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Abstract

Recommender systems, predictive models that provide lists of personalized sugges-

tions, have become increasingly popular in many web-based businesses. By presenting

potential items that may interest a user, these systems are able to better monetize

and improve users’ satisfaction. In recent years, the most successful approaches rely

on capturing what best define users and items in the form of latent vectors, a nu-

meric representation that assumes all instances can be described by their respective

affiliation towards a set of hidden features.

However, recommendation methods based on latent features still face some real-

world limitations. The data sparsity problem originates from the unprecedented va-

riety of available items, making generated suggestions irrelevant to many users. Fur-

thermore, many systems have been recently expected to accompany their suggestions

with corresponding reasoning. Users who receive unjustified recommendations they

do not agree with are susceptible to stop using the system or ignore its suggestions.

In this work we investigate the current trends in the field of recommender systems

and focus on two rising areas, deep recommendation and explainable recommender

systems. First we present Textual and Contextual Embedding-based Neural Recom-

mender (TCENR), a model that mitigates the data sparsity problem in the area

of point-of-interest (POI) recommendation. This method employs different types of

deep neural networks to learn varied perspectives of the same user-location interac-

tion, using textual reviews, geographical data and social networks.
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We then suggest two novel, explainable, frameworks. Dual Attention Recom-

mender with Items and Attributes (DARIA) is based on the emerging neural atten-

tion technique, where latent representations are effected by the importance of items’

features and users’ past preferences. Self-Attention Recommender based on Attributes

and History (SARAH) further adopts self-attention, an extension to the standard neu-

ral attention paradigm. By utilizing this latest concept, SARAH is able to represent

users and items by their most relevant input features.

A series of experiments demonstrate that both DARIA and SARAH consistently

outperform state-of-the-art baselines in diverse recommendation scenarios, while be-

ing able to justify their suggestions. Furthermore, we analyze the effects of different

hyper-parameters and design selections, shedding light on the impact attention net-

works have in the area of recommender systems.
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Chapter 1

Introduction

1.1 Problem Definition

In today’s age of information, it has become a prerequisite to have reliable data prior

to making any decision. Preferably, we expect to obtain opinions from like-minded

users before investing our time and money in any product or service. However, with

increasing variety of available items it is extremely tiresome for customers to rely

on methods such as browsing or searching in order to find these opinions. Such is

the case for e-commerce websites as eBay with 1.1 Billion listings1 or location-based

social networks as Yelp with 171 million reviews2.

Personalized recommender systems (RS) are therefore a vital component in many

on-line businesses, websites, social networks and media services. They consist of

proposing a tailored list of relevant items, such as movies, songs, products, locations

and more, to an end user, allowing her to make the best selection out of an almost

endless list of possibilities. More specifically, a recommender system is a method of

supervised learning, that usually takes tuples of users and items as input and predicts

the probability a user will be interested in the given item. It is trained and tested

1https://www.ebayinc.com/our-company/who-we-are/
2https://www.yelp.ca/factsheet

1



Omer Tal Explainable Neural Attention Recommender Systems

by having ratings given by the users (e.g. 5 stars scale, 1-10 numeric grade, binary

score, etc) alongside the reviewed item and user data.

1.2 Major Challenges

A prominent technique partly responsible for the rising success of recommender sys-

tem is collaborative filtering (CF). An item-based CF model attempts to identify

similar items to those previously liked by the user. User-based methods, on the other

hand, assume that users who shared resembling interests in the past are likely to do

so in the future. The availability of many distinct items, however, results in few users

who share the exact same past experiences. It is more likely that similar users interact

with resembling items (e.g. watched an action movie created by the same director).

Latent-based collaborative filtering, therefore, is a recommendation paradigm that

attempts to represent users and items in a way that captures their preferences and

attributes, respectively, in a way that is both accurate and allows generalization.

Latent CF-based methods, however, have some drawbacks making their imple-

mentation challenging in many scenarios. First is data sparsity, usually referred to as

the cold-start problem, due to the missing data for new users and items. This issue

however is not limited to new components in the system. As the range of available

items and the size of systems’ user base increases, less similar they become. The more

varied past activities are, the fewer users and items have sufficient data to result in

meaningful representations. In addition, methods based on latent-features are com-

monly perceived as a ”black-box” that is only responsible for outputting recommen-

dations. In case an end user does not agree with the given suggestion, she is unable

to learn the reasoning behind it and her motivation to use the system decreases.

The rise of deep learning has had a broad impact over recommender systems

in general, and specifically over latent-based CF methods. The ability to repre-

2
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sent users and items using vectors allows deep neural networks to be employed by

stacking multiple layers, in order to learn the user-item interactions [20, 65] or to

learn the representations themselves [15, 60]. Along with the explosion of available

data, these methods achieved a great success in previous years. Different deep neural

network architectures have been introduced to improve the recommendation perfor-

mance, such as multi-layer perceptrons (MLP) [12,32], convolutional neural networks

(CNN) [25, 71] and recurrent neural networks (RNN) [1, 3]. However, by applying

multiple nonlinearities over its inputs, recommendation techniques based on deep

learning are usually considered extremely prone to the explain-ability problem.

1.3 Our Method and Contribution

In this work we start from reviewing recent developments in deep recommender sys-

tems, and then introduce multiple frameworks that attempt to mitigate the aforemen-

tioned challenges. To tackle the data sparsity and cold-start problems we will first

focus on the area of points-of-interest (POI) recommendation. In this field, locations

are suggested to users of location-based social networks (LBSN), such as Yelp and Tri-

pAdvisor. We present Textual and Contextual Embedding-based Neural Recommender

(TCENR), a framework that takes users’ social network, locations’ geographical data

and textual reviews along with historical activities, to produce personalized POI rec-

ommendations. While most works focus on only a single type of deep neural network,

TCENR combines multiple techniques, i.e., MLP, CNN and RNN, to provide sugges-

tions using various types of inputs. By successfully integrating relevant paradigms,

TCENR is shown to outperform multiple key baselines over the Yelp dataset for

restaurant recommendations in terms of accuracy, MSE, precision and recall.

We further adopt the novel technique of neural attention networks, where dedi-

cated layers are responsible for identifying the most important components of their

3
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inputs [2, 43], and propose two frameworks meant to produce relevant explanations

along with accurate suggestions: i) Dual Attention Recommender with Items and

Attributes (DARIA) utilizes two neural attention mechanisms, where each user is

represented by her most relevant past items with regard to the recommended item,

while a second attention layer determines which attributes best contributed to the

reported items’ similarity. ii) Self-Attention Recommender based on Attributes and

History (SARAH) attempts to solve the same task as DARIA by employing the self-

-attention paradigm, a recent extension to neural attention. Based on identifying the

most important components depicting an input, self-attention is applied to construct

items’ and users’ latent vectors. The use of self-attention allows SARAH to determine

which historical activities are most relevant to represent each user, independently of

the candidate item, along with identifying the input features that best capture a

suggested item.

Our proposed methods are evaluated in various settings by utilizing four datasets

and demonstrate significant improvement over six varied baselines, including methods

of classic CF [36, 58], deep learning [20, 25] and neural attention [11, 16], using the

popular metrics hit ratio and normalized discounted cumulative gain.

This thesis is organized as follows. In Chapter 2 we review notable works in deep

recommender systems history, and describe recent developments related to the sug-

gested methods. Chapter 3 extends the discussion on POI recommendation and

presents TCENR along with its sequential variation. In Chapter 4 we focus on

explainable recommender systems and introduce our two novel attention-based ap-

proaches, SARAH and DARIA. We further perform extensive empirical evaluation on

our proposed methods and provide case studies to demonstrate their explain-ability.

Chapter 5 concludes this work along with directions to future research. In the fol-

lowing chapters, we denote matrices in upper-case letters, while vectors and scalars

are presented as lower-case.

4



Chapter 2

Literature Review and Background

In this chapter we discuss relevant background and present notable advancements in

the area of recommender systems.

Recommender system is a sub-field of machine learning, where a model is devel-

oped to provide item suggestions for a given user. As a method of supervised learning,

recommender systems are given past user-item interactions to learn from, and based

on the type of target feature can be classified as having either explicit [25, 67, 71] or

implicit feedback [3, 64, 69]. Algorithms that take input ratings based on a numeric

scale, such as 1-5 stars or 1-10 score, are considered explicit, since this preference was

directly given by the user as part of a rating or review. A distinction between liked

and disliked samples can be then determined according to a predefined range (e.g.

items with an estimated scores of 4-5 stars should be recommended).

On the other hand, methods based on implicit data adopt input features collected

as part of a user’s usage, such as clicking on an item or making a purchase. While

implicit-based methods usually have more available data, they are only aware of items

the user interacted with and lack indication towards the disliked or negative instances.

Recommender systems can be further classified by their type of output. Models that

estimate a score for a given user-item tuple are defined as point-wise ranking [12,20,62]

5
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while methods that attempt to rank relevant items over irrelevant ones are denoted

as pair-wise ranking [35,53,70]. Nonetheless, the goal for most recommender systems

is to generate a list of personalized recommendations with as many relevant items.

An important factor in classifying different recommender systems is the type of

architecture, where the two most popular categories are content-based and collabora-

tive filtering (CF) [47–49],. While a content-based system relies on the similarity of

items using their attributes, in this work we will focus on its more popular alternative.

2.1 Collaborative Filtering

CF-based recommender systems have become extremely common [22,56], due to their

ability to outperform competitive methods while being efficient and easy to imple-

ment. They are based on the assumption that users who shared similar preferences in

the past will continue to do so in the future. Collaborative filtering approaches can be

further divided to neighborhood-based and model-based methods [28]. Neighborhood-

based recommender systems explicitly compute the similarities between different

users. In prediction time, they produce an estimation based only on the likings

of users that most resemble the target user. In contrast, the model-based approach

constructs latent representations of users and items using a machine learning algo-

rithm. These latent descriptions are used to provide a concise representation for users’

preferences and items’ attributes.

A well-known implementation of the model-based approach is the Matrix Factor-

ization (MF). This method gained much popularity due to its simplicity and success

in the famous Netflix challenge [29]. Using MF, the predicted rating for a given user

u and item i can be defined as:

r̂ui = µ+ bi + bu + qTi · pu , (2.1.1)

6
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where · is the dot-product operation, µ is the mean rating, qi and pu are item i’s and

user u’s latent vectors, respectively, while bi and bu are their bias factors. These five

parameters are learned using the following point-wise loss function:

min
b∗,q∗,p∗

∑
u,i∈Y

(ru,i − r̂u,i)2 , (2.1.2)

where Y is the test set, ru,i is the ground truth and the model is penalized for

differences between it and the predicted score r̂u,i. Alternatively, the same model

could be optimized by employing pair-wise ranking:

min
b∗,q∗,p∗

∑
u

∑
i∈Y

∑
j∈Y −

logα(r̂u,i − r̂u,j)2 , (2.1.3)

where j ∈ Y − is a negative item and therefore should be ranked lower than the

positive item i ∈ Y . The advantage of pair-wise ranking is that we are only required

to know what items are preferred by the user compared to others, rather than an

explicit ground truth. However, unlike models based on point-wise ranking, following

the pair-wise technique does not allow a recommender system to generate a score

for a single given item. This can limit the ability to properly evaluate the model.

Either way, the two alternatives can be optimized similarly using a method based on

gradient descent.

While the inclusion of bias vectors allows methods such as MF to consider vari-

ations between estimated latent representations and real life scenarios, probabilistic

methods [1,13,58] further extend the assumption of uncertainty in the learned model.

Probabilistic matrix factorization [42] assumes the user and item latent vectors can

7
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be drawn from a normal distribution, as well as their estimated rating:

pu ∼ N (0, λ−1u IK) ,

qi ∼ N (0, λ−1v IK) , (2.1.4)

r̂u,i = N (qTi pu, c
−1
u,i) ,

where I is the identity matrix and c is a confidence parameter set to distinguish

between different rating classes according to the certainty we have towards them.

Although methods based solely on user-item interactions achieve relative success,

some recommendation scenarios can be too complex for such an approach. In the

case of a sparse dataset, an unbalanced distribution of items per user or simply

lack of scores, ratings can be insufficient in capturing an accurate representations for

users and items. Additional features such as time [38], spatial location [10], users’

demographic data [12] or items’ meta-data [32] provide additional insight towards

the factors that contribute to a user’s interest or define an item. [58] extends the

probabilistic MF method and samples an item latent vector where the mean is derived

from its respective topics distribution. The topics in turn, are learned from textual

inputs (e.g. reviews or description) using the popular latent dirichlet allocation (LDA)

model [6].

2.2 Deep Recommender Systems

Deep learning is a sub-field of machine learning where latent input representations

are developed using multiple layers of non-linearities. Due to the vast availability of

data and computational resources, methods based on deep learning paradigms have

become increasingly popular in recent years. The use of latent vectors to represent

users and items proved recommender systems to be a highly relevant field to adopt

8
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deep learning techniques.

2.2.1 Multi Layer Perceptrons

Probably the most general approach to implement a deep recommender system is

based on multi-layer perceptrons (MLP), where a neural network with multiple hidden

layers is employed. In [12], a ”wide” component, a simple linear transformation on

various input features, is combined with a ”deep” component that learns a concise

representation of a given user-item interaction. The model is fed with tuples of N

users and M items, each in the form of a one-hot encoding. Such encoding is a

transformation of the categorical value to a vector in the size of N or M , where 1

indicates the given user or item, respectively, while 0 denotes the rest. The deep

component then transform each input to a latent vector using a lookup function

denoted as its embedding, eu for the user and ei for the given item. A combined

vector with all the user and item latent factors is formed by concatenating the two

embeddings. To estimate whether u is interested in i, the model learns the interactions

between different factors:

H0 = [eu, ei] ,

H1 = a1(W1 ×H0 + b1) ,

...

Hl = al(Wl ×Hl−1 + bl) , (2.2.1)

...

HL = WL ×HL−1 + bL ,

r̂u,i = σ(HL) ,

9
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where [ ] is the symbol for concatenation, while W∗ and b∗ are the weight and bias

terms, respectively, optimized by the model as parameters. a∗ is a nonlinear activation

function, which is commonly either the sigmoid, hyperbolic tangent (tanh) or the

rectified linear unit (ReLU):

σ =
1

1 + e−x
. (2.2.2)

tanh =
sinhx
coshx

. (2.2.3)

ReLU = max(0, x) . (2.2.4)

By setting WL in Eq. 2.2.1 to be a one-dimensional vector and adopting the

sigmoid function, the MLP last hidden layer transforms its concise input to a predicted

score in the range of [0, 1]. In a similar fashion, [20] utilizes MLP to learn a concise

representation of the given user-item interaction. The authors further concatenate

the resulting vector with the dot product of the two embedding, before feeding it

into another neural network with one layer. By doing so, they are able to combine

the strengths of the deep MLP and vanilla MF. A different adoption of multi-layer

perceptrons is demonstrated in [15]. By applying multiple ReLU layers over the

concatenated embeddings of various user attributes, a user latent vector is learned.

A softmax function transforms the user representation to a distribution over the

number of items to determine the most probable recommendations.

2.2.2 Auto Encoders

A common alternative to MLP for the task of learning user or item representations

is the use of auto-encoder (AE). This technique attempts to reconstruct the input

using hidden layers in a neural network, while the input and output layer are of the

same structure. By penalizing the network for differences between its output and

input, the more concise hidden layer is optimized to store an accurate representation

10
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of its input. A denoising auto-encoder assumes the input is noisy or corrupt, and

its goal is to learn a clean version of it using the AE framework. Due to the partial

availability of data and the method’s robustness, denoising auto-encoder have found

relative success in learning user or item embeddings in recommender systems. [59]

extend the probabilistic method developed in [58], by stacking multiple hidden layers

within the denoising AE. The model’s first half encodes the item textual attributes

while the remaining layers are responsible do decode it and reconstruct the item. The

middle layer is therefore the most concise item representation. While [59] adopts a

probabilistic approach, [33] utilizes a similar architecture to learn both the user and

item latent vectors simultaneously.

Some methods however apply auto-encoders to learn the full user-item interaction.

[64] first modifies its inputs to introduce real-world noise to the system before feeding

the corrupted items and user vector to an AE, responsible to reconstruct the original

input. By combining both user and item data in the auto-encoder, the method is

able to regard the output layer as the list of recommended items.

2.2.3 Recurrent Neural Networks

While MLP and AE based methods were proven to be successful in learning latent

representations from past activities, they are not optimized to capture dependencies

between different inputs. Moreover, treating user purchases independently might not

be suitable in all scenarios and may lead to data loss. For example, a system able to

recognize that users usually go to the cinema right after visiting a restaurant might

provide more relevant suggestions following a user interest in a movie. Recurrent

neural networks (RNN) however, are based on a specialized architecture capable of

capturing such sequentiality by including an internal hidden state in each input and

considering the impact of its predecessors.

The long-short term memory (LSTM) framework is employed in [63] to represent
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each user and item by their latest activity sequence. Assuming inputs are fed to an

LSTM model as {z0, z1, ..., zt−1, zt, zt+1, ..., zT}, a time state t will be updated by the

following operations:

ft = σ[Wf [ht−1, zt] + bf ] ,

it = σ[Wi[ht−1, zt] + bi] ,

ot = σ[Wo[ht−1, zt] + bo] , (2.2.5)

lt = tanh[Wl[ht−1, zt] + bl] ,

c̃t = ft · c̃t−1 + it · lt ,

ht = ot · tanh(c̃t) ,

where W∗ and b∗ are the weight and bias parameters, σ the Sigmoid activation and ft

the forget gate that indicates to which degree should previous inputs be integrated into

the current input, zt. it is the input gate that determines the current input’s impact

and ot the output gate which effects the current hidden state, ht, signal strength.

Finally, c̃t represents the current candidate state, before applying the output gate.

Employing these multiple gates allow inputs in different states to have a respective

weight in the representations of successive inputs. In [63] LSTM units are used to

learn user and item representations, where the latent vectors are the final states, hT ,

allowing important past interactions to be captured while potentially giving more

weight to recent activities.

While LSTM is highly capable in capturing the most significant states of an input,

it is extremely inefficient due to its reliance on a large number of learned parameters.

A more common alternative is the gated reccurent units (GRU) [14]:

c̃t = tanh(Wzzt + ft ·Whht−1 + bc̃) , (2.2.6)

ht = (1− ot) · ht−1 + ot · c̃t ,

12
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where ft and ot are the same formulas as in Eq. 2.2.5. GRU ignores the input gate

and its parameters, and therefore allows faster convergence.

Following its original success in tasks of textual modeling [41], recurrent neural

network are a popular solution to recommender systems aiming to utilize available

textual data. Since words are sequential by nature, treating each word as an input

state allows the RNN to capture semantics found in the original text, whether it is

an item description or a user written review. In some cases, however, the meaning of

a word can only be realized by other words following it rather than preceding it. [3]

adopts the bi-directional GRU where one layer learns to represent each word in an

item description by maintaining the context from previous words to its left, while

a second GRU layer process the same text from right to left. Concatenating the

two representations for each word allows the network to fully capture the semantic

meaning found in the text. The model exploits the resulting word vectors to learn

an item representation derived solely from text, before enriching it with additional

attributes and user data.

2.2.4 Convolutional Neural Networks

Originating from tasks of image processing [30, 31], a convolutional neural networks

(CNN) treats its input as pixels and attempts to identify the most relevant sliding

windows over it. While images are not a common input feature in recommender

systems, integrating the CNN framework is considered a common alternative to RNN

in textual modeling tasks [26]. First, a convolution operation is applied on a sliding

window of concatenated words to generate a feature map:

D1:n = [w1, w2, ..., wl, ...wn] ,

zjl = a(W j ∗Dl:l+ws−1 + bj) , (2.2.7)

zj = [zj1, z
j
2, ..., z

j
l , ..., z

j
n] ,

13
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where wl is the latent embedding of a word in position l, ∗ the convolution operation,

ws the window size hyper-parameter, zjl a contextual feature, W j the filter and bj

the bias.

Eq. 2.2.7 results in zj which represents a single feature vector, determined by

the filter W j. To extract multiple features from the given text, more filters can be

added so Z = [z1, ..., zj, ..., zm]. Since CNN usually takes the full text as input, it can

identify many signals as part of each feature vector, where some can be redundant

or even contradicting. Therefore it further requires a max-pooling operation, that

enables it to keep only values with the highest scores:

of = [max(z1),max(z2), ...,max(zj), ...,max(zm)] . (2.2.8)

To fit the high level textual representation to the recommendation task, [25] feed

of , learned from an item description, to a two layer neural network, activated by

the tanh function. The resulting vector is employed as the item latent representation

integrated into the probabilistic MF approach. In [71], two CNN layers are integrated

to learn both the user and item representations jointly. All words written in user u’s

reviews are concatenated and kept in their original order, as well as all words written

about item i. The two word vectors are fed each to separate CNNs, following the

operations in Eq. 2.2.7 and Eq. 2.2.8. After applying the hidden layers to each

vector, the user and item representations are combined in a shared layer to generate

a point-wise prediction.

Although [71] is able to produce relevant latent representations from text, it intro-

duces a bias by feeding all words written by the user and about the item, including

those that describe the trained object. In other words, the network is exposed to

data that is only available in training, resulting inferior performance in test time. [7]

proposes to separate the words describing each trained interaction and learn two net-
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works simultaneously. A source network is based on [71] without the current review,

while the target network utilizes standard CNN over the specific review. By penaliz-

ing the difference between the learned representation in the source network and the

vector produced by the target, the model learns to predict the review written by the

user on the candidate item and therefore its respective rating.

In our proposed methods we intend to rely on multiple deep learning techniques

to fit each recommendation scenario and data type with the according paradigm. We

will utilize multi-layer perceptrons to model past user-item interactions, convolutional

neural networks to represent textual reviews and recurrent neural networks to capture

the sequentiality of both words and user activities.

2.3 Point-Of-Interest Recommendation

Locations-based social networks (LBSN), such as Yelp, TripAdvisor and Foursquare

are environments that allow users to share experiences about the places they visit.

Point-of-interest (POI) recommendation, a sub-field of RS, attempts to provide LBSN

users with personalized suggestions. Properly exploited, it can save time and effort

for the end user, and encourage her to make future use in the location-based social

network both as a consumer and content provider.

2.3.1 Challenges in POI Recommendation

Similar to standard recommender system, POI recommendation takes tuples of users

and items as input and estimates their rating. There are, however, some challenges

that exist to a higher degree in this scenario, making it a dedicated research field.

While data sparsity is a recurring issue in all RS, LBSN users are unable to physically

visit most locations due to geographical distance, an issue that is even worsened for

out-of-town users [61]. Second, in contrast to other recommendation scenarios, the
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decision whether to visit a location depends not only on the target user’s preferences,

but on the that of her friends [32]. They might share different interests that are

unknown to the system, resulting in a more complex decision process for the RS to

learn. Finally, most location-based social networks rely on implicit feedback, derived

from geo-spatial coordinates and defined as check-in. It allows the POI recommender

to learn a user has visited a location but not the extent to which she liked it. The

lack of explicit data requires the RS to identify what locations should be regarded as

the negative instances for each user.

2.3.2 Solutions and Limitations

The availability of contextual data within LBSNs provides an opportunity to utilize

features such as social networks [37], geo-spatial locations [10] and time [38] to miti-

gate the data sparsity issue and to gain insights towards users’ interests and locations’

attributes. These contextual features are usually incorporated into RS either as part

of the input or as a regularizing factor. Following previous RS techniques, MLP-based

networks are a popular choice in modeling contextual data by concatenating respec-

tive embeddings before stacking the non-linear layers [15], while sequential data is

often introduced by utilizing recurrent neural networks [5].

The use of spatial data is often done by dividing the input space into roles and

regions. Assuming users’ behavior varies when traveling far from home, previous

works [61,66] generated two profiles for each user, one to be used in her home region

while another in more distant locations. A recent approach [67] attempts to divide

the input space into geographical regions before incorporated into the model, often

by hierarchical structures. Although methods based on regions and roles are able to

better distinguish user behaviors in varied locations, they do not provide a personal-

ized user representation and can ignore potential shifts of preferences from one region

to another. For example, a user might prefer to visit a Starbucks location in different
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regions, close or far from home. Enriching geographical features with additional data

is demonstrated in [68] where the next location prediction is partially determined by

past sequences of check-ins. However, these methods are not generic and cannot be

extended to include additional features, derived from social networks or textual data.

Furthermore, in case of tasks in highly sparse environments, such as POI rec-

ommendation, adding user or item specific inputs may diminish the model’s ability

to generalize. However, applying the same data as a regulating factor can enhance

the model’s performance and reduce over-fitting. Such has been done in [37], where

the similarity between connected users in the social network was used to constrain a

matrix factorization model. [65] utilized social networks and geographical distances

to enforce similar embeddings for users and locations in an MLP, thus improving the

model’s ability to generalize for users and locations with few historical records.

Since many websites encourage users to provide a written explanation to their

numeric ratings, textual reviews are one of the most popular types of data to be inte-

grated into RS. By expressing each review as a bag of words, LDA-based models are

able to extract topics which can be used to represent users’ interests and locations’

characteristics [66]. These probabilistic methods are usually successful in handling

issues that standard CF approaches struggle with, such as out-of-town recommenda-

tions where similar users lack sufficient historical data. However, as demonstrated in

recent works [52], failing to preserve the original order of words and ignoring their

semantic meaning prevents the successful modeling of a given review. On the other

hand, adopting deep methods such as RNN [1] and CNN [25] over reviews allows such

learning without the loss of data.

In this work we claim that by jointly learning contextual and textual based deep

models a POI recommender system can better exploit the strengths of collaborative

filtering, while being more resilient to its shortcomings in sparse scenarios. This

will be achieved by proposing TCENR, which learns users’ and locations’ represen-
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tations as similarities in direct interactions, along with the correlation in underlying

features extracted from their written reviews. The notable work of [70] proposed

JRL, a framework that similarly attempts to jointly optimize multiple models, where

each is responsible for learning a unique perspective of the same task by focusing

on different inputs. However, while JRL is a general framework, focused on extend-

ability to many types of input, we propose a dedicated framework for the task of POI

recommendation.

2.4 Neural Attention

Defined in the field of neural science [23], attention describes the ability to focus

on what perceived as the important part of an input. By integrating attention in

neural networks, this concept has seen rising success in computational tasks such as

image processing [43], textual translation [2], summation [45] and additional language

modeling tasks [50].

Recent works have been introducing attention-based neural networks to recom-

mender systems. In [18], the authors computed attention weights to identify the most

important words in an input micro-blog within a CNN. [54] reasoned that users are

interested in various features of the same product, represented as different keywords

in its reviews. The authors therefore employed attention to identify the most impor-

tant reviews and words written on a candidate item, based on their relevance to the

user. This was achieved by first representing each user and item as three-dimensional

matrices, denoted as ai and bj, respectively, that hold the word embeddings for each

review. Important reviews were extracted by calculating an affinity matrix between

ai and bj and taking only the maximum row to represent the most important review

written by the user and column for the item. This process was done again over the

selected reviews’ word embeddings to identify the most important words.
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The use of attention networks is not limited to textual modeling, though. In [11],

a memory matrix saves the last k items each user u interacted with. The model then

recognizes which of a user’s past interactions can best help to predict the preference

towards a candidate item i:

wi,j = qTi ·mu
j , (2.4.1)

zi,j = softmax(wi,j) =
exp(βwi,j)∑
l exp βwi,l

,∀j = 1, 2, ..., k , (2.4.2)

where qi is the candidate item embedding, mu
j the j’s item embedding in user u’s

memory matrix and β a strength parameter. zi,j is therefore an importance weight,

indicating the level of similarity between a candidate item i and each past item the

user interacted with. These scores are normalized as an importance distribution and

used to weight the k past items impact when constructing the user latent vector, pu:

pu =
k∑

j=1

zi,j ·mu
j , (2.4.3)

By applying the attention mechanism, the model generates a user latent representa-

tion dedicated to suit the candidate item. The embeddings of past items that are

closely related to item i will be further emphasized in the user representation.

In a similar fashion, [60] constructs a user embedding by focusing on the most

relevant historic news items compared to a candidate article. The attention weights,

however, are generated by feeding the concatenated item embeddings to an MLP:

wi,j = H([qi, qj]) , (2.4.4)

where q∗ is an item embedding and H a multi-layer perceptron that outputs a score

in the range of [0, 1]. The resulting weights are normalized and used to generate the

user embedding as done in Eq. 2.4.1 and 2.4.2. A different weighting function is
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introduced in [16], where the authors integrate opinions from other users regarding

the candidate item. Instead of combining past interactions to construct a user latent

vector, attention scores are learned based on the similarity between user u and other

users in her neighborhood, along with the opinion of these users:

wi,u,v = mT
umv + eTi mv , (2.4.5)

where m∗ is a user memory matrix with k past items, ei the candidate item’s embed-

ding and v is a user who had a previous interaction with i.

While the standard attention network is based on comparing tuples of inputs one

at a time to determine importance, self-attention, the most recent development in

attention-based learning, is composed of measuring the internal components of the

input to identify the most valuable ones [34, 57]. Originally introduced in tasks of

textual summation [45] and translation [2, 14], this technique was successfully im-

plemented in encoder-decoder models, where one network is responsible to encode a

textual input as a concise vector while the other to decode it as a different output.

However, self-attention was found to be applicable in other frameworks as well. In [34],

it was used to label important words in tasks involving textual embedding. By apply-

ing self-attention over the collection of n word embeddings, denoted as V ∈ Rn×d1 ,

the following importance distribution of words can be learned:

a = softmax(w2tanh(W1V
T )) . (2.4.6)

The use of W1 ∈ Rd2×d1 and w2 ∈ Rd2 transforms the input matrix V to the vector

a of size n, where each cell represents the importance weight of the respective word.

Due to its novelty, there are only few works using self-attention in recommender

systems. [72] generates a user embedding vector by employing self-attention in an

encoder framework over the sequence of items the user interacted with. However, the
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model does not output an item recommendation, but only the user latent vector. [24]

utilizes self-attention to identify the most important past items in the user’s history.

The authors adopt a similar method to the one proposed in [57] by generating three

transformations of the input embedding and performing a weighted average.

In this work, we propose two self-attention frameworks, SARAH and DARIA.

While the former implements self-attention to learn the user and item latent rep-

resentations, the latter captures their combined interaction by employing standard

neural attention. Although each suggested method adopts a different technique, both

introduce a novel approach. To the best of our knowledge, SARAH is first to rep-

resent each user and item by feeding past interactions and attributes to separate

self-attention layers. Unlike other works that utilize attention to construct latent

representations, the use of self-attention allows SARAH to model users and items

independently. DARIA on the other hand, will be composed of two stacked neural

attention layers, where one identifies the most relevant user past items with regard

to a candidate item and the other compares these items’ attributes.

2.5 Explainable Recommendations

Although matrix factorization based recommender systems are getting more accu-

rate and are able to efficiently process more data, the heavy use of latent factors

results them in being perceived as a black box, only able to predict a recommenda-

tion. However, as found in previous work [21], the ability to justify a suggestion is

vital and improves the trust users have in the system and the likelihood to retain

them. Explainable recommender systems are therefore an important component of

RS, dedicated to generating recommendations along with human-interpretable rea-

soning. They are often classified as either post-hoc or embedded models. Post-hoc

methods [55] are usually model-agnostic and based on generating explanations from
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an already trained model using pre-defined candidates, extracted from external data,

i.e. tags and text. Embedded models [39] learn explainable factor while simultane-

ously providing recommendations. Although they are less flexible, embedded methods

have a broader range of explainable factors to choose from, and they can not only

optimize the given suggestions, but also the accompanying reasoning. We therefore

intend to focus on embedded explainable models in this work.

Facing with the increasing popularity of deep learning, the challenge of explainable

deep recommender systems is to utilize the strengths of neural networks in modeling

users and items using multiple layers, while retaining enough data to explain the

system’s output. An approach that was found to be successful in previous works

[4,44] is the use of knowledge graphs to define the system’s inputs and their relation.

This is usually done by extracting known entities from the input and representing

their relations in the form of graph edges. However, knowledge graphs cannot be

successfully applied to all fields in an equal manner. For example, while it may be

possible to extract entities from news items, it is considerably more challenging to do

so for restaurants and venues.

The successful implementation of attention networks in recommender systems

introduced a new opportunity for providing explanations, by enabling a deep model

to be composed of vectors representing the importance of various inputs. [8] identifies

the most valuable user reviews to be accompanied with the recommended items. First,

a concise representation of each past review is learned using CNN. Then, attention

scores are generated by combining each review with the user who wrote it. The

resulting importance distribution is used to construct an item representation, where

the embeddings of valuable reviews get the higher impact.

In [62], the authors embed user and item properties using a tree-based model.

The most relevant attributes to the given interaction are then determined by an

attention network. User and item features are therefore compared jointly, resulting
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some recommendations generated from user preferences, while some rely strongly

on the item attributes. Similarly, [9] compares item features along with the target

user to find the traits that are most important to her. These features are then

presented to the end user either as an importance distribution to justify generated

recommendations or as a personalized message. [17] integrates neural attention and

a neighborhood-based CF technique, by replacing the similarity parameter between

two items with an attention score. More specifically, it generates attention weights

between the candidate item and each of the target user’s past items. The obtained

weights are multiplied by the rating previously given by the user for each respective

item, to result in a weighted average of past ratings, altered by the degree of relevance

to the candidate item.

Unlike previously described models, in this work we introduce two explainable

recommender systems composed of neural attention and self-attention layers over the

user’s context and the item’s attributes. By implementing self-attention, SARAH is

able to learn an interpretable representation of its inputs with no direct dependence

to the current interaction, while DARIA utilizes neural attention to explain its rec-

ommendations. To the best of our knowledge, SARAH is the first method to exploit

self-attention over users and items for the task of explain-ability. A resembling work

is [51], where the model’s reasoning is based on a movie’s content and user’s past ac-

tivity, however this is done by clustering and not by methods of collaborative filtering

or deep learning.
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Chapter 3

Deep POI Recommendation

In this chapter we extend the focus on point-of-interest recommendation and propose

Textual and Contextual Embedding-based Neural Recommender (TCENR), a frame-

work for deep recommendation in location-based social networks. TCENR attempts

to learn two perspectives of the same user-location interaction, where one is centered

around past interactions while the other adopts textual reviews. Although numerous

works established the potential of recommender systems based on deep learning, most

have focused on only a single type of neural network that best suited their given task.

However, in this work, we intend to incorporate multiple paradigms, each best suited

to its given input, to provide POI recommendation.

Section 3.1 presents the motivations for developing TCENR, which is described

in Sections 3.2 and 3.3. An extension that employs recurrent neural networks is

developed in Section 3.4, before providing experimental results and intermediate con-

clusions in 3.5.

3.1 Recommendations In LBSNs

While POI recommendation methods usually attempt to solve a similar problem as the

standard recommender system, they are required to overcome additional challenges.
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Due to the physical distance between users and most locations, the list of possible

recommendations is extremely narrow. However, when users go to infrequently visited

areas, their representation might not be suited to the new environment. This is in

fact a worsened case of the data sparsity and cold-start problems.

A common method to mitigate the sparsity issue is data extraction from additional

sources. External inputs can allow a model to learn more general representations of

users and items, while focusing on available features. Our proposed framework will

take as input the historical user visits, reviews written by the user and about the loca-

tion, user’s friends in the social network and locations’ geographical area. By fitting

the different inputs to appropriate sub-models that are optimized jointly, TCENR

learns more accurate representations for users and locations. In addition, implement-

ing different techniques allows the network to focus on the more significant inputs

in diverse scenarios. More specifically, textual reviews are described as word vectors,

while the data from social networks and geo-spatial distances is captured in the form

of a graph. Each user or location is defined as a graph node and edges determine the

social connection between two users or locations’ geographical proximity.

We adopt implicit feedbacks as the trained target feature, allowing TCENR to

be applied in various recommendation scenarios. This enable our framework to make

recommendations when no rating data is available, by defining a user visit as the

positive instance in a two-class prediction scenario. In other words, we will attempt

to determine whether a given location is likely to be visited by the target user or

not. However, this results in another challenge to the POI recommender. While

all observed interactions are positive, training a two-class model requires negative

instances as well. Defining all unobserved interactions as negative, though, will result

in an unrealistic distribution, due to the high concentration of such instances in

our sparse setting. We therefore follow previous work [53, 70] and apply negative

sampling, where a pre-determined number of unobserved items are sampled for each
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known user-item interaction.

The main contributions of the work described in this chapter are as follows:

1. We present TCENR, a framework that jointly trains MLP and CNN to provide

POI recommendations, as well as a variation, TCENRseq, that performs the

same task while adopting RNN instead of the CNN component.

2. To the best of our knowledge, no work has been done in jointly training MLP

and CNN for the task of POI recommendation using social networks, geograph-

ical locations and natural language reviews as inputs.Although the proposed

solution has been developed to provide recommendations for specific types of

inputs (i.e. reviews, social network and geo-spatial), we claim it can be easily

generalized to a framework able to support additional features.

3. Evaluated over our the Yelp dataset, our proposed frameworks were found to

consistently outperform seven state-of-the-art baselines in terms of accuracy,

MSE, precision and recall. By comparing the two alternatives to our suggested

model, we provide insight towards the impact gained by analyzing textual re-

views as a secondary input to the common past interactions, as well as a com-

parison of CNN and RNN for the task of sentiment analysis in the same ex-

perimental settings. We further present comprehensive analysis over the most

important hyper-parameters and design selections of our proposed networks,

shedding some light over the different components of deep neural networks in

the task of POI recommendation.

3.2 Textual And Contextual Neural Recommender

The following recommender system aims to improve the POI recommendation task

by learning user-location interactions using two parallel neural networks, as shown
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in Fig. 3.2.1. The context-based network, presented in the left part of the figure, is

designed to model the user-POI preferences using social and geographical attributes

as regularizing factors [37,65] and based on a multi-layer perceptron structure [12,20].

Shown in the right side of Fig. 3.2.1, the convolutional neural network is responsible

for the textual modeling unit [25, 71]. It attempts to learn the same preference by

analyzing the underlying meaning in users’ and locations’ reviews. Each of the two

networks is based on modeling the user and POI input individually with regard to

their shared interaction, defined in the merge layers. The resulting concise vectors,

representing the user-location interaction learned from each perspective, are then

combined in a final layer, responsible for generating a recommendation.

Figure 3.2.1: TCENR Framework

3.2.1 Context-based network layers

To better capture the complex relations between users and locations in a LBSN, we

chose to adopt the multi-layer perceptron architecture. By stacking multiple layers
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of nonlinearities, MLP is capable of learning relevant latent factors of its inputs.

It is first fed with user and location vectors of sizes N and M , where each input

tuple < u, p > is transformed into sparse one-hot encoding representations. The two

fully connected embedding layers, found on top of the input layer, project the sparse

representations of users and locations into smaller and denser vectors. For u and p,

the respective embedding matrices are Eu ∈ Rku×N and Ep ∈ Rkp×M , where ku and

kp are the corresponding dimensions.

We assume that friends usually share similar preferences towards places they

visit, and therefore exploit the users’ social networks to constrain their representa-

tions within the network. The same reasoning is inferred for locations in the same

geographical region, as they might be different, but yet share many attributes in

common compared to far away venues. We apply this logic to the contextual MLP

in the form of smoothing, where the embeddings of connected users and locations in

their respective graphs are constrained to be relatively similar. Two softmax layers

take the user and location representations, Eu and Ep, as input and transform them

back to N and M sized vectors, respectively. The user output layer, ψcEu ∈ RN can

be formally described as:

ψcEu = a(W u
c × Eu + buc ) , (3.2.1)

where W u
c and buc are the layer’s weight matrix and bias vector and a is a non-linear

activation function. Due to the similarity between the user and POI specific layers,

the location output layer, ψcEp, will not be developed in this section. As part of its

optimization, the proposed network will penalize differences between the two softmax

outputs, ψcEu and ψcEp, to the user and location respective graphs, gu, and gp. This

in turn enforces the smoothing and similarity between connected embeddings.

The two representations main purpose is, however, to learn the user-location
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interaction, and in turn provide an implicit prediction. The two embeddings are

therefore projected to a merge layer and combined by the concatenation operator.

Using concatenation instead of dot-product allows the embeddings to be in different

dimensionality, which in turn improves the generated representation [20]. By feeding

the two latent vectors to an MLP, the network attempts to learn the interactions be-

tween different user and location hidden features. This in turn, allows it to eventually

describe the interaction using a small number of parameters. As the input for the

following neural network, the merge layer can be represented as H0 where:

H0 = [Eu, Ep]. (3.2.2)

Since simple concatenation of the user-location embedded vectors does not allow

for interactions to be modeled, hidden layers are added to learn these connections.

We adopt the MLP structure described in Eq. 2.2.1, where the ReLU is employed

as the activation function for its layers. More formally, the l -th hidden layer can be

defined as:

Hcontext
l (x) = ReLU(WlH

context
l−1 (H0) + bl) , (3.2.3)

where Wl and bl are the l -th layer parameters. Unlike the standard MLP model,

described in section 2.2, the final hidden layer’s output, Hcontext
L will not be directly

used as the model’s output, but will be combined with the second sub-network of our

framework.

3.2.2 Textual modeling network layers

To improve the model’s coverage and gain further insight towards the interests of

users and what defines locations, a textual-based network is introduced. It simul-

taneously learns the same interaction as the contextual-based network, but with a

natural language input. Two additional vectors du and dp, representing user u’s and
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location p’s textual reviews, respectively, are applied as inputs for this network. Each

vector is comprised of all n words written by the user or about the location merged

together, kept in their original order. These words are then mapped to c-dimensional

vectors defining their semantic meaning in the following embedding layers. The out-

put of the user embedding layer is the representation of all words used by a user u in

the form of a matrix, and can be denoted as:

V u = [φ(du1), ..., φ(dul ), ..., φ(dun)] , (3.2.4)

where φ : D → Rkw is a lookup function to a pre-trained textual embedding layer [46]

that represents each word in vocabulary D as a vector in size kw. Similarly, V p denotes

the word embedding matrix for location p.

Due to the large amount of parameters required to train the aforementioned con-

textual model, the textual network is implemented using a CNN-based architecture

which is usually more computationally efficient than RNN. The semantic representa-

tions of users’ and locations’ reviews are fed to convolution layers, to detect parts of

the text that best capture the review’s meaning. These layers produce feature maps

over the embedded word vector, using a window size of ws and filter K ∈ Rkw×t. As

suggested by [71], ReLU is used as an activation function for this layer:

zujl = ReLU(V u
l:l+ws ∗Ku

j + buj ) , (3.2.5)

zuj = [zuj1, ..., z
u
jl, ..., z

u
jn] ,

where V u
l is user u’s l-th input word embedding and zuj the j-th feature, extracted

from the complete text.

Based on the standard CNN structure presented in Eq. 2.2.7-2.2.8, feature maps
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produced by the convolution layers are reduced using a pooling layer:

ouj = max(zuj ) , (3.2.6)

Ou = [ou1 , ..., o
u
j , ..., o

u
t ] ,

where max-pooling is selected to identify the most relevant words. These are followed

by hidden layers that jointly model the different feature maps to result in the latent

representations of the user and location, denoted respectively as hu and hp :

hu = ReLU(W u
1 ×Ou + bu1) . (3.2.7)

Similarly to the contextual sub-network, presented in section 3.2.1, we aim to learn

a vector describing the user-location interaction rather than the two components

separately. We therefore utilize yet another ReLU layer to combine the two repre-

sentations, where the user and location vectors are concatenated:

hreviews = ReLU(W2 × [hu, hp] + b2) . (3.2.8)

The outputs generated from the two neural networks are then finally merged to

produce a prediction ŷup ∈ [0, 1]. The last layers of the two networks, each represent-

ing a different view of the same user-location interaction, are concatenated and fed

to an hidden layer, responsible to blend the learning and transform it to an implicit

score:

ŷup = σ(W3 × [hcontext, hreviews] + b3) , (3.2.9)

where W3 and b3 are the layer’s parameters and determine the impact of each con-

textual and textual feature over the output. The sigmoid function was selected to

transform the hidden layer output to the desired range of [0, 1].
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3.3 Training the Network

To train the recommendation models, we adopt the point-wise loss objective function,

as done in [20,65,71], where the difference between the prediction ŷup and the actual

value yup is minimized. To address the implicit feedback nature of LBSNs, for each

positive case in the given training set, Y , we sample a set of negative instances,

denoted as Y .

Due to the implicit feedback nature of the recommendation task, the algorithm’s

output can be considered as a binary classification problem. As the sigmoid activation

function is being used over the last layer, the output probability can be defined as:

p(Y, Y | Eu, Ep, V
u, V p,Θf ) =

∏
(u,p)∈Y

ŷup
∏

u,p′∈Y

(1− ŷup′) , (3.3.1)

where Eu and Ep are the embedding layers for all users and locations, respectively.

Similarly, V u and V p are the textual reviews embedding layers and Θf represents

the model parameters. Taking the negative log-likelihood of p results in the binary

cross-entropy loss function for the prediction portion of the model:

Lpred = −
∑

(u,p)∈Y ∪Y

yuplog(ŷup) + (1− yup)log(1− ŷup) . (3.3.2)

Minimizing Eq. 3.3.2 will optimize the model parameters to result in more accu-

rate predictions. However, there are two more outputs in the model, the users’ social

network ψcEu and the locations’ distance graph ψcEp. We further wish to penalize

the model when embeddings of connected users or locations are different. Two addi-

tional loss functions are therefore required to train the contextual sub-network and

the whole model as a result. We follow derivations presented in [65] and employ the

categorical cross-entropy loss to minimize the difference between the softmax and the

32



Omer Tal Explainable Neural Attention Recommender Systems

user graph distributions:

Lu context = −
∑
(u,uc)

log(ψcEu − log
∑

uc′∈Cu

exp(ψc′Eu)) , (3.3.3)

where uc is user u’s context, Cu is the set of all possible contexts and ψcEu is the user

embedding softmax, as defined in Eq. 3.2.1. Taking the binary class label into account

prompts the following loss function, corresponding with minimizing the cross-entropy

loss of user u and context c with respect to the y class label:

Lu context = −I(y ∈ Y )logσ(ψcEu)− I(y ∈ Y )logσ(−ψcEu) , (3.3.4)

where I is a function that returns 1 if y is in the given set, and 0 otherwise. The same

logic is used to formulate the loss function for the POI context:

Lp context = −I(y ∈ Y )logσ(ψcEp)− I(y ∈ Y )logσ(−ψcEp) , (3.3.5)

We simultaneously minimize the three loss functions Lpred, Lu context and Lp context.

The joint optimization improves the recommendation accuracy while enforcing similar

representations for locations in close proximity and users connected in the social

network. The loss functions are combined using two hyper-parameters, λ1 and λ2 to

weight the contextual contribution:

L = Lpred + λ1Lu context + λ2Lp context . (3.3.6)

To optimize the combined loss function, a method of gradient descent can be

adopted, and more specifically we utilize the Adaptive Moment Estimation (Adam)

[27]. This optimizer automatically adjusts the learning rate and yields faster conver-

gence than the standard stochastic gradient descent in addition to making the learning
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rate optimization process more efficient. In order to avoid additional over-fitting when

training the model, an early stopping criteria is integrated. The model parameters

are initialized with Gaussian distribution, while the output layer’s parameters are set

to follow uniform distribution.

3.4 Textual Modeling Using Word Sequences

To further investigate the gain achieved by integrating a textual modeling component

over reviews in TCENR, we suggest an extension, denoted as TCENRseq. Following

its success in previous language modeling tasks [1, 63] and its ability to capture sen-

tences’ sequential nature, we employ an RNN component to learn latent features from

reviews. An illustration of the proposed extension is presented in Figure 3.4.1b, while

the CNN method used in the vanilla TCENR is shown in Figure 3.4.1a, to provide a

convenient base for comparisons. More specifically we follow the findings of previous

works [3, 5] and implement our recurrent network using GRU, an architecture that

achieves competitive performance compared to LSTM, but with fewer parameters,

making it more efficient.

Since the context of a word can be determined by other preceding and successive

words or sentences, our proposed method employs a bi-directional GRU over the

user embedding, V u, and the location, V p. Each word l’s hidden state is learned by

forward and backward GRU layers, denoted as
−→
h1l and

←−
h1l , respectively. While the

forward pass is identical to hl described in Eq. 2.2.6, the backward pass of a word l
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(a) Textual modeling component using CNN (b) Textual modeling component using RNN

Figure 3.4.1: Proposed alternatives to learn user and location representations from
textual reviews. 3.4.1a is a CNN-based solution employed in TCENR, while 3.4.1b
illustrates the suggested extension using RNN

requires the hidden state of successive words and can be fully defined as:

←−
f l = σ[Wf [

←−
h l+1, V

u
l ] + bf ] ,

←−s l = σ[Ws[
←−
h l+1, V

u
l ] + bs] , (3.4.1)

←−̃
c l = tanh(WzV

u
l + fl ·Wh

←−
h l+1 + bc̃) ,

←−
h l = (1−←−s l) ·

←−
h t+l +←−s l ·

←−̃
c l ,

where fl is the forget gate, sl is the output gate, c̃l is the new candidate state and hl

is current state for word l.

To learn a more concise and combined representation of a word while taking into

account the context of all surrounding words, we feed the concatenation of
−→
h1l and

←−
h1l to an additional bi-directional GRU layer, such that its input for every word l

is e2l = [
−→
h1l ,
←−
h1l ]. The second recurrent unit will output n latent vectors, each is a

sequentially infused representation of a word written by the target user or about the

candidate item.

We further feed all modified word vectors to the pooling and fully connected layers,
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presented in Equations 3.2.6 and 3.2.7, respectively. By doing so, we allow the method

of textual modeling to be the only variant between TCENR and TCENRseq, and

further reduce the number of learned parameters. Replacing only the convolutional

layer with that of the GRU, enables us to directly determine the effect RNN has on

textual modeling for POI recommender systems compared to CNN, as well as enabling

the model to learn a more concise user and location representations. As in TCENR,

the resulting vectors will be merged in order to learn the user-location interaction.

3.5 Model Evaluation

In this section we perform empirical experiments to evaluate TCENR and its ex-

tension, TCENRseq. We further present multiple design selections to the proposed

frameworks along with their impact.

3.5.1 Experimental Setup

To evaluate our suggested model, we use Yelp’s real-world dataset1. It includes a

subset of textual reviews along with the users’ friends, and the businesses’ geograph-

ical locations. Due to the limited resources used in the model evaluation, we chose to

filter the dataset and keep only a concise subset, where all users and locations with

less than 100 written reviews or less than 10 friends are removed. The filtered dataset

includes 141,028 reviews, and 98.08% sparsity for the rating matrix. The social and

geographical graphs were constructed by random walks. 10% of the original vertices

were sampled as base nodes, while 20 and 30 vertices were connected to each base

node for users and locations, respectively, with a window size of 3. To build the POI

graph, two locations are considered directly connected if they are up to 1 km apart.

We test our framework’s performance by splitting the original data to training-

1https://www.yelp.com/dataset/challenge
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validation-test sets using random sampling, with the respective ratios of 56%-24%-

20%, resulting 78,899 training instances. In addition, the input data was negatively

sampled with 4 negative locations for every positive one.

To effectively compare our proposal with other alternatives, we adopt the same

settings as applied in [20, 65]. The MLP input vectors are represented with an em-

bedding size of 10, while two layers are added on top of the merged result. Following

the tower architecture, where the size of each layer is half the size of its predecessor,

the number of hidden units are 32 and 16 for the first and second layers, respectively.

In the CNN component each word is represented by a pre-trained embedding

layer with 50 units, while the convolutional layer is constructed with a window size

of 10 and a stride of 3. It results 3 feature maps that are flattened after performing

the max-pooling operation with a pool size of 2. The results are further modeled

by a hidden layer with 32 units. Following the merge of the two hidden units, their

interaction is learned using another layer with 8 units. To combine the three loss

functions as described in Eq. 3.3.6, we follow the results of [65] and set the hyper-

parameters λ1 = λ2 = 0.1. For the training phase of the model, a learning rate of

0.005 was used over 50 maximum epochs and a batch size of 512 samples.

3.5.2 Baselines

To evaluate our algorithm, we chose to compare it to these seven, empirically proven,

frameworks:

• HPF [19]. Hierarchical Poisson matrix Factorization. A Bayesian framework

for modeling implicit data using Poisson Factorization.

• NMF [36]: Non-negative Matrix Factorization, a CF method that takes only

the rating matrix as input.

• Geo-SAGE [61]: A generative method that predicts user check-ins in LBSNs
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using geographical data and crowd behaviors.

• LCARS [66]: Location Content Aware Recommender System. A probabilistic

model that exploits local preferences in LBSN and content information about

POIs.

• NeuMF [20]. Neural Matrix Factorization. A state-of-the-art model combining

MF with MLP on implicit ratings.

• PACE [65]. Preference And Context Embedding. A MLP-based framework

with the addition of contextual graphs’ smoothing for POI recommendation.

• DeepCoNN [71]. Deep Cooperative Neural Networks. A CNN-based method

that jointly learns an explicit prediction by exploiting users’ and locations’

natural language reviews.

For the task of evaluating our model and the baselines, we chose to apply the

following popular metrics:

• Accuracy - Presents the ratio of correct predictions: 1
T

∑
I(ŷup = yup). T is

the test set size and I returns 1 if the prediction and ground truth are equal.

• Mean Square Error (MSE) - Accumulates the difference between the real-

valued prediction and the ground truth: 1
T

∑
(ŷup − yup)2.

• Pre@10 - Precision for a list of top-10 recommendations. Can be described as

the number of locations the target user is interested in, out of her 10 highest

predicted test instances.

• Rec@10 - Recall for a list of top-10 recommendations. The ratio of relevant

instances that are included in the target user’s 10 highest predicted locations.

The proposed models were implemented using Keras2.

2https://keras.io
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3.5.3 Performance Evaluation

The performance of our proposed algorithms and the seven baselines is reported in

Table 3.5.1, along with the improvement ratio of TCENR over each method in brack-

ets. The presented results are based on the average of three individual executions.

Table 3.5.1: Performance comparison over the Yelp dataset. Improvement of TCENR
compared to each method is shown in brackets

Model Accuracy MSE Pre@10 Rec@10
HPF 0.8141 0.1800 0.5526 0.3699

(1.69%) (34.94%) (18.51%) (40.98%)

NMF 0.8222 0.1189 0.7851 0.3517
(0.69%) (1.51%) (-16.58%) (48.28%)

Geo-SAGE 0.7995 0.1807 0.2912 0.4145
(3.55%) (35.19%) (124.89%) (25.81%)

LCARS 0.8142 0.1612 0.6408 0.5127
(1.68%) (27.36%) (2.2%) (1.72%)

NeuMF 0.8273 0.1421 0.6488 0.5586
(0.07%) (17.59%) (0.94%) (-6.64%)

Pace 0.8239 0.1186 0.6406 0.5049
(0.49%) (1.26%) (2.23%) (3.29%)

DeepCoNN 0.8037 0.1454 0.5385 0.323
(3.01%) (19.46%) (21.62%) (64.46%)

TCENR 0.8279 0.1171 0.6549 0.5215
TCENRseq 0.8273 0.1161 0.6655 0.4738

(0.07%) (-0.86%) (-1.59%) (10.07%)

As can be witnessed from the results, the proposed model, TCENR, achieves

the best results overall compared to all baselines. Furthermore, it was found to

significantly outperform HPF, NMF, Geo-SAGE, LCARS, Pace and DeepCoNN for

p < 0.05 based on a one-sided unpaired t-test in terms of accuracy and MSE. The

contrasting results in terms of precision and recall compared to NeuMF suggests

that TCENR offers less, but more relevant recommendations to the user. While

NMF provides the best precision score compared to all methods, it under-performs
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in all other measures, making it a less desirable model. Taking a closer look shows

that, surprisingly, NeuMF outperforms PACE in accuracy, precision and recall. This

may be due to the less sparse dataset tested, which does not allow the contextual

regularization to be fully harvested. In addition, the use of only the first 500 words

to represent the textual input for each user and location may explain the relatively

low scores of the DeepCoNN model on the dataset, while the performance of Geo-

SAGE and LCARS demonstrates that relying solely on geographical data does not

allow such models to fully capture users’ preferences in LBSNs.

Comparing TCENR and its proposed extension TCENRseq provides contrasting

results. By employing RNN instead of CNN to extract user and location features

from textual reviews, TCENRseq achieves lower error rate and improved precision

score, while accuracy and recall are worsened. It may be considered that by accu-

rately capturing different aspects from user reviews, the model is able to reinforce its

hypotheses and therefore reduce the uncertainty in some cases. However, when faced

with a contrast between textual aspects and the ground truth, it might choose the

wrong class label. Nonetheless, the results demonstrate the importance of adopting

the most suitable techniques and measures to learn different data types, rather than

employing a single method over all inputs. Moreover, it shows the positive impact of

using textual data in conjunction to historical activities. The reported performance

further suggests additional insight towards the selection of CNN and RNN for the

task of language modeling in future recommendation tasks.

To further evaluate our suggested frameworks and the seven baselines in terms of

runtime, the average time required to fully train each method is presented in Figure

3.5.1. As demonstrated by the results, TCENR is competitive with most baselines,

and found to be more efficient than DeepCoNN and LCARS. The reported runtime

of TCENRseq further demonstrates the relative efficiency of CNN-based solutions for

textual modeling tasks. As the number of trainable parameters is increased due to the
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Figure 3.5.1: Runtime (seconds) of all models on the Yelp dataset

use of recurrent layers, our RNN-based extension takes 329% longer to train compared

to TCENR, while achieving comparative results.

3.5.4 Model Design Analysis

In this section we discuss the effect of several design selections over the suggested

model’s performance.

Merge Layer

The importance of the model’s final layers, responsible for combining the dense output

of both the MLP and convolutional networks, requires a close attention, as it effects

the networks’ ability to jointly learn and the prediction itself. To properly select the

fusion operator the following methods had been considered:

• Combining the last hidden layers of the two models using concatenation. A

model using this method will be denoted as TCENRcon and described in Eq.

3.2.9.

• Merging the last hidden layers using dot product, resulting a model named
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TCENRdot that can be defined as:

ŷup = hcontext · hreviews . (3.5.1)

• Combining the two previously described methods, where the two representations

will be jointly learned by concatenation and dot product. The resulted model

will be denoted as TCENRdot con and can be developed by combining Eq. 3.2.9

and Eq. 3.5.1 using addition and translating the result to a range of [0, 1] with

the sigmoid function:

ŷup = σ(σ(W4 × [hcontext, hreviews] + b4) + hcontext · hreviews) . (3.5.2)

• Adopting a weighted average for the prediction result of the two networks.

Denoted as TCENRweight, this model can be defined as:

ŷup = λ3σ(W5 × hcontext + b5) + λ4σ(W6 × hreviews + b6) . (3.5.3)

As shown in Figure 3.5.2, adopting the more simple methods of weighted aver-

age and dot product leads to an inferior performance to TCENR, demonstrating the

added value of utilizing the latent features learned by each sub-network jointly. When

combined with the under-performing method of dot product in TCENRdot con, the

use of concatenation improves over dot product alone. However, since the two meth-

ods are integrated using a simple average, employing only concatenation as done in

TCENRcon produces the best results, and therefore integrated into the final model.

MLP Layer Design

Although found by [20] that adding more layers and units to the MLP-based recom-

mender has a positive effect, the use of CNN and the additional hidden layer suggests
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Figure 3.5.2: Comparison of merging methods in terms of accuracy

it is a subject worth investigating. To this end, we test the proposed algorithm with

1-4 hidden layers used to learn the user-item interaction with contextual regulariza-

tion in varying sizes from 8 to 128 hidden units. The results in terms of test set’s

accuracy are presented in Table 3.5.2, where the number of hidden layers is defined

as columns and the size of the first unit is presented as rows. Unlike previous results,

we find that two hidden layers with 32 and 16 units result in the best performance

for our dataset.

Table 3.5.2: Model’s accuracy with different layers

1st layer H=1 H=2 H=3 H=4
16 0.824 0.827 - -
32 0.823 0.837 0.825 -
64 0.822 0.829 0.83 0.827
128 0.823 0.828 0.829 0.827

Number of Words

The use of written reviews in their original order allows the strengths of CNN and

RNN to be exploited by finding the best representation for every few words, and

eventually for the whole text. Our final dataset, however, is composed of very long

reviews, where to fully learn a single user or location, more than 20,000 words are
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required, making it computationally expensive to extract relevant representations. To

benefit from the sequential nature of the written reviews while keeping the solution

feasible, the number of words was limited to a range of 500-6,000. As can be witnessed

from Figure 3.5.3, there is a slight improvement in accuracy as the number of words

increase up to 3,000, while additional words result in an increased bias towards users

and locations with longer reviews, and in turn reduces the model learning capabilities.

Figure 3.5.3: Number of words comparison in terms of accuracy
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Chapter 4

Explainable Neural Attention

Frameworks

In this chapter we advance our focus and suggest novel deep learning frameworks that

not only generate accurate recommendations and mitigate the data sparsity problem,

but also yield meaningful explanations. Our proposed methods provide reasoning in

the form of importance weights, where items are described by their most defining

attributes and users by past interactions.

Two different frameworks are proposed in this chapter, both based on the premise

of neural attention. First, we will present Self-Attention Recommender based on

Attributes and History (SARAH), a recommendation framework utilizing the rising

technique of self-attention to simultaneously represent users and items. In contrast

to other attention-based recommender systems, SARAH includes two self-attention

components, used to identify the most important input features for each user, inde-

pendently of the candidate item, and vice versa.

Then, a variation to SARAH will be developed, denoted as Dual Attention Rec-

ommender with Items and Attributes (DARIA). DARIA is a recommender system

that employs two consecutive layers of neural attention. As one layer focuses on the
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most relevant items a user previously rated with regard to the given candidate item, a

second layer will emphasis the item features that most contributed to this similarity.

Although DARIA will attempt to solve the same challenge as SARAH, it relies solely

on the standard neural attention technique, while SARAH only applies the rising

self-attention paradigm.

Section 4.1 will discuss the motivation and background for proposing our attention-

based frameworks, that will be respectively developed in Sections 4.2-4.3. An empir-

ical evaluation of the two methods will be further presented in Sections 4.4-4.5.

4.1 Motivation

While recommender systems based on latent factors, such as TCENR, are able to

provide increasingly accurate recommendations, generating lists of items alone is often

not sufficient. Users may disagree with the given suggestions and over time lose their

trust in the system [21]. Explainable recommenders therefore attempt to confront this

issue by producing interpretable reasoning to justify its selections. These systems

are then required to not only learn a model that is accurate, but to also produce

explainable outputs. This requirement, however, is in conflict with the concept of

latent factors, where machine-generated scalars represent each component.

The rising popularity of neural attention had provides a promising ground to in-

tegrate the seamlessly contradicting concepts of explain-ability and latent features,

as demonstrated in previous work [9, 17, 62]. By applying attention techniques, rec-

ommender systems can allow different inputs to impact predictions according to their

level of significance, and in addition to report these importance distributions to the

end user as an explanation.

Our proposed methods, SARAH and DARIA, extend the use of neural attention

in recommender systems and present two different and novel approaches. However,
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they both exploit the availability of user past activities and item features to allow

flexible frameworks. Due to the extensive use of recommender systems in e-commerce

websites and the privacy requirements towards users’ data, practitioners usually have

access to only limited information about the user, but often have a vast amount

of items’ attributes. Therefore, in constructing our models we choose to focus on

historical data available in the system as the users’ input, while the widely available

and task-specific attributes will be used to describe items. Moreover, the use of

attributes allows both SARAH and DARIA to alleviate the item cold-start problem.

Although SARAH and DARIA attempt to solve a similar task using the same

inputs and generating equivalent explanations, they differ in their implementation.

Comparing these two methods allows us to better analyze neural attention and self-

attention for the task of item recommendation, in a way that has not been done

before, to the best of our knowledge. The proposed frameworks are further evaluated

over four datasets in varying scenarios, by utilizing the Yelp dataset for reviews over

locations and the Amazon Electronics, Movies and Home data, that consist of product

reviews in an e-commerce setting.

The main contributions of this chapter are summarized as follows:

1. We propose a novel idea of stacking two attention layers over items and their

features, in order to best represent the user-item interaction.

2. To the best of our knowledge, we are the first to introduce a RS using self-

attention to model user history and item attributes. This presents a broad

range of future possibilities to improve predictions and explain-ability.

3. We conduct solid experiments on datasets in different fields, showing that our

framework is able to provide superior results compared to six diverse baselines.

We further illustrate the ability of SARAH to provide explanations in the form

of case studies, as well as the contribution of self-attention to its output.
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A list of notations used throughout this chapter is provided in Table 4.1.1.

Parameter Description
f Number of item features
k Number of users’ past items
Zi Latent embeddings of item i’s features

ei, Eu Latent embedding of item i and user u’s past items
Vi Modified representation of item i’s features
Hu Contextual representation of user u’s past items
αi Self attention scores over item i’s features
αu Self attention scores over user u’s past items
qi, pu Final representations for item i and user u
αui Attention scores over user u’s past items with regard to i
r Number of most relevant past items of u
V ui
j′ Modified representation of features for a relevant past item j′

Gui
j′ Attention matrix for target item i and past item j′ features

γuij′ Weighted representation of relevant past item j′

Qui Weighted representation of user u’s relevant past items
ŷ Final rating prediction

Table 4.1.1: Parameter notations used in Chapter 4

4.2 Self-Attention With Attributes And History

In this section we present our proposed framework, Self-Attention Recommender

based on Attributes And History (SARAH).

Implemented using paradigms of deep neural networks, SARAH utilizes each

item’s input features to generate an accurate representation, where a novel self-

attention layer determines what features should have higher impact. Likewise, a

second self-attention layer specifies the most characterizing items each user has previ-

ously interacted with, used to construct the user latent vector. Our proposed method

combines the two representations to result in an implicit prediction to whether a given

user will be interested in the candidate item or not, while sharing the self-attention

importance weights as explanatory factors.
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To develop our framework, we will first describe the item self-attention network,

resulting in a latent vector using an item and its features as input. Then, we will

introduce the user self-attention component that transforms the user’s last interacted

items to a latent representation, along with her contextual data. The two resulting

representations describe the candidate item and target user, respectively, while giving

relative weights to their components based on their importance. Finally, we define

the fusion of the two vectors as a scoring function along with the optimization process

of the combined network. The complete architecture of our framework is shown in

Figure 4.2.1, where each interaction is fed as a triplet of item i, the set of its f

features, si, and a set of the last k items a user u interacted with, cu.

Figure 4.2.1: SARAH Framework

A sample recommendation scenario using SARAH is provided in Figure 4.2.2,

where a user is represented with four past electronics products and items by different

related features. Demonstrated in the user attention weights, αu, SARAH identifies
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the laptop our user recently bought as the item that best capture her preferences.

This is due to the overall similarity of the laptop to other items such as a tablet and a

mouse. In addition, we note that the mouse representation is highly impacted by the

related purchase of the laptop, as determined by the RNN component. To represent

our candidate item, a smart-phone, SARAH identifies the screen and brand as the

more important features, and as a result a high recommendation probability of 0.8 is

produced.

Figure 4.2.2: SARAH Sample Scenario
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4.2.1 Item Self-Attention

The item self-attention component’s goal is to produce an interpretable representation

for a candidate item, where each is composed of a given set of attributes. These

can be derived from various inputs, such as textual reviews, description, categories,

geo-spatial location, etc. We claim that while all items are comprised of the same

features, the importance of each feature differs. For example, being family friendly is

an important attribute to consider when watching an animated show, but less so when

choosing a horror film. Using self-attention we represent each item as the weighted

distribution of its features, where stronger weights indicate relative importance. This

allows SARAH to learn an item representation regardless of the target user, where

the weights are interpretable and point towards the most relevant features.

While each item is composed of features, some can be shared between very differ-

ent items. For example, two movies can be of the same genre and share participating

actors, but one is more popular than the other due to reasons that are not captured

by the set of given attributes. Therefore, in addition to features we also use the item’s

historical information, described as its embedding, to construct the final representing

vector. As shown on the left side of Figure 4.2.1, the two sets of inputs are fed to

the network as plain item and feature ids, implemented as one-hot encoding vectors,

where 1 indicates the current item or feature and 0 the rest. Two embedding func-

tions are used to transform the inputs into representing vectors, ei ∈ Rd for item i

and Zi = {zi0, zi1, zi2, ..., zif} for its features, where zil ∈ Rd̃ denotes the embedding

vector for item i’s l-th attribute. These embeddings result in two descriptions for the

same item, one using a standard latent vector and the other using its features which

are interpretable.

To combine the two representations in a way that allows the same attribute to

have different effects on various items but still enable to isolate the different features,
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we let the model learn their combination by employing a fully connected nonlinear

layer over the embeddings’ concatenation:

vil = ReLU(wv[ei, zil] + bv) , (4.2.1)

where ReLU is a nonlinear activation function, wv is the weight vector and bv the bias.

Vi = [vi0, vi1, ..., vif ] is the layer’s output denoting the feature-infused representation

of item i, where f is the number of features. By combining the item attributes with

its past interactions, we allow the model to potentially represent items with little or

no history, making SARAH relatively resilient to the item cold-start problem, as will

be demonstrated in Section 4.5.

We then employ a self-attention network to transform Vi into an interpretable

vector, comprised of each feature’s importance. By feeding it to a two-layer percep-

tron, Vi is reduced to a concise representation of a single attention score for each

input feature:

ai = w2(tanh(W1Vi) + b1) + b2 , (4.2.2)

where W1 ∈ Rf×d and w2 ∈ Rf are the respective weight matrix and vector, b1 ∈

Rd, b2 ∈ R are the layer’s bias terms and tanh is the hyperbolic tangent function.

To increase the self-attention model’s ability to generalize and reduce exaggerated

importance towards any single feature, we introduce a dropout function over Vi.

The resulting vector ai can be seen as the importance weights of each feature

over the item i, however for it to be utilized as a weight distribution we feed it to a

softmax function:

αi = softmax(ai) . (4.2.3)

αi will then be employed as a weighting vector, responsible for constructing a

one-dimensional representation for the given item i. This is achieved by performing

a weighted average over the item features’ latent factors according to their relative
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importance:

qi =

f∑
l=0

αilvil , (4.2.4)

where qi is the item i’s latent vector. In addition, αi will act as an explaining factor

to the end user, where the features of a recommended item i are ranked based on

their attention scores. Examples of the vector’s values are presented in the left part

of Figure 4.2.1.

4.2.2 User Self-Attention

Similar to the item component, the user self-attention network’s objective is to provide

an accurate, yet interpretable, representation for every user u. We define hyperpa-

rameter k as the number of last items used to represent each user, and provide the

flexibility to explore different time spans. The list of k input items is denoted as cu

and demonstrated in the right side of Figure 4.2.1. Unlike the previously described

item self-attention sub-network, we do not add an additional user embedding based

on the individual user id, since it will be equivalently comprised of the past inter-

actions, but in a non-interpretable method. Therefore, to describe a user, we use

the embedding Eu = {eu1, eu2, eu3, ..., euk}, where euj is the same item embedding

presented in subsection 4.2.1, ei, but for u’s j-th item.

Since users’ actions are frequently effected by previous activities, we attempt

to enrich her items’ embeddings with the contextual information found within the

sequence of interactions. More specifically, we employ a RNN over the k embeddings,

so the representation of each item will include that of its predecessors to some degree.

Similarly to TCENR, we follow the findings of previous works [3], and adopt GRU as

our recurrent technique. Based on Eq. 2.2.6, each user past item uj can be described

by a new vector combining relevant contextual data huj ∈ Rd.

Although a user can be defined as the set of items she previously interacted with,
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some items are more important in this sequence than others. For instance, a user who

frequently watch action movies should be mostly represented by the latent features

of this genre and not by those of a drama movie she watched once. To this end,

we introduce a self-attention network over the user’s k items, similarly to the layers

presented in subsection 4.2.1:

au = w4(tanh(W3Hu) + b3) + b4 , (4.2.5)

αu = softmax(au) ,

where the input Hu ∈ Rk×d is the set of k items’ sequential embeddings {hu0, ..., huk}.

The user self-attention network is learned using the weights W3, w4 and the bias terms

b3, b4. The resulting vector αu ∈ Rk is the importance distribution of the k items for

the user u, used to provide recommendation reasoning to the end user, by presenting

her with the information towards how she is perceived by the system. Potential values

of αu are given as example in the right side of Figure 4.2.1.

To retrieve a meaningful representation to be modeled along with the candidate

item i, we weight each of user u’s k sequential item embeddings using the attention

importance vector, pu:

pu =
k∑

j=0

αujHuj , (4.2.6)

generating in a vector that emphasizes the latent features of the most relevant his-

torical interaction of the user.

4.2.3 Rating Prediction

In order to combine the user and item weighted representations and to result in a

prediction, we use the classic dot product operation. By doing so, we avoid any

excessive alteration to the user and item interpretable vectors and keep the weighted

distributions relevant to explain the given prediction. To allow the framework to be
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applied to a wide variety of recommendation scenarios, we adapt every sample to the

implicit rating problem, where 1 denotes an interacted item and 0 items the user have

no interest in. The resulting output is therefore transformed to be in the range of

[0-1] using the sigmoid function:

ŷ = σ(qTi · pu) . (4.2.7)

We use negative sampling to generate instances of 0-class ratings from the dataset,

defined as Y to differ from the training positive set Y .

Due to the use of implicit ratings and the sigmoid function in prediction, the

learning problem can be now viewed as a task of binary classification. The model’s

output probability can be then defined as:

p(Y, Y | Ei, Zs,Θf ) =
∏

(u,i)∈Y

ŷui
∏

(u,j)∈Y

(1− ŷuj) , (4.2.8)

where (u, i) is a positive interaction, (u, j) a negative sampled instance, Ei ∈ Rm×d

and Zs ∈ Rf×d̃ are the embeddings of all m items and f features,respectively, and

Θf denotes the model’s parameters.

Similar to Eq. 3.3.2, we take the negative log-likelihood of Eq. 4.2.8 and employ

binary cross-entropy as the model’s loss function.

4.3 Dual Attention Recommender

By applying independent self-attention layers to represent users and items, SARAH

assumes that the importance of previous user activities is not effected by the recom-

mended item in question. However, this is not always the case. For example, when

a user who rarely watches horror movies considers whether to watch a new horror

movie, the decision might be impacted by the similarity to the few horror movies
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she previously watched and liked, rather than to action movies she most frequently

watches. We wish to further investigate the recommendation capability of SARAH

by proposing a second model that only employs the standard neural attention and

considers the current interaction when learning user and item representations.

DARIA is therefore a proposed alternative to SARAH that attempts to describe

a given user-item instance by focusing on the most correlating components of its two

inputs. This method assumes that although a user has previously interacted with

many items, not all past feedbacks are relevant in predicting her interest towards a

given item. Extending the previous example, DARIA will compare the importance of

each past movie to the recommended horror movie in order to determine its impact

on the user’s representation within the system, making it specific to the predicted

interaction. We therefore follow previous work [11, 60] and employ neural attention

to model this behavior, while disregarding irrelevant past items when determining

whether to recommend a given item.

However, we claim that for the task of explain-ability it is insufficient to only

provide what past actions contributed to the recommendation. It is more intuitive

and general to further explain what features in these relevant past interactions have

had the highest impact on this reported contribution. We will therefore extract only

the most relevant past items, as determined by the previously described attention

network, and apply a second attention layer over their attributes, compared to those

of the recommend item. This layer’s output will then be the importance distribution

of each relevant past item’s features compared to these of the recommended item. It

will be further used to construct the concise representation of the user-item interaction

and to generate implicit predictions in turn. Similar to SARAH, the model yields the

importance distributions over items and features, learned by the attention layers, as

explanatory factors to the end user.

By implementing DARIA we hope to shed light on the impact of self-attention
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and neural attention networks on deep recommender systems. The proposed method

is illustrated in Figure 4.3.1. Section 4.3.1 describes the steps taken to describe users

in DARIA with relevant past items, while Section 4.3.2 outlines the use of features to

generate combined representations and predictions. Finally Section 4.3.3 summarizes

DARIA along with a comparison to SARAH.

Figure 4.3.1: DARIA Framework
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4.3.1 Past Items Importance

DARIA’s first goal is to identify the most relevant past actions of user u with regard

to the candidate item i and ignore all other past feedbacks. To do so, we adopt the

same embeddings as in SARAH, ei and Eu to represent the recommended item and

target user, respectively. Moreover, we apply the same GRU layer as in Eq. 2.2.6 to

add sequential context to Eu, resulting huj ∈ Hu as the contextual representation of

user u’s past feedback for item j.

A neural attention layer is then applied to identify the most relevant r < k items

in user u’s history with regard to i. We first generate a score for each of the k items

using dot-product between its embedding’s latent features and those of ei:

auij = huj · ei ,

aui = [aui0, aui1, ..., auik] , (4.3.1)

αui = softmax(aui) ,

where j is one of the k items in user u history, aui is the set of u’s attention scores

between i and each past item and αui is an importance distribution of the k items.

Unlike the relatively static user attention scores generated by SARAH, αui is greatly

effected by the current recommended item i, and will likely be different for another

recommended item i′.

While αui will be provided to the user as an explanatory factor, reporting how

related each of the items she previously liked to the recommended item i, we wish

to further investigate what features impact the items’ significance levels. However,

there is no need to further explore the effect different features have for irrelevant past

items. To this end, we follow Eq. 2.2.8 and use max-pooling to keep only the r items

with the highest attention weights in αui, denoted as βui = [ui0, ui1, ..., uir], where the

remaining k−r past items of user u are discarded. Each item βui
j′ is then transformed
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into its features embedding, denoted as: Eui
j′ ∈ Rf×d′ , where f is the number of item

features, and d′ is the feature embedding’s dimensionality.

To determine what features made each of the r items more related to i than the

other k− r items, we are required to employ the attributes of i. Illustrated in the left

side of Figure 4.3.1, the recommended item’s f features are given as input, denoted

as si, and further transformed to their respective embedding Zi = {zi0, ..., zif}. Since

we still wish to have an item-specific feature representation, we follow Eq. 4.2.1 to

transform Zs and Eui
j′ to Vi and V ui

j′ , respectively:

vuij′l = ReLU(wv[e
ui
j′ , zj′l] + bv) , (4.3.2)

V ui
j′ = [vuij′0, v

ui
j′1, ..., v

ui
j′f ] .

4.3.2 Item Features Attention

A second attention layer will compare the features of each past item j′ with those

of item i. However, unlike the attention technique previously used in Eq. 4.3.1, the

design of our model allows us to compare all attribute combinations between the two

items. We can therefore evaluate the relevance of each feature for j′ with all the other

features of i:

Gui
j′ = sofmtax(Vi × V ui

j′ ) , (4.3.3)

where × denotes matrix multiplication and Gui
j′ ∈ Rf×f is a two-dimensional matrix

where the f features of past item j′ can be depicted as columns while those of the

recommended item i as rows.

To describe the overall user-item interaction by past items’ feature importance

compared to i, DARIA then transforms the scores of an item j′ l-th feature, j′l, by
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employing a simple summation over each of the matrix Gui
j′ columns:

γuij′l =

f∑
t=0

Gui
j′lt , (4.3.4)

where t is a feature of candidate item i as well as a row in Gui
j′ , while l is a feature

of u’s past item j′ and a column in the attention matrix. By summing all rows of

a feature l, we are able to retrieve its aggregated attention score with regard to all

features of item i.

In addition, γuij′l will act as an explanatory factor given to the user. It provides an

insight towards what features make a past item j′ relevant in estimating the preference

towards item i. Similar to 4.2.4, γuij′l will be further utilized as a weighting vector to

generate a representation of user u’s past item j′ according to its attention scores

with the candidate item i:

quij′ =

f∑
l=0

γuij′l · vuij′l , (4.3.5)

where vui ∈ Rr×f×d′ is user u’s embedding of the r most relevant past items with

regard to i, qui ∈ Rr×d′ is the past items’ feature-based latent vector, f the number

of item features and d′ is each feature latent dimensionality.

We finally produce a prediction by combining the factors of most relevant r items

of user u. DARIA creates a concise representation of the user-item interaction by

concatenating the different qui∗ vectors, such that: Qui = [qui1 , ..., q
ui
j′ , ..., q

ui
r ]. Since

there is a strong connection between the latent factors of some past items, we feed

Qui to a single-layered neural network:

ŷ = σ(wy ×Qui + by) , (4.3.6)

where wy ∈ Rr and by are the weight vector and bias term, respectively. We apply

the sigmoid function as the network’s non-linearity to produce an implicit prediction,
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used as DARIA’s output. The model’s training follows the same steps as SARAH,

described in detail in Section 4.2.3.

4.3.3 Comparison to SARAH

Although there are numerous similarities between SARAH and DARIA, including

their expected inputs, structure of generated outputs and the use of recurrent neural

network to model user context, the two methods are fundamentally different in their

implementations. The main distinction lies in the concept behind each method. While

SARAH assumes that users and items should have similar latent representations

regardless of the current recommendation, DARIA attempts to learn the combined

interaction of each user and item tuple. The user representation in DARIA is therefore

heavily effected by the items that are closely related to the recommended item, as

determined by the neural attention layer, and will be significantly different for multiple

recommended items. While in SARAH a user is represented by all her k past items

in a different degree of importance, in DARIA we only include the r < k past items

that are most similar to the candidate item. For example, a certain movie that is

deemed as the most representative of the user by SARAH, might be filtered out and

not have any impact on the same user representation in DARIA.

In addition, even though the two methods generate an importance distribution

over item features as an explanatory factor, the same data has different meaning

across our frameworks. While in SARAH features are applied to define each item in

an interpretable way, DARIA adopts features to explain why a past item is considered

similar to the recommended item. This is then aggregated to describe the features’

importance of the user past items with regard to the recommended item. Finally,

while the recommendation generated by SARAH is achieved by measuring the sim-

ilarity between user and item representations using dot product, DARIA applies a

neural network over the aggregated feature importance.
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By Comparing the two methods, as done in Section 4.5, we attempt to examine

two opposing techniques based on neural attention and determine whether we should

describe users and items independently to produce accurate predictions, or alternately

generate recommendations by learning the user and item interactions.

4.4 EXPERIMENTAL SETTINGS

4.4.1 Datasets

To evaluate our proposed frameworks in diverse recommendation settings, we adopt

datasets from different fields.

Amazon. We chose to employ the Electronics, Movies and Home datasets provided

by [40]. The three datasets feature over 16 million reviews combined, written about

products purchased in the popular e-commerce website. Each of the given datasets

is pre-filtered to include only users and items with more than 5 reviews.

Yelp1. The public dataset provided by Yelp presents more than 5.9 million reviews

by users of locations in the successful location-based social network. While Amazon’s

datasets are dedicated each to a single area, the one by Yelp ranges over various

location types, such as hotels, restaurants, grocery stores, gas stations and more.

To allow items to differ by relevant features (i.e. preventing the existence of many

disjoint attributes), we limit the data to focus on food-related locations (restaurants,

bars, fast food, e.g.), using dataset-provided categories.

In each scenario, we divide ratings into training, validation and test sets using a

time-based split, where each user’s last interaction constructs the test set and the one

before is used for validation. We further filter out users with less than 15 reviews,

to allow sufficient historical records to represent each user. For example, if a user

input consists of her last 10 interactions, no less than 3 samples are left to construct

1https://www.yelp.com/dataset/challenge
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the training set while the remaining 2 define the validation and test sets. To provide

negative instances we sample 3 zero-rated samples for each positive rating over the

training and validation sets. Statistics regarding the final datasets excluding negative

samples are presented in Table 4.4.1.

Dataset Yelp Electronics Movies Home
Users 43,702 14,346 19,566 3,725
Items 51,068 34,389 30,761 14,008

Positive Ratings 1,681,773 364,899 852,091 90,848
Rating Sparsity 99.925% 99.926% 99.858% 99.826%

Avg Samples/User 38.48 25.43 43.55 24.39
Avg Samples/Item 32.96 10.74 27.72 6.72

Table 4.4.1: Datasets’ Statistics

Due to the availability of textual inputs in many recommendation scenarios and

to allow a similar ground for comparison to other methods, we chose topics derived

from user reviews as the item features in the model’s and baselines’ experiments.

To learn the topics, we first feed the reviews as bag-of-words to a latent dirichlet

allocation (LDA) model [6]. Then we learn word embeddings using a simple CNN

network over our training data. Each topic is finally represented by the product

of its distribution over the semantic word embeddings. Although we chose to focus

on topics, the proposed framework can easily be fed with various other features,

such as categories, location and more, given their latent vectors. Furthermore, the

model is not limited to topics derived from LDA, but can equally apply other textual

embedding methods.

4.4.2 Evaluation Metrics

To evaluate the recommendation performance of our proposed models and baselines,

we focus on its ability to provide relevant top-10 suggestion to the user. For every

item the user had reviewed in the test set, we sample 99 negative items she has not
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encountered with and provide these 100 interactions to each model. Since the test set

is comprised of one positive instance for each user, the final set will hold N positive

items and 99 ∗N negative samples. Towards the task of model evaluation, we follow

previous work [11, 16, 20, 62] and adopt the popular HR@10 and NDCG@10 metrics

to measure the performance in predicting top-10 items:

• Hit-Ratio (HR): Returns the percentage of users that had a relevant item in

their top-10 suggestions. Defined as:

HR@10 =
1

N

∑
u

I(|Ru ∩ T u|) , (4.4.1)

where Ru and T u are user u’s top 10 predicted and ground truth items, respec-

tively, N is the number of users and I is a function that returns 1 when its input

is positive, and 0 otherwise.

• Normalized Discounted Cumulative Gain (NDCG): A measure that as-

signs weights based on an item’s position within the top 10 suggestions:

NDCG@10 =
1

Z

10∑
j=1

2relj − 1

log2(j + 1)
, (4.4.2)

where relj denotes the relevancy of an item in position j and Z is a normalizing

factor.

We report the average scores of the aforementioned metrics over all users in the test

set. Parameter tuning in the validation set is done by measuring the ROC score.

4.4.3 Baselines

To evaluate the performance of SARAH and DARIA over the four datasets, we com-

pare its results to six key baselines, ranging from classic MF and probabilistic methods

to deep learning-based models:
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• CTR [58]: Collaborative Topic Regression. A probabilistic model that esti-

mates an item latent vector using its topics, derived from LDA.

• NMF [36]: Non-negative Matrix Factorization, a CF method that takes only

the rating matrix as input.

• ConvMF [25]: Convolutional Matrix Factorization. A strong baseline for rec-

ommendations using textual input. This probabilistic model utilizes CNN to

learn an item latent vector.

• NeuMF [20]: Neural Matrix Factorization. A state-of-the-art framework for

recommendation using only past feedbacks. NeuMF combines a generalization

of MF with MLP over tuples of users and items.

• RUM [11]: Recommender system with external User Memory networks. A

trending deep model that employs attention to identify the most relevant items

and features in the target user history compared to the candidate item.

• CMN [16]: Collaborative Memory Networks. A novel method that adopts

attention network and memory matrices to provide a neighborhood-based com-

ponent in an hybrid RS.

By comparing our proposed frameworks to each of the six baselines, we measure

their performance along with models that best represent different recommendation

approaches. CTR [58] and NMF [36] are two well-known methods for classic collab-

orative filtering, while ConvMF [25] and NeuMF [20] are found to be highly effective

in different scenarios. Furthermore, both CTR and ConvMF employ textual data to

represent items, similar to SARAH and DARIA in our selected setting. By evaluating

RUM [11] and CMN [16], two emerging approaches that utilize neural attention, we

are able to analyze the impact of self-attention over the standard attention paradigm.
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4.4.4 Parameters Settings

Our proposed models are implemented using Tensorflow2, and released as open source3.

As part of our application, all parameters are initialized to follow uniform distribution,

and in order to avoid over-fitting when training the model an early stopping criteria

is integrated. Items latent dimensionality and number of features are determined

by grid search in the ranges of {4,8,16,32,64,128} and {10,30,50,70,90}, respectively.

We further set the size of each user’s input, k, to be in {4,6,8,10,12}. To evaluate

ConvMF and pre-train the topics for our two frameworks, we utilize the word em-

beddings of GloVe [46], with dimensionality of 50. To optimize our framework, we

apply a learning rate in the range of {0.001,0.005,0.01,0.05,0.1} over no more than

100 epochs with a batch size of 8,192 instances.

4.5 EXPERIMENTS AND EVALUATION

In this section we evaluate SARAH and DARIA by conducting a series of analyses to

answer the following research questions:

1. RQ1: Are the proposed frameworks able to achieve competitive recommenda-

tion performance compared with state-of-the-art baselines?

2. RQ2: How different hyperparameter values effect the models’ ability to learn

and present explanations?

3. RQ3: Does our models produce relevant and understandable reasoning along

with their provided suggestions?

4. RQ4: How does the suggested methods compare with the dedicated POI rec-

ommendation models presented in Chapter 3?

2https://www.tensorflow.org
3https://github.com/omer-tal/SARAH
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Dataset Yelp Electronics Movies Home
Metric HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10
CTR 0.362 0.202 0.462 0.236 0.43 0.242 0.348 0.159

(129.74%) (215.89%) (49.60%) (93.01%) (73.70%) (111.33%) (62.29%) (115.40%)

NMF 0.644 0.399 0.436 0.267 0.444 0.254 0.333 0.175
(39.49%) (62.85%) (57.24%) (69.19%) (68.14%) (100.98%) (69.76%) (95.47%)

ConvMF 0.468 0.269 0.341 0.201 0.329 0.185 0.261 0.141
(96.57%) (148.93%) (102.27%) (126.23%) (126.93%) (175.81%) (116.25%) (142.80%)

NeuMF 0.808 0.489 0.338 0.169 0.501 0.281 0.295 0.147
(14.43%) (37.70%) (106.66%) (173.71%) (48.92%) (81.68%) (91.70%) (131.92%)

RUM 0.750 0.459 0.438 0.270 0.518 0.319 0.323 0.168
(21.51%) (44.71%) (57.35%) (75.98%) (44.06%) (60.06%) (75.21%) (103.59%)

CMN 0.875 0.592 0.428 0.267 0.534 0.32 0.098 0.048
(6.47%) (14.56%) (83.45%) (93.08%) (39.71%) (59.61%) (479.23%) (606.96%)

DARIA 0.892? 0.614? 0.637? 0.401? 0.678? 0.432? 0.548? 0.318?

(3.7%) (9.9%) (7.59%) (12.34%) (10.12%) (18.08%) (3.23%) (7.62%)

SARAH 0.925?
� 0.675?

� 0.686?
� 0.451?

� 0.746?
� 0.51?

� 0.565?
� 0.342?

�

Table 4.5.1: Performance comparison between SARAH, DARIA and the six baselines.
? and � indicate significant improvement over the baselines and DARIA, respectively,
based on a 5-sample paired t-test at the 0.01 level. Relative improvement of SARAH
compared to each model is given in brackets.

4.5.1 Overall Performance (RQ1)

First, we compare the prediction performance of the six baselines and our suggested

models. Table 4.5.1 displays the comparisons w.r.t. HR@10 and NDCG@10 over the

different datasets. Several observations can be derived:

• Analyzing the results over the more balanced datasets, Yelp and Movies, demon-

strates the strengths of deep learning based methods, as NeuMF, RUM, CMN,

DARIA and SARAH are able to provide significantly better recommendations

compared to CTR and NMF.

• The two methods based on textual input alone are found to be insufficient in

modeling the user-item interaction. Both the probabilistic method CTR and

CNN-based ConvMF achieve the lowest scores over the Yelp and Movies data.

It may be due to the use of only 50 units to represent words’ embeddings, but

the results hints that while textual data is a valuable input, it shouldn’t be

solely relied upon to learn users’ and items’ representations.
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• There is a large discrepancy when evaluating the models across the different

datasets. First, the results obtained over the Yelp data are significantly higher

compared to the Electronics and Home datasets for all methods. In addition,

the trends from the Yelp and Movies results are not kept. In terms of HR@10

and NDCG@10, CTR and NMF achieve similar results to RUM and CMN

over the Electronics data, while all four baselines outperform ConvMF and

NeuMF. Furthermore, the best performing baseline in the Yelp dataset, CMN,

results in the lowest scores over the Home data. This change can be explained

by the analysis of the datasets’ statistics, shown in Table 4.4.1. While the

Home dataset is the most dense, and the rating matrix sparsity rate is similar

between the Yelp and Electronics data, the datasets mainly differ by the average

samples per user and especially per item. In the Electronics, and most notably

the Home data, the insufficient number of samples for each item prevents from

deep models, such as ConvMF and NeuMF, to learn relevant representations.

However, methods based on attention networks (e.g. RUM) are seem to be

more resilient to this problem. This, and the fact that each item is represented

by its features as well as its embedding, allows both DARIA and SARAH to

surpass all other methods in this scenario.

• Comparing our two proposed frameworks, it is clear that SARAH consecutively

achieves more accurate performance over DARIA. Since in both cases users and

items are identified by identical inputs, it is clear the difference lies in the model

itself. While it is more simple, the use of self-attention allows SARAH to learn

separate representations with no regard to the given instance and still yield

better item recommendations.

• Overall, SARAH outperforms the evaluated models across all datasets, as the

use of features and self-attention allows it to be less prone to the item cold start
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problem, while utilizing RNN and pre-learned embeddings results in competitive

performance in a more dense scenario. Table 4.5.1 further demonstrates the im-

provement is statistically significant using a paired t-test over five independent

evaluations where p < 0.01.

Figure 4.5.1: Runtime (seconds) of all models on the four datasets

In addition, we report the training efficiency of SARAH and DARIA, defined as

the time required to train each model and reported in Figure 4.5.1. As demonstrated

by the provided analysis, SARAH is relatively efficient compared to most baselines,

including NeuMF, ConvMF and CMN. Moreover, unlike these methods SARAH al-

lows the utilization of different input types with no additional cost to its efficiency.

DARIA, in comparison, is found to be more complex in all scenarios due to its large

number of parameters. However, it is more efficient than RUM while achieving better

recommendation accuracy.

4.5.2 Hyperparameter Analysis (RQ2)

In this section we study the effects of various factors over the performance of SARAH

and DARIA.
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Number of item features

As the main component for describing items within the systems, the number of fea-

tures is used to construct both our models’ input and one of the two explainable

factors derived from them. Figure 4.5.2 illustrates the influence of different sizes of

input, ranging from 10 to 90 features, for SARAH and DARIA over all four datasets.

To provide a fair comparison all features are from the same type, topics derived by

LDA. Each item is therefore described by its positive or negative correspondence to

each dataset-specific topic (e.g. price, genre, location or service).

Unlike the Yelp dataset which is relatively unaffected by this parameter, the three

Amazon datasets provide contrasting trends. This phenomena could be explained by

the relative heterogeneity of items sold on Amazon compared to the diversity in

restaurants and bars featured on Yelp, which results in noisy features when repre-

senting items by too many attributes, but requires enough features to successfully

distinguish the different items.

Analyzing the Electronics and Movies dataset results, demonstrated in 4.5.2b and

4.5.2c, shows that SARAH requires at least 30 topics to perform well, while a decline

in performance is derived from additional features. DARIA displays a similar trend

that is slightly skewed, achieving its best performance with only 10 topics over the

Electronics data and 30 when applied in the Movies scenario. Comparing SARAH and

DARIA over the Home dataset, however, exhibits opposite results. SARAH performs

best as more features are added, while applying too many features in DARIA leads

to a sharp decline. This contradiction may be due to the relatively small number of

samples per item in the Home dataset. Given the lack of sufficient historical items’

data, SARAH requires additional features to better represent an item. In contrast,

features in DARIA are combined with the user input, allowing more data to be used

when only few features are available.
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(a) (b)

(c) (d)

Figure 4.5.2: HR@10 and NDCG@10 over number of features for (a) the Yelp, (b)
Electronics, (c) Movies and (d) Home datasets

User k items

Similar to the number of item features, different values of k effect each user’s input,

as this hyperparameter represents the number of items used to describe her in every

interaction. Since the items defining a user cannot be used to optimize the model, this

parameter further impact the training set size. As the minimal number of training

features for every user is 13 items overall, we tested k values up to 12 items, resulting
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in users with one sample in the training, validation and test sets. The potential

importance of this parameter can be seen in Figure 4.5.3, as more items improve

the performance over the Electronics and Movies Amazon datasets, until reaching a

specific number of items where the training size turns to be insufficient. For the Home

dataset however, the reported effect of this hyperparameter is similar to the impact

of the number of features hyperparameter. As higher k values improve SARAH’s

predictions over the Home data, having more than 6 items to describe each user

results in sub-optimal performance for DARIA, possibly due to the higher volume of

training instances required to optimize the model. On the Yelp dataset, where more

samples per user are available on average, the two frameworks are more resilient to

changes in this value.

Item embedding size

Employed both to construct the input for the item self-attention in SARAH and

to represent items a user interacted with, the number of weights used to describe

an item has the potential to impact SARAH’s two self-attention components. This

hyperparameter is equally significant for DARIA, as it determines which past items

should be ignored. Moreover, the item embedding size also determines DARIA’s RNN

dimensionality, effecting the user representation as well as the item. We have tested

this hyperparameter with values ranging between 4 and 128 units. As illustrated in

Figure 4.5.4, increasing the number of variables representing items improves the two

models’ performance significantly for most datasets, until reaching an optimal value

found in the range of 16-32 units, beyond which the prediction capability decreases.

In fact, optimizing this hyperparameter has had the most apparent outcome over our

frameworks’ performance. While in SARAH its effect is relatively moderated due to

the use of separate RNN dimensionality to represent users, describing items with too

many latent weights significantly deteriorate DARIA’s recommendation capabilities.

72



Omer Tal Explainable Neural Attention Recommender Systems

(a) (b)

(c) (d)

Figure 4.5.3: HR@10 and NDCG@10 over k for (a) the Yelp, (b) Electronics, (c)
Movies and (d) Home datasets

RNN output weights

The number of units used to construct SARAH’s RNN output layer influences each

of the k user items’ embedding size after being infused by sequential data. Along

with impacting the model’s ability to represent each item and its context for the

target user, this hyperparameter also determines the final user embedding size used

to estimate the output rating. We tested values in the range of 10 to 90 units, as
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(a) (b)

(c) (d)

Figure 4.5.4: HR@10 and NDCG@10 over item embedding size for (a) the Yelp, (b)
Electronics, (c) Movies and (d) Home datasets

well as when not using RNN (number of weights is 0), to determine the potential

importance of sequentiality in the model. As illustrated in Figure 4.5.5, utilizing

contextual data brings great improvement to the model and allows it to reach its

optimal scores. While values above 80 units result in decreased performance in most

reported scenarios, the positive impact of the RNN layer is clearly visible even when

items are represented using only 10 hidden units. For DARIA, however, the RNN

dimensionality cannot be modified as it has to be equal to the item embedding size.

74



Omer Tal Explainable Neural Attention Recommender Systems

Since this analysis was previously discussed, we did not include DARIA’s performance

in this evaluation.

(a) (b)

(c) (d)

Figure 4.5.5: HR@10 and NDCG@10 over RNN output layer size for (a) the Yelp,
(b) Electronics, (c) Movies and (d) Home datasets

4.5.3 Case Studies (RQ3)

In this section we evaluate SARAH’s capability in providing explainable representa-

tions for items and users. These can accompany the model’s output either as weight

distributions or as messages of the sort: ”We suggest you an item best described by
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the following features...” and ”This item is recommended due to these items you pre-

viously liked...”. The given explanations’ relevance is visualized using heat maps over

randomly sampled items and users from the Amazon Movies dataset.

Item Features Explanations

In adopting items’ content for explanation, our proposed framework is able not only

to report which items in the user history contributed to the recommendation, but also

what features of the item define it best, allowing the user to make an informed decision

given a list of top-10 suggestions. By utilizing attention scores, SARAH can weight

features from different inputs and types seamlessly, and report these finding to the end

user. Furthermore, by not having additional nonlinearities on top of the attention

weights, these features have direct and full impact on the item representation and

predicted output. To demonstrate the model’s capability in providing meaningful

feature distributions, heat maps over the attention scores generated in Eq. 4.2.3 for

two randomly sampled items are presented in Figure 4.5.6.

Figure 4.5.6: Visualization of two items’ attention scores based on 15 features. Darker
colors denote higher weights.

Employing attention weights can provide relevant information to the end user,

allowing her to choose an item based on temporal preferences and not only by fol-

lowing historical patterns. For example, ”Color of War” was recommended mainly

due to the image quality, outlined by the 11-th feature. WWE, on the other hand, is

strongly represented by being appropriate to the whole family, being humoristic and

its characters, denoted by the features in positions 0,1 and 6, respectively. Accom-

panying this type of data with the given suggestions allows users to select the items
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that answer their needs best, without further exploring the given recommendations.

User History Explanations

We further analyze the effect different past items have on a user representation, as

illustrated in Figure 4.5.7 using heat maps. First, we provide the importance of 10

past items for a randomly sampled user, u, in Figure 4.5.7a. The presented map

shows the attention values generated in Section 4.2.2, where darker colors denote

higher impact of an item over the users’ behavior. However, we wish to further delve

into the effect these weights have in the process of item recommendation. To this

end, we sample a positive item, i, and measure the similarity between each of the

user k items’ embeddings and that of the candidate item:

d(i) = [d(ei, eu1), d(ei, eu2), ..., d(ei, euk)] , (4.5.1)

where d is the euclidean distance and e∗ a past item embedding as presented in

section 4.2.1. The sample outcome of Eq. 4.5.1 for the movie ”Tomb Raider” liked

by user u is shown in Figure 4.5.7b, where darker colors represent higher similarity.

As can be witnessed by the two heat maps, there is an apparent correlation between

corresponding columns. The items that best capture the user’s behavior, denoted as

eu3,eu5 and eu7, are also the most similar to the liked movie.

(a)

(b)

Figure 4.5.7: Visualization of user attention scores and euclidean distance between
past items and a positive item
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We conduct the same experiment over a negative example, provided in Figure

4.5.8. The corresponding heat maps now represent the past items’ importance for user

z and the similarity of each past item to a movie the user did not like, ”Enforcer”. In

the negative case, however, there is a clear discordance between the two heat maps.

”Beauty and the Beast”, the movie that best represent the user, denoted as ez4, is

relatively different from the candidate movie, which is a thriller. To conclude, the

provided visualizations demonstrate that the past items best describing the user are

closely related to items she likes, while there is no such relation to other items.

(a)

(b)

Figure 4.5.8: Visualization of user attention scores and euclidean distance between
past items and a negative item

4.5.4 Comparison To TCENR (RQ4)

In this section, we examine the two proposed frameworks’ ability to be applied success-

fully in a dedicated point-of-interest recommendation scenario. We evaluate SARAH

and DARIA over a concise subset of the Yelp dataset, as described in Section 3.5, and

compare the two frameworks to TCENR and its extension,TCENRseq. Table 4.5.2

presents the comparison w.r.t. HR@10, NDCG@10, accuracy and mean squared error.

As can be witnessed from the results depicted in table 4.5.2, although our ex-

plainable recommenders are general frameworks, they can be successfully applied in

challenging settings, such as POI recommendation. Moreover, by significantly out-

performing both TCENR and TCENRseq, SARAH and DARIA achieve promising

results even compared to empirically proven specialized models. Evaluating the two
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Metric HR@10 NDCG@10 Accuracy MSE
TCENR 0.4927 0.2608 0.8279 0.1171

(59.27%) (95.68%) (2.1%) (3.5%)

TCENRseq 0.49 0.263 0.8273 0.1161
(60.14%) (94.22%) (2.18%) (2.67%)

DARIA 0.742? 0.4611? 0.8354? 0.1104?

(5.75%) (10.78%) (1.19%) (-2.36%)

SARAH 0.7847?
� 0.5108?

� 0.8453?
� 0.113?

Table 4.5.2: Performance comparison between SARAH, DARIA, TCENR and
TCENRseq, using the concise subset of the Yelp dataset, presented in Section 3.5.
? and � indicate significant improvement over the two models presented in Chap-
ter 3 and DARIA, respectively, at the 0.01 level. Relative improvement of SARAH
compared to each model is given in brackets.

alternatives demonstrates a small advantage to SARAH over DARIA in all metrics

but mean squared error. This phenomena may imply that while DARIA is making

relatively smaller mistakes, they are more critical and result misclassification.
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Chapter 5

Conclusion and Future Work

In this thesis we presented three novel approaches to tackle some of the more press-

ing problems in the area of recommender systems. We first proposed TCENR, a

framework that utilizes two types of neural networks, MLP and CNN, to extract data

from past activities and written reviews. This method, dedicated to the task of POI

recommendation, was able to outperform its baselines in terms of accuracy and MSE.

We further introduced an extension, denoted as TCENRseq, to examine the impact

of employing RNN as the main component for textual modeling. Comparing the

model variations demonstrated the importance of fitting the right architecture with

the desired goal and inputs.

We then changed our focus to the problem of interpretability in recommender

systems based on deep learning. The use of neural attention allowed us to propose two

explainable frameworks, while not settling on inferior model accuracy. We presented

SARAH, a method consisting on self-attention to learn item and user representations

from features and past feedbacks, respectively. We then proposed DARIA, a model

that utilizes two layers of standard neural attention over the same inputs. Evaluating

the two frameworks provided us with insight towards the effect of different neural

attention approaches in the same recommendation setting, where SARAH proved to

80



Omer Tal Explainable Neural Attention Recommender Systems

outperform its variation. Nonetheless, the ability to seamlessly focus on the most

relevant features and past items allowed both SARAH and DARIA to significantly

outperform six varied baselines over four different datasets.

Comparing the distinct approaches presented in this work shows some resem-

blance. All methods not only rely on past user-item interactions, but on the avail-

ability of additional attributes. While in TCENR we explicitly focused on reviews,

geographical locations and social networks, in SARAH we allowed items to be repre-

sented by any type of feature. However, relying on external data in conjunction with

user feedbacks is a key component, contributing to the consistently high performance

in varied scenarios.

For future work, we could further improve SARAH to employ user features, al-

lowing it to be more resistant to the user cold start problem. A further improvement

is the development of an interactive recommender system based on SARAH. While

an end user is currently aware of how is she perceived by the system, we could al-

low her to adjust the attention weights, making the model more compatible with her

interests.
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[14] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On

the properties of neural machine translation: Encoder-decoder approaches. arXiv preprint

arXiv:1409.1259, 2014.

[15] Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube recommen-

dations. In Proceedings of the 10th ACM Conference on Recommender Systems, pages 191–198.

ACM, 2016.

[16] Travis Ebesu, Bin Shen, and Yi Fang. Collaborative memory network for recommendation

systems. arXiv preprint arXiv:1804.10862, 2018.

[17] Mingsheng Fu, Hong Qu, Dagmawi Moges, and Li Lu. Attention based collaborative filtering.

Neurocomputing, 2018.

[18] Yuyun Gong and Qi Zhang. Hashtag recommendation using attention-based convolutional

neural network. In IJCAI, pages 2782–2788, 2016.

[19] Prem Gopalan, Jake M Hofman, and David M Blei. Scalable recommendation with hierarchical

poisson factorization. In UAI, pages 326–335, 2015.

83



Omer Tal Explainable Neural Attention Recommender Systems

[20] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural

collaborative filtering. In Proceedings of the 26th International Conference on World Wide

Web, pages 173–182. International World Wide Web Conferences Steering Committee, 2017.

[21] Jonathan L Herlocker, Joseph A Konstan, and John Riedl. Explaining collaborative filtering

recommendations. In Proceedings of the 2000 ACM conference on Computer supported cooper-

ative work, pages 241–250. ACM, 2000.

[22] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-based

recommendations with recurrent neural networks. arXiv preprint arXiv:1511.06939, 2015.

[23] Laurent Itti, Christof Koch, and Ernst Niebur. A model of saliency-based visual attention

for rapid scene analysis. IEEE Transactions on pattern analysis and machine intelligence,

20(11):1254–1259, 1998.

[24] Wang-Cheng Kang and Julian McAuley. Self-attentive sequential recommendation. arXiv

preprint arXiv:1808.09781, 2018.

[25] Donghyun Kim, Chanyoung Park, Jinoh Oh, Sungyoung Lee, and Hwanjo Yu. Convolutional

matrix factorization for document context-aware recommendation. In Proceedings of the 10th

ACM Conference on Recommender Systems, pages 233–240. ACM, 2016.

[26] Yoon Kim. Convolutional neural networks for sentence classification. arXiv preprint

arXiv:1408.5882, 2014.

[27] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980, 2014.

[28] Yehuda Koren and Robert Bell. Advances in collaborative filtering. In Recommender systems

handbook, pages 77–118. Springer, 2015.

[29] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recom-

mender systems. Computer, (8):30–37, 2009.

[30] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep

convolutional neural networks. In Advances in neural information processing systems, pages

1097–1105, 2012.
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