from 100- 500bp in size. 

GAPDH, Glyceraldehyde 3-phosphate dehydrogenase; EF1, Elongation Factor 1; T. cal, T. 

californicus 
Primer Name Forward Primer 

Sequence (5' → 3') 

Reverse Primer 

Sequence (5' → 3') 

Expected 

cDNA 

Product 

Size (bp) 

Tm 

GAPDH - 1 CAATGCCTCTTGCACCACTA CCCATTCAGCTCAGGGATAA 235 60 

GAPDH - 2 CAATGCCTCTTGCACCACTA GTCAGCTTCCCATTCAGCTC 243 60 

GAPDH - 3 GGGAAAGGTTATCCCTGAGC GACCTGGTGTCTCCCAAGAA 228 60 

EF1α - 1 AGACTTCCCCTCCAGGATGT ACCTGTCCAGGATGGTTCAG 320 60 

EF1α - 2 GAACGGTCAGACCAGAGAGC CATCTCCACGGACTTGACCT 496 60 

EF1α - 3 TTGGGTGGAATGAAGTGTGA TGATAAGGACACCGCAATCA 420 60 

EF1 - A ACCAGCTGACCACTGAGGTT CAGCGAACTTGCAAGCAATA 273 60 

EF1 - B GGTTAAGTCCGTGGAGATGC AATATGGGCGGTGTGACAAT 241 60 

EF1 - C GGTTAAGTCCGTGGAGATGC CAGCGAACTTGCAAGCAATA 257 60 

-Tubulin 1 GACCCTGCCTCGTCGTAGTA CAGATCGGAGCCAAGTTTTG 125 60 

-Tubulin 2 CCCTGCCTCGTCGTAGTAGA CAGATCGGAGCCAAGTTTTG 123 59 

-Tubulin 3 ACCCTGCCTCGTCGTAGTAG GGAGCCAAGTTTTGGGAGAT 118 59 

16S - 1 TTGGAAAATGGAATGAATGG TCAACATCGAGGTCACAAACA 300 58 

16S - 2 CGAGAAGACCCTATGAATCTGG TCGAACAGACCGTCTCCAGT 253 60 

16S - 3 TGGAAAATGGAATGAATGGTT TCAACATCGAGGTCACAAACA 299 59 

T. cal 16S 1 AACGGCTTGACAAGGTAGCA CAACATCGAGGTCATTCAGG 330 60 

T. cal 16S 2 AACGGCTTGACAAGGTAGCA CCAGTCGAACAGACTGAACTTCT 383 60 

T. cal 16S 3 GACGAGAAGACCCTAAAATCTTATT CGTCGATCTTAACTCAAATCATGT 282 60 

T. cal 16S 4 GACGAGAAGACCCTAAAATCTTATT CTTACGTCGATCTTAACTCAAATCA 286 60 

 

 

Table 3: Summary of contents in PCR mixtures. 

Reagent Volume (µL) 

Nuclease free water 25 

GoTaq Green Master Mix 2x 12.5 

Primer set – Forward Primer 2 

Primer set – Reverse Primer 2 

DNA extract 5 

Total 46.5 

 

Table 4: Thermal cycler program for PCR 

Step Temperature (°C) Time (seconds) Number of Cycles 

Initial denaturation 94 180 1 

Denaturation 94 30 40 

Annealing 45 60 40 

Elongation 68 120 40 

Final elongation 68 420 1 
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Table 5: Summary of contents in a tube for a standard ligation reaction.Note: For the positive 

control, all contents are the same except,instead of adding 2 µL of PCR product, 2 µL of control 

insert DNA is added. 

Reagent Volume (µL) 

Nuclease free water 1 

2 Rapid Ligation Buffer 5 

pGEM-T Easy Vector 1 

PCR product or Control insert DNA 2 

T4 DNA Ligase 1 

Total 10 

 

 

 

 

Table 6: Summary of differences between the original HotSHOT DNA isolation method, 

outlined in Montero-Pau et al., 2008, and the DNA isolation method employed for this research 

project. 

Original HotSHOT Method Adjusted HotSHOT Method 

- 1 copepod 

- 150 µL alkaline lysis buffer and 150 µL 

neutralizing solution  

- Pipette tip 

- ~20-30 copepods 

- 3× volumes of solutions added 

- Sonication 
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Table 7: Summary of primer set development and efficacy at each step of DNA cloning in T. 

californicus. MS, multiple signals; NP, no product. 

Gene Name Detection via 

Bioinformatics 

Primer Set 

Design 

Successful 

PCR? 

Successful 

Ligation & 

Cloning? 

Successful 

Sequencing 

of PCR 

product? 

HSP20  

✔ 

HSP20-A ✔ ✘ ✘ 

HSP20-B ✔ ✘ ✘ 

HSP20-C ✔ ✔ ✘ 

HSP70  

✔ 

HSP70-A ✔ ✘ ✘ 

HSP70-B ✔ ✘ ✘ 

HSP70-C ✔ ✘ ✘ 

HSP90  

✔ 

HSP90-A ✔ ✘ ✘ 

HSP90-B ✘- MS ✘ ✘ 

HSP90-C ✘- MS ✘ ✘ 

GAPDH  

✔ 

GAPDH - 1 ✘- NP ✘ ✘ 

GAPDH - 2 ✘- NP ✘ ✘ 

GAPDH - 3 ✘- NP ✘ ✘ 

EF1α  

✔ 

EF1α - 1 ✘- MS ✘ ✘ 

EF1α - 2 ✘- MS ✘ ✘ 

EF1α - 3 ✘- NP ✘ ✘ 

EF1  

✔ 

EF1 - A ✘- MS ✘ ✘ 

EF1 - B ✔ ✔ ✘ 

EF1 - C ✘- MS ✘ ✘ 

-Tubulin  

✔ 

-Tubulin - 1 ✘- MS ✘ ✘ 

-Tubulin - 2 ✘- MS ✘ ✘ 

-Tubulin - 3 ✘- MS ✘ ✘ 

16S  

✔ 

16S - 1 ✘- NP ✘ ✘ 

16S - 2 ✘- NP ✘ ✘ 

16S - 3 ✘- NP ✘ ✘ 

T. 

californicus 

16s 

 

✔ 

T. cal 16S - 1 ✔  ✘ 

T. cal 16S - 2 ✘- MS ✘ ✘ 

T. cal 16S - 3 ✔  ✘ 

T. cal 16S - 4 ✔  ✘ 
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Table 8: Putative AOX sequences in copepods recovered using bioinformatics searches of public 

databases and the number of iron-binding sites that are present in the AOX protein. 

Order Family Species Accession 

Number 

Iron-binding sites 

present in AOX 

protein 

Calanoida Calanidae  Calanus 

nmarchicus  

GAXK01135432  All 4 

Calanus glacialis  HACJ01021827  1, 2 & 3 

Temoridae  Eurytemora affinis  GBGO01037152  All 4 

Cyclopoida  Cyclopettidae  Paracyclopina 

nana  

GCJT01014574  All 4 

Cyclopidae  Eucyclops 

serrulatus  

GARW01011119  All 4 

Harpacticoida  Harpacticidae  Tigriopus 

californicus  

JW502496  All 4 

Tigriopus japonicus GCHA01002206  All 4 

 

 

 

 

Table 9: Tigriopus californicus 551bp AOX cDNA sequence (Tward et al., 2019). 

GAATGCACGTGATCATGGATGGATCCACACTCTCCTGGAAGAAGCGGAGAATGAAAGGATGCATCTG

ATGACCTTCATGCGACTCCGAAGACCCGGGCCCATTTTCCGAGGCACCGTGATCCTGACTCAATGGCT

GTTCACATTTACGTTCTCATTCGCTTACATACTGTCGCCCAATTTTTGCCACAGATTTGTTGGGTATTTG

GAAGAGCAAGCAGTGGTCACTTACACTCACATCCTGGAAGAAATCGACGCAGGACGATTGCCCATGT

GGAAGACCTTGCCAGCTCCGGAATTGGCCATCAAGTATTGGAGATTGCCCGAAGACGCCAAGATGCG

GGAAGTCATTTTGGCAATCCGAGCCGATGAAGCTCATCATCGGCTTGTGAATCACACCCTTGGATCGA

TGGACCTCAAATCAGACAATCCTTTTGAGAAAGGGAAATAACTTTTGTCTTCGGCTCAGATACAAATTT

AATGGTCAATAACAAGTATTCCATGGTAAAAACGAACGGAGGTTGAGAAATATAAATAAATTGTCGA

GTCTTTTC 

 

 

 

Table 10: Tigriopus californicus predicted AOX protein sequence (Tward et al., 2019). 

NERMHLMTFMRLRRPGPIFRGTVILTQWLFTFTFSFAYILSPNFCHRFVGYLEEQAVVTY

THILEEIDAGRLPMWKTLPAPELAIKYWRLPEDAKMREVILAIRADEAHHRLVNHTLGS

MDLKDNPFEKGK  
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Table 11: Alternative oxidase (AOX) sequences from various organisms that were retrieved 

from molecular database searches and used in multiple sequence alignment analyses. 
Phylum/Group Order Family Species Accession 

Number 

Plant 

Coleochaetophyceae 
Coleochaetales Coleochaetaceae 

Coleochaete 

orbiculans  

GW591598  

Pteridineae 

 

Pteridaceae Vittarioideae 
Adiantum 

capillus-veneris  

DK948381  

 

Charophyceae 
Charales Characeae 

Nitella hyalina  HO503263 

Pinales Pinaceae Pinus 
Pinus banksiana  GW754219  

Klebsormidiophyceae 
Klebsormidiales Klebsormidiaceae 

Klebsormidium 

subtile 

JG441912  

Chlorophyceae 

 

 

Chlamydomonadales Chlamydomonadaceae 
Chlamydomonas 

incerta  

DQ122873  

Chlamydomonadales 

 

Chlamydomonadaceae 

 
Chlamydomonas 

reinhardtii 

AF047832 

Ulvophyceae 
Dasycladales Polyphysaceae 

Acetabularia 

acetabulum 

CF258325  

Animal 

Arthropoda Crustacea Malacostraca Eulimnogammaru

s messerschmidtii 

GEPZ01019091 

Hexapoda Insecta Leptinotarsa 

decemlineata 

GEEF01172609 

Thermobia 

domestica 

GASN02050936 

Chordata Tunicata Ascidiacea Molgula 

tectiformis 

CJ360866 
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Mollusca Gastropoda Vetigastropoda Haliotis 

tuberculata 

GEAU01104081 

Caenogastropoda Rapana venosa GDIA01153225 

Cipangopaludina 

cathayensis 

GCEL01042596 

Bivalvia Pteriomorphia Pecten maximus GAOX01004715 

Mytilus 

californianus 

ES402065 

Arthropods – Crustacea – Maxillopoda 

Arthropoda Crustacea Maxillopoda Tigriopus 

japonicus 

GCHA01002206 

Paracyclopina 

nana 

GCJT01014574 

Eucyclops 

serrulatus 

GARW01011119 

Calanus 

finmarchicus 

GAXK01135432 

Calanus glacialis HACJ01021827 

Eurytemora 

affinis 

GBGO01037152 
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Table 12: Roles and locations of universally conserved AOX residues in the core and C-terminal 

regions of the protein (numbered based on the T. californicus protein sequence). 

T. californicus AOX 

Conserved Residues 

Role Helix 

Number 

N-1/AsnI Secondary ligation sphere; hydrogen bond network 3 

E-2/GluI Fe-Fe ligand 3 

R-3/ArgI Membrane binding region 3 

M-4/MetI Dimer interface; interaction with N-terminal arm 3 

H-5/HisI Fe-Fe ligand 3 

L-6/LeuI Dimer interface 3 

P-15/ProI Dimer interface - 

Q-27/GlnI Dimer interface 4 

Y-38/TyrI Dimer interface; hydrogen bonds to HisII 4 

H-46/HisII Membrane binding region 5 

G-50/GlyI Forms kinks in helix 5 5 

E-53/GluII Fe-Fe ligand 5 

E-54/GluIII Interaction with N-terminal arm 5 

A-56/AlaI Substrate binding channel 2 5 

Y-60/TyrII Catalytic cycle 5 

A-105/AlaII Hydrophobic interactions with helix 3 S3 

Y-108/TyrIII Secondary ligation sphere; hydrogen bond networks S3 

R-125/ArgII Interaction with helix 5 and N-terminal arm 6 

D-127/AspI Secondary ligation sphere; hydrogen bond networks 6 

E-128/GluIV Fe-Fe ligand 6 

H-131/HisIII Fe-Fe ligand 6 

N-135/AsnII Interaction with helix 5 6 

H-136/HisIV Interaction with helix 5 6 
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Table 13: Percent similarities between T. californicus’ AOX protein sequence and AOX protein 

sequences of other organisms in the plant and animal kingdoms. 

 Similarity Fraction of 

amino acids when 

compared to  

T. californicus 

Percent Similarity 

between this protein 

and the AOX of T. 

californicus 

Plants 

C. orbiculans 57/128 44.5% 

A. capillus-veneris 57/128 44.5% 

N. hyalina 61/128 47.7% 

P. banksiana 61/128 47.7% 

K. subtile 64/128 50.0% 

C. incerta 72/129 55.8% 

C. reinhardtii 72/129 55.8% 

A. acetabulum 74/129 57.4% 

Animals 

E. messerschmidtii 64/131 48.9% 

O. niloticus 73/138 52.9% 

L. decemlineata1 77/140 55.0% 

H. tuberculata 76/140 54.3% 

T. domestica 77/131 58.8% 

R. venosa 76/118 64.4% 

C. cathayensis 75/132 56.8% 

P. maximus 76/132 57.6% 

M. californianus 67/116 57.8% 

M. tectiformis 76/132 57.6% 

Arthropods – Crustacea – Maxillopoda 

T. japonicus 129/132 97.7% 

P. nana 104/132 78.8% 

E. serrulatus 100/132 75.8% 

C. finmarchicus 96/132 72.7% 

C. glacialis 59/94 62.8% 

E. affinis 92/132 69.7% 
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CHAPTER 4 

The effect of varying temperature and light on the levels of alternative oxidase protein in 

Tigriopus californicus 
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Abstract 

Despite being a non-energy conserving pathway, AOX has a vast taxonomic distribution and is 

present in many plants, fungi, and some protists. It has been most thoroughly characterized in a 

number of plants; however, the physiological function of a native AOX has never been identified 

in an animal that produces it. This is only the second study to confirm AOX protein expression in 

an animal and is the first study to look at a native AOX protein in an animal and its response to 

environmental stress. This study will examine the roles of AOX in the tolerance to 

environmental stressors in T. californicus. This will be tested by subjecting the copepods to five 

different temperatures (6-28°C), and extended periods of light/dark exposures. Samples will be 

taken after 24 hours (acute) and 1 week (chronic) of incubation at each stress. We demonstrate 

that levels of the AOX protein fluctuate in T. californicus in response to cold and heat stress 

compared to normal rearing temperature. Furthermore, we demonstrate that AOX protein levels 

are constitutively expressed when exposed to changes in their circadian rhythm. We predict that 

a functional AOX pathway is present in T. californicus, propose that this species will be a useful 

model organism for the study of AOX in animals, and discuss future directions for animal AOX 

research. By understanding why T. californicus possesses AOX, we can better understand why 

some other organisms, including humans, do not express or have lost the AOX gene. 
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1. Introduction 

 Copepods are a prominent link in the transfer of energy from plankton to organisms in 

higher trophic levels in the marine food web (Sehgal, 1983). Copepods are the preferred prey for 

predators as they provide a larger source of nutrients when compared to other zooplankton, such 

as shrimp and rotifers (Sehgal, 1983). Their high abundance, wide distribution across the world, 

and ecological importance has led to a plethora of studies being conducted on copepods (Corner 

and O’Hara, 1986). Given the substantial abundance of copepods and their importance in the 

marine ecosystem, understanding how stressors affect copepods is of high ecological importance 

(Nilsson et al., 2018). Copepods are widely used for monitoring environmental changes and act 

as indicators of ecosystem health (Beaugrand, 2009). T. californicus is a marine invertebrate 

copepod that inhabits high intertidal and supralittoral rock pools located along the west coast of 

North America (Burton and Lee, 1994). Given the location of T. californicus' intertidal habitat, 

these animals are subjected to daily fluctuating environmental stressors such as temperature, 

changes in light duration, and predation (Burton and Lee, 1994).  

 All living organisms are influenced by their environments, therefore a change in their 

environment often leads to changes in their chemical composition (Corner and O’Hara, 1986). 

Numerous studies have shown that generation times of temperate copepods, and biotic and 

abiotic factors affect development (Mauchline, 1998). One of the most important factors 

determining development of copepods is temperature (Lee et al., 2008). Many studies have 

indicated a correlation between the environmental temperatures in which these organisms reside 

and their adaptation towards these changing temperatures in order to maintain fitness (Angilletta 

et al., 2002; Hochachka and Somero, 2002; Angilletta, 2009). Fitness is the ability to survive to 

reproductive age, find a mate, and produce offspring. Under stressful temperatures organisms 
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might engage in temperature adaptation as a trade-off with fitness in order to survive (Willett, 

2010). Trade-offs occur when there are competing requirements placed on an organism that 

hinders fitness from being maximized (Kelly et al., 2012). The genus Tigriopus demonstrates 

varying limits of upper temperature tolerance among its different populations that suggests that 

temperature adaptation is taking place (Willett, 2010). Research has indicated that northern 

populations of T. californicus were unable to survive at 37°C for 1 hour, but individuals from 

more southern populations only showed modest mortality (Willett, 2010).  When placing T. 

californicus under chronic high temperature stress, populations demonstrated a south to north 

gradient in their capacity to survive at 32°C (Willett, 2010). 

T. californicus copepods inhabit tidepools with temperatures ranging from 4°C to 35°C 

(Edmands and Deimler, 2004). Changing the temperature of the habitats, which the copepods 

reside in, can cause immense stress on the organism. Edmands and Deimler (2004) found that 

when there is an increase in temperature from 15°C to 25°C it proved stressful for T. californicus 

when looking at its effect on hybridization. Furthermore, a study conducted by Smith et al. 

(1978) found that there was a significant increase in the rate of oxygen consumption by copepods 

when subjected to the four commonly encountered pool temperatures in which the copepods 

reside (10, 15, 25 and 30°C), especially between 25 and 30°C. Smith et al. (1978) concluded that 

there was a positive correlation between increasing temperature and oxygen consumption rate 

Furthermore, it has been found that metabolic rates increase with an increase in temperature over 

the range of 5-30°C in this species (Smith et al., 1978).   

Another environmental stress that is becoming increasingly prominent for intertidal and 

near-shore ecosystems is light pollution (Longcore and Rich, 2004; Smith, 2009). In all 

environments, the presence of an artificial light source can cause changes in an organism’s 
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circadian rhythm. This alteration in the timing of an organism’s day/night cycle leads to changes 

in the physiological processes and behaviors that would normally be cued to the solar day and 

night (Nesbit and Christie, 2014). One of the major biological networks that is affected by 

modifications to the light/day cycle is the circadian system: a complex of interacting genes and 

proteins that act as the molecular pacemaker for timing physiological and behavioral processes 

that run on an approximately 24-hour cycle and are cued by light and darkness (Nesbit and 

Christie, 2014).  

In the last 50-80 years light pollution has become a significant issue. Light pollution is 

defined as affecting organisms that are exposed to light at the wrong place, at the wrong time, or 

at the wrong intensity (Depledge et al., 2010). There has been a growing concern regarding the 

damaging effects light pollution can exert on aquatic species living in lakes, rivers, seas, and 

especially coastal areas. Light exposure intensity causes many species of planktonic copepods to 

make daily vertical movements (Sehgal, 1983). This phenomenon of vertical migration during 

different hours of the day is called diurnal migration. Copepods and cladocerans, a minute 

branchiopod crustacean of the order Cladocera, are the main groups that exhibit diurnal 

movement (Sehgal 1983). Even though light intensity is the most prominent cause of vertical 

distribution of copepods, other physical and chemical aspects of a body of water can cause 

vertical distribution (Sehgal, 1983). Normally, copepods come up towards the surface in the late 

afternoon, which is due to them swimming towards a light source of decreasing intensity 

(Sehgal, 1983). Throughout the night (hours of darkness), the upward migration continues. At 

dawn, there is an increase in the density of copepods at the surface; this is ascribed to the early 

morning light. As the sun continues to rise and become more intense there is a downward 

movement of copepods in a body of water (Sehgal, 1983).  
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AOX is an enzyme to helps organisms respond to stress. The alternative oxidase (AOX) 

is an inner mitochondrial protein that diverges at the ubiquinone pool in the respiratory electron 

transport system and bypasses the last two complexes in the cytochrome c oxidase (COX) 

pathway (Chapter 1, Figure 1). Respiration by the AOX pathway has been termed as ‘cyanide-

resistant’ because of its tolerance to all COX inhibitors, such as cyanide and nitric oxide 

(Vanlerberghe et al., 1994; Huang et al., 2002). However, it has been demonstrated that AOX 

activity is compromised by salicylhydroxamic acid (SHAM) and n- propyl gallate (Vanlerberghe 

et al., 1994; Yip and Vanlerberghe, 2001). Similar to complex IV of the COX pathway, the AOX 

protein is a terminal oxidase and reduces oxygen to water (Berthold et al., 2002). However, 

unlike the COX complexes, AOX is non-proton motive and as a result, fewer ATP are yielded 

per oxygen consumed during its activity (Moore and Siedow, 1991). AOX is a homodimeric 

protein that has been categorized within the group of di-iron carboxylate proteins (Berthold et 

al., 2002). Structurally, AOX is made up of a di-iron centre and four helices that associate with 

the IMM (McDonald, 2008). Highly conserved amino acids have been identified within the four 

helices that are thought to play a role in AOX enzymatic function and regulation.  

 AOX has been demonstrated to be a stress responsive protein. The majority of research 

demonstrating that AOX helps mitigate stress experienced by the organism has been done in 

plants. The induction of AOX is triggered by a range of conditions and treatments including: 

light (Escobar et al. 2004), nutrient availability (Escobar et al. 2006), and a variety of biotic or 

abiotic stresses (Finnegan et al., 2004). Previous research on AOX in plants demonstrated that 

AOX expression increases when plants experience stressful conditions such as temperature 

changes or light stress (Giraud et al., 2008, Zhang et al., 2010). Recent work has demonstrated 

that when AOX is active it will heat the plant during thermogenesis, thereby allowing it to 



 108 

survive at low temperatures (Watling et al., 2006). With respect to the role of AOX in defining 

the equilibrium of the defense systems in plants, it was shown in tobacco (Nicotiana tabacum) 

that plants, which lacked AOX, were vulnerable to the induction of programed cell death (Van 

Aken et al., 2009). 

Despite being a non-energy conserving pathway, AOX has a vast taxonomic distribution 

and has been predominately characterized in the plant kingdom. AOX multigene families, 

transcript expression, protein regulation, and enzymatic activity have been thoroughly 

investigated in several plants (McDonald, 2008). AOX discovery in animals is recent, and further 

research into its expression, regulation, and physiological role has been impeded by the lack of 

an experimental model organism. Previous research has demonstrated the presence of the 

alternative oxidase protein in the arthropod Artemia franciscana (brine shrimp) through 

immunodetection (Rodriguez-Armenta et al., 2018). DNA database searches using 

bioinformatics revealed an AOX sequence present in the arthropod T. californicus. The 

physiological function of a native AOX has never been identified in an organism that produces it, 

such as T. californicus. Furthermore, T. californicus is characterized by a short generation time, 

small space needs, and many genetically divergent populations which can be cross-bred in the 

laboratory (Burton and Feldman, 1981). These attributes make T. californicus an emerging 

model organism in biology for the study of environmental stress responses in animals and AOX. 

The purposes of this study were to: 1) Develop a protein isolation method that is efficient 

and effective for the copepod T. californicus and 2) examine changes in the levels of AOX 

protein in the copepod T. californicus during temperature and light stress. Copepods were 

exposed to four different treatment temperatures (6, 10, 22, and 28°C) for acute (24 hours) and 

chronic (1 week) periods of times. As well, copepods were exposed to varying periods of light 
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and darkness for short (24 hours) and extended (1 week) periods of times. Using SDS-PAGE and 

Western blots, AOX expression during each of the stressors was compared to a control (15°C 

and 12-hour light/dark cycle respectively), in order to examine changes in the levels of AOX 

protein. This is the first ever study to look at a native AOX protein in an animal and its response 

to environmental stress. 

2. Materials and Methods 

2.1 Isolation of Copepods 

 Following each temperature and light/darkness experiment, three samples of 

approximately 0.05 g of copepods were isolated from their habitats and placed in an Eppendorf 

tube. The volume of copepods in each sample collected was approximately 0.05 g (Table 1). 

Copepods were collected by filtration and a stainless-steel laboratory spatula was used to scrape 

the copepods off the filter and transfer them into an Eppendorf tube. 

2.2 Protein Isolation without Quantification 

In initial experiments that were used to test the effectiveness of AOX antibodies, a 350 

μL solution comprised of the 2 Laemmli sample buffer (Bio-Rad) and β-mercaptoethanol was 

pipetted into each Eppendorf tube. This mixture was composed of 20 μL of β-mercaptoethanol 

for every 1 mL of 2 Laemmli sample buffer. Each sample was then sonicated in order to extract 

the proteins from the copepods. The sonicator was set to a frequency of 60kHz and each sample 

was sonicated for 10 seconds. 

2.3 Protein Analysis: Gel Electrophoresis 

 Protein samples were analyzed using gel electrophoresis and Western blotting. For gel 

electrophoresis, a 15 well mini-PROTEAN TGX Stain-Free gel (Bio-rad), was loaded with 15 
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μL of each of the copepod samples. In order to determine the molecular weight of the proteins in 

our samples, two wells were loaded with 5 μL of the Precision Plus Protein WesternC Standards 

(Bio-rad). Following the loading of the wells the gel was run at a constant voltage (200 V) for 35 

minutes. Pacific oyster AOX recombinant protein (Robertson et al., 2016) served as a positive 

control in order to verify the cross-reactivity of the AOX antibody with our copepod samples. A 

negative control blot was run using proteins isolated from the algal food source to rule out the 

possibility of an algal AOX being detected in our copepod samples (Tward et al., 2019). After 

the run was complete, the gel was removed from the apparatus and placed in the VersaDoc 

(settings: protein gel, stain- free) so an image could be taken to check that the protein samples 

ran correctly and were effectively separated on the gel.  

2.4 Protein Analysis: Western Blot 

Next, the proteins were transferred from the protein gel onto a nitrocellulose membrane 

using the Trans-Blot Turbo Transfer System (Bio-rad) and Trans-Blot Transfer Medium (Bio-

rad). This process takes 3 minutes in the Trans-blot Turbo Transfer System. In one of the 

cassettes of the machine, a sponge is placed down first, followed by the gel, then the membrane 

and then another sponge. The roller is used to eliminate any bubbles between the layers, 

therefore allowing for good contact between the membrane and gel. Following protein transfer, 

the membrane is placed in 5% dry milk in 10 mL of 1X TBS-T (Tris Buffered Saline with Tween 

20) on a shaking platform for 1 hour. The membrane is then subsequently washed three times in 

TBS-T.  2 μL of the primary AOX antibody (Plant AOX1/2, Cat. # ABIN3197483, Agrisera 

Antibodies) is then added with 20 mL of 1X TBS-T for 1 hour (dilution 1:10,000). Following 

this, the membrane is again washed three times (15 minutes, 10 minutes, and 10 minutes) with 

TBS-T buffer. The membrane is then incubated in 1 μL of a goat anti-rabbit IgG secondary 
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antibody (Cat. # ABIN101988, Agrisera Antibodies, dilution 1:25,000) in order to detect the 

AOX protein, 2 μL of the Precision Protein StrepTactin HRP Conjugate (Bio-rad) in order to 

visualize the protein standards ladder, and 20 mL of 10 TBS-T for 1 hour. The membrane is 

again washed three times in 1X TBS-T. Following the washes, the membrane is subsequently 

placed in a mixture of luminol/enhancer and peroxide buffer solution, from the Immun Star 

Western C Chemiluminescent kit (Bio-rad), in a 1:1 ratio for 5 minutes. The membrane was then 

imaged in a VersaDoc (settings: blot, Chemi high resolution), and the chemiluminescent signal 

was detected and imaged. 

2.5 Temperature Experiments 

 The control temperature selected for all habitats is 15.0°C. Temperatures are adjusted in 

order to see if an acute and/or chronic change in temperature causes a change in the amount of 

AOX protein translated. Five temperature experiments will be run in order to test our hypothesis 

(Chapter 1, 2. Purpose) (Figure 1). 

 

2.6 Light Exposure Experiments 

The control day/night cycle for all habitats is 12 hours light and 12 hours darkness. Light 

cycles are adjusted in order to see if an acute and/or chronic change in light exposure causes a 

change in the amount of AOX protein translated. Two treatment experiments will be run in order 

to test our hypothesis (Chapter 1, 2. Purpose). The light treatment will consist of the copepods 

being exposed to light with no darkness period for up to a week. The dark treatment will consist 

of the copepods being exposed to only darkness for up to a week (Figure 2).  
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2.7 Protein Isolation for Quantification from Copepods 

 Protein samples were isolated using two solutions; the copepod extraction buffer and the 

100 mM PMSF (phenylmethylsulfonyl fluoride) stock solution. PMSF is used to inhibit protease 

enzymes in order to prevent the degradation of extracted proteins. The copepod extraction buffer 

is composed of 100mM Tris (pH 7.5), 100 mM NaCl, and 5mM EDTA. Using a graduated 

cylinder, the total volume is brought up to 100 mL using Milli-Q water. This solution can be kept 

in a media jar and stored in the fridge (4C). The 100 mM PMSF stock solution is composed of 

0.174 g PMSF and 10 mL of ethanol and was made just prior to use. For each copepod sample, 

(isolated according to the 2.1 Isolation of Copepods methodology), 500 L of the copepod 

extraction buffer and 5L of the 100 mM PMSF stock solution is added to the eppendorf tube 

containing the animals. The contents of the tube are mixed very well using a vortexer. The 

sample is then placed on ice and undergoes three sonication cycles. One cycle is composed of the 

sample being sonicated for 10 seconds and then subsequently placed on ice for 10 seconds. 

Following the last cycle, the sample remains on ice (Figure 3). The samples are then centrifuged 

for 15 minutes at 15000 x g and 4C. The supernatant containing the isolated proteins is 

transferred into a fresh Eppendorf tube and left on ice prior to use in SDS-PAGE.  

2.8 Protein Quantification of Copepod Samples 

In order to quantify the protein levels in each copepod sample the Bio-Rad Quick Start 

Bovine Serum Standards were used. 20 L of each kit standard and each copepod sample was 

placed in its own Eppendorf tube. A blank tube was made containing 20 L of the copepod 

protein extraction buffer and 100 mM PMSF stock solution mixture. Each one of these tubes was 

replicated, for a total of two, in order to get an average protein concentration for each sample. 1 

mL of the Quick Start Bradford 1x Dye Reagent was added to each Eppendorf tube. The initial 
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dye starts out as a dark brown colour, and when exposed to increasing protein levels the dye 

becomes a darker blue in colour. Once the dye is added to each tube it is mixed by inversion and 

left to sit for at least 5 minutes before any analysis can take place. Each sample was dispensed 

into its own protein cuvette, and placed in the spectrophotometer to obtain an absorbance reading 

at 595 nm. The absorbance readings were then recorded and entered into a Microsoft Excel 

spreadsheet. The absorbance readings were averaged for the two sets of samples that were used 

(Tables 2-4). The concentration and average absorbance were plotted on a scatter plot and a 

linear trendline was added along with the equation for the trendline (Figures 4-6). This equation 

was then utilized to calculate the concentrations of the isolated copepod protein samples. 

2.9 AOX Protein Expression: SDS-PAGE and Western Blot 

Protein samples were analyzed using SDS-PAGE and Western blotting techniques. In 

order to determine an effective protein concentration to load for detection of proteins using these 

techniques, a 10 well mini-PROTEAN TGX Stain-Free gel (Bio-rad), was loaded with a 

concentration of protein that increased by a factor of 2 with each subsequent well. The first well 

possessed 2.5 μg of protein, with subsequent wells containing 5, 10, and 20 μg of protein. 

For SDS-PAGE, a 10 well mini-PROTEAN TGX Stain-Free gel (Bio-rad), was loaded 

with 20 μg of protein from each of the copepod samples. This volume was calculated based on 

using the equation for the trendline and solving for x, while inserting the absorbance reading as 

the y value. Before moving on to the Western blot portion of the protocol an image of the gel 

was taken using the VersaDoc (settings: protein gel, stain free) to make sure all the lanes 

possessed a similar amount of protein. The same procedure as stated in section 2.4 “Protein 

Analysis: Western Blot” was followed for the Western Blot portion of this experiment.  
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2.10 Protein Isolation from Drosophila melanogaster  

 Proteins were isolated from D. melanogaster by first gassing them with carbon dioxide 

and them brushing them into a sterile eppendorf tube. Six samples were taken containing 

different masses of the organism. The masses of fruit flies in each Eppendorf tube can be found 

in Table 5. Proteins were isolated using the same technique explained in Methods 2.7 “Protein 

Isolation for Quantification in Copepods”. Protein samples were quantified following the same 

protocol in Methods 2.8 “Protein Quantification”. 

2.11 SDS-PAGE and Western Blot for optimal detection using a Tubulin Antibody 

20 μg of each protein sample, from D. melanogaster, was loaded on three different 15 

well mini-PROTEAN TGX Stain-Free gels (Bio-rad). Before moving on to the Western blot 

portion of the experiment an image of the gel was taken using the VersaDoc to make sure all the 

lanes possessed a similar amount of protein. The same procedure as stated in section 2.4 “Protein 

Analysis: Western Blot” was followed for the Western Blot portion of this experiment, with 

slight alterations. A primary tubulin antibody (Anti-α-Tubulin antibody, Mouse monoclonal, 

Sigma T6199) was used and the secondary antibody was an Anti-Mouse IgG1 (γ-chain specific) 

a peroxidase conjugated antibody produced in rabbit (Sigma-Aldrich, SAB3701171). Each blot 

was exposed to a different concentration of antibody, in order to find the optimal amount for 

detection of the tubulin protein. The first blot had 2 μL of primary antibody (1:5000) and 1 μL of 

secondary antibody (1:10000), the second blot had double the amount of antibodies (1:2500 and 

1:5000, respectively) and the third blot possessed four times as much of the antibodies (1:1250 

and 1:2500, respectively). 
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3. Results 

3.1 Detection of Alternative Oxidase Protein in T. californicus 

Proteins were successfully isolated from T. californicus using 0.05 g of copepods and 350 

L of SDS-PAGE sample buffer containing β-mercaptoethanol and using sonication (Figure 7). 

The T. californicus AOX was recognized by a plant AOX antibody and was ~ 50 kDa in size 

(Figure 7).  A yeast sample expressing the Pacific oyster alternative oxidase (Robertson et al., 

2016) served as a positive control in order to verify the cross-reactivity of the AOX antibody 

with our copepod samples (Figure 8). The antibody did not cross-react with the AOX protein that 

is likely present in the algae provided to the copepods as a food source (Figure 9). 

3.2 Protein Quantification and Equal Loading of Gels  

 Proteins were successfully quantified using the absorbance readings at 595nm in the 

spectrophotometer (Tables 2-4) and plotting the standards on a graph to obtain an equation for 

the line of best fit (Figures 4-6). In Microsoft Excel this equation was used to calculate the 

concentrations of the copepod protein samples. An SDS-PAGE was run to confirm that the 

protein isolation and quantification was successful by increasing the amounts of protein sample 

in each well by a factor of 2 (Figure 10).  

3.3 Response of AOX Protein Levels to Temperature Treatments 

Copepods were acclimated to 15°C for 2-4 weeks and then subjected to one of four 

different temperatures (6, 10, 22, or 28°C) for 24 hours or 1 week and 3 samples were taken for 

each treatment. Protein gels demonstrated that an equal amount of each protein was loaded into 

each well (Figures 11a-14a). Western blots indicate that AOX protein levels are low under 

control conditions (15°C) and are elevated when subjected to fluctuations in temperatures (6, 10, 



 116 

22 and 28°C) for 24 hours and 1 week (Figures 11b-14b). Furthermore, as can be seen in Figures 

11b-14b, there is a molecular mass shift taking place in terms of size of the AOX protein size. 

3.4 Response of AOX Protein Levels to Light Treatments 

Copepods were acclimated to a 12-hour light/12-hour dark for 2-4 weeks and then 

subjected to one of two different light treatments (constant exposure to light or constant exposure 

to darkness) for 24 hours or 1 week and 3 samples were taken for each treatment. Western blots 

indicate that AOX protein was detectable under all treatments, but that AOX protein levels did 

not change throughout all treatments (light and dark, acute and chronic) (Figures 15-20).  

3.5 Tubulin Protein Expression in Drosophila melanogaster 

  In an attempt to normalize copepod AOX protein levels to a housekeeping protein, D. 

melanogaster protein samples were taken, quantified, and utilized to test a tubulin antibody’s 

efficiency and efficacy. Three membranes containing isolated fruit fly proteins were exposed to 

different concentrations of primary and secondary antibody, in order to determine which 

concentrations allowed for optimal visual imaging of the tubulin protein on the Western blot. 

When exposing the membrane to higher concentrations of each antibody (1:1250 of primary 

antibody and 1:2500 of secondary antibody), the tubulin protein was easier to visualize (Figure 

21). Tubulin was detected in fruit fly sample number 4 as two bands that cross-reacted with the 

tubulin antibody at ~25 kD and ~ 37 kD sizes (Figure 21).  

4. Discussion 

4.1 Development of a Scalable Protein Isolation Technique for the Copepod T. californicus 

In order to accomplish several of my research goals a protein extraction protocol had to 

be developed for copepods. My methodology allows for the quantification and the analysis of 
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copepod proteins and is also scalable in terms of volume of buffer and mass of copepods used. 

This technique also worked in another arthropod of similar size and body composition the fruit 

fly Drosophila melanogaster (Figure 21a). This protein isolation procedure can be applied to a 

multitude of organisms, including fruit flies. The successful development of a protein isolation 

technique and the detection and identification of an AOX protein in T. californicus permitted this 

study to look at a native AOX in an animal and its response to environmental stress. 

4.2 Detection of the AOX Protein in the Copepod T. californicus 

Western blot analysis detected the presence of the AOX protein of T. californicus as a 

single protein band at ~50 kD (Figure 7). The AOX protein from isolated mitochondria from the 

yeast Saccharomyces cerevisiae overexpressing the Crassostrea gigas (Pacific oyster) AOX is 

also ~50 kD in size (Figure 8) (Robertson et al. 2016). This is only the second research study that 

has successfully looked at a native AOX protein in an animal using SDS-PAGE and Western 

blot techniques. A study conducted by Rodriguez-Amenta et al. (2018) showed that Artemia 

franciscana (brine shrimp) nauplii possesses an AOX protein that is between 25-37 kD in size. It 

is unknown at this time why the AOXs from C. gigas and T. californicus differ in size from that 

of A. franciscana. It can be concluded that AOX proteins can be different sizes (25-50 kD) in 

different animals even if they belong to the same taxonomic phylum and order. This size 

difference can be attributed to alternative splicing of the RNA sequence prior to it being 

translated into a protein sequence.  

Due to the fact that many algae have AOX, we performed a Western blot using the AOX 

antibody in order to ensure that the algae that we feed the copepods was not the source of the 

AOX protein that we detected. Our results confirmed that the algae that we use as a food source 

does not contain an AOX that cross-reacts with the antibody (Figure 9).  
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4.3 The Effects of Temperature Stress on AOX Protein Levels in T. californicus 

The copepod T. californicus has been shown to be able to acclimate to a wide variety of 

temperatures. However, the presence of the AOX protein, which copepods possess, raises the 

question as to whether it plays a role in the animal’s ability to respond to temperature stress. In 

the current study, we determined whether AOX protein expression varies in T. californicus with 

exposure to a wide variety of temperatures over different time points. 

Due to the lack of research on the physiological function of AOX in animal models, we 

can examine what is known about the enzyme in other organisms in order to understand the role 

AOX may play in animals. Available data regarding the role of alternative oxidase in copepods is 

limited, but it is well understood in other organisms, such as plants, fungi and protists 

(McDonald and Vanlerberghe, 2004; McDonald 2008). 

Previous studies have indicated that AOX plays a role in the ability of organisms to 

tolerate various biotic and abiotic stressors (Juárez et al., 2006). One of the highly confirmed 

benefits of AOX in plants is thermogenesis, which is the production of heat by an organism 

(Angioy et al., 2004). Furthermore, when plants are exposed to cold stress, there is an increase in 

the transcription (mRNA) of AOX, which permits plants to be able to tolerate a colder 

environment (Li et al., 2011). Another study conducted by Fiorani et al. (2005) demonstrates that 

the AOX pathway is upregulated in Arabidopsis plants when exposed to cold stress, and leads to 

a 20% reduction in plant growth. Other than plants, AOX has been studied in some fungi models, 

such as the fungal phytopathogen Ustilago maydis. Similar to other cosmopolitan organisms, U. 

maydis is subjected to numerous changes in environmental parameters. During U. maydis cell 

culturing, when assay temperatures were increased to 28°C, there was a 3.5-4.3 increase in 

AOX capacity (Juárez et al., 2006). Juárez et al. (2006) concluded that AOX allows the 
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mitochondrial metabolism to be active when subjected to biotic and abiotic stressors that can 

limit the activity of the cytochrome pathway.  

Previous research has demonstrated that, in copepods, adaptation to environmental 

stressors, such as temperature, involves changes in protein expression (Kimmel and Bradley, 

2001). Bradley et al. (1988) found that E. affinis adapted at the protein level to salinity and 

temperature changes. The first protein to be identified to help this matter was the upregulation of 

HSP70. Following this work, Gonzalez and Bradley (1994) demonstrated differential protein 

expression, in several metabolic pathways, in response to fluctuations in salinity and temperature 

in zooplankton. Kimmel and Bradley (2001) demonstrated that protein changes rise 

monotonically (always increasing; never remaining constant or decreasing), up to a certain point, 

with stress and that protein changes do not occur individually but as part of various metabolic 

pathways in the copepod Eurytemora affinis.  

The copepods are normally reared at 15C and subjected to a 12-hour day/night cycle and 

have been cultured at this temperature for several years in the laboratory. Therefore, they have 

likely adapted to this growth temperature and light regime over many generations in the lab, 

which is why it was used as the control condition. In our laboratory, we found that the copepods 

were able to survive and reproduce at temperatures ranging from 6°C to 28°C. This was 

confirmed when rearing copepods in the lab at 6°C and 28°C for approximately 1 month, and 

observing copepods at different stages in their life cycles (based on size of copepods). One recent 

study reported that, in agreement with our findings, copepods can survive in temperatures 

ranging from 6°C to 28°C (Edmand & Deimler, 2004). For the temperature experiments, we 

subjected our treatment groups to either 6C (cold), 10C, 22C or 28C (hot) for an acute period 

of time (24 hours) or a chronic period of time (1 week) prior to sampling. The control sample 
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(15C) exhibited very low levels of detectable AOX protein (Figures 8b-11b). In contrast, 

animals grown at different temperatures from the control (6, 10, 22 and 28C) exhibited higher 

detectable levels of AOX protein after 24 hours of exposure (Figures 11b and 12b) and 1 week of 

exposure (Figures 13b and 14b) to each temperature. Furthermore, as can be seen in Figures 11b-

14b, when the copepods are subjected to varying temperatures, there seems to be a shift in the 

molecular mass in terms of size of the AOX protein when exposed to the warmer temperatures 

(22 and 28C). These experiments are the first to demonstrate that AOX protein levels change in 

an animal in response to an environmental stressor. 

Similar to what we see in T. californicus, an increase in AOX protein levels in response 

to cold stress has been reported in a variety of plant species (McDonald, 2008). Furthermore, 

research conducted by Zalutskaya et al. (2015) demonstrated an increase in AOX expression 

levels in the green alga Chlamydomonas reinhardtii when the organism was subjected to heat 

stress. In support of the above finding that there are fluctuations in AOX expression when 

exposed to changing environment temperatures, a lab based study found that there was a decline 

in T. californicus survivorship when temperature levels increased from 15°C to 25°C (Edmands 

and Deimler, 2004). This decline can be attributed to increased stress in copepods at 

temperatures outside of 15°C. Our data support our hypothesis that AOX protein expression 

changes when copepods are exposed to changing temperatures, due to T. californicus 

experiencing an abiotic stress in their environment. 

4.4 The Effects of Light Stress on AOX Protein Levels in T. californicus 

Another environmental stress that we examined in T. californicus was light stress and its 

effects on AOX protein levels. Almost all living organism are sensitive to fluctuations in the 

quality and the intensity of light in their environments (Longcore and Rich, 2004). Light is a key 
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regulator of gene expression of several pertinent respiratory enzymes, including cytochrome 

oxidase in the electron transport chain (Zhang et al., 2010). For some organisms, such as algae 

and seaweeds, photosynthetic activity is dependent on availability of light. Marine animals 

experience daily, monthly, and seasonal cycles in natural light intensity and quality which is 

reflected in rhythmical fluctuations in their physiology and behaviour (Depledge et al., 2010). 

The next goal of this project was to see if exposure to 24 hours and 1 week of complete light or 

darkness caused changes in the expression of AOX protein.  

Our results indicate that AOX protein is constitutively expressed in T. californicus under 

all light regimes examined (Figures 15b-20b). In contrast to temperature stress, which caused the 

levels of AOX protein to change compared to controls, light stress did not result in changes in 

AOX protein expression (Figures 15b-20b).  

Due to the lack of knowledge about the physiological function of AOX in animals, we 

looked at experiments conducted in plants to compare to our findings. One study conducted on 

tobacco leaves demonstrates that AOX protein levels increased when exposed to periods of 

darkness rather than extended periods of light (Dessi and Whelan, 1997). This is contrary to our 

findings which demonstrate that there is no visible difference in the expression of AOX protein 

when exposed to extended periods of darkness (24hrs and 1 week) (Figures 15-20). Another 

study showed that when Arabidopsis photoreceptor mutants were exposed to light stress greater 

then 4 hours, there was a significant increase in the transcription level of AOX (Zhang et al., 

2010). This finding, regarding AOX protein expression, is not only in opposition of our finding 

but as well the previous finding by Dessi and Whelan (1997). It is hard to compare plants to 

animals with regards to light stress, as plants have a different mechanism than animals to deal 

with it as excess light energy is harmful to plants and leads to disruptions of the photosynthetic 
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apparatus (Zhang et al., 2010). Due to the contradictory findings between all three studies, it can 

be seen that AOX may play a different role in the response to light stress depending on the 

organism.  

5. Conclusion 

 In summary, we developed an effective and efficient protocol in order to extract proteins 

from T. californicus that is scalable. Furthermore, this methodology enables us to quantify the 

amount of protein in each sample and run both SDS-PAGE and Western blots to analyze the 

expression of AOX protein in copepods. This is only the second research study that has 

successfully looked at a native AOX protein in an animal. More importantly, this is the first and 

only study to look at a native AOX in an animal and its response to different environmental 

stressors. When T. californicus were exposed to varying environmental temperatures (6, 10, 22 

and 28C) they produced different levels of AOX protein compared to the control temperature 

(15C). In contrast, when copepods were exposed to changes in their typical light regime (12 

hours light: 12 hours dark cycle) they showed no visible change in the expression of AOX 

protein. We therefore hypothesize that AOX plays a role in helping T. californicus acclimate to a 

variety of environmental temperatures, but not to changes in its light:dark cycle. By 

understanding why T. californicus possesses AOX, we can better understand why some other 

organisms, such as humans, do not express it or have lost the AOX gene entirely. 

6. Future Directions 

 By developing a protein isolation protocol that allows for protein quantification, and 

successful SDS-PAGE and Western blot protocols in T. californicus, researchers are closer to 

understanding the physiological function of AOX in an animal. Finding that temperature stress 
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causes changes in the expression of AOX protein in T. californicus indicates that AOX may help 

the animal to tolerate or acclimate to hot or cold environmental temperatures that they may 

encounter daily. Our results with light stress indicate that not all abiotic stressors influence AOX 

protein expression. Future research must quantify the expression of AOX protein in order to 

make definitive statements regarding the exact contribution of AOX in copepods towards 

surviving fluctuating temperatures.  
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Figures 

 
Figure 1: Visual representation of the control and treatment groups in the temperature 

experiments. Three samples, each consisting of maximum 5 beakers of animals, were taken for 

each control and treatment temperature.  

 

 

Figure 2: Visual representation of the control and treatment groups in the light exposure 

experiments. Three samples, each consisting of maximum 5 beakers of animals, were taken for 

each control and treatment group. 
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Figure 3: Procedure for extracting proteins from copepods. 

 

 

Figure 4: Protein absorbance at 595nm for Bio-Rad Quick Start Bovine Serum Standards. 

Trendline equation used to calculate concentrations of proteins in acute and chronic samples at 

temperatures 6 and 28C 
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Figure 5: Protein absorbance at 595nm for Bio-Rad Quick Start Bovine Serum Standards. 

Trendline equation used to calculate concentrations of proteins in acute and chronic samples at 

temperatures 10, 15 and 22C 

 

 

Figure 6: Protein absorbance at 595nm for Bio-Rad Quick Start Bovine Serum Standards. 

Trendline equation used to calculate concentrations of protein in fruit fly samples, acute and 

chronic light and dark samples  
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Figure 7: Detection of T. californicus AOX protein by reducing SDS-PAGE and Western 

blotting using a plant AOX antibody. All T. californicus samples per well are 14 μL of protein 

samples derived from 0.05 g of copepods of mixed developmental stages subjected to either 

sonication (S), homogenization (H), or a combination of the two (H & S). The protein sample 

buffer volume used (in microliters) is indicated by the number below the isolation method. 

Ladder lanes contain 5 μL of the Precision Plus Protein Western C Standards. The positive 

control is 14 μL of a protein sample from isolated mitochondria from Saccharomyces cerevisiae 

overexpressing the Crassostrea gigas AOX (Tward et al., 2019).  
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Figure 8: a. Protein sample run on reducing SDS-PAGE. Ladder lanes contain 5 μL of the 

Precision Plus Protein Western C Standards. The positive control is 14 μL of a protein sample 

from isolated mitochondria from Saccharomyces cerevisiae overexpressing the Crassostrea 

gigas AOX. b. Detection of Crassostrea gigas AOX protein by reducing SDS-PAGE and 

Western blotting using a plant AOX antibody. Ladder lanes contain 5 μL of the Precision Plus 

Protein Western C Standards. The positive control is 14 μL of a protein sample from isolated 

mitochondria from Saccharomyces cerevisiae overexpressing the Crassostrea gigas AOX.  
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Figure 9: Protein samples run on reducing SDS-PAGE and Western blotted using a plant AOX 

antibody. The ladder lane contains 5 μL of the Precision Plus Protein Western C Standards. The 

algae lane contains a sample derived from the Spirulina used to feed the copepods. This sample 

was sonicated in the same manner as the copepod samples and 14 μL were loaded into the well.  
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Figure 10: Western blot showing increasing concentrations of proteins and expression of AOX 

in order to check protein quantification protocol. The ladder lane contains 5 μL of the Precision 

Plus Protein Unstained Standards (Bio-Rad). The first well possessed 2.5 μg of protein, with 

succeeding wells of 5, 10, and 20 μg of protein. 

 

Legend 

1. Precision Plus Protein Unstained Standards (5 μl)  

2. 2.5 μg of copepod protein 

3.  

4. 5 μg of copepod protein 

5.   

6. 10 μg of copepod protein 

7.   

8. 20 μg of copepod protein 

9.   

10. Precision Plus Protein Unstained Standards (5 μl)  
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Figure 11: The first and seventh wells on the mini-PRTOEAN TGX Stain-Free gel (Bio-rad) 

were loaded with 2μL of the Precision Plus Protein Unstained Standards (Bio-rad). The other 

wells were loaded with 20 μg of protein from each protein sample. Following the loading of the 

wells the gel was run at a constant voltage (200V) for 35 minutes. Then the proteins were 

transferred onto a TransBlot Turbo Mini-size Nitrocellulose (Bio-rad) membrane using the 

Trans-Blot Turbo Blotting System (Bio-rad). a. 2nd acute temperature protein samples run on 

reducing SDS-PAGE. b. Western blot displaying 2nd acute temperature samples and expression 

of AOX 

Legend 

1. Precision Plus Protein Unstained Standards (2 μl)  

2.   

3. 6C acute sample 2 (20 μg protein)  

4. 10C acute sample 2 (20 μg protein) 

5. 15C control sample 2 (20 μg protein) 

6. 22C acute sample 2 (20 μg protein) 

7. 28C acute sample 2 (20 μg protein) 

8.   

9. Precision Plus Protein Unstained Standards (2 μl)  
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Figure 12: The first and seventh wells on the mini-PRTOEAN TGX Stain-Free gel (Bio-rad) 

were loaded with 2μL of the Precision Plus Protein Unstained Standards (Bio-rad). The other 

wells were loaded with 20 μg of protein from each protein sample. Following the loading of the 

wells the gel was run at a constant voltage (200V) for 35 minutes. Then the proteins were 

transferred onto a TransBlot Turbo Mini-size Nitrocellulose (Bio-rad) membrane using the 

Trans-Blot Turbo Blotting System (Bio-rad). a. 3rd acute temperature protein samples run on 

reducing SDS-PAGE. b. Western blot displaying 3rd acute temperature samples and expression 

of AOX 

Legend 

1. Precision Plus Protein Unstained Standards (2 μl)  

2.   

3. 6C acute sample 2 (20 μg protein)  

4. 10C acute sample 2 (20 μg protein) 

5. 15C control sample 2 (20 μg protein) 

6. 22C acute sample 2 (20 μg protein) 

7. 28C acute sample 2 (20 μg protein) 

8.   

9. Precision Plus Protein Unstained Standards (2 μl)  
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Figure 13: The first and seventh wells on the mini-PRTOEAN TGX Stain-Free gel (Bio-rad) 

were loaded with 2μL of the Precision Plus Protein Unstained Standards (Bio-rad). The other 

wells were loaded with 20 μg of protein from each protein sample. Following the loading of the 

wells the gel was run at a constant voltage (200V) for 35 minutes. Then the proteins were 

transferred onto a TransBlot Turbo Mini-size Nitrocellulose (Bio-rad) membrane using the 

Trans-Blot Turbo Blotting System (Bio-rad). a. 2nd chronic temperature protein samples run on 

reducing SDS-PAGE. b. Western blot displaying 2nd chronic temperature samples and 

expression of AOX 

Legend 

1. Precision Plus Protein Unstained Standards (2 μl)  

2.   

3. 6C acute sample 2 (20 μg protein)  

4. 10C acute sample 2 (20 μg protein) 

5. 15C control sample 2 (20 μg protein) 

6. 22C acute sample 2 (20 μg protein) 

7. 28C acute sample 2 (20 μg protein) 

8.   

9. Precision Plus Protein Unstained Standards (2 μl)  
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Figure 14: The first and seventh wells on the mini-PRTOEAN TGX Stain-Free gel (Bio-rad) 

were loaded with 2μL of the Precision Plus Protein Unstained Standards (Bio-rad). The other 

wells were loaded with 20 μg of protein from each protein sample. Following the loading of the 

wells the gel was run at a constant voltage (200V) for 35 minutes. Then the proteins were 

transferred onto a TransBlot Turbo Mini-size Nitrocellulose (Bio-rad) membrane using the 

Trans-Blot Turbo Blotting System (Bio-rad). a. 3rd chronic temperature protein samples run on 

reducing SDS-PAGE. b. Western blot displaying 3rd chronic temperature samples and expression 

of AOX 

Legend 

1. Precision Plus Protein Unstained Standards (2 μl)  

2.   

3. 6C acute sample 2 (20 μg protein)  

4. 10C acute sample 2 (20 μg protein) 

5. 15C control sample 2 (20 μg protein) 

6. 22C acute sample 2 (20 μg protein) 

7. 28C acute sample 2 (20 μg protein) 

8.   

9. Precision Plus Protein Unstained Standards (2 μl)  

 

 



 139 

 

Figure 15: The first and seventh wells on the mini-PRTOEAN TGX Stain-Free gel (Bio-rad) 

were loaded with 2μL of the Precision Plus Protein Unstained Standards (Bio-rad). The other 

wells were loaded with 20 μg of protein from each protein sample. Following the loading of the 

wells the gel was run at a constant voltage (200V) for 35 minutes. Then the proteins were 

transferred onto a TransBlot Turbo Mini-size Nitrocellulose (Bio-rad) membrane using the 

Trans-Blot Turbo Blotting System (Bio-rad). a. Acute light exposure and control protein samples 

run on reducing SDS-PAGE. b. Western blot displaying acute light exposure samples and 

control samples and expression of AOX 

Legend 

1. Precision Plus Protein Unstained Standards (2 μl)  

2.   

3. Acute light sample 1 (20 μg protein)  

4. Acute light sample 2 (20 μg protein) 

5. Acute light sample 3 (20 μg protein) 

6.   

7. Control light:dark sample 1 (20 μg protein) 

8. Control light:dark sample 1 (20 μg protein) 

9. Control light:dark sample 1 (20 μg protein) 

10. Precision Plus Protein Unstained Standards (2 μl)  
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Figure 16: The first and seventh wells on the mini-PRTOEAN TGX Stain-Free gel (Bio-rad) 

were loaded with 2μL of the Precision Plus Protein Unstained Standards (Bio-rad). The other 

wells were loaded with 20 μg of protein from each protein sample. Following the loading of the 

wells the gel was run at a constant voltage (200V) for 35 minutes. Then the proteins were 

transferred onto a TransBlot Turbo Mini-size Nitrocellulose (Bio-rad) membrane using the 

Trans-Blot Turbo Blotting System (Bio-rad). a. Acute dark exposure and control protein samples 

run on reducing SDS-PAGE. b. Western blot displaying acute dark exposure samples and control 

samples and expression of AOX 

Legend 

1. Precision Plus Protein Unstained Standards (2 μl)  

2.   

3. Acute dark sample 1 (20 μg protein)  

4. Acute dark sample 2 (20 μg protein) 

5. Acute dark sample 3 (20 μg protein) 

6.   

7. Control light:dark sample 1 (20 μg protein) 

8. Control light:dark sample 1 (20 μg protein) 

9. Control light:dark sample 1 (20 μg protein) 

10. Precision Plus Protein Unstained Standards (2 μl)  
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Figure 17: The first and seventh wells on the mini-PRTOEAN TGX Stain-Free gel (Bio-rad) 

were loaded with 2μL of the Precision Plus Protein Unstained Standards (Bio-rad). The other 

wells were loaded with 20 μg of protein from each protein sample. Following the loading of the 

wells the gel was run at a constant voltage (200V) for 35 minutes. Then the proteins were 

transferred onto a TransBlot Turbo Mini-size Nitrocellulose (Bio-rad) membrane using the 

Trans-Blot Turbo Blotting System (Bio-rad). a. Chronic light exposure and control protein 

samples run on reducing SDS-PAGE. b. Western blot displaying chronic light exposure samples 

and control samples and expression of AOX 

Legend 

1. Precision Plus Protein Unstained Standards (2 μl)  

2.   

3. Chronic light sample 1 (20 μg protein)  

4. Chronic light sample 2 (20 μg protein) 

5. Chronic light sample 3 (20 μg protein) 

6.   

7. Control light:dark sample 1 (20 μg protein) 

8. Control light:dark sample 1 (20 μg protein) 

9. Control light:dark sample 1 (20 μg protein) 

10. Precision Plus Protein Unstained Standards (2 μl)  
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Figure 18: The first and seventh wells on the mini-PRTOEAN TGX Stain-Free gel (Bio-rad) 

were loaded with 2μL of the Precision Plus Protein Unstained Standards (Bio-rad). The other 

wells were loaded with 20 μg of protein from each protein sample. Following the loading of the 

wells the gel was run at a constant voltage (200V) for 35 minutes. Then the proteins were 

transferred onto a TransBlot Turbo Mini-size Nitrocellulose (Bio-rad) membrane using the 

Trans-Blot Turbo Blotting System (Bio-rad). a. Chronic dark exposure and control protein 

samples run on reducing SDS-PAGE. b. Western blot displaying chronic dark exposure samples 

and control samples and expression of AOX 

Legend 

1. Precision Plus Protein Unstained Standards (2 μl)  

2.   

3. Chronic dark sample 1 (20 μg protein)  

4. Chronic dark sample 2 (20 μg protein) 

5. Chronic dark sample 3 (20 μg protein) 

6.   

7. Control light:dark sample 1 (20 μg protein) 

8. Control light:dark sample 1 (20 μg protein) 

9. Control light:dark sample 1 (20 μg protein) 

10. Precision Plus Protein Unstained Standards (2 μl)  
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Figure 19: The first and seventh wells on the mini-PRTOEAN TGX Stain-Free gel (Bio-rad) 

were loaded with 2μL of the Precision Plus Protein Unstained Standards (Bio-rad). The other 

wells were loaded with 20 μg of protein from each protein sample. Following the loading of the 

wells the gel was run at a constant voltage (200V) for 35 minutes. Then the proteins were 

transferred onto a TransBlot Turbo Mini-size Nitrocellulose (Bio-rad) membrane using the 

Trans-Blot Turbo Blotting System (Bio-rad). a. Acute light and dark exposure protein samples 

run on reducing SDS-PAGE. b. Western blot displaying both acute light and dark exposure 

samples and expression of AOX 

Legend 

1. Precision Plus Protein Unstained Standards (2 μl)  

2.   

3. Acute light sample 1 (20 μg protein)  

4. Acute light sample 2 (20 μg protein) 

5. Acute light sample 3 (20 μg protein) 

6.   

7. Acute dark sample 1 (20 μg protein)  

8. Acute dark sample 2 (20 μg protein) 

9. Acute dark sample 3 (20 μg protein) 

10. Precision Plus Protein Unstained Standards (2 μl)  

 

 

 

 

 



 144 

 

Figure 20: The first and tenth wells on the mini-PRTOEAN TGX Stain-Free gel (Bio-rad) were 

loaded with 2μL of the Precision Plus Protein Unstained Standards (Bio-rad). The other wells 

were loaded with 20 μg of protein from each protein sample. Following the loading of the wells 

the gel was run at a constant voltage (200V) for 35 minutes. Then the proteins were transferred 

onto a TransBlot Turbo Mini-size Nitrocellulose (Bio-rad) membrane using the Trans-Blot 

Turbo Blotting System (Bio-rad). a. Chronic light and dark exposure protein samples run on 

reducing SDS-PAGE. b. Western blot displaying both chronic light and dark exposure samples 

and expression of AOX 

Legend 

1. Precision Plus Protein Unstained Standards (2 μl)  

2.   

3. Chronic light sample 1 (20 μg protein)  

4. Chronic light sample 2 (20 μg protein) 

5. Chronic light sample 3 (20 μg protein) 

6.   

7. Chronic dark sample 1 (20 μg protein)  

8. Chronic dark sample 2 (20 μg protein) 

9. Chronic dark sample 3 (20 μg protein) 

10. Precision Plus Protein Unstained Standards (2 μl)  
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Figure 21: The first and tenth wells on the mini-PRTOEAN TGX Stain-Free gel (Bio-rad) were 

loaded with 2μL of the Precision Plus Protein Unstained Standards (Bio-rad). The other wells 

were loaded with 20 μg of protein from each protein sample. Following the loading of the wells 

the gel was run at a constant voltage (200V) for 35 minutes. Then the proteins were transferred 

onto a TransBlot Turbo Mini-size Nitrocellulose (Bio-rad) membrane using the Trans-Blot 

Turbo Blotting System (Bio-rad). a. Drosophila melanogaster protein samples run on reducing 

SDS-PAGE. b. Western blot displaying Drosophila melanogaster protein samples and 

expression of tubulin. 

Legend 

1. Precision Plus Protein Unstained Standards (2 μl) 

2.   

3. Fruit Fly sample 1 (20 μg protein) 

4. Fruit Fly sample 2 (20 μg protein) 

5. Fruit Fly sample 3 (20 μg protein) 

6. Fruit Fly sample 4 (20 μg protein) 

7. Fruit Fly sample 5 (20 μg protein) 

8. Fruit Fly sample 6 (20 μg protein) 

9.  

10. Precision Plus Protein Unstained Standards (2 μl) 
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Figure 22: 2nd acute temperature protein samples run on reducing SDS-PAGE post transfer onto 

a TransBlot Turbo Mini-size Nitrocellulose (Bio-rad) membrane using the Trans-Blot Turbo 

Blotting System (Bio-rad).  

Legend 

1. Precision Plus Protein Unstained Standards (2 μl)  

2.   

3. 6C acute sample 2 (20 μg protein)  

4. 10C acute sample 2 (20 μg protein) 

5. 15C control sample 2 (20 μg protein) 

6. 22C acute sample 2 (20 μg protein) 

7. 28C acute sample 2 (20 μg protein) 

8.   

9. Precision Plus Protein Unstained Standards (2 μl)  
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Figure 23: 3rd acute temperature protein samples run on reducing SDS-PAGE post transfer onto 

a TransBlot Turbo Mini-size Nitrocellulose (Bio-rad) membrane using the Trans-Blot Turbo 

Blotting System (Bio-rad).  

Legend 

1. Precision Plus Protein Unstained Standards (2 μl)  

2.   

3. 6C acute sample 2 (20 μg protein)  

4. 10C acute sample 2 (20 μg protein) 

5. 15C control sample 2 (20 μg protein) 

6. 22C acute sample 2 (20 μg protein) 

7. 28C acute sample 2 (20 μg protein) 

8.   

9. Precision Plus Protein Unstained Standards (2 μl)  
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Figure 24: 2nd chronic temperature protein samples run on reducing SDS-PAGE post transfer 

onto a TransBlot Turbo Mini-size Nitrocellulose (Bio-rad) membrane using the Trans-Blot 

Turbo Blotting System (Bio-rad).  

Legend 

1. Precision Plus Protein Unstained Standards (2 μl)  

2.   

3. 6C acute sample 2 (20 μg protein)  

4. 10C acute sample 2 (20 μg protein) 

5. 15C control sample 2 (20 μg protein) 

6. 22C acute sample 2 (20 μg protein) 

7. 28C acute sample 2 (20 μg protein) 

8.   

9. Precision Plus Protein Unstained Standards (2 μl)  
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Figure 25: 3rd chronic temperature protein samples run on reducing SDS-PAGE post transfer 

onto a TransBlot Turbo Mini-size Nitrocellulose (Bio-rad) membrane using the Trans-Blot 

Turbo Blotting System (Bio-rad).  

Legend 

1. Precision Plus Protein Unstained Standards (2 μl)  

2.   

3. 6C acute sample 2 (20 μg protein)  

4. 10C acute sample 2 (20 μg protein) 

5. 15C control sample 2 (20 μg protein) 

6. 22C acute sample 2 (20 μg protein) 

7. 28C acute sample 2 (20 μg protein) 

8.   

9. Precision Plus Protein Unstained Standards (2 μl)  
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Figure 26: Acute light exposure and control protein samples run on reducing SDS-PAGE post 

transfer onto a TransBlot Turbo Mini-size Nitrocellulose (Bio-rad) membrane using the Trans-

Blot Turbo Blotting System (Bio-rad).  

Legend 

1. Precision Plus Protein Unstained Standards (2 μl)  

2.   

3. Acute light sample 1 (20 μg protein)  

4. Acute light sample 2 (20 μg protein) 

5. Acute light sample 3 (20 μg protein) 

6.   

7. Control light:dark sample 1 (20 μg protein) 

8. Control light:dark sample 1 (20 μg protein) 

9. Control light:dark sample 1 (20 μg protein) 

10. Precision Plus Protein Unstained Standards (2 μl)  
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Figure 27: Acute dark exposure and control protein samples run on reducing SDS-PAGE post 

transfer onto a TransBlot Turbo Mini-size Nitrocellulose (Bio-rad) membrane using the Trans-

Blot Turbo Blotting System (Bio-rad).  

Legend 

1. Precision Plus Protein Unstained Standards (2 μl)  

2.   

3. Acute dark sample 1 (20 μg protein)  

4. Acute dark sample 2 (20 μg protein) 

5. Acute dark sample 3 (20 μg protein) 

6.   

7. Control light:dark sample 1 (20 μg protein) 

8. Control light:dark sample 1 (20 μg protein) 

9. Control light:dark sample 1 (20 μg protein) 

10. Precision Plus Protein Unstained Standards (2 μl)  
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Figure 28: Chronic light exposure and control protein samples run on reducing SDS-PAGE post 

transfer onto a TransBlot Turbo Mini-size Nitrocellulose (Bio-rad) membrane using the Trans-

Blot Turbo Blotting System (Bio-rad).  

Legend 

1. Precision Plus Protein Unstained Standards (2 μl)  

2.   

3. Chronic light sample 1 (20 μg protein)  

4. Chronic light sample 2 (20 μg protein) 

5. Chronic light sample 3 (20 μg protein) 

6.   

7. Control light:dark sample 1 (20 μg protein) 

8. Control light:dark sample 1 (20 μg protein) 

9. Control light:dark sample 1 (20 μg protein) 

10. Precision Plus Protein Unstained Standards (2 μl)  
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Figure 29: Chronic dark exposure and control protein samples run on reducing SDS-PAGE post 

transfer onto a TransBlot Turbo Mini-size Nitrocellulose (Bio-rad) membrane using the Trans-

Blot Turbo Blotting System (Bio-rad).  

Legend 

1. Precision Plus Protein Unstained Standards (2 μl)  

2.   

3. Chronic dark sample 1 (20 μg protein)  

4. Chronic dark sample 2 (20 μg protein) 

5. Chronic dark sample 3 (20 μg protein) 

6.   

7. Control light:dark sample 1 (20 μg protein) 

8. Control light:dark sample 1 (20 μg protein) 

9. Control light:dark sample 1 (20 μg protein) 

10. Precision Plus Protein Unstained Standards (2 μl)  
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Figure 30: Acute light and dark exposure protein samples run on reducing SDS-PAGE post 

transfer onto a TransBlot Turbo Mini-size Nitrocellulose (Bio-rad) membrane using the Trans-

Blot Turbo Blotting System (Bio-rad).  

Legend 

1. Precision Plus Protein Unstained Standards (2 μl)  

2.   

3. Acute light sample 1 (20 μg protein)  

4. Acute light sample 2 (20 μg protein) 

5. Acute light sample 3 (20 μg protein) 

6.   

7. Acute dark sample 1 (20 μg protein)  

8. Acute dark sample 2 (20 μg protein) 

9. Acute dark sample 3 (20 μg protein) 

10. Precision Plus Protein Unstained Standards (2 μl)  

 

 



 155 

 

Figure 31: Chronic light and dark exposure protein samples run on reducing SDS-PAGE post 

transfer onto a TransBlot Turbo Mini-size Nitrocellulose (Bio-rad) membrane using the Trans-

Blot Turbo Blotting System (Bio-rad).  

Legend 

1. Precision Plus Protein Unstained Standards (2 μl)  

2.   

3. Chronic light sample 1 (20 μg protein)  

4. Chronic light sample 2 (20 μg protein) 

5. Chronic light sample 3 (20 μg protein) 

6.   

7. Chronic dark sample 1 (20 μg protein)  

8. Chronic dark sample 2 (20 μg protein) 

9. Chronic dark sample 3 (20 μg protein) 

10. Precision Plus Protein Unstained Standards (2 μl)  
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Figure 32: The first and tenth wells on the mini-PRTOEAN TGX Stain-Free gel (Bio-rad) were 

loaded with 2μL of the Precision Plus Protein Unstained Standards (Bio-rad). The other wells 

were loaded with 20 μg of protein from each protein sample. Following the loading of the wells 

the gel was run at a constant voltage (200V) for 35 minutes. Then the proteins were transferred 

onto a TransBlot Turbo Mini-size Nitrocellulose (Bio-rad) membrane using the Trans-Blot 

Turbo Blotting System (Bio-rad). a. Drosophila melanogaster protein samples run on reducing 

SDS-PAGE. b. Western blot displaying Drosophila melanogaster protein samples and 

expression of tubulin 

Legend 

1. Precision Plus Protein Unstained Standards (2 μl) 

2.   

3. Fruit Fly sample 1 (20 μg protein) 

4. Fruit Fly sample 2 (20 μg protein) 

5. Fruit Fly sample 3 (20 μg protein) 

6. Fruit Fly sample 4 (20 μg protein) 

7. Fruit Fly sample 5 (20 μg protein) 

8. Fruit Fly sample 6 (20 μg protein) 

9.  

10. Precision Plus Protein Unstained Standards (2 μl) 
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Figure 33: Drosophila melanogaster protein samples run on reducing SDS-PAGE post transfer 

onto a TransBlot Turbo Mini-size Nitrocellulose (Bio-rad) membrane using the Trans-Blot 

Turbo Blotting System (Bio-rad).  

Legend 

1. Precision Plus Protein Unstained Standards (2 μl) 

2.   

3. Fruit Fly sample 1 (20 μg protein) 

4. Fruit Fly sample 2 (20 μg protein) 

5. Fruit Fly sample 3 (20 μg protein) 

6. Fruit Fly sample 4 (20 μg protein) 

7. Fruit Fly sample 5 (20 μg protein) 

8. Fruit Fly sample 6 (20 μg protein) 

9.  

10. Precision Plus Protein Unstained Standards (2 μl) 
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Figure 34: Drosophila melanogaster protein samples run on reducing SDS-PAGE post transfer 

onto a TransBlot Turbo Mini-size Nitrocellulose (Bio-rad) membrane using the Trans-Blot 

Turbo Blotting System (Bio-rad).  

Legend 

1. Precision Plus Protein Unstained Standards (2 μl) 

2.   

3. Fruit Fly sample 1 (20 μg protein) 

4. Fruit Fly sample 2 (20 μg protein) 

5. Fruit Fly sample 3 (20 μg protein) 

6. Fruit Fly sample 4 (20 μg protein) 

7. Fruit Fly sample 5 (20 μg protein) 

8. Fruit Fly sample 6 (20 μg protein) 

9.  

10. Precision Plus Protein Unstained Standards (2 μl) 



 159 

 

Figure 35: Drosophila melanogaster protein samples run on reducing SDS-PAGE post transfer 

onto a TransBlot Turbo Mini-size Nitrocellulose (Bio-rad) membrane using the Trans-Blot 

Turbo Blotting System (Bio-rad).  

Legend 

1. Precision Plus Protein Unstained Standards (2 μl) 

2.  

3. Fruit Fly sample 1 (20 μg protein) 

4. Fruit Fly sample 2 (20 μg protein) 

5. Fruit Fly sample 3 (20 μg protein) 

6. Fruit Fly sample 4 (20 μg protein) 

7. Fruit Fly sample 5 (20 μg protein) 

8. Fruit Fly sample 6 (20 μg protein) 

9.  

10. Precision Plus Protein Unstained Standards (2 μl) 
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Tables 

Table 1: Volume of copepods in Eppendorf tubes after 24 hours (acute) and one week (chronic) 

of exposure to specified temperatures 

Sample Initial Mass (g) Final Mass (g) Total Volume (g) 

15C Sample 1a 0.999 1.047 0.048 

15C Sample 2a 0.993 1.047 0.054 

15C Sample 3a 0.984 1.054 0.070 

15C Sample 1 0.954 1.004 0.050 

15C Sample 2 0.968 1.018 0.050 

15C Sample 3 0.963 1.013 0.050 

6C Acute Sample 1 0.987 1.039 0.052 

6C Acute Sample 2 0.996 1.046 0.050 

6C Acute Sample 3 0.978 1.053 0.075 

6C Chronic Sample 1 0.980 1.032 0.052 

6C Chronic Sample 2 0.997 1.053 0.056 

6C Chronic Sample 3 0.994 1.054 0.060 

10C Acute Sample 1 0.957 1.010 0.053 

10C Acute Sample 2 0.964 1.024 0.060 

10C Acute Sample 3 0.957 1.015 0.058 

10C Chronic Sample 1 0.957 1.015 0.058 

10C Chronic Sample 2 0.960 1.034 0.074 

10C Chronic Sample 3 0.953 1.017 0.064 

22C Acute Sample 1 0.959 1.020 0.061 

22C Acute Sample 2 0.950 1.023 0.073 

22C Acute Sample 3 0.978 1.066 0.088 

22C Chronic Sample 1 0.962 1.026 0.064 

22C Chronic Sample 2 0.966 1.025 0.059 

22C Chronic Sample 3 0.955 1.034 0.079 

28C Acute Sample 1 0.996 1.051 0.055 

28C Acute Sample 2 0.982 1.048 0.066 

28C Acute Sample 3 0.984 1.050 0.066 

28C Chronic Sample 1 0.953 1.003 0.050 

28C Chronic Sample 2 0.962 1.042 0.080 

28C Chronic Sample 3 0.973 1.042 0.069 
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Table 2: Absorbance at 595 nm of Bradford Standard, and 6 and 28C samples 

Concentration 

(mg/mL) 

1st Absorbance 

Reading 

2nd Absorbance 

Reading 

Average 

Absorbance 

Solved 

Concentration 

(mg/mL) 

0 0 0 0  

0.125 0.186 0.180 0.183  

0.25 0.342 0.358 0.350  

0.5 0.658 0.636 0.647  

0.75 0.915 0.884 0.899  

1 1.059 1.107 1.083  

1.5 1.532 1.548 1.540  

2 1.687 1.698 1.693  

6C Acute Sample 1 0.480 0.464 0.472 0.409 

6C Acute Sample 2 0.669 0.648 0.659 0.624 

6C Acute Sample 3 0.616 0.576 0.596 0.552 

6C Chronic Sample 1 0.458 0.460 0.459 0.394 

6C Chronic Sample 2 0.566 0.592 0.579 0.532 

6C Chronic Sample 3 0.850 0.838 0.844 0.838 

28C Acute Sample 1 1.276 1.190 1.233 1.287 

28C Acute Sample 2 1.009 1.041 1.025 1.047 

28C Acute Sample 3 1.555 1.519 1.537 1.639 

28C Chronic Sample 1 1.125 1.183 1.154 1.196 

28C Chronic Sample 2 1.003 1.034 1.019 1.039 

28C Chronic Sample 3 1.275 1.252 1.264 1.322 
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Table 3: Absorbance at 595 nm of Bradford Standard, and 10, 15 and 22C samples 

Concentration 

(mg/mL) 

1st Absorbance 

Reading 

2nd Absorbance 

Reading 

Average 

Absorbance 

Solved 

Concentration 

(mg/mL) 

0 0 0 0  

0.125 0.183 0.178 0.181  

0.25 0.365 0.364 0.365  

0.5 0.686 0.643 0.665  

0.75 0.914 0.870 0.892  

1 1.152 1.151 1.152  

1.5 1.389 1.509 1.449  

2 1.675 1.669 1.672  

10C Acute Sample 1 0.740 0.716 0.728 0.684 

10C Acute Sample 2 0.585 0.563 0.574 0.501 

10C Acute Sample 3 0.922 1.188 1.055 1.073 

10C Chronic Sample 1 1.137 1.302 1.220 1.268 

10C Chronic Sample 2 1.099 1.145 1.122 1.152 

10C Chronic Sample 3 0.630 0.627 0.629 0.566 

22C Acute Sample 1 1.123 1.099 1.111 1.139 

22C Acute Sample 2 1.144 1.204 1.174 1.214 

22C Acute Sample 3 1.214 1.382 1.298 1.361 

22C Chronic Sample 1 0.768 0.764 0.766 0.729 

22C Chronic Sample 2 0.771 0.759 0.765 0.728 

22C Chronic Sample 3 1.122 1.110 1.116 1.145 

15C Sample 1 0.872 0.831 0.852 0.831 

15C Sample 2 0.853 0.853 0.853 0.833 

15C Sample 3 0.989 0.977 0.983 0.987 
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Table 4: Absorbance at 595 nm of Bradford Standard, fruit fly samples and light and dark 

exposure samples 

Concentration (mg/mL) 1st 

Absorbance 

Reading 

2nd 

Absorbance 

Reading 

Average 

Absorbance 

Solved 

Concentration 

(mg/mL) 

0 0 0 0  

0.125 0.144 0.142 0.143  

0.25 0.296 0.303 0.2995  

0.5 0.574 0.519 0.5465  

0.75 0.542 0.818 0.68  

1 0.957 1.026 0.9915  

1.5 1.271 1.075 1.173  

2 1.417 1.385 1.401  

Fruit Fly Sample 1 2.187 2.153 2.17 3.447 

Fruit Fly Sample 2 2.21 2.25 2.23 3.542 

Fruit Fly Sample 3 2.121 1.96 2.0405 3.242 

Fruit Fly Sample 4 2.051 2.077 2.064 3.279 

Fruit Fly Sample 5 2.077 1.382 1.7295 2.749 

Fruit Fly Sample 6 1.889 2.159 2.024 3.215 

24 Hour Light Sample 1 1.457 1.93 1.6935 2.692 

24 Hour Light Sample 2 1.341 1.409 1.375 2.187 

24 Hour Light Sample 3 1.243 1.273 1.258 2.001 

1 Week Light Sample 1 1.579 1.337 1.458 2.318 

1 Week Light Sample 2 1.578 1.64 1.609 2.558 

1 Week Light Sample 3 1.643 1.656 1.6495 2.622 

24 Hour Dark Sample 1 0.852 0.894 0.873 1.391 

24 Hour Dark Sample 2 1.141 1.162 1.1515 1.832 

24 Hour Dark Sample 3 1.113 1.205 1.159 1.844 

1 Week Dark Sample 1 0.844 0.786 0.815 1.299 

1 Week Dark Sample 2 1.265 1.248 1.2565 1.999 

1 Week Dark Sample 3 1.133 1.117 1.125 1.790 
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Table 5: Volume of D. melanogaster in Eppendorf tubes 

Sample Initial Mass (g) Final Mass (g) Total Volume (g) 

F1 0.970 1.075 0.105 

F2 0.977 1.110 0.133 

F3 0.984 1.219 0.235 

F4 0.995 1.079 0.084 

F5 0.989 1.068 0.079 

F6 0.981 1.013 0.032 
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CHAPTER 5 

General Discussion 
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1.1 Conclusions and Future Directions 

The goal of this project was to analyze a native AOX sequence in an organism that 

produces it and to gain insights into its physiological function. The use of bioinformatics tools 

allowed us to determine that the copepod T. californicus contains the AOX gene. Comparisons 

were made to identify similarities and differences between AOX in our organism of study and 

other plants and animals. Given the confirmation of the presence of the AOX pathway in this 

copepod, our work then examined AOX protein expression levels when subjected to certain 

environmental stressors. This is a necessary first step towards exploring the genetic and post-

translational regulation of AOX in T. californicus. T. californicus therefore represents an 

emerging model organism for the study of AOX in animals because of its abundance, wide 

geographic distribution, ease of manipulation in laboratory settings, and its ecological relevance 

(Raisuddin et al., 2007).  

One of the goals of this research project was to examine the AOX protein sequence in T. 

californicus to see if it possesses the necessary amino acids required for the protein to function. 

AOX sequences in plants, animals, and more specifically Maxillopoda, were compared to T. 

californicus’ AOX sequence, in order to see if the necessary amino acids were conserved in a 

similar fashion across different organisms. To accomplish the first goal of this research, an 

effective and efficient DNA isolation technique needed to be identified. Due to T. californicus’ 

miniscule body size and hard exoskeleton, it made it difficult to find a DNA isolation technique 

that did not require a multitude of animals. Previous research has been able to isolate DNA from 

a single resting egg, which is much smaller in size then a copepod and as well possesses a hard 

exterior. With some modifications, I was able to develop a technique that is both an efficient and 

effective method to isolate DNA from our organism of interest, T. californicus.  
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The first major discovery of this thesis is that the AOX protein sequence in T. 

californicus possesses conserved AOX residues, which are required in order for the protein to 

function. Due to the AOX sequence obtained only being a partial sequence, we were only able to 

focus on the latter end of the gene sequence (C-terminal region). Based on previous research 

done by Moore et al. (2013), there are 29 universally conserved residues in the AOX protein 

sequence. In our T. californicus AOX, only 23 residues are available for analysis as the other six 

are not present in the protein region that was being analyzed (Chapter 3, Table 12). Based on the 

partial AOX sequence that was analyzed, T. californicus has all 23 of the universally conserved 

residues in order to make its AOX gene physiologically functional. Next, to ensure that the AOX 

sequence recovered from the arthropod T. californicus was from an animal species and not from 

contamination (e.g. from a microbial symbiont or pathogen), that could have taken place 

throughout the experiment, the sequence was translated to its predicted protein sequence and a 

C-terminal motif was identified (Chapter 3, Figure 9). All animal AOX protein sequences 

possess a specific C-terminal motif (N-P-[YF]-X-P-G-[KQE]), which is highly conserved 

(McDonald et al., 2009). To confirm this finding, when comparing T. californicus’ AOX 

sequence to plant AOX sequences (Chapter 3, Figure 7), it can be seen that none of the plants 

possess the same C-terminal motif.  

In this thesis, we have added to the evidence that AOX has a widespread taxonomic 

distribution, as it is present throughout many kingdoms and phyla (Chapter 3, Table 11). We 

anticipate that as more sequencing data becomes available, it will be revealed that AOX is 

ubiquitous in the plant kingdom and present in certain taxonomic orders in the animal kingdom. 

T. californicus’ AOX protein sequence was compared to AOX sequences from other organisms 

that are more closely and distantly related based on taxonomic ranking. When comparing AOX 
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protein sequences amino acid by amino acid, it can be seen that T. californicus’ sequence was 

similar to sequences from other Maxillopoda sequences (Chapter 3, Table 13). When comparing 

the T. californicus sequence to both plant and other animal AOX protein sequences, there were 

comparable percent similarities (Chapter 3, Table 13). Future research should focus on isolating 

the complete AOX sequence from T. californicus to determine if it possesses the other 6 amino 

acid residues that are imperative for its protein structure and function. With T. californicus 

further investigation of the AOX gene structure is warranted, in particular focusing on the N-

terminal region of the protein as well as the intron/exon structure of the gene to determine if they 

are comparable to other animals and plants. Future research in this area can explore the 

possibility of alternative splicing of mRNA and regulatory region within introns. A recent 

research paper demonstrates that alternative splicing of the AOX gene occurs in oysters (Liu and 

Guo, 2017). Real-time PCR, also known as quantitative pCR (qPCR), should be performed in 

order to get accurate quantitation of RNA levels and analyze AOX gene expression in an animal 

model. qPCR will permit the accurate measurement and analysis of the quantitative and 

qualitative expression of the AOX gene under different sets of experimental conditions. This will 

allow for more definitive statements regarding the physiological function of AOX in copepods to 

be made. 

The second major finding of this research is that AOX protein levels were detected in an 

animal that naturally produces the enzyme. This is only the second report of the presence of 

native AOX protein in an animal (Tward et al., 2019). Before we could do this a protein isolation 

protocol, which permits quantification of proteins, had to be developed. This protein isolation 

protocol does not only work for copepods, but as well other organisms that are small and have 

hard exteriors (e.g. Fruit flies, Chapter 4, Table 5).  
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The third significant finding from this research project is observing that AOX protein 

expression may help copepods to deal with environmental stressors such as temperature 

fluctuations. This work marks the first time that AOX protein levels were observed to change in 

response to environmental stress in any animal.  This was determined by conducting temperature 

and light exposure experiments and analysis. T. californicus was exposed to varying 

environmental temperatures (6, 10, 22, and 28°C), which is particularly stressful to the animal, in 

comparison to its usual habitat temperature of 15°C. Furthermore, the copepods were exposed to 

acute (24 hours) and chronic (1week) levels of light and dark exposure. 

For the first time, we have identified one of the possible physiological functions of AOX 

in the copepod T. californicus. We demonstrated that when copepods are subjected to changing 

environmental temperatures (6-28°C), for both acute (24 hours) and chronic (1 week) amounts of 

time, fluctuations in the expression of AOX protein occurs (Chapter 4, Figures 8-11). Previous 

research on AOX in plants demonstrated that AOX expression increases when plants experience 

biotic and abiotic stresses, such as temperature change (Finnegan et al., 2004, Giraud et al., 

2008). Recent work has demonstrated that when AOX is active it will heat the plant during 

thermogenesis, thereby allowing it to survive at low temperatures (Watling et al., 2006).  

Our last significant finding is that AOX protein expression does not respond to short (24 

hours) or extended (1 week) periods of light and dark stress (Chapter 4, Figures 12-17). This is 

contradictory to the finding that AOX expression in plants increases when plants experience light 

stress (Zhang et al., 2010). Future research in this area could focus on looking at other 

environmental stressors such as salinity stress, fluctuations in oxygen levels, and predation.  

Overall, this thesis has contributed significant information regarding a native AOX 
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sequence in an organism that naturally produces it and has identified new areas for AOX 

research. Since previous AOX work in animals has primarily focused on identifying organisms 

with the gene and sequencing it from of the organism, there are many opportunities that exist for 

comparative studies and studies regarding the physiological function of the AOX pathway in 

animals. This thesis has identified that the amino acids required for the physiological function of 

AOX are conserved in T. californicus. As more AOX data becomes available from animals, it 

could provide insight as to why such an extensive group of organisms have retained this 

seemingly wasteful pathway and may help determine further the physiological role(s) of AOX in 

animals. The resilience of copepods as a model organism and the identification of the AOX gene 

in copepods offers an advantage over other systems as future knockout experiments can examine 

the physiological effects that AOX has in these animals.  

1.2 Real World Application 

This project has led to the advancement of knowledge in many fields of biology. The first 

requirement of this research was to develop a DNA isolation method for copepods. Previous 

methodologies for this undertaking required a large quantity of copepods which is not feasible 

for the space constraints most labs possess. The DNA isolation method that was developed is 

extremely versatile and can be used to extract DNA from numerous different types of 

zooplankton and small organisms with hard exteriors. Furthermore, it will provide the necessary 

amount of DNA in order to accomplish PCR and isolation of a nucleotide sequence. It could be 

of use to look at the genomes of other species because it can reveal insights into biodiversity and 

utility for humans. Cataloging biodiversity through projects on species inventory is the first step 

towards developing an understanding of how various organisms interact with their environments. 

This is a key fact in understanding an organisms’ role in their ecosystem and their potential 
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utility to humankind. Furthermore, being able to isolate single genes from different organisms 

allows for the study of their function and helps to establish relationships between species in a 

comparative genomics way. By being able to situate a species on an evolutionary tree it allows 

for predictions regarding the structure and function of neighboring organisms on the evolutionary 

tree. For example, in this research project we identified that T. californicus’ AOX sequence 

possessed the C-terminal motif which was determined to be diagnostic for animal AOX proteins. 

Furthermore, the AOX sequence of T. japonicas is almost identical (97.7%) to T. californicus as 

they both come from the same genus Tigriopus (Chapter 3, Table 13 and Figure 9). 

From transcribed DNA sequences that have been isolated from organisms, the translated 

protein sequences can be ascertained. Proteins are the most versatile macromolecules in living 

systems and serve a critical role in essentially all biological processes. The function of a protein 

is directly dependent on its three-dimensional structure. In order to make inferences regarding 

the function of a protein, it is often useful to determine what amino acid residues in the protein’s 

primary structure have been conserved. The majority of research regarding the structure of AOX 

has been done in plants. This project looks at the important amino acids that are required in order 

for the AOX protein to form the correct secondary and tertiary structure as well optimally 

function. By comparing T. californicus’ AOX sequence to that of other plants, and animals that 

are closely and distantly related, it demonstrates that these pertinent amino acids are conserved 

between different taxonomic kingdoms. Moreover, it allows for findings that have been made 

regarding plant AOX function to be highly transferrable to other organisms. For example, one of 

the functions of AOX in plants is to help plants deal with various kinds of environmental stress. 

This allows for a similar hypothesis to be formulated regarding the function of AOX in animal 
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models, such as T. californicus. This hypothesis led to the finding that AOX protein expression 

in T. californicus is influenced by exposure to temperature stress.  

Another isolation technique, which was optimized for this research project, was for the 

purpose of extracting proteins from T. californicus. This protein isolation process was time 

effective and only required ~0.05 g of copepods. This technique can also be applied to numerous 

other zooplankton and small organisms to allow for protein levels to be quantified and analyzed 

through SDS-PAGE and Western Blots.  

 By understanding a native AOX’s function in an animal model that naturally produces it and 

why they possess it, we can better understand why some other organisms, including humans, do 

not express or have lost the AOX gene. The results gathered can be applied to generate possible 

reasons why AOX has been lost over the course of evolution in some animal species. AOX may 

have not been conserved in animals because it is seen as an energetically wasteful pathway, as a 

result of the lower levels of ATP that is biosynthesized. Therefore, in large, multicellular animal 

species, AOX may be seen as a less efficient pathway for keeping up with the large energy 

demand required by the active animal. 

This can lead to a longer-term goal of making AOX into a potential gene therapy for 

mitochondrial or electron transport chain disorders in humans. An example of such a disorder is 

Leigh’s Syndrome, which is characterized by movement disorders such as dystonia, which are 

caused by inability to perform oxidative phosphorylation (Ciafaloni et al., 1993). It is genetic in 

nature, with NADH dehydrogenase and cytochrome c oxidase (complexes I and IV) mutating to 

become non-functional (Ciafaloni et al., 1993). The AOX would act as alternative pathway for 

cells to reduce oxygen and prevent ETS over-reduction when the COX pathway is impaired or 

inhibited. In order to achieve the goal of a gene therapy in humans, many more questions about 
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animal AOXs must be answered. There has been research conducted by Hakkaart and colleagues 

who have successfully expressed the cyanide-insensitive AOX from Ciona intestinalis in 

cultured human cells. In this study, researchers used an AOX from an animal in the phylum 

Chordata which was closely related to humans based on the evolutionary tree. Acknowledging 

the relatedness between the animal species provided a potential route of expression to rescue 

electron flow and mitigate the deleterious complications involved with respiratory chain 

dysfunctions (i.e. Parkinson's, Huntington’s disease) (Hakkaart et al., 2005; Kemppainen et al., 

2013). The researchers conducted the experiment by obtaining human embryonic kidney cells 

and transfecting them with a doxycyclin-inducible mammalian vector (Hakkaart et al., 2005). 

The cells that survived the transfections and treatments with antibiotics were then induced to 

express AOX (Hakkaart et al., 2005). The results surprisingly showed the presence of AOX 

activity within the human cells, regardless of the fact that C. intestinalis, is a cold seawater 

organism (Hakkaart et al., 2005). Therefore, the above is just one of the many experiments to 

come with respect to applying knowledge gathered from AOX to treat possible mitochondrial 

dysfunctions in humans. Additionally, our bioinformatics results have demonstrated that AOX is 

present in T. californicus and it may serve as a potential target for drug therapy as an alternative 

treatment method. Therefore, further investigation of AOX regulation and/or inhibitors in animal 

models is required.  

Another long-term application of this research is developing a drug that targets the AOX 

protein in order to kill copepods that are fish parasites of economically valuable species. 

Parasitic copepods are common on cultured and wild marine fish and affect the growth, 

fecundity, and survival of their hosts (Johnson et al., 2004). These parasitic copepods feed on 

host tissues, blood, and mucous (Johnson et al., 2004). Their attachment to fishes is responsible 
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for any primary disease that it may develop and usually ends in death of the host through either 

direct contact or mortality due to secondary infections (Lin et al., 1994). In marine salmon 

aquaculture, copepods infect the fish, leading to serious diseases and high mortality rates if 

untreated (Pike and Wadsworth 1999). Presently, outbreaks of diseases caused by sea lice, such 

as copepods, are rarely reported, although the rates of infection due to sea lice continue to be 

immense problem as evidenced by the frequent requirement for treatments (Johnson et al., 2004). 

This has led to the reduction in the occurrence of a multitude of the sea lice diseases, and a 

decrease in economic losses due to fish mortality. Nevertheless, sea lice still pose a significant 

economic influence due to the reduced growth performance from sea lice and the chemical 

treatments used to eradicate them from fish aquaculture (Sinnott 1999, Rae 2002).  Fish do not 

possess AOX, but the sea lice that latch on to some of them do. More thorough investigation of 

AOX in copepods may aid in the development of a drug that can be added to fish aquaculture to 

exterminate parasitic copepods and prevent the loss of economically valuable fish.  

1.3 Integrative Biology 

Integrative biology, a fundamentally integrative science, is an essential and effective 

approach to resolving many of the complex issues researchers face. Taking an integrative 

approach has allowed me to generate new hypotheses and new questions regarding my organism 

and protein of interest. For this research project, we took a multipronged approach to understand 

the sequence and possible function of AOX in the copepod T. californicus, a model organism 

containing a native AOX gene.  

 The first part of this research project was to analyze the primary sequence of the AOX 

protein in T. californicus by comparing it to AOX protein sequences from other organisms. This 

step, of my heavily molecular biology focused project, required me to incorporate 
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bioinformatics. Data‐mining exercises exposed me to the common databases and tools that take 

advantage of the vast repository of biochemical information and elevated my research study. By 

including a bioinformatics piece in my research, it provided me the tools to allow for me to find 

and correlate data from different phyla, and enabled connectivity between different types of 

information (DNA and protein structures). This analysis revealed that AOX protein 

characteristics are shared not only amongst all animals investigated, but also plants. 

 The use of bioinformatics also permitted me to design primers to isolate genes that have 

never been sequenced in T. californicus. The use of databases enabled me to develop primers for 

housekeeping genes and HSPs. This brings researchers one step closer to being able to conduct 

real-time PCR in the copepod T. californicus and understanding the physiological function of a 

native AOX in an animal model.  

The second part of this research project determined that the AOX protein is expressed in 

the copepod T. californicus and that AOX protein levels change in response to temperature but 

are constitutively expressed during light stress. The cellular stress response is evolutionarily 

conserved in all living organisms, and a major role is attributed to the induced heat shock 

proteins (HSPs) and other molecules that confer stress protection (Grover, 2002). Molecular 

responses elicited by cells dictate whether an organism will adapt, survive, or, if they are injured 

beyond repair and will undergo death. By understanding the physiological function of AOX in 

copepods, we can understand why other organisms, such as humans, do not express or have lost 

the AOX gene. Furthermore, by incorporating our bioinformatics and stress biology results, they 

may serve as a starting point for developing a potential target for drug therapy as an alternative 

treatment method to mitochondrial diseases. The study of animal AOX may ultimately lead to 

the treatment of mitochondrial dysfunction, and disorders in humans using AOX gene therapy. 
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Therefore, further incorporation of different sectors of biology are needed to investigate the 

regulation and/or inhibitors of in animal models.  

Taking an integrative biology attitude and approach has led to an innovative, progressive, 

and enlightened research project. Pivotal to any research project is the exchange of ideas 

between experts in different fields of biology and other sciences. These exchanges, within the lab 

and across a multitude of institutions, promotes communication and collaboration, resulting in a 

wider knowledge of techniques, ideas, and literature. The advantage of taking an integrative 

approach is that it has advanced not only my central discipline but also other biological fields; it 

has allowed me to generate new hypotheses, techniques, and ideas; and establish myself in an 

environment that promotes the interaction that facilitates new syntheses and findings. 
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