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Abstract

Most of the world relies on ships for transportation, shipping, and tourism. Auto-

matic Identification System messages are transmitted from ships and provide a wealth of

positional data on these open ocean vessels. This data is being utilized to determine the

optimal path for ships, as well as predicting where a ship may be going in the near future.

It has only been in the past decade that Automatic Identification Systems (AIS) signals

have been easily received with satellites (S-AIS) so there have been few studies that look

at using available information and pairing it with the new abundance of ship positional

data. This study attempts to use High Frequency (HF) radar data that measures the veloc-

ity of surface ocean currents off the West Coast of North America and incorporates North

Pacific Automatic Identification Systems data to create a basic prediction model that uses

the radar data to refine the positional accuracy of the prediction. Determining the effects

of ocean currents on a ship using these data sets allows for later calibration of currently

available position prediction models using high frequency radar data. While the study

was unable to obtain consistent prediction correlation results the work systematically an-

alyzes inconstancy and limitations of existing S-AIS and HF radar data that is a valuable

contribution to the field.
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Introduction

Ocean ships have been one of the main modes of transportation for thousands of

years. Today seaborne shipping accounts for 90% of global trade and with an increasing

demand for goods the amount of required shipping continually is on the rise. “There are

over 50,000 merchant ships trading internationally, transporting every kind of cargo” (In-

ternational Chamber of Shipping, 2015). More ships on the ocean may lead to increasing

potential of problems and risks. More ship based traffic increases probability of ship col-

lisions occurring. It also increases the potential risk of a ship drifting off course due to

engine failure or other catastrophic failures and require assistance from a Search and Res-

cue team. There is a growing issue with how much pollution is created from large ships,

a 2009 Daily Mail article stated that “16 of the world’s largest ships can produce as much

1
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lung-clogging sulphur pollution as all the world’s cars” (Pearce, 2009). With a continu-

ing increase in ship numbers it becomes paramount to track them for a variety of reasons:

ship collision avoidance (Silveira et al., 2013), search and rescue missions (Balduzzi et

al., 2014), analyzing more fuel efficient paths to lower pollution output (Carson-Jackson,

2012), tracking of piracy and illegal behaviour (Vespe et al., 2015), and illegal fishing ac-

tivities (Natale et al., 2015) . Technologies available today are capable of tracking ocean

vessels using satellite technology.

The advancement and cost effectiveness of Low Earth Orbiting (LEO) satellites has

led to an abundance of maritime shipping data (Ristic et al., 2008). LEO satellites are now

able to collect data transmitted from Automatic Identification Systems (AIS) which are

placed on all: passenger ships that have been constructed since 2002; ships with weight

greater than 3,000 tonnes since 2002; tanker ships with international voyages; and ships

with gross tonnage over 300 on international voyages (International Maritime Organiza-

tion, 2016). AIS is a device on a ship that continuously reports information about the

ship such as identity and velocity. AIS were implemented on ships starting in 2002 for

safety on busy waterways. AIS allows ships to communicate information on their size

and velocity to other ships in their vicinity. AIS broadcast at different rates depending on

a ship’s movements, if a ship is travelling at high speeds or is changing course the AIS
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transmits a message every 2 seconds. If a ship is at anchor the AIS transmits every 2 min.

Static information is transmitted from AIS every 5 min, which provides information on the

destination of the ship, Identification Number of the ship, and the dimensions of the ship

(International Maritime Organization, 2016). LEO satellites have only just recently taken

advantage of AIS and can almost continuously track ships on international voyages and

store the information on the locations over time. The AIS messages that are received by

a LEO satellite is considered in this thesis to be a satellite based automatic identification

system (S-AIS) messages. LEO satellites tend to be smaller and “may be included as ad-

ditional payload on previously planned launches [that allow the] dual benefit of reducing

the launch planning time considerably and, as they can be included as a part of a larger

launch, reducing launch costs” (Carson-Jackson, 2012) .This allows more satellites to be

launched for AIS detection, which increases the volume of available data. This informa-

tion has been used to not only track ships but to predict patterns of movement to determine

a ship’s future position. Since S-AIS data has only recently become available there have

been a lack of studies that attempt to enhance the capabilities of S-AIS based systems.

An issue that is present with AIS and S-AIS messages is data reliability. An AIS data

mining study (Harati-Mokhtari et al., 2007b) found that 8% of the AIS messages contained

an error in the reported information. Issues arise in system design since manual input is
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required for some AIS,“’30% of ships were detected as displaying incorrect [navigational]

status information”(Harati-Mokhtari et al., 2007a) that can possibly be attributed to human

error. Tracking ships using S-AIS messages has potential issues with data gaps that occur

when a message is no longer being sent by an AIS, poor satellite coverage causing no data

to be received, or when an AIS is turned off. These gaps in S-AIS messages cause prob-

lems in generating accurate routing data, creating collision avoidance tests, and search and

rescue applications. One way to address these issues is to create prediction models that

estimate a ship’s position at a given time or fill in gaps of information where a ship may

have been. In creating prediction models it is important to have more access to different

types of relevant and accurate data (Pallotta et al., 2013). Environmental conditions, such

as wind and waves contribute to the movement of a ship. Waves are a major force on a

ship during travel and can significantly alter its path (Szelangiewicz, 2014).

A technology that has been available for a longer period of time than AIS and LEO

satellites are High Frequency (HF) radars which are set up along coasts all around the

world including the west coast of North America (Gurgel and Schlick, 1996). HF radars

have been around for over three decades and measure surface ocean currents for distances

up to 200 km off the coastline. The information collected from HF radars are in 1 hour

intervals and come in resolution of 500m, 1km, 2km, and 6km, which provides broad cov-
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erage on the West Coast (National Oceanic and Atmospheric Administration, 2013). The

tracking and measurement of waves is an important piece of information when considering

ocean travel due to waves creating additional stress on ships, affecting their movements.

(Szelangiewicz, 2014). Gurgel et al., 2010 writes about the accessibility, range, and rel-

evance HF radar data which for this study makes it an excellent option to use to provide

wave information to enhance S-AIS message information. AIS messages are gathered

in near real time depending on the mechanism receiving the data since the AIS on ships

should be sending positional data at a relatively constant pace (Harati-Mokhtari et al.,

2007a). The AIS also provides information on the time when the message was sent. HF

radar data is collected at rates between 18 minutes for lower-frequency systems, to 4 min-

utes for higher-frequency systems, and then the velocities are averaged to the mean veloc-

ity of waves observed in an hour (Harlan et al., 2010). Since both data sources have short

time updates it makes them worth comparing to establish a possible model relationship

that can be used in a near real time database of S-AIS and HF radar information. S-AIS

messages are currently being used in tracking ocean vessels and predicting a vessel’s fu-

ture location (Pallotta et al., 2013).

This study matches S-AIS messages with HF radar data in space and time to determine

the top ocean current velocities that were present when each AIS message was received.
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This process generates the following two research questions,

Question 1: Can top ocean wave currents account for message to message dis-

crepancies in predicted position and actual recorded positions?

If a correlation exists, between the measured movement of ships through S-AIS mes-

sages and the wave velocities present from HF radars then ,

Question 2: Can HF radars be used to calibrate preliminary S-AIS based location

prediction models to enhance prediction accuracy?

Chapter 2 of this paper provides an overview of the related literature. First the liter-

ature review addresses AIS messages and how the data was received and the information

to date that was generated from it. Next, research that has been done in analyzing AIS

messages for ship mapping and tracking of shipping routes is reviewed. This is followed

by looking at the research conducted with HF radars and how the information provided by

them have been used for different uses in shipping and how they function in different sys-

tems. Next is a look at how the effects from the environment can impact a ships movement

when travelling or when stationed at port. Then how AIS messages have been used for
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prediction methods in determining the location of a ship over time and where the ship may

be headed is discussed. This leads into how working with big data can be troublesome,

S-AIS messages data in particular are discussed.

Chapter 3 reviews research methodology used in thesis. The first topic is data collec-

tion of the messages and their migration to a SQL database. Next is the description of

how S-AIS data is analyzed to determine gaps in the data over space and time, then the

study area is described which in this thesis is the port of Long Beach, California, USA. In

this chapter the collection of HF radar data is explained along with the process by which

it is correlated with the AIS messages. Next is a description of how S-AIS messages were

grouped into trip segments that can be analyzed. Finally, chapter 3 reviews the develop-

ment of a prediction model meant to estimate the position of a ship which can be compared

against the actual location. This information can now be compared against HF radar data

in a regression analysis.

Chapter 4 presents the results of the research. First go over the study area and data

that has been subsetted for the study. Next task is select messages that are physically pos-

sible for a ship to undergo based on position over time. The results of the gap analysis

are created to portray the information gaps within the dataset. The trip identification is
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then reviewed to show how a ship trip was identified. Next the prediction model and error

vectors are created. These error vectors are then compared against the wave magnitudes

and correlation values are calculated between them. Finally the results of the calibration

of the prediction model using the wave magnitudes.

Chapter 5 reviews results and details how this information can be useful in other re-

search. The results were interpreted by first breaking down the types of error that are

present in the S-AIS data. Next the results found from the prediction model are analyzed.

The correlation tests done between the error vectors and the wave magnitudes helped in

answering if a correlation is present. The thesis then goes over the results of the cali-

bration to the prediction model to see if it helped increase accuracy in the prediction by

using HF radar data. Next, look at changes that can be made to the study by methods such

as enhancing the physical model, expanding the datasets, and using near real time S-AIS

data. Finally it look at future uses of this research for the purpose of dynamic ship routing,

search and rescue, and calibration of existing vessel prediction models.



Chapter 2

Literature Review

Seaborne shipping accounts for 90% of total world merchandise traffic and the

amount of goods traded in 2015 is forecasted to increase by 60% by the year 2030.

From 1968 to 2008 seaborne trade has increased by 4 times from 12.9 trillions tonne-

kilometres to 51.5 trillion tonne-kilometres and in 2015 is at an estimated 88.5 trillion

tonne-kilometres (International Chamber of Shipping, 2015). With an increase in global

trade by seaborne ships the advances in maritime technology becomes more valuable for

analysis to aid in safety and efficiency. With the advancement and increased cost effective-

ness of satellite technologies the information available reporting ship positions has become

viable for sophisticated analysis and decision support applications utilize Automatic Iden-

tification Systems (AIS) data. Data fusion using existing technologies with ship position

9
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data opens new possibilities in research involving maritime tracking. A factor that affects

seaborne shipping is environmental conditions which can create high winds and waves.

These additional forces place strain on ships which affect their rate of speed and position

(Szelangiewicz, 2014). High Frequency (HF) Radars have been installed on coasts around

the world for over 30 years providing data on near-shore wave velocity. This technol-

ogy can provide accurate wave information to help better analyze the relationship between

open ocean waves and the trajectory of seaborne ships.

In the following chapter the literature revolves around the ideas of S-AIS based pre-

diction models and environmental covariate effects on a ship. The topics are: AIS and

pathing, finding effects on a ship, predicting ship’s location, managing the data, and re-

cently related research. AIS and pathing views the uses of AIS messages and how AIS is

used in pathing a ship’s route. Finding effects on a ship section discusses the use of HF

radars to find factors on a ship and different environmental effects that influence a ship’s

movement. Predicting ship’s location discusses research that has developed models to pre-

dict a ships path and how a Kalman filter is used in location prediction. Managing the data

examines the difficulties working with big data, data reliability with AIS and HF radar,

and the limitations of the data used. Finally the chapter goes over recently related research

which looks at a study that uses ship movements to predict wave magnitudes in the local

area.
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2.1 AIS and Pathing

2.1.1 Automatic Identification Systems

The availability and cost effectiveness of advanced Low Earth Orbiting (LEO) satel-

lites has led to an abundance of data for maritime purposes. LEO satellites are now able

to collect data emitted from AIS which are placed on all: passenger ships that have been

constructed since 2002, ships with weight greater than 3,000 tonnes since 2002, tanker

ships with international voyages, and ships with gross tonnage over 300 on international

voyages (Henningsen et al., 2000). An AIS is a device on a ship that periodically transmits

information about the ship such as identity, position, and velocity. AIS were implemented

on ships starting in 2002 for safety concerns on busy waterways. AIS allow ships to com-

municate information on the ship’s size, velocity, and position to ships close by, all in

the attempt to avoid a collision (International Telecommuniations Union, 2010). The AIS

broadcasts at different rates depending on a ship’s movements. If a ship is travelling at

high speeds or is changing course the AIS transmits a message every 2 seconds, if a ship is

at anchor the AIS transmits every 2 min, static information is transmitted from AIS every

5 min. This provides information on the destination of the ship, the identification number

of the ship, and the dimensions of the ship (Henningsen et al., 2000). Further detailed

information on AIS messages specific to this study is outlined in sections 3.1 & 3.2
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AIS messages have led to “an overabundance of data [when there was a] previous situa-

tion of data scarcity” (Gunnar Aarsætherr and Moan, 2009) in maritime data. This technol-

ogy “can also improve the quality of vessel traffic surveillance (VTS)” (Harati-Mokhtari

et al., 2007a) which has been studied by different researchers over the past couple decades.

“Maritime transportation represents approximately 90% of global trade by volume, plac-

ing safety and security challenges as a high priority”(Pallotta et al., 2013), this makes the

need for vessel tracking more important. With current capabilities of storing large amounts

of data and faster processing power in computers it is possible to analyze vast quantities

of AIS data.

Researchers have made use of AIS data for analyzing aspects of ship behaviour. Xiao

et al., 2015 states “AIS data provides valuable input parameters in ship traffic simulation

models for maritime risk analysis and the prevention of shipping accidents”. Xiao et al.,

2015 analyzed ship traffic patterns in Chinese and Dutch waterways using AIS data. Us-

ing AIS the researchers were able to appropriately determine traffic characteristics in each

region to draw upon similarities. The researchers compared position, speed, course, time

intervals and were able to use these values to determine the types of manoeuvre a ship

is undergoing such as head on head, overtaking, or collision avoidance. Carson-Jackson,

2012 talks about the development of AIS technology and its benefits for ship identifica-

tion and vessel tracking. AIS has a “proven effectiveness to assist in search and rescue
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as well as vessel monitoring in offshore areas” (Carson-Jackson, 2012). The Australian

Emergency Response Centre use S-AIS as an important source of information for search

and rescue. Further capabilities are continually emerging over time with the increase in

satellite coverage, accessibility of data, and efficient computing methods for faster analy-

sis.

2.1.2 Ship Paths

A major part of vessel tracking is identifying navigation patterns from ships. Mod-

elling a ship’s navigation is necessary to determine if a ship is on the most economically

appropriate path (Lane et al., 2010). Recent studies have used AIS messages to determine

high density shipping routes that are taken by ocean vessels for the tracking and flag-

ging of ships that are deviating from these routes. Pallotta et al., 2013 created a detection

system that automatically generated paths of ships in vector form, a list of the generated

paths, and organizes them in to a list of regular paths. Then the researchers developed a

method of detection that highlights ships whose paths are outliers. This was classified as

a “fully unsupervised learning” (Pallotta et al., 2013) system which they called the Traffic

Route Extraction and Anomaly Detection (TREAD) system. Lane et al., 2010 determined

common routes of open ocean vessels for anomaly detection and compared the common

routes against a Bayesian network of different potential anomalies, to flag ships that had
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the highest potential of being an anomaly. Lane et al., 2010 determined there are five

different types of anomalies for a ship deviation from standard route, unexpected AIS ac-

tivity, unexpected port arrival, close approach, and zone entry. Deviation from a standard

ship route is an anomaly consisting of a ship is travelling on one of the determined routes

created through the TREAD system that then manoeuvre away from the route into a new

unfamiliar route. Unexpected AIS activity would be a scenario where a ship stops sending

messages and later received messages occur at a substantial distance away. Unexpected

port arrival is an anomaly where a ship deviates from the originally destined port and trav-

els to a different one. Close approach is when two ships come within close contact with

each other which is against many ocean safety standards. The final anomaly is zone entry

which refers to scenarios where a ship travels into restricted areas such as protected habitat

zones.

Gunnar Aarsætherr and Moan, 2009 looked into grouping patterns of routes that ships

take in navigating around the Norwegian coastline by mapping AIS message coordinates.

They were able to simplify a vector shape for each ship sequence by factoring out small

deviations within the ships path to make a straighter sequence of lines. These researchers

designed to group ship paths that were similar making the information useful for looking

at detection of shipping patterns and to lay a foundation down for an “automatic estima-

tion of manoeuvre patterns from AIS” (Gunnar Aarsætherr and Moan, 2009). This study
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determined that a “combination of automated grouping and the availability of AIS data

opens up a range of possibilities for analysis of ship traffic and manoeuvring” (Gunnar

Aarsætherr and Moan, 2009).

Chu et al., 2013 looked at meteorological and oceanographic (METOC) forecast sys-

tems for aiding in optimal ship routing for minimal fuel consumption. The researchers

worked with United States Navy in developing an accurate Smart Voyage Planning (SVP)

decision aid which assists the ship route planners to optimize a ship’s fuel consumption.

“A ship’s speed and route can be optimized based on the wind, waves, and currents, taking

into account the ship’s performance criteria such as hull shape, horsepower, load, trim,

ballast, pitch and roll limits, and other factors” (Chu et al., 2013). A real world test of this

system took place on a navy vessel called the USS Princeton and noticed fuel savings of

nearly 20% on parts of the route. The researchers mention that since the test took place

during good weather with little weather uncertainty there is slight bias and they mentioned

next trying it in different weather types. The SVP model was found to be very sensitive

to a number of different factors such as “location, direction, seasonal synoptic/mesoscale

weather, hull/propulsion type and condition, route length, specific model improvements,

and ensemble methods”(Chu et al., 2013). These factors added to the statistical uncertainty

when determining fuel optimization in the SVP decision aid.

Vandecasteele and Napoli, 2012 created ship paths for analyzing anomaly detection
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based on changeable rules set by the user. The use of ship position to generate paths al-

lowed the researchers to determine anomalous ships and also to be able to change what

conditions may be considered an anomaly using a Semantic Web Rule Language (SWRL)

(Vandecasteele and Napoli, 2012). Vandecasteele and Napoli, 2012 determined further de-

velopment was needed to allow for a more user friendly interface with the current system.

These researchers were all able to create common vessel paths using only AIS data. Pal-

lotta et al., 2013 and Gunnar Aarsætherr and Moan, 2009 extended their implementations

by using their common paths for the use of future position estimation. This becomes more

challenging because for accurate estimations since “AIS are not reliable in many cases and

therefore [we] cannot wholly trust the equipment” (Harati-Mokhtari et al., 2007a) making

the estimations unreliable if the underlying data is not accurate, see section 2.4.2. This

requires calibration from other accessible technologies like High Frequency Radars (HF

radars).
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2.2 Finding Effects on a Ship

2.2.1 HF Radar

HF radars were developed in the early 1980s and are used to detect coastal waves

up to 250km off the coast using Bragg scattering. “Bragg scattering explains the effects

of the reflection of electromagnetic waves on periodic structures whose distances are in

the range of wavelength” (Wolff, 2017) which is portrayed in figure 2.1. Bragg scattering

is a x-rays reflection that occurs off regular periodic structures which causes constructive

interference. This constructive interference can be used to solve for distance between

the reflective surface. This method is used with HF radars on the periodic structure of

waves which allows for sensors to measure the constructive interference and determine

the distance between the waves. By sending multiple signals the velocity of the wave can

be calculated using this method.
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Figure 2.1: Bragg Scattering by Christian Wolff

d =
λt

2 cos θ

d = distance of reflective sub-surface

λt = transmitted wavelength

θ = transmitted angle of incidence
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HF radars provide information on wave velocity which is updated in near real time to

allow for top ocean current updates (Gurgel et al., 1999b). This technology has improved

in accuracy over the years with the development of the Wave Radar (WERA) HF radar

system which is “ advantageous for studying near-shore ocean dynamics”(Gurgel et al.,

1999b) because of its better spatial and temporal coverage. Recent studies have explored

using HF radars as a new method for detecting ocean vessels near shore based on back

scattering that occurs and pairing the data with AIS messages to calibrate the accuracy of

position (Dzvonkovskaya and Rohling, 2010).

Dzvonkovskaya and Rohling, 2010 investigated the use of HF Radar to detect ships

in its range and tried to match the detection with what was found through AIS during

the same time span. This was done to determine the accuracy of high frequency radar

by comparing the results to the location of ships through AIS as a means to calibrate

the high frequency radars. They found “the maximum detection range for very large and

large cargo vessels can be up to 200 km, for the medium-sized vessels up to 160 km, for

the small-sized vessels up to 140 km, and for the vessels of very small size up to 120

km”(Dzvonkovskaya and Rohling, 2010) . This paper showed the limitations in distance

that the HR radars had for ship detection as well as the accuracy of the radars. This study

used AIS messages to measure the accuracy HF radars have detecting ships while our

study attempts to use HF radars to enhance the accuracy of AIS based location prediction
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models.

Vesecky et al., 2010 looked at continuous vessel monitoring using HF radar and AIS

within a country’s exclusive economic zone. The researchers used an estimate of signal

to noise ratio to analyze the probability of detection of a ship off the coast using AIS and

HF radar. From this study the researchers found that for ships up to 125 km off shore the

probability of a ship’s detection is 90% or greater. The accuracy was also affected by the

radar coverage in the area which is lower in accuracy when there exists a large spacing

of radars. They concluded that “both HF radar and AIS ship monitoring systems provide

very significant marine domain awareness with respect to coastal ship traffic” (Vesecky et

al., 2010). This aspect of analyzing ship detection only assists in detecting the location of

ships, a method that can be used for path prediction involves using the wave data collected

from HF radars as a means to better predict the future location of a ship which is what this

study explores.

2.2.2 Environmental Effects

Wave effects on a ship add stress on the current path of a ship and causes deviation

in the path compared to a ship travelling in calm water. “Wave action is responsible for

ship motions, which reduce propeller thrust and cause increased drag from steering cor-

rections”(Vlachos, 2004). Incorporating wave induced motion on a ship can better predict
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the future path of a ship and can be beneficial when calibrating prediction models that are

based on AIS geographic data. Studies have been done looking at the effects that waves

have on an object and how it affects the object’s drift.

Abascal et al., (2012) looked at testing if wave velocity data provided by High Fre-

quency radar can allow backtracking to the original position of an object. This research is

focused on search and rescue operations. The researchers used 2 different types of buoys,

with drogue and without drogue (types of stabilizing anchor). The study took place at the

Bay of Vigo, Spain. They used a modified Lagrangian trajectory model

d−→x
dt

= (CC
−→
U c + CD

−→
U w)(−→x i, t) +

√
6D

∆t
(−→x i, t)

−→x i = particle i position t = time

CC = radar uncertainty coefficient CD = wind drag coefficient

−→
U c = surface current velocity

−→
U w = wind velocity

D = diffusion coefficient

to predict the path of the buoys and found that when a buoy had a drouge the effects

of wind are nearly negligible. The study demonstrates the ability to detect the original

location within a search area of 3.2km2 for buoys with drouges and 2.11km2 for buoys

without drouges. “Although the validation has been performed using drifting buoys, the
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results could be also applied for other floating objects” (Abascal et al., 2012) which in

theory can be upscaled to ships. Analyzing the effects that waves have on a ship involves

the added resistance that acts on a ship and how it affects its planned movements.

Szelangiewicz’s 2014 study developed a model that determines the optimal speed for a

ship given the current surrounding weather conditions; it uses the ship’s physical attributes

and the vectors of wind and wave. The researcher found how much the ship should slow

down based on different wind and wave scenarios. The maximum scenario of high winds

on a ship would require it to slow its speed by 20%. For waves the ship may need to slow

by over 80% to avoid the risk of tipping or rollovers. This study was done on bulk carriers

which are major means of freight transport in open ocean (Szelangiewicz, 2014).

Another study that looked at added resistance on a ship was Pérez Arribas who in

2007 found the “added resistance in waves is an important part of ship dynamic[s] due

to its economical [sic] effect on ship exploitation” (Pérez Arribas, 2007). Pérez Arribas

looked at different models for calculating added resistance to a ship and tried to determine

which provided the most accurate depiction of resistance on a ship. The author found

that “Radiated energy method is perhaps the better method to obtain the added resistance”

(Pérez Arribas, 2007). The research in analyzing a ocean vessel’s path using both AIS

and wave velocity data is still fairly recent and not much has been done to create a better

prediction methodology using both resources.
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2.3 Predicting Ship’s Location

2.3.1 Prediction Models and Methods

There have been several different types of models created for forecasting a marine

vessel’s future position. Certain techniques have been measured at events such as the

Makridakis, or M-Competitions which was designed to compare the accuracy of different

forecasting methods. The most recent event, the M-3 which took place in 2000, con-

cluded that Automated Artificial Neural Networks (AANN) head the rankings for fore-

casting positional location (Makridakis and Hibon, 2000). This was the precedent used by

researchers Zissis, Xidias, and Lekkas in 2015 who looked at the development of an Ar-

tificial Neural Network (ANN) for the use of prediction of ship location. The researchers

acquired their data from marinetraffic.com which provides free marine position data.

The ANN is a program that learns a desired output by training the program. The creator

trains the ANN by providing the program with verified input and output pairs. The is input

data is connected to a hidden layer of nodes which then interconnected to the final output.

These connections are represented by the arrows in Figure 2.2. The interconnections are

weighted values that change over time when the training process takes place. Once the

training is completed a test set is then given to see if the ANN can identify the desired

outputs within a given error threshold. This is shown in Figure 2.2.
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Figure 2.2: Artificial Neural Network

The ANN these researchers developed imported the S-AIS data and identified patterns

that certain ships take to accurately determine the path the ship takes within 0.01 mean

squared error (MSE) of predicted longitude and latitude. The researchers set up the sys-

tem to predict in 15 minutes increments as well as 4 hour increments in a study area of

Aegeon, Greece with passenger ships. The researchers developed a web based interface

for this application and programmed it in C#. According to the authors the “proposal can
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potentially be used as the predictive foundation for various intelligent systems, including

vessel collision prevention, vessel route planning, operation efficiency estimation and even

anomaly detection.” (Zissis et al., 2015).

A study conducted by Dolinskaya, 2012 presents a navigation model that uses the

surrounding environment of a marine ship to determine optimal path planning over short

distances. The researchers use a dynamic programming model to analyze fastest paths

between two points based on a ship’s current trajectory and quickest feasible turn rate.

Dynamic programming in its simplest form is the method of breaking down a large com-

plex problem into smaller manageable problems. Dynamic programming was used in or-

der to include constraints in the model to improve its accuracy. The researchers state that

“computational demand and run-time of the optimal path finding algorithm is of particu-

lar significance.” (Dolinskaya, 2012) so they recommend parallel computing to decrease

run-time. Dolinskaya created the model in MATLAB for its user friendly environment but

mentions the use of C++ for decreasing run-times. The model was tested using a random

generated dynamic wave field to simulate waves around a marine vessel to distances up

18km away because this study was only considering the use of short range trips. The rea-

son for analysis on short range trips was that ship radars have a relatively small distance

of response. The results found that there was an observed improvement up to 9.7% with

an average of 4-6% improvement in optimal pathing time when compared to a model that
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neglects wave-field data.

Pallotta et al., 2014 researched marine vessel prediction method using Ornstein-Uhlenbeck

stochastic processes,

dxt = θ(µ− xt)dt+ σdWt

where θ > 0, µ and σ > 0 are parameters and Wt denotes the Weiner process

which forecasts patterns based on historic data. The historic routes were collected

through AIS and historic patterns determined using their previously mentioned TREAD

system. The study area chosen was a 400 x 600 nautical mile area in the Mediterranean Sea

and covers May 1 to September 10 of 2012. The new method took a partially observed

track and attempts to match that path based on positional data with another previously

recognized route. “These recurrent routes allow prediction of the position of a vessel that

is following one of these routes, surprisingly, by several hours ’ ’(Pallotta et al., 2014) with

an uncertainty of only a few kilometres. This method of vessel forecasting requires large

amounts of historic positional data which is now readily available through LEO satellites

able to collect AIS data.
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2.3.2 Kalman Filtering

An algorithm used by researchers for estimating a ships position is a Kalman filter. A

Kalman filter is used in some forms of ship navigation to estimate a ships position by using

previous estimations to over time create an estimate closer to the mean. This algorithm

is inclined to have greater accuracy in estimation then a static estimation. Figure 2.3 by

Gershenfeld in 1999 shows the flow of a Kalman filter and that it over time alters its

Kalman gain factor to increase prediction accuracy.

Figure 2.3: Gernshenfeld (1999) steps of a Kalman Filter equation

In Figure 2.3 it starts by the initial estimate (xt−1|t−1) and error (Et−1|t−1). The esti-

mate is applied to a prediction (At−1) to find the new estimate that is then applied to the
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observable (yt|t−1) with a control model (Bt). This can be used to compute the Kalman

gain (Kt with the error (Et|t−1) between the observable (yt|t−1) and estimate (xt|t−1). The

Kalman gain is then applied to determine the new estimate.

Borkowski, 2017 discusses the creation of the NAVDEC, a decision support system.

The system used a data fusion of different sensors and a multi-sensor Kalman filter to es-

timate the ship’s position. Borkowski, 2017 states most ships use a “ prediction based on

the extrapolation of current traffic parameters (speed, acceleration), assuming that these

parameters will not change significantly in the future” (Borkowski, 2017) so the proposed

algorithm will have higher accuracy. The system used gyrocompass, automatic radar plot-

ting, GNSS (global navigational satellite system), AIS, and electronic navigation charts

as information inputted into the algorithm. The multi-sensor Kalman filter weigh the av-

erages of estimation from the different sensors and then calculates the Kalman gain, the

relative weight that changes after each iteration, which is based on these new values com-

pared against the previous estimation and the changing Kalman gains current value. This

means the Kalman gain changes over time until it reaches equilibrium and the predic-

tion become more uniform. Borkowski, 2017 concluded that one of the main causes in

ship collision is human error and the decision support system will help assist in decision

making.

Sadowski and Czapiewska, 2015 analyzed different ways to determine the minimum
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amount of stored S-AIS messages required to accurately replicate a ships path. One of

the methods used in this study was a Kalman filter in trying to estimate a ship’s position.

Sadowski and Czapiewska, 2015 looked at different types of ship path situations (turning

into port, straight away, narrow channels) and determined what percent of the messages

were required to be stored to accurately generate the same path within error thresholds.

The thresholds were looked at 10 metres, 50 metres, and 100 metres of error accuracy

for the different cases. In the study the Kalman filter was calculated to be slightly more

accurate over the linear algorithm but “linear algorithm is much less complex than Kalman

filtering authors suggest using the linear one” (Sadowski and Czapiewska, 2015). The

Kalman filter was able to replicate the selected ship paths using only 2-4% of the available

messages when a 100 metres threshold on error was allowed.

A study by Laws et al., 2011 applied a Klaman filter to their existing model of combin-

ing S-AIS ship detection and HF radar ship detection. The researchers used raw HF radar

data to detect the presence of ships off the California coastline and using S-AIS messages

to confirm positions. From HF radars there is signal noise caused from Doppler shifts from

top ocean currents. The researchers decided to use Kalman filtering to track ship paths and

help detect false alerts in the HF radar ship detection. Laws et al., 2011 found an issue

when applying the filter, that is when to terminate a track of path and revert back to the

previous information. This information could be determined by supplementing previous
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S-AIS messages to count parts of the ships trip, which is discussed in this thesis. Overall

the researchers saw potential benefits of the Kalman filter algorithm but it caused biases

in there study that need to be resolved. Laws et al., 2011 found that careful monitoring

of the measurement data is required for the application of Kalman filtering which can be

resolved with extensive cleaning of S-AIS messages which is examined in sections 3.2,

3.3, 4.3.

Kalman filtering provides plenty of benefits when creating a prediction model and

estimating the location of a ship over time with increased accuracy. A Kalman filter was

considered for this study because it provides a better location estimate but the way it

generates this is by applying a correction factor for each time. This correction factor

may cause a problem when trying to find a correlation with wave magnitudes because the

correction factor would normalize the error variance that is used to correlate with the wave

magnitudes.
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2.4 Managing the Data

2.4.1 Working with Big Data

When working with large data sets the way the data is integrated and analyzed be-

comes an ever increasing issue. Certain computational techniques become impractical due

to processing time limitations when the process is applied to larger data sets. An example

of this problem is generalized in a fundamental problem of computing called combinato-

rial explosion.This problem occurs when trying to determine a solution to a problem and

with increasing inputted information exponentially increases in possible combinations for

a system to solve the problem directly so the solution is to create a selective sequence for

the computer to analyze (Tsang, 2015). Different methods have been used in figuring out

the best methods for analyzing large amounts of data and cutting down the time to pro-

cess it. In the current problem domain, Sadowski and Czapiewska, 2015 decided to look

at taking large AIS datasets and compressing the data by only retaining a fraction of the

entire data set based on critical points in the data set. The researchers look at replicating

and comparing three different types of data compression techniques for storing ship data;

Linear Algorithm, Circle Algorithm, and Kalman Filter. The first method uses the idea

that ships move in fairly linear travel paths, the second method takes into account that

ships cannot take sharp turns and works in arcs, and Kalman filtering continuously pre-
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dicts errors to calibrate future forecasting. Using these methods the researchers analyzed

different ships by taking positional data in intervals of 10 metres, 50 metres and 100 me-

tres. They found that they were able to compress the amount of data needed to maintain

an acceptable amount of error to accurately track the vessel. The amount of data needed

to be stored changes drastically based on certain shipping situations such as open ocean

where only 0.5% of the data was needed at 50m threshold but when in a port area 21% of

the data needed to be stored. This means we can “reduce stored data to only few percent

of the origin[al] number and recall later the routes of the vessels with acceptable error”

(Sadowski and Czapiewska, 2015) allowing faster computing to be done on these smaller

subset of data.

Maulidi et al., 2014 did a quick study that integrates AIS data into a shipping database

server. The study was created to show how to make an integrated database that could be

used as a “backbone of marine safety and environment monitoring system[s]” (Maulidi

et al., 2014). The data was related using the Maritime Mobile Service Identity (MMSI),

unique identifier for a ship, and the gross tonnage of a ship to match the AIS messages

and the information present in the shipping database. This processing took place in a

MySQL database was then linked to a web browser interface to allow a user to conve-

niently “[click] each ship [to display the] amount of emission” (Maulidi et al., 2014) each

ship produces over time. “By using the web-based traffic control, it is more efficient to to
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monitor the marine traffic, safety and environment in term of air pollution in the specific

area.” (Maulidi et al., 2014). This method of integrating AIS data to a shipping database

allows for some simple data analysis.

2.4.2 Data Reliability

AIS messages are important for maritime safety and vessel tracking. The reality

though is the that AIS messages are susceptible to, signal error, human error and mali-

cious attacks. This causes issues in analyzing AIS message data because it can produce

messages that less accurately portray the real world movements of a vessel or blatantly

change the position and information of a ship. A study conducted by Harati-Mokhtari et

al., 2007a looked over previous studies and wanted to determine the reliability and human

error that are present in AIS messages. “Navigational status is dynamic information that

has to be manually entered by the officer of the watch (OOW) and changed or updated

as necessary by the navigation officer ... in the VTS-based AIS study 30% of ships were

detected as displaying incorrect status information” (Harati-Mokhtari et al., 2007a). This

information in the AIS message is important because based on the navigational status the

AIS changes its rates of transmission. For the positional information of AIS messages the

study found that “1% [of messages] had shown latitude of more than 90°and longitude

of more than 180°or the position 0°N/S, 0°E/W” (Harati-Mokhtari et al., 2007a) which
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could be attributed to the position system not working. The human errors listed in the

study include installation, program design, training, equipment regulation, and violations

of AIS accuracy. These errors cause issues with reliability of AIS messages. The study

makes suggestions on what steps must be taken for human training to minimize the un-

certainty in AIS messages and improve overall accuracy of the systems (Harati-Mokhtari

et al., 2007a).

Balduzzi et al., 2014 conducted a study to evaluate how secure AIS were against ma-

licious attacks using software and hardware. In this study using software they were able

to change information of major AIS message providers (Marine Traffic, AisHUB, Vessel

Finder) and were able to change a ship’s position, create imaginary ships/buoys, and re-

place information on AIS messages for a specified ship (Balduzzi et al., 2014). With the

use of their own altered AIS the researchers were able to accomplish the same results as

the software attacks as well as more. Using an altered AIS they were able to send distress

beacons which if received by a ship which by “law is required to join a rescue operation

upon receiving a search and rescue message” (Balduzzi et al., 2014). Balduzzi et al., 2014

were also able to override AIS systems messages and make a ship’s AIS seem silent by

methods of slot starvation, frequency hopping, or timing attacks. The information from

this study shows how susceptible AIS messages are to attacks and can be used for changing

historic information or real time incoming information as well. The researchers reached
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out to message providers and AIS developers in hoping to fix these potential methods of

attack and are actively working to stop any malicious attacks.

2.4.3 Limitations of the Data

With any source of data there are likely to be errors created by the physical limita-

tion of the technology or mis-reporting information and so measurements must be taken to

either find these errors or understand where accuracy may be hindered. This is apparent in

both AIS messages and HF radar datasets. Heymann et al., 2011 collected AIS messages

in the month of September of 2011 and analyzed “the contained information ... against

the plausibility of their values according to other parameters in the time series” (Heymann

et al., 2011). The fields of the AIS messages looked at were Course Over Ground (COG),

Speed Over Ground (SOG), Position, Heading, Navigational Status, and MMSI. For each

of these fields there were critical values assigned based on either AIS message parameters

set by International Maritime Organization or by physical limitations on a ships manoeu-

vrability set by the researchers. An example of a critical value is SOG where they calcu-

lated the distance and time between messages to calculate their own average speed. This

average speed was seen as the critical value for reported SOG. If the critical values were

exceeded then it was seen as not being plausible. The study areas were Rostock harbour of

Germany and the Baltic sea. The study showed that there were less overall message errors
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in the Baltic sea which may have been explained by the larger Baltic sea region that has

more dynamic routes and less congestion when compared to the tighter compacted harbour

which has a higher density of ship traffic (Heymann et al., 2011). This is an important note

since the Baltic sea is a closer resemblance to the study area used in this thesis mentioned

in section 3.5. In the AIS message data 10% of the messages in harbour were unlikely

with 44% having an error in the heading field, 34% for COG, and 5% for SOG. Heymann

et al., 2011 concluded that on average the AIS messages contained critical values less than

10% of the time with most errors occurring from the heading and COG information.

Studying HF radars Gurgel et al., 1999a analyzed the physical limitations of HF radars

for remotely sensing surface currents. The study explains factors that affect the radars such

as “material parameters of both the sea and atmosphere [such as] salinity and temperature”

(Gurgel et al., 1999a). The spatial resolution has physical limitations as well since the

“scattering range has to extend over a large number of HF wavelengths in order to allow

resonant backscatter” (Gurgel et al., 1999a), this means that data further away from the

radar will need to be at a lower resolution to receive the necessary information. At further

distances radio interference must be minimized by changing the radar signals which lowers

data resolution. The researchers also determined that “disturbances can only arise from

nearby radio stations” (Gurgel et al., 1999a). The authors concluded that HF radars are

dependent on high salinity of the water which is why it cannot be used in freshwater
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lakes. The working conditions for HF radars also set limitations. At 100 kilometres away

resolution is 8 kilometres and the working range for finer resolution of 0.3 kilometres is

within the first 50 kilometres (Gurgel et al., 1999a). This information is important when

combining HF radar data with other sources since information closer to shore will have

greater accuracy.

2.5 Recent Related Research

A study that took place concurrently with this thesis is that by Guichoux et al., 2016

whose goal is to estimate fine scaled sea surface currents by calculating error between pre-

dicted location of a ship and given position, based on AIS messages, which follows similar

methods presented in this paper. Their study took place south of Sicily and was “was cho-

sen mainly because of the great variety of [sea current] circulation features” (Guichoux et

al., 2016). The researchers state that the methods available for measuring near-surface cur-

rents fail to provide information on the small scale features in ocean currents. In the study

they sampled AIS messages in minute intervals and only looked at cases where a ship was

travelling at a reported speed greater than 6 knots to exclude cases where a ship is actively

manoeuvring which would cause a strong bias in their analysis because changing course

changes how the external forces act on a ship. Guichoux et al., 2016 determine an error

in ship position, that is an expected association of ship drift produced by near-surface cur-
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rents, and calculate their calculated near-surface ocean currents for that given time. From

this study locations of 5 eddies were located and compared against a bathymetry map to

compare the likelihood of these eddies existing. The sampling method of AIS messages

used in the Guichoux et al., 2016 study will be partly replicated for this study to see if the

condition of constant straight line motion produces a stronger relationship between drift

and HF radar near-surface current values.

2.6 Summary

Based on a review of previous research using AIS, “the viability of AIS as a data

source appears good”(Gunnar Aarsætherr and Moan, 2009) for analyzing navigation pat-

terns of open ocean vessels. AIS allows for nearly continual updates on ship positioning

to better track and manage ship routing. HF radar has also proved useful in detecting ships

(that may not have an AIS aboard for reporting data) that are within 200 kilometres of

a coast that has HF radars on the shore. The studies that use HF radar to detect ships

have acknowledged that “ship detection and tracking results based on the real HF radar

data processing show a good performance”(Gurgel and Schlick, 1996). Finally, incorpo-

ration of wave data produced by HF radars can be seen as beneficial in determining the

projected paths of ocean vessels based on the resistances that waves produce. This con-

tinuous update of real time data can assist in ship location predictions when AIS signals
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are not available. These studies inform an understanding of AIS and the effects produced

from environmental covariates which for this thesis will focus on waves detected by the

coastal HF radars. Using these previous studies the thesis will expand on the available

knowledge by looking deeper into S-AIS and HF radar data and what relations may exist

between them. The thesis will also use the previous research to guide in some of the tests

by comparing methods of selecting data that may produce suitable conditions of ship and

wave interactions.



Chapter 3

Methodology

This chapter reviews the collection process of satellite based S-AIS messages and HF

radar data of top ocean currents. The process the data was cleaned for data processing and

data fusion is explained in detail as are and the methods used to address the issues around

S-AIS message gaps. The creation of a preliminary prediction model that determines a

ship’s position over time and the error in that prediction will be discussed. The error of

these predictions are then compared against HF radar data to answer,

Question 1: Can top ocean wave currents account for message to message discrepan-

cies in predicted position and actual recorded positions?

40
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This was done by creating a spatial temporal join between the S-AIS and the HF radar

data, then comparing the errors in the preliminary prediction model to the waves present

during that time. S-AIS message based trips that met an inclusion criteria where the waves

would be the greatest contributing factor were subset for further analysis. Another subset

was analyzed based on the Guichoux et al., 2016 study’s condition of constant straight line

of S-AIS messages which according to the researchers is the strongest case of measurable

wave effect. Finally a method is designed to answer,

Question 2: Can we use HF radars to calibrate preliminary AIS-based location predic-

tion models to enhance prediction accuracy?

This was looked at by calibrating the preliminary prediction model using the results of

the prediction error and HF radar relation.

The following Figure 3.1 represents the work flow diagram used in answering these

questions.
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Figure 3.1: Work Flow Diagram
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3.1 Satellite Automatic Identification System Ship Data

Importation to SQL Database

S-AIS data is a large dataset with billions of messages received by LEO satellites

each year. The S-AIS data for this study was provided by original study funders who

allowed the information to be used for our analysis. The S-AIS message data was sent

in two parts, the first half of the data was sent by physical hard drives delivered to the

University, and the second half of the data was downloaded through private web access.

The files were all text/comma separated value (csv) files that contained S-AIS messages

signals, received by LEO satellites, that intercepted signals transmitted from ships in the

North Pacific Ocean in the time span of Nov 1 2012 - Oct 31 2013. Once all the data was

imported it was inputted into a PostgreSQL database on a server where it was prepped for

cleaning and reorganization.

3.2 Cleaning of Ship Data in SQL Database

After the S-AIS data was transferred into the PostgresSQL database it was cleaned

and prepared to both minimize its size and extract only needed information (see appendix

B). Not all the S-AIS data set required for this study and therefore could be removed.

There were a total of 138 columns provided within the S-AIS dataset and from this it was
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determined that 34 of them provided enough of the necessary information. The columns

that were not used were either inconsistent enough to be unusable ( beige ), entirely blank

( blue ), or not appropriate for the study( red ). Table 3.1 below is a listing of all the

columns dropped and kept.
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Columns Kept Columns Dropped

MMSI Millisecond Name extension padding Offset 4

Message ID Region Message ID 1 1 Number slots 4

Repeat Indicator Online data Offset 1 1 Timeout 4
Time Group code Message ID 1 2 Increment 4

Country Sequence ID Offset 1 2 ATON type

Base station Channel Message ID 2 1 ATON name

Vessel name Data length Offset 2 1 off position

Call sign AIS version Destination ID A ATON status
IMO Regional Offset A Virtual ATON
Ship Type RAIM flag Increment A Channel A
Dimension to bow Communication flag Destination ID B Channel B
Dimension to stern Communication state Offset B Tx Rx mode
Dimension to port Fixing devise Increment B Power
Dimension to starboard Transmission control data msg type Message indicator

Draught Sequence Station ID Channel A bandwidth
Destination Destination ID Z count Channel B bandwidth
Navigational status Retransmit flag num data words Transzone size
ROT Country code health Longitude 1

SOG Functional ID unit flag Latitude 1

Accuracy Data display Longitude 2

Longitude Destination ID 1 DSC Latitude 2
Latitude Sequence 1 band Station Type

COG Destination ID 2 msg22 Report interval

Heading Sequence 2 offset1 Quiet Time
Maneuver Destination ID 3 num slots1 Part number
UTC year Sequence 3 timeout1 Vendor ID
UTC month Destination ID 4 Increment 1 Mother Ship MMSI

UTC day Sequence 4 Offset 2 Destination indicator
UTC hour Altitude Number slots 2 Binary flag

UTC minute Altitude sensor Timeout 2 GNSS status
UTC second Data terminal Increment 2 spare

ETA month Mode Offset 3 spare4

ETA day Safety text spare2

ETA hour Nonstandard bits Name extension
ETA minute spare3

Table 3.1: Columns of input AIS data: Kept and Dropped
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After extracting only the necessary columns the next task was to remove S-AIS mes-

sages that were anomalous or were not from ocean vessel ships, as some signals came

from ground stations and airplanes. AIS messages have a maritime mobile service identity

(MMSI) and this is unique for each ship’s radio equipment. MMSI is a nine digit number

that uniquely identifies a single vessel but not every nine digit number can be used. The

data was further cleaned by removing MMSI values that did not relate to the vessels we

were interested in. First we removed any message that had an MMSI value lower than

200000000. This is because a MMSI that starts with a 0 is a radio signal registered to a

coast station and a MMSI that starts with a 1 is set aside for the use of search and rescue

aircraft. The next set of MMSIs that were required to be removed were those equal or

greater than 800000000. A MMSI that begins with an 8 is specific to a hand held radio

and a MMSI that begins with a 9 are devices using a free-form number identity. After-

wards all that remained were messages with a MMSI starting with a number from 2-7.

Some remaining messages had positional information that was null. Thus we removed

all messages that did not contain a longitude or a latitude attributed to it (International

Telecommuniations Union, 2010).

The next part of the data cleaning was the removal of repeated messages within the

dataset. A message’s Message ID specifies the type of message being sent. If a Message

ID is number 5 it is a static message that provides additional information on a ship that is
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otherwise not sent in a standard Message ID of 1, which provides positional information

on a ship. Thus, only one Message ID of value 5 is needed for a ship. Redundant messages

were removed if a ship’s MMSI, Message ID of 5, and Time values were all the same and

only one message was kept. If a Message ID was lower than 5 it is a positional report

of a ship. With messages being sent at a rates as high as one message every two seconds

there can be signal disruption or delay from the information being received by the satellite

which can cause repeats in data being received. To remove replicated messages within the

data, the messages were sorted based on MMSI and Time, if a message’s MMSI was the

same as the previous one, the Time stamp was exactly the same as the one previous, and

the Message ID was not 5 then the message was removed. With the extraction of only

necessary columns, ship messages, and unique messages the data was ready for the next

phase of the study. A specific concern with S-AIS data is involving the time stamp of

the message and whether it is associated with the time the AIS message was sent or the

time the AIS was received by the satellite. The data set had gone under alterations with

labelling and un-available metadata so it could not be confirmed what the time stamp was

associated with. In this study it was initially assumed that time in the S-AIS messages is

the time the AIS message was sent. This is used as a working assumption in the analysis

which is later proved may be an issue when reviewing the reliability of the time stamp in

S-AIS messages in Section 5.1.1.
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3.3 Selecting Physically Realizable Values

Using suggestions from the paper by Heymann et al. (2011), messages were filtered

out if they exceed certain physical limits. The first physical limitation that was easy to filter

out were ships that exceeded a given Speed Over Ground (SOG) value. The limit chosen

for this study was 50 knots (92.6 km/h), this value was chosen because the maximum speed

of tanker ships is roughly 30 knots and with different types of ships present in the data set

this seemed like a reasonable threshold. This also eliminates the SOG default value of

1023 which would create errors later on.

The next scenario measured was the plausibility of a ship’s location over a given time

span. To calculate the possibility of a ship being at a given location we assumed the ships

speed was 50 knots and calculated the maximum distance that can be travelled in a set pe-

riod of time. The speed of 50 knots was selected after searching online resources for fastest

ship speeds and determining that 50 knots was greater than top speeds of ship’s that are

not specifically designed for only speed. To determine this for each message the difference

in time between 2 sequential messages were taken as well as the distance between their

positional information. From this a maximum distance was calculated by multiplying dif-

ference in time (seconds) by 25 m/s ( 50 knots) and if this maximum distance is less then

the distance between the given positions then the following message was removed. An

example of a error that this removed were scenarios where a ship would suddenly jump 30
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kilometres off course in a message and the following message would return to the previous

position. The number of cases where this situation occurred was substantial throughout

the data set. Figures 3.2 & 3.3 depict the difference in time and difference in distance be-

tween messages. The line increments at 25 metres for every second so any point above the

line is a values that exceeds the ships maximum speed. The time was limited to 200,000

seconds because the max distance that could be between two messages in this study area

is 500 kilometres.
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Figure 3.2: Difference in time and distance between each message

Figure 3.3: Difference in time and distance between each message
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3.4 Gap Analysis of Ship Data

A gap analysis was conducted to express the significant need for a prediction model

to determine a ship’s path during periods where no messages are available. Message gaps

in this study can occur for a number of different reasons such as, a satellite not being

present in the area to receive the AIS message, a form of interference occurring during

the time the AIS message is sent to when the message is received by the satellite, or if

a AIS is turned off and is not sending out messages at all. In this study a gap will be

defined as a break in a ship’s path when no message is received within a 6 hour time

span from the previous message and the ship has moved further then 5 kilometres after

the next message is received. The reasons for these parameters are because the satellites

that provided information for this study comprised a constellation where the maximum

time a given area would not have satellite coverage in the given year was 6 hours. The

requirement that a ship needs travel a distance greater than 5 kilometres is because if a

ship is in port it may turn off its AIS because there is no movement taking place over a

large period of time. Ships in port may also have gaps generated by radio interference

because of the density of AIS messages that take place in port from multiple ships. It is

only ships that are moving greater distances than within port that are of interest in finding

the gaps for in this study.

The code to find ship gaps starts with a reorganization of the data set. First we sort the



CHAPTER 3. METHODOLOGY 52

data based on the ship’s MMSI, followed by the time. This groups the S-AIS messages

based on the proper time sequence that a ship travels over the course of a year. Next a time

difference calculation is done that takes the S-AIS message time value and calculates the

difference from the previous S-AIS message time value and outputs the difference in those

times.

The next step is to calculate the difference in position between messages. The differ-

ence is calculated between an S-AIS message and the previous S-AIS message’s longitude

and latitude fields. Pythagorean Theorem can be used to calculate the distance from an

AIS message and the previous AIS message by
√

∆Longitude2 + ∆Latitude2 . The dis-

tances are calculated assuming locally flat space as the magnitudes are what are important

and not precision so the error in this assumption is acceptable.

The last step before finding the gaps is to create a subset to not include the first message

of each S-AIS message sequence based on MMSI. This is done because in the sorted list

when a new MMSI starts all the difference calculation that are performed will be against

a different ship making the messages not applicable. To determine ship’s gaps now all

that is done is a selection criteria from the S-AIS messages (with the first message of a

new MMSI removed) where a S-AIS messages time difference is greater than 6 hrs and

has a positional change greater than 5 kilometres. This information is used to determine

the gaps present in the data to illustrate the need for prediction models to fill the missing
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information in satellite based AIS data sets. (see Appendix A for code used for these

calculations)

3.5 Selection of the Study Area

The study area chosen for analysis was the ocean area surrounding the Port of Long

Beach, California. This area was chosen based on recommendations from the original

funders of the study who were interested in this port due to the amount of traffic at the

port and by how many international ships travel across the Pacific to deliver there. The

reason this is also an appropriate study area other then its heavy traffic are the physical

attributes of the study area. The Port of Long Beach is a directly open ocean port with

minimal barriers coming into the port. This means a lot of ships remain anchored in

large portions of open ocean which seemed ideal for the study because information on

anchored ships was a required input for parts of the study. The spatial extent used for the

study area is Longitude: (-118.2, -120.2) Latitude: (32.8, 34.8). These dimensions were

chosen to encompass the entire study area and for convenience of collecting HF radar data.

If the spatial extent were any larger the HF radar file from Coastal Observing Research

& Development Center website (http://cordc.ucsd.edu/) would be too large for download

requiring multiple files to be downloaded and merged to create a larger area. After the

study area was determined, AIS message information was subset to the dimensions of the
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study area so that it may be used in the initial analysis. The AIS messages were subset

into a group based on their longitude and latitude being within the study area boundaries,

Longitude: (-118.2, -120.2) Latitude: (32.8, 34.8) (see figure 3.4).

3.6 Trip Identification Creation

Next we describe the way we organized the message data into groups based on a

sequence of messages for a given ship’s trips. In this study, a ship trip was defined as

a sequence of messages with in-motion navigational status between two end points of

messages with at-rest navigational status. Trips were broken down by using a trip code for

each message formed from the MMSI number, followed by trip and year of the message.

The columns used to determine the trips were, MMSI, Date, and Navigation Status. The

table of message data were first sorted by MMSI number then by the Date and Time the

message was received. An index number was given to each message for sorting of the

data. A TripID column was added which serves as the trip identifier for each message.

The last column added was a SequenceID which is an identification of what part of the

trip that each message was received.

SQL code was written to achieve the next step (see Appendix B). A SearchCursor

iterates through the rows and compares the previous row to determine what the TripID and

SequenceID are. The code uses two different counters to determine the trip number and
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Figure 3.4: Study Area
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the sequence number. The code first looks at MMSI, if the MMSI is not the same as the

MMSI of the previous row then both counters are reset. If the MMSI remains the same

as the row prior then the navigation status is viewed. The start of a trip is defined as a

ship moving from a previously anchored location, and an end of a trip is defined as a ship

that is either moored or anchored. When looking at the navigational status, after MMSI is

checked, if the navigational status of the previous row is not a 1 or 5 then the trip counter

remains the same but the sequence counter increases by one. If the navigational status of

the prior row is a 1 or 5 and the navigational status of the current row is a 1 or 5 then the

trip counter remains the same and the sequence counter goes up by 1. If the previous row

has a navigational status of 1 or 5 and the current row has a navigational status of anything

other than a 1 or 5 then the trip counter increases by one and the sequence counter resets

to 1. For each message the TripID field is filled as “The MMSI” + “T” + “TripID”. The

SequenceID is equal to the sequence counter. Each message can now be determined to

be part of a specific trip that the ship took during the given year and how many messages

occurred during in the trip. The former is used to easily extract single trips for analysis.
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3.7 Prediction Model & Generating Error Vectors

When a vessel does not change its rate of turn and maintains constant speed in a

controlled environment the distance traveled and new location can be estimated using the

ship’s velocity and time passed. If a ship at position A has coordinates (x1,y1), speed of

(V), and heading of (θ) then position B (x2,y2) after change in time (∆ t) is then calculated.

x2 = x1 + cos(θ) · V1 ·∆t

y2 = y1 + sin(θ) · V1 ·∆t
(3.1)

The S-AIS messages position were provided in latitude and longitude coordinates so

they were transformed into Universal Transverse Mercator UTM zone 11, which is specific

for this region, so the calculations could use metres as a distance measure. This was

completed using R’s spTransform function. The x and y coordinates are in metres north

and east allowing for simple trigonometric calculations. This equation is the basis of

creating the preliminary location prediction model.

A problem with the equation above is that in the real world there are external factors

that affect these results. The largest contributing factor for error in positional estimation of

a ship is environmental covariates, especially waves (Szelangiewicz, 2014). By calculating

the expected position of a ship over time and comparing it against the real world position
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the vector difference between the two points can be compared with wave velocities. To

calculate the error vector we need ship position A (x1,x2), position B (x2,y2) heading (θ) at

position A , speed (V) at position A , time (t) at position A message and time at position

B message. First the expected position (Ex, Ey) must be calculated.

Ex2 = x1 + cos(θ) · V1 ·∆t

Ey2 = y1 + sin(θ) · V1 ·∆t
(3.2)

The error vector is calculated by comparing the differences between position B(x2,y2)

and expected position (Ex, Ey). Error Vector North (Ey - y2) , Error Vector East (Ex - x2).

This is completed over the entire dataset with the following equation.

Errxi
= xi − Exi

Erryi = yi − Eyi

where i = 1...n− 1 for n points

(3.3)

The Northward and Eastward error vectors (see Figure 3.5 & 3.6) can now be used

to run a regression analysis against the Northward and Eastward wave velocities in the

cell. In any case where an error vector crosses into a new cell boundary the cell which the

starting point is referenced is used.
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Figure 3.5: Error Vectors

Figure 3.6: Error Vectors
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3.8 Collection of High Frequency Radar Data

HF radar data is openly available through the Coastal Observing Research & Devel-

opment Center (CORDC) website (http://cordc.ucsd.edu/). The data provided by CORDC

have a temporal range from October 1 2011 until the present date and can be provided in

500 metres, 1 kilometre, 2 kilometres, 6 kilometres spatial resolution grid cells provided in

a NetCDF format. A NetCDF file is formatted so larger amounts of data take up less space.

The way a NetCDF is designed is shown in Figure 3.7, it uses an x,y,z to index values

where x,y are space coordinates and z is the time coordinate. The HF radar data provides

information on the longitude and latitude of each grid cell, a time value, hourly average

eastward wave velocity, and hourly average northward velocity. The time span chosen for

the HF radar was the range that matches the S-AIS data which ranges from November

1 2012 00:00:00 until November 1 2013 00:00:00. The resolutions downloaded for use

of the case study were 1 kilometres (Figure 3.8), 2 kilometres (Figure 3.9), 6 kilometres

(Figure 3.10). These three were downloaded because although the higher resolution data

would be preferable the 500m resolution data was only sparsely populated while the lower

resolution, though not as precise, was more complete within the study area.
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Figure 3.7: Structure of NetCDF
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Figure 3.8: 1 km resolution HF radar data

Figure 3.9: 2 km resolution HF radar data

Figure 3.10: 6 km resolution HF radar data
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3.9 Spatial and Temporal Join of the Ship and HF Radar

Data

To spatially and temporally join the S-AIS messages and the HF radar data a few

common attributes needed to be be properly matched. The first was a time relation between

the two datasets because each had their own unique style of time reference. The HF radar

data’s time scale is single increments of hours since November 1 2011, to create a common

relation with the S-AIS message dataset the time field of the S-AIS messages has to be

converted into epoch time, seconds since January 1 1970, and then converted to seconds

since November 1 2011 by removing the difference in time. Then the time was converted

to hours and rounded down so that it is represented in the same time scale as the HF radar

data. This is completed using the R code below.

###Converts date to seconds since Jan/1/1970###

ships$time_conv<- as.POSIXct(ships$time, "%Y-%m-%d %H:%M:%S")

###Converts to hours since 2011-10-01 (365952 is hours from 1/1/1970 - 10/1/2011)###

ships$hour_Conv<-round(((as.numeric(ships$time_conv)/3600)-365952), digits=0)

where 3600 represents seconds in an hour and 365952 is the number of hours between

January 1 1970 and October 1 2011,

When the time relation is set for a temporal join the next consideration is the relation

of the position of the S-AIS messages and to the HF radar grid cells for a spatial join. The
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join will provide the northward and eastward velocities that were present for each S-AIS

message. The HF radar data used for this study consisted of 1 kilometre, 2 kilometres, and

6 kilometres resolutions of an eastward and northward hourly average velocity for each

grid cell. To spatially join the HF radar data with each S-AIS message the latitude and

longitude must be matched to the respective HF radar grid cell. The grid cells in the HF

radar file are in ascending order of longitude and latitude starting point values for each

cell. Using R’s findInterval function two lists were generated, one for longitude and one

for latitude, which provides the interval in which each S-AIS message is associated with

spatially.

longCode<-findInterval(shipping$longitude,radar$dim$lon$vals, all.inside = T)

latCode<-findInterval(shipping$latitude,radar$dim$lat$vals, all.inside = T)

The wave velocities were then spatially and temporally matched using the latitude,

longitude, and hour interval values.

This process is repeated for each resolution of data, 1 kilometres , 2 kilometres, and

6 kilometres for each message. The reason for this is that the coverage of each data set

contains large spatial gaps so by merging the data resolutions it creates the largest possible

coverage. The differences in values for northward and eastward velocities are negligible at

the different resolutions, therefore by merging these resolutions there was no measurable

impact on data consistency. The highest spatial resolution was taken if possible, if the

data was not available then next possible value of the next highest resolution was selected.
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This allows for the largest possible coverage of wave velocities to be applied to the S-AIS

message data.

3.10 Correlation of the HF Radar and Error Vectors

To answer Question 1: Can top ocean wave currents account for message to message

discrepancies in predicted position and actual recorded positions? A Pearson correlation

coefficient was calculated between the generated error vectors and the wave magnitudes.

This is done by using a Pearson correlation with the error vector and wave magnitude

for the northward and eastward units. The next step was to try and isolate scenarios that

were expected to show the strongest correlation values. The first subsets analyzed were

ships that reported being at anchor which is represented by a S-AIS messages where the

navigation status was equal to 1. For ships at anchor it is expected that the only movement

in position must be from wave impacts. Then the ships that were moving were isolated

into a subset. Next the data was split by the ship’s rate of turn. It is expected that when

a ship has a rate of turn it is actively moving against the motion induced by the waves

or otherwise actively navigating so finding scenarios where no rate of turn is present will

produce strong correlations. So a subset was created of the data based on whether a ship’s

message had a rate of turn equal to 0 or not.

The next type of scenario generated was based the length between messages. For this
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the thought was that when gaps in time occur between messages the overall magnitude

of the errors are increased since the waves have longer to act on the ship over time. This

would better represent the overall movement of a ship and would show a stronger corre-

lation than smaller intervals in time would. This is done by selecting messages where the

difference in time was greater than one minute and less than 10 minutes.

The next correlation test was done based on S-AIS ship’s heading and the direc-

tion of the wave magnitude. To determine the wave’s heading we used the function

atan2(EV,EU) (where EV is northward wave velocity and EU is Eastward wave ve-

locity). The wave magnitude was calculated using
√
EV 2 + EU2. Cases were subset

based on the wave direction being parallel to the ships heading (± 5%) or if the wave di-

rection was perpendicular (± 5%). The correlation was then calculated between the error

magnitude and the wave magnitude.

The final scenario considered was ship trips that contained the largest wave magni-

tudes. For this scenario trips were first subset based on the number of continuous messages

received in sequence with no time gaps greater than 10 minutes and no errors in the mes-

sages that were mentioned in section 3.3. This used to select full trips where the number

of messages in a sequence were greater than 50 and then out of those trips ones where the

wave velocity was greater than 0.3m/s in either the northward or eastward was selected.

The reason for the 0.3m/s selection is because this in the upper range of wave velocity in
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the selected dataset.

3.11 Comparison with Related Research

Following the study by Guichoux et al., 2016 we wanted to replicate the scenario

generated in their study to see if their conditions of collected ship messages assisted in

generating a greater correlation between the error vector and HF radar wave velocities. In

the study the authors cite that the AIS messages used in the study “were gathered at a one

minute sampling rate. For the study, we selected AIS messages of merchant ships with

a speed over ground superior to 6 knots in order to exclude the impact of voluntary ship

manoeuvres on our results” (Guichoux et al., 2016). These are the parameters we used to

try and reproduce a similar data set.

To replicate a similar scenario in our data set the first step is to remove all message that

have a speed over ground (SOG) less than 6 knots. The next task is creating time inter-

vals of around 1 minute between ship messages. For this a time difference was calculated

between the messages where ∆t is t(i+1) - t(i). The messages that have a time difference

greater then 120 seconds will be removed to minimize overall processing time. R’s dif-

ference function was used on t(i) and t(i+1) to calculate the difference (∆t) between the

values. If the difference is less then 60 seconds then message (i+1) was removed and the

change in time from t(i) was compared to t(i+2) until a difference in time is greater then 60
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seconds. When that difference is met the new time message point starts where that greater

than 60 second gap ended and repeat the loop from there. This helped isolate messages

to make a scenario as if we only collected messages every minute and not have messages

at much lower intervals of 2-10 seconds. From this point we rerun the generating of error

vectors with this new subset to see if a correlation exists.

A final ideal case scenario was the expected ideal conditions where we expected a

correlation to exist. This ideal case was a ship continuously moving at speeds greater then

6 knots so it can be assumed no drastic manoeuvres are being taken. The rate of turn (ROT)

of the messages must be 0 so that we can assume the ship is not actively steering against

the current to minimize the effect of drift. The time difference between messages was

set no greater then 120 seconds so that no large gaps in time occurred in our continuous

ideal scenario. The number of messages in sequence for this ideal trip must be greater

then 50, and finally from these requirements the trip that consists of the strongest current

velocity was chosen. It is under these conditions of a trip where there is no active manual

manoeuvring against the current with a strong force that it is expected to have the greatest

impact and therefore the strongest correlation to exist between the error vector and wave

velocity.
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3.12 Prediction Model Calibration

The final question to be answered was Question 2: Can we use HF radars to calibrate

preliminary AIS-based location prediction models to enhance prediction accuracy? This

was done by taking the preliminary prediction model that was created in this study (see

figure 3.5) and incorporating the wave magnitudes into the prediction. This is done using

2 different models, the first model that was used to calibrate the error in prediction was,

Cxi = xi−1 + (cos(θ) · Vi−1 ·∆t) + (EUi−1 ·∆t)

Cyi = yi−1 + (sin(θ) · Vi−1 ·∆t) + (EVi−1 ·∆t)
(3.4)

where EU is eastward velocity and EV in northward velocity. This was a simple change

by adding the wave magnitudes directly to the model.
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Figure 3.11: Calibration using wave magnitudes

Figure 3.11 visualizes how the wave vector is applied to the model in creating a new

prediction location.

A further model was created where the wave’s angle of interaction takes effect. The

wave interaction was calculated separately for the wave acting perpendicular on the ship

and the wave acting parallel on a ship. The maximum ship sizes that can use the the
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Panama Canal, New Panama Canal, and Malaca Canal were taken to calculate a ratio of

7:1 from ship’s length(7) and width/beam(1). This was done to incorporate the notion that

waves would act in proportion based to the expressed surface area of a ship. The model

that was created to represent this was,

RCxi = xi−1 + (cos(θi−1) · Vi−1 ·∆t) + (EUi−1 ·∆t · (cos(θi−1) + sin(θi) ·
1

7
))

RCyi = yi−1 + (sin(θi−1) ∗ Vi−1 ·∆t) + (EVi−1 ·∆t · (sin(θi−1) + cos(θi) ·
1

7
))

(3.5)



CHAPTER 3. METHODOLOGY 72

Figure 3.12: Realistic calibration of wave effects
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Figure 3.12 gives a indication on how the wave is applied in the realistic calibrated

model. The northward and eastward wave magnitudes are applied to both the length and

beam of the ship separately so a wave has more contribution dependent of the surface area

it comes in contact with on a ship. This is meant to simulate a more realistic approach on

how a wave would act upon a ship where more surface area in direct contact with a wave

would produce more foreceful displacement.

These models are run to generate new positional predictions and the overall error will

be compared to the overall error that was produced in the preliminary model. This was

done by comparing the following equations.

n∑
i=1

Errxi =
n∑

i=1

√
(xi − Exi)2

n∑
i=1

Erryi =
n∑

i=1

√
(yi − Eyi)2

(3.6)

n∑
i=1

CErrxi =
n∑

i=1

√
(xi − Cxi)2

n∑
i=1

CErryi =
n∑

i=1

√
(yi − Cyi)2

(3.7)

n∑
i=1

RCErrxi =
n∑

i=1

√
(xi −RCxi)2

n∑
i=1

RCErryi =
n∑

i=1

√
(yi −RCyi)2

(3.8)



Chapter 4

Results

The results of this study where designed to help determine,

Question 1: Can top ocean wave currents account for message to message dis-

crepancies in predicted position and actual recorded positions?

and if a correlation exists, between the measured movement of ships through S-AIS

messages and the wave velocities present from HF radars then determine if we

Question 2: Can we use HF radars to calibrate preliminary S-AIS-based location

prediction models to enhance prediction accuracy?

74



CHAPTER 4. RESULTS 75

The chapter will present the results. Next we discuss the steps used to remove messages

that were not physically possible and exceeded speed limitations. The results from the gap

analysis are then explained, detailing the number of gaps present in the dataset. Next the

results from the spatial temporal join show how much of the S-AIS and HF radar data

match. The results of the prediction model and the errors when compared to the actual

positions are provided. The correlation between the wave magnitudes and the error in

position is given for all the different scenarios. Finally the calibrated prediction models

are used to generate new error vectors which were then compared to the errors in the

preliminary model.

4.1 Study Area & High Frequency Radar Data

The S-AIS messages extracted from the SQL database were based on messages with longi-

tude: (-118.2, -120.2) and latitude: (32.8, 34.8). This subset contained a total of 3,965,723

S-AIS messages that were transmitted from November 1st 2012 to November 1st 2013.

Figure 4.1 is a kernel density estimation map that gives a representation of the location of

S-AIS messages that were collected.

The HF radar data was downloaded in 1 kilometres, 2 kilometres, and 6 kilometres

resolution from November 1st 2012 to November 1st 2013 in a study region of longitude:

(-118.2, -120.2) and latitude: (32.8, 34.8). HF radar data of 6 kilometres resolution from
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Figure 4.1: S-AIS Message Density form November 1st 2012 to November 1st 2013
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the date March 3rd 20:00 onward was unavailable so the study’s S-AIS messages were

subset to follow this new time span of November 1st 2012 to March 3rd 2013 at 20:00

coordinated universal time. This subset had a total of 1,354,999 messages to be used for

the study when combining the HF radar and S-AIS messages. These S-AIS messages

were cleaned to remove messages where the MMSI was not in between 200000000 and

800000000 which removes 2.98 % of the messages. Then messages where the MMSI

and time value were the exact same which consisted of 6.62 % of the messages were also

removed leaving 1,224,886 messages for further analysis. This may have been a mistake

to do and should remove messages on complete exact matches in all fields of the data.

There may be important information being removed that could possibly help correct errors

in the dataset that is detailed in section 5.1.1.

4.2 Physically Realizable Values

The physically realizable values were subset by finding values that were not possible for

the ships in our study to accomplish. The first selection was finding S-AIS messages

with a reported SOG greater than 50 knots. Of the 1,224,886 S-AIS messages analyzed

there were 207 messages with a reported SOG of 50 knots. Through marinetraffic.com, an

online database of ship AIS messages, the MMSI of these ships were selected and they all

come from tug boats. All the tug boats are registered on MarineTraffic as having a max
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speed over ground of 7.2 knots making these messages of 50+ knots an obvious error.

The next scenario was the plausibility of the S-AIS messages position in accordance

to its previous position and time. The distance between two continuous messages in a

trip was calculated and if that distance exceeded the time between the two messages (∆ t)

multiplied in seconds by 25 metres per second (50 knots). There were 4,535 messages that

exceeded this limit meaning there is at least 2,267 separate cases where a S-AIS message

was misreported and provided impossible values. An example of this is the sequence of

messages in Table 4.1 which shows a sequence of three messages that span 1 minute and

30 seconds. In this sequence the S-AIS message says the ship travelled 198 kilometres in

11 seconds and returned to the near same position 1 minute later.

MMSI Time SOG Longitude Latitude COG

367395280 2/10/2013
7:08:23

0 -118.2566 33.76407 333.4

367395280 2/10/2013
7:08:34

6.8 -118.6933 32.01549 353.8

367395280 2/10/2013
7:09:53

0 -118.2566 33.76406 12.2

Table 4.1: S-AIS Message Error
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4.3 Gap Analysis

A gap analysis was completed by using the S-AIS messages in the study over the entire

year which consisted of 3,965,723 messages. This was to allow for a larger set of data

compared to using only the messages that were between November1 2012 and March 2

2013. First we looked at time gaps greater than 6 hours in a sequence of messages for a

single ship. There were 126,894 messages that appear over 6 hours since the last reported

S-AIS message which is 3.2% of the message dataset. The next issue was those messages

in which the gap between messages were a distance greater than 5 kilometres. There were

33,930 messages in the data set where a ship’s reported S-AIS message was collected over

6 hours after the previous message and the distance reported between the 2 messages was

equal or greater than 5 kilometres. This occurred in 0.86% of all messages in the data set.

An example of a gap is represented in Table 4.2. Between these two messages there was a

gap in time of 9 hours and 27 minute and the ship had travelled more than 22 kilometres.

The first message reported a navigational status of 0 meaning the it was using its engine

while the second message report 5 meaning it is moored (tied to port). This meant there

was obvious movement of the ship between the time of the two messages where the AIS

message was unreported or not received by prevailing satellites.

MMSI Time SOG Longitude Latitude Navigational Status

354357000 4/8/2013 10:23 10.8 -118.1463 33.55324 0

354357000 4/8/2013 19:50 0.2 -118.2556 33.73239 5

Table 4.2: S-AIS Message Error
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4.4 Spatial Temporal Join

The spatial temporal join between the S-AIS and HF radar data provided the information

on the wave velocities that were present at the time the AIS messages was received by

the satellite. This spatial temporal join was performed on 1,200,390 S-AIS messages,

these messages represented all messages from November 1st 2012 to March 20 2013 that

had all anomalous messages extracted and had a reported navigational status. After the

completion of the spatial temporal join between the S-AIS messages and the HF radar

data there were 875,165 S-AIS messages that had a measured wave velocity based on the

HF radar data. This equates to 72.91% messages being associated with a corresponding

wave velocity. From this join between HF radar and S-AIS messages there were 77,391

messages that used 1 kilometre resolution HF radar data, 157,863 messages that used 2

kilometres resolution data, and 639,911 messages that used 6 kilometres resolution data.
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4.5 Trip Identification

The creation of trip identifiers groups the S-AIS messages into trip segments to allow for

comparison between trips. Since the only requirements to determine which trip each S-

AIS message was associated with was the MMSI, navigational status, and time all S-AIS

messages were used with a total of 875,165 messages. As defined in Section 3.6 a trip is a

sequence of messages with in-motion navigational status between two end points of mes-

sages with at-rest navigational status. Table 4.3 is a transition sequence from a sequence

of S-AIS messages changing from one trip into the start of another with the start of the

second trip highlighted in blue. Figure 4.2 is a map of these S-AIS messages transitional

sequence between the trips where a ship is travelling, goes to port then continues on a new

trip. The purpose of this is to show how when a trip is transitioning there are gaps in space

and time that occur which can cause issues when analyzing, especially when transitioning

to a new trip. There are also gaps in time that occur during a a ship’s trip, the first message

of these gap types are highlighted in beige in table 4.3.
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MMSI Time Navigational
Status

Longitude Latitude TripID SOG Heading Sequence

354942000 11/2/2012 8:16 0 -118.6431 33.58934 354942000T1 10.1 91 1

354942000 11/2/2012 8:16 0 -118.6425 33.58931 354942000T1 10.1 91 2

354942000 11/2/2012 8:16 0 -118.6421 33.58929 354942000T1 10.1 91 3

354942000 11/2/2012 9:01 0 -118.4895 33.58573 354942000T1 9.7 89 4

354942000 11/2/2012 10:32 0 -118.2347 33.6169 354942000T1 9.6 57 5

354942000 11/2/2012 19:11 5 -118.2021 33.74356 354942000T1 0 90 6

354942000 11/2/2012 19:17 5 -118.2021 33.74356 354942000T1 0 90 7

354942000 11/2/2012 19:35 5 -118.2021 33.74356 354942000T1 0 90 8

354942000 11/2/2012 21:17 5 -118.2021 33.74357 354942000T1 0 90 9

354942000 11/3/2012 6:23 5 -118.2021 33.74353 354942000T1 0 90 10

354942000 11/3/2012 7:42 5 -118.2021 33.74355 354942000T1 0 90 11

354942000 11/3/2012 7:59 5 -118.2021 33.74355 354942000T1 0 90 12

354942000 11/3/2012 9:29 5 -118.2021 33.74348 354942000T1 0.1 90 13

354942000 11/3/2012 20:05 5 -118.2021 33.74354 354942000T1 0 90 14

354942000 11/3/2012 20:35 5 -118.2021 33.74355 354942000T1 0 90 15

354942000 11/3/2012 20:38 5 -118.2021 33.74358 354942000T1 0 90 16

354942000 11/4/2012 1:41 5 -118.2021 33.74359 354942000T1 0 90 17

354942000 11/4/2012 6:11 5 -118.2025 33.74345 354942000T1 0 90 18

354942000 11/4/2012 20:18 5 -118.2021 33.74356 354942000T1 0 90 19

354942000 11/5/2012 5:44 5 -118.2021 33.74357 354942000T1 0 90 20

354942000 11/5/2012 5:53 5 -118.2021 33.74353 354942000T1 0 90 21

354942000 11/5/2012 7:20 5 -118.2021 33.74356 354942000T1 0 90 22

354942000 11/5/2012 8:44 5 -118.2021 33.74359 354942000T1 0 90 23

354942000 11/5/2012 15:47 0 -118.7549 33.65145 354942000T2 11.7 274 24

354942000 11/5/2012 15:49 0 -118.7627 33.65186 354942000T2 11.7 273 25

354942000 11/5/2012 15:49 0 -118.764 33.65193 354942000T2 11.7 273 26

354942000 11/5/2012 15:49 0 -118.7653 33.65201 354942000T2 11.7 273 27

354942000 11/5/2012 15:50 0 -118.7666 33.65208 354942000T2 11.7 273 28

354942000 11/5/2012 19:02 0 -119.7649 33.67559 354942000T2 19.7 304 29

354942000 11/5/2012 19:03 0 -119.7662 33.67614 354942000T2 19.7 308 30

354942000 11/5/2012 19:25 0 -119.8875 33.74339 354942000T2 20.7 279 31

354942000 11/5/2012 19:26 0 -119.8958 33.74451 354942000T2 20.9 280 32

354942000 11/5/2012 19:27 0 -119.9019 33.74536 354942000T2 20.8 280 33

354942000 11/5/2012 19:28 0 -119.9061 33.74599 354942000T2 20.8 280 34

Table 4.3: S-AIS Message Error
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Figure 4.2: Transition of a trip in S-AIS messages
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This example identifies inconsistencies with the data when attempting to analyze.

There are gaps in time between in motion messages as high as 3.2 hours and even longer

gaps occurring between in motion and anchored messages. These gaps in time show the

need for understanding the predicted position of a ship when it is unclear how long until

the next message is received using S-AIS. In this example we illustrate that when a trip is

labelled for this study and by starting a trip with the first reported in motion navigational

status, which for this case is message 24, we avoid the complications with the initial tran-

sition from anchored to moving. “At anchor” messages are included in at the end of the

trip and remain associated to the trip but are subset into separate trip segments in further

analysis.

4.6 Prediction Model and Error Vectors

From the S-AIS messages there were 875,165 that have a spatial and temporal pairing with

a HF radar wave value. In creating the prediction model from the messages one of the

required fields in the S-AIS messages is the ship’s heading. All messages that contained

a heading value that was not null were subset leaving 574,907 messages that can be used

for the prediction model and generate error vectors.
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Figure 4.3: S-AIS prediction model and generated error vector map
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Figure 4.3 is an example of the predction model and the generated error vectors. In

the prediction model the average error between S-AIS messages and the predicted location

were 582 metres on the north axis and 660 metres on the east axis with the average time

between messages being 1422 seconds and speed of 3 metres per second. These values

may be skewed by outliers so when looking at only moving ships the average error between

S-AIS messages were 576 metres on the north axis and 654 metres on the east axis with an

average time difference of 1043 and average speed of 4.7 metres per second. This shows

there was not a significant change when isolating moving ships in the average error values

for the initial prediction model.
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4.7 Correlation Values

A regression analysis was completed to calculate the correlation between the prediction

error vector and the wave vector acting on a ship over time. This was done using the

Pearson correlation coefficient. These correlations were broken down based on northward

and eastward magnitudes.

This initial test compared all S-AIS messages that had wave magnitude data paired

with them as well as removing large time gaps of 24 hours (see Table 4.4). From this

regression analysis there was no correlation present.

Correlation test on all messages n=872,440

Northward Correlation 0.010899

Eastward Correlation -0.000367

Table 4.4: Correlation for all prediction errors and with matching wave magnitudes, time
gaps greater than 24 hours removed

Table 4.5 split the S-AIS messages based on the navigational status to determine if a

difference is present between ships at anchor and those with an active engine. The expec-

tation would be that there would be a stronger correlation with ships at anchor because the

major force applied to its drift is waves. There was no correlation in either scenario and

this may be because of the gaps in S-AIS messages present with ships at anchor which an

example can be viewed in Table 4.3.
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Correlation test split based on navigational status

At Anchor n=18,855

Northward Correlation -0.0143

Eastward Correlation -0.07036

Under way using engine n=655,188

Northward Correlation 0.05095

Eastward Correlation 0.004013

Table 4.5: Correlation for all prediction errors and with matching wave magnitudes split
based on the ships navigational status

Table 4.6 split the datasets further based on if the S-AIS had a reported rate of turn

(ROT). The reason for this split was because the expectation was that ships that were ac-

tively moving direction may be doing so to actively negate the effects that may be causing

drift on a ship’s course. In the data there are multiple cases where in a continuous string

of S-AIS messages have alternating reported ROT of 10 and -10 which lead us to this as-

sumption. From the test we see slightly stronger correlations with S-AIS messages that

have no rate of turn but the values are not significant.
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Correlation test splitting based on navigational status and rate of turn

At Anchor

No Rate of Turn n=6,623

Northward Correlation -0.06788

Eastward Correlation -0.3111

With rate of turn n=12,232

Northward Correlation -0.009644

Eastward Correlation -0.05457

Under way using engine

No Rate of Turn n=113,365

Northward Correlation 0.1538

Eastward Correlation -0.00512

With rate of turn n=541,823

Northward Correlation 0.026283

Eastward Correlation 0.006289

Table 4.6: Correlation for all prediction errors and with matching wave magnitudes split
based on the ships navigational status and split again based on rate of turn

Since there was a slight increase in correlation of S-AIS messages with no reported

ROT this was split further in Table 4.7 that viewed only S-AIS messages that had a time

difference from the previous message between 1 - 10 minutes. This was to determine

if time gaps allowed for greater displacement in prediction which would generate more

significant correlation values. There was no significant correlation from this subset.
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Correlation test split based on navigational status

and selecting messages with time gaps of 1-10 min

At Anchor n=1,756

Northward Correlation -0.05177

Eastward Correlation -0.1554

Under way using engine n=12,275

Northward Correlation -0.07499

Eastward Correlation -0.004408

Table 4.7: Correlation for all prediction errors and with matching wave magnitudes split
based on the ships navigational status and selecting cases where time gap is 1-10 minutes

Table 4.8 looked at partial ship trips where there were at least 50 continuous messages

with time gaps less than 10 min and all reported wave velocities of 0.3 m/s which is strong

in this area. This was an attempt to try and isolate a case where wave correlation would

have the greatest opportunity to exist. This subset reported a small negative correlation but

is not substantial.

Correlation test on ship trips that had high waves present n=6,478

and long continuous trip sequence

Northward Correlation -0.20078

Eastward Correlation 0.02774

Table 4.8: Correlation for all prediction errors and with matching wave magnitudes, mes-
sages for this test must contain wave velocity greater than 0.3m/s, time gap less that 10
min, and a continuous ship trip sequence of 50.
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The next subset was to look at S-AIS messages with a reported moving navigational

status and split based on the ship’s heading and the wave direction in Table 4.9. The split

was based on if the the wave impacted the ship along the path of movement or perpendic-

ular to its movement. This was to see if there is a difference in correlation if the wave was

acting on the ship’s width or length. The criteria for angle of interaction was given a ± 5◦.

From this subset there was again no correlation present.

Correlation test split based on the angle between ships heading and wave direction

Parallel angle (0◦ or 180◦ ± 5◦) between heading and wave n=32,597

Northward Correlation 0.03855

Eastward Correlation 0.00844

Perpendicular angle (90◦ or 270◦ ± 5◦) between heading and wave n=32,995

Northward Correlation -0.0616

Eastward Correlation 0.017

Table 4.9: Correlation test based on the ships heading orientation and wave angle, split
based on if angle is parallel to ship movement or perpendicular

Table 4.10 repeats a test to try and replicate the scenario presented by researcher Gui-

choux et al., 2016 for their study. Time gaps of 1-2 minutes were simulated as intervals

between messages. Then only S-AIS messages with a reported SOG of 6 knots or greater

and 0 ROT were selected. From this criteria of data the regression analysis showed no

consistent correlation.
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Replication of E-Odyn message conditions n=21,330

Northward Correlation -0.14825

Eastward Correlation -0.02367

Table 4.10: Correlation test based on S-AIS messages with a moving navigational status,
speed over ground greater than 6 knots, simulated time intervals between 1-2 minutes, 0
rate of turn, and a continuous message sequence of 5 messages

The final case that was set up to try and find a significant correlation was in Table 4.11.

This ideal case selected the parameters where there would be an expected strong correla-

tion with prediction error between S-AIS messages and the prevalent wave magnitudes.

The parameters for this test were ships with a SOG of 6 knots, time intervals less than

2 minutes, and have a continuous messages sequence of at least 30. This ideal case was

meant to isolate partial ship trips of linear moving ships that are not actively moving and

have a consistent string of S-AIS messages to reference. Even with these ideal parameters

there was no significant correlation present.

Ideal case scenario of expected correlation n=53,273

Northward Correlation -0.02914

Eastward Correlation -0.01888

Table 4.11: Correlation test based on the ideal scenarios of ship trips that would be ex-
pected to have a strong correlation between prediction error and wave magnitudes. The
ideal cases were segments where when the S-AIS are moving, speed over ground greater
than 6 knots, a ROT of 0, time intervals less than 2 minutes, and have a continual sequence
of 30 messages.
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These Pearson correlation coefficients measure the linear correlation between the error

vector of the prediction between S-AIS messages and the wave magnitudes that took place

between the S-AIS messages.

4.8 Calibrated Prediction Models

Using the prediction model to determine ship position from an S-AIS message, error vec-

tors were generated based on the positional difference of the predicted location to the re-

ported S-AIS position. These error vectors were calculated in all three model calibrations

to be used to determine the overall accuracy in the predictions.

From Table 4.12 we see a comparison of the overall errors produced based on each cal-

ibration type. The prediction error increased overall with the calibrated model compared

to the initial prediction model by nearly 1%. The overall error of the directional calibrated

model minimized the overall error when compared to the initial model by 4%. Based on

these values, even though the overall error did decrease when using the directionally cali-

brated model, the change in error is small and not reliable based since no correlations were

present between the error and wave vectors.



CHAPTER 4. RESULTS 94

Model Type Sum Absolute North
South Error (m)

Mean Error North
South Error (m)

Sum Absolute East
West Error (m)

Mean Error East
West Error (m)

Prediction Error Model 333,097,373 582 377,701,393 660

Calibrated Prediction
Error Model

336,092,772 591 377,599,883 664

Directional Calibrated
Prediction Error Model

320,636,744 564 361,477,102 636

Table 4.12: A comparitive look at the difference in overall error in the prediction model,
calibrated prediction model using wave magnitudes, and directionally calibrated prediction
model using wave magnitudes and directional impact on ships orientation
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Discussion

Through the course of this thesis the aim was to determine,

Question 1: Can top ocean wave currents account for message to message dis-

crepancies in predicted position and actual recorded positions?

and if a correlation exists, between the measured movement of ships through S-AIS

messages and the wave velocities present from HF radars then

Question 2: Can HF radars be used to calibrate preliminary S-AIS based location

prediction models to enhance prediction accuracy?

95
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In this chapter the results from the previous chapter are interpreted to look at the finding

of the thesis. Discussed are the errors that were found in S-AIS messages, the problems

they may cause, and how this issue can be addressed. Following this the results from the

prediction model and how accurate the initial prediction model are looked at. Then the

thesis will look at answering if top ocean wave currents account for message to message

discrepancies in predicted position and actual recorded positions. These results are used

to then determine if HF radars can be used to calibrate preliminary S-AIS-based location

prediction models to enhance prediction accuracy.

Next will discuss changes that can be made to the study for further research. Changes

can be made to the prediction model to enhance the accuracy in determine the ship’s po-

sition using developing ship models. Then discussed are the ways to expand the wave

dataset to gain a greater field of view of the areas around the AIS messages. Then the

thesis goes over ways to implement near real time data in the analysis of ship prediction

models so that it may be implemented for decision support systems.

The last part of the discussion is future uses of the research found in this study. This

will look into the process of dynamic ship pathing and how this research can be beneficial.

The next part looks at the benefits this thesis may be in the field of search and rescue. Fi-

nally, discuss the possibility of enhancing current prediction models using the information

gathered in this research.
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5.1 Interpretation of Results

5.1.1 Errors in S-AIS

With any dataset there comes issues with data quality and reliability, this is no different

with S-AIS messages. In this study the first thing to be done was cleaning of the data,

described in section 3.2, which reviewed the removal of S-AIS messages that had invalid

MMSI value or were a repeated message that had the same MMSI with the same time

stamp. It turns out that in reviewing in detail the process of S-AIS system sampling the

AIS data it may have been incorrect to remove this data and they in fact should have

been cleaned differently because it may have removed messages that reported a different

position that could correct for misreported messages. The reliability of the data came

into question when analyzing the real world possibility of the messages occurring. By

calculating the distance in position and difference in time between 2 messages in sequence

S-AIS messages from a ship we were able to calculate the speed of that ship according

to the S-AIS message. A speed max of 50 knots (92.6km/h) was set as our threshold and

from this we were able to find 2,267 S-AIS message cases that went past this threshold.

This is important to find in the dataset so that it may be removed from the model since

these values can greatly skew results by having ships travel much farther then possible

over time meaning the prediction model error will far exceed expectation.
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A specific abnormal case detected using this method was from a ship with the MMSI

235414000. In this case we had normal sequence of S-AIS messages that did not exceed

any limits in space over time until one moment there is a gap in time of 7 minutes 39

seconds (highlighted in blue). Over this time the S-AIS messages reported a positional

change of 30.18 kilometres which makes the detected average speed of 236km/h between

the S-AIS messages. This change in position is detected in other cases but as seen in table

4.1 they normally return to the same position and the single message can be seen as an

error. What makes MMSI:235414000 unique is the following sequence of S-AIS message

continue from new position. This is shown in figure 5.1

Figure 5.1: Trip sequence where messages continue after a gap occurs
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The uniqueness of this case goes further, after a sequence of 10 messages following

where the gap in space, highlighted in green, occurs there is a delay in time of 1 hour

where the ship only travels 1.8 kilometres even though the reported speed over ground is

roughly 32 km/hr. This is type of error differs from the typical types selected from the

gap analysis which are commonly, one time, misreported positions spikes. This error may

have been produced by miscommunication between the AIS and satellite making this a

specific S-AIS error type. The issue might be with the time stamps reported by the AIS or

from time stamps generated by the satellite and then self corrected after the next reliable

message was received. The way the gap analysis is designed for this study it still detected

the gap in space and identified the second S-AIS message after the gap in space as the start

of a new trip. This would allow us to still use the gap analysis accurately for the prediction

model with the exception of the time gap delay correction being undetected. The methods

in determining gap analysis and identifying a ship trip is a beneficial tool when analyzing

and working with S-AIS as it can help identify errors like that shown in figure 5.1.

The gap analysis results showed there are gaps in S-AIS message data sets so there

is a need to predict a ships movement to fill in these missing message gaps that can help

identify a ships position in the past when no S-AIS messages were received. This is evident

with seeing that 3.2% of the messages in the dataset occurred after a time greater than 6

hours in the message sequence. This is the maximum amount of time that the satellite
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constellation would be absent from an area. Of all the S-AIS messages 0.86% have the

following message reported after more then 6 hours and travelling a distance greater than

5 kilometres. This shows that the ship was moving over this gap of time and the satellite

was unable to directly receive a message by the ship either because the ship’s AIS was

not sending signals or the satellite was unable to collect the message. This gap analysis

helped identify these gaps and where prediction is required to fill in the gaps of positional

information. From the results reported in sections 4.2 and 4.3 we see that there is still

misreported messages and gaps in the data that need to be either identified or filled in.

5.1.2 Prediction Model

The prediction model that was created for this study was meant to create basic positional

predictions to generate error vectors to be compare against the wave velocities. The error

vectors that are produced overall are large at an average error of 582 metres northward

and 660 eastward with an average time between messages of 1422 seconds. There are still

large errors generated that may be skewing these values because of missing messages that

were either unreported or not received. If we look at only messages with maximum time

difference of 1 hour we see how it may have been skewed. With a time difference less than

1 hour the average error is 38 metres northward and 37 metres eastward with and average

time difference of 127 seconds and average reported speed of 3.2 metres per second. The
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average distance between messages was calculated to be 257 metres away which makes

the prediction average accuracy off by 20%. The prediction model created for this study

needs to be redesigned in further testing to maybe use existing models like that created

by Guichoux et al., (2016) as the basis to enhance initial accuracy and produce greater

reliability in the prediction errors.

5.1.3 Does a correlation exist between prediction error and waves?

The first question of this thesis was to determine Can top ocean wave currents account

for message to message discrepancies in predicted position and actual recorded posi-

tions? The way this was tested was by comparing the relation between the errors in the

prediction model and the wave magnitudes that took place over the prediction. The rela-

tion was completed using the Pearson correlation coefficient and the data was broken into

subsets based on the movements of a ship as well the different ways a wave may interact

with it the S-AIS messages were broken into categories to find where the waves may have

the strongest relation. These correlations were also broken down based on Northward or

Eastward relation. Ideally through these tests the expected outcome would for there to be a

strong negative correlation when running the regression analysis between the error vector

and the wave magnitude. This is based on the knowledge that if a ship was predicted to

travel further north then what was later reported it is thought that waves travelling south
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assisted in this new outcome causing a negative correlation.

The initial regression analysis showed no consistent or significant correlation in either

eastward or northward directions so the first subsets were split based on the navigational

status of the ship. The trips were split based on if the S-AIS message navigational status

reported as under way using engine versus at anchor. This was to see if a ship at anchor

may have slight drift caused by only external forces but this showed no correlation. Next

these subsets were split further based on the reported rate of turn. The assumption was

that a ship actively turning may be negating the effects caused by waves, this may have

been the case for ships at anchor since the messages with no rate of turn showed a small

negative correlation shown in Table 4.5. The next test looked only at messages that had

a time gap of 1-10 minutes. This was to see if maybe a significant correlation is present

when a greater amount of time passes and a greater error vector is produced. This showed

no correlation from the 14,031 S-AIS messages that were tested.

To try and create ideal condition where we expect a correlation to exist we subset S-

AIS messages that were reported in areas that had wave velocities greater than 0.3 metres

per second. The messages also must have had a time gap less than 10 minutes and be

in a ship trip sequence of messages greater than 50. From these conditions there was

was a slight negative correlation northward but was showed no correlation eastward. The

subset may be having some larger values skewing the data and not be representative of
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the common message that occur in the dataset. This would need to be analyzed in future

studies to perhaps better represent common messages in the data. The next correlation test

was to see if there is a relation based on how the wave impacts a ship. The messages were

split based on if the waves angle of impact was at the bow or stern of the ship versus the

waves angle of impact being on the port or starboard of the ship. Neither of these situations

produced a significant correlation.

Guichoux et al., (2016) state that they generate wave predictions based on similar error

vectors. This would mean that error vectors should have a direct correlation with the

wave velocities so the S-AIS collection method used in that research was simulated from

the dataset used in this study. For this the S-AIS messages must report a navigational

status of under way using engine, speed over ground >6 knots, time intervals of 1-2

minutes were simulated, reported rate of turn of 0, and be part of a sequence of at least 5

messages. From all of these conditions there were 21,330 messages and there was still no

correlation in either northward or eastward. This lead to the final correlation test where we

generated what are the ideal conditions for a correlation to exist between the error vectors

and wave magnitudes. It met the same conditions as the previous case except there was

no simulated 1-2 min intervals but instead no time gaps greater than 2 minutes, and the

sequence of messages must be greater than 30. After all these conditions were met there is

still no significant correlation present overall. This was a surprising result since it would be
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expected that the error from the predicted location, that is generated by speed over ground

and heading, to the next reported message would somehow be correlated with the waves

present in the area.

There were 1,195 unique partial trips that met all the set conditions. Below is a fre-

quency distribution of the correlations in these partial trips. Figure 5.2 shows correlation

northward of the partial trips and has a bit of a uniform distribution but with more negative

correlation cases present. Figure 5.3 which presents the correlation eastward of the partial

trips has a normal distribution around 0 but with a tail in the negative correlation.

Figure 5.2: Frequency of correlation values for ideal partial trips
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Figure 5.3: Frequency of correlation values for ideal trips

From the ideal cases that were generated we looked at 3 different correlation scenarios.

From these cases it was expected for them all to report strong negative correlation since

they met the ideal conditions for waves to have the greatest impact on the ships movement.

Figure 5.4 is a partial trip where the ship is travelling northwest at and average speed

of 4.2 metres per second. In this case the waves were travelling northeast at 0.143 metres

per second. When compared to the errors in the prediction between messages and wave

magnitudes there was a strong negative correlation northward at -0.923 and eastward cor-

relation at -0.740. This is the ideal scenario that was expected when first conducting the
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study but Figure 5.5 & 5.6 that is not the case.

Figure 5.4: Partial trip of ideal case where strong negative correlation exists

Figure 5.5 is similar to 5.4 with the initial conditions but had a greater average speed

of 7.8 metres per second. The average wave velocities during this partial trip were south

at -0.35 metres per second. The correlation between message to message error and wave

magnitude were a strong positive correlation northward at 0.98 and small positive eastward

at 0.26. These results show cases were the predictions in ship position were further south

then the reported message even though the waves were actively pushing south.
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Figure 5.5: Partial trip of ideal case where strong negative correlation exists

This last figure is of a case where the waves were very strong with a south west waves

at a velocity of 0.63 metres per second which is one of the highest reported in the dataset.

From this case the correlation was measured to be 0.03 northward and 0.2 eastward which

represents no overall correlation between prediction error and wave magnitudes. This ideal

case had the strongest waves where we expected that to reflect in the drift from prediction

but no correlation was measurably present.
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Figure 5.6: Partial trip of ideal case where strong negative correlation exists

Even though all the presented cases showed similar conditions they all presented dif-

ferent correlation values between error in prediction and wave magnitude.
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5.1.4 Can we use HF radar data to calibrate the prediction model to

minimize error?

From the results of the regression analysis between error vectors and wave magnitudes it

was determined that no consistent correlation was present. This makes using HF radar

wave velocities not as reliable as we initially thought when attempting to calibrate the pre-

diction model but it was still completed to show if it helped minimize error in prediction

to any degree. The first model calibration directly adds the wave magnitudes to the predic-

tion of the ships movement. This direct addition was to be later applied with a weighted

factor based upon the results of the regression analysis but since no correlation was found

this step was not used. Another calibration was applied that took into effect the angle of

impact on a ship with the speculation that a wave that hits the broad side of a ship, there-

fore more surface area, would have a greater effect then waves that hit the ship straight on.

When looking at Table 4.12 we see that the initial calibration did not change the overall

error to any significant degree and even increased the overall error on the north axis. The

directional calibrated prediction error model did however lower the overall error by 3.74%

on the north axis and by 4.3% on the east axis. From the dataset used in the prediction

model the average time difference between S-AIS messages was 1422 seconds and an av-

erage speed of 3 metres per second. This means the average distance travelled was 4266

meters and with the initial prediction being 880 metres off from the reported messages
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position. With the use of the directional calibrated prediction model that average error was

minimized to about 840 metres. Due to no correlation being detected from our tests we

currently can not state significant findings in the calibration of the prediction model.

5.2 Changes to Study

There are changes to the study that could supplement the results and benefit the research.

By looking at improvements to the prediction model, wave dataset, and using a near real

time updated database this study could better analyze the effects that waves may have on

a ship and improve the prediction models.

5.2.1 Enhancing the Physical Model of Prediction

One part of this study was to create a preliminary model to predict the ships location after

a given amount of time. This is an important step in the analysis because the deviation

of these predictions compared to the ship’s next reported position that is considered to be

the error that is to be attributed to external forces like waves. The predictions that were

made used only the ship’s reported speed over ground and heading making the prediction

susceptible to errors. This study was set to enhance the model using the information

gathered with the HF radar correlations but it may require a more comprehensive base

model. Researcher Borkowski, 2017 explains the trajectory prediction algorithm used on
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board ships for decision support for navigators. The techniques used in this study involve

data fusion of multiple sensors on board a ship, implementing this information and S-

AIS data you could develop a more complex prediction algorithm with the expectation of

enhancing positional accuracy prediction. An example is the creation of an ANN which

is trained by “analyzing longer data strings ... of a steady movement (non-manoeuvring

vessels)” (Borkowski, 2017). The trained ANN continues to calibrate its weighted factors

to enhance the accuracy in its prediction explained in section 2.3.1.

Another way to enhance the model would be further in-depth corrections of the physi-

cal model of a ship’s movement. Perez, 2007 studies sea-keeping theory, the study of ship

motion where waves are present, and used this information to alter kinematic models used

in sea-keeping. These models were described as able to be a “basis for models that can be

used in guidance and motion control systems” (Perez, 2007). Sea-keeping theory is based

on a ship keeping constant speed and course so may only be applied to certain sections of

a trip in this study but may be applicable for an enhanced prediction model. By selecting

S-AIS messages that report a constant speed and course and using sea-keeping theory we

can ideally create a model with greater accuracy then the one developed in this study. This

means that the error in prediction would be more influential in the correlation tests that

take place and potentially showing a significant correlation.
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5.2.2 Expanding the Wave dataset

For this study the wave data was obtained from the Coastal Observing Research and Devel-

opment Center (CORDC) with the collection done by Integrated Ocean Observing System

Program (IOOS) which uses WERA (Wellen Radar) HF radars to collect the data. The

accessibility of the data and range it provided allowed for a large spatial coverage of wave

velocities off of the US coastline. The issue with using this data set is the resolution with

which the data is accessible. The resolutions used for this study were 0.5 kilometres, 1

kilometre, 2 kilometre, and 6 kilometres but problems occurred due to the varying spatial

extent of available data for each of the resolutions. The 0.5 kilometre resolution was not

available in the study region that was selected and was only provided in one small region

in the Bay of San Fransisco. The 1 kilometre resolution data also only covers small and

selective areas, for this study it did cover areas up to 30 kilometres off the coastline within

the study area. The 2 kilometre and 6 kilometre resolution was capable of covering nearly

the entire spatial extent of the study area with issues only occurring due to the HF radar

signals being obstructed by geological barriers such as Santa Catalina Island located south

west of Long Beach where no messages south west of that point were able to be collected

for this study.

To address some of these issues in future studies the use of data from NOAA’s National

Data Buoy Center (NDBC) may be of use which uses a system of ocean buoys to collect
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local data on wave and wind. The wave data that is collected from these buoys are signif-

icant wave height, dominant wave period, average wave period, and mean wave direction

(National Data Buoy Center, 2017). The information from the NDBC may supplement

the available HF radar data to give a more accurate representation of a wave’s impact on a

ships movement. Heij and Knapp, 2015 and Szelangiewicz, 2014 both look at risk assess-

ments associated with wave height and how it impacts the way a ship has to travel to avoid

any incidents of potential risk. An additional benefit specific to the data provided by the

buoys is the local accuracy of the information and the fact that is not being interpolated

from surrounding data. The need for localized data for waves is one of the main reasons

for the research by Guichoux et al., 2016 who state that there is not much data provided at

a finer scale so they are unable to track “mesoscale structures [such] as eddies or filaments

that can escape the altimetry techniques.” (Guichoux et al., 2016). Using this informa-

tion may prove to be beneficial in analyzing small segments of an S-AIS ship trip that are

relatively near the buoy. Calculating the error in prediction for these select cases using

accurate localized wave information, instead of the broader spanning averages used in this

study, may provide a higher correlation with the waves and the error then was determined

in this study.
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5.2.3 Near Real Time Implementation

The data for this study were selected based on their rate of update which is near real time.

AIS’s are designed to send a message from every 2 seconds to 2 minutes depending on

the ship’s manoeuvres and navigational status. Due to cost effectiveness of LEO satellite

launches a broader constellation of satellites for AIS message detection is developing.

This leads to fewer S-AIS message losses and moves towards real time collection of all

AIS messages. HF radar data is collected between 4 to 18 minutes and aggregated to an

average over an hour so the shortest period to update the HF radar data is 1 hour. The

change that this study could benefit from is a near real time update of S-AIS message and

HF radar data to a SQL database. Incorporating a near real time update feed of both S-

AIS and HF radar data would allow the data set to continuously update and allow a near

real time prediction of where a ship may be based on the most recently received S-AIS

message.
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5.3 Future Uses

5.3.1 Dynamic Ship Pathing

A potential use of this study is dynamic ship pathing, in which a ship’s path could adapt

to present wave conditions to lower fuel or time consumption. An early paper by Vlachos,

2004 developed the idea of determining optimal ship routes based on wind and wave fore-

casts for either saving time of the trip or prioritizing the safety of the trip. This idea was

advanced by Dolinskaya, 2012 with the use of ship mounted radars for close proximity

wave detection for optimal path finding. This study ran into an issue of needing to use a

“rolling horizon” (Dolinskaya, 2012) method of pathing caused by the range limitation of

the on board radar. The limitation was determined to be 10 minutes worth of travel time

which could be assisted with some aspects of this study. By incorporating some of the

techniques of spatial and temporal join with nearby HF radar the data they provide can

assist a further optimal path calculation. Incorporating the wave data available to further

expand a ship’s wave field could allow for an optimized path to be generated. The path

optimization can assist in either lowering the travel time of a trip or reduce the fuel con-

sumption of a ship based on the specified priority. Fuel saving ship routing is determined

by Chu et al., 2013 who used meteorological and oceanic forecasts to achieve this. In-

troducing an updated near real time database feed to a ship in this situation can assists in
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dynamic routing based on changing weather conditions instead of a static forecast deter-

mined prior to ship departure. Fuel efficient pathing can assists in minimizing green house

gas as well as save ship operators money since the “maritime sector is likely to experience

high fuel prices in part due to increased oil scarcity and demand for oil from developing

countries but also due to the introduction of sulphur regulations and increasingly stringent

emission constraints” (Smith et al., 2013).

5.3.2 Search and Rescue

Vessel tracking is a crucial tool for search and rescue (SAR) missions as they try to pin

point a vessel’s exact location for first responders. “Risks at sea are once again on the

rise, thus demanding an evolution in vessel traffic management systems (VTMS)”(Zissis

et al., 2015) to help assist human operator’s decision making capabilities. The addition

of near real time data of related waves and the ship’s forecasted trajectory can assist in

minimizing risk of a ship in vessel collision prevention. When a situation occurs where

a vessel requires SAR, time is an important factor requiring quick response. ”Knowing

which vessels are located in a specific area, their state vector properties (e.g., position,

velocity and direction) ... are essential to many governance responsibilities in the open

sea, in particular to Search and Rescue (SAR) and security operations” (Vespe et al., 2015).

Incorporating near real time HF radar and S-AIS message data of the ship will assist in
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more accurate position estimates of a ship allowing first responders to more quickly reach

the destination.

5.3.3 Calibration of Currently available vessel prediction

There are currently several different vessel tracking systems being used to determine a

ship’s current location and future position. By creating a spatial temporal join with the

ship’s S-AIS and recent HF radar data the newly available data may be able to enhance

current models to increase prediction accuracy with further development. Moreira et al.,

2007 developed a guidance control system for autonomous ships based on a ship’s line of

site distance. Autonomous guidance is important for marine vehicles for reliability and

lower transportation costs (Moreira et al., 2007). By providing the shipping model with

additional information on wave conditions it provides useful information in generating a

path in a spatial decision support role. Last et al., 2014 stated that “AIS data needs to be

integrated with further data to allow for a reliable state estimation of vessels in matters

of collision avoidance [models]” (Last et al., 2014) this expresses the need for spatial and

temporal matching of S-AIS with other data to assist in prediction modelling.
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5.4 Summary

From the results the thesis was unable to find a significant correlation and could not sig-

nificantly lower the overall error in out prediction model. What was found though are new

techniques to process and analyze S-AIS messages to detect errors and further express the

gaps in information we have in S-AIS data. Finding the different types of errors in S-AIS is

important and we helped show errors that are caused by the AIS, e.g. mis-reporting a mes-

sage or mis-classifying ship information, or the LEO satellite, .e.g. incorrect time stamps

or mixing up ship positions, which is important to identify when analyzing. Steps forward

were provided to help in furthering this research, by enhancing the base model we may

find a significant correlation with ship drift and waves which would allow for improve-

ments to the study. We may also expand the wave datasets by including additional sources

outside HF radars. Buoy’s have been used to track wave velocities and may provide more

accurate fine scale information that could assist in the analysis. This also leads into the

further implementation of a near real time prediction model that could use a data feed of

S-AIS and HF radar data to track the predicted movements of ships. The discussion also

went over future uses this study may assist in with regards to dynamic ship pathing which

could help determine fuel efficient paths that use wave velocities. Search and rescue rely

on recent positional data for finding a ship that is in need of assistance so by enhancing the

prediction in position in any way is beneficial. The methods used in the spatial temporal
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join of S-AIS and HF radar may be used in currently available vessel prediction models to

provide more information vessel prediction that can help if we are able to later correlate

HF radar and S-AIS.



Chapter 6

Conclusion

This thesis was designed to look at a way to create a ship trajectory prediction model using

S-AIS messages and further enhancing the accuracy of these predictions using HF radars.

This merging of datasets led to the first question that was Question 1: Can top ocean

wave currents account for message to message discrepancies in predicted position and

actual recorded positions? This information was necessary to further the research and

answering Question 2: Can we use HF radars to calibrate preliminary S-AIS-based

location prediction models to enhance prediction accuracy? This study was unable to

find any correlation with the error vectors in the prediction model and the prevailing waves

but was able to show techniques and information for further research to potentially address

these issues.

120
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Past literature was first reviewed to understand the scope of AIS, S-AIS, HF radar, and

prediction models. Then limitations of the data and data reliability was looked into, this

information became helpful when trying to identify certain types of errors especially with

mis-reported messages that caused message spikes as shown in Figure 3.2. Previous recent

studies were also useful in trying to replicate conditions that had favourable results in their

research but these did not produce the same results when attempted in this paper. This

can be attributed to not having a similar prediction model which can significantly change

results or not having direct access to AIS data (only S-AIS being utilized).

Next the thesis laid out the methods and results to answer the questions proposed.

The steps used in cleaning and identifying errors became of interest because there were

more errors found then initially expected.The thesis was able to identify errors that were

generated by the AIS and the receiving satellite making S-AIS not completely accurate

when compared to real world position of a ship. This was expressed in Section 5.1.1

which identified errors present in S-AIS messages. It further shows a need for more S-AIS

research to find solutions so errors like this can be corrected. The next step was creating

a spatial temporal join between the S-AIS messages and HF radar NetCDF files. The

methods used in this study can be helpful for researchers who look to merge these datasets

in the future and comparatively use the information in a efficient manner. The steps used

to process the data became important because of the size of the dataset so it is important to
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reference appendix A when joining the data sets or identifying ship trips in other datasets.

Next the prediction model was generated which predicted a ship’s future location using

the last reported heading and speed. From these predictions error vectors were calculated

based on the distance from the next reported position to the predicted position. These error

vectors were then compared with the waves present during the time of the message in a

regression analysis to see if a significant correlation exists and answering Question 1 of

this paper. Multiple conditions were set where a significant correlation was expected to

exist but were unable to identify a situation were this occurred. Even though no significant

correlation was found we still went forward in applying the model calibration to show how

it may be done if a correlation were found in later studies. The calibration incorporated

the HF radar data in two ways. The first calibration directly added the wave magnitudes

that took place and the second calibration used the angle of impact that the wave interacted

with a ship in the idea that interacting with the broadside of a ship has more surface area

therefore more force acting upon the ship. From the calibrations the second approach was

able to decrease overall error in prediction by 3.74% on the north axis and by 4.3% on

the east axis. Since there was no measurable correlation between error vectors and wave

magnitudes we do not have significant confidence in these calibration values.

Lastly the thesis reviewed changes that can be made to the study and future uses. For

advancement of this study an enhanced prediction model must be designed to improve
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the initial accuracy of the prediction. This is important because the error vectors that

are generated from the model are key to the regression analysis with wave magnitudes.

These could assist in determining the relation between wave magnitude and prediction

error. The wave dataset would also benefit from incorporating more information from

additional sources. In addition to HF radar data, buoy wave velocity could be added to

the data set to give precise wave velocity data at distinct points to enhance accuracy at a

finer scale for some areas. The final change to the study would be the implementation of

near real time S-AIS and HF radar data. This updated feed could assist in providing more

information to the study and allow the design of a near real time updated prediction system

that incorporates HF radar data.

This leads to the future uses this study may be of assistance to with the design of

dynamic ship pathing. In receiving updated wave velocities a ship may use wave velocity

to assist in movement to a destination and save fuel over the course of the trip. This study

could also be beneficial in field of search and rescue. Joining new information to S-AIS

message data that could assists in prediction accuracy would allow for aid to a ship in need

of assistance at a faster rate with knowing a more precise position. Finally the methods

of message error detection and joining of HF radar data may assist in the calibration of

currently available vessel prediction models. Incorporating additional information would

allow users using the vessel prediction model to view an additional factor that may be



CHAPTER 6. CONCLUSION 124

altering the accuracy of the positions outcome.

In this study we were unable to find out if top ocean currents account for message to

message discrepancy or be able to calibrate a location prediction model using HF radar

data with confidence. What was determined though was ways to detect certain errors and

cleaning of S-AIS data. This type of detection is useful before analysis is undergone so

errors do not skew results for future researchers. It also identifies a problem in S-AIS

,misreported messages and impossible data values, that must be looked into to help solve

the issues causing these errors. This study also helped create tools that can be used to in

the spatial temporal join between S-AIS and HF radar data so other researchers can pair

the data for their research. Even though in this paper we were unable to calibrate a S-AIS

based prediction model reliably with HF radar data it is able to assist in future research

based on the tools and methods produced for S-AIS and HF radar analysis.



Appendix A

R Code

### Revisioned Source COde for cleaning dataset, correlating HF and AIS, creating error vectors,
# April/20/2017 BKF
# July/27/2017 BKF
# October/19/2017 BKF
# January/15/2018 BKF
###############################
setwd("E:/Masters/LongBeachTest/")

#### Installing all packages ####
install.packages(c("ncdf4","sp","rgdal","readr"))
library(ncdf4)
library(sp)
library(rgdal)
library(readr)

#### Reading in Radar and Ship data ####

#ships <- read.csv("Masters/LongBeachTest/longbeach.csv",header = TRUE, sep = ",")
ships <- read.csv("longbeach.csv",header = TRUE, sep = ",", stringsAsFactors=FALSE)

radar <- nc_open("RadarData/RTV_HFRADAR,_US_West_Coast,_1km_Resolution,_Hourly_RTV_best.nc")
radar2 <- nc_open("RadarData/RTV_HFRADAR,_US_West_Coast,_2km_Resolution,_Hourly_RTV_best.nc")
radar3 <- nc_open("RadarData/RTV_HFRADAR,_US_West_Coast,_6km_Resolution,_Hourly_RTV_best.nc")

#### Subsetting the ship data to only contain relevant coulumns ####
Keep <- c("mmsi", "time", "navigation_status", "rot", "sog",

"longitude", "latitude", "cog", "heading")
ships<- ships[Keep]

rm(Keep)

#### Converting Ships time to Correlate with Radar Data which is Nov/1/2012/00:00:00 - Nov/1/2013/00:00:00 ####
ships$time_conv<- as.numeric(as.POSIXct(ships$time, "%Y-%m-%d %H:%M:%S"))
ships$hour_Conv<-round(((as.numeric(ships$time_conv)/3600)-365952), digits=0) #Converts to hours since 2011-10-01 (365952 is hours from 1/1/1970 - 10/1/2011)

ships<-ships[complete.cases(ships$mmsi),]

### Limitations on data variables ###

# Proper latitude and longitude boundaries (ships2)
ships<-ships[ships$latitude >32 & ships$latitude <35 & ships$longitude > -121 & ships$longitude < -117,]

# March 3rd 20:00 cut off where the HF radar corrupts
march3<-ships[ships$hour_Conv<12477,]

# Sort the dataset based on MMSI and Time
march3<- march3[order(march3$mmsi,march3$time),]

#Remove scenarios where MMSI is invalid (<20000000 or >80000000)
march3<- march3[march3$mmsi>200000000 & march3$mmsi<800000000,]

###Remove duplicate rows based on mmsi and time
march3<-march3[!duplicated(paste(as.character(march3$mmsi),as.character(march3$time))),]

#make arbitrary Number Key for organizing
march3$Key<- 1:nrow(march3)

#Remove where ships exceed expected liitation of 50 knots
march3<-march3[which(as.numeric(march3$sog)<50),]

#### Setting Physical Limitations based on distance gaps ###
#1 Knots -> 0.514444 m/s
march3$timeDiff <- c(0, diff(march3$time_conv))

#Setting UTM coordinates for the data
cord.dec = SpatialPoints(cbind(march3$longitude, march3$latitude), proj4string = CRS("+proj=longlat")) #Collecting the Long Lat points of the data
cord.UTM <- spTransform(cord.dec, CRS("+init=epsg:26711")) #Transforming points to UTM by Code for UTM zone 11 Nad 83
march3$UTMlog<-cord.UTM$coords.x1
march3$UTMlat<-cord.UTM$coords.x2

rm(cord.dec)
rm(cord.UTM)
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# Distance between message cant exceed physical capabilities
march3$distLat <- c(0, diff(march3$UTMlat))
march3$distLon<- c(0,diff(march3$UTMlog))
march3$distDiff<- sqrt((march3$distLonˆ2)+(march3$distLatˆ2))

#Remove Values where mmsi is the same but distDiff exceeds time and speed possibilities
march3$mmsidiff<-c(0,diff(march3$mmsi))
march3$removable<- march3$mmsidiff==0 & (march3$timeDiff*25) < march3$distDiff

march3<-march3[march3$removable==FALSE,]

march3<-march3[,-(19:20)]

#### Trip Identification Number ####

#Changing ship data to a list and setting up values for loop
march3<-march3[!is.na(march3$navigation_status),]
SortTest<- as.list(march3)
NavStat <- c(1,5)
j <- 1
SortTest$TripID <- 0
SortTest$TripID[1]<- paste(as.character(SortTest$mmsi[1]),’T’,as.character(1),sep="")
oldNav <-SortTest$navigation_status[1]
oldMMSI <-SortTest$mmsi[1]

#Loop to assign a Trip ID to each message
ptm<-proc.time()

for (i in 2:nrow(march3)) {
if (SortTest$mmsi[i] == oldMMSI){

if (SortTest$navigation_status[i] != NavStat[1] & SortTest$navigation_status[i] != NavStat[2]){
if ((oldNav == NavStat[1] | oldNav == NavStat[2])){

j = j+1
print(i)

}
}

}
else {

j = 1
oldMMSI <- SortTest$mmsi[i]

}
SortTest$TripID[i]<- paste(as.character(SortTest$mmsi[i]),’T’,as.character(j),sep="")
oldNav <- SortTest$navigation_status[i]

}

#Convert list back into dataframe

shipping<- as.data.frame(SortTest, stringsAsFactors=FALSE)
shipping<- shipping[order(shipping$mmsi,shipping$time),]
rm(SortTest)

#### Wave Correlation of the Ship messages and the radar data ####

## Pre Defining ncvar_get start locations
# Make midpoits of each cell
# to source which waves are associated with each
# ship message
#### Recoded Oct 18th
#####
ptm<-proc.time()
# Radar 1
longCode<-findInterval(shipping$longitude,radar$dim$lon$vals, all.inside = T)
latCode<-findInterval(shipping$latitude,radar$dim$lat$vals, all.inside = T)
hourCode<-sapply(shipping$hour_Conv[1:nrow(shipping)],function(x)(which(radar$dim$time$vals == x)))
proc.time() - ptm

# Radar 2
longCode2<-findInterval(shipping$longitude,radar2$dim$lon$vals, all.inside = T)
latCode2<-findInterval(shipping$latitude,radar2$dim$lat$vals, all.inside = T)
hourCode2<-sapply(shipping$hour_Conv[1:nrow(shipping)],function(x)(which(radar2$dim$time$vals == x)))
proc.time() - ptm

# Radar 3
longCode3<-findInterval(shipping$longitude,radar3$dim$lon$vals, all.inside = T)
latCode3<-findInterval(shipping$latitude,radar3$dim$lat$vals, all.inside = T)
hourCode3<-sapply(shipping$hour_Conv[1:nrow(shipping)],function(x)(which(radar3$dim$time$vals == x)))
proc.time() - ptm

## Selection Function for wave data

# Selection for Northward Velocity(V)
waveV2<-function(r,s,t,u,v,w,x,y,z){

res<- ncvar_get(radar,"v",start=c(r,s,t),count=c(1,1,1))
if (is.nan(res)){

res<- ncvar_get(radar2,"v",start=c(u,v,w),count=c(1,1,1))
}
if (is.nan(res)){

res<- ncvar_get(radar3,"v",start=c(x,y,z),count=c(1,1,1))
}
return(res)

}

# Selection for Eastward Velovity(U)
waveU2<-function(r,s,t,u,v,w,x,y,z){

res<- ncvar_get(radar,"u",start=c(r,s,t),count=c(1,1,1))
if (is.nan(res)){

res<- ncvar_get(radar2,"u",start=c(u,v,w),count=c(1,1,1))
}
if (is.nan(res)){

res<- ncvar_get(radar3,"u",start=c(x,y,z),count=c(1,1,1))
}
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return(res)
}
proc.time() - ptm
## Running the functions into to create 2 lists that contain Northward and Eastward velocities which match currently sorted Shipping dataset

ptm<-proc.time()

testWaveV2<-mapply(function(r,s,t,u,v,w,x,y,z) waveV2(r,s,t,u,v,w,x,y,z)
,longCode[1:nrow(shipping)],latCode[1:nrow(shipping)],hourCode[1:nrow(shipping)]
,longCode2[1:nrow(shipping)],latCode2[1:nrow(shipping)],hourCode2[1:nrow(shipping)]
,longCode3[1:nrow(shipping)],latCode3[1:nrow(shipping)],hourCode3[1:nrow(shipping)])

proc.time() - ptm

testWaveU2<-mapply(function(r,s,t,u,v,w,x,y,z) waveU2(r,s,t,u,v,w,x,y,z)
,longCode[1:nrow(shipping)],latCode[1:nrow(shipping)],hourCode[1:nrow(shipping)]
,longCode2[1:nrow(shipping)],latCode2[1:nrow(shipping)],hourCode2[1:nrow(shipping)]
,longCode3[1:nrow(shipping)],latCode3[1:nrow(shipping)],hourCode3[1:nrow(shipping)])

proc.time() - ptm

#Merging the data

shipping$EV<- testWaveV2
shipping$EU<- testWaveU2

#### Creating the Error Vectors Northward and Eastward for Expected position -> actual ####

# Setting up data to run through loop
shipping$heading<-as.numeric(as.character(shipping$heading)) # Changing Heading from Factor -> Numeric
shipping$sog<-as.numeric(as.character(shipping$sog)) #Changing Speed over Ground from Factor -> Numeric
shipping$predN<-"na"
shipping$predE<-"na"
shipping$errE<-"na"
shipping$errN<-"na"
shipping$waveMagN<-"na"
shipping$waveMagE<-"na"
shipping$speed<- shipping$sog* 0.514444 # Knots -> m/s

# Flattened loop and corrected degree to radian argument in trig. functions
ptm<-proc.time()

imax <- nrow(shipping)

shipping$predN[2:imax] <-round((cos(shipping$heading[1:(imax-1)]*pi/180)*(shipping$speed[1:(imax-1)]*(shipping$timeDiff[2:imax])))+(shipping$UTMlat[1:imax-1]),digits=2)
shipping$predE[2:imax] <-round((sin(shipping$heading[1:(imax-1)]*pi/180)*(shipping$speed[1:(imax-1)]*(shipping$timeDiff[2:imax])))+(shipping$UTMlog[1:imax-1]),digits=2)

shipping$errE[2:imax] <- round((sin(shipping$heading[1:(imax-1)]*pi/180)*(shipping$speed[1:(imax-1)]*(shipping$time_conv[2:imax] - shipping$time_conv[1:(imax-1)])))-(shipping$UTMlog[2:imax]-shipping$UTMlog[1:(imax-1)]),digits=2)
proc.time() - ptm
shipping$errN[2:imax] <- round((cos(shipping$heading[1:(imax-1)]*pi/180)*(shipping$speed[1:(imax-1)]*(shipping$time_conv[2:imax] - shipping$time_conv[1:(imax-1)])))-(shipping$UTMlat[2:imax]-shipping$UTMlat[1:(imax-1)]),digits=2)
proc.time() - ptm
shipping$waveMagE[2:imax]<- round(shipping$EU[1:(imax-1)]*(shipping$time_conv[2:imax] - shipping$time_conv[1:(imax-1)]),digits=4)
proc.time() - ptm
shipping$waveMagN[2:imax]<- round(shipping$EV[1:(imax-1)]*(shipping$time_conv[2:imax] - shipping$time_conv[1:(imax-1)]),digits=4)
proc.time() - ptm

shipping<-shipping[complete.cases(shipping$mmsi),]
savepoint<-shipping

### Adding sequence counter within each trip
shipping$sequence<-ave(shipping$TripID,shipping$TripID, FUN = seq_along)

#### Isolation of Ideal Case scenarios###

waveOnly<-subset(shipping, !is.na(shipping$EV)) # wave related only

rot0<-c(’None’,0,’0.0’) # Possible 0 values for ROT
noROT<-waveOnly[waveOnly$rot %in% rot0,] # extracting only 0 rot values

withHead<- subset(noROT, !is.na(noROT$heading))

#
#
#
######## Division must be made here bewteen anchred and non anchored ships for analysis####
#
#
#
## Break up the data in anchored ships in a row
anchored<-withHead[withHead$navigation_status==1,]

#Extracting the sequences of a certain length in a row
anchored$caseClass<-cumsum(c(1, diff(anchored$Key) -1))#Givethe difference in Key values but makes repeating values remain the same
temp2<-rle(anchored$caseClass)
temp3<-which(temp2$lengths>10)
imax<- length(temp3)

# Gives the starting rows of the sequences greater then 10 in withHead table
temp4<-NA
for (i in 1:imax) {

temp4[i]<- sum(temp2$lengths[1:temp3[i]])-temp2$lengths[temp3[i]]+1
}

caseKeys<-anchored$caseClass[temp4]
anchoredCase<-anchored[anchored$caseClass %in% caseKeys,]

#Make sure classes are set properly
anchoredCase$errE<-as.numeric(anchoredCase$errE)
anchoredCase$errN<-as.numeric(anchoredCase$errN)
anchoredCase$waveMagE<- as.numeric(anchoredCase$waveMagE)
anchoredCase$waveMagN<- as.numeric(anchoredCase$waveMagN)

##########
#
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#
#Seeting up the paremerters for the E-Odyn style dataset
#
#
twoMin<-withHead[withHead$timeDiff<=120 & withHead$timeDiff>0,] # only selecting when messages are less then 2 min apart (622715) changed from 120
speedLim<- twoMin[twoMin$sog>=6,]# Speeds over 6 knots

speedLim$caseClass<-cumsum(c(1, diff(speedLim$Key) -1))#Givethe difference in Key values but makes repeating values remain the same
temp2<-rle(speedLim$caseClass)
temp3<-which(temp2$lengths>50)
imax<- length(temp3)

# Gives the starting rows of the sequences greater then 10 in withHead table
temp4<-NA
for (i in 1:imax) {

temp4[i]<- sum(temp2$lengths[1:temp3[i]])-temp2$lengths[temp3[i]]+1
}

caseKeys<-speedLim$caseClass[temp4]
speedLimCase<-speedLim[speedLim$caseClass %in% caseKeys,]

#Make sure classes are set properly
speedLimCase$errE<-as.numeric(speedLimCase$errE)
speedLimCase$errN<-as.numeric(speedLimCase$errN)
speedLimCase$waveMagE<- as.numeric(speedLimCase$waveMagE)
speedLimCase$waveMagN<- as.numeric(speedLimCase$waveMagN)

##########
#
#Creating the perfect case scenario where there should be visible correlation,
#this will choose the cases where the waves are the strongest
##########
# Selection from the speedLimCase of highest wave
maxWaveN<-speedLimCase[speedLimCase$caseClass==speedLimCase$caseClass[which.max((speedLimCase$EV)ˆ2)],]
cor(as.numeric(maxWaveN$errN),as.numeric(maxWaveN$waveMagN))
cor(as.numeric(maxWaveN$errE),as.numeric(maxWaveN$waveMagE))

maxWaveE<-speedLimCase[speedLimCase$caseClass==speedLimCase$caseClass[which.max((speedLimCase$EU)ˆ2)],]
cor(as.numeric(maxWaveE$errN),as.numeric(maxWaveE$waveMagN))
cor(as.numeric(maxWaveE$errE),as.numeric(maxWaveE$waveMagE))

### Selecting cases where the wave is above .3m/s
highWaves<-speedLimCase[speedLimCase$caseClass %in% speedLimCase$caseClass[which(speedLimCase$EVˆ2>.3ˆ2|speedLimCase$EUˆ2>.3ˆ2)],]

#### Creating different correlation values bewteen Error values and waves magnitudes for multitude of different subsets
#
#
#
#
###### Correlation with all ship messages ###### All Messages of the ship, (1)#############
#
#Removing all messages where the Time Diff is greater than 24 hours so no skewing occurs
waveOnly2<-waveOnly[waveOnly$timeDiff<86400,]
#Remove firt message of each trip
FirstMessage<-c()
oldTrip<-waveOnly2$mmsi[1]
for (i in 2:nrow(waveOnly)){

if (waveOnly2$mmsi[i] != oldTrip){
oldTrip<-waveOnly2$mmsi[i]
FirstMessage<-c(FirstMessage,i)}

}
waveOnly_RM <-waveOnly2[-(FirstMessage),]

cor(as.numeric(waveOnly_RM$waveMagN),as.numeric(waveOnly_RM$errN), use = "complete.obs")
cor(as.numeric(waveOnly_RM$waveMagE),as.numeric(waveOnly_RM$errE), use = "complete.obs")

#
#
#
### Anchored vs Moving #### Anchored vs Moving (2)###############
#
#
#

anchored<-waveOnly_RM[waveOnly_RM$navigation_status==1,]

l2<-c()
oldTrip<-anchored$TripID[1]
for (i in 2:nrow(anchored)){

if (anchored$TripID[i] != oldTrip){
oldTrip<-anchored$TripID[i]
l2<-c(l2,i)}

else{oldTrip<-anchored$TripID[i]}
}
anchoredRM <-anchored[-(l2),]

moving<- waveOnly_RM[waveOnly_RM$navigation_status==0 ,]

cor(as.numeric(anchoredRM$waveMagN),as.numeric(anchoredRM$errN), use = "complete.obs")
cor(as.numeric(anchoredRM$waveMagE),as.numeric(anchoredRM$errE), use = "complete.obs")

cor(as.numeric(moving$waveMagN),as.numeric(moving$errN), use = "complete.obs")
cor(as.numeric(moving$waveMagE),as.numeric(moving$errE), use = "complete.obs")

#
#
#
### ROT vs No ROT###### (3) ###############
#
#
##Anchored

ROTtrip<-c()
waveOnly_RM$TripID<-as.character(waveOnly_RM$TripID)
waveOnly_RM$rot<-as.character(waveOnly_RM$rot)
for (i in 1:nrow(waveOnly_RM)){
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if (waveOnly_RM$rot[i] != ’0.0’){
ROTtrip<-c(ROTtrip,waveOnly_RM$TripID[i])

}
}
uniqROTtrip<-unique(ROTtrip)

anchoredwithROT<- anchoredRM[anchoredRM$TripID %in% uniqROTtrip,]
anchoredoutROT<- anchoredRM[!(anchoredRM$TripID %in% uniqROTtrip),]

cor(as.numeric(anchoredwithROT$waveMagN),as.numeric(anchoredwithROT$errN), use = "complete.obs")
cor(as.numeric(anchoredwithROT$waveMagE),as.numeric(anchoredwithROT$errE), use = "complete.obs")

cor(as.numeric(anchoredoutROT$waveMagN),as.numeric(anchoredoutROT$errN), use = "complete.obs")
cor(as.numeric(anchoredoutROT$waveMagE),as.numeric(anchoredoutROT$errE), use = "complete.obs")

## Moving

movingwithROT<- moving[moving$TripID %in% uniqROTtrip,]
movingoutROT<- moving[!(moving$TripID %in% uniqROTtrip),]

cor(as.numeric(movingwithROT$waveMagN),as.numeric(movingwithROT$errN), use = "complete.obs")
cor(as.numeric(movingwithROT$waveMagE),as.numeric(movingwithROT$errE), use = "complete.obs")

cor(as.numeric(movingoutROT$waveMagN),as.numeric(movingoutROT$errN), use = "complete.obs")
cor(as.numeric(movingoutROT$waveMagE),as.numeric(movingoutROT$errE), use = "complete.obs")

######## No ROT and loooking at Gaps of 1-10 min ########### (4) ################

anchorGap<-anchoredoutROT[anchoredoutROT$timeDiff>60 & anchoredoutROT$timeDiff<600,] ##Anchored
movingGap<-movingoutROT[movingoutROT$timeDiff>60 & movingoutROT$timeDiff<600,] ## Moving

cor(as.numeric(anchorGap$waveMagN),as.numeric(anchorGap$errN), use = "complete.obs")
cor(as.numeric(anchorGap$waveMagE),as.numeric(anchorGap$errE), use = "complete.obs")

cor(as.numeric(movingGap$waveMagN),as.numeric(movingGap$errN), use = "complete.obs")
cor(as.numeric(movingGap$waveMagE),as.numeric(movingGap$errE), use = "complete.obs")

### Max Waves with <10 time gaps, wave > 0.3 m/s, 50 sequence ##### (5) #######
HeadingReq<- subset(waveOnly_RM, !is.na(waveOnly_RM$heading))
HeadingReq2<-HeadingReq[HeadingReq$timeDiff<600,]

HeadingReq2$caseClass<-cumsum(c(1, diff(HeadingReq2$Key) -1))#Givethe difference in Key values but makes repeating values remain the same
temp2<-rle(HeadingReq2$caseClass)
temp3<-which(temp2$lengths>50)
imax<- length(temp3)

# Gives the starting rows of the sequences greater then 50 in withHead table
temp4<-NA
for (i in 1:imax) {

temp4[i]<- sum(temp2$lengths[1:temp3[i]])-temp2$lengths[temp3[i]]+1
}

caseKeys<-HeadingReq2$caseClass[temp4]
HeadingCase<-HeadingReq2[HeadingReq2$caseClass %in% caseKeys,]

HeadinghighWaves<-HeadingCase[HeadingCase$caseClass %in% HeadingCase$caseClass[which(HeadingCase$EVˆ2>.3ˆ2|HeadingCase$EUˆ2>.3ˆ2)],]

cor(as.numeric(HeadinghighWaves$waveMagN),as.numeric(HeadinghighWaves$errN), use = "complete.obs")
cor(as.numeric(HeadinghighWaves$waveMagE),as.numeric(HeadinghighWaves$errE), use = "complete.obs")

#### Wave Angle vs the Ships movement measurement ###### (6) ###################

waveAngle<-HeadingReq

waveAngle$errN<-as.numeric(waveAngle$errN)
waveAngle$errE<-as.numeric(waveAngle$errE)

waveAngle$waveDir<-NA
waveAngle$waveDir[1:nrow(waveAngle)]<-((atan2(waveAngle$EU[1:nrow(waveAngle)],waveAngle$EV[1:nrow(waveAngle)])*(180/pi))+360)%%360

# Wave magnitude
waveAngle$waveMag<-sqrt((waveAngle$EVˆ2)+(waveAngle$EUˆ2))

#Error Direction
x<-0
waveAngle$ErrorDir<-NA

waveAngle$ErrorDir[1:nrow(waveAngle)]<-((atan2(waveAngle$errN[1:nrow(waveAngle)],waveAngle$errE[1:nrow(waveAngle)])*(180/pi))+360)%%360

#Error Magnitude
waveAngle$errorMag<-sqrt((waveAngle$errNˆ2)+(waveAngle$errEˆ2))

###Angles between Error Vector, and Wave Vector

waveAngle$AngleBetween<-as.numeric(waveAngle$ErrorDir - waveAngle$waveDir)
#283 cases where the wave angle is NA because previous message had NaN Heading so needed to be subset
waveAngle2<-waveAngle[!is.na(waveAngle$AngleBetween),]

for (i in 1:nrow(waveAngle2)) {
if (waveAngle2$AngleBetween[i] > 180) {

waveAngle2$AngleBetween[i]<-waveAngle2$AngleBetween[i]-360
}
if (waveAngle2$AngleBetween[i] < (-180)) {

waveAngle2$AngleBetween[i]<-waveAngle2$AngleBetween[i]+360
}

}
waveAngle2$AngleBetween<-abs(waveAngle2$AngleBetween) ### There are 573,544 cases with these requirements

### Selecting Perpedicular Cases

parralel<-waveAngle2[waveAngle2$AngleBetween>=175 | waveAngle2$AngleBetween<=5,] #32,703 cases
cor(as.numeric(parralel$waveMagN),as.numeric(parralel$errN), use = "complete.obs")
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cor(as.numeric(parralel$waveMagE),as.numeric(parralel$errE), use = "complete.obs")

### Selecting Orthoganal Cases

perpendicular<-waveAngle2[waveAngle2$AngleBetween>=85 & waveAngle2$AngleBetween<=95,] # 33,088 cases
cor(as.numeric(perpendicular$waveMagN),as.numeric(perpendicular$errN), use = "complete.obs")
cor(as.numeric(perpendicular$waveMagE),as.numeric(perpendicular$errE), use = "complete.obs")

##### E-Odyn replicated scenario for ship messages ####### (7) ##############
#Moving, SOG>6, Time Interval 1-2min, 0ROT# Selecting cases where sequence greater then 5 to weed out error

EODYN<-HeadingReq[HeadingReq$navigation_status==0,]
EODYN2<-EODYN[EODYN$sog>=6,]
EODYN3<-EODYN2[EODYN2$timeDiff<121,]
EODYN4<-EODYN3[EODYN3$rot==’0.0’,]

EODYN4$caseClass<-cumsum(c(1, diff(EODYN4$Key) -1))#Givethe difference in Key values but makes repeating values remain the same
temp2<-rle(EODYN4$caseClass)
temp3<-which(temp2$lengths>5)
imax<- length(temp3)

# Gives the starting rows of the sequences greater then 5 in withHead table
temp4<-NA
for (i in 1:imax) {

temp4[i]<- sum(temp2$lengths[1:temp3[i]])-temp2$lengths[temp3[i]]+1
}

caseKeys<-EODYN4$caseClass[temp4]
EODYNcase<-EODYN4[EODYN4$caseClass %in% caseKeys,]

UniqueClass<-unique((EODYNcase$caseClass))
minOnly<-EODYN4[1,]

for (i in 1:length(UniqueClass)){
case<-EODYN4[EODYN4$caseClass==UniqueClass[i],]

oldtime<-case$time_conv[1]
for (j in 2:(nrow(case))){

if ((case$time_conv[j] - oldtime) > 60){
minOnly<-rbind(minOnly, case[j,])
oldtime<-case$time_conv[j]

}
}

}

minOnly$errE2<-"na"
minOnly$errN2<-"na"
minOnly$waveMagN2<-"na"
minOnly$waveMagE2<-"na"
minOnly$timeDiff2<- c(0, diff(minOnly$time_conv))
imax <- nrow(minOnly)
minOnly$errE2[2:imax] <-

round(
(sin(minOnly$heading[1:(imax-1)]*pi/180)*(minOnly$speed[1:(imax-1)]*(minOnly$time_conv[2:imax]- minOnly$time_conv[1:(imax-1)])))
-(minOnly$UTMlog[2:imax]-minOnly$UTMlog[1:(imax-1)])
,digits=2)

minOnly$errN2[2:imax] <-
round(

(cos(minOnly$heading[1:(imax-1)]*pi/180)*(minOnly$speed[1:(imax-1)]*(minOnly$time_conv[2:imax] - minOnly$time_conv[1:(imax-1)])))
-(minOnly$UTMlat[2:imax]-minOnly$UTMlat[1:(imax-1)])
,digits=2)

minOnly$waveMagE2[2:imax]<- round(minOnly$EU[1:(imax-1)]*(minOnly$time_conv[2:imax] - minOnly$time_conv[1:(imax-1)]),digits=4)
minOnly$waveMagN2[2:imax]<- round(minOnly$EV[1:(imax-1)]*(minOnly$time_conv[2:imax] - minOnly$time_conv[1:(imax-1)]),digits=4)

minOnly2<-minOnly[minOnly$timeDiff2<121&minOnly$timeDiff2>59,]

cor(as.numeric(minOnly2$waveMagN2),as.numeric(minOnly2$errN2))
cor(as.numeric(minOnly2$waveMagE2),as.numeric(minOnly2$errE2))

#### Ideal Case Scenarios ############### (8) ############################
### NAv_stat = 0, SOG >6, ROT = 0, Time Intervals <120, 30 message sequence ############
### Subset the Highest wave scenario for example, Subset High negative Correlation, Subset High POsitive Correlation, Subset no COrrelation######

IdealCase<-HeadingReq[HeadingReq$navigation_status==0,]
IdealCase<-IdealCase[IdealCase$sog>6,]
IdealCase<-IdealCase[IdealCase$rot==’0.0’,]
IdealCase<-IdealCase[IdealCase$timeDiff<121,]

IdealCase$caseClass<-cumsum(c(1, diff(IdealCase$Key) -1))#Givethe difference in Key values but makes repeating values remain the same
temp2<-rle(IdealCase$caseClass)
temp3<-which(temp2$lengths>30)
imax<- length(temp3)

# Gives the starting rows of the sequences greater then 30 in dataset
temp4<-NA
for (i in 1:imax) {

temp4[i]<- sum(temp2$lengths[1:temp3[i]])-temp2$lengths[temp3[i]]+1
}

caseKeys<-IdealCase$caseClass[temp4]
IdealCaseFinal<-IdealCase[IdealCase$caseClass %in% caseKeys,]

cor(as.numeric(IdealCaseFinal$waveMagN),as.numeric(IdealCaseFinal$errN), use = "complete.obs")
cor(as.numeric(IdealCaseFinal$waveMagE),as.numeric(IdealCaseFinal$errE), use = "complete.obs")

### Selecting Case with Highest waves from Ideal Cases
IdealMaxWave<-IdealCaseFinal[IdealCaseFinal$caseClass %in% IdealCaseFinal$caseClass[which.max(IdealCaseFinal$EV)],]

cor(as.numeric(IdealMaxWave$waveMagN),as.numeric(IdealMaxWave$errN), use = "complete.obs")
cor(as.numeric(IdealMaxWave$waveMagE),as.numeric(IdealMaxWave$errE), use = "complete.obs")

#Make List of correlations from each caseclass#
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correlation<-data.frame(Case=caseKeys)

for (i in 1:length(caseKeys)){
case<-IdealCase[IdealCase$caseClass==caseKeys[i],]
correlation$TripID[i]<-case$TripID[1]
correlation$NorthCor[i]<- round(cor(as.numeric(case$waveMagN),as.numeric(case$errN), use = "complete.obs"),digits = 4)
correlation$EastCor[i]<- round(cor(as.numeric(case$waveMagE),as.numeric(case$errE), use = "complete.obs"),digits = 4)
correlation$maxwavNor[i]<- max(case$EV,na.rm = T)
correlation$maxwavEast[i]<- max(case$EU,na.rm = T)

}
### Selecting Strongest NEgative Correlation set ###
min(correlation$NorthCor,na.rm=T)
min(correlation$EastCor, na.rm=T)

StrongNeg<-IdealCaseFinal[IdealCaseFinal$caseClass==correlation$Case[which.min(correlation$EastCor)],]

plot(StrongNeg$UTMlog,StrongNeg$UTMlat,
main = paste("Ship MMSI",StrongNeg$mmsi[1]),
xlab = "UTM Longitude",
ylab = "UTM Latitude",
asp=1

)
lines(StrongNeg$UTMlog,StrongNeg$UTMlat)
points(StrongNeg$UTMlog[1],StrongNeg$UTMlat[1], col="red", pch = 19) # Where messages start

### Selecting Strongest Positive Correlation set ###
max(correlation$NorthCor,na.rm=T)
max(correlation$EastCor, na.rm=T)

StrongPos<-IdealCaseFinal[IdealCaseFinal$caseClass==correlation$Case[which.max(correlation$NorthCor)],]

plot(StrongPos$UTMlog,StrongPos$UTMlat,
main = paste("Ship MMSI",StrongPos$mmsi[1]),
xlab = "UTM Longitude",
ylab = "UTM Latitude",
asp=1

)
lines(StrongPos$UTMlog,StrongPos$UTMlat)
points(StrongPos$UTMlog[1],StrongPos$UTMlat[1], col="red", pch = 19) # Where messages start

### Selecting a randon case with no correlation but decent high waves###

LowCor<-IdealCaseFinal[IdealCaseFinal$caseClass==864770,]

plot(LowCor$UTMlog,LowCor$UTMlat,
main = paste("Ship MMSI",LowCor$mmsi[1]),
xlab = "UTM Longitude",
ylab = "UTM Latitude",
asp=1

)
lines(LowCor$UTMlog,LowCor$UTMlat)
points(LowCor$UTMlog[1],LowCor$UTMlat[1], col="red", pch = 19) # Where messages start

# Go to CaseStudies.R and set up the Generation of Correlation Table of all the Cases and How their Correlation changes with time gaps
### Generating Case Scenarios and analyzing them
# Current Case Setting:Speed>=6knots, ROT=0, Waves present, time gaps no greater then 60min, sequence >=50
# These setting create: 778 cases -> 60,430 messages
#####
caseKeys<-caseKeys[!is.na(caseKeys)]
#Must generate a list of 50 case studies at random from the full 778

Rcases<-caseKeys[c(sample(1:length(caseKeys),50))]

CaseMessage<-speedLimCase[speedLimCase$caseClass %in% Rcases,]

#### Test for High Waves, comment out all
Rcases<-unique((highWaves$caseClass))
CaseMessage<-highWaves
######

#### Case set for final analysis, 50 Random###
#Apr 2018
Rcases<-caseKeys[c(sample(1:length(caseKeys),50))]
CaseMessage<-IdealCaseFinal
####

#Must run analysis on all the cases to test the correlation between wave velocity and error
correlation<-data.frame(Case=Rcases)
correlation$TripID<-"na"
correlation$NorthCor<-"na"
correlation$EastCor<-"na"
correlation$North1min<-"na"
correlation$East1min<-"na"
correlation$North2min<-"na"
correlation$East2min<-"na"
correlation$North5min<-"na"
correlation$East5min<-"na"
correlation$North10min<-"na"
correlation$East10min<-"na"
correlation$ErrorEast<-"na"
correlation$ErrorNorth<-"na"
correlation$CaliErrorEast<-"na"
correlation$CaliErrorNorth<-"na"
correlation$RealCalErrorEast<-"na"
correlation$RealCalErrorNorth<-"na"

ptm<-proc.time()

for (i in 1:length(Rcases)){
tryCatch({

case<-CaseMessage[CaseMessage$caseClass==Rcases[i],]
correlation$TripID[i]<-case$TripID[1]
correlation$NorthCor[i]<- round(cor(as.numeric(case$waveMagN),as.numeric(case$errN), use = "complete.obs"),digits = 4)
correlation$EastCor[i]<- round(cor(as.numeric(case$waveMagE),as.numeric(case$errE), use = "complete.obs"),digits = 4)
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#1min Break
if ((case$time_conv[nrow(case)]-case$time_conv[1])>60) {

minOnly<-case[1,]
oldtime<-minOnly$time_conv[1]
for (j in 2:(nrow(case))){

if ((case$time_conv[j] - oldtime) > 60){
minOnly<-rbind(minOnly, case[j,])
oldtime<-case$time_conv[j]

}
}

minOnly$errE2<-"na"
minOnly$errN2<-"na"
minOnly$waveMagN2<-"na"
minOnly$waveMagE2<-"na"
imax <- nrow(minOnly)
minOnly$errE2[2:imax] <-

round(
(sin(minOnly$heading[1:(imax-1)]*pi/180)*(minOnly$speed[1:(imax-1)]*(minOnly$time_conv[2:imax]- minOnly$time_conv[1:(imax-1)])))
-(minOnly$UTMlog[2:imax]-minOnly$UTMlog[1:(imax-1)])
,digits=2)

minOnly$errN2[2:imax] <-
round(

(cos(minOnly$heading[1:(imax-1)]*pi/180)*(minOnly$speed[1:(imax-1)]*(minOnly$time_conv[2:imax] - minOnly$time_conv[1:(imax-1)])))
-(minOnly$UTMlat[2:imax]-minOnly$UTMlat[1:(imax-1)])
,digits=2)

minOnly$waveMagE2[2:imax]<- round(minOnly$EU[1:(imax-1)]*(minOnly$time_conv[2:imax] - minOnly$time_conv[1:(imax-1)]),digits=4)
minOnly$waveMagN2[2:imax]<- round(minOnly$EV[1:(imax-1)]*(minOnly$time_conv[2:imax] - minOnly$time_conv[1:(imax-1)]),digits=4)

correlation$North1min[i]<- round(cor(as.numeric(minOnly$waveMagN2),as.numeric(minOnly$errN2), use = "complete.obs"),digits = 4)
correlation$East1min[i]<- round(cor(as.numeric(minOnly$waveMagE2),as.numeric(minOnly$errE2), use = "complete.obs"),digits = 4)

}

#2min Break
if ((case$time_conv[nrow(case)]-case$time_conv[1])>120) {

minOnly<-case[1,]
oldtime<-minOnly$time_conv[1]
for (j in 2:(nrow(case))){

if ((case$time_conv[j] - oldtime) > 120){
minOnly<-rbind(minOnly, case[j,])
oldtime<-case$time_conv[j]

}
}

minOnly$errE2<-"na"
minOnly$errN2<-"na"
minOnly$waveMagN2<-"na"
minOnly$waveMagE2<-"na"
imax <- nrow(minOnly)
minOnly$errE2[2:imax] <-

round(
(sin(minOnly$heading[1:(imax-1)]*pi/180)*(minOnly$speed[1:(imax-1)]*(minOnly$time_conv[2:imax]- minOnly$time_conv[1:(imax-1)])))
-(minOnly$UTMlog[2:imax]-minOnly$UTMlog[1:(imax-1)])
,digits=2)

minOnly$errN2[2:imax] <-
round(

(cos(minOnly$heading[1:(imax-1)]*pi/180)*(minOnly$speed[1:(imax-1)]*(minOnly$time_conv[2:imax] - minOnly$time_conv[1:(imax-1)])))
-(minOnly$UTMlat[2:imax]-minOnly$UTMlat[1:(imax-1)])
,digits=2)

minOnly$waveMagE2[2:imax]<- round(minOnly$EU[1:(imax-1)]*(minOnly$time_conv[2:imax] - minOnly$time_conv[1:(imax-1)]),digits=4)
minOnly$waveMagN2[2:imax]<- round(minOnly$EV[1:(imax-1)]*(minOnly$time_conv[2:imax] - minOnly$time_conv[1:(imax-1)]),digits=4)

correlation$North2min[i]<- round(cor(as.numeric(minOnly$waveMagN2),as.numeric(minOnly$errN2), use = "complete.obs"),digits = 4)
correlation$East2min[i]<- round(cor(as.numeric(minOnly$waveMagE2),as.numeric(minOnly$errE2), use = "complete.obs"),digits = 4)

}
#5min Break

if ((case$time_conv[nrow(case)]-case$time_conv[1])>300) {
minOnly<-case[1,]
oldtime<-minOnly$time_conv[1]
for (j in 2:(nrow(case))){

if ((case$time_conv[j] - oldtime) > 300){
minOnly<-rbind(minOnly, case[j,])
oldtime<-case$time_conv[j]

}
}
minOnly$errE2<-"na"
minOnly$errN2<-"na"
minOnly$waveMagN2<-"na"
minOnly$waveMagE2<-"na"
imax <- nrow(minOnly)
minOnly$errE2[2:imax] <-

round(
(sin(minOnly$heading[1:(imax-1)]*pi/180)*(minOnly$speed[1:(imax-1)]*(minOnly$time_conv[2:imax]- minOnly$time_conv[1:(imax-1)])))
-(minOnly$UTMlog[2:imax]-minOnly$UTMlog[1:(imax-1)])
,digits=2)

minOnly$errN2[2:imax] <-
round(

(cos(minOnly$heading[1:(imax-1)]*pi/180)*(minOnly$speed[1:(imax-1)]*(minOnly$time_conv[2:imax] - minOnly$time_conv[1:(imax-1)])))
-(minOnly$UTMlat[2:imax]-minOnly$UTMlat[1:(imax-1)])
,digits=2)

minOnly$waveMagE2[2:imax]<- round(minOnly$EU[1:(imax-1)]*(minOnly$time_conv[2:imax] - minOnly$time_conv[1:(imax-1)]),digits=4)
minOnly$waveMagN2[2:imax]<- round(minOnly$EV[1:(imax-1)]*(minOnly$time_conv[2:imax] - minOnly$time_conv[1:(imax-1)]),digits=4)

correlation$North5min[i]<- round(cor(as.numeric(minOnly$waveMagN2),as.numeric(minOnly$errN2), use = "complete.obs"),digits = 4)
correlation$East5min[i]<- round(cor(as.numeric(minOnly$waveMagE2),as.numeric(minOnly$errE2), use = "complete.obs"),digits = 4)

}
#10 min Break

if ((case$time_conv[nrow(case)]-case$time_conv[1])>600) {
minOnly<-case[1,]
oldtime<-minOnly$time_conv[1]
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for (j in 2:(nrow(case))){
if ((case$time_conv[j] - oldtime) > 600){

minOnly<-rbind(minOnly, case[j,])
oldtime<-case$time_conv[j]

}
}
minOnly$errE2<-"na"
minOnly$errN2<-"na"
minOnly$waveMagN2<-"na"
minOnly$waveMagE2<-"na"
imax <- nrow(minOnly)
minOnly$errE2[2:imax] <-

round(
(sin(minOnly$heading[1:(imax-1)]*pi/180)*(minOnly$speed[1:(imax-1)]*(minOnly$time_conv[2:imax]- minOnly$time_conv[1:(imax-1)])))
-(minOnly$UTMlog[2:imax]-minOnly$UTMlog[1:(imax-1)])
,digits=2)

minOnly$errN2[2:imax] <-
round(

(cos(minOnly$heading[1:(imax-1)]*pi/180)*(minOnly$speed[1:(imax-1)]*(minOnly$time_conv[2:imax] - minOnly$time_conv[1:(imax-1)])))
-(minOnly$UTMlat[2:imax]-minOnly$UTMlat[1:(imax-1)])
,digits=2)

minOnly$waveMagE2[2:imax]<- round(minOnly$EU[1:(imax-1)]*(minOnly$time_conv[2:imax] - minOnly$time_conv[1:(imax-1)]),digits=4)
minOnly$waveMagN2[2:imax]<- round(minOnly$EV[1:(imax-1)]*(minOnly$time_conv[2:imax] - minOnly$time_conv[1:(imax-1)]),digits=4)

correlation$North10min[i]<- round(cor(as.numeric(minOnly$waveMagN2),as.numeric(minOnly$errN2), use = "complete.obs"),digits = 4)
correlation$East10min[i]<- round(cor(as.numeric(minOnly$waveMagE2),as.numeric(minOnly$errE2), use = "complete.obs"),digits = 4)

}
###Creating the Error Values based on each trip

correlation$ErrorEast[i]<-sqrt(sum(as.numeric(case$errE)ˆ2,na.rm = T))
correlation$ErrorNorth[i]<-sqrt(sum(as.numeric(case$errN)ˆ2,na.rm = T))

correlation$CaliErrorEast[i]<-sqrt(sum((as.numeric(case$errE) + as.numeric(case$waveMagE))ˆ2,na.rm = T))
correlation$CaliErrorNorth[i]<-sqrt(sum((as.numeric(case$errN) + as.numeric(case$waveMagN))ˆ2,na.rm = T))

case$cog<-as.numeric(case$cog)
correlation$RealCalErrorEast[i]<-sqrt(sum((as.numeric(case$errE) + (as.numeric(case$waveMagE)*(((1/7)*sin(case$cog*pi/180))+(cos(case$cog*pi/180)))))ˆ2,na.rm = T))
correlation$RealCalErrorNorth[i]<-sqrt(sum((as.numeric(case$errN) + (as.numeric(case$waveMagN)*((sin(case$cog*pi/180))+((1/7)*cos(case$cog*pi/180)))))ˆ2,na.rm = T))
})

}

proc.time() - ptm

### Looking at certain cases

summary(as.numeric(correlation$North1min))
summary(as.numeric(correlation$North2min))
summary(as.numeric(correlation$North5min))
summary(as.numeric(correlation$North10min))
summary(as.numeric(correlation$East1min))
summary(as.numeric(correlation$East2min))
summary(as.numeric(correlation$East5min))
summary(as.numeric(correlation$East10min))

### Model Calibration Revised from modelCalibration.R Aug 16 2016
##
## April 2018

### Overall error in messages to message prediction initially (Error 1)
ErrorTestSample<-waveOnly_RM

#All Error East
E1<-sum(abs(as.numeric(ErrorTestSample$errE)),na.rm = T)
E1
mean(abs(as.numeric(ErrorTestSample$errE)),na.rm = T)
#All Error North
N1<-sum(abs(as.numeric(ErrorTestSample$errN)),na.rm = T)
N1
mean(abs(as.numeric(ErrorTestSample$errN)),na.rm = T)

### Calibrated error which includes wave movements into the equation (Error 2)

# New Error Estimation by adding Wave Magnitudes over time
ErrorTestSample$errErev<- as.numeric(ErrorTestSample$errE) + as.numeric(ErrorTestSample$waveMagE)
ErrorTestSample$errNrev<- as.numeric(ErrorTestSample$errN) + as.numeric(ErrorTestSample$waveMagN)

### New Collective Error
E2<-sum(abs(as.numeric(ErrorTestSample$errErev)),na.rm = T) #
N2<-sum(abs(as.numeric(ErrorTestSample$errNrev)),na.rm = T) #
#Percent Difference
(E2-E1)/E1*100
(N2-N1)/N1*100
# Error East has been decreased by 0.026% Error North increased by 0.899%

### Wave included but with a realistica calibration based on ship and wave directional orientation (Error 3)

## By adding the wave magnitudes to a physical model may enhance the accuracy to a greater degree
# an aspect ratio of a ship width vs length will 1:7 based off averages on panama, new panama, Malaca canal
# max ship sizes
ErrorTestSample$cog<-as.numeric(as.character(ErrorTestSample$cog))
ErrorTestSample$waveMagNrev<- as.numeric(ErrorTestSample$waveMagN)*((sin(ErrorTestSample$cog*pi/180))+((1/7)*cos(ErrorTestSample$cog*pi/180)))
ErrorTestSample$waveMagErev<- as.numeric(ErrorTestSample$waveMagE)*(((1/7)*sin(ErrorTestSample$cog*pi/180))+(cos(ErrorTestSample$cog*pi/180)))

ErrorTestSample$errErev2<- round(as.numeric(ErrorTestSample$errE) + as.numeric(ErrorTestSample$waveMagErev),digits = 2)
ErrorTestSample$errNrev2<- round(as.numeric(ErrorTestSample$errN) + as.numeric(ErrorTestSample$waveMagNrev),digits = 2)

E3<-sum(abs(as.numeric(ErrorTestSample$errErev2)),na.rm = T)
N3<-sum(abs(as.numeric(ErrorTestSample$errNrev2)),na.rm = T)
#Percent Difference
(E3-E1)/E1*100
(N3-N1)/N1*100
# Error East has been decreased by 4.296% Error North decreased by 3.741%
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sums<-matrix(c(E1,N1,E2,N2,E3,N3),ncol=2)
colnames(sums)<-c(’East Error’,’North Errror’)
rownames(sums)<-c(’Initial’,’Wave Calibrated’,’Direction Calibration’)
SumTable<-as.table(sums)
SumTable$MeanEast<-mean(abs(as.numeric(ErrorTestSample$errE)),na.rm = T)

ModelCal<-CaseMessage[CaseMessage$caseClass%in%Rcases,]

### Ideal Case Scenario Break down and running model Calibration on the radom cases ###
round(cor(as.numeric(ModelCal$waveMagN),as.numeric(ModelCal$errN), use = "complete.obs"),digits = 4)
round(cor(as.numeric(ModelCal$waveMagE),as.numeric(ModelCal$errE), use = "complete.obs"),digits = 4)

mean(as.numeric(correlation$NorthCor), na.rm = T)
sum(as.numeric(correlation$NorthCor), na.rm = T)

mean(as.numeric(correlation$EastCor), na.rm = T)
sum(as.numeric(correlation$EastCor), na.rm = T)

summary(as.numeric(correlation$NorthCor))
summary(as.numeric(correlation$EastCor))

### Calibrate the Ideal Case Messeges and See if we can lower overall error

#Error East (squared variance)
E1<-sqrt(sum(as.numeric(ModelCal$errE)ˆ2,na.rm = T))
E1
mean(abs(as.numeric(ModelCal$errE)),na.rm = T)
#All Error North (squared variance)
N1<-sqrt(sum(as.numeric(ModelCal$errN)ˆ2,na.rm = T))
N1
mean(abs(as.numeric(ModelCal$errN)),na.rm = T)

#New Error Estimation by adding Wave Magnitudes over time
ModelCal$errErev<- as.numeric(ModelCal$errE) + as.numeric(ModelCal$waveMagE)
ModelCal$errNrev<- as.numeric(ModelCal$errN) + as.numeric(ModelCal$waveMagN)

### New Collective Error
E2<-sqrt(sum(as.numeric(ModelCal$errErev)ˆ2,na.rm = T))
N2<-sqrt(sum(as.numeric(ModelCal$errNrev)ˆ2,na.rm = T))

## By adding the wave magnitudes to a physical model may enhance the accuracy to a greater degree
# an aspect ratio of a ship width vs length will 1:7 based off averages on panama, new panama, Malaca canal
# max ship sizes
ModelCal$cog<-as.numeric(as.character(ModelCal$cog))
ModelCal$waveMagNrev<- as.numeric(ModelCal$waveMagN)*((sin(ModelCal$cog*pi/180))+((1/7)*cos(ModelCal$cog*pi/180)))
ModelCal$waveMagErev<- as.numeric(ModelCal$waveMagE)*(((1/7)*sin(ModelCal$cog*pi/180))+(cos(ModelCal$cog*pi/180)))

ModelCal$errErev2<- round(as.numeric(ModelCal$errE) + as.numeric(ModelCal$waveMagErev),digits = 2)
ModelCal$errNrev2<- round(as.numeric(ModelCal$errN) + as.numeric(ModelCal$waveMagNrev),digits = 2)

E3<-sqrt(sum(as.numeric(ModelCal$errErev2)ˆ2,na.rm = T))
N3<-sqrt(sum(as.numeric(ModelCal$errNrev2)ˆ2,na.rm = T))
#Percent Difference
(E3-E1)/E1*100
(N3-N1)/N1*100

#### Histogram and Charts ####
# March 2018
#
#
# ###
#First subset first message out
install.packages("ggplot2")
library(ggplot2)
#
FirstMessage<-c()
oldTrip<-shipping$mmsi[1]
for (i in 2:nrow(shipping)){

if (shipping$mmsi[i] != oldTrip){
oldTrip<-shipping$mmsi[i]
FirstMessage<-c(FirstMessage,i)}

}
shippingRM <-shipping[-(FirstMessage),]

## Histogram of Time gaps
# Lets change the time into minutes
shippingRM$minGap<-shippingRM$timeDiff/60
shippingRM$hourGap<-as.numeric(shippingRM$timeDiff/3600)

under5min<-shippingRM[shippingRM$timeDiff<300,]
over5minUnder1day<-shippingRM[shippingRM$timeDiff>300 & shippingRM$timeDiff<86400,]
over1day<-shippingRM[shippingRM$timeDiff>86400,]

r <- hist(shippingRM$timeDiff, main="Shipping Time Differences Between Messages", ylab="Frequency", xlab="Time Difference (sec)")
barplot(r$counts, log="y", col="white", names.arg=r$breaks[-1],main="Shipping Time Differences Between Messages \n (Logarithmic)", ylab="Frequency (logarithmic)", xlab="Time Difference (sec)")

r <- hist(under5min$timeDiff, main="Shipping Time Differences Between Messages \n Under 5 min Apart", ylab="Frequency", xlab="Time Difference (sec)")
barplot(r$counts, log="y", col="white", names.arg=r$breaks[-1], main="Shipping Time Differences Between Messages \n Under 5 min Apart (Logarithmic)", ylab="Frequency (Logarithmic)", xlab="Time Difference (sec)")

r <- hist(over5minUnder1day$hourGap, main="Shipping Time Differences Between Messages \n Over 5 min but under 24 hrs", ylab="Frequency", xlab="Time Difference (hours)")
barplot(r$counts, log="y", col="white", names.arg=r$breaks[-1], main="Shipping Time Differences Between Messages \n Over 5 min but under 24 hrs (Logarithmic)", ylab="Frequency (Logarithmic)", xlab="Time Difference (hours)")

r <- hist(over1day$hourGap, main="Shipping Time Differences Between Messages \n Over 24 hrs", ylab="Frequency", xlab="Time Difference (hours)")
barplot(r$counts, log="y", col="white", names.arg=r$breaks[-1], main="Shipping Time Differences Between Messages \n Over 24 hrs (Logarithmic)", ylab="Frequency (Logarithmic)", xlab="Time Difference (hours)")

### Histogram of Space gaps

shippingRM$distKM<-as.numeric(shippingRM$distDiff/1000)

under1km<-shippingRM[shippingRM$distKM<1,]
under30km<-shippingRM[shippingRM$distKM<30&shippingRM$distKM>1 ,]
over30km<-shippingRM[shippingRM$distKM>30,]

r <- hist(shippingRM$distKM, main="Shipping Distance Differences \n Between Messages", ylab="Frequency", xlab="Distance Difference (Kilometre)")
barplot(r$counts, log="y", col="white", names.arg=r$breaks[-1],main="Shipping Distance Differences \n Between Messages (Logarithmic)", ylab="Frequency (logarithmic)", xlab="Distance Difference (Kilometres)")
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r <- hist(under1km$distDiff, main="Shipping Distance Differences \n Between Messages Under 1km", ylab="Frequency", xlab="Distance Difference (metre)")
barplot(r$counts, log="y", col="white", names.arg=r$breaks[-1],main="Shipping Distance Differences \n Between Messages Under 1km (Logarithmic)", ylab="Frequency (logarithmic)", xlab="Distance Difference (metres)")

r <- hist(under30km$distKM, main="Shipping Distance Differences \n Between Messages Under 30km", ylab="Frequency", xlab="Distance Difference (Kilometre)")
barplot(r$counts, log="y", col="white", names.arg=r$breaks[-1],main="Shipping Distance Differences \n Between Messages Under 30km (Logarithmic)", ylab="Frequency (logarithmic)", xlab="Distance Difference (Kilometres)")

r <- hist(over30km$distKM, main="Shipping Distance Differences \n Between Messages Over 30km", ylab="Frequency", xlab="Distance Difference (Kilometre)")
barplot(r$counts, log="y", col="white", names.arg=r$breaks[-1],main="Shipping Distance Differences \n Between Messages Over 30km (Logarithmic)", ylab="Frequency (logarithmic)", xlab="Distance Difference (Kilometres)")

### Scatterplot of Space Gaps vs Time Gaps

plot(shippingRM$timeDiff,shippingRM$distDiff)

ggplot(under5min,aes(timeDiff,distDiff)) + geom_point() +
xlab("Time Difference (seconds)") +
ylab("Distance Difference(metres)") +
ggtitle("Time vs Distance in 5 Minutes")

ggplot(over5minUnder1day,aes(timeDiff,distDiff)) + geom_point() +
xlab("Time Difference (seconds)") +
ylab("Distance Difference(metres)") +
ggtitle("Time vs Distance in 1 day")

ggplot(over1day,aes(timeDiff,distDiff)) + geom_point() +
xlab("Time Difference (seconds)") +
ylab("Distance Difference(metres)") +
ggtitle("Time vs Distance Over 1 day")

#####
# Creating a scatterplot of space over time with all ships, including 25m/s (90km/h,˜50knots ) line of cut off Maximum distance in study area is 500km
# Maximum distance in study area is 500km which if at 25m/s would occur only at 20,000 seconds(5.55hrs)
testsample<-ships
testsample<- testsample[order(testsample$mmsi,testsample$time),]

testsample$timeDiff <- c(0, diff(testsample$time_conv))
cord.dec = SpatialPoints(cbind(testsample$longitude, testsample$latitude), proj4string = CRS("+proj=longlat")) #Collecting the Long Lat points of the data
cord.UTM <- spTransform(cord.dec, CRS("+init=epsg:26711")) #Transforming points to UTM by Code for UTM zone 11 Nad 83
testsample$UTMlog<-cord.UTM$coords.x1
testsample$UTMlat<-cord.UTM$coords.x2

rm(cord.dec)
rm(cord.UTM)

testsample$distLat <- c(0, diff(testsample$UTMlat))
testsample$distLon<- c(0,diff(testsample$UTMlog))
testsample$distDiff<- sqrt((testsample$distLonˆ2)+(testsample$distLatˆ2))

FirstMessage<-c()
oldTrip<-testsample$mmsi[1]
for (i in 2:nrow(testsample)){

if (testsample$mmsi[i] != oldTrip){
oldTrip<-testsample$mmsi[i]
FirstMessage<-c(FirstMessage,i)}

}
testsampleRM <-testsample[-(FirstMessage),]

limits<-testsampleRM[testsampleRM$timeDiff<20000,]
firstten<-testsampleRM[testsampleRM$timeDiff<600,]

ggplot(limits,aes(timeDiff,distDiff)) + geom_point() +
xlab("Time Difference (seconds)") +
ylab("Distance Difference(kilometres)") +
ggtitle("Impossible values n=3,832,252") +
geom_segment(aes(x=0,y=0,xend=20000,yend=500000)) +
scale_x_continuous(expand = c(0,0)) +
theme(axis.text.y = element_text(angle = 45),plot.title = element_text(hjust = 0.5)) +
scale_y_continuous(expand =c(0,0),breaks=c(0,100000,200000,300000,400000,500000),labels=c("0", "100","200","300","400","500"))

ggplot(firstten,aes(timeDiff,distDiff)) + geom_point() +
xlab("Time Difference (seconds)") +
ylab("Distance Difference(kilometres)") +
ggtitle("Impossible Values First Ten Minutes n=3,510,668") +
geom_segment(aes(x=0,y=0,xend=600,yend=15000)) +
scale_x_continuous(expand = c(0,0)) +
theme(axis.text.y = element_text(angle = 45),plot.title = element_text(hjust = 0.5)) +
scale_y_continuous(expand =c(0,0),breaks=c(0,50000,100000,150000,200000,250000, 300000),labels=c("0", "50","100","150","200","250", "300"))

### Generating Graphs and plots for the Case Scenarios randomly generated
plotpath<-("E:/Masters/MappingFiles/Graphs")

###

plot(minOnly$UTMlog,minOnly$UTMlat,
main = paste("Ship MMSI",minOnly$mmsi[1]),
xlab = "UTM Longitude",
ylab = "UTM Latitude"
)

lines(minOnly$UTMlog,minOnly$UTMlat)
points(minOnly$UTMlog[1],minOnly$UTMlat[1], col="red", pch = 19)

plot(minOnly$waveMagE2,minOnly$errE2,asp=1,
main = paste("Ship MMSI",minOnly$mmsi[1],"\nError East vs Prediction Error East R =", correlation$EastCor[1]),
xlab = "Wave movement eastward (m)",
ylab = "Displacement eastward (m)"

)
abline(lm(as.numeric(minOnly$errE2)˜as.numeric(minOnly$waveMagE2)))

path<-file.path(plotpath,paste("test",".jpg"),sep = "")
png(file=path)
plot(minOnly$waveMagN2,minOnly$errN2,asp=1,

main = paste("Ship MMSI",minOnly$mmsi[1],"\nError East vs Prediction Error North R =", correlation$NorthCor[1]),
xlab = "Wave movement northwardward (m)",
ylab = "Displacement northward (m)"
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)
abline(lm(as.numeric(minOnly$errN2)˜as.numeric(minOnly$waveMagN2)))
dev.off()

ptm<-proc.time()
#length(Rcases)
pathConn<-paste(plotpath,"/LatexInputs.txt",sep="")
file(pathConn)
for (i in 1:length(Rcases)){

tryCatch({
case<-CaseMessage[CaseMessage$caseClass==Rcases[i],]

####2min Break####

minOnly<-case[1,]

path<-file.path(plotpath,paste("Case_",i,"_",case$mmsi[1],".jpg",sep = ""))
png(file=path)
plot(case$UTMlog,case$UTMlat,

main = paste("Ship MMSI",case$mmsi[1]),
xlab = "UTM Longitude",
ylab = "UTM Latitude"

)
lines(case$UTMlog,case$UTMlat)
points(case$UTMlog[1],case$UTMlat[1], col="red", pch = 19)
dev.off()

write(paste("\\includegraphics[width=0.33\\linewidth]{{",path,"}}",sep=""), file=pathConn, append=T)

path<-file.path(plotpath,paste("Case_",i,"_","CorrelationEast",".jpg",sep = ""))
png(file=path)
plot(case$waveMagE,case$errE,asp=1,

main = paste("Ship MMSI",case$mmsi[1],"\nError East vs Prediction Error East R =", correlation$EastCor[i]),
xlab = "Wave movement eastward (m)",
ylab = "Displacement eastward (m)"

)
abline(lm(as.numeric(case$errE)˜as.numeric(case$waveMagE)))
dev.off()

write(paste("\\includegraphics[width=0.33\\linewidth]{{",path,"}}",sep=""), file=pathConn, append=T)

path<-file.path(plotpath,paste("Case_",i,"_","CorrelationNorth",".jpg",sep = ""))
png(file=path)
plot(case$waveMagN,case$errN,asp=1,

main = paste("Ship MMSI",case$mmsi[1],"\nError North vs Prediction Error North R =", correlation$NorthCor[i]),
xlab = "Wave movement northward (m)",
ylab = "Displacement northward (m)"

)
abline(lm(as.numeric(case$errN)˜as.numeric(case$waveMagN)))
dev.off()

write(paste("\\includegraphics[width=0.33\\linewidth]{{",path,"}}",sep=""), file=pathConn, append=T)

oldtime<-minOnly$time_conv[1]
for (j in 2:(nrow(case))){

if ((case$time_conv[j] - oldtime) > 120){
minOnly<-rbind(minOnly, case[j,])
oldtime<-case$time_conv[j]

}
}
minOnly$errE2<-"na"
minOnly$errN2<-"na"
minOnly$waveMagN2<-"na"
minOnly$waveMagE2<-"na"
imax <- nrow(minOnly)
minOnly$errE2[2:imax] <-

round(
(sin(minOnly$heading[1:(imax-1)]*pi/180)*(minOnly$speed[1:(imax-1)]*(minOnly$time_conv[2:imax]- minOnly$time_conv[1:(imax-1)])))
-(minOnly$UTMlog[2:imax]-minOnly$UTMlog[1:(imax-1)])
,digits=2)

minOnly$errN2[2:imax] <-
round(

(cos(minOnly$heading[1:(imax-1)]*pi/180)*(minOnly$speed[1:(imax-1)]*(minOnly$time_conv[2:imax] - minOnly$time_conv[1:(imax-1)])))
-(minOnly$UTMlat[2:imax]-minOnly$UTMlat[1:(imax-1)])
,digits=2)

minOnly$waveMagE2[2:imax]<- round(minOnly$EU[1:(imax-1)]*(minOnly$time_conv[2:imax] - minOnly$time_conv[1:(imax-1)]),digits=4)
minOnly$waveMagN2[2:imax]<- round(minOnly$EV[1:(imax-1)]*(minOnly$time_conv[2:imax] - minOnly$time_conv[1:(imax-1)]),digits=4)

path<-file.path(plotpath,paste("Case_",i,"_","CorrelationEast2Min",".jpg",sep = ""))
png(file=path)
plot(minOnly$waveMagE2,minOnly$errE2,asp=1,

main = paste("Ship MMSI",minOnly$mmsi[1],"\nError East vs Prediction Error East\n2Min R =", correlation$East2min[i]),
xlab = "Wave movement eastward (m)",
ylab = "Displacement eastward (m)"

)
abline(lm(as.numeric(minOnly$errE)˜as.numeric(minOnly$waveMagE)))
dev.off()

write(paste("\\includegraphics[width=0.33\\linewidth]{{",path,"}}",sep=""), file=pathConn, append=T)

path<-file.path(plotpath,paste("Case_",i,"_","CorrelationNorth2Min",".jpg",sep = ""))
png(file=path)
plot(minOnly$waveMagN2,minOnly$errN2,asp=1,

main = paste("Ship MMSI",minOnly$mmsi[1],"\nError North vs Prediction Error North\n2Min R =", correlation$North2min[i]),
xlab = "Wave movement northward (m)",
ylab = "Displacement northward (m)"

)
abline(lm(as.numeric(minOnly$errN2)˜as.numeric(minOnly$waveMagN2)))
dev.off()

write(paste("\\includegraphics[width=0.33\\linewidth]{{",path,"}}",sep=""), file=pathConn, append=T)

####5min Break######

minOnly<-case[1,]
oldtime<-minOnly$time_conv[1]
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for (j in 2:(nrow(case))){
if ((case$time_conv[j] - oldtime) > 300){

minOnly<-rbind(minOnly, case[j,])
oldtime<-case$time_conv[j]

}
}
minOnly$errE2<-"na"
minOnly$errN2<-"na"
minOnly$waveMagN2<-"na"
minOnly$waveMagE2<-"na"
imax <- nrow(minOnly)
minOnly$errE2[2:imax] <-

round(
(sin(minOnly$heading[1:(imax-1)]*pi/180)*(minOnly$speed[1:(imax-1)]*(minOnly$time_conv[2:imax]- minOnly$time_conv[1:(imax-1)])))
-(minOnly$UTMlog[2:imax]-minOnly$UTMlog[1:(imax-1)])
,digits=2)

minOnly$errN2[2:imax] <-
round(

(cos(minOnly$heading[1:(imax-1)]*pi/180)*(minOnly$speed[1:(imax-1)]*(minOnly$time_conv[2:imax] - minOnly$time_conv[1:(imax-1)])))
-(minOnly$UTMlat[2:imax]-minOnly$UTMlat[1:(imax-1)])
,digits=2)

minOnly$waveMagE2[2:imax]<- round(minOnly$EU[1:(imax-1)]*(minOnly$time_conv[2:imax] - minOnly$time_conv[1:(imax-1)]),digits=4)
minOnly$waveMagN2[2:imax]<- round(minOnly$EV[1:(imax-1)]*(minOnly$time_conv[2:imax] - minOnly$time_conv[1:(imax-1)]),digits=4)

path<-file.path(plotpath,paste("Case_",i,"_","CorrelationEast5Min",".jpg",sep = ""))
png(file=path)
plot(minOnly$waveMagE2,minOnly$errE2,asp=1,

main = paste("Ship MMSI",minOnly$mmsi[1],"\nError East vs Prediction Error East\n5Min R =", correlation$East5min[i]),
xlab = "Wave movement eastward (m)",
ylab = "Displacement eastward (m)"

)
abline(lm(as.numeric(minOnly$errE)˜as.numeric(minOnly$waveMagE)))
dev.off()

write(paste("\\includegraphics[width=0.33\\linewidth]{{",path,"}}",sep=""), file=pathConn, append=T)

path<-file.path(plotpath,paste("Case_",i,"_","CorrelationNorth5Min",".jpg",sep = ""))
png(file=path)
plot(minOnly$waveMagN2,minOnly$errN2,asp=1,

main = paste("Ship MMSI",minOnly$mmsi[1],"\nError North vs Prediction Error North\n5Min R =", correlation$North5min[i]),
xlab = "Wave movement northward (m)",
ylab = "Displacement northward (m)"

)
abline(lm(as.numeric(minOnly$errN2)˜as.numeric(minOnly$waveMagN2)))
dev.off()

write(paste("\\includegraphics[width=0.33\\linewidth]{{",path,"}}",sep=""), file=pathConn, append=T)
#####10 min Break #####

minOnly<-case[1,]
oldtime<-minOnly$time_conv[1]
for (j in 2:(nrow(case))){

if ((case$time_conv[j] - oldtime) > 600){
minOnly<-rbind(minOnly, case[j,])
oldtime<-case$time_conv[j]

}
}
minOnly$errE2<-"na"
minOnly$errN2<-"na"
minOnly$waveMagN2<-"na"
minOnly$waveMagE2<-"na"
imax <- nrow(minOnly)
minOnly$errE2[2:imax] <-

round(
(sin(minOnly$heading[1:(imax-1)]*pi/180)*(minOnly$speed[1:(imax-1)]*(minOnly$time_conv[2:imax]- minOnly$time_conv[1:(imax-1)])))
-(minOnly$UTMlog[2:imax]-minOnly$UTMlog[1:(imax-1)])
,digits=2)

minOnly$errN2[2:imax] <-
round(

(cos(minOnly$heading[1:(imax-1)]*pi/180)*(minOnly$speed[1:(imax-1)]*(minOnly$time_conv[2:imax] - minOnly$time_conv[1:(imax-1)])))
-(minOnly$UTMlat[2:imax]-minOnly$UTMlat[1:(imax-1)])
,digits=2)

minOnly$waveMagE2[2:imax]<- round(minOnly$EU[1:(imax-1)]*(minOnly$time_conv[2:imax] - minOnly$time_conv[1:(imax-1)]),digits=4)
minOnly$waveMagN2[2:imax]<- round(minOnly$EV[1:(imax-1)]*(minOnly$time_conv[2:imax] - minOnly$time_conv[1:(imax-1)]),digits=4)

if(nrow(minOnly)>2){
path<-file.path(plotpath,paste("Case_",i,"_","CorrelationEast10Min",".jpg",sep = ""))
png(file=path)
plot(minOnly$waveMagE2,minOnly$errE2,asp=1,

main = paste("Ship MMSI",minOnly$mmsi[1],"\nError East vs Prediction Error East\n10Min R =", correlation$East10min[i]),
xlab = "Wave movement eastward (m)",
ylab = "Displacement eastward (m)"

)
abline(lm(as.numeric(minOnly$errE)˜as.numeric(minOnly$waveMagE)))
dev.off()

write(paste("\\includegraphics[width=0.33\\linewidth]{{",path,"}}",sep=""), file=pathConn, append=T)

path<-file.path(plotpath,paste("Case_",i,"_","CorrelationNorth10Min",".jpg",sep = ""))
png(file=path)
plot(minOnly$waveMagN2,minOnly$errN2,asp=1,

main = paste("Ship MMSI",minOnly$mmsi[1],"\nError North vs Prediction Error North\n10Min R =", correlation$North10min[i]),
xlab = "Wave movement northward (m)",
ylab = "Displacement northward (m)"

)
abline(lm(as.numeric(minOnly$errN2)˜as.numeric(minOnly$waveMagN2)))
dev.off()

write(paste("\\includegraphics[width=0.33\\linewidth]{{",path,"}}",sep=""), file=pathConn, append=T)
}

})
}

proc.time() - ptm
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### Gap Analysis of Study Area

# There are 3,970,486 messages in the Longbeach data set
Gaps<- ships[order(ships$mmsi,ships$time),]
Gaps<- Gaps[!is.na(Gaps$mmsi),]
Gaps$timeDiff <- c(0, diff(Gaps$time_conv))

cord.dec = SpatialPoints(cbind(Gaps$longitude, Gaps$latitude), proj4string = CRS("+proj=longlat")) #Collecting the Long Lat points of the data
cord.UTM <- spTransform(cord.dec, CRS("+init=epsg:26711")) #Transforming points to UTM by Code for UTM zone 11 Nad 83
Gaps$UTMlog<-cord.UTM$coords.x1
Gaps$UTMlat<-cord.UTM$coords.x2

rm(cord.dec)
rm(cord.UTM)

Gaps$distLat <- c(0, diff(Gaps$UTMlat))
Gaps$distLon<- c(0,diff(Gaps$UTMlog))
Gaps$distDiff<- sqrt((Gaps$distLonˆ2)+(Gaps$distLatˆ2))

# distDiff is the gap between messages
#Need to now remove the first message from each mmsi because their time diff and distance gap are based
# on the previous message of a different mmsi

FirstMessage<-c()
oldTrip<-Gaps$mmsi[1]
for (i in 2:nrow(Gaps)){

if (Gaps$mmsi[i] != oldTrip){
oldTrip<-Gaps$mmsi[i]
FirstMessage<-c(FirstMessage,i)}

}
GapsRM <-Gaps[-(FirstMessage),]

#### Determineing the number of occurences when a Gap in time greater then 6 hours occur
GapsRM$refKey<- 1:nrow(GapsRM)

Hour6<- GapsRM[GapsRM$timeDiff>21600,]

### Of those which had a distance Gap greater then 5 km
FullGaps<-Hour6[Hour6$distDiff>5000,]

keyval<-c(FullGaps$refKey,FullGaps$refKey-1)
#######Taking the The start and end point of gaps as points to input into ArcMap
GapPoints<- GapsRM[GapsRM$refKey %in% keyval,]

write.csv(GapPoints,"E:/Masters/MappingFiles/GapPoints.csv",sep = ",",col.names = TRUE)
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SQL code

p o r t i n g CSV i n t o P o s t g r e

− Need t o C r e a t e Tab le t o ho ld d a t a i n PostSQL
−CREATE TABLE command

− Then c r e a t e Colomn f o r each f i e l d i n CSV
− c r e a t e t a b l e s h i p d a t a (MMSI i n t , MESSAGE ID i n t , REPEAT INDICATOR i n t , TIME da te , MILLISECOND i n t , REGION i n t , COUNTRY i n t ,

BASE STATION i n t , ONLINE DATA v a r c h a r , GROUP CODE v a r c h a r ,
SEQUENCE ID i n t , CHANNEL c h a r ( 1 ) , DATA LENGTH v a r c h a r , VESSEL NAME v a r c h a r , CALL SIGN v a r c h a r , IMO i n t , SHIP TYPE i n t , DIMENSION TO BOW

i n t , DIMENSIO TO STERN i n t , DIMENSIO TO PORT i n t ,
DIMENSIO TO STARBOARD i n t , DRAUGHT i n t , DESTINATION v a r c h a r , AIS VERSION i n t , NAVIGATION STATUS i n t , ROT do ub le p r e c i s i o n , SOG do ub le

p r e c i s i o n , ACCURACY i n t , LONGITUDE do ub le p r e c i s i o n ,
LATITUDE d ou b le p r e c i s i o n , COG d ou b l e p r e c i s i o n , HEADING v a r c h a r , REGIONAL i n t , MANEUVER i n t , RAIM FLAG i n t , COMMUNICATION FLAG i n t ,

COMMUNICATION STATE i n t , UTC YEAR i n t , UTC MONTH i n t ,
UTC DAY i n t , UTC HOUR i n t , UTC MINUTE i n t , UTC SECOND i n t , FIXING DEVICE i n t , TRANSMISSION CONTROL i n t , ETA MONTH i n t , ETA DAY i n t ,

ETA HOUR i n t , ETA MINUTE i n t , SEQUENCE v a r c h a r , DESTINATION ID v a r c h a r ,
RETRANSMIT FLAG v a r c h a r , COUNTRY CODE v a r c h a r , FUNTIONAL ID v a r c h a r , DATA v a r c h a r , DESTINATION ID 1 v a r c h a r , SEQUENCE 1 v a r c h a r ,

DESTINATION ID 2 v a r c h a r , SEQUENCE 2 v a r c h a r ,
DESTINATION ID 3 v a r c h a r , SEQUENCE 3 v a r c h a r , DESTINATION ID 4 v a r c h a r , SEQUENCE 4 v a r c h a r , ALTITUDE v a r c h a r , ALTITUDE SENSOR v a r c h a r ,

DATA TERMINAL i n t , MODE i n t , SAFETY TEXT v a r c h a r ,
NONSTANDARD BITS i n t , NAME EXTENSION v a r c h a r , NAME EXTENSION PADDING v a r c h a r , MESSAGE ID 1 1 i n t , OFFSET 1 1 i n t , MESSAGE ID 1 2 i n t ,

OFFSET 1 2 i n t , MESSAGE ID 2 1 i n t , OFFSET 2 1 i n t ,
DESTINATION ID A i n t , OFFSET A i n t , INCREMENT A i n t , DESTINATION ID B i n t , OFFSETB i n t , INCREMENTB i n t , DATA MSG TYPE i n t , STATIO ID i n t ,

Z COUNT i n t , NUM DATA WORDS i n t , HEALTH i n t , UNIT FLAG i n t ,
DISPLAY i n t , DSC i n t , BAND i n t , MSG22 i n t , OFFSET1 i n t , NUM SLOTS1 i n t , TIMEOUT1 i n t , INCREMENT 1 i n t , OFFSET2 i n t , NUM SLOTS2 i n t ,

TIMEOUT2 i n t , INCREMENT 2 i n t , OFFSET3 i n t , NUM SLOTS3 i n t , TIMEOUT3 i n t ,
INCREMENT 3 i n t , OFFSET4 i n t , NUM SLOTS4 i n t , TIMEOUT4 i n t , INCREMENT 4 i n t , ATON type i n t , ATON name v a r c h a r , o f f p o s i t i o n i n t ,

ATON status i n t , VIRTUAL ATON i n t , CHANNEL A i n t , CHANNEL B i n t , TX RX MODE i n t , POWER i n t , MESSAGE INDICATOR i n t ,
CHANNEL A BANDWIDTH i n t ,

CHANNEL B BANDWIDTH i n t , TRANSZONE SIZE i n t , LONGITUDE 1 dou b l e p r e c i s i o n , LATITUDE 1 d ou b l e p r e c i s i o n , LONGITUDE 2 d ou b l e p r e c i s i o n ,
LATITUDE 2 d ou b le p r e c i s i o n , STATION TYPE i n t , REPORT INTERVAL i n t ,

QUIET TIME i n t , PART NUMBER i n t , VENDOR ID v a r c h a r , MOTHER SHIP MMSI i n t , DESTINATION INDICATOR i n t , BIANARY FLAG i n t , GNSS STATUS i n t ,
SPARE i n t , SPARE2 i n t , SPARE3 i n t , SPARE4 i n t )

− Next l o a d i n g t h e csv d a t a i n t o PostgreSQL

f o r / home / p o s t g r e s d a t a / Ship CSV (* csv ) copy from DELIMITERS ’ , ’ CSV p u b l i c .%˜ s h i p s d a t a > %˜ s h i p s d a t a . s q l
f o r %f (* s q l ) do p s q l −h myserve r −d myDB −U p o s t g r e s −f s h i p s

ALTERNATE: c r e a t e t a b l e s h i p d a t a (MMSI v a r c h a r , MESSAGE ID v a r c h a r , REPEAT INDICATOR v a r c h a r , TIME v a r c h a r , MILLISECOND v a r c h a r , REGION
v a r c h a r , COUNTRY v a r c h a r , BASE STATION v a r c h a r , ONLINE DATA v a r c h a r , GROUP CODE v a r c h a r ,

SEQUENCE ID v a r c h a r , CHANNEL v a r c h a r , DATA LENGTH v a r c h a r , VESSEL NAME v a r c h a r , CALL SIGN v a r c h a r , IMO v a r c h a r , SHIP TYPE v a r c h a r ,
DIMENSION TO BOW v a r c h a r , DIMENSIO TO STERN v a r c h a r , DIMENSIO TO PORT v a r c h a r ,

DIMENSIO TO STARBOARD v a r c h a r , DRAUGHT v a r c h a r , DESTINATION v a r c h a r , AIS VERSION v a r c h a r , NAVIGATION STATUS v a r c h a r , ROT v a r c h a r , SOG
v a r c h a r , ACCURACY v a r c h a r , LONGITUDE v a r c h a r ,

LATITUDE v a r c h a r , COG v a r c h a r , HEADING v a r c h a r , REGIONAL v a r c h a r , MANEUVER v a r c h a r , RAIM FLAG v a r c h a r , COMMUNICATION FLAG v a r c h a r ,
COMMUNICATION STATE v a r c h a r , UTC YEAR v a r c h a r , UTC MONTH v a r c h a r ,

UTC DAY v a r c h a r , UTC HOUR v a r c h a r , UTC MINUTE v a r c h a r , UTC SECOND v a r c h a r , FIXING DEVICE v a r c h a r , TRANSMISSION CONTROL v a r c h a r , ETA MONTH
v a r c h a r , ETA DAY v a r c h a r , ETA HOUR v a r c h a r , ETA MINUTE v a r c h a r , SEQUENCE v a r c h a r , DESTINATION ID v a r c h a r ,

RETRANSMIT FLAG v a r c h a r , COUNTRY CODE v a r c h a r , FUNTIONAL ID v a r c h a r , DATA v a r c h a r , DESTINATION ID 1 v a r c h a r , SEQUENCE 1 v a r c h a r ,
DESTINATION ID 2 v a r c h a r , SEQUENCE 2 v a r c h a r ,

DESTINATION ID 3 v a r c h a r , SEQUENCE 3 v a r c h a r , DESTINATION ID 4 v a r c h a r , SEQUENCE 4 v a r c h a r , ALTITUDE v a r c h a r , ALTITUDE SENSOR v a r c h a r ,
DATA TERMINAL v a r c h a r , MODE v a r c h a r , SAFETY TEXT v a r c h a r ,

NONSTANDARD BITS v a r c h a r , NAME EXTENSION v a r c h a r , NAME EXTENSION PADDING v a r c h a r , MESSAGE ID 1 1 v a r c h a r , OFFSET 1 1 v a r c h a r ,
MESSAGE ID 1 2 v a r c h a r , OFFSET 1 2 v a r c h a r , MESSAGE ID 2 1 v a r c h a r , OFFSET 2 1 v a r c h a r ,

DESTINATION ID A v a r c h a r , OFFSET A v a r c h a r , INCREMENT A v a r c h a r , DESTINATION ID B v a r c h a r , OFFSETB v a r c h a r , INCREMENTB v a r c h a r ,
DATA MSG TYPE v a r c h a r , STATIO ID v a r c h a r , Z COUNT v a r c h a r , NUM DATA WORDS v a r c h a r , HEALTH v a r c h a r , UNIT FLAG v a r c h a r ,

DISPLAY v a r c h a r , DSC v a r c h a r , BAND v a r c h a r , MSG22 v a r c h a r , OFFSET1 v a r c h a r , NUM SLOTS1 v a r c h a r , TIMEOUT1 v a r c h a r , INCREMENT 1 v a r c h a r ,
OFFSET2 v a r c h a r , NUM SLOTS2 v a r c h a r , TIMEOUT2 v a r c h a r , INCREMENT 2 v a r c h a r , OFFSET3 v a r c h a r , NUM SLOTS3 v a r c h a r , TIMEOUT3 v a r c h a r ,

INCREMENT 3 v a r c h a r , OFFSET4 v a r c h a r , NUM SLOTS4 v a r c h a r , TIMEOUT4 v a r c h a r , INCREMENT 4 v a r c h a r , ATON type v a r c h a r , ATON name v a r c h a r ,
o f f p o s i t i o n v a r c h a r , ATON status v a r c h a r , VIRTUAL ATON v a r c h a r , CHANNEL A v a r c h a r , CHANNEL B v a r c h a r , TX RX MODE v a r c h a r , POWER
v a r c h a r , MESSAGE INDICATOR v a r c h a r , CHANNEL A BANDWIDTH v a r c h a r ,

CHANNEL B BANDWIDTH v a r c h a r , TRANSZONE SIZE v a r c h a r , LONGITUDE 1 v a r c h a r , LATITUDE 1 v a r c h a r , LONGITUDE 2 v a r c h a r , LATITUDE 2 v a r c h a r ,
STATION TYPE v a r c h a r , REPORT INTERVAL v a r c h a r ,

QUIET TIME v a r c h a r , PART NUMBER v a r c h a r , VENDOR ID v a r c h a r , MOTHER SHIP MMSI v a r c h a r , DESTINATION INDICATOR v a r c h a r , BIANARY FLAG v a r c h a r
, GNSS STATUS v a r c h a r , SPARE v a r c h a r , SPARE2 v a r c h a r , SPARE3 v a r c h a r , SPARE4 v a r c h a r ) ;

COPY s h i p d a t a FROM ’ / home / d a t a b a c k / G S T S h i s t o r i c a l d a t a 2 0 1 2 −11−011.csv ’CSV HEADER;

−−−FIRST CHANGE COLUMN TYPES SEE EMAIL

−− Data C l e a n i n g f o r s h i p s D a t a b a s e

−− Removing MMSI <200000000

DELETE FROM s h i p d a t a
WHERE s h i p d a t a . mmsi <200000000;
COMMIT;

−− Remove Nul l G e o m e t r i e s

DELETE FROM s h i p d a t a
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WHERE m e s s a g e i d != 5 AND l a t i t u d e IS NULL;
COMMIT;

−− Data s p l i t t i n g

SELECT DISTINCT ON ( mmsi ) * INTO s h i p d a t a s t a t i c FROM s h i p d a t a
WHERE m e s s a g e i d = 5 ;
COMMIT;

SELECT * INTO s h i p d a t a s h i p s FROM s h i p d a t a
WHERE m e s s a g e i d = 1 OR m e s s a g e i d = 2 OR m e s s a g e i d = 3 ;
COMMIT;

−−D e l e t i n g D u p l i c a t e s

SELECT DISTINCT ON (MMSI, TIME , MILLISECOND) * INTO s h i p d a t a s h i p s 2 FROM s h i p d a t a s h i p s ;
COMMIT;

DROP TABLE s h i p d a t a s h i p s ;
COMMIT;

−− Add Lat , Long f i e l d s
−−ALTER TABLE s h i p d a t a s h i p s 2
−−ADD COLUMN L a t i t u d e do ub l e p r e c i s i o n ;

−−ALTER TABLE s h i p d a t a s h i p s 2
−−ADD COLUMN L o n g i t u d e do ub l e p r e c i s i o n ;

−−UPDATE s h i p d a t a s h i p s 2
−− SET l a t i t u d e = ST Y ( ” p o s i t i o n ” ) ;

−−UPDATE s h i p d a t a s h i p s 2
−− SET l o n g i t u d e = ST X ( ” p o s i t i o n ” ) ;

−− Add Geometry
ALTER TABLE s h i p d a t a s h i p s 2 ADD COLUMN g i d s e r i a l PRIMARY KEY;
COMMIT;
ALTER TABLE s h i p d a t a s h i p s 2 ADD COLUMN p o s i t i o n geomet ry ( POINT , 4 3 2 6 ) ;
UPDATE s h i p d a t a s h i p s 2 SET p o s i t i o n = ST SetSRID ( ST MakePoint ( l o n g i t u d e , l a t i t u d e ) , 4 3 2 6 ) ;
COMMIT;

CREATE INDEX i d x s h i p s g e o m ON s h i p d a t a s h i p s 2 USING GIST ( p o s i t i o n ) ;

ALTER TABLE s h i p d a t a s h i p s 2 DROP COLUMN COUNTRY, DROP COLUMN M i l l i s e c o n d , DROP COLUMN Region , DROP COLUMN O n l i n e d a t a , DROP COLUMN
Group Code , DROP COLUMN Sequence ID , DROP COLUMN Channel , DROP COLUMN Data Length , DROP COLUMN A I S v e r s i o n , DROP COLUMN Regiona l ,
DROP COLUMN RAIM flag , DROP COLUMN Communica t ion f l ag , DROP COLUMN C o m m u n i c a t i o n s t a t e , DROP COLUMN F i x i n g d e v i c e , DROP COLUMN
T r a n s m i s s i o n c o n t r o l , DROP COLUMN Sequence , DROP COLUMN D e s t i n a t i o n I D , DROP COLUMN R e t r a n s m i t f l a g , DROP COLUMN Count ry code , DROP
COLUMN F u n t i o n a l I D , DROP COLUMN Data , DROP COLUMN D e s t i n a t i o n I D 1 , DROP COLUMN Sequence 1 , DROP COLUMN D e s t i n a t i o n I D 2 , DROP

COLUMN Sequence 2 , DROP COLUMN D e s t i n a t i o n I D 3 , DROP COLUMN Sequence 3 , DROP COLUMN D e s t i n a t i o n I D 4 , DROP COLUMN Sequence 4 , DROP
COLUMN A l t i t u d e , DROP COLUMN A l t i t u d e s e n s o r , DROP COLUMN D a t a t e r m i n a l , DROP COLUMN Mode , DROP COLUMN S a f e t y t e x t , DROP COLUMN

N o n s t a n d a r d b i t s , DROP COLUMN Name extens ion , DROP COLUMN N a m e e x t e n s i o n p a d d i n g , DROP COLUMN Message ID 1 1 , DROP COLUMN
O f f s e t 1 1 , DROP COLUMN Message ID 1 2 , DROP COLUMN O f f s e t 1 2 , DROP COLUMN Message ID 2 1 , DROP COLUMN O f f s e t 2 1 , DROP COLUMN
D e s t i n a t i o n I D A , DROP COLUMN Offse t A , DROP COLUMN Increment A , DROP COLUMN D e s t i n a t i o n I D B , DROP COLUMN Offse tB , DROP COLUMN
incrementB , DROP COLUMN d a t a m s g t y p e , DROP COLUMN s t a t i o I D , DROP COLUMN Z count , DROP COLUMN num data words , DROP COLUMN h e a l t h ,
DROP COLUMN u n i t f l a g , DROP COLUMN d i s p l a y , DROP COLUMN DSC, DROP COLUMN band , DROP COLUMN msg22 , DROP COLUMN o f f s e t 1 , DROP COLUMN
n u m s l o t s 1 , DROP COLUMN t imeou t1 , DROP COLUMN I n c r e m e n t 1 , DROP COLUMN O f f s e t 2 , DROP COLUMN Num slots2 , DROP COLUMN Timeout2 , DROP
COLUMN I n c r e m e n t 2 , DROP COLUMN O f f s e t 3 , DROP COLUMN Num slots3 , DROP COLUMN Timeout3 , DROP COLUMN I n c r e m e n t 3 , DROP COLUMN O f f s e t 4
, DROP COLUMN Num slots4 , DROP COLUMN Timeout4 , DROP COLUMN I n c r e m e n t 4 , DROP COLUMN ATON type , DROP COLUMN ATON name , DROP COLUMN
o f f p o s i t i o n , DROP COLUMN ATON status , DROP COLUMN Virtual ATON , DROP COLUMN Channel A , DROP COLUMN Channel B , DROP COLUMN
Tx Rx mode , DROP COLUMN Power , DROP COLUMN M e s s a g e i n d i c a t o r , DROP COLUMN Channe l A bandwid th , DROP COLUMN Channe l B bandwid th ,
DROP COLUMN T r a n s z o n e s i z e , DROP COLUMN L ong i tu de 1 , DROP COLUMN L a t i t u d e 1 , DROP COLUMN Long i tu de 2 , DROP COLUMN L a t i t u d e 2 , DROP
COLUMN S t a t i o n T y p e , DROP COLUMN R e p o r t I n t e r v a l , DROP COLUMN Quie t Time , DROP COLUMN Part Number , DROP COLUMN Vendor ID , DROP
COLUMN Mother ship MMSI , DROP COLUMN D e s t i n a t i o n i n d i c a t o r , DROP COLUMN B i a n a r y f l a g , DROP COLUMN GNSS sta tus , DROP COLUMN s p a r e ,
DROP COLUMN spare2 , DROP COLUMN spa re3 , DROP COLUMN s p a r e 4 ;

### Code t o s e l e c t t h e ” Anomolies ” o f when AIS t u r n s o f f o r l o s s o f s a t e l l i t e s i g n a l ###

− T h r e s h o l d o f t ime = 24 h o u r s # I t l o s t 4 c o n s e c u t i v e t i m e s o f a s a t t e l i t e p a s s i n g

− T h r e s h o l d on D I s t a n c e = 5 km

### PLACE INFORMATION FROM THE PREVIOUS ROW ONTO SAME LINE ###

SELECT l o c a . mmsi , l o c a . p o s i t i o n AS s t a r t p o i n t , l o c b . p o s i t i o n AS e n d p o i n t ,
l o c a . t ime AS s t a r t t i m e , l o c b . t ime AS endt ime , l o c a . t r i p i d AS s t a r t i d , l o c b . t r i p i d AS e n d i d

INTO c a r g o g a p s
FROM

(SELECT * , ROW NUMBER( ) OVER (ORDER BY mmsi , ” t ime ” ) AS num FROM c a r g o s h i p s o r d e r ) AS l o c a
JOIN
(SELECT * , ROW NUMBER( ) OVER (ORDER BY mmsi , ” t ime ” ) AS num FROM c a r g o s h i p s o r d e r ) AS l o c b

ON ( l o c a . mmsi = l o c b . mmsi AND
( l o c a . num + 1) = l o c b . num )

WHERE l o c a . t ime <> l o c b . t ime ;

### SELECT THE ANOMOLIES INTO A NEW TABLE ### −− e d i t e d May 19 by c o l i n t o add x and y c o o r d s t o t a b l e o u t p u t

SELECT mmsi , ST X ( s t a r t p o i n t ) a s s t a r t p o i n t x , ST Y ( s t a r t p o i n t ) a s s t a r t p o i n t y , ST X ( e n d p o i n t ) a s e n d p o i n t x , ST Y ( e n d p o i n t ) a s e n d p o i n t y ,
s t a r t t i m e , endt ime , s t a r t i d , e n d i d INTO cargogapsFixedCR FROM c a r g o g a p s WHERE (EXTRACT(EPOCH FROM end t ime ) − EXTRACT(EPOCH FROM
s t a r t t i m e ) ) >= (24*60*60) AND SQRT ( ( ( ST X ( s t a r t p o i n t )− ST X ( e n d p o i n t ) ) ˆ 2 ) + ( ( ST Y ( s t a r t p o i n t )−ST Y ( e n d p o i n t ) ) ˆ 2 ) ) >= 5000 ;



Appendix C

Addendum

This section consists of the extra material and information suggested by the defence com-

mittee. Provided are the topics that needed to be addressed and expanded upon to give

more insight into the thesis. Explained is the way the AIS message is generated and the

path it takes into becoming a S-AIS message for this thesis. This path produces areas of

uncertainty which are highlighted as to how they may have been created. Next the descrip-

tion of the significance values are expanded upon and how they were used in the thesis.

Also other methods for viewing data relationships are suggested when working with large

datasets. Then the addendum explains the physics involved when a wave hits a ship and

the energy that is produced by the wave. Finally all the components that can attribute to

the error vector are determined and why wave magnitude was the only contributing factor

used for this thesis.
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C.1 Diagram of AIS system’s path way of signal and data

uncertainty

Figure C.1: The pathway from the ship’s AIS signal getting to the user

Figure C.1 is designed to show information that was used in this study and provided

through the AIS compared to what information may have been added afterwards through

satellite or processing after the message was initially sent. The AIS on board a ship gener-

ates the ships message type, MMSI, navigational status, and heading. The ROT of the ship

is provided by a rate of turn sensor that gives the information to the AIS. The SOG, lon-

gitude, latitude and COG are all provided by an on board Electronic Positioning System

(EPS) that determines the ships current coordinates and calculates speed and direction.

This information is then provided to the AIS so it can send the message. The last infor-
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mation the AIS sends is a time stamp that is only in UTC seconds that is generated by

the electronic position fixing system (EPFS) (International Telecommunications Union,

2010). The EPS and EPFS on a ship are not all the same so the accuracy is different based

on what positioning system is being used. The EPFS generates an accuracy values that

is sent by the AIS which reports if the accuracy of the reported position is greater or less

than 10 metres (International Telecommunications Union, 2010). This uncertainty in the

data is of concern and needs to be considered in further research especially with message

to message comparisons that travel at smaller distances. All this information should be

continually broadcasted to nearby receivers such as LEO satellites.

When the AIS message is received by the satellite there are two possible options

that occur. The satellite will store the AIS message and either wait until it is in line of sight

of a Land Earth Station (LES) to send the messages, or the satellite will complete on board

processing of the message and generate a time value for the now S-AIS message before

storing and sending it to the LES. The time value is an important piece of information

in this study since it was used as the assumed time when the report was sent. Since the

time value is not generated by the AIS it subjected to uncertainty in its value. There is

also chance of lost message that occurs when a satellite potentially reaches AIS message

capacity. The satellite has limited memory to store messages and must be in line of sight

of the LES to transmit those messages, this can lead to gaps in messages even when a
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satellite is present in an area (International Telecommunications Union, 2010). Satellites

can also miss collecting AIS messages through Very High Frequency (VHF) interference

from different reporting AIS devices. In high traffic areas there is greater interference

that occurs which causes loss of data and uncertainty in AIS message sequences. When

the S-AIS messages are sent to the LES it will use de-conflicting algorithms to remove

messages that may be repeated or conflicting in some way (Carson-Jackson, 2012). Due

to the companies keeping all this information hidden, since the algorithms and collecting

process is proprietary, it is undetermined how the messages were processed before being

received by a user adding more uncertainty to the user (Carson-Jackson, 2012). The S-AIS

messages are then sent to a user in the form of ASCII files so they may be analyzed like in

this thesis.

There are issues of uncertainty with working with HF radar wave data. Since

the wave data consists of hourly averages it neglects effects that can be caused by larger

rogue waves which can greatly disrupt the movement of a ship (Chakraborty, 2018). Large

wave magnitudes can also disrupt the manoeuvres a ship can under go altering its travel as

reported by Szelangiewicz, 2014. The uncertainty in both S-AIS and HF radar data must

be looked into for further studies to find methods to minimize overall uncertainty.
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C.2 Description of significance

In this thesis the use of the p-values of the linear regressions of correlating wave mag-

nitudes and error vectors were statistically significant in every case because of the large

sample sizes in all of the cases. Significance may have not been relevant in mentioning in

this thesis when looking at sample sizes of this magnitude. Since the significance values

are always strong it means the correlation test requires more attention to determine the

relationship. In the thesis a Pearson correlation coefficient was used to measure the linear

relation between wave magnitude and error in prediction. During the testing of correlation

it may have been beneficial to use other methods of correlation testing like a non paramet-

ric correlation through Spearman rank-order. This may have helped determine trends in the

data that did not show up with the Pearson correlation. Another way the error vectors and

wave magnitudes could have been compared for a relation is through a probability plot,

this would show if there is a form of normal distribution between the wave magnitudes

and error vectors. With the misleading significance values it is more important to focus

on the tests on finding relation between the data which we were unable to find through out

this thesis.
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C.3 Physics involved in wave impacts

The physics of a ships motion in waves can be described as seakeeping theory and the way

the oscillating waves impact a ship is through six degrees of freedom called surge, sway,

heave, heel, yaw, and pitch (Fossen, 2011). The waves act upon the wetted ship surface and

the pressure applied by the wave will effect the motion of a ship (Nikolai Kornev, 2012).

The waves acting on a ship will vary based on the period and velocity of a ship. “Short

waves induce larger steady wave forces than long waves” (Ueno et al., 2000), and since

there is always present short waves on the ocean the ship is continually effected. These

waves effect the ship in its degrees of freedom which will change the inherit movement

of the ship compared to a stable water condition. The force a wave can apply depends

on the, water salinity, wave height, wave thickness, and speed. Seraphin et al., (2018)

in Hawaii determined “a wave with a height of 2 metres and a wavelength of 14 metres

breaking along 2 kilometres of coastline has approximately 45 kWh of energy. This is

roughly equivalent to one gallon of gasoline”. A report created by cruise line Cunard

calculated that the Queen Elizabeth 2, which has a gross tonnage of 70,327 tonnes, would

travel 12.5 meters per gallon of fuel (Cunard, 2009). The Queen Elizabeth 2 has a wetted

area of roughly 3000 m2 so it would require 11 waves with a height of 2 metres to move

the ship 12 metres. There are significantly more factors involved in determining the waves

effectiveness in moving a ship in terms of drag, orbital motion of the waves, and ship
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resistance that make determining waves physical force on a object difficult.

C.4 What comprises of the error vector

When the error vector was calculated the prediction of the ship’s future position was based

on its dead reckoning. This takes the heading of a ship and current speed to determine a po-

sition over time, with no interference and initial position point accuracy then the predicted

position should be the same as the next position message. The error vector is measured

to be the displacement from the predicted position and reported position. This error is

attributed to external forces acting on the position of the ship and in this thesis the only

contributing factor that acted on this error was assumed to be wave movement. There are

other factors though that the error vector is comprised of, the reason for using only waves

was due to its magnitude relative to wind as studied in Szelangiewicz, 2014. Some of

the errors that comprise of the error vector are wind, water density, AIS position error,

physical ship information.

Waves contribute to the movement of a ship as discussed in Szelangiewicz, 2014

where a ship required to reduce max speeds by 20% to avoid rolling in high wind condi-

tions. From the literature review it was determined though that wave velocity had a larger

impact on the movement of a ship which is why wind was not used as well in this study.

Another contributor to error in prediction can also be water density. To compare the water
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closer to the equator versus away from the equator the water temperature causes colder

water to become more dense which will change the sea-keeping dynamics of a ship. In

denser water a ship will float higher above the surface which can increase the force applied

on the ship by wind. The next addition of error contribution is the AIS position error that

come from the on board electronic position system of a ship. The ship’s position system

will have inherit error involved, there is a reported accuracy measurement in AIS mes-

sages that was not used in this study that will report if the provided position in less than

or greater than 10 metres in position accuracy (International Telecommunications Union,

2010). When looking at point to point positional change this should have been taken into

consideration. The last source that can be contributed to the error is unknown ship infor-

mation such as rudder position or anchor type. This information is not provided in AIS

messages and could provide some additional factors that effect the movement of a ship.
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Makridakis, Spyros and Michèle Hibon (2000). “The M3-Competition: results, conclu-

sions and implications”. In: International Journal of Forecasting 16.4, pp. 451–476.

ISSN: 01692070. DOI: 10.1016/S0169-2070(00)00057-1. arXiv: /docs.

google.com/a/deusto.es/file/d/0BzVwk6DUm3f4SXZnalVrTDdQV28/

edit?pli=1 [https:].

Maulidi, Akhmad, Trika Pitana, Ketut Buda Artana, A A Bagus Dinariyana, Muham-

mad Badrus Zaman, Ahmad Agoes Masroeri, and Ricky Randall Sembiring (2014).

“Database Integration Model for Automatic Identification System and Shipping Database

In Real Time Traffic Monitoring”. In: Journal of Proceeding Series 1, pp. 239–244.
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