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Abstract

Nanoscale systems fabricated with low-dimensional nanostructures such as carbon nanotubes,

nanowires, quantum dots, and more recently graphene sheets, have fascinated researchers

from different fields due to their extraordinary and unique physical properties. For example,

the remarkable mechanical properties of nanoresonators empower them to have a very high

resonant frequency up to the order of giga to terahertz. The ultra-high frequency of these

systems attracted the attention of researchers in the area of bio-sensing with the idea to imple-

ment them for detection of tiny bio-objects. In this thesis, we originally propose and analyze

a mathematical model for nonlinear vibrations of nanowire resonators with their applications

to tiny mass sensing, taking into account thermal, piezoelectric, electromagnetic, surface,

and external excitations. The mathematical models for such nanowires are formulated using

the Euler-Bernoulli beam theory in conjunction with the nonlocal differential constitutive

relations of Eringen type. In order to analyze the obtained nonlinear partial differential equa-

tion (PDE), we first use the Galerkin method in combination with a perturbation technique to

obtain the primary resonance. After finding the primary resonance, a parametric sensitivity

analysis is carried out to investigate the effects of key parameters on the sensitivity of the

nanowire resonators in mass sensing. Our main hypothesis is that bio-particles attached

to the surface of the nanowire resonator would result in a detectable shift in the value of

the jump frequency. Therefore, a mathematical formula is developed based on the jump

frequency to scrutinize the sensitivity of the considered nanowire resonators. Our mass

sensitivity analysis aims at the improved capability of the nanowire resonators in detection



iv

of tiny bio-particles such as DNA, RNA, proteins, viruses, and bacteria. Numerical solutions,

obtained for the general nonlinear mathematical model of nanowire resonators, using the

Finite Difference Method, are compared with the results obtained with a simplified approach

described above. Finally, we investigate the sensitivity of the nanowire resonator for mass

sensing using molecular dynamics simulations to provide a validation for our results from

the obtained continuum models. It is expected that the results of this research may assist in

our better understanding of key characteristics of nanowire resonators for their applications

in detection of bio-particles, ultimately impacting the development of advanced approaches

to disease diagnostics and treatments.
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Chapter 1

Introduction

1.1 Problem Statement

Detection of bio-objects such as DNA, RNA, proteins, viruses, and bacteria is very important

for preventing, accurate diagnosing and effective curing different types of diseases. Ac-

cordingly, it is crucial to develop novel, practical, and effective techniques to detect tiny

bio-objects. This important and interdisciplinary subject has prompted scientists, engineers,

and applied mathematicians to propose and investigate innovative approaches for the de-

tection of bio-objects. Recent years have witnessed rapid advances in the development of

nanodevices for different applications such as self-powered sensing, energy harvesting and

mass sensing with potential of bio-object detection. Several nanoresonators have been de-

signed, modelled, optimized and fabricated for tiny mass sensing. These nanoresonators

are made of carbon nanotubes, graphene sheets, and nanowires (NWs) [1–3]. Due to their

ultra-high modulus of elasticity and resonant frequency, they received substantial attention of

the researchers as they can be used as sensors for label-free detection of specific biological

objects. Although a number of important studies have been undertaken in this field so far, in

particular those aiming to implement nanoresonators for bio-object detection [4–9], there is

still lack of robust and systematic modelling techniques for the nanoresonators. Specifically,
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it concerns the application of nanowires in biological detection, taking into account some of

the most important parameters. These include parameters connected with electromagnetic

fields, thermal variations, external excitations, axial loads, nonlocal and surface effects, large

oscillations, and nonlinear viscoelastic foundations. Having in mind applications in mass

detection, it is highly important to develop a mathematical model, which can be used to

investigate the effect of these parameters on frequency behavior of nanowires. In fact, the

outstanding capability of nanomechanical resonators, specially nanowires for ultra-high

resolution mass sensing applications, is significantly related to their dynamic characteristics

[10]. Thus, dynamic characterization and parametric sensitivity analysis of nanomechanical

resonators for sensing applications are crucial. It should be noted that when we refer to

nanosensors, we deal with a resonator with dimensions in the order of nanometer, which

has sensitivity in the nanoscale range, and its interaction distance with the object being

detected in nanometer size. That is why a small perturbation with different sources of excita-

tion such as temperature, electromagnetic field, nonlinearity due to large oscillations of the

nanoresonators or their substrates should be taken into account for an adequate mathematical

modelling of these devices.

In this thesis, we aim to study nanowire resonators for biological detection taking

into account different parameters such as temperature variations, electromagnetic field,

nonlinearity and surface effects. We will use both continuum modelling and molecular

dynamics simulations to achieve a better understanding of nanowire resonators in terms of

mass detection and to provide a multiscale modelling framework for the analysis of vibrations

of nanowire resonators with application in tiny mass sensing and biological object detection.

1.2 Literature Review

Vibrations of nanoresonators including nanobeams, quantum dots, nanotubes, nanowires,

graphene sheets, and nanoplates have been fascinating an interdisciplinary community
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of researchers, working in the areas of applied mechanics and mathematics, structural

analysis and vibrations. A number of works have been published so far to investigate the

vibrations of the nanoresonators [11–14]. Reviewing the works done by the researchers

in these areas shows that utilization of continuum theories is very popular for modelling

the vibrations of nanoresonators [15, 16]. Generally, there exist two main categories of

research in the modelling of nanoresonators. In the first category, the focus of researchers

is on the use of different continuum theories such as Timoshenko, Euler-Bernoulli and

Rayliegh to model vibrations of nanostructures such as nanowires [17, 18]. Based their

investigations on the continuum theories, researchers have considered different effects such

as thermal variations and piezoelectric potential to model vibrations of nanowires. In addition,

a few researchers have combined classical and nonlocal beam theories to characterize the

dynamics of nanowires. Using these combined models, they investigated the effect of different

parameters such as size, surface and nonlocal parameters on the vibrations of nanowires

[19, 20]. In section 1.2.1, we provide a review on different models and results presented

by researchers for the modelling of nanowire resonators using classical and non-classical

theories.

The second category is related to the models with focus on the applications of nanores-

onators in mass sensing, biological detection and drug delivery [21, 22]. Similar to the first

category of research in this area, researchers have used classical and non-classical theories

to study the applications and potency of the nanowire resonators for the detection of tiny

bio-objects and chemical atoms [23, 24]. In sections 1.2.2 and 1.2.3, we present a review

of the current models, experimental and alanytical results proposed by researchers for the

nanoresonators taking into account the above-mentioned applications.

An analysis of the state-of-the-art in this field shows that there is a lack of modelling

results for nanowire resonators in mass detection application that take into account different

critical parameters such as electromagnetic field, piezoelectric potential, nonlinearity, external
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excitations and thermal variations. Furthermore, the literature survey shows that, ultimately,

more refined models such as those based on molecular dynamics simulations are also

needed for our better understanding of the vibration behavior of nanowires for mass and

bio-object detection applications. These two shortcomings of current knowledge in this area

have prompted us to work on the development, as well as on mathematical and numerical

analysis, of a novel continuum model for nanowire resonators plus their molecular dynamics

simulations.

1.2.1 Vibration Modelling of Nanowires

The use of continuum models for the vibrations analysis of nanowires started from the early

2000s (e.g. [25] and references therein). The main aim of the most published works on the

vibrations of nanowires at that time was finding a closed-form for the natural frequency

of the nanowires, and also providing a mathematical framework to predict the behavior of

nanowires under different cases of oscillations. Thus far, researchers have included different

effects in their modelling of vibrations of nanowires such as geometry, size, surface effects,

current-carrying, boundary conditions, magnetic field, initial tensile force, and external

sources of excitations. This section of the chapter reviews the evolution of modelling of

nanowire resonators using both local and nonlocal continuum models.

One of the earliest efforts for modelling vibrations of nanowires was presented by Ustunel

et al. [26] in which they proposed a one-dimensional model for NWs. In another pioneering

work, Vincent et al. [27] studied self-sustained vibrations of nanowires under a constant

electron beam . In an interesting work by Zhou et al., vibrations of zinc oxide nanowires were

studied considering the electric field effects. Their developed partial differential equation

was converted to a nonlinear ordinary differential equation with both quadratic and cubic

nonlinearities [17]. One of the earliest attempts in which a continuum model was proposed for

vibration analysis of nanowires was a paper by He and Liley where they developed a model
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for the vibrations of NWs considering surface effects and different boundary conditions

[20]. Effects of surface stress on both buckling and vibrations of piezoelectric nanowires

were studied by Wang and Feng in 2010 [19]. They showed that the resonant frequency

of piezoelectric nanowires can be adjusted using the applied electric potential. They also

demonstrated that piezoelectricity and the surface stress have quite similar effects on the

frequency response of the nanowire [19].

Kiani is one of the influential researchers in the area of vibration analysis of nanowires

as he developed several models for NWs considering different effects [28]. In one of his

early research papers in this area [28], a nonlocal continuum model was developed to study

free longitudinal vibrations of tapered nanowires employing the perturbation techniques. In

his study, he considered two different types of boundary conditions including fixed-fixed

and fixed-free constraints. One of the main results of the research was related to the rate

of change in NW radii. For higher values of the small scale effect parameter, the rate of

change in radii is more pronounced on the variation of the natural frequencies and phase

velocities [28]. Hasheminejad and Gheshlaghi [29] developed a dissipative surface stress

model to investigate the influence of size-dependent surface dissipation on fundamental

frequencies of nanowires. Euler–Bernoulli beam theory in conjunction with the classic Zener

model was used to develop the fifth order differential equation which describes the flexural

vibrations of NWs. Fu et al. [30] studied nonlinear free vibrations of NWs using nonlocal

Timoshenko beam theory considering the surface effects. Askari and Esmailzadeh used

nonlocal Timoshenko beam theory to study vibrations of nanowires considering geometrical

nonlinearity and different surface areas using the variational iteration method [31, 32]. He

and Lilley investigated the vibrations of nanowires considering the surface effects and using

the Timoshenko beam theory. They obtained the quality factor of nanowire’s vibrations, and

showed that considering the surface stress decreases the stiffness of cantilever nanowire, and

increases the stiffness of nanowires with simply supported boundary conditions [33]. Samaei



6 Introduction

et al. [34] studied vibrations of piezoelectric nanowires considering surface effects. They

developed a continuum model for the vibrations of nanowires, which takes into account the

effects of surface elasticity, residual surface tension, and transverse shear deformation. The

main conclusions of their work is that the surface effects increase the natural frequency for

the lower modes.

Forced vibrations of a current-carrying nanowire in a longitudinal magnetic field was

first studied by Kiani in 2014 [35]. He developed the governing equation of the considered

system taking into account both surface energy and size effects. The research has shown

the effects of different parameters on the the maximum transverse displacements of the

nanowires. These effects include the magnetic field, electric current, pre-tension force,

frequency of the applied load, surface and size effects. One of the main results of the

work shows that the maximum transverse displacements of the current-carrying nanowire

reduces as the small-scale parameter increases. In another work by Kiani, the vibrations

of double nanowire systems as electric current carriers were studied [36]. Theoretical

models for both in-plane and out of plane vibrations were developed in order to find the

corresponding fundamental frequencies [36]. Kiani also studied the interactions of two

parallel nanowires carrying electric currents under a longitudinal magnetic field employing

Biot–Savart law and a surface elasticity model. Results of the work show that the fundamental

frequency decreases as the strength of the magnetic field magnifies. In addition, it was

concluded that the initial tensile force inside the nanowire plus the surface effects promote

its stability [37]. Vibrations and instability of pretensioned current-carrying nanowires under

suddenly exerted three-dimensional magnetic field were studied in [38]. Using Hamilton’s

principle, governing equations of the longitudinal and transverse vibrations of nanowire

were developed. The simulation results show that the maximum longitudinal displacement

of the nanowire nonlinearly increases for each of the components of the three-dimensional



1.2 Literature Review 7

magnetic field. In addition, stability of the nanostructure increases by the initial tensile force,

and also the residual surface stress with positive sign [38].

Both free and forced vibrations of nanowire rested on an elastic substrate were studied by

Su et al. They assumed Winkler-Pasternak foundations and generalized substrate models as

the foundation model for the nanowire [18]. In their work, they obtained the characteristic

equations, mode shapes and effective Young’s moduli of the nanowires considering different

forms of boundary conditions [18]. In another research [39], free and forced transverse

vibrations of nanowires were studied taking into account the surface effects based on the

Timoshenko beam theory. A comparison study was also performed by the authors to verify

the obtained theoretical results for the fundamental frequencies with the FEM simulation

[39]. Zhang et al. in [40] analyzed transverse vibrations of embedded nanowires under axial

compression taking into account the higher order surface effects. Results of this research

show that the axial load, surrounding elastic medium, and high-order surface stress are

affecting the natural frequency of transverse vibrations of nanowires. Jin and Li studied

nonlinear dynamics of silicon nanowire (SiNW) considering nonlocal effects. They performed

a bifurcation analysis, which shows that the nonlocal effect causes the most significant impact

when the excitation frequency equals to the natural frequency of the structure [41].

Sedighi and Bozorgmehri probed nonlinear vibrations along with adhesion instability

of nonlocal nanowires with consideration of surface energy. They revealed that the critical

Casimir value decreases by increasing the nonlocal parameter [42].

1.2.2 Nanoresonators in Mass Sensing

The extraordinary and unique mechanical properties of the nanostructures have made them an

excellent candidate for mass sensing application. Different types of nanoresonators including

nanowires, quantum dots, nanotubes and graphene sheets have been studied by researchers

from different fields to be used for tiny object detection. In fact, the remarkable mechanical
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properties of nanoresonators empower them to have a very high resonant frequency up to the

order of giga to terahertz. The ultra-high frequency of these structures attracted attention of

researchers in the area of bio-sensing to implement them for detection of tiny bio-objects. As a

result, plenty of theoretical and practical approaches have been proposed for detection of tiny

bio-particles. Using both theoretical and experimental approaches, researchers have shown

the potential of nanoresonators in detection of tiny objects in the scale of zeptogram (zg)

[43–45]. Nanoresonators, specifically semi-conducting nanowires, have shown a very unique

reproducible and tunable conducting properties, which provide strong sensing approaches

for medical applications [46]. This high resolution of sensing allows detection of tiny bio-

objects such as DNA, RNA, proteins, viruses, bacteria and very small chemical atoms. As

the literature shows, it is necessary to develop a full model for the vibrations of nanowire

resonators considering different important parameters. Analysis of temperature variations

is one of the well-addressed parameters, but for analyzing other significant parameters, the

development of novel models is needed to provide a better understanding of nanoresonator’s

sensing resolution. This section of the chapter provides a review on the applications of

nanoresonators such as nanoplates, nanotubes, and nanowires in detection of tiny bio-objects.

A pioneering research paper where a nanoresonator was proposed for mass detection

has been the paper [21] by Fritz et al. The authors developed a mass sensor using a silicon

nanometre-scale resonating cantilever with mass sensitivity of 10−19 gram. This high resolu-

tion is enough for detection of a single bio-molecule such as a medium size protein. One year

later, Abadal et al. developed a simple linear electromechanical model for an electrostatically

driven resonating cantilever with application in mass sensing. Their theoretical approach

demonstrates sensitivity in the order of attogram [47].

Su et al. [48] developed a microcantilever based mechanical resonator for DNA detection

utilizing gold nanoparticle-modified probes. Their proposed method is capable of detection of

DNA at a concentration of 0.05 nM or lower. Volodin et al. proposed coiled carbon nanotubes
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for mass and force sensing. The nanotube windings can be either electrically or acoustically

excited, and its fundamental frequency is in the order of 400 GHz. The proposed sensor is

suitable for measuring small forces and masses in the femtogram range [49].

In a very interesting article, Sone et al. [50] showed the potential of nanoresonators for

allergy check. A femtogram mass sensitivity was demonstrated in water using a commercial

piezoresistive cantilever. In addition, results of their papers show that the binding ratio

between the antibody and antigen is about 1:2, and accordingly, the proposed sensor has

the potential to monitor the reaction between an antibody and an antigen for allergy check.

A zeptogram-scale mass sensing method was proposed by Yang et al. [43] in which they

developed a very high frequency nanoelectromechanical systems with a mass resolution of

approximately 7 zg which is equivalent to mass of 30 xenon atmos. Their proposed sensory

device works based on the concept of frequency shift, which happens after adding a tiny mass

to the nanoresonator. Pang et al. [22] proposed a nano-based piezoelectric resonator, which

is sensitive to femtogram mass. They performed a preliminary vapor-detection measurement,

which demonstrates the potential of the proposed device for a chemical and biological

sensing platform. Barton et al. fabricated a nanomechanical mass sensor, which contains

a nanofluidic channel, and is capable of detection of tiny bio-objects. Their fluid density

measurements disclose a mass responsivity of 100 Hz/ f g and a noise equivalent mass of 2

f g [51].

As one of the most implemented classes of nanostructures in mass sensing, one can

refer to nanotubes because of their unique mechanical properties and ultra-high resonant

frequencies. A number of researchers focused on carbon nanotube resonators for ultra-small

mass sensing, and accordingly, developed new methods based on these types of materials

[9, 52]. For example, Chiu et al. developed an atomic scale mass sensing scheme using

doubly clamped carbon nanotube resonators. They showed that the carbon nanotube single-

electron transistor properties allow self-detection of the nanotube vibration. They used the
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resonant frequency shift to sense and determine the mass of atoms [53]. In another paper, the

application of a carbon nanotube for zeptogram-level mass detection has been explored by

Joshi et al. They used molecular structural mechanics approach for investigating the dynamic

responses of chiral single walled carbon nanotube based nano bio-sensors. They showed that

single-walled carbon nanotubes can reach the high sensitivity in the order of 0.12 zg/GHz

[44]. Cho et al. [1] developed a tunable, broadband nonlinear nanomechanical resonator

for femtogram mass sensing at room temperature using carbon nanotubes. A mathematical

model, considering the nonlinear vibrations of carbon nanotube resonators, was developed in

their paper. They used the jump phenomenon to detect ultra-small objects. In a comprehensive

analysis, Kiani et al. [24] developed a mathematical model using different beam theories

including nonlocal Rayleigh, Timoshenko, and higher-order to investigate the potential

of single-walled carbon nanotubes for arbitrarily attached nano-objects. Ali-Akbari et al.

[8] studied the nonlinear performance of forced carbon nanotubes for bio-object sensing

applications. They developed a nonlinear model for the vibrations of mechanically excited

nanotubes using the Eringen’s theory. Results of their research reveal that in the case of

ultra-high Q-factor CNT-based resonators, a very small mechanical excitation results in

the nonlinear oscillations of the nanotubes. Recently, Roudbari and Ansari developed a

continuum model for single-walled boron nitride nanotube for mass sensing applications

using nonlocal Rayleigh and Timoshenko beam theories [7].

Nanoplate is another type of nanostructures, which has been implemented for ultra-small

mass sensing applications. For example, Adhikari and Chowdhury developed a mathematical

framework for the use of graphene sheets in small mass sensing. They considered four

different configurations for locating the small bio-objects, and developed both molecular

dynamics and analytical simulations. The results of the paper indicates that the sensitivity

of graphene sensors is in the order of gigahertz/zeptogram [45]. Kwon et al. [54] showed

the potential of graphene-nanoribbon-based resonators for yoctogram mass sensing using
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molecular dynamics simulations. In an interesting work, Duan et al.[55] revealed the potential

of pillared graphene as an ultra-high mass sensing. Using molecular dynamics simulations,

they showed that pillared graphene can reach at least 10−24 g resolution. Recently, they

have also shown the ultra-high mass sensitivity and a very high quality factor of diamond

nanothread based resonators based on molecular dynamics simulations [56]. Askari et

al. [23] proposed a new approach for ultra-small mass sensing using a nanoplate, which

operates based on the concept of jump phenomenon in nonlinear resonators. In addition,

they implemented a system identification scheme to verify their obtained results by the

new proposed technique. Results of their paper demonstrate the promising potential of the

nanoplate for mass sensing in the order of femtogram. Nanoplate resonator can be also used

as a self-powered mass sensing device. Asadi et al. [2] theoretically demonstrated that a

nanoplate resonator not only can be used for detection of tiny bio-objects, but also has the

potential to be used as a self-powered sensor.

Discovery of nanowires has opened new doors to novel methods for bio-sensing and

bio-instrumentation. Generally, there are two main categories for nanowires based bio-

sensors, which are electrical detection and optical detection. Following these techniques

and probing new approaches, many papers have been published up to date about the use

of nanowires in bio and nanoparticles (NPs) sensing. For example, Wasisto et al. [57]

fabricated a SiNW-based resonators to sense aerosol nanoparticles by measuring resonant

frequency shifts induced by the mass of NPs. Results of the research show that SiNW has

the potential to detect NPs in the femtogram scale. Noteworthy also the paper by Li et al.

[58], in which silicon nanowires were used to detect DNA through monitoring the electronic

conductance of SiNWs. They showed that the sensitivity of the nanowire sensors strongly

depends on the width of the wires. In addition, they observed a linear relationship between

the response of the sensor and the surface to volume ratio of the nanowires. Gil-Santos et

al. used two-dimensional vibrations of resonant nanowires for mass sensing and stiffness
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spectroscopy. Using a superposition state of two orthogonal vibrations along with measuring

different frequencies, they determined the mass and stiffness of the targeted system [59].

Despite of a number of published articles about the applications of nanoresonators in

mass sensing, there are only a few published works in which authors addressed thermal

effect on the resolution of nano-based mass sensing. As one pioneering example, Kim et al.

have studied the resolution of mass detection by optical and capacitive methods in ambient

atmosphere utilizing ultra-thin single-crystalline silicon microcantilevers. Results of their

paper demonstrate that the detectable minimum mass by optical sensing increases slightly

with decreasing cantilever size due to temperature fluctuation noise. In addition, they showed

that the capacitive detection approach can detect a minimum mass below 1×10−14 gram

[60]. Lassagne et al. proposed an ultra-sensitive mass sensing method using 1 nm carbon

nanotubes. In their analysis, they considered the effect of thermal noise by cooling the

nanotube down to 5 K. This low temperature resulted in improving the sensor resolution to

1.4 zg [61]. Biedermann et al. theoretically investigated thermal vibration response of the

crystalline nanowire, and showed the effect of the thermal parameter on the eigen frequency

of the targeted nanoresonators. In addition, they illustrated that the considered nanostructure

has the potential to be used in ultra-small mass sensing, atomic force microscope force

transducers, and highly sensitive acoustic sensors [62].

1.2.3 Nanoresonators in Other Bio Applications

Nanoresonators, such as those based on carbon nanotubes (CNTs), can be used for other

medical applications such as drug delivery. Indeed, modified and functionalized CNTs have

shown interesting and unique potential for drug delivery applications [63, 64]. They have

excellent ability to cross cell membranes, very good biocompatibility, water solubility, a

high drug loading efficiency and controlled drug release [65]. All of these unique features of

CNTs have made them excellent drug delivery vehicles. CNTs have been used for delivering
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bioactive peptides to the immune system. In addition, they also have been used for nucleic

acid delivery. They have shown promising potential to target doxorubicin and even tumors

[66].

Nanowires, which are in the main focus of this thesis, have also shown potential for drug

delivery applications. The small diameter and magnetic properties of nanowires make them

suitable for passing through the narrow capillaries using magnetic drug delivery [67]. This

can be considered as a very effective technique for drug delivering at inaccessible parts inside

the body [68].

1.3 Objectives

The principal aim of this thesis is to use mathematical modelling to better understand the

frequency behavior of nanowire resonators for applications in biological detection. Using

both continuum mechanics and molecular dynamics simulations, in this thesis, provides a

multiscale modelling from the vibrations of nanowire resonators for mass sensing applica-

tions. In fact, developing such model is the fundamental goal of this study. The following

objectives will be addressed in order to reach the principal aim of this thesis:

• We first provide a brief review on the current developed models for nanowire resonators

using different continuum models to highlight the current advances in this field and to

find the points that have not been addressed yet in the vibration modelling of nanowire

resonators.

• We will discuss the potential of nanoresonators in mass sensing and biological object

detection. A succinct review will be presented to show the potential of nanowires for

this specific application.

• The principal objective is to develop a comprehensive continuum model for the vi-

brations of piezoelectric nanowires considering different parameters, critical for the
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performance, such as electromagnetic fields, thermal variations, viscoelastic substrate,

nonlocal and surface effects, added mass and nonlinearity due to large oscillations.

• Another important objective is to investigate the sensitivity of the frequency behavior

of the nanowires to all of the above-mentioned parameters in both linear and nonlinear

regions.

• We will also look at approximate solutions of the vibrations of nanowire resonators by

using perturbation techniques.

• As another objective of this thesis, we will develop a numerical simulation technique

for the presented continuum model of the vibrations of nanowire resonators.

• Finally, it is an important objective of this thesis to develop molecular dynamics

simulations for the nanowire resonators with an added HIV virus at the middle of the

nanoresonator. Therefore, we will look at the effects of added mass of HIV virus on the

frequency shift of the nanowires using MD simulations, and provide a comparison with

those results obtained from continuum mechanics models. In addition, we will use the

MD simulations to investigate the effects of temperature and SiNW’s size variation on

the frequency behavior of nanowire resonators.

1.4 Thesis Structures

This Master’s thesis contains six chapters, and its structure is as follows:

• Chapter 1 presents the problem statements, literature review with focus on modelling

of nanowire resonators, applications of nanoresonators in mass sensing and bio-object

detection, as well as drug delivery. The chapter ends with discussing the objectives of

the thesis and its structure.
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• Chapter 2 provides details on the modelling of the considered nanowire resonators

and the related mathematical background. We first start with illustrating the Euler-

Bernoulli beam theory, and then, its combination with the nonlocal Erigen theory.

Mathematical equations related to the nonlocal form for the piezoelectric materials

is also presented in this chapter. The formulations pertinent to the electromagnetic

field effect, temperature variations, the mechanical stress induced by the piezoelectric

potential, and also the surface effects are thoroughly discussed.

• Chapter 3 shows the use of perturbation analysis for the developed governing equation

in order to study the effect of different parameters on the different resonance cases

in the vibrations of nanowires. We provide details on the effect of the variation of

different parameters on the frequency response of the nanowire resonators.

• In Chapter 4, we use the Finite Difference Method as a numerical approach to solve the

governing equation of nanowire resonator for obtaining its frequency of oscillations.

• Chapter 5 presents the molecular dynamics simulations of the considered nanowire

resonator.

• The last chapter discusses the conclusions and future works.





Chapter 2

Mathematical Model

2.1 Overview

The main challenges in the field of nanotechnology are connected with our ability to better

understand materials properties of nanostructures, and also with our capability to correctly

predict their behaviour under different conditions. It is an interdisciplinary field where

scientists, engineers, and mathematicians are working together in determining materials

properties of nanostructures, creating new nano-objects with enhanced capabilities, and

developing necessary modelling tools, which give the power of a reliable predictive capacity.

In this chapter, we first provide geometrical representation and material parameters of

our system of interest. Then, we discuss the dominant mechanical theories for the modelling

of nanostructures. Section 2.3 describes the Euler-Bernoulli beam theory (EBT), the relevant

stress-strain relations, and its connection with bending moment, shear and axial forces

[69, 70]. Section 2.4 briefly describes the nonlocal theory and its application in nanoresonators

and piezoelectric materials.

An introduction to the surface effects and its application in modelling of nanoresonators is

presented in section 2.5. Section 2.6 provides the detailed procedure for finding the governing

equation of considered nanoresonators using nonlocal EBT. Effect of different physical
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parameters are considered in the modelling of nanowires including piezoelectricty, thermal

effect, electromagnetic field, and surface tension. Given the focus of this thesis on tiny mass

sensing, considering important effects of external disturbances, such as thermal, magnetic

field, and electromechanical load, we note that a very small perturbation due to these effects

can change the sensitivity of the nanowire resonator. It is assumed here that the nanowire

resonator is rested on a nonlinear foundation with damping. Furthermore, an added mass

is located at the middle of the nanowire resonator. The added mass is considered in our

mathematical model, as this nanowire is intended to detect mass of tiny bio-objects. An

external periodic load is also exerted to the considered nanowire resonator. The considered

boundary and initial conditions are presented in sections 2.7 and 2.8, respectively.

2.2 Geometry and Material Parameters

In this chapter we aim to model the vibrations of piezoelectric nanowires, taking into account

electromagnetic, thermal, nonlocal and surface effects with an external load rested on a

Winkler foundation [71]. Figure 2.1(a) shows the geometry of the considered nanowire

resonator in this thesis. There exist different types of nanowire resonators with distinct forms

of cross sections such as circular and rectangular. In our model, it is supposed that the

nanowire has a rectangular cross section as it can provide a flat surface on its top for locating

the added mass, comparing to the circular cross section. The nanowire resonator has the

length of L, height of 2h, and width of b, as indicated in Figure 2.1(b). Figure 2.2 represents a

3D view of the nanowire resonator. In the first approximation, we will represent our nanowire

as a beam.

Based on ref. [72] we consider the following sizes for the nanowire: h = 1 nm, b = 3 nm

and L = 15 nm. Regarding the material of our nanoresonator, we use the properties of silicon

nanowire, presented in Appendix B. Silicon nanowire has shown a promising potential for
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ultra-high resolution sensing because of its high modulus of elasticity, and accordingly, its

high resonant frequency [3].

In the next section, we start with presenting the Euler-Bernoulli theory for the vibrations

of a beam, and then it is extended to the nonlocal formulation, taking into account other

important features such as piezoelectricty and surface effects.

2.3 The Euler-Bernoulli Beam Theory

The Euler-Bernoulli Theory (EBT) is used in order to obtain the governing equation of elastic

nanowires. This theory can be applied to thin beams in which the length and deflections are

much larger and much smaller than the depth, respectively. The main assumptions of EBT

are as follows:

First, it is supposed that the cross-section is infinitely rigid in its own plane. Second, it is

assumed that the cross-section of a beam remains in the plane after deformation. Furthermore,

the cross-section remains normal to the deformed axis of the beam [73].

Based on EBT, the displacement field can be found by the following equations [69, 70]:

ua = u(x, t)− z
∂w(x, t)

∂x
, ub = 0, uc = w(x, t), (2.1)

in which u and w represent the axial and transverse deflection, respectively. According to

the nonlinear von Karman theory [74], the only nonzero strain of the Euler-Bernoulli beam

theory is as following:

εxx =
∂u(x, t)

∂x
+

1
2

(
∂w(x, t)

∂x

)2

− z
∂ 2w(x, t)

∂x2 , (2.2)

where εxx is the strain in x direction.
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In accordance with the EBT, we have the following relations between transverse shear

forces V , bending moment M and the axial forces N:

∂V (x, t)
∂x

=
∂ 2M(x, t)

∂x2 +N(x, t)
∂ 2w(x, t)

∂x2 , (2.3)

and
∂N(x, t)

∂x
+ fu = 0, (2.4)

where fu is the distributed axial load (measured per unit undeformed length) [69, 70, 73].

Axial forces and bending moment can be represented as the following relationships:

N =
∫

σxxdA =
∫

EεxxdA = EA
[

∂u(x, t)
∂x

+
1
2

(
∂w(x, t)

∂x

)2]
, (2.5)

and

M =
∫

z ·σxxdA =
∫

z ·EεxxdA =−EI
∂ 2w(x, t)

∂x2 , (2.6)

in which, σxx represents the axial stress. Using the Euler-Bernoulli beam theory, this set

of equations (Eq.(2.3)-Eq.(2.6)), will be utilized as the basis of our modelling to find the

governing equation of the considered nanowire resonator. It should be noted that in our

modelling we extend the Euler-Bernoulli beam theory to piezoelectric nanowires considering

the piezoelectric effect. The details of this is provided in the next section, which we start

from the description of the basis of the nonlocal theory.

2.4 Nonlocal Theories

The classical continuum models are not capable of modelling the length scales of the

nanoresonators. In fact, continuum models cannot consider the material microstructure (such

as lattice spacing between individual atoms), which are highly important in the modelling
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of nanostructures [75, 76]. Although the implementation of atomic and molecular models

results in an accurate analysis of nanoresonators, they are difficult to use, and highly time

consuming in terms of computation. Nonlocal models empower the classical continuum

approaches to account for the length scale in nanoresonators. Indeed, the use of nonlocal

theory results in adding the internal length scale into the constitutive equations simply as a

material parameter. The basis of nonlocal continuum theory was first proposed by Eringen

[77, 78].

In accordance with the Eringen form of the nonlocal elasticity [77, 78], the stress field at

a point is a function of strains at all other points in an elastic continuum. This would lead to

an integral form of constitutive relations. Therefore, the nonlocal stress tensor σn at point x

is represented as [74] :

σn =
∫

V
K(|x′− x|,τm)S(x′)dx′, (2.7)

where S(x) is classical macroscopic stress tensor at point x and K(|x′− x|,τm) is the kernel

function which implies the nonlocal modulus. |x′−x| and τm are the distance in the Euclidean

norm and material constant, respectively. According to the Hooke’s law, there is a relationship

between S(x) at a point x in a Hookean solid and strain , εt , at the point, which can be written

as follows:

S(x) =C(x) : εt(x), (2.8)

in which C shows the fourth-order elasticity tensor and symbol : represents the double-dot

product (see ref. [79]). Equations (2.7) and (2.8) are the constitutive equations, which can

describe the nonlocal constitutive behavior of a Hookean solid. Since, it is difficult to use

the integral constitutive relation shown in Eq. (2.7), it has been redefined in an equivalent

differential form as:

(1− τ
2
ma2

e∇
2)σn = S(x), τm =

e0ai

ae
, (2.9)
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where e0, ai and ae are material constant, internal and external characteristic lengths, respec-

tively. We can represent the stress resultants in terms of the strains in different beam theories

by the following equation [74]:

Ξ = 1−Γ∇
2, Γ = e2

0a2
i . (2.10)

In the next section, we present the nonlocal stress theory for beams.

2.4.1 Nonlocal Stress Relations for Beams

The nonlocal theory yields a differential relation between stress resultants and the strains.

Considering an immaterial nonlocal behaviour in the thickness (2h in Fig. 2.1) direction of

beam, Eq. (2.10) takes the following form [74]:

Ξ(σxx) = Eεxx, Ξ(σxz) = 2Gεxz, Ξ = 1−Γ
∂ 2

∂x2 , (2.11)

in which E is the Young modulus and G represents shear modulus. Γ implies the nonlocal

parameter, which is equal to zero in the local theory.

Following [70, 80], we have the axial force-strain relation, which is identical in all beam

theories:

Ξ(N) = N −Γ
∂ 2N
∂x2 = EA

[
∂u
∂x

+
1
2

(
∂w
∂x

)2]
, (2.12)

and

A =
∫

A
dA,

∫
A

zdA = 0,

where the x axis passes through the geometric centroid of the beam.
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Accordingly, the constitutive relationship between bending moment and strain is con-

structed as below [80]:

M−Γ
∂ 2M
∂x2 =−EI

∂ 2w
∂x2 . (2.13)

In the next part, we will introduce the nonlocal theory for piezoelectric materials.

2.4.2 Extension of Nonlocal Theories in Piezoelectric Nanowires

According to the nonlocal piezoelectricity theory, the stress and the electric displacement at

a point do not only depend on the strain and electric-field at the point, but on all other points

of the body. The nonlocal constitutive relationships for the piezoelectric nanowire are given

by the following equations [81, 82]:

σn =
∫

V
K(|x′− x|,τm)[Cεt(x′)− eEe(x′)]dx, (2.14)

D =
∫

V
K(|x′− x|,τm)[eεt(x′)− ∈ Ee(x′)]dx. (2.15)

The differential constitutive equations corresponding to the integral form of equations (2.14)

and (2.15), can be reconstructed as below:

σn −Γ ∇
2
σn =Cεt − eEe, (2.16)

D−Γ ∇
2D = eεt +λEe, (2.17)

in which D, Ee, C, e and λ are electric displacement, electric field, fourth-order elasticity

tensor, piezoelectric constants and dielectric constants, respectively. The description of

surface effects is provided next.
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2.5 Surface Effects

There are two important effects due to the nanoscale free surfaces. The first effect is surface

stress and the second one is the surface elasticity. Both effects occur due to the fact that

surface atoms in nanomaterials have a distinct bonding configuration as compared to atoms

lying within the bulk material. Surface energy can be utilized in order to investigate the

surface effects. There is a relationship between surface stress tensor σ s, surface energy

density γs and surface strain tensor εs as below [83, 84]:

σ
s = γsδ +

∂γs

∂εs . (2.18)

Considering the one-dimensional and linear form of the surface stress tensor, we can write

the Eq. (2.18) as the following equation for the surface stress of the nanowire:

σ
s
xx = τ0 +Es

ε
s
xx, (2.19)

in which τ0 and Es represent the residual surface tension and surface elastic modulus,

respectively. In the classical EBT, flexural rigidity EIz, is considered as a significant quantity,

due to the fact that it can be used to analyze the beam deformation. The flexural rigidity

consists of E and Iz which are Young’s modulus and the second moment of area, respectively.

For a nanowire with rectangular cross section, we have the following equation for Iz:

Iz = b
(2h)3

12
, (2.20)

where b is the width and 2h is the height of a rectangular cross section of the nanowire (see

Fig. 2.1).

By modeling a very thin isotropic elastic layer below the surface, the surface elasticity

impact can be investigated. E1 is defined as the Young’s modulus of the surface layer, and a
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is considered as the thickness of considered layer. We assume that a is approaching to zero,

keeping E1a as the constant of surface stiffness Es, in order to recreate the idealized surface

with zero thickness considered in the surface elasticity theory. Therefore, surface elasticity

effects on the bending of a beam can be considered by replacing EIz with the following

effective flexural rigidity [84]:

(EI)∗ =
1

12
Ebh3 +

1
2

Esbh2 +
1
6

Esh3. (2.21)

In accordance with the Laplace-Young equation [85], the jump of the normal stress (σu
m j −

σ l
m j)vmv j across a surface is given by the following equation:

(σu
m j −σ

l
m j)vmv j = τ0c, (2.22)

in which c and vm are the curvature of the surface and the unit vector normal to the surface,

respectively. Considering w(x) as the deflection at the position x, the second derivative of

w(x) with respect to x, w′′(x), is an approximation of the curvature of a bending beam. In a

deformed beam, the residual surface tension will produce a distributed transverse loading,

q(x), along the longitudinal direction, which is opposed to the undeformed beam, in which

w′′(x) = 0 . We have the Laplace-Young equation as below:

q(x) = Hw′′(x), (2.23)

where H is a function of residual surface tension and the cross-sectional shape. For the

rectangular cross section nanowire we have H as follows [84]:

H = 2τ0b. (2.24)
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The above equation is considered as the applied surface tension to the nanowire and will be

used in our system of mathematical modelling in section 2.6.

2.6 Governing Equation of Nonlinear Nanowire Resonator

As we plan to mathematically model a piezoelectric nanowire resonator, the core of our

model is based on the theories described in sections 2.3-2.5. Specifically, in our modelling,

we use the nonlocal Euler-Bernoulli beam theory presented in section 2.4.1, accounting for

piezoelectric and surface effects, discussed in sections 2.4.2 and 2.5, respectively.

In order to develop the mathematical model of the considered nanoresonator, we need to

find the corresponding axial load N, shear force V , and bending moment M. This will lead

us to having all required mechanical terms in Eq. (2.3) based on the Euler-Bernoulli beam

theory.

We first start with modelling the surface effects in our nanowire resonator. As we deal

with a nanoresonator, due to the small ratio of the volume to area, it is important to account

for the surface effects in the modelling in order to be able to carry out a more practical and

accurate analysis of the mass sensitivity of the nanowire resonator. The surface stresses of

the nanowire can be described by Eq. (2.19) and the following equation:

σxz = τ0
∂w
∂x

. (2.25)

As it is required to fully satisfy the equilibrium conditions between nanowire’s main core

and it’s corresponding surface layers, the following equations for both the upper and lower

surfaces must be satisfied [86]:

σ
up
m j,m −σ

up
jz = ρ0

∂ 2uup
j

∂ t2 , σ
l
m j,m +σ

l
jz = ρ0

∂ 2ul
j

∂ t2 , (2.26)
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where the up and l signs represent the upper and lower surfaces, respectively, ρ0 is the

surface density of surface layers. We have m = x,y and j = x,y,z. Considering Eq. (2.1) and

Eq. (2.25), Eq. (2.26) can be reconstructed for the transverse vibrations of the nanowire as

follows (see ref. [86], pages 2−3):

σ
up
zz = τ0

∂ 2w
∂x2 −ρ0

∂ 2w
∂ t2 , σ

l
zz =−τ0

∂ 2w
∂x2 +ρ0

∂ 2w
∂ t2 . (2.27)

The following equation displays the linear variation of σzz through the nanowire thickness:

σzz =
1
2
(σup

zz +σ
l
zz)+

z
2h

(σup
zz −σ

l
zz). (2.28)

Substituting Eq. (2.27) into Eq. (2.28), results in the following equation for σzz :

σzz =
z
h

(
τ0

∂ 2w
∂x2 −ρ0

∂ 2w
∂ t2

)
. (2.29)

Based on the Laplace-Young equation, illustrated in section 2.5, we assume two distributed

loads are exerted along the x coordinate due to the effect of residual surface stress. Accord-

ingly, the following forms are considered for the distributed loads pertinent to the surface

stress effects:

g1(x) = bτ
up
0

∂ 2w
∂x2 , g2(x) = bτ

l
0

∂ 2w
∂x2 . (2.30)

It is supposed that, both upper and lower surfaces have analogous properties, therefore, the

resultants of the above-mentioned distributed loads are presented as below [86]:

Gs(x) = g1(x)+g2(x) = 2bτ0
∂ 2w
∂x2 . (2.31)

Temperature variations can change the sensitivity of the nanowire resonator for mass sensing.

For understanding the effect of thermal variations on the response of the nanowire resonator,
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we should consider the exerted stress due to the thermal load in our modelling. In order to

account for the thermal effect in our model, we need to add the thermal stress-strain term to

Eq. (2.2). The thermal stress term can be written as follows:

σθ =− E
1−2v

αxθt , (2.32)

where σθ , ν , αx, and θt represent the axial thermal stress, Poisson ratio, the coefficient of

thermal expansion in the direction of x axis, and temperature, respectively. Accounting for

large amplitudes of oscillations of the nanowire and the axial load due to the thermal stress,

we have the following relation for the longitudinal displacement u as a function of transverse

deformation w [87]:

u =−1
2

∫ L

0

(
∂w
∂x

)2

dx+
x

2L

∫ L

0

(
∂w
∂x

)2

dx− 1
2

∫ L

0

(
1

1−2v

)
αxθtdx. (2.33)

Substituting Eq. (2.33) and Eq. (2.2) into Eq. (2.4) results in:

T =
EA
2L

(∫ L

0

(
∂w
∂x

)2

dx− 1
1−2v

αxθt

)
, (2.34)

where T represents two terms of the axial load owing to thermal stress and the large oscilla-

tions of the nanowire.

Another important term that should be taken into account is the electromagnetic field

effect. Several researchers have shown that the magnetic field is affecting the vibrations of

nanowire [35]. In accordance with this observation, it is critical to take into account the effect

of electromagnetic field in our modelling of nanowire resonators with application in mass

sensing. To include the electromagnetic field effect into the governing equations of nanowire

resonators, based on the Maxwell equations [88, 89], we have the following set of equations
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in the Cartesian coordinates, (x,y,z), as presented in Fig. 2.1:

J = ∇×hm, (2.35)

∇× em = ζm
∂hm

∂ t
, (2.36)

∇.hm = 0, (2.37)

em =−ζm
∂U
∂ t

×Hm, (2.38)

hm = ∇× (U ×Hm), (2.39)

where J, em, hm, U and ζm represent current density, strength vectors of electric field, dis-

turbing vectors of magnetic field, the vectors of displacement, and the magnetic permeability,

respectively. In order to obtain the magnetic field, which applies the transverse force to

the nanowire, we first consider the general case of U = (u,v,w) as the displacement vector.

Accordingly, we assume a longitudinal magnetic field vector as Hm = (Hx,0,0). Therefore,

we obtain:

hm = ∇× (U ×Hm) =−Hx

(
∂v
∂y

+
∂w
∂x

)
î+Hx

∂v
∂x

ĵ+Hx
∂w
∂x

k̂ (2.40)

and

J =∇×hm =Hx

(
∂ 2v

∂x∂ z
+

∂ 2v
∂x∂y

)
î−Hx

(
∂ 2v

∂y∂ z
+

∂ 2v
∂x2 +

∂ 2w
∂ z2

)
ĵ+Hx

(
∂ 2v
∂x2 +

∂ 2v
∂y2 +

∂ 2w
∂y∂ z

)
k̂.

(2.41)



2.6 Governing Equation of Nonlinear Nanowire Resonator 31

The Lorentz force fL exerted by the longitudinal magnetic field is obtained using the following

equation[88, 89]:

fL = ζm(J×Hm) = ζm

[
0î+H2

x

(
∂ 2v
∂x2 +

∂ 2v
∂y2 +

∂ 2w
∂y∂ z

)
ĵ+H2

x

(
∂ 2w
∂x2 +

∂ 2w
∂y2 +

∂ 2v
∂y∂ z

)
k̂
]
.

(2.42)

Therefore, the components of Lorentz force in x,y, and z directions are defined as follows:

fx = 0, (2.43)

fy = ζmH2
x

(
∂ 2v
∂x2 +

∂ 2v
∂y2 +

∂ 2w
∂y∂ z

)
, (2.44)

fz = ζmH2
x

(
∂ 2w
∂x2 +

∂ 2w
∂y2 +

∂ 2v
∂y∂ z

)
. (2.45)

As we only investigate the transverse vibrations of the nanowire, the Lorentz force in z-

direction is implemented as:

fem = fz = ζmH2
x

∂ 2w
∂x2 . (2.46)

The above equation is used in our governing equation of the transverse vibration, Eq. (2.58),

as the term of electromagnetic force.

For the piezoelectric effect, we should find its corresponding axial load. Accordingly, the

electric displacement can be given by the following equations [90, 91]:

Ex =−∂ψ

∂x
, Ez =−∂ψ

∂ z
, (2.47)

and we have:

Dx = λ11Ex, Dz = e31εxx +λ33Ez, (2.48)
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∂Dx

∂x
+

∂Dz

∂ z
= 0, (2.49)

where λ11 and λ33 are dielectric constants, Dx, Dz, e31, and ψ show the electric displacements,

piezoelectric coefficient, and the electric potential, respectively. Ex and Ez represent the

components of the electric field. For the considered nanowire resonator, we suppose that the

electrical potential ψ varies between −h to h across the height of the nanowire. Accordingly,

we can consider a uniform piezoelectric distribution along the NW. It implies that ψx ≪ ψz,

therefore, we can neglect the electric displacement Dx in comparison with Dz. Based on this

assumption, Eq. (2.49) will be written in the following form:

∂Dz

∂ z
= 0. (2.50)

We consider the following boundary conditions for the electrical potential distribution to

solve the above differential equation and combine the term related to the piezoelectric effect

with the boundary conditions for the vibrations of the nanowire:

ψ(x,−h) = 0, ψ(x,h) = 2Ve. (2.51)

Using Eqs. (2.17), (2.47), (2.48) and Eq. (2.50) and assuming the above boundary conditions

results in the following form of electrical potential (derivation is provided in Appendix C) :

ψ(x,z) =− e31

λ33

(
z2 −h2

2

)
∂ 2w
∂x2 +

(
1+

z
h

)
Ve, (2.52)

where Ve is the electric voltage [86]. The exerted axial load by piezoelectric potential is

obtained using the following equation:

pe = b
∫ h

−h
σxxdz. (2.53)
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Substituting Eq. (2.47) and Eq. (2.52) into Eq. (2.17), and then into Eq. (2.53) results in the

following form of the axial load:

pe = 2Vebe31. (2.54)

Combining Eq. (2.53), Eq. (2.31) and Eq. (2.34), the following equation is obtained for the

axial load, N, indicated in Eq. (2.55):

N = Pe +
EAe f f

2L

∫ L

0

(
∂w
∂x

)2

dx− 1
1−2v

αxθt +2bτ0. (2.55)

Turning to Figure 2.1(a) and using the Newton’s law, we can write the following formulation

for the shear force applied to the nanowire:

∂V
∂x

= (ρA)e f f
∂ 2w(x, t)

∂ t2 +mpδ (x− xp)
∂ 2w(x, t)

∂ t2 +

µ
∂w(x, t)

∂ t
+ k1w(x, t)+ k3w3(x, t)−F(x, t)− fem, (2.56)

where ρ , V , µ , mp, xp, k1 and k3 are density, shear force, damping coefficient, particle mass,

position of applied force, linear and nonlinear Winkler coefficient, respectively. The terms

k1w(x, t) and k3w3(x, t) are the forces exerted to the nanowire resonator by the assumed linear

and nonlinear foundations, respectively.

Substituting Eqs. (2.55) and (2.56) into Eq. (2.3), and then using Eq. (2.13), results in

the following governing equation for the vibrations of piezoelectric nanowire considering an

added mass:

(EI)e f f
∂ 4w
∂x4 +

(
1−Γ

∂ 2

∂x2

)
Ψ = 0, (2.57)
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where

Ψ = (ρA)e f f
∂ 2w(x, t)

∂ t2 +mpδ (x− xp)
∂ 2w(x, t)

∂ t2 +

µ
∂w(x, t)

∂ t
+ k1w(x, t)−2bτ0

∂ 2w
∂x2 + k3w3(x, t)−F(x, t)−ζmAH2

x
∂ 2w
∂x2 +

2Vebe31
∂ 2w
∂x2 −

(
(EA)e f f

2L

∫ L

0

(
∂w
∂x

)2

dx−Nθ

)
∂ 2w
∂x2 , (2.58)

where [90]

(ρA)e f f = ρA+2bρ0, (2.59)

(EI)e f f = EI +2Es +4Es h3

3
− vI

τ0

h
+

2be2
31h3

3λ33
, (2.60)

(EA)e f f = Ebh+2Es(b+h), (2.61)

F(x, t) = F̄δ (x− xp)cos(Ωt), (2.62)

Nθ =
1

1−2v
αxθt . (2.63)

We need to develop the dimensionless form of the above equation by defining the following

variables: ξ = x
L , W̄ = w

L , τ = ωnt. Considering these new variables, Eqs. (2.57) and (2.58)

are rewritten as follows:

∂ 4W̄
∂ξ 4 +Π

∂ 2W̄
∂τ2 −ϒΠ

∂ 4W̄
∂τ2∂ξ 2 +κ

∂ 2W̄
∂τ2 −ϒκ

∂ 4W̄
∂τ2∂ξ 2 +∆

∂W̄
∂τ

(2.64)

−∆ϒ
∂ 3W̄

∂τ∂ξ 2 +ψW̄ −ψϒ
∂ 2W̄
∂ξ 2 −2

τ0

L
∂ 2W̄
∂ξ 2 +2ϒ

τ0

L2
∂ 4W̄
∂ξ 4 −F

(
ξ

L
,

τ

ωn

)
+ϒ

∂ 2

∂ξ 2 F
(

ξ

L
,

τ

ωn

)
−Λ

∂ 2W̄
∂ξ 2 +ϒΛ

∂ 4W̄
∂ξ 4 − γ1

∂ 2W̄
∂ξ 2 +ϒγ1

∂ 4W̄
∂ξ 4 +ψ1W̄ 3

+ϒ
∂ 2

∂ξ 2 ψ1W̄ 3 −ψ2

(∫ 1

0

(
∂W̄
∂ξ

)2

dξ +Nθ

)
∂ 2W̄
∂ξ 2 +

ψ2ϒ
∂ 2

∂ξ 2

(∫ 1

0

(
∂W̄
∂ξ

)2

dξ +Nθ

)
∂ 2W̄
∂ξ 2 = 0,
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where

ϒ =

(
e0a
L

)2

, Π =
L(ρA)e f f ω2

n

Λ1
, Λ1 =

(EI)e f f

L3 , ∆ =
µLωn

Λ1
,

κ =
mpδ (1− xp

L )ω
2
n L

Λ1
, ψ =

K1L
Λ1

, ψ2 =
(EA)e f f

Λ1L3 , Λ =
ξ AH2

x
LΛ1

, γ1 =
2V be31

LΛ1
.

The obtained governing equation of the nanowire resonator will be analyzed in Chapter 3

by using perturbation techniques and Chapter 4 by utilizing the numerical approaches. The

equation contains different effects which will be both qualitatively and quantitatively analyzed

in the next chapters of this thesis.

2.7 Boundary Conditions

As we are studying a piezoelectric nanowire, the boundary conditions (BCs) of this nanowire

corresponding to different types of end supports should also be examined. In this thesis, we

investigate two different cases for our BCs which are simply supported ends and clamped-

clamped (CC) ends. In a simply supported nanowire, one end is considered as pinned support

and the other one as roller support. In this case, the deflection and bending moment are

zero. In a clamped nanowire, the end is assumed to be fixed and there is no deflection and

slope being considered.

In order to develop the dimensionless form of the governing equation of nanowire

resonators, presented by Eq. (2.57), we defined the following variables: ξ = x
L , W̄ = w

L . Based

on this definition and the initial length of the nanowire, L (see Figure 2.1), we conclude that

ξ = [0 1]. The following table represents the BCs for the nanowire, taking into account for

the dimensionless form of the governing equation (see Eq. (2.64)):
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Table 2.1 Boundary Conditions of Nanowire

Boundary Condition At left end (ξ = 0) At right end (ξ = 1)

Simply Supported Ends W̄ (0,τ) = 0, ∂ 2W̄
∂ζ 2 (0,τ) = 0 W̄ (1,τ) = 0, ∂ 2W̄

∂ζ 2 (1,τ) = 0

Clamped-Clamped End W̄ (0,τ) = 0, ∂W̄
∂ζ

(0,τ) = 0 W̄ (1,τ) = 0, ∂W̄
∂ζ

(1,τ) = 0

2.8 Initial Conditions

The following general form of the initial conditions is assumed for the nanowire resonator:

W̄ (ξ ,τ = 0) = W̄0 (2.65)

and
∂W̄
∂τ

(ξ ,τ = 0) = ˙̄W0. (2.66)

In the next chapter, we use the perturbation technique to quantify the effect of different

parameters introduced in the developed governing equation of the nanowire resonator.



Chapter 3

Perturbation Analysis

3.1 Overview

In Chapter 2, we developed a mathematical model for the vibrations of nanowire resonators

accounting for different parameters. The developed model will be analyzed in this chapter

using the method of multiple scales (MMS). In fact, the main focus of the present chapter

is on the implementation of MMS to provide a qualitative analysis for the vibrations of

nanowire resonators with an added mass, modelled in Chapter 2. In section 3.2, we use

the Galerkin method to extract the time dependent part of the model proposed in Chapter

2. This will lead us to a nonlinear differential equation, which will be solved in section

3.4 by using MMS. Applying MMS to the obtained nonlinear differential equation gives

the primary resonance formulation. The developed form of the primary resonance is used

then for our parametric sensitivity analysis presented in section 3.4.2 considering simply

supported boundary conditions for the nanowire resonators. We investigate the effect of

different parameters including the added mass, electromagnetic fields, temperature variations,

piezoelectric voltage and nonlocal parameters on both linear frequency and nonlinear primary

resonance of nanowire resonators. Section 3.4.3 provides details of a sensitivity analysis

based on the primary resonance for nonlinear vibrations of nanowire resonators. The effect
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of boundary conditions is discussed in section 3.4.4. A super-harmonic resonance analysis is

presented in section 3.4.5 based on the perturbation technique. Chapter ends with a sensitivity

analysis in accordance with the obtained super-harmonic resonance case.

3.2 Galerkin Method

In this chapter, we aim at finding the primary resonance and frequency behavior of the

oscillations of nanowires based on the developed model in Chapter 2. In order to analyze the

oscillations of nanowire resonators and obtain the primary resonance using MMS, the first

step is to apply the Galerkin method [92], which discretizes the time dependent part of Eq.

(2.64). Accordingly, we consider the following form for W̄ (ξ ,τ) in order to discretize Eq.

(2.64) taking into account the primary mode of nanowire oscillations [92]:

W̄ (ξ ,τ) = φ(ξ )ū(τ), (3.1)

where φ(ξ ) defines the dimensionless deflection shape of the beam and it can be found

from Table 2.1 based on the assumed boundary conditions. In Eq. (3.1), ū(τ) represents the

dimensionless time dependent part of the oscillations of nanowires. Since our focus is on the

vibration and frequency analysis of nanowire resonators, we use the separation of variables

to find the time dependent part of the developed model in Chapter 2 [92]. Using the Galerkin

method, we substitute Eq. (3.1) into Eq. (2.64) and then taking the integral from both sides

of the equation, the following nonlinear ordinary differential equation is obtained:

¨̄u+
α1

α0
˙̄u+

α2

α0
ū+

α3

α0
ū3 =

αF

α0
cos

(
Ω

ωn
τ

)
, (3.2)
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in which

α0 = Π(
∫ 1

0
φ

2(ξ )dξ −ϒ

∫ 1

0
φ
′′(ξ )φ(ξ )dξ )+

κ(
∫ 1

0
φ

2(ξ )dξ −ϒ

∫ 1

0
φ
′′(ξ )φ(ξ )dξ ), (3.3)

α1 = ∆(
∫ 1

0
φ

2(ξ )dξ −ϒ

∫ 1

0
φ

”(ξ )φ(ξ )dξ ), (3.4)

α2 = Π(
∫ 1

0
φ

2(ξ )dξ −ϒ

∫ 1

0
φ
′′(ξ )φ(ξ )dξ )−

ψ(
∫ 1

0
φ

2(ξ )dξ −ϒ

∫ 1

0
φ
′′(ξ )φ(ξ )dξ )+

2τ0

L
(
∫ 1

0
φ

2(ξ )dξ −ϒ
2τ0

L2

∫ 1

0
φ
′′(ξ )φ(ξ )dξ )−

γ1(
∫ 1

0
φ
′′(ξ )φ(ξ )dξ −ϒ

∫ 1

0
φ
′′′′(ξ )φ(ξ )dξ )

Λ(
∫ 1

0
φ
′′(ξ )φ(ξ )dξ −ϒ

∫ 1

0
φ
′′′′(ξ )φ(ξ )dξ )

−ψ2
1

1−2ν
αxθt(

∫ 1

0
φ
′′(ξ )φ(ξ )dξ )−ϒ

∫ 1

0
φ
′′′′(ξ )φ(ξ )dξ ), (3.5)

α3 =−ψ2

∫ 1

0
φ
′(ξ )2

φ
′′(ξ )φ(ξ )dξ +ϒ

∂ 2

∂ 2ξ
(ψ2

∫ 1

0
φ
′(ξ )2

φ
′(ξ )φ(ξ )dξ ), (3.6)

and

αF = F̄
[∫ 1

0
δ

(
1−

xp

L

)
φ(ξ )dξ −ϒ

∂ 2

∂ξ 2

∫ 1

0
δ

(
1−

xp

L

)
φ(ξ )dξ

]
, (3.7)

where δ is the Dirac function. In order to analyze the Eq. (3.2), the Method of Multiple

Scales [93] will be employed in the next section. The main aim of using MMS is to find the
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primary and other types of resonances of nanowire vibrations, and then to investigate the

effect of different parameters on such vibrations. The next section will illustrate the MMS.

3.3 Method of Multiple Scales

The Method of Multiple Scales assumes that the expansion of the solution to a specific

problem is a function of multiple independent variables, or scales, instead of a single variable

t. The independent variables are considered as [94, 95]:

Tn = ε
nt, (3.8)

where ε is a small dimensionless parameter. It is supposed that the solution of interest can be

described by an equation in the following form [93]:

q(t,ε) = q0(T0,T1,T2, ...)+ εq1(T0,T1,T2, ...)+ ε
2q2(T0,T1,T2, ...)+ ..., (3.9)

in which the number of independent time scales relies on the order of the MMS that is

utilized. Generally, with employing Eq. (3.9) into a nonlinear differential equation and col-

lecting coefficients of equal powers of ε results in a system of n+1 differential equations. In

order to find the solution of the original nonlinear differential equation, the system of ODEs

requires to be solved sequentially for k = 1,2, ...,n− 1, along with neglecting the secular

terms, those terms that will become large when t increases, in the process at each order εk for

k = 1,2, ...,n. This will provide the following form of the solution for the original problem

[94]:

q(t,ε) =
n−1

∑
k=0

qk(T0,T1,T2, ...,Tn)+O(εn). (3.10)

Indeed, instead of finding q as a function of t, we determine q as a function of T0,T1,T2, ....

Therefore, the independent variable in the original nonlinear equation is altered from t to
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a set of variables T0,T1,T2, ... . Using the chain rule, the following forms of derivatives are

obtained based on the set T0,T1,T2, ...:

d
dt

=
∂

∂T0
+ ε

∂

∂T1
+ ε

2 ∂ 2

∂T2
+ ...= D0 + εD1 + ε

2D2 + ..., (3.11)

d2

dt2 =
∂ 2

∂T0
2 +2ε

∂ 2

∂T0∂T1
+ ε

2
(

2
∂ 2

∂T0∂T2
+

∂ 2

∂T1
2

)
+ ...= D2

0 (3.12)

+2D0D1ε +(D2
1 +2D0D2)ε

2 + ... .

In the next section, we will apply MMS to analyze Eq. (3.2) and investigate the vibration

behavior of nanowire resonators.

3.4 Implementation of MMS for Nanowire Resonators

In order to solve Eq. (3.2), we first rewrite it with implementation of small parameter ε .

Accordingly, we have the following nonlinear differential equation [95]:

¨̄u+2εµ̄ ˙̄u+ω
2
l ū+ εβ̄ ū3 = ε f cos(Ω1τ), (3.13)

where 2µ̄ = α1
α0

, ω2
l = α2

α0
, β̄ = α3

α0
, f = αF

α0
, and Ω1 =

Ω

ωn
. For the primary resonance case

analysis of the nanowire resonator, modelled in Chapter 2, the frequency of external excitation

Ω1 should be approximately equal to that of natural frequency ωl of the nanowire. Hence, to

delineate the nearness of Ω1 to ωl , one may use a detuning parameter σ , and by using the

dimensionless small parameter (ε) it can be written as:

Ω1 = ωl + εσ . (3.14)
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Now, we can expand ū as the following equation:

ū(τ,ε) = ū0(T0,T1)+ ε ū1(T0,T1). (3.15)

Accordingly, by using Eqs. (3.11), (3.12) and substituting Eq. (3.15) into Eq. (3.13), and

then by separating the similar power of ε , will result in the following set of differential

equations:

D2
0ū0 +ωl ū0 = 0, (3.16)

D2
0ū1 +ωl ū1 =−2D0D1ū0 −2µ̄ ū0 − β̄ ū3

0 + f cos(ωlT0 +σT1). (3.17)

The solution of Eq. (3.16) can be considered as:

u0 = A(T1,T2)exp(iωlT0)+ Ā(T1,T2)exp(−iωlT0). (3.18)

By substituting Eq. (3.18) into Eq. (3.17), we obtain the following form of equation:

D2
0ū1 +ωl ū1 =−[2iωl(A′+ µ̄A)+3β̄A2Ā]exp(iωlT0) (3.19)

−β̄A3 exp(3iωlT0)+
1
2

f exp[i(ωlT0 +σT1]+ c.c. ,

where c.c. stands for the complex conjugate terms. The term which contains exp(iωlT0) is

the secular term. In order to have a bounded solution, the secular terms should be neglected

as presented below [94]:

2iωl(A′+ µ̄A)+3β̄A2Ā− 1
2

f exp(iσT1) = 0. (3.20)
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Exerting A = a
2exp(iB) into Eq. (3.20) and separating the real and imaginary parts, we obtain

the following set of ordinary differential equations:

a′ =−µ̄a+
1
2

f
ωl

sin(σT1 −B), (3.21)

aB′ =
3
8

β̄

ωl
a3 − 1

2
f

ωl
cos(σT1 −B). (3.22)

By defining λ̄ = σT1 −B, Eqs. (3.21) and (3.22) are rewritten as below:

a′ =−µ̄a+
1
2

f
ωl

sin(λ̄ ), (3.23)

aλ̄
′ = aσ +

3
8

β̄

ωl
a3 − 1

2
f

ωl
cos(λ̄ ). (3.24)

We can find a steady state solution of the system of equations (3.23)-(3.24) by equating

a′ and λ̄ ′ to zero. We know that the amplitude and phase of the system do not depend on the

time and hence the time derivative terms of both terms are equal to zero. Therefore, we can

have the following equations:

µ̄a =
1
2

f
ωl

sin(λ̄ ), (3.25)

and

aσ − 3
8

β̄

ωl
a3 =

1
2

f
ωl

cos(λ̄ ). (3.26)

Squaring and adding the above equations, the following closed-form relationship is obtained

[95]: [
µ̄

2 +

(
σ − 3

8
β̄

ωl
a2
)2

]
a2 =

f 2

4ω2
l
. (3.27)

The above equation is 6th order polynomial in terms of a. It is also a quadratic equation in

terms of σ . Solving the above equation for σ , we obtain the following form as the frequency
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response curve for the Eq. (3.13):

σ =
3
8

β̄

ωl
a2 ±

[
f 2

4ω2
l
− µ̄

2

] 1
2

. (3.28)

The obtained relationship will be used in section 3.4.3 to quantify the effect of different

parameters on the primary resonance of the nanowire resonator.

3.4.1 Simply Supported Boundary Conditions

Based on section 2.7, we consider simply supported boundary conditions for the nanowire

resonator. In particular, we have:

φ(ξ ) = sin(πξ ). (3.29)

Implementing Eq. (3.29) into Eq.(3.3) to Eq. (3.7) will result in the following coefficients:

α1 = 0.5π
4 +0.5ψ +0.5ψϒπ

2 +
τ0

L
π

2 +ϒ
τ0

L2 π
4 + (3.30)

Λ

2
π

2 +
ϒΛ

2
π

4 + γ1
π2

2
+

ϒλ1

2
π

4 −

ψ2
2
π

(
1

1−2ν

)
αxθt −ψ2

π4

4

(
1

1−2ν

)
αxθt ,

and

α2 = 0.5∆+∆ϒ
π2

2
, (3.31)

and

α3 = ψ2
π4

4
+ϒψ2

π6

4
+

3
8

ψ1, (3.32)
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and

α0 = 0.5Π+0.5Πϒ, (3.33)

where all main constants in the right-hand sides of (3.30)-(3.33) have been defined in section

2.6. In the next section, we provide a sensitivity analysis considering different parameters

such as thermal, electromagnetic, piezoelectric, nonlocal and added mass.

3.4.2 Sensitivity Analysis: Linear Vibrations

This section provides a sensitivity analysis on the effect of different parameters on the vibra-

tion frequency of the nanowire resonator with simply supported boundary conditions. In our

analysis, we have considered the material characteristics of silicon nanowire defined in Table

B.1 (see Appendix). Figures of this section have been plotted based on the dimensionless

linear frequency of the nanowire resonator with respect to dimensionless added mass. The

dimensionless linear frequency is defined by the following equation:

ω̄ =
ωl

ω0
, (3.34)

where ω0 is the linear frequency of the nanowire resonator without added mass and it can

be obtained by using Eq. (3.3) and Eq. (3.5) (see Appendix, Eq. (E.1)). The dimensionless

mass m̄ is defined as below:

m̄ =
mp

mnw
, (3.35)

where mp and mnw represent the masses of the added particle and the nanowire, respectively.

Figure 3.1 shows the effect of dimensionless nonlocal parameter (e0a
L ) and added mass (m̄)

on the dimensionless linear frequency. As the figure demonstrates, increasing the added

mass results in decreasing the frequency. In addition, the value of frequency decreases by

increasing the nonlocal parameter for a given added mass.
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Fig. 3.1 Effect of the nonlocal parameter and added mass on the linear frequency of the
SiNW

Figure 3.2 represents the effect of temperature on the linear frequency of the nanowire. Based

on this figure, increasing temperature results in decreasing the linear natural frequency for a

given added mass. Although temperature variations result in a small shift in the frequency of

the nanowire for a specific added mass, it may affect the sensitivity of the nanowire resonator

for small mass sensing such as bio-objects, significantly.

The effect of piezoelectric voltage is presented in Figure 3.3. As displayed by this figure,

increasing the piezoelectric voltage decreases the frequency of oscillations of nanowire the

resonator. In addition, it shows that the piezoelectric voltage has a more pronounced effect on

the vibration behavior of the nanowire resonator in comparison with thermal variations. This

figure shows that the piezoelectric voltage significantly changes the sensitivity of the nanowire

resonator. Accordingly, the frequency of the nanowire resonator can be adjusted by using a

specific piezoelectric voltage. The effect of magnetic field is presented in Figure 3.4. This

figure shows that the magnetic field can be used for increasing the natural frequency of the

nanowire. Therefore, it can be utilized as a design parameter to adjust the frequency of the
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Fig. 3.2 Effect of the temperature [oK] variations and added mass on the linear frequency of
SiNW

nanowire to a specific value required for a mass sensing application. It must be noted that

the effect of electromagnetic fields on the vibrations of resonators, described by the model

developed in Chapter 2, is not very big but it is considerable for sensing applications with

high precision. All of these figures show that adding a tiny mass to a nanowire would result in

a detectable frequency shift. This frequency shift can be measured and used for detection of

the added mass in the case of experimental analysis. Therefore, our developed mathematical

model from Chapter 2 that accounts for magnetic, thermal and piezoelectric effects, along

with the provided solution procedure in Chapter 3, are useful for analytical calculations of

the added mass to the nanowire.
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3.4.3 Sensitivity Analysis: Nonlinear Vibrations

In this part, we study nonlinear vibrations of the nanowire using the obtained primary

resonance in section 3.4, accounting simply supported boundary conditions. Similar to

section 3.4.2, we have considered the material characteristics of silicon nanowire defined in

Table B.1 (see Appendix). Based on Eq. (3.28) developed in section 3.4, we investigate the

effect of added mass on the primary resonance of nanowire resonators. Figure 3.5 represents

the effect of the added mass on the primary resonance of nanowire resonators. As the figure

shows, adding a small mass (e.g., mp = 10−18g) to the nanowire results in a detectable shift

in the jump frequency. This jump can be observed in the experimental analysis [1]. This

observation can be analyzed using the provided model in Chapter 2. In addition, this figure

shows a high sensitivity of the nanowire resonator to a very small mass. It affects both

the jump frequency and also amplitude of oscillations. Accordingly, it can be concluded

that nanowire resonators have a high potential for detection of tiny particles such as bio-

objects. Figure 3.6 shows the effect of thermal variations on the primary resonance of the

nanowire resonator. As the figure presents, increasing temperature results in increasing

the amplitude of oscillations. In fact, increasing temperature reduces the stiffness of the

resonator, and therefore, both amplitude of oscillations and the value of jump frequency

increase. Analogous results can be obtained when the piezoelectric voltage increases (see Fig.

3.7). Increasing the piezoelectric voltage results in increasing the amplitude of oscillations

and also the value of the jump frequency. Accordingly, these two parameters can be used

for adjusting the amplitude and the jump frequency of the nanowire resonator. In many

practical situations of sensing, it is important to consider the effect of these two parameters

in measurements as they affect both vibration amplitude and also frequency. The effect of

electromagnetic fields is presented in Figure 3.8 based on the obtained primary resonance in

section 3.4. As the figure demonstrates, increasing the value of the magnetic field reduces

the value of jump frequency of the nanowire resonator. In addition, the value of amplitude of
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oscillations of the nanowire resonator decreases with increasing the value of the magnetic

field.
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Fig. 3.5 Effect of the added mass on the primary resonance of SiNW
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3.4.4 Clamped-Clamped Boundary Conditions

In this section, we study the effect of boundary conditions on the vibration behavior of

the nanowire resonator with the model developed in Chapter 2, considering the material

properties presented in Table B.1 (see Appendix). Figure 3.9 shows the effect of boundary

conditions and added mass on the linear frequency of the nanowire resonator, illustrated in

section 3.4.2. Based on this figure, the nanowire resonator with clamped-clamped bound-

ary conditions has a higher frequency of vibrations in comparison with simply supported

boundary conditions for a given added mass. It shows that not only variations in physical

parameters can change the frequency of vibrations in nanowire resonators, but also, boundary

conditions can significantly affect the frequency variation of nanowire resonators. Therefore,

boundary conditions can be considered as another important factor in order to study nanowire

resonators for mass detection applications.
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Fig. 3.9 Effect of the added mass and different boundary conditions on the linear frequency
of SiNW
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3.4.5 Super-Harmonic Resonance

The other resonance case that we can use for the sensitivity analysis of the considered

nanowire resonators is the super-harmonic resonance case. The super-harmonic case occurs

when Ω1 ≃ 1
3ωl [93]. This resonance case can also be considered for finding the effect of the

added mass on the frequency behavior of nanowire resonators. In order to assess this case,

following [93], we define the super-harmonic resonance case as:

3Ω1 = ωl + εσ . (3.36)

We assume the solution of Eq. (3.2) in the following form [93]:

ū0 = A(T1)exp(iωlT0)+ Γ̄exp(iΩ1T0)+ c.c. (3.37)

Substituting Eq. (3.37) into Eq. (3.2) results in:

D2
0ū1 +ωl ū1 =−[2iωl(A′+ µ̄A)+3β̄A2Ā+6β̄AΓ̄

2]exp(iωlT0) (3.38)

−β̄ [A3 exp(3iωlT0)+ Γ̄
3 exp(3iΩ1T0)+3A2

Γ̄exp[i(2ωl +Ω1)T0

3Ā2
Γ̄exp[i(Ω1 −2ωl)T0]+3AΓ̄

2 exp[i(ωl +2Ω1)T0]+

3ĀΓ̄
2 exp[i(ωl −2Ω1)T0]]− Γ̄[2iµ̄Ω1 +3β̄ Γ̄

2 +6αAĀ]exp(iΩ1T0)+ c.c.,

where,

Γ̄ =
f

2× (ω2
l −Ω2

1)
. (3.39)

For this resonance case, we must follow the resonance condition as below [93]:

3Ω1T0 = (ωl + εσ)T0 = ωlT0 + εσT0. (3.40)
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Now, we can eliminate the secular and near secular terms in Eq. (3.38) which leads to

following equation:

2iωl(A′+ µ̄A)+6β̄ Γ̄
2A+3β̄A2Ā+ β̄ Γ̄

3 exp(iσT1) = 0. (3.41)

Using A = a
2 exp(iB) and separating the real and imaginary parts, we obtain:

a′ =−µ̄a− αΓ̄3

ωl
sin(σT1 −B), (3.42)

aB′ =
3β̄

ωl

(
Γ̄

2 +
1
8

a2
)

a− β̄ Γ̄3

ωl
cos(σT1 −B). (3.43)

Using the defined λ̄ in section 3.4, we obtain the following equations:

a′ =−µ̄a− αΓ̄3

ωl
sin(λ̄ ), (3.44)

aλ̄
′ =

(
σ − 3β̄ Γ̄2

ωl

)
a− 3β̄

8ωl
a3 − β̄ Γ̄3

ωl
cos(λ̄ ). (3.45)

We can find a steady state solution of Eqs. (3.44)-(3.45) by equating a′ and λ̄ ′ to zero.

Accordingly, the following set of equations is obtained:

µ̄a =−αΓ̄3

ωl
sin(λ̄ ), (3.46)

(
σ − 3β̄ Γ̄2

ωl

)
a =

3β̄

8ωl
a3 +

β̄ Γ̄3

ωl
cos(λ̄ ). (3.47)

Eliminating λ̄ in the above equations, the following closed form relation can be obtained:

[
µ̄

2 +

(
σ −3

β̄ Γ̄2

ωl
− 3β̄

8ωl
a2
)2]

a2 =
β̄ 2Γ̄6

ω2
l

. (3.48)
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Solving the above equation based on the detuning parameter (σ ) and amplitude of oscillations

(a), we obtain the following closed form relationship for the super-harmonic resonance case:

σ = 3
β̄ Γ̄2

ωl
+

3β̄

8ωl
a2 ±

√
β̄ 2Γ̄6

ω2
l a2 − µ̄2. (3.49)

Following [93], the maximum amplitude for the case of super-harmonic resonance can be

found using the following formula:

ap =
β̄ Γ̄3

µ̄ωl
. (3.50)

Therefore, the super-harmonic resonance in the case of maximum amplitude of oscillation is

given as follows [93]:

σp =
3β̄ Γ̄2

ωl

[
1+

β̄ Γ̄4

8µ̄2ω2
l

]
. (3.51)

In the next section, we will use the obtained super-harmonic resonance for the parametric

sensitivity analysis of the nanowire resonator described by the model developed in Chapter 2.

3.4.6 Parametric Sensitivity Analysis

In this section, we focus on the super-harmonic resonance case of our silicon nanowire

resonator and the effect of different parameters on the peak amplitude defined by Eq. (3.50)

and its corresponding σp obatined in Eq. (3.51). All figures of this section are obtained

based on Eq. (3.50) and Eq. (3.51) using parameters defined in Table B.1 (see Appendix)

with simply supported boundary conditions (section 3.4.1). In these figures, the blue and

green lines are related to the amplitude of oscillations and super-harmonic resonance, respec-

tively. Furthermore, the natural frequency (ωl) is approximately equal to 66.6 GHz. Figure

3.10 shows the effect of temperature variations on both dimensionless peak amplitude (ap)

and its corresponding detuning parameter (σp). The corresponding values are obtained for

four different temperatures: T = 273, 300, 350, and 450 ◦K [96]. Based on this figure,

the detuning parameter of the super-harmonic resonance, σp, is 5.38 GHz at the tempera-
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ture of 425 ◦K. The corresponding amplitude of oscillations, ap, is 0.25 nm. As the figure

demonstrates, increasing environmental temperature increases both ap and σp. Therefore,

not only we can look at the primary resonance to understand the behavior of the nanowire

under thermal variations, but also, we can investigate the super-harmonic resonance as an

alternative approach for understanding the response of the nanowire resonator under different

thermal conditions. As it was expected both primary and super-harmonic resonance cases

show similar behaviors under thermal loads.
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Fig. 3.10 Effect of temperature on the peak amplitude and the detuning parameter of the
super-harmonic resonance of SiNW

Figure 3.11 reveals the effect of magnetic field on the super-harmonic resonance of

nanowire resonators. The figure shows the relation of both ap and σp to the variation

of magnetic flux density for the super-harmonic resonance case. Similar to the primary

resonance, increasing the magnetic flux density decreases both ap and σp . It should be noted

that H̄x represents the dimensionless form of the magnetic flux density.

Figure 3.12 shows the effect of piezoelectric voltage on both ap and σp. As the figure

depicts, increasing the piezoeletric voltage enhances both ap and σp of the nanowire resonator.
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To plot this graph (Fig. 3.12), we have chosen the value of 0, 0.1, 0.25, and 0.5 [V ]

for the piezoelectric voltage in Eqs. (3.50) and (3.51). In accordance with this figure, the
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detuning parameter of the super-harmonic resonance, σp, is 0.47 GHz at the piezoelectric

voltage of 0.5 [V ]. The corresponding amplitude of oscillations, ap, is 7.5 pm. As shown by

this figure, the super-harmonic resonance follows a similar behavior as the primary resonance

with respect to the variation of piezoelectric voltage.

This chapter has provided a qualitative framework for the vibration analysis of the silicon

nanowire resonator with added mass considering several parameters developed in Chapter

2. The provided analysis can give a better insight into the behavior of nanowire resonators

under different external conditions such as variations in temperature, electromagnetic fields,

added mass, and piezoelectric voltage. In the next chapter, we numerically investigate the

mathematical model developed for the consiered nanowire resonator.



Chapter 4

Numerical Analysis

4.1 Overview

There are two categories of computational methods, based on numerical and analytical pro-

cedures respectively, that can be utilized for structural analysis. In the previous chapter, we

used the perturbation analysis as an analytical method to investigate the vibrational behaviour

of our considered nanowire described by the model developed in Chapter 2. Although the

techniques based on analytical methods require less computational efforts and virtual storage,

numerical methods provide an easier implementation and a wider practical applicability. In

addition, they can provide a more accurate solution in comparison with perturbation meth-

ods. In order to use perturbation methods for the nonlinear vibration analysis of nanowire

resonators, it is necessary to add small parameter ε to Eq. (3.2), which reduces the accuracy

of this technique in comparison with more general numerical approaches. Hence, in this

chapter, we study the vibration of our developed system using numerical techniques. By

using a numerical approach, we can reach a more reliable analysis for the developed model

of nanowire resonators. In order to apply a numerical analysis to our nanowire, we use the

Finite Difference Method (FDM) as an established tool for structural analysis applications

[97, 98]. Using this technique, we analyze the frequency response of the model developed in
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Chapter 2 for nonlinear vibrations of nanowire resonators. In the next section of this chapter,

we first briefly illustrate the FDM approach for solving partial differential equations. We

note that this numerical method has been used by other researchers for vibration analysis of

nanoresonators, and it has shown its high efficiency for the frequency analysis of nanostruc-

tures [97, 98]. Then in section 4.3, we apply the FDM to the governing equation of nanowire

resonators developed in section 2.6. Finally, by using the obtained solution from the FDM, in

section 4.4, we present a sensitivity analysis to investigate the effect of different parameters

on the vibrations of nanowire resonators.

4.2 Finite Difference Method

Finite-difference methods are a generic class of numerical methods [99], which are being used

for solving differential equations by approximating them with difference equations, where

finite differences approximate the derivatives. FDMs require a discretization of the computa-

tional domain. The domain is partitioned in both space and time, and the approximations of

the solution are computed at points of the grid, resulted from the domain discretization. We

use Figure 4.1 to illustrate the FDM. As depicted in this figure, the computational domain is

covered by a time grid (t), and a space grid (x).
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X
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Fig. 4.1 Discretization of grid
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Based on the FDM method, the discretized equations based on the first, second, third and

fourth derivatives with respect to x are as follows [97, 100, 101]:

∂w
∂x

≈ wi+1 −wi−1

2∆x
, (4.1)

∂ 2w
∂x2 ≈ wi+1 −2wi +wi−1

(∆x)2 , (4.2)

∂ 3w
∂x3 ≈ wi+3 −3wi+2 +3wi+1 −wi

(∆x)3 (4.3)

∂ 4w
∂x4 ≈ wi−2 −4wi−1 +6wi −4wi+1 +wi+2

(∆x)4 , (4.4)

where

∆x =
Length o f X

Number o f Steps in X
. (4.5)

The accuracy of approximations (4.1), (4.2) and (4.4) at the grid point xi, is of the second

order, and approximation (4.3) is of the first order, with respect to (∆x). In the next section,

we apply FDM to our developed governing equation, Eq. (2.57), to provide a numerical

analysis for the frequency of nanowire resonators. It should be mentioned that Eq. (2.57)

includes the second and fourth order derivatives with respect to x, so we just apply (4.2) and

(4.4) approximations to study the FDM approach.

4.3 Implementation of FDM for Nanowire Resonators

In this section, we apply FDM to the governing equation (Eq. (2.57)) of nanowire res-

onators. In order to use FDM to analyze the developed model, we assume that the displace-
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ment of the nanowire resonator can be given in the following form [97]:

w(x, t) = w(x)eiωt , (4.6)

where ω is the frequency of the nanowire resonator. We first consider the linear part of Eq.

(2.57) developed in Chapter 2. Substituting Eq. (4.6) into the linear part of Eq. (2.57) results

in:

(P)
∂ 4w(x)

∂x4 +(Q)
∂ 2w(x)

∂x2 + k1w(x) = M̄ω
2w(x). (4.7)

By substituting the approximate derivatives, Eq. (4.2) and Eq. (4.4), into Eq. (4.7), the

following form is obtained:

G1(wi−2 −4wi−1 +6wi −4wi+1 +wi+2)+G2(wi+1 −2wi +wi−1)+ k1wi = (4.8)

ω
2[−G3wi −G4(wi+1 −2wi +wi−1)

]
,

where

G1 =
(EI)e f f +2Γbτ0 +Γζ AH2

x +2Γvbe31+Γ
(EA)e f f

2L Nθ

(∆x)4 , (4.9)

G2 =
−2bτ0 −ζmAH2

x −2vbe31− (EA)e f f
2L Nθ −Γk1

(∆x)2 , (4.10)

G3 = ρA+mp, (4.11)

G4 = Γ
mp +ρA

∆x2 , (4.12)

and

M̄ =
[
−G3wi −G4(wi+1 −2wi +wi−1)

]
. (4.13)
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Using Eq. (4.5) for i = 1, ...,N, we can represent ∆x as below:

∆x =
L

N −1
. (4.14)

By considering clamped-clamped boundary conditions for the nanoresonator (defined in

Table 2.1), we will have the following equations for both ends of the nanowire:

at x = 0 : w1 = 0, &
w2 −w0

2∆x
= 0, (4.15)

and

at x = N : wN = 0, &
wN+1 −wN−1

2∆x
= 0. (4.16)

Based on Eq. (4.15) and Eq. (4.16), we obtain the following relations:

w0 = w2, wN+1 = wN−1. (4.17)

It should be mentioned that w0 and wN+1 are fictitious values which can be eliminated in our

governing equation by using Eq. (4.17). Now, in order to solve Eq. (4.7) using FDM, we

substitute i = 2, ...,N −1 into Eq. (4.8), which results in a system of equations as follows:
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

A1 B1 C1 0 ... 0 0 0 0

A2 B2 C2 D2 ... 0 0 0 0

. . . . ... . . . .

. . . . ... . . . .

. . . . ... . . . .

0 0 0 0 ... AN−3 BN−3 CN−3 DN−3

0 0 0 0 ... 0 AN−2 BN−2 CN−2





w2

w3

.

.

.

wN−2

wN−1



= ω
2 (4.18)



G3 −2G4 G4 ... 0 0

G4 G3 −2G4 ... 0 0

. . ... . .

. . ... . .

. . ... . .

0 0 ... G3 −2G4 G4

0 0 ... G4 G3 −2G4





w2

w3

.

.

.

wN−2

wN−1



,

where

A1 = 7G1 −2G2 + k1, B1 =−4G1 +G2, C1 = G1, (4.19)

A2 =−4G1 +G2, B2 = 4G1 −2G2 +k1, C2 =−4G1 +G2, D2 = G1, (4.20)

AN−3 = G1, BN−3 =−4G1 +G2, CN−3 = 6G1 −2G2 + k1, (4.21)

DN−3 =−4G1 +G2,
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and

AN−2 = G1, BN−2 =−4G1 +G2, CN−2 = 7G1 −2G2 + k1. (4.22)

Hence, Eq. (4.18) can be rewritten in the following form:

(
− [M̄]ω2 +[K]

)
{w}= 0, (4.23)

where w = {w2,w3, ...wN−2,wN−1}T , M̄ and K are the mass and stiffness matrices, respec-

tively. M̄ is defined by the following matrix:

M̄ =



G3 −2G4 G4 ... 0 0

G4 G3 −2G4 ... 0 0

. . ... . .

. . ... . .

. . ... . .

0 0 ... G3 −2G4 G4

0 0 ... G4 G3 −2G4



. (4.24)

K represents the stiffness matrix, and it can be found as follows:

K =



A1 B1 C1 0 ... 0 0 0 0

A2 B2 C2 D2 ... 0 0 0 0

. . . . ... . . . .

. . . . ... . . . .

. . . . ... . . . .

0 0 0 0 ... AN−3 BN−3 CN−3 DN−3

0 0 0 0 ... 0 AN−2 BN−2 CN−2



. (4.25)
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In order to obtain the linear frequency of the vibrations of the nanowire resonator, we need to

find the solution of Eq. (4.23). A non-trivial solution of Eq. (4.23) can be obtained when the

determinant of coefficient matrix equals to zero as below:

∣∣∣[− [M̄]ω2 +[K]
]∣∣∣= 0. (4.26)

Solving the above equation would lead to finding the frequency of the nanowire resonator

described with the model developed in Chapter 2. For the nonlinear part of the governing

equation, Eq. (2.57), we have:

NL :=−
EAe f f

2L

[∫ L

0

(
∂w(x, t)

∂x

)2

dx
]

∂ 2w(x, t)
∂x2 + k3w3(x, t)−Γk3

∂ 2

∂x2 [w
3(x, t)] (4.27)

+Γ
EAe f f

2L

[∫ L

0

(
∂w(x, t)

∂x

)2

dx
]

∂ 2w(x, t)
∂x2 .

The integral term in our governing equation can be approximated by the following

relationship:

∫ L

0

(
∂w(x, t)

∂x

)2

dx ≈ L
2

[(
∂w(x, t)

∂x

)2∣∣∣∣
i=1

+

(
∂w(x, t)

∂x

)2∣∣∣∣
i=N

]
. (4.28)

Based on the defined boundary condition in Eqs. (4.15)-(4.16) and the nonlinear terms

presented by Eq. (4.27), we have the following relation to obtain the nonlinear frequency of

the considered nanowire resonator developed in Chapter 2:

(
− [M̄]ω2 +[K]+ [KNL]

)
{w}= 0. (4.29)

To obtain the nonlinear natural frequency, we first need to solve the linear equation to

obtain the eigen values and vectors. Then, we utilize the obtained solution as an initial

approximation for the nonlinear equation defined in Eq. (4.29). By substituting the derived
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eigen values and vectors into Eq. (4.29), and also coupling the linear and nonlinear stiffness

matrices with the mass matrix, the nonlinear frequency and mode shape can be calculated

[69]. Then, implementing the iteration method, the nonlinear frequency is recalculated

in order to find an approximate frequency, when the iterations converge with pre-defined

accuracy. In the next section, we discuss the results obtained based on FDM.

4.4 Parametric Sensitivity Analysis

In this section, a parametric sensitivity analysis is carried out by using the obtained numerical

solution in section 4.3, for the vibration of the nanowire resonator described by the model

developed in Chapter 2. All figures of this section are obtained based on Eq. (4.26) using

parameters defined in Table B.1 (see Appendix) with clamped-clamped boundary conditions

defined by Eqs. (4.15) and (4.16). We have investigated the sensitivity of dimensionless

frequency, f̄n, obtained by numerical simulation presented in section 4.3 with respect to

variations in temperature, piezoelectric voltage, nonlocal parameter, and the added mass. The

dimensionless frequency, f̄n, is obtained using the following equation:

f̄n =
ω

ω0
, (4.30)

where both ω and ω0 can be obtained by using Eq. (4.26). The constant ω0 is the frequency

of the nanoresonator without considering the effect of added mass. Figure 4.2 shows the

effect of temperature on the frequency behavior of silicon nanowire resonator using Eq.

(4.30). As the figure shows, increasing the temperature reduces the frequency value of

nanowire resonator. This figure represents a similar trend of what we observed in Figure 3.2

based on the perturbation analysis presented in section 3.4.2. Using Eq. (4.30) based on the

FDM solution presented in section 4.3, we have performed a sensitivity analysis with respect

to the piezoelectric voltage. Increasing the piezoelectric voltage reduces the frequency of
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silicon nanowire resonator modelled in Chapter 2. Again, this FDM-based result regarding

the piezoelectric voltage and its effect on the frequency of the nanowire resonator verifies our

qualitative analysis based on the perturbation method presented in Figure 3.3 (see section

3.4.2).
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Fig. 4.2 Effect of temperature [◦K] on the frequency behavior of SiNW using FDM
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Fig. 4.3 Effect of piezoelectric voltage on the frequency behavior of SiNW using FDM

Figure 4.4 depcits the effect of dimensionless nonlocal parameter (e0a
L ) on the frequency

behavior of the silicon nanowire resonator modelled in Chapter 2. This figure has been

plotted by using Eq. (4.30) based on the FDM solution provided in section 4.3. As the figure
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reveals, increasing the nonlocal parameter reduces the frequency of nanowire resonator. This

result confirms our analysis based on the perturbation method presented in Figure 3.1 of

Chapter 3.
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Fig. 4.4 Effect of dimensionless nonlocal parameter on the frequency behavior of SiNW
using FDM

Figure 4.5 shows the effect of added mass on the frequency behavior of SiNW using Eq.

(3.35) and Eq. (4.30). As the figure shows, increasing the mass of added particle reduces the

frequency of SiNW resonator. This result supports the prediction of analytical investigation

presented in section 3.4.2 of Chapter 3.
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Fig. 4.5 Effect of added mass on the frequency behavior of SiNW using FDM
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In order to investigate the convergence of our solution presented in section 4.3 for the

developed model of silicon nanowire resonator using the iterative technique in conjunction

with the FDM discussed in the context of Eq. (4.29), we have plotted the obtained nonlinear

frequency of each iteration with respect to its corresponding number of iteration, M. Fig.

4.6 shows that by using the iterative technique for the nonlinear part, we can reach to the

convergent frequency after a few iterations with the accuracy of 10−4.

0 200 400 600
0

5

10

15

20

f̄

M

Fig. 4.6 Convergence analysis of the frequency response of FDM

The comparison of the FDM and the perturbation method shows when we use the pertur-

bation method, it is necessary to simplify the developed PDE, presented in Eq. (2.57). For

instance, in order to apply the perturbation analysis in Chapter 3, we should define the

small parameter, ε , which reduces the accuracy of the method in comparison with numerical

approaches such as the FDM [95]. However, the qualitative results obtained from the pertur-

bation analysis, shown in section 3.4.3 to section 3.4.6, verify the numerical results based on

the FDM. In fact, both the FDM and perturbation method predict similar behavior for the

vibrations of nanowire resonators taking into account different parameters.
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4.5 Other Numerical Techniques in Structural Analysis of

Nanoresonators

We note that several other numerical approaches such as the Finite Element Method (FEM)

[102], Generalized Differential Quadrature (GDQ) method [103], and Variational Differ-

ential Quadrature (VDQ) method [104] have been used in the literature to analyze the

structural behavior of nanoresonators. For example, recently, the FEM was used by Aria and

Friswell to study buckling and vibrations of functionally graded nanobeam [105]. El-Taher

et al. [15] utilized the FEM to investigate vibrations of nanobeam, developed based on the

nonlocal Euler-Bernoulli beam theory. Phadikar and Pradhan [106] used the FEM to find

non-dimensional critical buckling load and non-dimensional frequency of both nanoplate

and nanobeam. In their analysis, they considered the effect of geometry and boundary con-

ditions. Ansari et al. [107] employed the GDQ to develop a numerical solution for the

forced vibration of nanobeam considering the surface effect based on the Timoshenko beam

theory. In fact, preliminary numerical results in analyzing nanoresonators in this thesis

have been obtained based on the GDQ technique. Shahabodini et al. [108] used the VDQ

to analyze the vibration of carbon nanotube resonators. They showed that the VDQ has a

fast rate of convergence for analyzing vibration models of the CNT resonator. All of the

above-mentioned techniques can be considered as possible alternative numerical approaches

for analyzing the presented model of this thesis. However, for the considered geometry of

our structure analyzed in this thesis, we have used the FDM, as it provides both relative

simplicity and flexibility of implementation.





Chapter 5

Molecular Dynamics Simulations

5.1 Overview

In Chapters 3 and 4, we both analytically and numerically investigated the vibration behavior

of the nanowire resonator described by the model developed in Chapter 2. In our study, we

examined the effect of different multi-physics parameters on the frequency of the silicon

nanowire and also considered an added particle on the scale of bio-objects located at the

middle of the nanoresonator (see Fig. 2.1). In this chapter, the aim is to develop molecular

dynamics (MD) simulations for the silicon nanowire resonator with an added mass. Specifi-

cally, our main results in this chapter are exemplified by an HIV molecule. MD simulations

enable studying nanomaterials properties with comparable results to those obtained with

experimental techniques [109]. In fact, MD simulations are considered as an essential tech-

nique for the investigation of nanomaterials dynamics. Based on MD simulations, we can

obtain important information about interatomic interactions of nanomaterials and molecular

complexes plus the trajectories prediction of millions of atoms in the targeted nanosystem

[110]. Although MD simulations can provide a formidable analysis of nanoresonators, it

is time consuming in comparison with continuum models, such as those developed in the

previous chapters of this thesis. Accordingly, here by having both types of analyses (MD
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simulations and continuum models), we can verify the potential of continuum models for

qualitatively studying vibrations of silicon nanowire resonators by comparing the results

obtained with such models to the results of MD simulations. In addition, the MD simulations

of the silicon nanowire resonator can provide a deeper understanding of the dynamics of

targeted nanoresonators. We briefly illustrate the molecular dynamics simulations method and

fundamentals of it in sections 5.2 and 5.3, respectively. We also discuss the force fields used

in our modelling in section 5.4 and provide a description of our simulations methodology in

section 5.5.

Furthermore, we study the effect of temperature variations on the frequency response of

the SiNW. Then, in our MD simulations, we locate a molecule of HIV as an added particle

in the middle of silicon nanowire to probe its effect on the vibration properties of silicon

nanowire resonator (see section 5.6). We conclude this chapter with a discussion on the

advantages and challenges of MD simulations in comparison with continuum models.

5.2 Molecular Dynamics Simulations Method

In Chapter 2, we provided a theoretical modelling of our nanostructure using continuum

mechanics methodologies. Generally, continuum models require less computational effort

and provide a relatively straightforward formulation, which can give a qualitative insight

into the dynamic behavior of nanoresonators. On the other hand, continuum models neglect

the structural discontinuities at the atomic scale, which is the intrinsic limitation of such

models. This crucial limitation averts continuum models from providing more accurate

results, and accentuate the need for MD simulations in analyzing the vibration properties of

nanostructures. MD simulations can provide a reliable and precise insight into vibrations of

nanoresonators. Indeed, among different techniques for simulation of the atomic level, MD

has shown a great potential for vibration analysis of nanoresonators, and it is a potent tool for

understanding mechanical behaviors of nanoscale systems [109, 111, 112]. MD simulations
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were proposed by Alder and Wainwright in the late 50s to study the phase transition of

hard spheres [113], and it is now an advanced simulation tool, which is commonly used for

simulations of thousands of atoms with having appropriate computer facilities [114]. It is

being considered as a reliable simulation technique for the systems even with biological

interactions and tiny nanoresonators [114, 115]. During the last decade, several types of

simulation techniques have been developed based on molecular dynamics for particular

systems such as solvated proteins, protein-DNA complexes as well as lipid systems, graphene

sheets, nanotubes, and nanowires [109, 116, 111].

In this chapter, we use MD simulations to study the vibration behavior of nanowire

resonators. In our continuum model, developed in Chapter 2, we have considered the added

tiny particle, and investigated its effect on the frequency response of the nanowire resonator

using perturbation method (see Chapter 3) and numerical simulation (see Chapter 4). We

first model a silicon nanowire to study its frequency of vibrations using MD simulations, and

then we add a molecule of HIV virus as a special case to investigate the potential of SiNW

resonator for the detection of tiny bio-objects.

5.3 Fundamental of Molecular Dynamics Simulations

The fundamental concept behind the MD simulations is the numerical, step-by-step, solution

of the classical equations of motion of an atomic system with the assumption of point-

like masses atoms, which interact with each other based on a given potential energy [117,

118]. Following points are the main assumptions behind MD simulations [117, 118]:

• The main postulation is that molecules or atoms are considered as a system of in-

teracting material points. Vector of instantaneous positions and velocities is used to

dynamically describe the motion of molecules or atoms.
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• It is supposed that there is no mass change in the system. Accordingly, the number of

atoms remains the same.

As the system of interacting atoms follows Hamiltonian dynamics, the force interaction

of atoms can be modelled by using the Newton’s law as follows [117, 118]:

Fi = mi
d2ri

dt2 =−∇ P(r1,r2, ...,rN), (5.1)

where mi is the mass of atom i, Fi represents the force on that atom, P is the potential energy

of the system of atoms, N is total number of simulated atoms, and ri represents a complete set

of 3D atomic coordinates. One of the efficient techniques for solving Eq. (5.1) is the velocity-

Verlet algorithm proposed by Allen and Tildesley [118], which is used as the solution method

for classical MD simulations in LAMMPS (Large-scale Atomic/Molecular Massively Parallel

Simulator) [109, 119, 120]. This algorithm is the direct solution of second order differential

equation Eq. (5.1), which is based on positions r(t), velocity v(t), and acceleration a(t).

Further information about this algorithm can be found, e.g., in ref. [118]. For simulating

a system using Eq. (5.1) with the velocity-Verlet algorithm, we need to isolate the whole

system from any variation in number of atoms (N), total volume (V) and the total energy (E),

which is known as an NVE ensemble. The other popular ensemble is called NVT in which it

is supposed that the number of atoms (N), the volume (V) and the present temperature (T)

of the systems are constant. These two ensembles are mostly utilized in the modeling of

nanosystems [120, 121].

5.4 Force Fields

The empirical potentials, called force fields, are used in classical MD to demonstrate interac-

tions between atoms. These potentials consist of bonded and non-bonded forces. Bonded

interactions [122] depend on the particular connections (bonds) of the structure and non-
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bonded interactions depend only on the distance between the atoms. Bonded forces including

chemical bonds, bond angles, and bond dihedrals, and non-bonded forces, i.e., van der Waals

(vdW) forces, and electrostatic (El) charges, contain parameters such as equilibrium bond

length, angle, dihedral atomic charge and vdW parameters which are obtained through a

fitting process using quantum mechanical simulations or experiments. A general form for the

total energy can be shown as the following relationship: [109, 123]:

ET = Ebd +Enonbd, (5.2)

where

Ebd = Ebs +Eba +Edihedral, (5.3)

Enonbd = EEl +EvdW .

In (5.2)-(5.3) ET , Ebd , Enonbd , Ebs, Eba, Edihedral , EEl and EvdW represent total, bonded,

non-bonded, bond stretch (length), bond angle, dihedral, electrostatic and van der Waals

energies, respectively. In this study, we utilize the DREIDING generic force field to apply

the bonded and non-bonded interactions between HIV virus atoms, and also the Tersoff

empirical potential for silicon nanowires in order to perform our MD simulations. We discuss

these potentials in the next two sections.

5.4.1 The DREIDING Force Field

In this thesis, we use the DREIDING force field for our MD simulations of tiny biological

objects exemplified here by HIV viruses. Researchers have shown that this generic force

field is suitable for predicting structures and dynamics of biological molecules [122]. Also,

for complex and variable organic materials, which contains C, H, N, and O, implementation

of the DREIDING force fields reduces computational burden and expedites the simulation
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of larger systems in comparison with other force fields [124]. The DREIDING force field

consists of four different terms, which play important roles for this potential: bond stretch,

bond angle bend, dihedral angle torsion, and van der Waals non-bonded interactions [125].

The relationship used in this study to define the bond stretch is a harmonic function, which is

given as [122, 126, 127]:

Ebs(r) =
1
2

Kbs(r− r0)
2, (5.4)

where Kbs and r0 are stiffness constant for the bond stretch and equilibrium bond stretch,

respectively. Harmonic function is utilized as the default function for DREIDING, since

it results in drastically large restoring forces as r increases [122]. The functional form of

three-body bond angle (two bonds which share the common atom) applied in this simulations,

is also a harmonic function. It is given by the following relationship [122, 126, 127]:

Eba(θ) =
1
2

Kba(θ −θ0)
2, (5.5)

where Kba represents the stiffness constant for the bond angle potential and θ0 is the equilib-

rium bond angle. Another functional form of bonded energy is related to the dihedral angle

which is obtained as [122]:

Edh(φ) =
n

∑
i=0

Ci(cosφ)i, (5.6)

where variables Ci correspond to the coefficients of dihedral multi-harmonics. In order

to include the van der Waals non-bonded interactions in our simulations, we utilized the

Lennard-Jones potential as follows [122, 126, 127]:

ELJ(ri j) = 4εLJ

[(RLJ

ri j

)12
−
(RLJ

ri j

)6
]
, r ≤ rc (5.7)
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where ri j, RLJ , εLJ and rc indicate the distance between two atoms, distance at zero energy,

energy well depth and cutoff distance, respectively. The values of all the parameters related

to the DREIDING force field (Eqs. (5.4)-(5.7)), used in this study, are provided in Tables D.1-

D.3 (see Appendix). The electrostatic non-bonded energy is also calculated using Coulomb’s

law as [109, 123]:

EEl = 332.0637
QiQ j

λ ri j
, (5.8)

where Qi and Q j represent charges in electron units.

5.4.2 The Tersoff Potential

In this study, we utilized the Tersoff empirical potential to demonstrate the structural and

thermal behaviour of silicon nanowire by molecular dynamics simulations. We employed

this many-body empirical potential, for silicon-silicon interactions, since it has been shown

that using the Tersoff functions [128] can properly explain the structural properties of variety

of materials, such as carbon and silicon [111, 129]. The Tersoff potential is suitable to be

used for the lattice constant and binding energy of a number of silicon lattices [130]. Since

the silicon crystal structure is diamond-like, the Tersoff potential fits its elastic constants and

vacancy formation energies [110, 131]. In addition, because of the high ratio of surface area

to volume of the nanowire resonator, the Tersoff potential seems to be more reasonable to

describe the silicon NW, as it shows adequate surface reconstruction [131]. The values of the

Tersoff potential parameters of Si-Si, used in this study, can be found in ref. [129].

5.5 Simulation Procedures

In our MD simulations, we employed LAMMPS which uses the velocity-Verlet algorithm

[118] in order to simulate the silicon nanowire resonator and an HIV virus as a biological
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added mass, adopting the DREIDING and Tersoff force fields for the interaction potentials.

In the present work, timestep of 0.55 f s is employed to provide a proper conservation of

temperatures (e.g. 50, 300, 425 and 600 ◦K [96]) using a NVT thermostat. After relaxing

the system for 55 ps, we utilized the NVE thermostat to simulate the structure for 275 ps.

The simulation time is chosen based on the high frequency of silicon nanowire resonator

[109, 132]. 1112 atoms of silicon at both ends of the nanowire are fixed to simulate the

clamped-clamped boundary conditions. The middle part of the silicon nanowire (which

contains different numbers of silicon atoms depending on the size of SiNW) is allowed to

vibrate under an applied force at the middle of SiNW at y direction (see Fig. 5.1). In order

to investigate the frequency change of the nanoresonator after adding biological mass, we

located the HIV virus in the middle of the nanowire (Fig. 5.17). The trajectories of an atom

at the center of the silicon nanowire are recorded, and then the Fast Fourier Transform (FFT)

method is employed to obtain the vibration frequencies of the nanoresonator. In the next

section, the results gained by our MD simulations are provided.

Fig. 5.1 SiNW with fixed boundary atoms (clamped-clamped) at T = 300 ◦K
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5.6 Results

In Chapters 3 and 4, we have investigated the effect of temperature variations on the vibration

behavior of SiNW based on the continuum model developed in Chapter 2. In order to have a

deeper insight into the impact of temperature change, and also to examine the limitations

of our results based on the continuum model, (see Eq. (2.57)), we use MD simulations to

probe the vibration behavior of SiNW resonator with respect to temperature alterations. Fig-

ures 5.2-5.5 show the effect of variations in temperature on the SiNW resonator’s central

atom displacement and its corresponding frequency [96]. In our MD simulations for tem-

perature variations, we considered four different temperatures which includes a very low

(T = 50 ◦K) and a very high (T = 600 ◦K) temperature [133, 134], to provide a wide range

of temperature variations for examining the molecular dynamics behaviour of nanowire

resonators. It should be noted that, in some biological object detection, the frequency shift

measurement is restricted to a few conditions such as ultra-high vacuum and low temper-

ature [135, 4]. Analyzing these figures illustrate that increasing temperature enhances the

amplitude of oscillations of the central atom displacement of the SiNW resonator. Figure

5.6 provides a comparison between the central atom displacement of SiNW resonator for

different temperatures. This figure confirms our qualitative analysis presented in section 3.4.3

in which we have shown that increasing temperature enhances the amplitude of oscillations

of SiNW resonator. However, the observation of frequency change based on our perturbation

(Figure 3.2) and numerical (Figure 4.2) analysis cannot be confirmed based on MD simula-

tions. Our MD simulations show that the change in temperature practically does not affect

the frequency response of SiNW resonator. The values of frequency for each of temperature

cases are displayed in Figures 5.2 (b)-5.5 (b).
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Fig. 5.2 CC SiNW at T = 50 ◦K

0 100 200 300

20.4

20.6

20.8

21

21.2

Time [ps]

D
is

p
la

c
e

m
e

n
t 

[A
]

(a) Central atom displacement

0 1 2 3 4 5

x 10
11

0

0.02

0.04

0.06

0.08

0.1

0.12

Normalized Frequency

M
a
g

n
it

u
d

e

(b) FFT

Fig. 5.3 CC SiNW at T = 300 ◦K
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Fig. 5.4 CC SiNW at T = 425 ◦K
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Fig. 5.5 CC SiNW at T = 600 ◦K
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Fig. 5.6 Central atom displacements at four different temperatures

We have also studied the effect of different sizes of the rectangular cross sectional

area for the SiNW [72] on its vibration behavior. This analysis gives a better insight into

frequency response of SiNW resonators considering the size variations for the rectangular

cross section. Figures 5.7-5.11 show the effect of variations in cross sectional area on the

central atom displacement and the frequency behavior of SiNW with the length of 15 nm,

at the temperature of 300 ◦K. These figures show that increasing the area of cross section

enhances the frequency of oscillations in the SiNW resonator. Fig. 5.11 highlights the effect

of cross section on the frequency behavior of SiNW. This figure shows that changing the area

of cross section of SiNW from 4 nm2 to 16 nm2 drastically increases its frequency.
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Fig. 5.7 CC SiNW with length of 15 nm and cross sectional area of 4 nm2 at T = 300 ◦K
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Fig. 5.8 CC SiNW with length of 15 nm and cross sectional area of 6 nm2 at T = 300 ◦K

0 100 200 300
25

25.2

25.4

25.6

25.8

26

Time [ps]

D
is

p
la

c
e

m
e

n
t 

[A
]

(a) Central atom displacement

0 1 2 3 4 5

x 10
11

0

0.01

0.02

0.03

0.04

0.05

Normalized Frequency

M
a
g

n
it

u
d

e

(b) FFT

Fig. 5.9 CC SiNW with length of 15 nm and cross sectional area of 12 nm2 at T = 300 ◦K
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Fig. 5.10 CC SiNW with length of 15 nm and cross sectional area of 16 nm2 at T = 300 ◦K
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Fig. 5.11 Frequency of CC SiNW with different sizes of cross sectional area at T = 300 ◦K

In order to study the effect of variations in length of the SiNW, we simulate the SiNW for

four different lengths [72] considering the same cross section of 6nm2 and the temperature of

300◦K. Figures 5.12-5.15 depict the effect of SiNW’s length on its central atom displacement

and frequency of vibrations. As Figures 5.12 (b)-5.15 (b) demonstrates, increasing the length

of SiNW decreases its frequency of oscillations. Figure 5.16 is plotted to provide a better

insight into the change of SiNW resonator frequency with respect to its length variations. As

the figure illustrates, increasing the length of SiNW from 8 nm to 15 nm decreases its

frequency from 94 GHz to 29 GHz.
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Fig. 5.12 CC SiNW with length of 8 nm and cross sectional area of 6 nm2 at T = 300 ◦K
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Fig. 5.13 CC SiNW with length of 10 nm and cross sectional area of 6 nm2 at T = 300 ◦K
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Fig. 5.14 CC SiNW with length of 13 nm and cross sectional area of 6 nm2 at T = 300 ◦K
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Fig. 5.15 CC SiNW with length of 15 nm and cross sectional area of 6 nm2 at T = 300 ◦K
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Fig. 5.16 Frequency of CC SiNW with different lengths at T = 300 ◦K

In order to investigate the potential of SiNW for detection of biological objects, we use

MD simulations to analyze the frequency response of nanowire resonator after adding an

HIV virus. This methodology is much more computationally time consuming, compared the

methodologies based on continuum models, we developed in the previous chapters. We locate

an HIV virus in the middle of a SiNW resonator as shown in Figure 5.17. The mass of our

considered HIV virus approximately equals to 4.42×10−21g. The selected nanoresonator

for this simulation has the cross sectional area of 12nm2 and length of 15nm. We first

examine the silicon nanowire resonator without an added HIV molecule and obtain its

frequency, as presented in Figure 5.9. For this case, the value of the obtained frequency using
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MD simulations is 43.63 GHz. After adding the molecule of HIV virus, using the higher

amplitude peak as a reference [136], it is concluded that the frequency of SiNW resonator

decreases to 21.81GHz, as presented in Figure 5.18.

Fig. 5.17 CC SiNW with cross sectional area of 12 nm2 and attached mass (HIV virus) at
T = 300 ◦K
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Fig. 5.18 CC SiNW with cross sectional area of 12 nm2 and attached mass (HIV virus) at
T = 300 ◦K
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This in line with our postulation regarding the shift of frequency after adding a tiny mass

to our nanoresonator, similar to what we discussed in sections 3.4.2 and 4.4. However, our

continuum model predicts less variation in frequency of nanowire resonator after adding

the small particle in comparison with MD simulations. Based on the observed frequency

shift from MD simulations, we conclude that the silicon nanowire resonator is capable of

detecting tiny bio-objects in the scale of zeptogram.





Chapter 6

Conclusions and Future Work

In this thesis, the potential of the nanowire resonator for detection of tiny masses with

focus on biological objects was investigated. We first presented a mathematical model

for the vibrations of nanowire resonators taking into account critical parameters. With

the implementation of the Euler-Bernoulli beam theory in conjunction with the Eringen

nonlocal theory, a nonlinear model was developed to study the vibrations of nanowire

resonators, considering surface and thermal effects, as well as the effects of electromagnetic

field, piezoelectric potential, external load, nonlinear foundation, added mass and large

oscillations. The obtained governing equation for the vibrations of nanowire resonators was

solved by both analytical and numerical techniques. In order to obtain an analytical solution

for the vibrations of nanowires, the method of multiple scales was used to find primary

and super-harmonic resonances of the device. Based on the obtained information, we then

investigated the frequency shift due to the tiny added mass to a SiNW resonator. In addition,

using the developed primary and super-harmonic resonance cases, the effect of different key

parameters, such as thermal variations, electromagnetic fields, and the piezoelectric potential,

on the vibration behavior of SiNW was studied. The main concluding remarks based on the

presented perturbation analysis are as follows:
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• It is shown that the SiNW resonator is capable of detecting tiny masses even in the

order of zeptogram. As the mass of added particle increases, the frequency of SiNW

resonator reduces.

• Increasing temperature and piezoelectric voltage reduces the frequency of SiNW

resonator. It means that when the SiNW resonator is used for tiny mass sensing

applications, temperature and piezoelectric potential should be monitored.

• It is observed that increasing electromagnetic field enhances the stiffness and also

frequency of SiNW resonators. This is also another important factor that should be

taken into account for designing nanowire resonators in sensing applications.

In order to have more refined results regarding the frequency analysis of SiNW resonators,

we used the Finite Difference Method. Obtained numerical results confirmed the qualitative

outcomes of perturbation analysis regarding the frequency behavior of SiNW resonators with

respect to different parameters and the added tiny mass.

Moreover, we have used MD simulations to consider interatomic interactions of SiNW in

the targeted nanosystem. Using MD simulations enables investigating not only the frequency

behavior of nanowire resonators under different cases, but also providing a set of results

to explore potency of nonlocal Euler-Bernoulli beam theory for the prediction of dynamic

behavior of SiNW resonators. To show the application of SiNW resonators in detecting of tiny

masses such as biological objects, we have modelled the SiNW resonator with a molecule of

HIV located in the middle, considering clamped-clamped boundary conditions. The following

are the main highlights of the MD simulations:

• It is shown that increasing temperature increases the amplitude of oscillations of

SiNW resonators. A similar conclusion we have obtained by using the analytical

technique. However, interestingly, when it comes to the analysis of thermal varia-

tions, the MD simulations do not confirm the results obtained by both numerical and
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analytical approaches where the frequency of SiNW resonator reduces with thermal

variations. Based on MD simulations, the variations of temperature has no effect on

the frequency of SiNW oscillations, and its effect can only be seen in SiNW resonator

amplitudes of oscillations.

• The effects of SiNW cross section and length on the nanowire frequency response were

also studied by MD simulations. It is observed that the frequency of SiNW resonator

drastically increases by enhancing the area of nanowire cross section. On the other

hand, an increase in the length of SiNW reduces its frequency of oscillations.

• Our results show that adding an HIV virus to the SiNW resonator reduces its frequency

of oscillations. This result confirms our postulation regarding the shift of frequency after

adding a tiny particle to the nanowire resonator. In addition, it shows a similar trend

predicted by the continuum theory. However, the obtained frequency shift using MD

simulations is higher than the predicted value by analytical and numerical simulations.

The main reason of this difference is attributed to the deficiency of continuum methods

in modelling atomic interactions of nanowire resonators.

As future directions of the presented work, we note the following. The continuum model de-

scribed in this thesis can be extended using other beam theories. In addition, the flexoelectric

effect can be combined with the developed model to analyze the effect of flexoelectricty on

the vibration of nanowire resonators. MD simulations can be applied to analyze the sensitivity

of SiNW resonators for detection of other types of bio-particles. The effect of electromag-

netic field can also be considered as another avenue of research for the vibration analysis

of SiNW by using MD simulations. Moreover, other types of force fields for simulating the

HIV molecule and other biological object can be utilized. Finally, an exciting future work

can be based on experimental results and analysis of SiNW resonators for biological object

detection.
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Appendix A

Physical Units

Table A.1 Non-SI units and their conversion

Symbol Unit SI Unit Conversion

g gram 10−3 kg

fg femtogram 10−18 kg

ag attogram 10−21 kg

zg zeptogram 10−24 kg

yg yoctogram 10−27 kg

nm nanometer 10−9 m

Å angstrom 10−10 m

pm picometer 10−12 m

Hz Hertz s−1

GHz gigahertz 109 s−1

THz terahertz 1012 s−1

ps picosecond 10−12 s

fs femtosecond 10−15 s

nM nanomoles 10−9 mol

kcal kilocalorie 4184 kg.m2.s−2

GPa giga-Pascal 109 kg.m−1.s−2



Appendix B

Material Parameters

Following are the values of the material properties of a silicon nanowire used in the presented

thesis (based on ref. [86]):

Table B.1 Material and piezoelectric properties of silicon nanowire

Parameter Value

E 210 GPa

ρ 2700 kgm−3

Es 10.6543 N.m−1

τ0 0.6048 N.m−1

ρ0 3.17×10−7 kgm−3

e31 -10 C.m−2

λ33 1.0275×10−8 F.m−1





Appendix C

Derivation of the Piezoelectric Potential

Substituting Eq. (2.48) into Eq. (2.50) yields the following partial differential equation:

∂ (e31εxx)

∂ z
+λ33

∂Ez

∂ z
= 0. (C.1)

Using Eq. (2.47) we will have:

e31
∂εxx

∂ z
−λ33

∂ 2ψ

∂ z2 = 0. (C.2)

Implementing Eq. (2.2) to Eq. (C.2) results in a relationship as below:

e31

[
∂

∂ z

(
∂u
∂x

− z
∂ 2w
∂x2 +

1
2
(
∂w
∂x

)2
)]

−λ33
∂ 2ψ

∂ z2 = 0. (C.3)

In Eq. (C.3), the ∂u
∂x and 1

2(
∂w
∂x )

2 terms will be omitted. Therefore, this equation (Eq. (C.3))

can be rearranged as the following form:

∂ 2ψ

∂ z2 =− e31

λ33

∂ 2w
∂x2 . (C.4)
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In order to solve the above-mentioned partial differential equation, we take the integral from

both sides of it, which results in the following:

ψ(x,z)− e31

2λ33
z2 ∂ 2w

∂x2 +C1z+C2, (C.5)

where C1 and C2 are the constants of integration. For the purpose of obtaining C1 and C2, we

apply the boundary conditions as provided in Eq. (2.51). Thus, we will have the following

form of equations:

− e31

2λ33

∂ 2w
∂x2 (−h)2 +C1(−h)+C2 = 0, (C.6)

and

− e31

2λ33

∂ 2w
∂x2 (h)

2 +C1(h)+C2 = 2Ve. (C.7)

Based on Eq. (C.6) we have:

C2 =
e31

2λ33

∂ 2w
∂x2 h2 +C1h. (C.8)

By substituting Eq. (C.8) into Eq. (C.7) we obtain the following relationship for C1:

C1 =
Ve

h
. (C.9)

Now, we plug C1 and C2, obtained in Eq. (C.8) and Eq. (C.9), in Eq. (C.5) which results in a

relationship for the piezoelectric potential as follows:

ψ(x,z) =− e31

λ33

(z2 −h2

2

)
∂ 2w
∂x2 +

(
1+

z
h

)
v. (C.10)



Appendix D

Potential Parameters

The functional forms of force field represented in Eqs. (5.4-5.7) are used for HIV MD

calculations in the presented study. The considered HIV virus consists of 405 atoms. This

includes four different types of atoms such as: Carbon (C), Hydrogen (H), Nitrogen (N) and

Oxygen (O). The potential parameters for these specific atoms in our MD simulations are

provided in the following tables which are obtained by DREIDING force field [122]:

Table D.1 Potential parameters used for bond stretch interactions

Bond stretch interaction Parameters

C : C Kbs = 350.0 kcal/mol, r0 = 1.53 Å

C : H Kbs = 350.0 kcal/mol, r0 = 1.09 Å

N : C Kbs = 350.0 kcal/mol, r0 = 1.462 Å

N : H Kbs = 350.0 kcal/mol, r0 = 1.022 Å

O : C Kbs = 350.0 kcal/mol, r0 = 1.42 Å

O : H Kbs = 350.0 kcal/mol, r0 = 0.98 Å
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Table D.2 Potential parameters used for bond angle interactions

Bond angle interaction Parameters

C : C : C Kba = 50.0 (kcal/mol)/rad2, θ0 = 109.471◦

C : C : H Kba = 50.0 (kcal/mol)/rad2, θ0 = 109.471◦

C : N : C Kba = 50.0 (kcal/mol)/rad2, θ0 = 106.7◦

C : N : H Kba = 50.0 (kcal/mol)/rad2, θ0 = 106.7◦

C : O : H Kba = 50.0 (kcal/mol)/rad2, θ0 = 104.51◦

H : C : H Kba = 50.0 (kcal/mol)/rad2, θ0 = 109.471◦

H : N : H Kba = 50.0 (kcal/mol)/rad2, θ0 = 106.70◦

N : C : C Kba = 50.0 (kcal/mol)/rad2, θ0 = 109.471◦

N : C : H Kba = 50.0 (kcal/mol)/rad2, θ0 = 109.471◦

N : C : N Kba = 50.0 (kcal/mol)/rad2, θ0 = 109.471◦

O : C : C Kba = 50.0 (kcal/mol)/rad2, θ0 = 109.471◦

O : C : H Kba = 50.0 (kcal/mol)/rad2, θ0 = 109.471◦

O : C : N Kba = 50.0 (kcal/mol)/rad2, θ0 = 109.471◦

O : C : O Kba = 50.0 (kcal/mol)/rad2, θ0 = 109.471◦
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Table D.3 Potential parameters used for the Lennard-Jones potential

Non-bonded interaction Parameters

C : C εLJ = 0.077 kcal/mol, σLJ = 4.18 Å

H : H εLJ = 0.0025 kcal/mol, σLJ = 3.2 Å

N : N εLJ = 0.104 kcal/mol, σLJ = 3.995 Å

O : O εLJ = 0.104 kcal/mol, σLJ = 3.71 Å

C : H εLJ = 0.014 kcal/mol, σLJ = 3.65 Å

C : N εLJ = 0.089 kcal/mol, σLJ = 4.08 Å

C : O εLJ = 0.089 kcal/mol, σLJ = 3.93 Å

C : Si εLJ = 0.043 kcal/mol, σLJ = 4.30 Å

H : N εLJ = 0.016 kcal/mol, σLJ = 3.57 Å

H : O εLJ = 0.016 kcal/mol, σLJ = 3.44 Å

H : Si εLJ = 0.008 kcal/mol, σLJ = 3.76 Å

N : O εLJ = 0.104 kcal/mol, σLJ = 3.84 Å

N : Si εLJ = 0.05 kcal/mol, σLJ = 4.2 Å

O : Si εLJ = 0.05 kcal/mol, σLJ = 4.05 Å





Appendix E

Linear Frequency of the NW without

Added Mass

The linear frequency of the nanowire resonator without added mass, ω0, can be obtained by

using the following relationship:

ω0 =

√
α2

α ′ , (E.1)

where α2 can be found by Eq. (3.5), and α ′ is as follows:

α
′ = Π(

∫ 1

0
φ

2(ξ )dξ −ϒ

∫ 1

0
φ
′′(ξ )φ(ξ )dξ ). (E.2)
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