
Wilfrid Laurier University Wilfrid Laurier University

Scholars Commons @ Laurier Scholars Commons @ Laurier

Theses and Dissertations (Comprehensive)

2019

Towards Secure and Fair IIoT-Enabled Supply Chain Management Towards Secure and Fair IIoT-Enabled Supply Chain Management

via Blockchain-based Smart Contracts via Blockchain-based Smart Contracts

Amal Eid Alahmadi
Wilfrid Laurier University, alah6650@mylaurier.ca

Follow this and additional works at: https://scholars.wlu.ca/etd

 Part of the Information Security Commons, Other Computer Sciences Commons, and the

Programming Languages and Compilers Commons

Recommended Citation Recommended Citation
Alahmadi, Amal Eid, "Towards Secure and Fair IIoT-Enabled Supply Chain Management via Blockchain-
based Smart Contracts" (2019). Theses and Dissertations (Comprehensive). 2147.
https://scholars.wlu.ca/etd/2147

This Thesis is brought to you for free and open access by Scholars Commons @ Laurier. It has been accepted for
inclusion in Theses and Dissertations (Comprehensive) by an authorized administrator of Scholars Commons @
Laurier. For more information, please contact scholarscommons@wlu.ca.

• The Merchant: Uniquely identified by M, the merchant requires specific goods, and

sends an order to the supplier through the blockchain.

• The Supplier: Uniquely identified by S, the supplier posts the goods on the blockchain,

receives the order from M, and then delivers the goods to M.

• Blockchain: The blockchain is the underlying decentralized P2P network. It runs

smart contracts and acts as an external judge between the two parties to effectively

complete the exchange of goods.

Block N

Header

Transaction

Link

Digital Signature

Block N+1

Header

Transaction

Link

Digital Signature

Block N+2

Header

Transaction

Link

Digital Signature... ...

SupplierMerchant

Blockchain

Figure 3.1: System Model

In supply chain management, the most important concept is that of fairness. If someone

provides a service, the other party must accommodate by responding, and vice versa. At

a high level, the process of fair goods exchange in this proposed system works as follows:

Supplier S first sets an item list that designates the goods that Merchant M can order. M

then places the order. Subsequently, S processes the order and asks for confirmation from

M, who will check the goods information and send an acceptance notification to the smart

contract. In the next step, the smart contract will create a tag used for labelling the goods,

and publish it so that S can attach it to the goods. S then delivers the goods to M, who

22

scans the tag after checking the goods, and then submits it to the smart contract. The

smart contract in blockchain takes the role of an external judge based on the information

collected to determine whether if the contract is correctly fulfilled or to enforce penalties

to the misbehaving parties.

3.1.2 Threat model

The goal of the proposed system is to realize a fair goods exchange between the two

entities, Supplier and Merchant, who could be malicious or untrusted. In particular, the

threat model can be summarized as follows:

• Security against selfish/malicious suppliers: The suppliers could be selfish or ma-

licious users who may not send the goods on time. Moreover, a malicious supplier

can also send different goods other than those agreed in the contract.

• Security against selfish/malicious merchants: The merchants could also be selfish

or malicious. They may not submit the scan or send the signature to the smart contract

after receiving the goods. It is also possible for merchants to reject the goods and

argue that they are not what was requested, which will cost the supplier to lose the

deposit on the smart contract.

3.1.3 Design goals

The design goals mainly contain three aspects:

• Fairness: Our protocol guarantees fairness by relying on smart contracts between

suppliers and merchants over decentralized cryptocurrency. An honest supplier must

ensure that the merchant will pay after receiving the goods and an honest merchant is

assured that he only pays if the supplier delivers the goods ordered by the merchant.

In cases of disagreement, in the proposed system, the contract takes the role of a

23

judge. In other words, the smart contract goes beyond a traditional contract that

represents an agreement between the supplier and merchant, and also acts as a judge

to resolve disputes between the supplier and merchant.

• Transparency: One of the benefits provided by the proposed protocol is that it en-

hances the demand for transparency, ensuring that the transaction process is trans-

parent and immutable to both parties.

• Proof-of-concept implementation: Implementation of a fair goods exchange smart

contract between two nodes is presented and explained in detail in Chapter 4, which

also demonstrates the functionality of the proposed scheme. In addition, results in

terms of the cost of gas that will be paid to process each phase in our smart contract in

the blockchain, as well as transaction confirmation time, are analyzed and simulated.

3.2 Proposed Scheme

3.2.1 The System architecture

This subsection provides an overview of the system architecture considered in this

work. In completing an exchange, or in cases of disagreement, the smart contract take

the role of an external judge between two entities. It is assumed that Supplier publishes a

stock information of the goods into the blockchain. Thus, both parties start by registering

themselves as smart nodes. As shown in Fig. 3.2 , Merchant M will place the order that

contains all the information about the goods he wants, in addition to certain conditions such

as the delivery deadline, which will be addressed in detail in Section 3.2.2.4. S will then re-

spond with approval after confirming the availability of the goods through the blockchain;

this is considered as the third stage in the process.

The smart contract will generate the tags which contain the goods information and

the deadline for the delivery, as previously agreed upon by the parties. The tags will be

24

Merchant
stock

Merchant
Supplier

Supplier of
stock

(3) Confirmed Order

 (4)Publishes Tags

(4)Generates tags
(5) Adds the
tags to items

(6) Drives the goods

(7) Scans Tags

(7)Submits and verifies Tags

 Both side can monitor
and tracing the goods (RFID)

(8) Delivery of goods

(10) Receives Payment

(9)Judges

(1)Registration

(1)Registration

(2)Places Order

OffLine

OnLine

Smart
contract

Figure 3.2: System Architecture

available for both entities on the smart contract. Thereafter, Suppliers will print the tags

and add them to the goods. The goods are sent in the sixth stage with the use of RFID

[19, 47], which will enable both parties to track shipments of the goods from the smart

contract. When the goods arrive at Merchant’s place, M will scan the tags on the goods after

inspecting them. This indicates that M confirms acceptance on the goods after confirmation

of the smart contract of the validity of the tags and the delivery time. Finally, M is given

the goods and signs for them. The smart contract will then be notified that the goods have

been successfully delivered, and Suppliers will retrieve the deposit in the smart contract.

3.2.2 The Scheme

This section provides the details of the smart contract construction, which assumes that

secure channels [43, 44] have been established between all entities. For example, SSL

(Secure Sockets Layer) can be used to establish a secure channel between two entities [32].

In the proposed scheme, as shown in Fig. 3.3, there are five phases, each of which is based

on the previous phase, with the exception of the first phase. All notations are explained in

25

Merchant SuppliersSmart Contract

(1)Initialize

Phase

(2) Order

 Phase

(3)Confirmation

 Phase

(4)Delivery

Phase

(5) Judgement

 Phase

pk , addr__ pk , addr__

Mm={Sign (Ť ||α||P||bD||oD||η||dL)}

Ms={sign (cD||sD||Ť||Time)}

4.1 Generate the tag
 Ž=(Ť,dD)

4.2 publish Ž

 4.4 drives the good to M

4.3 Add Ž to items

 Verify(𝜎 __ , Mm, pk)

 Verify(𝜎 __, Ms, pkS)

4.2 publish Ž

TimeLine

T

T

T
 5.1 OK =Mg={ sign(Ž,time)}

5.2 Payment={sD +bD}

 verify(𝜎__ , Mg, pk)

 5.1 Complain =MCm={ sign(Evidence,Time)} verify(𝜎__ , MCm, pk)

 5.1 complain =MCs={ sign(evidence,time)}
 verify(𝜎__ , MCs, pk)

m
M s

S

Mm m

Ms s

sk1sk1

sk1sk1 Mg m

sk1sk1 mMCm

sk 2sk 2

sk 2sk 2MCs s

1

2

Figure 3.3: Outline of fair goods exchange

Table 3.1.

3.2.2.1 Initialize Phase

Both M and S will register their addresses and public keys to the smart contract as

shown in the algorithm 1. More information can be added, including pkm, addrM , where

pkm is the public key and addrM is M’s address on the smart contract. For his part, S will

register pks, addrS where pks is the public key and addrS is S’s address. In the blockchain,

every account is described by a pair of keys, namely a public/private ECDSA keypair. User

address is obtained from the last 20 bytes of their public key, so it become a 160-bit of

hash. Using private-key cryptography is to ”sign” data then the other side will verify that

the signature is valid by using the public key of the sender to achieve integrity of the data.

26

Notation Explanation
addrM The Merchant’s address
addrS The Supplier’s address
Signmk Signature of Message m signed by k. Messages include Mm=Order Phase,

Ms=Confirmation Phase,Mg=Judgement OK ,MCm=Judgement complain M,
MCs=Judgement complain S)

pkm Merchant’s public key
pks Supplier’s public key
sk1 Merchant’s private key
sk2 Supplier’s private key
T̂ Item
α A variable between 0 ≤ α ≤ 1, that determines the ratio of P that each of M

and S will deposit
P The price
bD Merchant’s deposit
oD The order date
η The number of T̂
σm Signed message
dL Delivery deadline
v, r, s r and s are outputs of an ECDSA signature, and v is the recovery id
cD Confirmed date
sD Supplier’s deposit
Ẑ Tags
dD Delivery Date
T1 Time refers to interval between confirmation and delivery
T2 Time refers to the time limit for participators including, M and S to upload

evidence (proof of misbehavior)

Table 3.1: Notation explanation

3.2.2.2 Order Phase

M will place the order Mm and send it to S after signing the message with his secret

key sk1 for authentication where it will be verified by miners on the blockchain by his pkm.

The format of the order Mm is shown below:

Mm = (T̂‖α‖P‖bD‖oD‖η‖dL)

where T̂ represents the low stock threshold for an item, which is used to determine

whether an order should be placed according to the current stock of the item, i.e., lower

27

Algorithm 1: Initialize Phase
1 function Initialization pkm, addrMpks, addrS;
2 M public key = M public key;
3 S public key = S public key;
4 M Address = M Address;
5 S Address = S Address;

than T̂ , α represents a variable ranging from 0 to 1 (0 ≤ α ≤ 1) and determines the ratio

of price P that M and S will deposit, oD refers to the order date, η includes the amount

of goods required by M, and dL represents the delivery deadline. M deposits bD after

calculating the αp with η. It should be noted that α is used to ensure that M will honor the

order and prevent M from dishonestly cancelling the order.

Algorithm 2: Order Phase

1 function OrderPhase (T̂ , η, σMm , dL, addrM , α, P, v, r, s, depositAccount);
2 . check the identification of Merchant;
3 require(msg.sender == addrM)

. check the signature of Merchant;
4 require(verifySignature(addrM ,σMm , v, r, s))

. add new order;
5 newOrder← {T̂ , now, η, dL}

memory orderList[i++]← newOrder
. calculate the price ;

6 Total P←η ∗ T̂ .P
. check the balance of the account;

7 require(msg.value >= totalPrice * (p + α/100))
. Merchant Deposit ;

8 depositAccount += amt
. Phase status ;

9 newOrder.status←Initialized

Then, M will send the signed order to S after checking his T̂ threshold. The smart

contract checks the identification of Merchant addrM and then adds a new order in the

order list which contains T̂ , oD, η, P and dL as input. As shown in the algorithm 2, the

smart contract will calculate the total price of the goods by P * η. M will send the bD to

the smart contract address. The entire message Mm will be signed by sk1 using (v, r, s),

28

where r and s are outputs of an ECDSA signature, and v is the recovery id [21], and the

resulting signature is SignMm
sk1

.

3.2.2.3 Confirmation Phase

In this phase, S will confirm the order based on the availability of the product that

he has already been presented on the public blockchain, including the cD which is the

confirmation day, the T̂ which is the item that he will finally deliver. For authentication

purposes, S will sign the message with his secret key sk2, where it will be verified by

miners on the blockchain by his pks.

Algorithm 3: Confirmation Phase

1 function ConfirmationPhase (T̂ , i, σMs , addrS , cD, v, r, s, η, α, depositAccount);
2 . check the identification of Supplier ;
3 require(msg.sender == addrS)

. check the signature of Supplier;
4 require(verifySignature(addrS,σMs , v, r, s))

. Read the latest item from the order list ;
5 memory latestOrder← orderList[i]

latestOrder.cD← now
. check the deposit;

6 totalDeposit← η * p *(α/100)
require(msg.value > totalDeposit)

. Supplier Deposit ;
7 depositAccount += amt

. Phase status ;
8 newOrder.status←Confirmed

The second phase is called the confirmation phase, where S will confirm the order, then

M can start delivering the goods. This phase begins with checking the identification of S

addrS and then checking if M has given the deposit based on P * η and α of the deposit to

prevent unexpected and dishonest cancellation of the order. Ms will then be signed for the

signature Signms
sk2

by sk2. At that point, the status of the contract will be confirmed, as is

shown in Algorithm 3.

29

3.2.2.4 Delivery Phase

This phase contains offline and online processes that start with generating the Z̆ on

the smart contract for goods that S will deliver. The Z̆ will contain T̂ and dD, which

is the delivery date. The smart contact will generate Z̆ after S confirmed the order in

the confirmation phase as is shown in Algorithm 4. In the final stage, tags will then be

published to both parties and will be available through the smart contract. Afterwards,

S processes the goods for delivery after labelling them. In the delivery phase, the smart

contract will generate Z̆ based on the information that is given in the order and confirmation

phases Z̆=(T̂ ,dD). Having been generated, the tags will be available for both sides. At this

point, S will use these tags, add them to the goods and deliver the goods to M.

Algorithm 4: Delivery
1 function GenerateTags;

Input : T̂ ,dD
Output: Ẑ

2 Order memory← orderList[index];
3 . Generate tag

tagsA← keccak256 (abi.encodePacked(T̂ ,dD));
4 return tagsA ;

3.2.2.5 Judgement Phase

This phase has two paths to either satisfy both parties, which means (ok) as shown

in Algorithm 5, or not satisfy, which means (complaint), as shown in Algorithm 6. In a

satisfying path as presented in Algorithm 5, M will scan the tags Z̆, and miners will verify

the SignMg

sk1
by using pkm. After the scan, the smart contract will check the time of the

delivery by checking the deadline that should be agreed by both sides in the previous phase

according to (dD, T1,T2). If condition now > (dD+T1 +T2) is met. S will then withdraw

η ∗ P ∗ (1 + 2 · α/100), which means that S will receive the two deposits and the status

phase becomes Complete.

30

Algorithm 5: Judgement (OK)
1 function AcceptOrder(T1, addrM , cD, σMg , v, r, s, depositAccount);
2 . check the idetification of Merchant

require(msg.sender == addrM);
3 . check the signature of Merchant

require(verifySignature(addrM ,σMg , v, r, s));
4 . check the balance of the account

require((now - cD) < T1));
5 function OrderPayment (dD, T1, T2, addrM , addrS , η, P, α);
6 require(now > dD + T1 + T2);
7 require(msg.sender == addrM);
8 . withdraw(unit256 amount, unit256 depositAccount, address receiver):

withdraw the deposit amount from the contract
account depositAccount to the address receiver;

9 withdraw(η * P * (α /100)), depositAccount, addrM);
10 require(msg.sender == addrS);
11 withdraw(η * P * (1 + α /100)), depositAccount, addrS);
12 . Phase status

newOrder.status←Completed;

Algorithm 6: Judgement (Complaint)
1 function proofOfComplaint(addrM , addrS , evidence, dD, T1, T2, MCs , α, P, MCm ,

v, r, s);
2 require(now > dD+T1 AND now < dD+T1+T2);
3 require(verifySignature(msg.sender σMCs

, v, r, s));
4 require(verifySignature(msg.sender σMCm

, v, r, s));
5 require(msg.sender == addrM);
6 . If the evidence comes from merchant, he can take both the deposit

withdraw(η * P * (1 + 2 ∗ α /100)), depositAccount, addrM);
7 require(msg.sender == addrS);
8 . If the evidence comes from supplier, he can tak both the deposit

withdraw(η * P * (2 ∗ α /100)), depositAccount, addrS);
9 return;

31

As previously mentioned, T2 is the period specified prior to the expiration of the a-

greement which allows either party to provide proof of complaint as shown in Algorith-

m 6. The function proofOfComplaint will first check the timeline which requires that

now > (dD + T1) and now < (dD + T1 + T2). Both sides can provide evidence, e.g.,

pictures or tracing records of the goods. In the case that one side provides clear evidence be-

fore the time limit is expired, judiciary is made in the smart contract based on the provided

evidence. Particularly, if M provides the evidence to complain that S has the inappropriate

behaviors, then M can take both deposits and the money of goods back. Otherwise, S can

take both deposits by providing valid evidence. In addition, the case of neither party ob-

jecting to any initiative or confirmation of the receipt within the timeline, the amount will

be transferred from the smart contract account and returned separately to both parties.

3.3 Security analysis

This subsection provides an analysis of the security of the proposed scheme by provid-

ing an intuition on why neither party can break the fairness property. As mentioned in the

previous section, the Judgement phase is the payout phase which is the last round where

both entities can be satisfied. The contract is terminated to enable the supplier to receive

a full deposit or punish the misbehaving parties. If no one can provide a valid evidence

before T2, then the deposit will be sent back to each party. This is the point at which the

smart contract acts as the role of judgement in the case of disagreement to complete the

contract in a fair way. The transaction processes and status in all phases are transparent and

immutable for both parties. As a result, traceability in the proposed exchange protocol is

also achieved through the provision of the smart contract that allows both entities to trace

the transactions and contract states that are reached.

32

Chapter 4

Experiment Results

4.1 Experiment setup framework

Figure 4.1: Structure of the Parity Ethereum Client

As proof of concept, it is important to implement a working prototype of the proposed

system. Considering that it is the lightest and fastest Ethereum client, using Parity as the

test platform is a good choice [14]. This platform, written in a programming language

called Rust, provides improved performance, code clarity and reliability. Parity Ethereum

Client v2.0 comes with options of building on different operating systems. The JSON-

33

RPC HTTP and Web-Sockets server on this platform run by default on port 8545 and

8546. Parity, which is an alternative to Gath, the official Ethereum Client, has many more

features and is more quickly able to build the decentralized application that is needed to

connect to the Ethereum blockchain. In addition to supporting several APIs,* it is fully

configurable [14]. As shown in Fig. 4.1, the client connects to the blockchain by using the

web3 interface. The simulate of the proposed system was implemented on a laptop with

2.40 GHz Intel Core i5 processors and 8 GB memory on Ubuntu Linux Operating System.

The next section is the steps of building Parity Ethereum Client.

4.1.1 Building a Parity Ethereum Client

1. After login as root, use the following command to download the Parity binary from

the server.

bash <(curl https://get.parity.io -L)

2. Build the essential tools for Ubuntu. These are mainly compilers and libraries that

will help to build the Web3 client and node.js. Update the package manager.

apt-get update

3. Build essentials by following commands that will ask a question about the perfor-

mance. Give permission to continue.

apt-get install build-essential

4. Install Node.js from the official web site:

https : //github.com/nodesource/distributions/blob/master/README.md

Now download the package from Alternatively, forNode.js10

$curl -sL https://deb.nodesource.com/setup_10.x

34

$sudo -E bash -$

5. Update everything once again, then access all the library needed for Node.js. Install

Node.js.

$sudo apt-get

$sudo install -y nodejs$

6. Install the Web3 JavaScript library by first installing npm, then web3, in order to

connect to the Parity client.

npm install web3

When all the installation processes are positively finished, the technical tests can start by

following the next section.

4.1.1.1 Technical Tests

1. In order to check the connection of the Parity client with the official public parity

network, parity runs in the terminal. As shown in Fig. 4.2, this starts by syncing

with the main Ethereum official public blockchain.

Figure 4.2: Connecting with the official public blockchain

2. Connect the local Partiy with web3, as shown in Fig. 4.3, which opens a new terminal

35

