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Abstract

Antibiotic resistance is a major global health concern that requires new therapeutic 

approaches. Furthermore, a lack of narrow spectrum antibiotics on the market  

produces unintended consequences with respect to changes in our microbial make up. 

Phosphonates are  reduced versions of phosphates that possess a C-P bond which is 

more resistant to enzymatic and chemical degradation. The role of phosphonate 

containing macromolecules (e.g. cell surface polysaccharides) remains enigmatic, 

however their presence suggests that they may confer an advantage. The biosynthesis 

of phosphonate-containing macromolecules is unknown, but a pathway is proposed 

involving aLicC type cytidylyltransferase-catalyzed conjugation to a phosphonate 

followed by a LicD type phosphotransferase- catalyzed attachment to a macromolecule. 

This proposed pathway is analogous to the partially characterized phosphocholine (PC) 

tailoring pathway in teichoic acid biosynthesis in Streptococcus pneumoniae. In this 

study, the LicC homolog PngC from Atopobium rimae (Ari-PngC) was purified and its 

activity was compared to LicC from S. pneumoniae (Spn-LicC). Significantly, Ari-PngC 

preferred the phosphonate substrate 2-aminoethylphosphonate (AEP) over PC, and 

vice versa for Spn-LicC. Specifically, the KM and kcat values for Spn-LicC towards PC 

were 0.020 ±0.011 mM and 1.52 ± 0.243 s-1 respectively, yielding kcat/KM of 77.9 M-1 

s-1. In contrast, the KM value for Spn-LicC towards AEP was 0.318 ± 0.126 mM and kcat 

of 0.722 ± 0.053 s-1, yielding kcat/km of 2.27 M-1 s-1 and revealing a 34-fold 

preference for PC. The opposite was seen for Ari-PngC, where AEP gave a KM value of 

0.011 ± 0.001 mM , kcat of 2.72 ± 0.079 s-1 and kcat/KM of 239 M-1 s-1, while  towards PC 
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Ari-PngC yielded specificity constants of 1.67 and 0.74 when modelled by the Michaelis-

Menten or substrate inhibition equation, respectively. Regardless of the correct fit, PngC 

clearly preferred AEP over PC. Overall, these results establish clear substrate selectivity 

of phosphonate versus PC tailoring pathways and set the stage for developing narrow 

spectrum antimicrobials. 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1.1 Human Microbiome and Antibiotic Resistance

The human microbiome describes all microorganisms that reside on and within 

the human body1. The list of microorganisms include bacteria, fungi, and viruses. Every 

individual has a unique microbiome that is acquired from the environment at birth. The 

microbial profile within the microbiome varies with gender, diet, climate, age and 

hygiene1. Microorganisms within the microbiome have been studied to determine their 

interaction with human cells and the benefit or harm they might bring to it. 

Microorganisms, or microbes have been long viewed as things to be gotten rid of, but as 

researches learn more about microbes, they have discovered the importance of 

microbes within the body. Although microbes are important in maintaining a healthy 

body, imbalances to microbial populations can give rise to opportunistic bacteria which 

can lead to disease1. 

The discovery of antibiotics to treat bacterial infections have dramatically 

changed human health, and many once deadly infections are now curable3. Yet, there 

has been a rise in bacteria that are no longer effectively killed by antibiotics3,4. These 

bacteria are known as antibiotic resistant, and are a growing problem in medicine 

around the world. It has been estimated that more than 18,000 hospitalized patients in 

Canada acquire antimicrobial resistance infections3,4,5.. There is also a seven-fold 

increase in the incidence of Vancomycin resistant Enterococci infections between 

2007-2012 in Canada alone3. Not only is antibiotic resistance an issue that threatens 

the human health, it is also the lack of narrow spectrum antibiotics available in the 

market4. Broad spectrum antibiotics disrupt the human microbiota because not only do 

they kill harmful bacteria, they also kill the surrounding non harmful bacteria. This allows 
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for bacteria to have an increased selective pressure to develop resistance. New 

solutions are ungently needed to counteract this loss in antimicrobial efficacy4.

1.2 Phosphorus Containing Compounds

Phosphorus is essential to all living organisms as primary constituent of DNA , 

RNA and ATP6. It is also a key structural component of phospholipids, phosphoproteins, 

phosphorylated exopolysaccharides and numerous metabolites. In addition, phosphorus 

provides buffering capacity, impacts the solubility of organic molecules and can provide 

a high concentration of negative charge within a given molecular dimension6. 

Phosphorus predominantly exists in the most oxidized state (+5 valence) in the form of 

inorganic phosphate, phosphate esters and phosphoanhydrides8. However, there is a 

naturally occurring phosphorus compounds called phosphonates which are found in a 

+3 valence state8. In the recent years, there has been a growth in literature on this 

group of less studied phosphorus compounds. Phosphonates are a chemically stable 

group of compounds containing a direct carbon-phosphorus (C-P) bond7. Since their 

relatively recent discovery of the first naturally occurring phosphonate, 2-

aminoethylphosphonic acid (AEP), in the acid hydrolysate of rumen protozoan in 1959, 

C-P compounds have been identified in a number of bacteria, archaea, and 

eukaryotes9,10,11. In many living organisms these C-P bond compounds are found as 

constituents of extracytoplasmic macromolecules such as phospholipids, 

phosphonoglycans, glycoproteins and lipids12. 

Studies by several research group showed that 2-AEP and derivatives were 

common constituents in lipids in a number of ciliated protozoa, anemones, corals and 

mollusks. The lipid backbone, where 2-AEP or derivatives is bound, is usually either a 
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ceramide as in sphingophospholipids, or a diacylglycerol as in 

glycerolphosphonolipids13. Other phosphonate head group have also been reported 

such as 1-hydroxy-2-AEP found in a sphingophosphonolipid from Bdellovibrio stolpii 

and N-acyl-AEP and N,N-acylmethyl-AEP found in a sphingophosphonolipid from 

Corbicula sandai14. 

Phosphate is a common modification of polysaccharides, but phosphonate 

containing polysaccharide examples are not very common. A phosphonate containing 

polysaccharide or a phosphonoglycan was initially isolated from the plasma membrane 

of the soil amoeba Acanthamoeba castellanii and was shown to be a 

lipopshosphonoglycan15. Among bacteria, Bacteroides fragilis NCTC 9343 produces a 

capsular polysaccharide complex (CPC), (See Figure 1) which is directly involved in 

abscess formation in animal models16. A capsular polysaccharide has also been isolated 

from the outer membrane of the luminal bacterium Fibrobacter succinogenes S8517. 

Figure 1. Phosphonate containing macromolecules isolated. Some examples include 
the phosphonolipid ceramide -AEP from Pythium prolatum, the capsular polysaccharide 
B (PBS) from Bacteroides fragilis and an exopolysaccharide from Fibrobacter 
succinogenes16,17 

The most striking example of phosphonoglycan occurrence is in the freshly laid egg 

masses of fresh water snail Helisoma, where almost 85% of the phosphorus is in the 
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form of AEP and another unknown phosphonate linked to carbohydrates18. 

Phosphonates are now known to be produced by many primitive life forms, in which 

they are normally found as a side group on exopolysaccharides and as a feature of the 

glycan decoration present on glycoproteins.

Sample of phosphonates have been discovered in different sites and depths in 

the Pacific Ocean, Atlantic Ocean and the North Sea, suggesting their importance in the 

marine environment. Although phosphate esters represent about 75% of dissolved 

organic phosphorous in marine environments, phosphonates comprise the remaining 

25%19,20,21 Overall, phosphonates are an important sub-class of phosphorus that may 

play a critical role in phosphorus metabolism. In addition, the ability to synthesize 

phosphonates is present and relative common among microbes in both marine and 

terrestrial environments21. 

The biological function of phosphonate containing macromolecules remains 

puzzling but their presence suggests that they may confer an advantage. There is 

evidence suggesting that the more stable C-P bond may allow cell surface 

macromolecules to persist in challenging host cell environments. Despite the unclear 

role in virulence and host survival for phosphonate containing macromolecules the 

potential roles for these hydrolytically stable molecules need to be further studied. 

1.3 Properties and Types of Phosphonates

The defining structural motif of phosphonate natural products are the carbon-

phosphorus bond. The significant feature of phosphonates is the thermal and chemical 

stability of the C-P bond. Although the C-P bind is weaker than the carbon - oxygen 

phosphorus bond , the departing alkoxide of the latter is a better leaving group than the 
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carbanion of the former in a hydrolysis reaction7. Phosphonates are relatively inert and 

more persistent in threatening environments. This includes exposure to hydrolytic 

enzymes, phosphorus limited surroundings and chemical treatments such as boiling 

acids and bases22. Some phosphonates act as potent enzyme inhibitors because they 

are structural mimics of phosphate esters, carboxylic acids ad tetrahedral intermediates 

and can compete with the latter for binding to enzyme active sites12,22. For instance, 

proteolysis is an important form of cellular regulation, in which peptide cleavage occurs 

at the carboxyl side of targeted amino acids in order to break proteins down in living 

organisms. C-P inhibitors are structurally similar and possess higher affinity to enzyme 

active sites than these phosphate esters and carboxylic acids, allowing them to interfere 

with these cellular processes12. Given the ubiquitous roles of phosphorylated 

intermediates and carboxylates in cellular biology, C-P bond containing compounds 

could potentially target a wide variety of cellular pathways12.

To date, there are approximately 30 known natural C-P compounds making them 

an under explored area of research despite the impressive range of biological activities 

exhibited by these molecules12,22. C-P compounds are known to play a key role in 

metabolic and signalling pathway and possess antibacterial, antiviral, anti parasitic and 

herbicidal properties11. Additionally, enzymes found in their metabolic pathways are 

involved in the production of a number of critical natural products (see Figure 2). These 

include the approved antibiotics fosfomycin, dehydrophos, and plumbemycin; the widely 

used herbicides phosphinothricin tripeptide (PTT) and phosphonitricin; the clinical 

candidates for the treatment of malaria, FR-90098 and fosmidomycin; and 

antihypertensive peptides such as I5B2 (identical with K-4) and K-2622. 
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Figure 2.  Overview of synthesis of natural products that possess a C-P bond and show 
antibacterial, antimalarial and herbicidal properties. The boxed reaction is conserved for 
most known phosphonates22. 

1.4 Phosphonate Biosynthesis
Despite the diversity of natural phosphonates, genetic studies have revealed that 

many of the early steps of these phosphonate biosynthetic reactions are conserved 

across different species and pathways23. This is additionally displayed by similarities in 

biosynthetic gene clusters of various bacterial strains.Initial C-P bond synthesis is 

proposed to occur via intramolecular rearrangement of phosphoenolpyruvate (PEP) to 

form phosphonopyruvate (PnPy) catalyzed by phosphoenolpyruvate mutase (PEP 

mutase)12. Surprisingly, this step is thermodynamically unfavourable, with an equilibrium 
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constant of about 500 in the directional of PEP. The removal of PnPy in this reaction is 

thus important to drive the reaction forward, and this often occurs by decarboxylation of 

PnPy to form phosphonoacetaldehyde (PnAA)12. Several reactions can take to 

transform PnAA, one of which includes transamination to generate 2-

aminoethylphosphonic acid (AEP)22. In alternative biosynthetic pathway, NAD(P)H-

dependent group III alcohol dehydrogenase reduces PnAA to 2-

hydroxyelthyphosphonate (HEP)22. The full biosynthetic reaction pathway can be seen 

in Figure 3.

Figure 3. Proposed biosynthetic pathway for phosphonate small molecules. Labeled 
enzymes in the pathway are as follows: a= PEP mutase, b= PnPy decarboxylase, c= 
AEP transaminase, d= alcohol dehydrogenase

Phylogenetic classification of PEP mutase revealed that there are at least 10 

general groupings of gene clusters capable of generating diverse phosphonates and 

tailored lipids and glycans . In human pathogenic and commensal bacteria, the gene 

clusters typically encode the AEP biosynthetic enzymes ( a, b, and c or d in Fig. 3). 

Interestingly enough, gene clusters also encode genes for cytidylyltransferase and 

phosphotransferase/glycosyltransferase, but the purpose of those genes remains 

unknown. 
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Figure 4. Phosphonate gene clusters from representative bacteria, with genes colour 
coded according to annotation. Lower case letters beside the colour codes in the legend 
correspond to the letters that label the enzymatic steps in Figure 3.

1.5 Choline mechanism in Streptococcus pneumoniae 

Choline metabolism plays a key role in cell separation, transformation, autolysis and 

pathogenicity of Streptococcus pneumoniae25. Choline in the form of phosphocholine 

(P-Cho) is incorporated into the cell wall techie acid (TA) and lipotechoic acid (LTA) 

(Figure 6)26.27.

  

Figure 
5. Teichoic acid of Streptococcus pneumoniae with P-Cho incorporated into it. P-Cho is 
highlighted in the box26. 
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Cell wall phosphocholine also serve as scaffolds for a group of choline-binding proteins 

that are exported from cells and attached to the cell surface by their homologous 

choline-binding domains27. 

The importance of choline in pathogenicity is not confined to S. pneumoniae, but 

also plays a role in other bacteria such as Hemophilus influenzae, Pseudomonas 

aeruginosa and Neisseria gonorrhoaea28 .The pathway for choline metabolism in S. 

pneumoniae consists of a choline transport system, a choline kinase, 

CTP:phosphocholine cytidylyltransferase (CCT) and a choline phosphotransferase that 

transfers P-Cho from CDP-Cho to either lipotechoic acid or lipopolysaccharide28.  The 

existence of this pathway is supported by the detection of choline kinase and CCT 

activity in crude extracts of S. pneumoniae . Bioinformatic analyses have revealed 5 

domains, licA, licB, licC, licD1, and licD228,29. These domains share identity with the H. 

influenzae lic loci. The percent similarity can be seen in Figure 728,29. Hypothesis were 

drawn from bioinformatic analysis and it was concluded that licA corresponds to choline 

kinase28. LicB has several predicted transmembrane domains and is thus thought to be 

a choline transporter28. The hydrophilic licC gene product is a candidate for the CCT 

due to the resemblance of its amino terminus to the amino-terminal 60 residues of NTP 

transferase family members28. Lastly, licD gene is a candidate for the choline 

phosphotransferase28. The licC gene in S. pneumoniae and in H. influenzae are 37% 
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identical and 60% similar28. 

�

Figure 6. Gene cluster of S. pneumoniae and potential function of the gene products 
based on sequence similarity are listed28

It is proposed that choline is acquired from the host and imported to the cell via LicB 

which is a choline transporter. Once in the cell, the choline kinase LicA, phosphorylates 

choline to phosphocholine. Phosphocholine is then CDP conjugated via phosphocholine 

cytidylyltransferase. The CDP conjugated phosphocholine is then attached to a glycan 

by choline phosphotransferase LicD. Figure 8 shows the proposed pathway for choline 

tailoring. Although much is not known about this pathway, gene disruptions of either licC 

or licD have attenuated the virulence of S. pneumoniae in mouse models29,30.

�21
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LicC from S. pneumoniae is a member of the nucleoside triphosphate transferase 

superfamily31, and it catalyzes the transfer of a cytosine monophosphate from CTP to 

phosphocholine, which in turn forms CDP-choline. The enzyme possess a high degree 

of selectivity for phosphocholine and CTP as its natural substrates, and the related 

compounds phosphoethanolamine and ATP as poor substrates31. LicC when recently 

purified, was shown to catalyze cytidylyltransferase reaction. Crystal structure of LicC is 

a monomer, with an active site containing a deep pocket with negative electrostatic 

potential31,33. A bound magnesium balances the negative charges from the amino acid 

residues of Asp107, Glu135, Asp192, Glu216 and Asp21831,33. The amino acid residues 

Asp107 and Glu216 are characteristic of the NTP transferase family which further prove 

that this enzyme resembles the NTP transferases31,33. 
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���  
Figure 8. Active site interactions of LicC with phosphocholine, indicating many important 
active site residues involved in binding. Black dashed lines indicate hydrogen bonds, 
salt bridges, and metal interactions. Green solid line show hydrophobic interactions and 
green dashed lines show π-π and π-cation interactions. PDB: 1JYL31,33

The final tailoring step as seen in Figure 7, involves the attachment of an activated 

phosphocholine conjugate onto a macromolecular scaffold using phosphotransferase or 

glycosyltransferase26,29. The LicD1 and LicD2 enzymes have been hypothesized to act 

as a phosphotransferase in the S. pneumoniae tailoring pathway26,28,29. The loading of 

techoic acids with LicD enzymes appear to be a membrane -associated process, with 

glycolipid anchors and peptidoglycan acting to incorporate the proteins into the cell 

wall26,28,29. Although many of the teichoic acid genes remain to be identifies, the LicD1 

enzymes display significant similarity to other phosphotransferases. 
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Glycosyltransferases are also abundant in gene clusters of S. pneumoniae and varies 

other gene clusters (Figure 4)26,28,29. They catalyze the transfer of sugars, using 

activated donor substrates that contain a substituted phosphate leaving group; acceptor 

substrates make up a diverse group of substrate alcohols such as proteins, lipids, 

nucleic acids, antibiotics, and numerous small molecules. The donor sugar substates 

are most commonly activated nucleoside diphosphate sugars such as UDP and GDP, 

but may also be nucleoside monophosphate sugars such as CMP nuclei acids, lipid 

phosphates and unsubstituted phosphates26. In the absence of LicD homologs, 

glycosyltransferases are seen as principal enzymes in glycan tailoring. The exact 

mechanism involved in LicD enzymology has not been fully characterized.

1.6 Proposed Phosphonate Tailoring Pathway

It is known that choline modifications are involved in virulence, but the role of 

phosphonate modifications remains unknown. The genes responsible for choline 

modifications have been identified, but the genes responsible for phosphonate 

modifications have yet to be identified and biochemically characterized. Interestingly 

enough, phylogenetic analyses of several opportunistic bacteria carrying genes for 

phosphonate biosynthesis (Figure 4), show the presence of cytidylyltransferase and 

glycosyltransferase/phosphotransferase, that share a homology with the genes involved 

in choline modifications. It is hypothesized that in addition to its role as the biosynthetic 

entry point for small molecule bioactive natural products such as the antibiotic 

fosfomycin,  PEP mutase also plays a role in decorating cellular polysaccharides and 

lipids with phosphonate moieties. It is also the introductory enzyme leading to the 

creation of phosphonates (AEP) that may play a significant role in macromolecular 
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tailoring. As previously mentioned, the biological function of phosphonate containing 

macromolecules remains enigmatic, but phosphonate biosynthetic gene clusters are 

widespread in bacteria and suggest that they possess an advantage (Figure 4). For 

example, for pathogens, phosphonate modifications would render cell surface 

macromolecules more resistant to both acid and enzymatic hydrolysis in the 

lysosome24. For commensal obligate anaerobes like Bacteroides that are also 

opportunistic pathogens, phosphonates may be important in the highly anaerobic 

environment of the human distal intestinal lumen24.From this information a biosynthetic 

pathway for macromolecular tailoring can be proposed. It is hypothesized that a small 

molecule phosphonate such as AEP is attached to macromolecules such as 

polysaccharides in a two step process (Figure 5). The first step is the activation of the 

phosphonate (AEP) as a CMP conjugate catalyzed by a cytidylyltransferase. The 

second step is the attachment to a macromolecule nucleophile for example a sugar 

hydroxyl group, catalyzed by a phosphotransferase or glycosyltransferase.

�
Figure 9. Proposed tailoring steps to add a phosphonate to a macromolecule with the 
following enzymes: e, cytidylyltransferase; f, phosphotransferase or glycosyltransferase.

Focusing on the phosphonate tailoring hypothesis, cytidylyltransferase as a homolog for 

LicC may lead to support of the hypothesis that small molecule phosphonate molecules 

such as AEP can be used to create phosphonate containing intermediates, which then 
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are catalyzed by LicD homologs such as phosphotransferases and glycosyltransferases 

in producing macromolecules important for cell metabolism. This proposed mechanism 

is analogous to the choline modification in S. pneumoniae. 

1.7 Phosphonate modifications vs choline modifications

In Figure 4, three different gene clusters of opportunistic bacteria are shown, bacteria 

such as A. rimae and O. uli seem to possess both phosphonate biosynthesis genes, 

and teichoic biosynthesis genes. There are many hypotheses as to why phosphonate 

containing macromolecules may predominate instead of the phosphocholine containing 

macromolecules. One hypothesis is that choline has to be acquired from the host, and 

brought into the cell to be able to be attached to a macromolecule. In the event where 

choline is scarce, the host may utilize PEP, already present in the cell, convert it to a 

phosphonate, and attach it to a macromolecule. Since phosphonates are more resistant 

to degradation and are similar in size and charge to phosphocholine, a bacterial host 

may be able to keep its pathogenicity by swapping choline and utilizing phosphonate 

moieties. Another hypothesis may be that since choline binding proteins are recognized 

by the immune system, phosphonate containing macromolecules can be used to evade 

the immune system. However, as stated earlier the role of phosphonate tailoring 

macromolecules in virulence is unknown. 

1.7 Hypothesis

It is known that phosphocholine is the substrate that is catalyzed by LicC to be added 

onto the teichoic acid, but what is unknown, is if LicC homologs from phosphonate 

containing bacterial strains use AEP to catalyze a similar reaction. A structure for LicC 

from S. pneumoniae has been crystallized and the active site residues are established, 
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however, the similarity of those active site residues to other cytidylyltransferases has not 

been identified.  Based on the information in the literature, few hypotheses can be 

made. The first hypothesis is that the active site residues for all cytidylyltransferase are 

going to be different, to accommodate the substrate that they catalyze. The second 

hypothesis is that LicC homologs in phosphonate pathways will have greater specificity 

for its own substrate. LicC homologs from A. rimae and O. uli will have greater 

specificity for phosphonate substrate AEP, and LicC from S. pneumoniae will have 

greater specificity for phosphocholine. This being said, it is hypothesized that due to the 

nature of LicC genes, they will also have some specificity for substates that may 

resemble their native substrates. 
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1.8 Objectives:

The aims of this project are as follows:

1. Bioinformatic analysis of LicC from S. pneumoniae (Spn-LicC) and PngC from 

Atopobium rimae and Olsenella uli (Ari-PngC and Oul-PngC)

2. Functional Characterization of Spn-LicC and Ari-PngC. 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2. Materials and Methods

2.1 Materials Used

2.1.1 Cloning, Expression and Purification

The Atopobium rimae gDNA was purchased from Cedarlane Labs (Burlington, ON). 

Olsenella uli gDNA was purchased from Biomatik (Cambridge, ON). Synthetic genes for 

O. and A. rimae were purchased from Bio Basic (Markham, ON). Primers were 

purchased from Integrated DNA Technologies (Coralville, IA). PCR buffers and 

polymerases were purchased from Bio Basic (Markham, ON). A C1000 Touch Thermal 

Cycler was purchased from BioRad (Mississauga, ON). Wizard SV Gel and PCR Clean 

-Up System were purchased was purchased from Promega (Madison, WI). Agarose gel 

electrophoresis was performed using a gel apparatus and power source from VWR 

( Mississauga, ON). A Gel Doc EZ imager was used for gel imaging and purchased from 

BioRad ( Mississauga, ON). The PureYield Plasmid Miniprep system was purchased 

from Promega (Madison, WI). DNA sequencingg was completed at the Hospital for Sick 

Children at the Centre for Applied Genomics (Toronto, ON). The Gem T-Easy Vector 

System was purchased from Promega (Madison, WI). Escherichia coli DH5a and BL21 

were purchased from Novagen (Madison, WI). The pET29 vector used for cloning was 

purchased from Novagen (Madison, WI). NdeI and XhoI restriction enzymes were 

purchased from ThermoFisher Scientific (Waltham, MA). The Heroes Multifuge X1R 

centrifuge was purchased from ThermoFisher Scientific (Waltham, MA). High speed 

centrifuge tubes and low speed 500 mL tubes were purchased from ThermoFisher 

Scientific (Waltham, MA). The Q-Sonica Q125 sonic processor was used for sonications 

(Newton, CT). Ultracentrifugal devices were purchased from Pall Corporations (Port 
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Washington, NY). PD-10 columns were purchased from BioRad (Mississauga, ON).  

SDS-PAGE gels were cast using TGX Stain Free FastCast Acrylamide Kit 12% 

purchased from Bio Rad (Mississauga, ON). 

2.1.2 MBP-Cloning and Anion Exchange Purification

pMAL vector was purchased from New England Biolabs (Ipswich, MA). XmnI and NotI 

restriction enzyme was purchased from ThermoFischer Scientific (Waltham, MA). 

Primers were purchased from Integrated DNA Technologies ( Coralville, IA). The FPLC 

machine was purchased and Enrich Q Resin column were purchased from Bio-Rad 

(Mississauga, ON).  The DynaLoop-90 was used to inject sample and was purchased 

from Bio-Rad.  Tris and NaCl were purchased from Amresco (Cleveland, OH).

2.1.3 Crystal Tray Set-Up

Crystal Gryphon LCP system and the INTELLI-PLATE 96-2 plate from Art Robins 

Instruments   (Sunnyvale, CA) was used to set up crystal tray trials. Plastic cover slip 

was purchased from VWR (Mississauga, ON). Crystal screen 1&2 and Index were 

purchased from Hampton Research (Aliso Viejo, CA).  Crystal screens MCSG1 and 

MCSG2 were purchased from Anatrace (Maumee, OH). Crystal trays were incubated at 

18 C in a crystallization incubator from Molecular Dimensions (Newmarket, UK). Crystal 

trays were examined under an Olympus SZX16 light microscope (Tokyo, Japan). 

2.1.4 Pyrophosphate Activity Assay

The EnzCheck Pyrophosphate Assay Kit (E-6645) was purchased from ThermoFischer 

Scientific (Waltham, MA). xMark Microplate Absorbance Spectrophotometer was 

purchased from Bio-Rad (Mississauga, ON) and was used to analyze the results.  CTP 

was purchased from ThermoScientific (Waltham, MA) and MgCl2 was purchased from 
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Amresco (Cleveland, OH). Chelax resin was purchased from Sigma Aldrich ( St.Louis, 

MO).

2.2 Methods

2.2.1 Cloning, Expression and Purification

Polymerase Chain Reaction (PCR): Forward and reverse primers were made for pngC 

and pngD genes from A.rimae and O.uli. Primer sequences can be found in Appendix . 

All of the primers included a 6X His-tag. A 100 μL reaction mixture was then made for 

each of the species in order to amplify the gene. The reaction mixture consisted: of 

DMSO, DI water, 10 mM dNTP mixture, 2x Taq buffer, Taq polymerase, forward primer, 

reverse primer, and the species DNA. The reaction mixture was then aliquoted into eight 

separate 10 μL fractions in an 8- strip PCR tube strip. The eight wells were then put into 

a thermal cycler, set to the conditions that can be seen in Appendix.  Each of the wells 

in the PCR tube strip were set to be exposed to a different annealing temperature within 

the thermal cycle in order to determine which temperature in a specific gradient allowed 

for the best amplification of the gene. In cases where a temperature gradient was not 

used and an optimal annealing temperature was already known, the Taq buffer was 

replaced with a 5x Phusion buffer and Phusion polymerase to replace the Taq 

polymerase. These results were checked using gel electrophoresis, as described in the 

next protocol. 

Agarose Gel and Gel Extraction: A 1% agarose gel was made using 0.40 g of lab grade 

agarose, 40 mL of 1X TAE buffer, and 2 μL of 10 mg/mL ethidium bromide. The 

preparation of 1X TAE buffer is listed in Appendix . After solidification of the prepared 
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gel, the 10 μL fractions of the PCR reaction mixtures were mixed with about 2 μL of 

bromophenol blue dye (unless the they were made with the Phusion buffer, which was 

already dyed green). Each was loaded into a separate well in the gel, along with a final 

well of about 5 μL of 1Kb plus ladder. Gels were run at 100 V and 200 mA for about 45 

minutes. Images were analyzed using ImageLab software and the Bio-Rad “Gel Doc EZ 

Imager”. 

Excision of PCR amplifications: Agarose gels were examined under a LabNet UV trans- 

illuminator and desired bands were cut out using a blade. From these excised gel slices, 

the DNA was amplified and extracted using the Promega Wizard SV Gel and PCR 

Clean-Up System. 

Clean-up and addition of an A-tail: Phusion polymerase has exonuclease activity that 

cuts out the overhang of the DNA amplifications. An A-tail was added to the extractions 

in order to create a new overhang that would be required for complementarity of 

residues when performing a ligation. This was done by mixing: 20 μL DNA, 1 μL Taq 

polymerase, 1 μL 10mM dNTP mxture, 2.5 μL 10X Taq buffer, and 1 μL 50mM MgCl2. 

This reaction mixture was then cleaned up using the Promega Wizard SV Gel and PCR 

Clean-Up protocol. The cleaned reaction mixture was then run on a 1% agarose gel to 

ensure that the presence of the appropriately sized DNA bands. 

Cloning into pGEM: The pGEM-T Easy vector was used to clone the amplifications to 

subsequently be used for sequencing. The cleaned gel extract of DNA was ligated into 
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the pGEM vector using the following reaction mixture: 3 μL DNA, 1 μL pGEM-T Easy 

vector, 5 μL 2X Rapid Ligation buffer, and 1 μL T4 DNA ligase. Positive controls were 

created by replacing the DNA with 2 μL Promega control DNA, and negative controls 

were created by replacing the DNA with 3 μL sterile water. 

Transformation of recombinant plasmids into E. coli DH5α: E.coli DH5α competent cells 

were prepared as explained in A5 of Appendix A. Aliquots of 150 μL were thawed on ice, 

and then either the ligation reaction mixture or about 2-4 μL of mini-prepped DNA 

directly were added to the thawed competent cells. The negative and positive controls 

were transformed in the same manner as the ligation. The microcentrifuge tubes were 

then left on ice for 20 minutes and then heat shocked for 2 minutes at 42°C. 1 mL of LB 

broth was then added to the mixtures, after which they were sealed tightly and placed in 

a shaker at 37°C for one hour. The transformation mixtures in the tubes were then spun 

down in a microcentrifuge for one minute, and all but 100 μL of the supernatant was 

poured off. The pellet formed was resuspended in the remaining supernatant and plated 

directly on XCI LB-agar plates, containing 100 μg/mL carbenicillin, 0.5 mM IPTG, and 

80 μg/mL X-Gal. Plates were then left to incubate overnight (approximately 12 hours) at 

37°C. Refer to Appendix  for preparation of LB broth and LB-agar plates.  

Preparing plasmids for sequencing: A single colony from the transformation plates were 

picked using a sterile pipette tip and grown in a 3 mL culture containing 6 μL of 

ampicillin. The cultures were left to grow overnight. The PureYield Plasmid Miniprep 

System was used to isolate the recombinant pGEM plasmid that was then digested with 
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NdeI and XhoI using the following mixture: 2 μL DNA, 2 μL10X FastDigest green buffer, 

1 μL NdeI, 1 μL XhoI, and 14 μL nuclease-free water. This mixture was incubated at 37 

°C for about one hour. To confirm the presence of inserts of the correct size, the 

mixtures were run on a 1% agarose gel and imaged, as described previously. The gel 

extraction protocol previously described was used to excise bands of the correct size 

from the digest. Additionally, if a plasmid of the correct size was identified, about 300 ng 

of the recombinant pGEM plasmid was added to sterile water to make a solution 

totalling 7 μL. 

Cloning into pET29: Excised gel bands from the digests were ligated with pET29. 

Preparation of the pET29 construct is referred to in Appendix . The reaction mixture 

contained: about 3 μL pET29, about 5 μL DNA insert, 1 μL 10X Ligase buffer, 1 μL T4 

DNA ligase. The exact amounts of pET29 and DNA insert added were subject to change 

depending on their relative concentrations; the aim was to add about 3X the 

concentration of DNA compared to pET29. A negative control was made by replacing 

the DNA with sterile water. The ligation was refrigerated overnight, or left at room 

temperature for 1 hour. The ligation reaction mixture was then transformed into E.coli 

DH5α competent cells as described above. However, kanamycin LB-agar plates were 

used with 50 μg/mL kanamycin. Cultures were grown from the colony as described 

before and then mini-prepped to prepare the recombinant pET29 plasmids for another 

transformation into E.coli BL21. These cultures were grown with 5 μL of kanamycin per 

mL of LB broth used.
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Inoculation and induction of pET29 plasmids: One 50 mL culture was then grown from a 

single colony with 250 μL of kanamycin and grown to an OD600 of about 0.5. This 

culture was then aliquoted into 4 separate 1L flasks, each with about 10 mL of the 

culture and 5 mL of 10 mg/mL kanamycin. The flasks were then left to shake at 37 °C 

until an OD600 of about 0.2 was reached. At this time, the shaker temperature was 

turned down to about 18 °C and the flasks were left to shake until an OD600 of about 0.5 

was reached. At this time, 1 mL of the culture was removed and then spun down in a 

microcentrifuge for about one minute to collect an uninduced pellet. The culture was 

then induced with 1 mL of 0.1 M IPTG per 1 L of culture. The culture was then left to 

shake at 18 °C overnight, or approximately 12 hours. Before purification, about 500 μL 

of culture was spun down in a microcentrifuge for about one minute to collect an 

induced cells pellet. 

Protein purification: The total of 4 L of culture was spun down in a centrifuge at 5000 

rpm for 10 min at 4 °C. The supernatant was then discarded and the resulting pellets 

were resuspended in cell lysis buffer (50 mM NaPO4, 0.3 M NaCl, pH 7.5), using an 

amount of buffer that was approximately 5% of the original culture volume. Preparation 

of the buffers can be seen in Appendix B. About 0.2 to 2 mg of both lysozyme and 

DNaseI was added to the solution and then kept on ice 20-30 minutes. The solution was 

then sonicated on ice, programmed to six 10 second intervals of sonicating with 50 

seconds intervals of cooling periods. The mixture was then centrifuged at 14,000 rpm 

for 20-30 minutes at 4 °C. 100 μL of the supernatant was then removed and frozen at 

-20 °C to be analyzed later as the “raw extract” sample. The pellet was also poked, and 

a small portion of it was saved and labeled “cell debris”. The supernatant was then 
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collected in one conical tube, and about 1 mL of Ni-NTA slurry was added. The two were 

then mixed and shaken on ice for 10-20 minutes. The solution was then loaded on an 

Econo-Pac chromatography column and the flowthrough was collected and set aside. 

The column was then washed twice with 5 mL of wash buffer (lysis buffer with 20 mM 

imidazole). Each wash was collected and set aside. An elution buffer (lysis buffer with 

250 mM imidazole) was then added to the column, and the elution was collected in an 

ultrafiltration tubes (MWCO 30 kDa). The elution was concentrated by centrifugation at 

5000 rpm for 40 minutes at 4 °C. In the meantime, the “gravity protocol” was started by 

desalting one PD-10 column. This was done by washing it with equilibration buffer (50 

mM NaPO4 buffer at pH 8). The solution present above the filtration membrane was 

added to the PD10 column and allowed to enter the packed bed. The amount of solution 

added to the column was topped up to 3 mL using equilibration buffer. The flow through 

was discarded. Afterward, 4 mL equilibration buffer was added to the PD10 column and 

the eluent was collected in another ultrafiltration tube. The sample was centrifuged at 

4000 rpm for 40 minutes at 4 °C. The sample present above membrane was then flash-

frozen into beads using liquid nitrogen. The beads were then left in a -80 °C freezer in a 

cryotube. 

Purification modifications for LicC genes: Phosphate free buffers such as Tris was used 

for LicC purifications in order to be compatible for the kinetic assay. In addition to 

changing to phosphate free buffers, 2 mM DTT and 20% Ammonium sulfate were added 

to the buffers. The buffers and their preparation can be seen in Appendix . The 

purification protocol was the same as described above. 
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Bradford assay to determine protein concentrations: A Coomassie Blue Bradford 

reagent was prepared, as seen in Appendix . Six vials were prepared as controls for the 

Bradford standard curve. The vials’ contents can be seen in Appendix. Four vials were 

then prepared for the protein samples. One vial was contained 5 μL flowthrough, one 

with 5 μL raw extract, and two for the final eluted sample (one containing 5 μL of sample 

and another with 20 μL of sample). The vials were then topped up with sterile water until 

a total of 100 μL was reached. 5 mL of Bradford reagent was then added to each of the 

vials and they were left to react for about 5  minutes. About 1 mL of the contents from 

each vial was added to separate cuvettes, and their absorbance readings were 

measured using a spectrophotometer. The concentrations were then calculated by 

comparing the results of the standard curve to the absorbance readings of the samples. 

This was done using a template in Excel. 

Analysis of protein expression: Protein samples were run on an SDS-PAGE gel to check 

for protein expression and appropriately sized protein bands. Samples examined: 

uninduced cells, induced cells, raw extract, inclusion bodies, flow through, wash #1, 

wash #2, and the final protein sample. The samples were prepared by adding about 6 

μg of sample to microcentrifuge tubes. The amount of solution to add for each sample 

was determined using the Bradford assay sample concentrations. The solutions were 

topped up to 16 μL using sterile water, and then 4 μL of 5X laemmli blue buffer was 

added to each of the samples. For the cell debris, induced and uninduced cells a pipette 

was used to simply touch the pellets. The pipettes were then dipped into 16 μL of sterile 

water before adding the 5X buffer. All of the samples were then placed in boiling water 
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for about 5 minutes. After cooling, the full 20 μL of each sample were inserted into the 

wells of an SDS-PAGE gel that was prepared using the BioRad TGX Stain-Free 

FastCast Acrylamide Kit, and soaked in 1X SDS-PAGE buffer. An SDS marker was 

inserted into the wells at each end. The SDS-PAGE was run at 100V for about 30 

minutes, and then 200V for about 45 minutes, or until all of the blue dye had run off the 

gels. The gel was then imaged using the Gel Doc EZ Imager and “Stain-Free” protocol 

in ImageLab. Appendix  displays the preparation of the SDS- PAGE buffer and 

molecular weight markers. 

2.2.2 MBP Cloning and Anion Exchange Purification

Cloning a MBP tag: O.uli pngC and pngDwere cloned into pMAL vector to include a 

maltose binding protein (MBP) tag to increase solubility. MBP primers can be seen in 

Appendix. The DNA was amplified, ligated into pGEM T-easy vector and sent out for 

sequencing using the protocols described above. Once sequencing confirmed the 

amplification of the correct insert, the insert was ligated into pMAL vector using XmnI 

and NotI restriction sites. Since the constructs do not have a His-tag, anion exchange 

chromatography was used instead.

Anion Exchange Purification: 

Buffers to be used for anion exchange were prepared as described in Appendix. To 

prepare the FPLC for purification, all of the lines were transferred from an ethanol 

solution into their corresponding buffers. The ethanol was rinsed out of the lines 

beforehand, and then the new solutions or buffers were pulled through the new lines 
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until there was no air present in the lines. Dynaloop-90 was connected to the system, 

and rinse with water, and Buffer A. The anion exchange column, was washed with 

Buffer A, Buffer B and equilibrated with Buffer A. The ChromLab software on the 

computer was connected to the FPLC, and the template for anion exchange was 

chosen. Proteins were cloned into pET29 in the manner described above, and purified 

up until the Raw Extract. Raw Extract was injected into the DynaLoop-90 and was run 

over the anion exchange column. Fractions of 2 mL samples were eluted and collected. 

Eluted fractions were collected, spun down in a centrifuge to concentrate. A Bradford 

assay and SDS-PAGE were performed to determine the concentration, and purity of the 

proteins. 

2.2.3 Crystal Tray Set Up

Preparation of Protein Sample:

Protein samples need to be very pure and concentrated in order to set up crystal trays. 

Protein samples were run over IMAC chromatography followed by anion exchange 

chromatography to achieve the purest form of sample. Protein samples to be used were 

prepared in the same manner as those used to create frozen protein beads. However, 

the protocol is modified starting at the PD-10 column washes. Instead of washing the 

column with equilibration buffer the PD-10 column was washed with 20 mL of Buffer A. 

Buffer A was also used to elute the sample from the PD-10 column. The sample was 

concentrated, and injected into the FPLC for anion exchange. Once anion exchange 

was completed, the fractions were pooled, and concentrated down to a total of atleast 

10 mg. A minimum volume of 100 uL of sample was required. 
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Preliminary crystal tray set-up:

A 96 well tray was used to set up crystal trays. This was done using the Crystal 

Gryphon LPC system. Four different “store bought” crystal trays were used; MCSG 1&2, 

Index, and crystal screen 1+2 were used. Once the crystal trays were set up, plastic 

cover slips were then placed on top of the corresponding wells to seal the wells. The 

sealed wells were left to equilibrate for about 3 days in the 18 C incubator, and then 

analyzed under a light microscope. The tray was analyzed every three to four days for 

results. 

2.2.4. Pyrophosphate Activity Assay

EnzCheck Pyrophosphate Assay Kit was used to determine the activity of LicC and 

PngC . This assay is a coupled assay, where the first part of the reaction uses 

cytidylyltransferase enzyme, and the second part of the reaction uses pyrophosphatase. 

The reaction is measured at 360 nm using UV-Vis Spectrophotometry. The first reaction 

that uses LicC releases pyrophosphate, which then is made into two inorganic 

phosphates by inorganic pyrophosphatase. The inorganic phosphates react with 2-

amino-6-mercapto-7-methylpurine ribonucleoside (MESG) using purine nucleoside 

phosphorylase (PNP) to get ribose 1-phosphate and 2-amino-6-mercapto-7-methyl-

purine, which is then detected at 360 nm (Figure 10). 
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Figure 10. Conversion of 2-amino-6-mercapto-7-methyl-puring ribonucleoside (MESG) to ribose 
1- phosphate and 2-amino-6-mercapto-7-methylpurine using ribonucleoside phosphorylase 
(PNP) where the formation of 2-amino-6-mercapto-7-methylpurine is measured at 360nm. 

Each reaction was kept to a volume of 100 uL and performed in triplicate. Protein 

samples were prepared in the same manner as described above, containing very pure 

samples as frozen beads. The reaction components were split between 2 wells, one 

well contained the substrate and enzyme, while the other well contained CTP. Well 1 

contained 0.5 uL (1U) PNP, 0.5 uL ( 0.03U) IPP, 10 uL (0.2 mM) MESG, 2.5 uL 20X 

reaction buffer, 16 uL (4 mM )CTP, and 20.5 uL of water, making a total of 50 uL. Well 2 

contained 0.5 uL (1U) PNP, 0.5 uL ( 0.03U) IPP, 10 uL (0.2 mM) MESG, 2.5 uL 20X 

reaction buffer, 12 uL (7 mM) MgCl2, enzyme ( depending on concentration of choice), 

substrate (depending on concentration of choice) and H2O to fill to a final volume of 50 

uL. A control with either no enzyme or substrate was made for each trial. To avoid 

pipetting errors, parent mixes were created for Well 1 and Well 2. If for example, 3 

different substrate concentrations were being tested in triplicate, a parent mix would be 

�41



made with 9 times the amount of components in each well  in a micro centrifuge tube 

and then be aliquoted out into each well. For example, instead of 0.5 uL of PNP, you 

now would add 4.5 uL of PNP into the micro centrifuge tube. In the end, each well would 

get 50 uL of parent mix aliquoted out. Once the parents mix is aliquoted out, the 

separate wells were incubated for 30 mins at room temperature. After 30 mins, well 2 

was combined to well 1, and absorbance was recorded at 360 nm for 30 minutes.The 

kinetic data was analyzed by excel and plotted using the software R. R uses non linear 

regressions, as well as 95% confidence intervals to determine Michaelis-Menten and 

substrate inhibition curves.  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3. Results

3.1 Bioinformatic Analysis

LicC from S.pneumoniae has been crystallized previously and based on the crystal 

structure important residues in the active site were determined. Based on the amino 

acid sequences of Spn-LicC Ari-PngC and Oul-PngC, structures were created in 

Phyre2. Phyre2 is a protein fold recognition sever which uses amino acid sequences to 

predict and analyze protein structure. The structures created by Phyre2 were analyzed 

to see if the active sites of all the cytidylyltransferaseswere similar. The active site of 

Spn-LicCwas overlaid with the predicted structure of Ari-PngC. 

Figure 11. Active sites of Spn-LicC in blue and Ari-PngC in red overlaid. Arrows pointing toward 
important residues that are conserved in both structures.
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From the figure above it can be seen that the active site residues are conserved 

between both LicC genes. The important residues in Spn-LicC such as Glu 216, and 

Asp 107 which are characteristic of this class of enzymes are conserved. As well as 

additional residues such as Trp 136 and Asp 218 are also conserved in Ari-PngC. Since 

the active sites of both of these enzymes resembles each other, it can be concluded 

that both of these enzymes behave in a similar fashion when catalyzing a reaction. 

Figure 12. Active sites of Spn-LicC in blue and Oul-PngC in orange overlaid. Arrows pointing 
toward important residues that are conserved in both structures.
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The important residues Asp 107, Glu 216 and Asp 218 are also conserved in the LicC 

from O. uli. Although Trp 136 is changed to Phe 105 in Oul-PngC, the residues are 

similar in structure and may be involved in the same manner. It can also be concluded 

that Oul-PngC behaves in a similar way as Spn-LicCwhen catalyzing a reaction. 

Although bioinformatic analysis reveals important residues, crystal structures of both 

enzymes will need to be obtained and compared to the crystal structure of LicC from 

S.pneumoniae. 

3.2 Cloning, Protein Expression and Purification 

The genomic DNA for A.rimae and O.uli were purchased and stored according to 

manufacturers suggestions. Primers were created (Appendix ) for the pngC gene for the 

two strains, and PCR was performed according to the conditions in Appendix. The 

results of the PCR were visualized on a 1% agarose gel.
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Figure 13. Taq polymerase PCR of Ari-pngC with an annealing temperature ranging from 50-65 
C. Lanes A1 and Lanes B1 represent the molecular weight ladder. Lanes A2-5 and B2-4 show 
amplicons at the expected size of 850 base pairs (bp).

The amplification was successful with bands showing up around 850 bp which is the 

correct size, but it can be seen that the optimal temperature for annealing is at lower 

temperatures. Since Taq polymerase is more prone to making mistakes and mutations, 

Phusion PCR at an annealing temperature of 56 C was performed. 
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Figure 14. Agarose gel of Phusion PCR of Ari-pngC at 56 C. Lanes 1-2 show the amplicons at 
850 bp’s and lane 3 is the molecular weight ladder. Unlabelled lanes are irrelevant to this 
research.

Phusion PCR gave great success in amplifying pngC. The amplified bands were at the 

correct size of around 800 bp’s which is the expected size of this homolog. Next, the 

bands in the above figure were extracted, and cleaned using the Promega PCR Clean -

Up System. The cleaned up amplicons were run on an agarose gel to confirm the size 

of the amplicons.
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Figure 15. Clean up of Ari-pngCafter PCR, run on 1% agarose gel. Lane 1 shows the amplicon 
at around 850 bp, and lane 2 shows the molecular weight ladder. Unlabelled lanes are irrelevant 
to this research. 

The cleaned up amplicons were indeed the correct size. The next steps were to add an 

Adenine tail to the amplicons, since Phusion polymerase has exonuclease activity that 

cuts out the overhang of the DNA amplifications. An adenine tail is required to create a 

new overhang to perform successful ligation into different pGEM vector. Adenine tail 

was added using the protocol described in materials and methods, and run on a 1% 

agarose gel.   
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Figure 16. Clean up of Ari-pngC after adenine tail addition. Lane 1 shows the product of the 
clean at around 850 bp, and lane 2 shows the molecular weight ladder. Unlabeled lanes are 
irrelevant to this research.

The adenine overhang addition was a success, and the band was approximately around 

800 bp which is the correct size. The amplicon was ligated into pGEM, and transformed 

into DH5a competent cells, plated on ICX plate and placed in the incubator at 37 C 

overnight. A few white colonies were picked, grown and mini-prepped to isolate the 

recombinant pGEM plasmid. To verify that the ligation into pGEM was successful, a 

digest was done using EcoRI restriction enzyme.
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Figure 17. pGEM digest of Ari-pngC using EcoRI restriction enzyme. Lanes 1-3 show the 
digested product at 850 bp and lane 4 shows the molecular weight ladder. Unlabelled lanes are 
irrelevant to this research.

The pGEM digest was a success as seen in Figure 17, the bands are around 800 

bp which is the estimated size of the Ari-pngC. The gene is now ready to be ligated into 

pET29. The Ari-pngC gene was cut out of pGEM using NdeI and XhoI restriction 

enzymes, and ligated into pET29 vector. The ligations were transformed into Dh5a 

competent cells, and incubated at 37 C overnight. Colonies were picked from the Dh5a 

plates, grown overnight in LB, and mini-prepped according to the protocol described 

above. To determine whether Ari-pngC was successfully ligated into pET29, a restriction 

digest was completed using NdeI and XhoI.
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Figure 18. Digests of Ari-pngC-pET29 constructs using restriction enzymes NdeI and XhoI. 
Lanes 1-3 show digested constructs at 850 bp, and lane 4 shows molecular weight ladder. 
Unlabelled lanes are irrelevant to this research. 

Even though the bands are very faint in Figure 18, it is apparent that the digest was 

successful, and that Ari-pngC gene was successfully ligated into pET29. The next step 

was to express and purify Ari-PngC protein. Ari-pngC-pET29 construct was transformed 

into BL21 competent cells, and expressed using IPTG. The construct was purified using 

immobilized metal affinity chromatography, and run on a SDS-PAGE gel to see if the 

correct protein was expressed, and purified. 
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Figure 19. SDS-PAGE for Ari-PngC. Lane 1 and 10 show molecular weight ladder. Lane 2 
shows uninduced fraction, lane 3 shows induced fraction, lane 4 shows raw extract, lane 5 
shows cell debris, lane 6 shows flow through, lane 7 shows wash 1, lane 8 shows wash 2 and 
lane 9 shows pure protein at around 31 kDa.

Ari-PngC was expressed and purified, and can be seen on the SDS PAGE gel at 

around 31 kDa which is the correct size for the gene. It can also be seen from the gel 

that the protein is pure, and can be used for further analysis. After performing a bradford 

assay, the concentration of the gene was 2.4 mg/mL from a 600 mL purification. 

Preliminary crystal trays was set up for Ari-PngC using the MCSG1, MCSG2, 

Crystal screen 1&2, and Index but no hit was obtained. 

The next bacterial strain with LicC and LicD homologs to express and purify was 

O.uli. Instead of cloning from genomic DNA, synthetic genes for Oul-pngC and Oul-

pngD were purchased. These genes can be ligated into pET29 without any additional 

cloning. Both Oul-pngC and Oul-pngD constructs came in a PBK vector that has a 
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kanamycin resistance, and NdeI and XhoI cut sites. A restriction digest with NdeI and 

XhoI was done on Oul-pngC-PBK and Oul-pngD-PBK constructs and run on a 1% 

agarose gel.

Figure 20. Restrict digest of Oul-pngC-PBK and Oul-pngD-PBK constructswith NdeI and XhoI. 
Lane 1 shows the molecular weight ladder. Lane 2 shows digested LicC at 790 bp, and lane 3 
shows digested LicD at 930 bp. Unlabelled lanes are irrelevant to this research.

From the gel it can be seen that Oul-pngC and Oul-pngD constructs are 790 bp and 930 

bp respectively which confirms that they are at a correct size. Both genes were 

extracted from the gel,and cleaned. The cleaned genes were run on a 1% agarose gel 

to confirm the concentration and presence of the band. 
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Figure 21.  Cleaned gel extracts of Oul-PngC and Oul-PngD. Lane 1 shows molecular weight 
ladder. Lane 2 shows cleaned LicC product at 790 bp and lane 3 shows cleaned LicD product at 
930 bp. Unlabelled lanes are irrelevant to this research. 

Both of the genes were cleaned successfully, and were ligated into pET29. The ligations 

were transformed into Dh5a competent cells, grown and mini-prepped. To check if the 

genes were successfully ligated, restriction digests were done with NdeI and XhoI.
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Figure 22. Oul-pngCpET29 and Oul-pngDpET29 construct digests with NdeI and XhoI 
restriction enzymes. Lanes 1-3 show LicC construct digest at 790 bp and Lanes 4-6 show LicD 
construct digest at 930 bp. Lane 7 shows molecular weight ladder.

It can be concluded from Figure 21 that the genes were successfully ligated into pET29. 

The genes were then transformed into BL21 competent cells to be expressed and 

purified using IMAC. The purified genes were run on an SDS -PAGE to see purity of the 

proteins. 
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Figure 23. SDS-PAGE for Oul-PngC. In order from left to right, lane 1 and 9 are molecular 
weight ladders, lane 2 is uninduced fraction, lane 3 is induced fraction, lane 4 is raw extract, 
lane 5 is cell debris, lane 6 is wash 1, lane 7 is wash 2, and lane 8 is final eluted protein. The 
expected size of the protein is around 31 kDa. 
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Figure 24. SDS PAGE for Oul-PngD. In order from left to right, lane 1 is uninduced fraction, lane 
2 is induced fraction, lane 3 is raw extract, lane 4 is cell debris, lane 5 is flow through, lane 6 is 
wash 1, lane 7 is wash 2 and lane 8 is final eluted protein and lane 9 is molecular weight ladder. 
The expected size of the protein is around 31 kDa

It can be seen from the gels above that both Oul-pngC-pET29 and Oul-pngD-pET29 

constructs are expressed but not soluble. Most of the protein can be seen in the cell 

debris which mostly comprises of insoluble fractions. From Bradford assays, the 

concentration of both proteins was 0 mg/mL which further proves that none of the 

proteins were soluble. 

The next steps were to make soluble versions of Oul-PngC and Oul-PngD,  and 

to do this pMAL vector was used. pMAL vector possess a maltose binding protein tags 

which helps solubilize proteins. Primers were made (Appendix) for the pMAL cloning 

with XmnI and NotI cut sites. Phusion PCR was performed with the new primers on Oul-

pngC-pET29 and Oul-pngD-pET29 constructs, to introduce the MBP tag onto the gene. 

The products of PCR were run on a 1% agarose gel.
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Figure 25. Phusion PCR of Oul-pngC and Oul-pngD for pMAL cloning. Gel A shows pngC 
amplicons in lanes 2-9, with molecular weight ladder in lane 1. Gel B shows amplicons of pngD 
in lane 2-9, with molecular weight ladder in lane 1. The expected size pngC is around 790 bp 
and pngD is around 930 bp.

The PCR was successful, and the bands were extracted from the gel and cleaned using 

Promega Wizard Clean Up System. The cleaned up amplicons were run on a 1% 

agarose gel. 
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Figure 26. Gel extract cleans of Oul-pngC and Oul-pngD amplicons. Oul-pngC clean is in lane 2 
at 790 bp and Oul-pngD clean is in lane 3 at 930 bp. Lane 1 shows the molecular weight ladder. 

The amplicons were the correct size, and are ready for the addition of adenine 

overhang to ligate into pGEM. Adenine overhang was added and genes were run on a 

1% agarose gel to confirm size. 

Figure 27. Adenine overhang addition to Oul-pngC and Oul-pngD. Oul-pngC is in lane 2 at 790 
bp and Oul-pngD is in lane 3 at 930 bp. Molecular weight ladder is in lane 1.
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The agarose gel shows the genes to be at the correct size. The genes were then ligated 

into pGEM and sent out for sequencing. The sequencing results came out negative, and 

it was determined that the primers were made incorrectly. New primers were made with 

NdeI and EcoRI as the new cut sites and Phusion PCR was done on Oul-pngC-pET29 

and Oul-pngD-pET29 constructs. PCR was successful, the genes were cleaned, and 

ligated into pGEM successfully. The new constructs were sent out for sequencing and 

the results came out positive. The constructs were cut out of pGEM, and ligated into 

pMAL using NdeI and EcoRI cut sites. The ligations were transformed into Dh5a 

competent cells. Few colonies were picked, grown and mini-prepped. To confirm 

whether the correct inserts were ligated into pMAL successfully, a double digest with 

NdeI and EcoRI was done. 

Figure 28.Double digest of Oul-pngC-pMAL and Oul-pngD-pMAL constructs with NdeI and 
EcoRI. LicC is in lane 2-3 at 790 bp, LicD is in lane 4-5 at 930 bp and molecular weight ladder is 
in lane 1. 
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Since the ligation into pMAL was successful, the next step was to express and purify the 

construct. Both constructs were expressed in 1 L of LB culture and purified using anion 

exchange since pMAL does not have a His-tag. 

Figure 29. FPLC chromatogram of Oul-PngC-pMAL .

Figure 30. FPLC chromatogram of Oul-PngD-pMAL. 
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The protein fractions boxed in Figure 29 and 30 were collected, concentrated and run 

on SDS-PAGE to determine the purity of the proteins. 

Figure 31. SDS-PAGE for Oul-PngCpMAL. In order from left to right, lanes 1 and 10 are 
molecular weight ladder, lane 2 is uninduced fraction, lane 3 is induced fraction, lane 4 is raw 
extract, lane 5 is cell debris, lane 6 is flow through, lane 7 is wash 1, lane 8 is wash 2 and lane 9 
is final eluted protein. The expected size of this construct is approximately 90 kDa.

Figure 32. SDS-PAGE for Oul-PngD-pMAL. In order from left to right, the wells contained the following: 
SDS molecular weight marker, uninduced fraction, induced fraction, raw extract, cellular debris, flow 
through, wash 1, wash 2, final eluted protein and another SDS molecular weight marker.
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Oul-PngC-pMAL and Oul-PngD-pMAL constructs should be around 80 kDa but from 

both gels it can be seen that both the constructs are at around 31 kDa. It seems like the 

MBP tag was not incorporated to the genes properly. Since Ari-PngCwas already 

soluble, it was chosen to be pursued. 

To be able to determine whether Ari-PngC behaves in a similar fashion as the 

Spn-LicC, the licC  gene was cloned and purified. Spn-licC was purchased from 

BioBasic in a pUC57 vector, with NdeI and XhoI cut sites and a kanamycin resistance. 

The gene was cut out of pUC57 vector using NdeI and XhoI restriction enzymes, and 

ligated into pET29 vector using protocols from the methods section. The product of 

ligation was subjected to another restriction digest with NdeI and XhoI restriction 

enzymes to verify the success/failure of the ligation. The digests were run on a 1% 

agarose gel. 

Figure 33. Double digest using NdeI and XhoI of Spn-licC-pET29. Lanes 1 and 10 show 
molecular weight ladder, and lanes 2-9 represent different colonies of the ligated product. 
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It can be seen from Figure 33, that the ligation was successful. The top band represents 

pET29 band which is at the expected size of 5000 bp, and the bottom band represents 

licC gene which is at the expected size of 774 bp. The gene was then purified using 

IMAC, and purified gene was run on a SDS-PAGE gel to determine purity. 

Figure 34. SDS-PAGE gel of Spn-LicC after IMAC purification. In order from left to right, lane 1 
and 10 are molecular weight ladder, lane 2 is uninduced fraction, lane 3 is induced fraction, lane 
4 is raw extract, lane 5 is cell debris, lane 6 is flow through, lane 7 is wash 1, lane 8 is wash 2 
and lane 9 is final eluted protein. The expected size of protein is 31 kDa.

3.3 Pyrophosphate Assay

Having a soluble Spn-LicC and Ari-PngC, the next step was to determine activity of 

those genes for their respective substrates, and each others substrates. To determine 

activity, an EnzCheck Pyrophosphate Assay Kit was used. When the 

cytidylyltransferase enzyme catalyzes the reaction, it releases pyrophosphate which 

through this kit can be detected. The amount of pyrophosphate released will dictate the 

rate at which the cytidylyltransferase can catalyze the reaction. In using this kit, there 
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are several factors to be considered; one is that all the components being used have to 

be phosphate free, second is that calcium inhibits the enzyme and therefore 

components have to be calcium free. Another factor to consider when trying to 

determine the activity of the enzyme, an enzyme-activity test needs to be completed to 

determine at which concentration the enzyme works best. 

The first step of determining the activity of the cytidylyltransferase enzymes was 

to re-purify the proteins using phosphate free buffers. As well as to help with stability, 

DTT and Ammonium sulphate were also added to the buffers (Appendix). Both Spn-

LicC and Ari-PngC were purified using Tris buffer, and run over SDS-PAGE to determine 

purity. 

Figure 35. SDS-PAGE gel of Spn-LicC after IMAC purification with Tris buffer. In order from left 
to right, lane 1 is raw extract, lane 2 is flow through, lane 3 is wash 1, lane 4 is wash 2, lane 5 is 
final eluted protein at around 31 kDa, and lane 6 is molecular weight ladder.
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Figure 36. SDS-PAGE gel of Ari-PngC after IMAC purification with Tris buffers. In order from left 
to right, the wells contained the following: SDS molecular weight marker, cellular debris, raw 
extract, flow through, wash 1, wash 2, final eluted protein and another SDS molecular weight 
marker.

Both Spn-LicC and Ari-PngC are pure and are at the correct sizes on the SDS-PAGE 

gels. The next step was to set up the reactions and determine the activity of enzymes. 

The first to have its activity determined was Spn-LicC. While carrying out the 

experiments, it was observed that as you increased the phosphocholine concentration 

which is the preferred substrate, the rate of reaction decreased. It was discovered that 

phosphocholine is commercially available only as the calcium salt, and it is previously 

established that calcium inhibits this enzyme. A way to overcome that was to use 

Chelax resin to strip any calcium from phosphocholine prior to using it. Methods were 

established and can be found in the Appendix. Once the phosphocholine was clean of 
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any potential calcium, a test run was performed using non chelaxed phosphocholine 

and chelaxed phosphocholine. 

Figure 37. Pyrophosphate release from Spn-LicC enzyme with 5 mM chelaxed and non 
chelaxed phosphocholine. 

From the figure above it can be seen that the absorbance is higher in the chelaxed 

phosphocholine than the non chelaxed phosphocholine. From this test we can conclude 

that the chelax protocol was successful, and the removal of calcium reversed the 

calcium inhibition. 

After preliminary runs of both enzymes, the next step was to determine which 

concentration of enzyme would be best to use with this pyrophosphate assay. An 
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enzyme-activity test was completed, where different concentrations of enzyme were 

used with 0.1 mM substrate. An enzyme activity assay for LicC with 0.1 mM 

phosphocholine included a range of enzyme concentrations of 0.1 nM to 1000 nM. From 

the graph in Figure 38 it can be seen that the rate increases as the enzyme 

concentration decreases, and rate decreases as enzyme concentration increases. This 

can also be seen in the graph in Figure 39, where LicC from A. rimae is tested with 0.1 

mM AEP and range of enzyme concentrations of 0.1 nM to 100 nM. It appears that 

these enzymes may be working in a monomeric and dimeric forms depending on the 

enzyme concentration. 

Figure 38. Spn-LicC activity assay with 0.1 mM phosphocholine and various concentrations of 
enzyme.
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Figure 39. Ari-Png activity assay with 0.1 mM AEP and various concentrations of enzyme.

From these enzyme activity test, 50 nM of enzyme was picked to be used to get full 

kinetic data. This concentration of enzyme was picked because it was in the middle of 

the ranges of enzyme concentrations used, and gave activity that could be easily 

detected and measured.
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Figure 40. Michaelis -Menten fit for Spn-LicC with phosphocholine. 

Figure 41. Residual plot for Spn-LicC with phosphocholine
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Figure 42. Michaelis-Menten fit for Spn-LicC with AEP

Figure 43. Residual plot for Spn-LicC with AEP
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Figure 44. Michaelis -Menten fit for Ari-PngC with AEP

Figure 45. Residual plot for Ari-PngC with AEP
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Figure 46. Michaelis - Menten fit (red)  and substrate inhibition fit (purple) for Ari-PngC with 
phosphocholine.

Figure 47. Residual plot for Ari-PngC with phosphocholine (Michaelis-Menten curve)  
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Figure 48. Residual plot for Ari-PngC with phosphocholine (Substrate inhibition)

Table 1. Summary of kinetic parameters for enzymes

Enzymes Substrate Km (mM) kcat (per 
second)

Ks (mM) kcat/Km      
(/s*mM)

Substrate 
Preference

Ari-PngC PC (MM) 0.026 ± 
0.097

0.344 ± 0.028 N/A 1.67 143 fold for 
AEP 

322 fold for 
AEP 

PC 
(Inhibition)

1.000 ± 
0.826

0.717 ± 0.344 3.99 ± 
3.52

0.74

AEP 0.011 ± 
0.001

2.72 ±
0.079

N/A 239

Spn-LicC PC 0.020 ± 
0.011

1.52 ±
0.243

1.53 ±
0.675

77.9 34 fold for PC

AEP 0.318 ±
0.126

0.722 ±
0.053

N/A 2.27

�74

!0.33%

!0.23%

!0.13%

!0.03%

0.07%

0.17%

0.27%

0% 1% 2% 3% 4% 5% 6%

Ra
te
%(p

er
%s
ec
on

d)
%

[phosphocholine]%mM%

Residual%Plot%8%LicC%(A.rimae)%Inhibi?on%



4. Discussion:

The  purpose of this project was to functionally characterize cytidylyltransferases 

from A. rimae and O. uli to gain insight into the mechanism behind phosphonate 

containing macromolecules. The first step to characterizing these genes was to use 

bioinformatic tools such as Phyre2 to predict the preliminary structure. Phyre2 

generated predicted structures based on amino acid sequences from the genes.  The 

predicted structures of Oul-PngC and Ari-PngC were compared with the previously 

characterized Spn-LicC. The active site of Spn-LicC was overlaid with the predicted 

active sites of Oul-PngC and Ari-PngC to see the similarities and differences. In Figure 

11, Spn-LicC  in blue is overlaid with Ari-PngC. Important active site residues necessary 

for catalysis in LicC are Asp 107, Glu 226, Asp 218 and Trp 13631,33. In Figure 11, it can 

be seen that all of these important residues are present in the Ari-PngC as well. There 

are however, subtle differences in the active sites such as the distance of the residues 

from each other, which would dictate how well a substrate can bind in the active site to 

be catalyzed efficiently. Active sites of Oul-PngC was also compared with Spn-LicC in 

Figure 12. Important residue Trp 136 is switched to Phe 105, but all the remaining 

important active site residues are conserved. These differences in the active sites point 

to this enzyme having different substrate specificity. 

The second step to characterize these genes was to clone, express and purify 

them to study their activity against various substrates. All three cytidylyltransferase 

genes were cloned and expressed in pET29, but only genes from S. pneumoniae and 

A. rimae were able to be purified successfully. Once these genes were purified, a 

pyrophosphate assay was used to determine their activity. The software R was used to 
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obtained the kinetic parameters. The first step to determining activity was to determine 

at which concentration these enzymes worked best, and to do so an enzyme -activity 

assay was performed. In this assay, different concentrations of enzyme were used with 

0.1 mM of respective substrate and rate was monitored. From Figure 38 and 39 it can 

be seen that at lower concentrations of enzyme the rate of reaction is higher. This was 

an odd behaviour exhibited by the enzymes, however it this type of relationship between 

enzyme concentration and rate is precedented. A well studied example of this type of 

relationship is the D-amino acid oxidase34,35. D-amino acid oxidase exists in an 

equilibrium state of the monomer and dimer at appropriate concentrations; however 

after more analysis it was seen that at lower enzyme concentrations, D-amino acid 

oxidase shifts to favour the monomer state, giving higher rate values34,35. The opposite 

effect was seen with higher enzyme concentrations, where the rate decreased, and the 

equilibrium was shifted to favour the dimer state.34,35. This type of relationship is not 

exclusive to D-amino acid oxidase, but also exists in purine nucleoside phosphorylase36, 

isocitrate dehydrogenase37, UMP/CMP kinase38 and many more.  Although the structure 

of Spn-LicC is classified as a dimer, under these assay conditions, it demonstrates an 

oligomeric properties. This is also observed for Ari-PngC. This type of unorthodox 

relationship is interesting, and poses the question of whether this enzyme has just a 

monomer/dimer form or does it have the capabilities to exists in many oligomeric forms. 

The information obtained from these enzyme- activity assays was used to determine a 

concentration at which kinetic parameters were calculated. The kinetic parameters and 

their summary can be found in Table 1. for both Spn-LicC and Ari-PngC. 
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The first enzyme to be characterized by this pyrophosphate assay was Spn-LicC 

This enzyme has been previously biochemically characterized and in literature has a Km 

ranging from 0.083 mM to 0.39 mM for its substrate phosphocholine, with a kcat ranging 

from 3.0/s to 17.5/s28,31. There is a discrepancy in the values obtained from this assay 

and those available in literature which could be explained by the oligomeric forms of this 

enzyme as mentioned previously. The Km and Kcat for LicC with phosphocholine (PC) 

were 0.020 ± 0.011 mM and 1.52 ± 0.243 /s respectively. Instead of a classic Michaelis 

- Menten curve, our data shows a substrate inhibition curve between LicC and 

phosphocholine, and because of this the Ks value was determined to be 1.53 ± 0.675 

mM. From literature it is known that LicC is strongly inhibited by calcium, and 

phosphocholine when bought commercially is made with calcium. Even though best 

efforts were made to remove calcium from phosphocholine through Chelax, some 

calcium may have been left behind causing LicC to be inhibited at higher concentrations 

of phosphocholine. Further methods will need to be established to measure the calcium 

concentration in phosphocholine before performing enzymatic assays. Another theory to 

support substrate inhibition for LicC with phosphocholine can be modelled to a classic 

substrate inhibition model. Enzyme inhibition is one of the common derivations from 

Michaelis- Menten kinetics, and means that the velocity curve of a reaction rises to 

maximum as substrate concentration increases and then descends either to complete 

inhibitions or to a partial inhibition39. This happens when two substrate molecules bind 

to the enzyme at the active sites and non-catalytic inhibitory sites39. In our case, at 

higher concentrations of phosphocholine, it could be binding to one enzyme active site, 

rather than binding to various different enzyme active sites, causing the velocity of the 
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curve to descend. Having kinetic parameters of LicC with phosphocholine, the next step 

was to see if this enzyme has any specificity for other substrates. The substrate of 

choice was 2-aminoethlyphosphonic acid (AEP) which is the native substrate proposed 

for phosphonate tailoring (Figure 42) . The Km value for LicC with AEP was 0.318 ± 

0.126 mM and kcat of 0.722 ± 0.053 /s. The kinetic parameters for AEP are significantly 

lower than phosphocholine. It was calculated that Spn-LicC has a 34 fold greater 

preference for phosphocholine than AEP. 

The second enzyme to be characterized was Ari-PngC. This enzyme was 

characterized with AEP, its native substrate and phosphocholine to determine substrate 

specificity of the homolog. When tested with AEP, this enzyme exhibits a classic 

Michaelis Menten fit (Figure 44), with with Km value of 0.011 ± 0.001 mM and a kcat of 

2.72 ± 0.079/s. When this enzyme was tested with phosphocholine, which is a similar 

looking substrate to AEP, the data was inconclusive. The data set could be modelled to 

both a classic Michaelis- Menten and a substrate inhibition curve, however the kinetic 

parameters that are modelled to Michaelis Mentin curve are statistically more 

significant. The residual plots for Ari-PngC with phosphocholine show high variability. 

Since phosphocholine was used and we know that Spn-LicC is inhibited by calcium, this 

could be used to explain why it is difficult to determine whether there is a substrate 

inhibition curve or a Michaelis - Menten curve. Comparing the kinetic parameters 

obtained with both substrates, it can be seen that AEP is the preferred substrate of 

choice, with a 143-322 fold greater specificity. 
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From the results obtained in our assay, Spn-LicC had a kcat of 1.52 /s with its 

native substrate phosphocholine, while Ari-PngC has a kcat of 2.72 /s for its native 

substrate AEP. It can be seen that there is a higher turnover number with Ari-PngC from 

the phosphonate biosynthesis pathway than the choline pathway. Phosphonates are 

considered to be ancient molecules and this hypothesis is supported by their presence 

founded on the Murchison meteorite40. A theory to support the observation that Ari-PngC 

found from the phosphonate pathway is more active that Spn-LicC from choline 

pathway, can be attributed to the fact that Spn-LicC could have evolved from Ari-PngC. 

Although this hypothesis is just a hypothesis, more study into phosphonate compounds 

needs to be done, in order to show any evolutionary relationship between these 

enzymes. 

The results of the bioinformatic and kinetic data together prove the hypothesis to 

be valid. After comparing the active sites of cytidylyltransferase genes, it was apparent 

that there were subtle differences in the residues surround the active site, and that 

would be most likely to accommodate different substates based on specificity. This was 

further confirmed by the kinetic data of Spn-LicC and Ari-PngC, where each enzyme 

has a preferred substrate. Spn-LicC greatly preferred phosphocholine as its substrate, 

where as Ari-PngC greatly prefers its substrate AEP. It is hypothesized that 

cytidylyltransferase genes are used to tailor macromolecules with different moieties, 

such as phosphocholine or small molecule phosphonates, which are then loaded onto 

cell wall surfaces. Many antibiotics available in the market target cell wall synthesis, but 

are broad spectrum and destroy microbes that may not be involved in pathogenicity. 

This increases the selective pressure for the pathogens that survive the antibiotic 
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attack, and allows them to replicate to become the dominant type of microbial 

population, hence causing a greater resistance. Since each of the opportunistic bacteria 

studied in this project possesses either phosphonate gene cluster, teichoic acid 

biosynthesis gene cluster or both, antibiotics can be designed to target these pathways. 

From the data presented in this project, it is evident that each cytidylyltransferase gene 

has greater specificity for their native substrate. Using this knowledge, narrow spectrum 

antibiotics can be designed to target specific cytidylyltransferase genes from either 

phosphonate or teichoic acid synthesis pathway. Inhibiting this cytidylyltransferase gene 

would stop macromolecules from being loaded onto cell wall surfaces, and may aid in 

the loss of virulence. This type of antibiotic would be beneficial because it will be very 

narrow spectrum, ensuring that no other microbe is being destroyed, hence removing 

any selective pressure to cause resistance.
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5. Future Directions and Conclusion

Many questions were answered within this project, but many remain unknown. 

Additional experiments need to be performed in order to gain further insight into 

cytidylyltransferase and their function. For example, from enzyme-activity tests of each 

enzyme it was determined that they may have more than just a dimer function. 

Experiments such as dynamic light scattering (DLS) can be completed to confirm if 

these enzyme have more oligomeric forms. In addition to DLS, crystal structure of these 

enzymes need to be solved to determine how exactly the enzyme functions, and what 

within the active site allows for specificity of certain substrates more than others. Lastly, 

it is necessary to determine if the product from enzyme catalysis is what we predict it to 

be. This can be accomplished by HPLC and mass spectrometry. 

In conclusion, there is a urgent need for new antimicrobials to overcome 

antimicrobial resistance. Phosphonates are a class of natural products that have a C-P 

bond that is more resistant to degradation. Phylogenic analyses of opportunistic 

bacteria have revealed a presence of genes necessary for phosphonate biosynthesis, 

as well as genes that are hypothesized to be involved in macromolecular tailoring. The 

genes involved in macromolecular tailoring such as PngC and PngD homolog resemble 

the genes involved in the tailoring of teichoic acids in S. pneumoniae. After further 

bioinformatic analysis it was revealed that Spn-LicC resembles PngC from A. rimae and 

O. uli. It was also revealed through kinetic analyses Spn-LicC has greater specificity for 

phosphocholine, but still has some specificity for AEP, and Ari-PngC has greater 

specificity for AEP but can still catalyze phosphocholine. If these findings are true, then 

this information can be used to design therapeutics that would target the licC locus, 
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which would disrupt the tailoring of macromolecules without harming the surrounding 

environment, and in turn lower any selective pressure on microbes from developing 

resistance. 

�82



6. References:

1.  Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett, Knight R, Gordon JI. (2007) The 
human microbiome project: exploring the microbial part of ourselves in a changing 
world. Nature. 449:804-810.

2. Blaser, MJ. (2014). MIssing microbes: how the overuse of antibiotics is fueling the 
modern plagues. Macmillan. 

 3. Government of Canada. Antimicrobial Resistance and Use in Canada. http://
www.healthycanadians.gc.ca/drugs-products-medicaments-produits/antibiotic-
resistance-antibiotique/antimicrobial-framework-cadre-antimicrobiens-eng.php. 
Accessed Oct 27, 2014.

4 Huttenhower C and Gevers D. (2012) Structure, function and diversity of the healthy 
human microbiome. Nature.486: 207–214. 

 5. Van Saene R, Fairclough S, Petros A. (1990) Broad- and narrow-spectrum 
antibiotics: a different approach. ClinMicrobiol Infect. 4:56-57. 

6.  Smil, V. (2000) Phosphorus in the environment: Natural flows and human 
interference. Annu. Rev. Energy Environ. 25, 53-88.

7. Morgan, E. (1990). Vogel’s textbook of practical organic chemistry. 5th edn. 
Endeavour. doi:10.1016/0160-9327(90)90017-L 

8. Ju, K. S., J. R. Doroghazi, and W. W. Metcalf. 2013. Genomics-enabled discovery of 
phosphonate natural products and their biosynthetic pathways. Journal of Industrial 
Microbiology and Biotechnology 24:24. 

9. Metcalf, W. W., B. M. Griffin, R. M. Cicchillo, J. Gao, S. C. Janga, H. A. Cooke, B. T. 
Circello, B. S. Evans, W. Martens-Habbena, D. A. Stahl, and W. A. van der Donk. 2012. 
Synthesis of methylphosphonic acid by marine microbes: a source for methane in the 
aerobic ocean. Science 337:1104-1107. 

10. Horiguchi, M., and M. Kandatsu. 1959. Isolation of 2-aminoethane phosphonic acid 
from rumen protozoa. Nature 184:901-902. 

11. Yu, X.; Doroghazi, J. R.; Janga, S. C.; Zhang, J. K.; Circello, B.; Griffin, B. M.; et al. 
(2013) Diversity and abundance of phosphonate biosynthetic genes in nature. PNAS. 
110, 20759- 20764.

12.Metcalf, W. W.; van der Donk, W. A.(2009) Biosynthesis of phosphonic and 
phsosphinic acid natural products. Annu. Rev. Biochem. 78, 65-94.

�83

http://www.healthycanadians.gc.ca/drugs-products-medicaments-produits/antibiotic-resistance-antibiotique/antimicrobial-framework-cadre-antimicrobiens-eng.php


13. Hilderbrand, R. L., and T. O. Henderson. 1983. Phosphonic acids in nature, p. 5-30. 
In R. L. Hilderbrand (ed.), The Role of Phosphonates in Living Systems. CRC Press, 
Boca Raton. 

14. Hori, T., and I. Arakawa. 1969. Isolation and characterization of new sphingolipids 
containing N,N-acyImethylphosphonic acid and N-aclaminoethylphosphonic acid from 
mussel, Corbicula sandai. Biochimica et Biophysica Acta 176:898-900. 

15. Korn, E. D., D. G. Dearborn, and P. L. Wright. 1974. Lipophosphonoglycan of the 
plasma membrance of Acanthamoeba castellanii. Isolation from whole amoebae and 
identification of the water-soluble products of acid hydrolysis. Journal of Biological 
Chemistry 249:3335-3341. 

16. Onderdonk, A. B., D. L. Kasper, R. L. Cisneros, and J. G. Bartlett. (1977) The 
capsular polysaccharide of Bacteroides fragilis as a virulence factor: comparison of the 
pathogenic potential of encapsulated and unencapsulated strains. The Journal of 
Infectious Diseases 136:82-89.

17. Vinogradov, E., E. E. Egbosimba, M. B. Perry, J. S. Lam, and C. W. 
Forsberg(2001)Structural analysis of the carbohydrate components of the outer 
membrane of the lipopolysaccharide-lacking cellulolytic ruminal bacterium Fibrobacter 
succinogenes S85. European Journal of Biochemistry 268:3566-3576.

18. Miceli, M. V., T. O. Henderson, and T. C. Myers. 1980. 2-aminoethylphosphonic acid 
metabolism during embryonic development of the planorbid snail Helisoma. Science 
209:1245-1247.

19. Dyhrman, S. T., J. W. Ammerman, and B. A. S. Van Mooy. (2007) Microbes and the 
marine phosphorus cycle. Oceanography 20:110-116. 

20. Clark, L.; Ingall, E. D.; Benner, R. Composition and cycling of marine organic 
phosphorus. Limnol. Oceanogr. 2001, 46, 309-320. 

21. Quin, L. D. The presence of compounds with a carbon-phosphorus bond in some 
marine invertebrates. Biochem. 1965, 4, 324-330. 

22. Peck, S. C.; Gao, J.; van der Donk, W. A.(2012) Discovery and biosynthesis of 
phosphonate and phosphinate natural products. Method. Enzymol. 516, 101-123. 

23. McGrath JW, Chin JP, Quinn JP (2013) Organophosphonates revealed: new insights 
into the microbial metabolism of ancient molecules. Nat. Rev. Microbiol. 11, 412-419.

24. Hooper LV, Midtvedt T, Gordon JI.(2002) How host-microbial interactions shape the 
nutrient environment of the mammalian intestine. Annu. Rev. Nutr. 22, 283-307.

�84



25. Kharat, A. S., and Tomasz, A. (2006) Drastic reduction in the virulence of 
Streptococcus pneumoniae expressing type 2 capsular polysaccharide but lacking 
choline residues in the cell wall. Mol. Microbiol. 60, 93–107

26. Young, N. M., Foote, S. J., and Wakarchuk, W. W. (2013) Review of phosphocholine 
substituents on bacterial pathogen glycans: synthesis, structures and interactions with 
host proteins. Mol. Immunol. 56, 563–573  

27. Weidenmaier, C., and Peschel, A. (2008) Teichoic acids and related cell-wall 
glycopolymers in Gram-positive physiology and host interactions. Nat. Rev. Microbiol. 6, 
276–287  

28 Rock, C. O., Heath, R. J., Park, H. W., & Jackowski, S. (2001). The licC Gene of 
Streptococcus pneumoniae Encodes a CTP: Phosphocholine Cytidylyltransferase. 
Journal of bacteriology, 183(16), 4927-4931.

29. Zhang, J. R., Idanpaan-Heikkila, I., Fischer, W., and Tuomanen, E. I. (1999) 
Pneumococcal licD2 gene is involved in phosphorylcholine metabolism. Mol. Microbiol. 
31, 1477–1488 

30. Zeng, X.-F., Ma, Y., Yang, L., Zhou, L., Xin, Y., Chang, L., Zhang, J.-R., and Hao, X. 
(2014) A C-terminal truncated mutation of licC attenuates the virulence of Streptococcus 
pneumoniae. Res. Microbiol. 165, 630–638 

31. Kwak B-Y, Zhang Y-M, Yun M, Heath RJ, Rock CO, Jackowski S, Park H-W (2002). 
Structure and mechanism of CTP:phosphocholine cytidyltransferase (LicC) from 
Streptococcus pneumoniae. J. Biol. Chem. 277, 4343-4350. 

32. Jackowski S and Fagone P. CTP:Phosphocholine Cytidylyltransferase: Paving the 
Way from Gene to Membrane (2005). The Journal of Biological Chemistry 280:853-856. 

33. Protein Data Bank. Catalytic Mechanism of CTP:phosphocholine 
Cytidylyltransferase from Streptococcus pneumoniae (LicC). ID: IJYL

34. Shiga, K., & Shiga, T. (1972). The kinetic features of monomers and dimers in high-
and low-temperature conformational states of D-amino acid oxidase. Biochimica et 
Biophysica Acta (BBA)-Protein Structure, 263(2), 294-303.

35.  Kunio, Yagi., Sugiura, N., Ohama, H., & Ohishi, N. (1973). Structure and Function 
of D-Amino Acid Oxidase VI. Relation between the Quaternary Structure and the 
Catalytic Activity. Journal of biochemistry, 73(5), 909-914.

36. Ropp, P. A., and Traut, T. W. (1991) Purine nucleoside phosphorylase. Allosteric 
regulation of a dissociating enzyme. J. Biol. Chem. 266, 7682–7687.

�85



37.  LéJohn, H. B., McCrea, B. E., Suzuki, I., and Jackson, S. (1969) Association-
dissociation reactions of mitochondrial isocitric dehydrogenase induced by protons and 
various ligands. J. Biol. Chem. 244, 2484–2493.

38. Maness, P., and Orengo, A. (1976) Activation of rat liver pyrimidine nucleoside 
monophosphate kinase. Biochim. Biophys. Acta 429, 182–190.

39. Yoshino, M., & Murakami, K. (2015). Analysis of the substrate inhibition of complete 
and partial types. SpringerPlus, 4, 292.

40. Cooper, G. W., Onwo, W. M., & Cronin, J. R. (1992). Alkyl phosphonic acids and 
sulfonic acids in the Murchison meteorite. Geochimica et cosmochimica acta, 56(11), 
4109-4115. 

�86



Appendix: Additional Information

A1. Vectors

pET29 vector
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pMAL Vector

A2. Primer Sequences

Gene Sequence Tm (C) Restricti
on Sites

Resistance 
Marker

LicC - A.rimae Forward: 5'-
CATATGCATCATCATCACCATCATAGCAGCGG
TGTTGATCTGGGCACCGAAAATCTGTATTTTC
AGAGC 
ATGGCTTGTGTAAAAGGTTCAAATG-3’
Reverse: 5'-CTCGAG 
CTAACTCCTCAAAAGATATACGTAG-3'

F: 68
R: 65

NdeI and 
XhoI

Kanamycin
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A3. Construct Sequences

LicC - S.pneumoniae (pET29) 

Restriction Sites: NdeI and XhoI 

Amino Acid Sequence: 
MGSSHHHHHHSSGLVPRGSHMKEIRVKAIILAAGLGTRLRPLTENTPKALVQVNQKPLI
EYQIEFLKEKGINDIIIIVGYLKEQFDYLKEKYGVRLVFNDKYADYNNFYSLYLVKEELA
NSYVIDADNYLFKNMFRNDLTRSTYFSVYREDCTNEWFLVYGDDYKVQDIIVDSKAGRI
LSGVSFWDAPTAEKIVSFIDKAYASGEFVDLYWDNMVKDNIKELDVYVEELEGNSIYEID
SVQDYRKLEEILKNEN

DNA Sequence: 
CATATGGGTTCTTCTCACCACCACCACCACCACTCTTCTGGTCTGGTTCCGCGTGG
TTCTCACATGAAAGAAATCCGTGTTAAAGCGATCATCCTGGCGGCGGGTCTGGGTA
CCCGTCTGCGTCCGCTGACCGAAAACACCCCGAAAGCGCTGGTTCAGGTTAACCA
GAAACCGCTGATCGAATACCAGATCGAATTCCTGAAAGAAAAAGGTATCAACGACAT
CATCATCATCGTTGGTTACCTGAAAGAACAGTTCGACTACCTGAAAGAAAAATACGG
TGTTCGTCTGGTTTTCAACGACAAATACGCGGACTACAACAACTTCTACTCTCTGTA
CCTGGTTAAAGAAGAACTGGCGAACTCTTACGTTATCGACGCGGACAACTACCTGT
TCAAAAACATGTTCCGTAACGACCTGACCCGTTCTACCTACTTCTCTGTTTACCGTG
AAGACTGCACCAACGAATGGTTCCTGGTTTACGGTGACGACTACAAAGTTCAGGAC
ATCATCGTTGACTCTAAAGCGGGTCGTATCCTGTCTGGTGTTTCTTTCTGGGACGC
GCCGACCGCGGAAAAAATCGTTTCTTTCATCGACAAAGCGTACGCGTCTGGTGAAT
TCGTTGACCTGTACTGGGACAACATGGTTAAAGACAACATCAAAGAACTGGACGTTT
ACGTTGAAGAACTGGAAGGTAACTCTATCTACGAAATCGACTCTGTTCAGGACTACC
GTAAACTGGAAGAAATCCTGAAAAACGAAAACTAACTCGAG

LicC - O.uli 
(MBP)

Forward: 5’-GAAGGATTTC ATG GCA GCA 
GGT CTG GGT AC-3’
Reverse: 5’-GCGGCCG TTA ACC TTC ATC AAT 
ATT GCT ACG-3’

F: 64
R: 64

NotI and 
XmnI

Carbenicillin 

LicD - O. uli 
(MBP)

Forward: 5’-GAAGGATTTC ATG CGT GAA TAT 
GAT GCA GAA AC-3’
Reverse: 5’-GCGGCCG TTA ATA GGC ACC 
AAA ATC CAG AC-3’

F: 64
R: 64

NotI and 
XmnI

Carbenicillin 

Gene Sequence Tm (C) Restricti
on Sites

Resistance 
Marker
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LicC - A. rimae (pET29)

Restriction Sites: NdeI and XhoI

Amino Acid Sequence:
CATATGCATCATCATCACCATCATAGCAGCGGTGTTGATCTGGGCACCGAAAATCTG
TATTTTCAGAGCATGGCTTGTGTAAAAGGTTCAAATGCCGAGAAGACCAATGCGATT
ATAATGGCGGCGGGATTGGGAACGCGCATGGCACCTCTCACCAAAACCACACCTAA
GCCGTTGATTTCGGTCAACGGAACGCCGATGATTGAAACGGTCATCAATGCGCTGG
TTACGGCCGGCGTTGAGAGGATCTCTGTGGTTGTCGGGTATCTCAAAGAGCAGTTT
TGCTATCTTGAGGAGCGCTATCCGGCCGTAGTGCTTGTTGAGAACACGGAGTATTT
GGAGAAGAATAACATCTCATCAATATATGCCGCCGTTGACGTTCTTGAGCAGGGGG
CTACGTTTATTTGCGAGGCTGACCTGGTTATTTCAGATGAGCATATTTTCCAACCACG
GCCTTCTCGGTCGTGCTATTTTGGCCGTAAGTTTTCCGGCCATACGGGCGACTGGG
TGTTTGACCTTGACGATTCGGGAAAGATTGTCCGAATCGGCAAAGGCGGCAGCGAT
ACGTATGCCATGGTGGGACTGTCGTACTTCTCGGCACCGGATGCAAAGCGTTTGGC
ACGGTTTATGCATGATGCCTACAAAGAGACCGGCCACGAGCAGCTCTTTTGGGATG
ATGTGGTGAATAACCATATTGCCGAATTAGATCTTTCAATTCACCCCGTTGAGGCACA
GCAAATTGCGGAGCTTGATAGCGTTGCGGAATTGGCGGCGTTTGACCATGGCTACG
TATATCTTTTGAGGAGTTAG 

DNA Sequence: 
MACVKGSNAEKTNAIIMAAGLGTRMAPLTKTTPKPLISVNGTPMIETVINALVTAGVERI
SVVVGYLKEQFCYLEERYPAVVLVENTEYLEKNNISSIYAAVDVLEQGATFICEADLVIS
DEHIFQPRPSRSCYFGRKFSGHTGDWVFDLDDSGKIVRIGKGGSDTYAMVGLSYFSAP
DAKRLARFMHDAYKETGHEQLFWDDVVNNHIAELDLSIHPVEAQQIAELDSVAELAAFD
HGYVYLLRS

LicC - O. uli (pET29)/ (pMAL)

Restriction Sites (pET29): NdeI and XhoI 
Restriction Sites (pMAL): NotI and XmnI

Amino Acid Sequence:
CATATGCATCATCATCACCATCATAGCAGCGGTGTTGATCTGGGCACCGAAAA
TCTGTATTTTCAGAGCATGGCAGCAGGTCTGGGTACACGTATGGCACCGCTG
ACCCAGATGACCCCGAAACCGCTGATTCGTGTTAATGGCACCCCGATGATTG
AAAGCGTTATTAATGCACTGGAAGCAGCCGGTGTGGCATGTATTTATGTTGTT
GTTGGTTATCTGAAAGATCAGTTCCGCTATCTGGAAGAACGTTATGGTCCGG
TTAAACTGATTGAAAATCCGGAATATCTGAGCAAAAACAACATCAGCAGCATT
TATGCAGCCATTGAAGTTCTGGAACAGGGTGATGCATTTATTTGTGAAGCAGA
TCTGGTTGTTAGCGAAAGCGGTATTTTTAGCGATCTGCCGAGCAAAAGCTGT
TATTTTGGTCGTATGACCGAAGGCTATACAGATGATTGGGCATTTGATCTGGA
TACCACCGGTCGTATTACCCGTGTTGGTAAAGGTGCAGTTAATAGCTATGCAA
TGGTTGGCATCAGCTTTTTCAAAGGTGGTGATGCAGCACATCTGGCACGTTG
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TATTCGTAGCGCATATACCCAAGAAGGTCACGAACGTCTGTTTTGGGATGATA
TTGTGAACCAGCACATCGATGAATTCGATCTGCGTATTCGTCCGGTTCTGGA
AGGTCAGGTTGTGGAACTGGATACAATTGAAGAACTGGCAGCCTTTGATCCG
AGCTATAGCGATCAGCTGCGTAGCAATATTGATGAAGGTTAACTCGAG

DNA Sequence: 
MIESVINALEAAGVACIYVVVGYLKDQFRYLEERYGPVKLIENPEYLSKNNISSIYAAIE
VLEQGDAFICEADLVVSESGIFSDLPSKSCYFGRMTEGYTDDWAFDLDTTGRITRVGK
GAVNSYAMVGISFFKGGDAAHLARCIRSAYTQEGHERLFWDDIVNQHIDEFDLRIRPVL
EGQVVELDTIEELAAFDPSYSDQLRSNIDEG

LicD - O.uli (pMAL)

Restriction Sites: NotI and XmnI

Amino Acid Sequence:
CATATGCATCATCATCACCATCATAGCAGCGGTGTTGATCTGGGCACCGAAAA
TCTGTATTTTCAGAGCATGCGTGAATATGATGCAGAAACCCTGCGTCATGTTC
AGCAGTGTGAACTGAAAATTCTGAAAGATGTTGCCCGTATTTGTGATGGTCA
GGGTCTGACCTATTTTGGTCTGGCAGGCACCGGTATTGGTGCAATTCGTCAT
AAAGGTTTTATTCCGTGGGATGATGATATTGATATTGGTATGCCTGCACGTGAT
CTGGAACAGCTGGTTAAAATCATTCGTGAAGAACATGCAGGCACCTATGATG
TTATTAACGCCGATATCGATAGCAATTATCCGCTGGCAACCACCCGTATTATGC
TGAAAGGCACCCAGTTTTGTGAAGAAACACTGAGCGAACTGCCGCTGGATC
TGGGTATTTTTCTGGATATGTATGCCTTTGATAACGTGGCCGATGATGAAAAT
GCATATCGTAAACAGGCATGGGATGCATGGTTTTGGGCACATATTCGTATTCT
GATTAGCGTTAGCCATCCGGTTATTCAGGTTCGTGGTTGGCGTGGTCTGCTG
CTGCGTTTTGCATGTGCGGGTGCACATGCCTTTGCACGTATTCTGCGTATTA
GTCCGGAATTTGCCTATCGTAAAGAACGTGAAGCACGTCGTCGTTATGCAAA
TGAAGCGACCAGCCGTATTGGTTATCTGTGTGATACCAATCGTTTTACCCAGA
CCTATGCCTGGGATGATATTAAACCGTTTCTGGACCTGGATTTCGAGGATATG
AAACTGCATTTTCCGCGTGAAATTGATGCAATGCTGCGTGAAATGTTTGGCG
ATTATATGCAGCTGCCTCCGGTTGAAAAACGCAAAAATCATTTTCCGGCACGT
CTGGATTTTGGTGCCTATTAACTCGAG

DNA Sequence: 
MREYDAETLRHVQQCELKILKDVARICDGQGLTYFGLAGTGIGAIRHKGFIPWDDDIDIG
MPARDLEQLVKIIREEHAGTYDVINADIDSNYPLATTRIMLKGTQFCEETLSELPLDLGI
FLDMYAFDNVADDENAYRKQAWDAWFWAHIRILISVSHPVIQVRGWRGLLLRFACAGA
HAFARILRISPEFAYRKEREARRRYANEATSRIGYLCDTNRFTQTYAWDDIKPFLDLDFE
DMKLHFPREIDAMLREMFGDYMQLPPVEKRKNHFPARLDFGAY
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A4. PCR Conditions 

A5. PCR Conditions with a set temperature

A6. TAE Buffer Preparation
To make the 25X TAE stock solution: 

-  Add 141g of Tris base, 28.55 mL glacial acetic acid and 9.3g of EDTA to about 
900mL of  
distilled water 

-  Adjust to 1L with additional distilled water 

To make the 1X TAE buffer used in the gel electrophoresis apparatus: 

-  Add 40mL of the 10X TAE buffer stock to a glass container 

-  Fill the glass container up to 1L with distilled water  

Step Temperature (C) Time (min:sec)

1 94 2:00

2 94 0:15

3 Gradient 50-65 0:10

4 72 1:10, return to step 2*30

5 72 5:00

6 4 Infinite hold

Step Temperature (C) Time (min:sec)

1 94 2:00

2 94 0:15

3 Desired temperature (eg 65) 0:10

4 72 1:10, return to step 2*30

5 72 5:00

6 4 Infinite hold
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A7. Competent cell protocol

 -Streak a glycerol freezer stock of E.coli DH5α or BL21 onto LB-agar plates and grow 
overnight at 37oC 

-  A single colony was picked and used to inoculate 50mL of LB 

-  Culture allowed to grow at 37 oC until OD600 reached approximately 0.5 

-  The culture was transferred to 2 ice-cold sterile 50mL conical tubes which were left 
to sit for 10 minutes 

-  The cultures were then centrifuged at 4oC for 10 min at 2700xg 

-  Supernatant was poured off and the cells were resuspended in 10 mL of 0.1mM ice-
cold CaCl2 

-  Samples were centrifuged once more using the previous two steps 

-  Supernatant was poured off and the pellets were resuspended in 2mL of 0.1mM 
CaCl2 with 15% (w/w) glycerol 

-  The solution was dispensed into 150 uL aliquots 

-  The aliquots were flash frozen using liquid nitrogen and stored at -80oC 

A8. LB and LB-agar 

Preparation of LB media: 

-  Add 2.5 g of LB broth to a glass jar 

-  Top up to 100mL with distilled water

-  Autoclave

Preparation of LB-agar: 

-  Add 2.5g of LB broth to a glass jar 

-  Add 1.5g of agar 

-  Top up to 100mL with distilled water 

-  Autoclave  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A9. Preparation of pET29 extracts for ligation 

-  Streak glycerol freezer stock of pET29 sghf onto LB-agar plates 

-  Incubate at 37oC overnight 

-  Pick a single colony into 3 mL and allow to grow at 37oC in LB media with kanamycin 
overnight

-  Mini-prep the culture

 - Perform a restriction digest of the resulting DNA sample and run on a gel 

 - Cut out the top pET29 band (about 5 kb) 

-  Perform a gel extract  

 A10. Phosphate Buffers for Purification 

Cell Lysis:  50 mM NaPO4 + 300 mM NaCl pH 7.4

- Add 900 mL of Milli-Q water to beaker

- Add 3.87 mL of 1M Na2HPO4

- Add 1.13 mL of 1M NaH2PO4

- Add 17.53 g of NaCl

- Adjust pH to 7.4 with HCl

- Top up to 1L with Milli-Q water

Wash Buffer:  50 mM NaPO4, 20 mM imidazole pH 7.4

- Add 200 mL of Milli-Q water to beaker

- Add 0.97 mL of 1 M Na2HPO4

- Add 0.28 mL of 1M NaH2PO4

- Add 0.34 g of imidazole 

- Adjust pH to 7.4 with HCl

- Top up to 250 mL with Milli-Q water

Elution Buffer: 50 mM NaPO4, 250 mM imidazole pH 7.4
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- Add 200 mL of Milli-Q water to beaker

- Add 0.97 mL of 1 M Na2HPO4

- Add 0.28 mL of 1M NaH2PO4

- Add 4.25 g of imidazole 

- Adjust pH to 7.4 with HCl

- Top up to 250 mL with Milli-Q water

Desalting Buffer: 50 mM NaPO4 pH 8

- Add 900 mL of Milli-Q water to beaker

- Add 3.87 mL of 1M Na2HPO4

- Add 1.13 mL of 1M NaH2PO4

- Adjust pH to 8

- Top up to 1L with Milli-Q water

A11. Tris Buffers for Purification (DTT+AmSO4) 

Cell Lysis: 10 mM Tris, 100 mM NaCl, 2 mM DTT pH 7.5

- Add 80 mL of Milli-Q water to beaker

- Add 0.121 g Tris

- Add 0.584 g NaCl

- Add 0.031 g DTT

- Adjust pH with HCl to 7.5

- Top to 100 mL with Milli-Q water

Wash Buffer: 10 mM Tris, 0.02 M imidazole pH 7.5

- Add 80 mL of Milli-Q water to beaker

- Add 0.121 g Tris

- Add 0.136 g imidazole

- Adjust pH with HCl to 7.5

�95



- Top to 100 mL with Milli-Q water

Elution Buffer: 10 mM Tris, 0.25 M imidazole pH 7.5

- Add 80 mL of Milli-Q water to beaker

- Add 0.121 g Tris

- Add 1.70 g imidazole

- Adjust pH with HCl to 7.5

- Top to 100 mL with Milli-Q water

Desalting Buffer: 10 mM Tris, 100 mM NaCl, 2 mM DTT and 25% (1M) AmSO4

- Add 80 mL of Milli-Q water to beaker

-  Add 0.121 g Tris

- Add 0.584 g NaCl

- Add 0.031 g DTT

- Add 13.21 g of AmSO4

- Adjust pH with HCl to 7.5

- Top to 100 mL with Milli-Q water

A12. FPLC Buffers

Buffer A: 

-  Add 1.211g of tris to a beaker 

-  Add 400mL of Milli-Q water 

-  Adjust the pH with HCl to 7.5 

- Top up to 500 mL with Milli-Q water  

Buffer B:

-  Add 0.6055g Tris to a beaker 

-  Add 14.39g of NaCl 

-  Add about 200 mL of Milli-Q water 
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-  Adjust the pH to 7.5 using HCl 

-  Top up to 250 mL with Milli-Q water  

A13. SDS PAGE Buffer

Preparation of SDS 10X Running Buffer: 

-  Add 144g glycine to a flask 

-  Add 30.2g Tris base 

-  Dissolve together in 800mL of distilled water 

- Add 10g SDS and mix 

- Top up to 1L with Milli-Q water

Preparation of SDS 1X Running Buffer: 

-  Add 100mL of the 10X stock SDS buffer to a 1L glass container 

-  Top up to 1L with Milli-Q water  

A14. Bradford Reagent

To prepare 250mL of Bradford reagent: 

-  Add 25 mg of Coomassie blue to a beaker 

-  Add 12.5% mL of 95% ethanol 

-  Add 25 mL of phosphoric acid 

-  Top up to 250mL with Milli-Q water 

A15. Bradford assay controls to create the standard curve

BSA (bovine serum albumin) = control protein at concentration of 2 mg/mL 

- Vial 1- 0 ug BSA (reference for the spec)

- Vial 2- 0 ug BSA

- Vial 3- 10 ug BSA

- Vial 4- 20 ug BSA
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- Vial 5- 30 ug BSA

- Vial 6- 40 ug BSA 

- Sample vials contained 5 ng of sample

- All vials were topped up to 100 mL with sterile water

- 5mL of Bradford reagent was then added to each vial

- Let sit for about 5 minutes

- Take an absorbance reading at OD595 for each cuvette and create a standard curve 

A16. Chelax Protocol

- Make 100 mM of Phosphocholine in 10 mL of Milli-Q water

- Make Chelax resin

- 2.68 g of chelax in 6.58 mL of Milli-Q water

- Add resin to column and allow to run through

- Add 10 mL of phosphocholine to the column, and collect the flow through

- Add 0.5 g of addition Chelax to the flow-through collect and stir gently for 1 hour

- After 1 hour, filter the sample and aliquot into small portions
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