
Wilfrid Laurier University Wilfrid Laurier University 

Scholars Commons @ Laurier Scholars Commons @ Laurier 

Theses and Dissertations (Comprehensive) 

2018 

The Influence of Water Chemistry and Gill Physiology on the The Influence of Water Chemistry and Gill Physiology on the 

Uptake of the Lampricide TFM by Lake Sturgeon (Acipenser Uptake of the Lampricide TFM by Lake Sturgeon (Acipenser 

fulvescens) fulvescens) 

Scott Leslie James Hepditch 
Wilfrid Laurier University, hepd1780@mylaurier.ca 

Follow this and additional works at: https://scholars.wlu.ca/etd 

 Part of the Integrative Biology Commons 

Recommended Citation Recommended Citation 
Hepditch, Scott Leslie James, "The Influence of Water Chemistry and Gill Physiology on the Uptake of the 
Lampricide TFM by Lake Sturgeon (Acipenser fulvescens)" (2018). Theses and Dissertations 
(Comprehensive). 2045. 
https://scholars.wlu.ca/etd/2045 

This Thesis is brought to you for free and open access by Scholars Commons @ Laurier. It has been accepted for 
inclusion in Theses and Dissertations (Comprehensive) by an authorized administrator of Scholars Commons @ 
Laurier. For more information, please contact scholarscommons@wlu.ca. 

https://scholars.wlu.ca/
https://scholars.wlu.ca/etd
https://scholars.wlu.ca/etd?utm_source=scholars.wlu.ca%2Fetd%2F2045&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1302?utm_source=scholars.wlu.ca%2Fetd%2F2045&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.wlu.ca/etd/2045?utm_source=scholars.wlu.ca%2Fetd%2F2045&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarscommons@wlu.ca


 

 

 

The Influence of Water Chemistry and Gill Physiology on the Uptake of the Lampricide 

TFM by Lake Sturgeon (Acipenser fulvescens) 

 

By 

Scott L. J. Hepditch 

Honors Bachelor of Science, Wilfrid Laurier University, 2015 

 

 

 

THESIS 

 

Submitted to the Department of Biology 

Faculty of Science 

in partial fulfilment of the requirements for the 

Master of Science in Integrative Biology 

Wilfrid Laurier University 

2018 

 

 

Scott Hepditch 2018 ©



 i 

Abstract 

 
Application of 3-trifluoromethyl-4-nitrophenol (TFM) to control invasive sea lamprey 

(Petromyzon marinus) within the Laurentian Great Lakes seldom causes non-target mortality. 

However, under certain conditions, TFM can harm species such as the lake sturgeon (Acipenser 

fulvescens). Lake sturgeon less than 100mm in length are particularly vulnerable to TFM-

induced mortality, and are more sensitive to TFM toxicity with increasing water alkalinity as 

compared to sea lamprey. The objectives of this study were to evaluate the influence of pH and 

alkalinity on the uptake of TFM by juvenile sturgeon using radio-labeled TFM (14C-TFM). An 

additional objective was to resolve why younger (YOY; young of the year) lake sturgeon were 

more vulnerable to TFM than older (1+; 1 year or older) animals under the same conditions. 

Inverse relationships were observed between the rates of TFM uptake with water pH.  These pH 

effects support the hypothesis that greater TFM toxicity at low pH is likely a direct result of 

increasing concentrations of the un-ionized, more lipophilic form of TFM at lower pH, leading to 

greater rates of uptake via passive diffusion across the gills. Uptake of TFM was also reduced as 

water alkalinity increased from low (50 CaCO3 L-1) to moderate alkalinity (150 mg CaCO3 L-1), 

but further reductions in TFM uptake were negligible at higher alkalinities. The reductions in 

TFM uptake between low and moderate alkalinity were likely due to a higher capacity of the 

water to buffer acidic equivalents (H+ and CO2) excreted across the gill, resulting in less 

acidification of the gill microenvironment and therefore the formation of less un-ionized TFM. 

Measurements of Na+/K+-ATPase and V-ATPase activity, as well as western blotting and 

immunohistochemical staining, demonstrated that TFM had no adverse effects on the 

ionoregulatory machinery of the gills. Regardless of water chemistry conditions, the rates of 

TFM uptake were greatest in the YOY sturgeon than in the 1+ fish, likely due to the higher mass 

specific metabolic rates of the smaller fish. In conclusion, the inverse relationship between body 

size and TFM uptake contributes to the greater sensitivity of YOY sturgeon to TFM. Alkalinity 

is also protective against TFM toxicity, but the protective effects of alkalinity are negligible in 

waters of high alkalinity. To minimize the risk of non-target mortality in lake sturgeon, it would 

be prudent to conduct treatments in the fall when sturgeon are larger and have lower rates of 

TFM uptake. Water chemistry also has pronounced effects on TFM uptake by lake sturgeon, and 
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should be considered prior to TFM applications to protect them from the adverse of effects of 

TFM, without compromising sea lamprey control efforts.  
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Introduction and Literature Review 
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Sea Lamprey Biology 

The sea lamprey (Petromyzon marinus; Linnaeus 1758) is a jawless fish of the order 

Petromyzontiformes, and is distributed within the Eastern and Western North Atlantic Ocean and 

within many rivers and lakes of the associated ocean basins (Figure 1-1; Renaud, 2011).  

Although sea lampreys are anadromous fish, there are landlocked, freshwater populations within 

the Laurentian Great Lakes and Lake Champlain (McDonald and Kolar, 2007; Renaud, 2011; 

Eshenroder, 2014). They spend the first 3-7-years of their life as larvae (ammocoetes) burrowed 

in the sediment of rivers and streams, filter-feeding on detritus and diatoms (Figure 1-2). Once 

they accumulate sufficient lipid stores, they undergo a prolonged-metamorphosis (several 

months) into juvenile sea lamprey (Beamish and Potter, 1975; Youson, 2003). This 

metamorphosing period is characterized by complex morphological and physiological changes, 

including the development of an oral sucker reinforced by an annular-ring of cartilage (buccal-

disk; Farmer, 1980; Youson, 1980), eyes (Osorio and Retaux, 2008), and a restructuring of the 

kidneys, liver and gill (Sidon and Youson, 1983; Bartels and Potter, 2004). These juveniles 

migrate downstream to larger bodies of water where they feed by parasitizing larger fish. 

Lamprey attach to their prey with an oral disk and teeth, while utilizing a rasping tongue and 

anti-coagulant secretions to puncture a hole and feed on the blood of their hosts (Farmer, 1980). 

After 1-2 years, adult lamprey migrate upstream to spawn and die (Beamish and Potter, 1975; 

Silva et al., 2013; Youson, 2003). Sea lamprey do not selectively return to their natal streams, 

but they do utilize temperature and stream discharge cues to gauge stream suitability, as well as 

pheromones to identify spawning habitat (Applegate and Smith, 1950; Li et al., 2002; Wagner et 

al., 2006; Binder and McDonald, 2008; Johnson et al., 2015; Wagner et al., 2016). During 
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reproduction, females deposit tens-of-thousands of eggs, which hatch within 10-13 days (Scott 

and Crossman, 1973; Potter, 1980; Kircheis, 2004). 

 

Sea Lamprey Invasion and the History of Control in the Laurentian Great Lakes 

Whether sea lamprey naturally colonized Lake Ontario following the last ice age 

(Waldman et al. 2004; Bryan et al., 2007), or were introduced via artificial canals (Eshenroder, 

2014) is disputed. It is clear, however, that the sea lamprey’s access to the remaining Great 

Lakes was obstructed by Niagara Falls until modifications to the Welland Canal in the late 19th 

and early 20th centuries allowed their passage into Lake Erie. Within 20 years, sea lamprey were 

in each of the Great Lakes, which combined with overfishing, resulted in the drastic declines in 

fish species with commercial, recreational, and cultural significance (Smith and Tibbles, 1980; 

Coble et al., 1990; Eshenroder and Burnham-Curtis, 1999; Hansen, 1999). A single juvenile 

(parasitic life-stage) is capable of killing nearly 21 kg of fish (Kitchell and Breck, 1980), and 

selectively feeds on larger host fishes such as lake trout ((Salvenlinus namaycush; Swink, 2003; 

Hansen et al., 2016). Lake trout were extirpated from the lower Great Lakes (Lakes Michigan, 

Erie and Ontario) and their populations significantly reduced from the upper Great Lakes during 

the 1940’s and 1950’s (Figure 1-3; Lakes Huron and Superior; Berst and Spangler, 1973; Lawrie, 

1978; Coble at al., 1990; Hansen, 1999; Eshenroder and Amatangelo, 2005; GLFC, 2008; Muir 

et al., 2013). This lead to alewife (Alosa psuedoharengus) population explosions and die-offs 

(Brown, 1972; O’Gorman et al., 2013) that polluted shorelines and ruined local economies 

dependent on fishing and tourism (Scott and Crossman, 1973; Tanner and Tody, 2002). The loss 

of the economic staple that is provided by commercial, recreational and tribal fisheries for 

Canada and the U.S.A. could not be ignored. Today, the current economic output of Great Lakes’ 
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fisheries is valued at greater than $7 billion annually for the U.S.A. alone (Southwick and 

Associates, 2012). In 1955 the federal governments of Canada and the U.S.A. founded the Great 

Lakes Fisheries Commission by treaty, giving them the responsibility of reducing sea lamprey 

populations and rehabilitating the Great Lakes ecosystem (GLFC, 1955; Siefkes, 2017). 

  

Control efforts began with the implementation of 21 mechanical or screen-type weirs and 

one electrical screen within sea lamprey infested streams of Lakes Huron, Michigan and Superior 

(Applegate and Smith 1950; Applegate et al., 1952). These barriers were expensive to build and 

operate, and allowed for the upstream migration and spawning of sea lamprey during ice break-

up and floods (Smith and Tibbles, 1980).  The development of electrical current barriers was 

shown to operate at lower costs than physical barriers, and was more efficient at preventing the 

upstream migration of spawning sea lamprey as it allowed for the downstream movement of ice, 

flood waters and debris. However, electrical barriers were not considered effective in reducing 

sea lamprey populations and were reported to also cause substantial mortality of non-target 

fishes (Smith and Tibbles, 1980; McDonald and Kolar, 2007; McLaughlin et al., 2007). In 1951, 

research was funded to develop piscicides that could be applied in streams to target the 

ammocoetes burrowed in the substrate (Applegate, 1950; Applegate et al., 1961). Chemical 

screening was conducted extensively until seven years later when the lamprey selective 

compound, 3-trifluoromethyl-4-nitrophenol (TFM) was discovered (Applegate et al., 1961). This 

compound was later proven to be highly toxic to sea lamprey due to their reduced ability to 

detoxify the compound as compared to non-target fishes (Lech and Statham, 1975; Howell et al., 

1980; Kane et al., 1993). TFM was successful in controlling sea lamprey infestations from 

streams without having major effects on non-target fish and was later used as a lampricide (sea 
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lamprey piscicide) in a highly regulated chemical control program within all the Great Lakes by 

1986 (Applegate et al., 1961; McDonald and Kolar, 2007).  

 

 Although TFM was found to reduce the number of sea lamprey within the Great Lakes, 

large volumes were required to complete treatments, and so an alternative lampricide was 

researched to reduce the costs of the control program (Howell et al., 1964). Another agent, 

niclosamide (5,2’-dichloro-4’-nitro-salicylanilide; also known as Bayluscide®), was found to 

increase the toxicity of TFM without significantly affecting its selectivity to sea lamprey when 

used in combination (TFM to Bayluscide® ratio of 98:2 to 99.5:0.5; Howell et al., 1964; Dawson, 

2003). To further reduce the costs of control efforts, niclosamide was developed into a granular 

form (Granular Bayluscide®, or GB) which would slowly dissolve in water to allow for bottom 

release of the compound (Howell et al., 1980). This development allowed niclosamide to be 

applied to the bottom of rapid- or slow-moving waters where TFM would be less effective 

(Dawson, 1980; McDonald and Kolar, 2007). The use of lampricides was very successful, 

reducing the catches of spawning sea lamprey by 92% in Lake Superior by the year 1978 (Smith 

and Tibbles, 1980).  

 

 One of the milestones for sea lamprey management  in 1992 was to incorporate further 

research into suppressing sea lamprey populations to target levels, while also reducing the cost of 

the program. Emphasis was placed on reducing the reliance on lampricides by 50% in the year 

2000, and developing more efficient methods of population assessment and control in lentic 

areas (GLFC, 1992). It was found that ammocoetes become irritated by Granular Bayluscide® 

exposure, stimulating them to leave their burrows (McDonald and Kolar, 2007). This allowed for 
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a feasible and more efficient method of treating and surveying larval populations in lentic 

environments, such as the mouth of a river (GLFC, 2008; Dawson, 2003). Research and 

development of selective in-stream barriers resulted in the engineering of low-head structures 

based on the different mode of swimming and poor jumping capacity of the sea lamprey 

(Beamish, 1978; Youngs, 1979; Reinhardt et al., 2009; Almeida and Quintella, 2013), as well as 

the timings of seasonal migrations (Hunn and Youngs, 1980). These barriers would not be 

feasible for every stream, however, as they can also block non-target fishes with little to no 

jumping ability that are of great importance to the Great Lake’s ecosystem (Hunn and Youngs, 

1980; Dodd et al., 2003).  

 

In the 1970s, P,P-bis(1-aziridinyl)-N-methylphosphinothioic amide (Bisazir) was found 

to damage genetic material in the sperm of male sea lampreys without reducing their ability to 

fertilize eggs. This led to its later experimental use as a sea lamprey sterilant in Lake Superior 

from 1987 to 1997, and the St. Marys River from 1991-2011 (Chang et al., 1970; Hanson and 

Manion, 1978; Hansen 1990; Kaye et al., 2003). This program has since been halted as a method 

of population control in the St. Marys River due to difficulty in determining its ability to reduce 

lamprey populations. Additionally, the sterile release method would only target one generation of 

sea lamprey, whereas advances in the application of Bayluscide® had made it an efficient method 

at removing many generations of lamprey from the river, with a clear and immediate relationship 

detected between treatments and larval population estimates the next year (Bravener and 

Twohey, 2016).  
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In 1995, the Lampricide Control Task Force was created, which improved the efficiency 

of treatments by minimizing lampricide use and impacts on stream ecosystems, yet maximizing 

the numbers of sea lamprey killed. Additionally, the Task Force was responsible for defining 

lampricide control options for near- and long-term stream selection and target setting (Klar and 

Young, 2004). Subsequently, the number of streams treated were reduced and treated at lower 

discharges, a pH/alkalinity model was produced to predict more accurately the minimum lethal 

concentrations (12 h LC99.9; MLC; Bills et al., 2003) required for treatment, and single block 

treatments were conducted for large dendritic streams, instead of multiple different treatments 

(Berge et al., 2003). By the year 1999, the amount of TFM applied annually had been reduced by 

approximately 36% (Brege et al., 2003). To date, further reductions are not likely not possible 

without compromising treatment effectiveness (GLFC, 2008).  

 

3-Trifluoromethyl-4-Nitrophenol (TFM) Ecological Fate and Effect 

Sea lamprey populations are primarily controlled within the Great Lakes via the 

application of TFM (McDonald and Kolar, 2007). TFM is a solid at room temperature, has a low 

vapor pressure (Hubert, 2003), is sparingly soluble in water and highly soluble in most organic 

solvents with a Log10(KOW) value of 2.77 (McKim and Erickson, 1991; Cronin and Livingston, 

2004; Applegate et al., 1961). TFM is detoxified by non-target fishes via the process of 

glucuronidation (Figure 1-4), which makes compounds more water-soluble, and therefore easier 

to excrete via the urine or feces. Glucuronidation occurs in the liver, where the enzyme UDP-

glucuronyl transferase catalyzes the addition of glucuronic acid to xenobiotic materials and 

endogenous compounds (Clark et al., 1991, Lech and Statham, 1975; Vue et al., 2002). Sea 

lamprey on the other hand, have low levels of this enzyme, which explains their greater 
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sensitivity to TFM (Kane et al., 1994; Bills et al., 2003; Lech and Statham, 1975; Bussy et al., 

2018a).  

 

The mode of toxic action for TFM has been attributed to the uncoupling of oxidative 

phosphorylation within the mitochondria (Niblett and Ballantyne, 1976; Birceanu et al., 2011), 

which leads to impaired ATP production. This causes fish to metabolize glycogen and 

phosphocreatine stores due to impaired oxidative ATP production by the mitochondria.  When 

these anaerobic energy reserves are insufficient to meet the ATP demands of the body, mortality 

ensues (Wilkie et al., 2007; Birceanu et al., 2009, 2014). The mode of toxic action of TFM 

appears to be the same in both the sea lamprey and the non-target rainbow trout (Oncorhynchus 

mykiss) when they are exposed to toxic concentrations of the compound (Birceanu et al., 2011, 

2014). Although TFM is selective to sea lamprey, and non-target mortality is seldom observed 

during lampricide treatments, non-target exposure is unavoidable.  For this reason, the GLFC 

strives to continually find new or improved methods of sea lamprey control, while trying to 

minimize adverse effects on non-target fish species (GLFC, 2011). 

 

Lake Sturgeon Biology and Species of Concern 

The lake sturgeon (Acipenser fulvescens) is endemic to the Central U.S.A, the Great 

Lakes and the Hudson Bay drainages of Canada (Harkness and Dymond, 1961; Scott and 

Crossman, 1973) and is currently a species of concern as they are listed as endangered or 

threatened within Canada and the U.S.A. (Auer, 1999). Prior to European settlement of North 

America, lake sturgeon were abundant within the Great Lakes, however, overfishing and 

restricted movement due to dams and navigation locks built in the 1800s and early 1900s, 
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populations were decimated (Thuemler, 1985; Auer, 1999). Modern conservation and restoration 

efforts are also complicated by ongoing anthropogenic disturbances including the destruction of 

historic spawning grounds and critical down-stream habitats (Auer, 1996; Wilson and McKinley, 

2004). Additionally, the length of time required for sexual maturation and associated low rates of 

recruitment affect the ability of this species to re-establish itself within the Great Lakes 

(Harkness and Dymond, 1961; Thuemler, 1988; Peterson et al., 2007).  

 

Lake sturgeon belong to the Acipenseridae, which are a phylogenetically ancient family 

of fishes whose body structure and life history have changed little over the last 400-million years 

(Nelson, 2006). Sturgeon are cartilaginous, benthic fishes, with five lateral rows of ossified-

scutes (bony plates) that develop with age (Peterson, 2007). Barbels are located above the mouth 

for sensing food, and the mouth is protrusible, inferior and detached from the skull (Vecsei and 

Peterson, 2006 ; Peterson, 2007). Their gills resemble those of teleost fish, but one difference is 

the presence of a spiracle, and a dorso-ventrally-located opening on the gill cover (operculum). It 

is believed this slit allows for the irrigation of their gills during feeding when the buccal cavity is 

occluded (Burggren, 1978), the respiratory movement of water would likely occur in a 

“quasitidal” fashion (Figure 1-5; Burggren et al., 1979).  

 

Boogaard et al. (2003) completed the first size-dependent toxicity experiment for juvenile 

lake sturgeon, a species that was previously shown to be sensitive to TFM toxicity by Johnson et 

al. (1999). Boogaard et al. (2003) determined that lake sturgeon swim-up fry and juveniles (< 

100 mm; young of the year; YOY) had TFM LC50 values that were near or less than that of sea 

lamprey making them vulnerable to TFM toxicity (Figure 1-6). Concern for the mortality of 
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YOY sturgeon lead to the development of the “sturgeon protocol” for applications of TFM in 

U.S. tributaries that were known to contain juvenile lake sturgeon (Adair and Sullivan, 2009). 

This protocol was meant to ensure that sea lamprey control treatments did not surpass 1x the 

MLC for TFM within streams, or 1.2x the MLC of a TFM and 1% niclosamide mixture, and the 

treatment of streams would only occur after August 1, to allow juvenile sturgeon to grow to 

greater than 100 mm in length (Adair and Sullivan, 2009). However, the introduction of this 

protocol resulted in greater wounding rates among native fishes and increased spawning numbers 

of larval sea lamprey within the upper Great Lakes (Slade, 2012; Sullivan et al., 2013). 

Additionally, greater survivorship of larval sea lamprey following TFM treatments in lake 

sturgeon producing streams was observed when exposures were conducted in late September, as 

opposed to earlier in the season (Scholefield et al., 2008). This resulted in some streams being 

treated more often to deal with high larval densities, increasing the amount of TFM required 

(Boogaard et al., 2011). As a result, the “sturgeon protocol” was discontinued.  

 

Lake sturgeon sensitivity to TFM remains a problem in the Great Lakes. During a TFM 

treatment in 2014 on the Muskegon River, 31 YOY sturgeon were found dead (O’Connor et al., 

2017), which was 2-fold greater than the total number of sturgeon mortalities  recorded in the 

history of sea lamprey control (13 total prior mortalities recorded; Johnson et al., 1999; 

O’Connor et al., 2017). Further, lamprey attacks on lake sturgeon conducted within laboratory 

tests have been shown to reduce growth and condition factor, as well as cause lethality of the 

host species (Patrick et al., 2009; Sepulveda et al., 2013), and attacks have been predicted to 

reduce population abundance and reproductive potential of lake sturgeon populations in the 

Great Lakes (Sutton et al., 2004).  
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The reason for the lake sturgeon’s greater TFM sensitivity in these early life stages has 

not yet been elucidated, but it may be due to greater oxygen consumption rates in the smaller fish 

resulting in greater uptake of TFM (Goolish, 1991; Tessier et al., 2018), or simply be due to a 

relative inability to detoxify TFM in the first year of life. The greater sensitivity of lake sturgeon 

to TFM in waters of high alkalinity is less clear. It may be due to the use of quasitidal flow 

during respiration (Burrgen 1978), which could alter patterns of gas exchange as compared to a 

uni-directional buccal-opercular flow, which is typically used by teleost fishes (Figure 1-5). The 

recirculation of water within the opercular chamber may allow for the accumulation of acidic by-

products (such as H+ or CO2) excreted across the gills, creating a more acidic medium at the site 

of TFM exposure. This would increase the likelihood of the phenolic form of TFM being 

present, which is more lipophilic and passively crosses the gills (Smith et al., 1960; Applegate et 

al., 1961; Hunn and Allen, 1974; McDonald and Kolar, 2007; Hlina et al., 2017), increasing the 

overall uptake of TFM.  

 

Freshwater Osmoregulation and Gill Physiology 

 Freshwater fishes are hyperosmotic to their environment and need to actively compensate 

for diffusive ion loss and osmotic gain of water (Evans et al., 2005; Marshall and Grosell, 2006). 

The gills are the primary organ of ion uptake and prevent ionic imbalances by actively pumping 

ions from fresh water via mitochondrion-rich cells (MR cells; ionocytes). These cells are located 

within the gill epithelium and are specialized ionoregulatory cells that contain an array of ion 

transport proteins  (Evans et al., 2005; Hwang et al., 2011). Additionally, the diet of fresh water 

fish is a major component of osmoregulation, with the intestine functioning in ion-uptake 
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(Marshall and Grosell, 2006). The kidney is also important, as it reduces the loss of ions excreted 

in the urine by tubular reabsorption (Evans and Claiborne, 2005; Marshall and Grosell, 2006).   

 

 Two major ion-transport proteins found within MR cells of fish gills are Na+/K+-ATPase 

and vacuolar type H+-ATPase (V-ATPase; Figure 1-8). These proteins utilize ATP to actively 

transport ions across epithelial membranes to create electrochemical gradients for desired ion 

uptake (Evans et al., 2005; Evans and Claiborne, 2005). The Na+/K+-ATPase is an electrogenic 

pump located on basolateral membranes of MR cells, and pumps two K+ ions into the cell, in 

exchange for pumping three Na+ ions into the blood (Blanco and Mercer, 1998), and is one of the 

largest consumers of ATP (Skou, 1957). The V-ATPase is a vacuole type electrogenic pump 

located on either the apical or basolateral membranes of MR cells, where it pumps H+ across the 

epithelial membrane, into the external water. This creates an electrochemical gradient for Na+ 

uptake via an acid-sensing ion channel (ASIC; Bartels and Potter, 2004; Evans et al., 2005; 

Dymowska et al., 2014). Recently, there has been evidence to support the presence of Na+/H+ 

exchanger within MR cells that have apically localized V-ATPase, which is proposed to be 

involved in Na+ uptake (Evans, 2011). The Cl-/HCO3- exchanger is present on the apical surface 

of MR cells where localized acidification within apical microvilli by V-ATPase lowers HCO3- 

activity, driving Cl- uptake. Basolateral-located Cl- annion channels allow for the transfer of Cl- 

into the blood, likely a cystic fibrosis transmembrane conductance regulator (CFTR) channel 

(Goss et al., 1998; Wilson et al., 2000; Marshall, 2002; Evans, 2011; Wilkie, 2011). Piermarini et 

al (2002) has demonstrated the presence of pendrin, an anion exchanger, within apical 

membranes of MR cells with basolateral V-ATPase presence in the Atlantic stingray. It is 

proposed that H+ extrusion by V-ATPase creates intracellular bicarbonate accumulation, which is 
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used to create favorable HCO3- gradients for Cl-/HCO3- exchange (Piermarini et al., 2002; Evans, 

2011). 

 

The functional surface area of the basolateral membranes of MR cells are generally 

amplified by extensive infolding resulting in a highly complex tubular system, which is also the 

site of expression for Na+/K+-ATPase. Although most fishes have this tubular system, it is not 

present within the freshwater MR cells of sea lamprey (Wilson and Laurent, 2002; Evans et al., 

2005). Additionally, the apical membrane of MR cells is also amplified by a collection of tubules 

and vesicles (tubulovesicular system), which is distinct from the tubular system (Wilson and 

Laurent, 2002). MR cells cover approximately 10% of the gill epithelium, whereas the other 90% 

is covered by pavement cells (Evans et al., 2005). Pavement cells (PVCs) do not have as high a 

density of mitochondria as MR cells and are thought to be involved in mostly passive transport 

(Laurent and Dunel, 1980), although some freshwater fish PVCs have been found to be rich in 

V-ATPase (Galvez et al., 2002). MR cells play a key role in the majority of physiological 

processes and are often located on the afferent edge of gill filaments and interlamellar regions 

(Evans et al., 2005). There are two subtypes of MR cells (Figure 1-8) for freshwater fish, peanut 

lectin – insensitive (PNA-) and penut lectin – sensitive (PNA+). PNA- are ultrastructurally similar 

to pavement cells as they have greater V-ATPase activity, and acid stimulated, phenamil- and 

bafilomycin sensitive Na+ uptake channels (Galvez et al., 2002; Reid et al., 2003). The PNA+ 

cells have greater amounts of Na+/K+-ATPase, and approximately half the amount of V-ATPase 

as PNA- cells (Glavez et al., 2002; Reid et al., 2003; Marshall and Grosell, 2006). Carbonic 

anhydrase catalyzes intracellular CO2 hydration to H+ and HCO3- to be used by ion pumps for 

electrochemical gradients (Gilmour et al., 2007).  
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 Apart from being the main respiratory organ for fish, the gills are the main organ for 

acid-base regulation (90%) and can correct acid-base disturbances within hours (Evans et al., 

2005). For example, during metabolic alkalosis or acidosis, the gills regulate the flux of H+ or 

HCO3- to and from their environment to correct for the acid-base equilibrium imbalance (Goss et 

al., 1992). Fish can be faced with acid-base perturbations caused by external sources such as 

changes in water pH, salinity or temperature, as well as internal sources including lactic acid 

build-up from exercise or hypercapnia (Heisler, 1989; Evans 2005). Perry and Wood (1984) 

demonstrated that the acclimation of rainbow trout to low Ca+ conditions (50 µequiv L-1) resulted 

in an immediate reduction in Na+ and Cl- levels within the first 24 h, however, the fish had 

recovered to normal Na+ and Cl+ efflux by day 7. Additionally, the regulation of Na+/K+-ATPase 

has been shown to be under endocrine control (McCormick, 2001; Evans, 2002), with cortisol 

treatments shown to increase the number of branchial MR cells in freshwater salmonids (Laurent 

and Perry, 1990; Perry et al., 1992; McCormick, 2001). In freshwater tilapia (Oreochromis 

mossambicus), cortisol has been shown to increase Na+/K+-ATPase activity and associated 

increases in the expression of the protein (Dang et al., 2000). As well, exposure of eels (Anguilla 

rostrate and A. japonica) to exogenous cortisol has been shown to increase Na+/K+-ATPase 

activity (Epstein et al., 1971; Kamiya, 1972; Forrest et al., 1973). Cortisol is the major 

corticosteroid in fish, and functions as both a glucocorticoid (stress hormones) and a 

mineralocorticoid (control electrolyte balance; Hazon and Balment, 1998; Greenwood et al., 

2003).  
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It is possible that under the stressors induced by TFM, due to its effect as an uncoupler of 

oxidation phosphorylation (Birceanu et al., 2011), that it might influence the activity, expression 

or distribution of ion-transport proteins on the gill epithelium of sturgeon. Additionally, the 

influence of alkalinity on gill ionocytes, the major ion and acid base regulating cells, is not 

known. It is also unknown whether TFM interferes with ATP-dependent ion and acid-base 

regulation processes in the gills of lake sturgeon. Changes in the expression of these proteins 

with different alkalinity exposures and/or TFM could indicate potential influences on gill 

functional processes. With sturgeon populations at only 1-2% of their historic population levels, 

the sensitivity to TFM for this already threatened species is of major concern for future 

lampricide treatments, and restoration of the Great Lake’s sturgeon populations. 

 

Research Objectives and Hypotheses  

The observed sensitivities of juvenile sturgeon below 100 mm and the reduced protective 

effect of alkalinity make this species a concern for continued lampricide control operations 

(Boogaard et al., 2003; O’Connor et al., 2017). However, the reason for their greater TFM 

sensitivity is unknown. One of the goals of this study was to determine how TFM accumulation 

in the juvenile sturgeon is influenced by water pH, alkalinity and body size. Another goal of this 

study was to determine whether TFM exposure influenced the distribution and physiology of MR 

cells at the gills, and if water alkalinity acclimations influenced these MR cells, and possibly 

predisposed sturgeon to TFM toxicity.  
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To achieve these goals, the objectives of my thesis were to:  

I. Determine the influence of alkalinity and pH on the uptake of TFM for young of the year 

(YOY) and one year old (1+) sturgeon. 

II. Assess the influence of different alkalinity acclimations on the activity, expression and 

distribution of Na+/K+- ATPase and V-type H+-ATPase (V-ATPase) proteins present in 

MR cells of the gill epithelium of juvenile lake sturgeon.   

 

To address the first objective, uptake rates of TFM were measured using the radio-tracer 14C-

TFM during exposures in low, moderate and high alkalinity waters (50, 150 and 250 mg L-1, 

respectively) and  pH (pH 6.5, 8.0 and 9.0), in different size groups (< 100 mm, > 130 mm in 

length) of juvenile sturgeon. It was predicted that TFM uptake rates would be reduced in waters 

of higher alkalinity, due to a reduced ability for sturgeon to acidify the gill micro-environment in 

this more highly buffered medium.  It was also hypothesized that TFM uptake would be 

inversely related to water pH, due to differences in the proportion of the phenolic (un-ionized) 

compound at different water pHs. Additionally, it was hypothesized that YOY sturgeon would 

have greater rates of TFM uptake as compared to 1+ sturgeon, which would likely result in 

greater rates of accumulation, and thus would correlate with the greater sensitivity of this smaller 

size class to TFM toxicity (Boogarrd et al, 2003). 

 

To address the second objective, juvenile lake sturgeon were acclimated to set water 

alkalinities for a minimum of one week prior to exposure to the sea lamprey MLC (12 h LC99.9) 

of TFM. Sturgeon were sampled at regular time intervals of 0, 3, 6 and 9 h, followed by the 

excision and processing of their gills for the measurement of Na+/K+-ATPase and V-ATPase 
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activity, expression and distribution. The potential for TFM exposure and alkalinity acclimations 

to affect the activity, expression and distribution of important ionoregulatory proteins within the 

gills of juvenile sturgeon was assessed. 
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Figure 1-1. The native range of the sea lamprey.  

Sea lamprey are native to the both the western and eastern sides of the North Atlantic Ocean (areas 

shaded in black), but they are an invasive species within the Laurentian Great Lakes (areas shaded 

in grey). Image taken from Almeida and Quintell, (2013).  
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