
Wilfrid Laurier University Wilfrid Laurier University 

Scholars Commons @ Laurier Scholars Commons @ Laurier 

Theses and Dissertations (Comprehensive) 

2016 

Computing closed forms for the convergent series $\displaystyle\Computing closed forms for the convergent series $\displaystyle\

sum_{n \in \mathbb{Z}}\frac{1}{(n^3+Bn^2+Cn+D)^k}$ sum_{n \in \mathbb{Z}}\frac{1}{(n^3+Bn^2+Cn+D)^k}$ 

Gagandeep K. Virk 
virk3130@mylaurier.ca 

Follow this and additional works at: https://scholars.wlu.ca/etd 

 Part of the Analysis Commons, and the Discrete Mathematics and Combinatorics Commons 

Recommended Citation Recommended Citation 
Virk, Gagandeep K., "Computing closed forms for the convergent series $\displaystyle\sum_{n \in 
\mathbb{Z}}\frac{1}{(n^3+Bn^2+Cn+D)^k}$" (2016). Theses and Dissertations (Comprehensive). 1886. 
https://scholars.wlu.ca/etd/1886 

This Thesis is brought to you for free and open access by Scholars Commons @ Laurier. It has been accepted for 
inclusion in Theses and Dissertations (Comprehensive) by an authorized administrator of Scholars Commons @ 
Laurier. For more information, please contact scholarscommons@wlu.ca. 

https://scholars.wlu.ca/
https://scholars.wlu.ca/etd
https://scholars.wlu.ca/etd?utm_source=scholars.wlu.ca%2Fetd%2F1886&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/177?utm_source=scholars.wlu.ca%2Fetd%2F1886&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/178?utm_source=scholars.wlu.ca%2Fetd%2F1886&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.wlu.ca/etd/1886?utm_source=scholars.wlu.ca%2Fetd%2F1886&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarscommons@wlu.ca


Computing closed forms for the convergent series∑
n∈Z

1

(n3 +Bn2 + Cn +D)k

by

Gagandeep-Kaur Virk

THESIS

Submitted to the Department of Mathematics, Faculty of Science

in partial fulfillment of the requirements for

the degree of Master of Science in Mathematics

Wilfrid Laurier University

c©Gagandeep-Kaur Virk, September 27, 2016



Abstract

In this thesis we discuss the various approaches that will be taken to evaluate and

find a finite closed form for the sum

∑
n∈Z

1

(n3 +Bn2 + Cn+D)k

where B,C,D ∈ C and k is a positive integer. We begin this thesis by studying the cu-

bic equations and discussing briefly various methods of finding their roots. Cardano’s

method (1545) for finding the roots of cubic polynomials is explored in detail as this

method is used in later parts of the thesis to make calculations while evaluating the

sums. Various tools and techniques from Fourier analysis are reviewed for these aid in

computing the sums. To obtain finite closed forms for the sums
∑

n∈Z
1

(n3+Bn2+Cn+D)k
,

we make use of different methods and approaches from combinatorics and identities

involving well-known trigonometric functions.
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Chapter 1

Introduction

This thesis is an attempt to evaluate the closed forms for the sums
∑

n∈Z
1

n3+Bn2+Cn+D

and
∑

n∈Z
1

(n3+Bn2+Cn+D)k
. The thesis is divided into four chapters that are further

divided into sub-sections. Chapter 1 of the thesis outlines the subject and background

required for the research. Chapter 2 discusses the tools and techniques of Fourier anal-

ysis that shall be used to compute the closed forms for the sums
∑

n∈Z
1

n3+Bn2+Cn+D

and
∑

n∈Z
1

(n3+Bn2+Cn+D)k
in the later parts of the chapter. In Chapter 3, we evalu-

ate the sums by using different approaches, namely, by connecting the sums to the

cotangent function. Chapter 4 summarizes and binds together the results derived in

the earlier chapters and future directions for these results. We start this chapter by

discussing the background required for the subject of research.

1.1 Motivation: The Riemann zeta function

An important function in mathematics is the Riemann zeta function, ζ(s). The

Riemann zeta function, also known as the Euler-Riemann zeta function, is defined by
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the following absolutely convergent series,

ζ(s) =
∞∑
n=1

1

ns

where s ∈ C with Re(s) > 1.

This function was first introduced by Euler in the early eighteenth century. In

1859, its interpretation was extended to complex variables by Bernard Riemann in [4].

Euler computed the values of ζ(s) for positive even integers [21]. The most commonly

discussed value of ζ(s) for positive even integers is that of ζ(2) which appears in a

number of research papers and publications (for example, [2], [6], [22]). Euler proved

that

ζ(2) =
∞∑
n=1

1

n2
=
π2

6

and more generally that

ζ(2k) =
∞∑
n=1

1

n2k
= (−1)k−1

B2k(2π)2k

2(2k)!
,

where Bk denotes the kth Bernoulli number. With Lindemann’s work [10] in 1882

showing that π is transcendental, it was effectively proved that the values of ζ(2n),

where n ∈ N, were transcendental too. The examination of ζ(2n + 1) is somewhat

difficult to examine and is still unsolved. Though Apéry [1], in 1979, proved that

ζ(3) is irrational, the irrationality of ζ(2n + 1) for n > 1 is still unknown. Due to

this contribution by Apéry, ζ(3) is known as Apéry’s constant. Ball and Rivoal [3]

proved that ζ(2n + 1) is irrational for infinitely many positive integers. Rivoal [14]

also showed that at least one of ζ(5), ζ(7), ζ(9), . . . , ζ(21) is irrational. In 2001,

Zudilin [25] who improved the results of Rivoal and Ball by showing that at least one

of ζ(5), ζ(7), ζ(9), or ζ(11) is irrational.

The Riemann zeta function is closely related to the prime number theorem. Euler
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discovered an important formula involving a product over primes, given by,

∏
p

(1− p−s)−1 = ζ(s)

and hence, the name Euler product was given to this formula. Whilst a number of

properties of ζ(s) have been studied and explored, there are significant fundamental

postulations that are still unproved. One such conjecture is the Riemann Hypothesis.

The function ζ(s) has two different types of zeroes. The “trivial” zeroes occur at all

negative even integers s = −2,−4,−6, . . . and the “non-trivial” zeroes occur at certain

complex numbers s = σ + it. The Riemann Hypothesis states that the real part of

these non-trivial zeroes all lie on a line called the “critical line” where Re(s) = σ = 1
2
.

To this day, 250 × 109 non-trivial roots of ζ(s) have been found and all are on the

critical line [23].

With such important conjectures still remaining unproved, it becomes crucial to

explore and analyze mathematical expressions involving or related to ζ(s) in one way

or another. In the note [13], Murty and Weatherby have elegantly worked out closed

forms for the related sum ∑
n∈Z

1

n2 +Bn+ C

and more generally for ∑
n∈Z

1

(n2 +Bn+ C)k
(1.1)

where B,C ∈ C and k is a positive integer, by using concepts of Fourier analysis and

combinatorics. In [13], the authors use Fourier analysis to show that for B,C ∈ C
with −D = B2 − 4C such that n2 +Bn+ C 6= 0 for any integer n, we have

∑
n∈Z

1

n2 +Bn+ C
=

2π√
D

(
e2π
√
D − 1

e2π
√
D − 2 cos(Bπ)eπ

√
D + 1

)

3



and also that
∑

n∈Z
1

(n2+Bn+C)k
is equal to

2π(−4)k−1

(k − 1)!

[
1√
D

(
1

eBπi+π
√
D − 1

− 1

eBπi−π
√
D − 1

)](k−1)
The authors of [13] also described how methods of combinatorics can be used to

find a closed form for (1.1). In [13], it is proved that

Theorem 1.1 ([13], Theorem 3) For B,C ∈ C with −D = B2 − 4C such that n2 +

Bn+C 6= 0 for any integer n, and k a positive integer, we have that
∑

n∈Z
1

(n2+Bn+C)k

is equal to

2π
√
D

Dk

k−1∑
r=0

(
2k − 2− 2r

k − 1− r

) ∑
b1,...,br

(2π)RD
R
2 Cb1

0 · · ·Cbr
r−1

b1! · · · br!
×

R+1∑
s=1

(
(s− 1)!S(R + 1, s)

(eBπi+π
√
D − 1)s

− (−1)R(s− 1)!S(R + 1, s)

(eBπi−π
√
D − 1)s

)

where the summation in bi’s is over all nonnegative solutions to b1+2b2+ · · ·+rbr = r

and where R = b1+· · ·+br, Cm is the mth Catalan number and S(R+1, s) is a Stirling

number of the second kind. The sum lies in πQ(
√
D, eπ

√
D, eBπi)[π] with πk being the

largest power of π present.

Inspired by the necessity to consider and study mathematical expressions related

to ζ(s) in some way or another, we attempt to evaluate the convergent series

∑
n∈Z

1

n3 +Bn2 + Cn+D
(1.2)

and more generally ∑
n∈Z

1

(n3 +Bn2 + Cn+D)k
(1.3)

for parameters B,C,D ∈ C and positive integer k.
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Since we are looking at series that involve cubic polynomials, it is important that

we discuss cubic functions and methods for finding their roots.

1.2 Cubic equations and Cardano’s method

A function of the form,

f(x) = ax3 + bx2 + cx+ d (1.4)

with a 6= 0, is known as the cubic function. With f(x) = 0, it produces a cubic

equation

ax3 + bx2 + cx+ d = 0. (1.5)

The solutions of (1.5) are the roots of (1.4).

If the coefficients a, b, c and d are all real, (1.5) will have at least one real root

and if the coefficients of (1.5) are complex and not all real, there will be at least

one complex root. The roots of (1.5) can be found either algebraically by finding

the discriminant of (1.5) or trigonometrically by dividing (1.5) by a and substituting

t− b
3a

for x and reducing it to a depressed cubic of the form,

t3 + pt+ q = 0. (1.6)

The roots of (1.5) can also be found by factorization if one root, r is known.

Equation (1.4) can be factored as

ax3 + bx2 + cx+ d = (x− r)(ax2 + (b+ ar)x+ c+ br + ar2). (1.7)

Hence, if we know at least one root r of (1.5) (by the guess and check method or

rational root test, etc.) we can find the other roots by finding roots of the quadratic

factor on the right hand side of (1.7).

Other than the methods discussed above, the solutions to the cubic equation (1.5)

5



can also be derived using a number of different methods such as Cardano’s method [5],

Vieta’s substitution [17] or Lagrange’s method [9]. For working out the calculations

required for this thesis, we have made use of Cardano’s method to derive roots of a

cubic equation. Cardano’s derivation of the roots is as follows. We have a given cubic

equation

ax3 + bx2 + cx+ d = 0

with a 6= 0.

The previous equation is divided by a on both the sides to get

x3 +Bx2 + Cx+D = 0

where B = b
a
, C = c

a
, D = d

a
. Substituting values of x as x = y − B

3
and simplifying

the previous equation becomes

y3 +

(
C − 1

3
B2

)
y +

(
2

27
B3 − 1

3
BC +D

)
= 0. (1.8)

Substituting values of p =
(
C − 1

3
B2
)

and q =
(

2
27
B3 − 1

3
BC +D

)
in (1.8), we obtain

a depressed cubic of the form

y3 + py + q = 0 (1.9)

We know that the discriminants of a cubic equation a′x31 + b′x21 + c′x1 + d′ = 0 are

given by

∆0 = b′
2 − 3a′c′

∆1 = 2b′3 − 9a′b′c′ + 27a′
2
d′

∆ =
−1

27a′2
(∆2

1 − 4∆3
0)

6



This implies for (1.8), we have

∆0 = −3p

∆1 = 27q

∆ =
−1

27
(27q2 − 4(−3p)3)

= −(27q2 + 4p3) (1.10)

We shall make use of (1.10) in later sections to compute the sums (1.2) and (1.3).

Making the substitution y = z − p
3z

and simplifying (1.9) we obtain a quadratic

equation in z3 of the form

z6 + qz3 − p3

27
= 0.

Solutions to this quadratic equation are given by,

z3 =
−q ±

√
q2 + 4p3

27

2

or say by:

z3 =
−q
2
±
√(q

2

)2
+
(p

3

)3
.

If we let M be the solution to z3 with (+) and N be the solution to z3 with (−),

M =
−q
2

+

√(q
2

)2
+
(p

3

)3
, N =

−q
2
−
√(q

2

)2
+
(p

3

)3
, (1.11)

and let ω = e
2πi
3 , a cubic root of unity, we obtain six solutions for z:

z1 =
3
√
M, z2 =

3
√
Mω,

z3 =
3
√
Mω2, z4 =

3
√
N,

z5 =
3
√
Nω, z6 =

3
√
Nω2

7



Taking a closer look at M and N , we find that 3
√
M 3
√
N is equal to

3

√
−q
2

+
√(

q
2

)2
+
(
p
3

)3
.

3

√
−q
2
−
√(

q
2

)2
+
(
p
3

)3
= 3

√(−q
2

)2 − (√( q
2

)2
+
(
p
3

)3)2

.

Simplifying this, we get
3
√
M

3
√
N =

−p
3
. (1.12)

Recall that y = z − p
3z

. Putting z1 into this equation, we obtain

y =
3
√
M − p

3 3
√
M
.

The previous equation can be further modified by making the identity (1.12) to obtain

y =
3
√
M +

3
√
N.

Similarly, putting z2, z3, . . . , z6 into the equation for y and making modifications using

(1.12), we find three distinct values for y

y1 =
3
√
Mω +

3
√
Nω2, y2 =

3
√
Mω2 +

3
√
Nω, y3 =

3
√
N +

3
√
M

Recall our substitution x = y − B
3

, or y = x + B
3

. By back substitution of y1, y2, y3,

we find that the three roots of the original cubic equation x3 +Bx2 +Cx+D = 0 are

x1 =
3
√
M +

3
√
N − B

3

x2 =
3
√
Mω +

3
√
Nω2 − B

3
, (1.13)

x3 =
3
√
Mω2 +

3
√
Nω − B

3
.

8



or more generally

x1 =
3
√
M +

3
√
N − b

3a
,

x2 =
3
√
Mω +

3
√
Nω2 − b

3a
(1.14)

x3 =
3
√
Mω2 +

3
√
Nω − b

3a

where M = −q
2

+
√(

q
2

)2
+
(
p
3

)3
, N = −q

2
−
√(

q
2

)2
+
(
p
3

)3
, p =

(
C − 1

3
B2
)

= c
a
− 1

3

(
b
a

)2
and q =

(
2
27
B3 − 1

3
BC +D

)
= 2

27

(
b
a

)3 − 1
3
bc
a2

+ d
a
.

It is clearly evident from (1.13) and (1.14), that if coefficients of the cubic equation

x3 + Bx2 + Cx + D = 0 or more generally, the coefficients of the cubic equation

ax3 + bx2 + cx + d = 0 are real, there will be at least one real root to the cubic

equation given by x1 from (1.13) since M and N are real in that case.

In the following sections, we will make use of the roots found using Cardano’s

method in order to analyze the sums (1.2) and (1.3).

9



Chapter 2

Evaluating the sum using Fourier

Analysis

In this chapter, we shall evaluate the closed forms for the sums of the form∑
n∈Z

1
n3+Bn2+Cn+D

and
∑

n∈Z
1

(n3+Bn2+Cn+D)k
using methods of Fourier analysis. We

first discuss briefly the tools and techniques of Fourier analysis that shall be used to

examine the sums.

2.1 Fourier Analysis

It is assumed that the reader has preliminary background knowledge of Fourier trans-

forms and series. The reader is referred to [15] for an introduction to the subject.

Some of the fundamental facts of Fourier analysis are reviewed herein.

For a function f(x) ∈ L1[0, 1], the set of 1-periodic, Lebesgue integrable functions

with ∫ 1

0

|f(x)| dx <∞,

10



the mth Fourier coefficient is defined by

fm =

∫ 1

0

f(x)e−2πimxdx.

Given this definition, the Fourier series associated with f(x) is given by

∑
m∈Z

fme
2πimx.

Note that if the function f is differentiable, then the Fourier series associated with

the function converges to the function f . It is also known that the Fourier series of f

at x converges to
f(x+) + f(x−)

2

if the function f is piecewise smooth. A function as such is said to satisfy Dirichlet’s

conditions [16]. Such a function f is said to be piecewise smooth if it can be broken

into distinct pieces for which both the function f and its derivative f ′ are continuous

functions and where the only admissible discontinuities are jump discontinuities. It

should be noted that it is not easy to precisely deduce the convergence of the Fourier

series for a given function f to the function f . For convergence purposes, here we

only study piecewise smooth functions f ∈ L1(R) which form the set of Lebesgue

integrable functions satisfying ∫ ∞
−∞
|f(x)|dx <∞.

The Fourier transform for such functions is defined as

f̂(u) =

∫ ∞
−∞

f(x)e−2πixudx.

If for f ∈ L1(R), we have f̂ ∈ L1(R), we can relate f to the Fourier transform of f̂

giving the following inversion formula.

11



Lemma 2.1 (Inversion Formula) For f, f̂ ∈ L1(R), we have

f(x) =

∫ ∞
−∞

f̂(u)e2πixudu,

implying
̂̂
f(x) = f(−x).

The proof of inversion formula is not obvious and the reader is referred to [15] for

a detailed derivation of it.

Related to Fourier transforms is the notion of convolution of two functions. If

f, g ∈ L1(R), then f ∗ g ∈ L1(R) is defined by

(f ∗ g)(x) =

∫ ∞
−∞

f(y)g(x− y)dy,

and is called the convolution of the functions f and g. The Fourier transform trans-

lates between convolution and multiplication of functions.

Theorem 2.2 (Convolution Theorem) If f, g ∈ L1(R1) with Fourier transforms f̂ , ĝ

respectively, then the Fourier transform of convolution of the two functions is given

by the product of their Fourier transforms. That is, given

h(x) = (f ∗ g)(x) =

∫ ∞
−∞

f(y)g(x− y)dy,

we have

ĥ(u) = f̂(u)ĝ(u).

Proof: The proof of this theorem is followed from [20]. By the definition of Fourier

12



transforms,

ĥ(u) =

∫ ∞
−∞

h(z)e−2πizudz

=

∫ ∞
−∞

(∫ ∞
−∞

f(x)g(z − x)dx

)
e−2πizudz

=

∫ ∞
−∞

f(x)

(∫ ∞
−∞

g(z − x)e−2πizudz

)
dx

We substitute y = z − x; then, dy = dz. Thus,

ĥ(u) =

∫ ∞
−∞

f(x)

(∫ ∞
−∞

g(y)e−2πi(y+x)udy

)
dx

=

∫ ∞
−∞

f(x)e−2πixu
(∫ ∞
−∞

g(y)e−2πiyudy

)
dx

=

∫ ∞
−∞

f(x)e−2πixudx

∫ ∞
−∞

g(y)e−2πiyudy

= f̂(u)ĝ(u).

We now state and prove a version of Poisson’s summation formula using the tools

that we have discussed so far. The version presented here is fairly simple, particularly

useful for our purposes, and has a concise and elementary proof. There are stronger

versions of the formula and we refer the reader to [7] for the stronger versions where

the assumptions made on the function f are minimal. The proof here follows [12].

Theorem 2.3 (Poisson Summation) If f ∈ L1(R) is continuous and piecewise smooth

where the sum ∑
m∈Z

f(m+ v)

converges absolutely and uniformly in v, and if

∑
m∈Z

|f̂(m)| <∞

13



then ∑
m∈Z

f(m+ v) =
∑
m∈Z

f̂(m)e2πimv.

Proof: We let F (v) =
∑
m∈Z

f(m+v). F is a continuous and piecewise smooth periodic

function in v with period 1, by the assumption of absolute and uniform convergence.

Thus, F can be viewed as a function on [0, 1] and the Fourier coefficients can be

calculated directly.

Fm =

∫ 1

0

F (v)e−2πimvdv

=
∑
n∈Z

∫ 1

0

f(n+ v)e−2πimvdv.

Replacing x = n+ v we obtain

Fm =
∑
n∈Z

∫ n+1

n

f(x)e−2πimxdx

=

∫ ∞
−∞

f(x)e−2πimxdx = f̂(m).

Since
∑
m∈Z

|f̂(m)| <∞, the Fourier series for F converges and we have that

∑
m∈Z

f(m+ v) = F (v) =
∑
m∈Z

Fme
2πimv =

∑
m∈Z

f̂(m)e2πimv.

The tools and techniques of Fourier analysis discussed here shall be helpful in

finding explicit closed forms for the sums
∑

n∈Z
1

n3+Bn2+Cn+D
and∑

n∈Z
1

(n3+Bn2+Cn+D)k
.
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2.2 Computing a closed form for∑
n∈Z

1

n3 +Bn2 + Cn +D

We begin this section with some well known lemmas that shall prove to be useful in

computing the sum.

Lemma 2.4 If α is a complex number with Im(α) > 0 and we let f(x) = 2πie2πiαxH(x)

where H(x) is the Heaviside function given by,

H(x) =

{
0, x < 0

1, x ≥ 0

then,

f̂(u) =
1

u− α
.

Proof: For f(x) = 2πie2πiαxH(x), we have,

f̂(u) =

∫ ∞
−∞

2πie2πiαxH(x)e−2πiuxdx

= lim
t→∞

∫ t

0

2πie2πiαxe−2πiuxdx

= 2πi lim
t→∞

∫ t

0

e2πi(α−u)xdx

= 2πi lim
t→∞

∫ t

0

e2πi(Re(α)+iIm(α)−u)xdx

= 2πi lim
t→∞

∫ t

0

e2πi(Re(α)−u)xe−2πIm(α)xdx.

Since Im(α) > 0, we have convergence and

f̂(u) = 2πi lim
t→∞

∫ t

0

e2πi(α−u)xdx

=
1

u− α
.
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The following lemma will also be a useful tool for evaluating the closed forms of

the sums (1.2) and (1.3).

Lemma 2.5 Let ρ and β be two complex numbers such that 0 ≤
∣∣∣ Im(β)

2

∣∣∣ < Re(ρ). Let

h(x) = π
ρ
e−2πρ|x|e−2πi

β
2
x, and γ = ρ2 + β2

4
then,

ĥ(u) =
1

u2 + βu+ γ
.

Proof: For given h(x) = π
ρ
e−2πρ|x|e−2πi

β
2
x, we have,

ĥ(u) =

∫ ∞
−∞

π

ρ
e−2πρ|x|e−2πi

β
2
xe−2πiuxdx

= lim
t→∞

(∫ 0

−t

π

ρ
e2πρxe−2πi

β
2
xe−2πiuxdx

)
+ lim

s→∞

(∫ s

0

π

ρ
e−2πρxe−2πi

β
2
xe−2πiuxdx

)
=

π

ρ

(
lim
t→∞

∫ 0

−t
e2π(ρ−i(u+

β
2 ))xdx+ lim

s→∞

∫ t

0

e−2π(ρ+i(u+
β
2 ))xdx

)
.

Let I1 = lim
t→∞

∫ 0

−t
e2π(ρ−i(u+

β
2 ))xdx and I2 = lim

s→∞

∫ s

0

e−2π(ρ+i(u+
β
2 ))xdx. For I1 to con-

verge, we need Re
(
2π
(
ρ− i

(
u+ β

2

)))
> 0. Since u is real, we only need to verify

Re
(
ρ− iβ

2

)
> 0. We have

Re

(
Re(ρ) + iIm(ρ)− i

(
Re(β)

2
+ i

Im(β)

2

))
= Re(ρ) +

Im(β)

2
,

which is clearly positive because 0 ≤
∣∣∣ Im(β)

2

∣∣∣ < Re(ρ).

For I2, we need Re
(
2π
(
ρ+ i

(
u+ β

2

)))
> 0 for convergence. We only need to check

Re
(
ρ+ iβ

2

)
> 0. We have

Re

(
Re(ρ) + iIm(ρ) + i

(
Re(β)

2
+ i

Im(β)

2

))
= Re(ρ)− Im(β)

2
,
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which is positive again by 0 ≤
∣∣∣ Im(β)

2

∣∣∣ < Re(ρ).

Since I1 and I2 both converge, we have that

ĥ(u) =
π

ρ

(
lim
t→∞

∫ 0

−t
e2π(ρ−i(u+

β
2 ))xdx+ lim

s→∞

∫ s

0

e−2π(ρ+i(u+
β
2 ))xdx

)
=

π

2πρ

(
1(

ρ− i
(
u+ β

2

)) +
1(

ρ+ i
(
u+ β

2

)))

=
1

2ρ

(
2ρ

ρ2 +
(
u+ β

2

)2
)

=
1

ρ2 +
(
u+ β

2

)2
=

1

ρ2 + u2 + βu+ β2

4

=
1

u2 + βu+ γ
,

where γ = ρ2 + β2

4
.

We now compute a function g whose Fourier transform is of the form 1
u3+Bu2+Cu+D

.

This shall be helpful in computing the sum later.

Theorem 2.6 Suppose u3 +Bu2 + Cu+D with B,C,D ∈ C can be factored as

u3 +Bu2 + Cu+D = (u− α)(u2 + βu+ γ) = (u− α)(u− µ)(u− ν)

where α, β, γ, ρ, µ, ν ∈ C, α, µ and ν are distinct and γ = ρ2 + β2

4
, µ = −β

2
− iρ, ν =

−β
2

+ iρ such that

1. Im(α) > 0

2. 0 ≤
∣∣∣ Im(β)

2

∣∣∣ < Re(ρ).
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Then for

g(x) =


π
ρ

(
e2πiαx

µ−α + e2πiνx

ν−α −
e2πiαx

ν−α

)
, x > 0

π
ρ

(
e−2πiµx

µ−α

)
, x ≤ 0

we have

ĝ(u) =
1

u3 +Bu2 + Cu+D
.

Proof: Under the given assumptions, Lemma 2.4, implies that for f(x) = 2πie2πiαxH(x),

f̂(u) = 1
u−α and Lemma 2.5 implies that for h(x) = π

ρ
e−2πρ|x|e−2πi

β
2
x, then,

ĥ(u) =
1

u2 + βu+ γ
.

Clearly, ĝ(u) = f̂(u)ĥ(u), so by Theorem 2.2, we only need to compute g(x) =

(f ∗ h)(x). By Fourier convolution,

g(x) = (f ∗ h)(x) =

∫ ∞
−∞

f(y)h(x− y)dy

=

∫ ∞
−∞

2πie2πiαyH(y)
π

ρ
e−2πρ|x−y|e−2πi

β
2
(x−y)dy

=
2π2i

ρ
lim
t→∞

∫ t

0

e2πiαye−2πρ|x−y|e−2πi
β
2
(x−y)dy.

We have two cases depending on x.

Case I: When x > 0 we have g(x) equal to

2π2i
ρ

(∫ x
0
e2πiαye−2πρ(x−y)e−2πi

β
2
(x−y)dy + lim

t→∞

∫ t

x

e2πiαye−2πρ(y−x)e−2πi
β
2
(x−y)dy

)
= 2π2i

ρ

(∫ x
0
e(2πρ+2πiβ

2
+2πiα)ye(−2πρ−2πi

β
2 )xdy + lim

t→∞

∫ t

x

e(−2πρ+2πiβ
2
+2πiα)ye(2πρ−2πi

β
2 )xdy

)
= 2π2i

ρ

(∫ x
0
e(2πρ+2πiβ

2
+2πiα)ye2πiνxdy + lim

t→∞

∫ t

x

e−(2πρ−2πiβ2−2πiα)ye2πiµxdy

)
.

The above converges when Re(2πρ− 2πiβ
2
− 2πiα) > 0, or equivalently,

Re(Re(ρ) + iIm(ρ)− i
(

Re

(
β

2

)
+ iIm

(
β

2

))
− i(Re(α) + iIm(α)) > 0,
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⇔ Re(Re(ρ) + iIm(ρ)− iRe

(
β

2

)
+ Im

(
β

2

)
− Re(α)i+ Im(α)) > 0,

⇔ Re(ρ) + Im

(
β

2

)
+ Im(α) > 0,

which is true. Therefore,

g(x) =
2π2i

ρ

(∫ x

0

e(2πρ+2πiβ
2
+2πiα)ye2πiνxdy + lim

t→∞

∫ t

x

e−(2πρ−2πiβ2−2πiα)ye2πiµxdy

)
=

2π2i

ρ

(
e2πiαx

2πρ+ 2πiβ
2

+ 2πiα
− e2πiνx

2πρ+ 2πiβ
2

+ 2πiα
+

e2πiαx

2πρ− 2πiβ
2
− 2πiα

)

=
πi

ρ

(
e2πiαx

ρ+ iβ
2

+ iα
− e2πiνx

ρ+ iβ
2

+ iα
+

e2πiαx

ρ− iβ
2
− iα

)

=
π

ρ

(
e2πiαx

µ− α
+
e2πiνx

ν − α
− e2πiαx

ν − α

)
.

Case II: When x ≤ 0,

g(x) =
2π2i

ρ
lim
t→∞

∫ t

0

e2πiαye−2πρ(y−x)e−2πi
β
2
(x−y)dy

=
2π2i

ρ
lim
t→∞

∫ t

0

e(−2πρ+2πiβ
2
+2πiα)ye(2πρ−2πi

β
2 )xdy

=
2π2i

ρ
lim
t→∞

∫ t

0

e−(2πρ−2πiβ2−2πiα)ye2πiµxdy.

The above converges when Re
(
2πρ− 2πiβ

2
− 2πiα

)
> 0, which holds by the similar

argument as for the case x > 0. Therefore,

g(x) =
2π2i

ρ
lim
t→∞

∫ t

0

e−(2πρ−2πiβ2−2πiα)ye2πiµxdy

=
2π2i

ρ

(
e2πiµx

2πρ− 2πiβ
2
− 2πiα

)

=
π

ρ

(
e2πiµx

µ− α

)
.
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Thus,

g(x) =


π
ρ

(
e2πiαx

µ−α + e2πiνx

ν−α −
e2πiαx

ν−α

)
, x > 0

π
ρ

(
e2πiµx

µ−α

)
, x ≤ 0.

Now, that we have Lemmas 2.4 and 2.5 and Theorem 2.6, we shall now use these

along with Poisson summation to evaluate the sum
∑

n∈Z
1

n3+Bn2+Cn+D
.

Theorem 2.7 Let u3 + Bu2 + Cu + D be as in Theorem 2.6, and using the same
notation as there along with α, µ, ν /∈ Z, we have:

∑
n∈Z

1

n3 +Bn2 + Cn+D
=

2πi

(ν − µ)(µ− α)(α− ν)

(
ν − µ

e2πiα − 1
+

α− ν
e2πiµ − 1

+
µ− α

e2πiν − 1

)
.

Proof: We observe that
∑

n∈Z
1

n3+Bn2+Cn+D
is exactly

∑
n∈Z

ĝ(n) where g(n) is defined in

Theorem 2.6. By Poisson summation with v = 0, we know that
∑
n∈Z

ĝ(n) =
∑
n∈Z

g(n).

Therefore, from Theorem 2.6, we have

∑
n∈Z

1

n3 +Bn2 + Cn+D
=
∑
n∈Z

g(n) =
∑
n≥1

g(n) +
∑
n≤0

g(n).

We compute the two terms in the sum separately. For the first term∑
n≥1

g(n) =
∑
n≥1

(
π

ρ

(
e2πiαn

µ− α
+
e2πiνn

ν − α
− e2πiαn

ν − α

))
= π

ρ

(
1

µ−α

∑
n≥1

e2πiαn +
1

ν − α
∑
n≥1

e2πiνn − 1

ν − α
∑
n≥1

e2πiαn

)

= π
ρ

(
1

µ−α

(
−1 +

∑
n≥0

e2πiαn

)
+ 1

ν−α

(
−1 +

∑
n≥0

e2πiνn

)
− 1

ν−α

(
−1 +

∑
n≥0

e2πiαn

))

= π
ρ

(
1

µ−α

(
−1 +

∑
n≥0

e2πiαn

)
+ 1

ν−α

(
−1 +

∑
n≥0

e2πiνn + 1−
∑
n≥0

e2πiαn

))

= π
ρ

(
1

µ−α

(
−1 +

∑
n≥0

e2πiαn

)
+ 1

ν−α

(∑
n≥0

e2πiνn −
∑
n≥0

e2πiαn

))
.

For these to converge, we need Re(−2πiα) > 0 and Re(−2πiν) > 0. They are
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equivalent to

Im(α) > 0 and Re(iRe
(
β
2

)
− Im

(
β
2

)
+ Re(ρ) + iIm(ρ)) = Re(ρ)− Im(β

2
) > 0,

which are true. Therefore,

∑
n≥1

g(n) =
π

ρ

(
1

µ− α

(
−1 +

∑
n≥0

e2πiαn

)
+

1

ν − α

(∑
n≥0

e2πiνn −
∑
n≥0

e2πiαn

))

and we evaluate each convergent geometric series to obtain,

∑
n≥1

g(n) =
π

ρ

(
1

µ− α

(
−1 +

1

1− e2πiα

)
+

1

ν − α

(
1

1− e2πiν
− 1

1− e2πiα

))
.

For the second term in the sum,

∑
n≤0

g(n) =
∑
n≥0

g(−n) =
∑
n≥0

(
π

ρ

(
e2πiµ(−n)

µ− α

))

=
π

ρ

(
1

µ− α

(∑
n≥0

e−2πiµn

))
.

For this to converge, we need Re(2πiµ) > 0. This is equivalent to

Re(−iRe

(
β

2

)
+ Im

(
β

2

)
+ Re(ρ) + iIm(ρ)) = Re(ρ) + Im

(
β

2

)
> 0,

which is true. Therefore,

∑
n≤0

g(n) =
π

ρ

(
1

µ− α

(∑
n≥0

e−2πiµn

))
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and we evaluate the geometric series to obtain,

∑
n≤0

g(n) =
π

ρ

(
1

µ− α

(
1

1− e−2πiµ

))
=

π

ρ

(
1

µ− α

(
e2πiµ

e2πiµ − 1

))
=

π

ρ

(
1

µ− α

(
e2πiµ − 1 + 1

e2πiµ − 1

))
=

π

ρ

(
1

µ− α

(
1 +

1

e2πiµ − 1

))
=

π

ρ

(
1

µ− α

(
1− 1

1− e2πiµ

))
.

Thus,
∑

n∈Z
1

n3+Bn2+Cn+D
is equal to

π

ρ

(
1

µ− α

(
−1 +

1

1− e2πiα

)
+

1

ν − α

(
1

1− e2πiν
−

1

1− e2πiα

))
+
π

ρ

(
1

µ− α

(
1−

1

1− e2πiµ

))

which simplifies to

π

ρ

(
1

µ− α

(
1

1− e2πiα
− 1

1− e2πiµ

)
+

1

ν − α

(
1

1− e2πiν
− 1

1− e2πiα

))
.

We have that µ = −β
2
− iρ and ν = −β

2
+ iρ. This implies µ− ν = −2iρ, and thus

ρ = µ−ν
−2i ; which implies that

∑
n∈Z

1

n3 +Bn2 + Cn+D
is equal to

−2πi

(µ− ν)

(
1

µ− α

(
1

1− e2πiα
− 1

1− e2πiµ

)
+

1

ν − α

(
1

1− e2πiν
− 1

1− e2πiα

))
=

−2πi

(µ− ν)(µ− α)(ν − α)

(
ν − α

1− e2πiα
− ν − α

1− e2πiµ
+

µ− α
1− e2πiν

− µ− α
1− e2πiα

)
=

−2πi

(µ− ν)(µ− α)(ν − α)

(
ν − µ

1− e2πiα
− ν − α

1− e2πiµ
+

µ− α
1− e2πiν

)
=

2πi

(ν − µ)(µ− α)(α− ν)

(
ν − µ

e2πiα − 1
+

α− ν
e2πiµ − 1

+
µ− α
e2πiν − 1

)
.
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It should be noted that the roots of the cubic u3 +Bu2 +Cu+D in 2.7, namely,

α, µ, and ν cannot be integers or else, the sum (1.2) will have division by 0. We shall

now attempt to compute the sum
∑

n∈Z
1

(n3+Bn2+Cn+D)k
.

2.3 Computing a closed form for∑
n∈Z

1

(n3 +Bn2 + Cn +D)k
.

In this section, we investigate the sum
∑

n∈Z
1

(n3+Bn2+Cn+D)k
and attempt to find its

closed form using the results derived in the earlier sections. In computing the closed

form for the sum, we will make use of discriminant of the cubic equation, so we begin

the discussion by analyzing an important property of discriminants of cubic equations.

If α, µ and ν are roots of the cubic equation ax3 + bx2 + cx + d = 0, then its

discriminant ∆ is given by

∆ = (a2(α− µ)(α− ν)(µ− ν))
2
.

Suppose x3 +Bx2 + Cx+D can be factored as

x3 +Bx2 + Cx+D = (x− α)(x2 + βx+ γ)

where α ∈ C is a root. Then, writing γ = ρ2 + β2

4
, we have the other two roots being

µ = −β
2
− iρ, ν = −β

2
+ iρ.

Recalling from Cardano’s formula for finding roots of a cubic equation, we have
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that x3 +Bx2 + Cx+D = 0 has roots

x1 =
3
√
M +

3
√
N − B

3
,

x2 =
3
√
Mω +

3
√
Nω2 − B

3
,

x3 =
3
√
Mω2 +

3
√
Nω − B

3

where M = −q
2

+
√(

q
2

)2
+
(
p
3

)3
, N = −q

2
−
√(

q
2

)2
+
(
p
3

)3
, p =

(
C − 1

3
B2
)

and q =(
2
27
B3 − 1

3
BC +D

)
.

Supposing α, µ, ν /∈ Z and are distinct, let us consider a case where α = x3. Then,

x1 = i

(
ρ+ i

β

2

)
= µ, (2.1)

x2 = −i
(
ρ− iβ

2

)
= ν. (2.2)

Clearly, one can observe that x1, x2 and x3 are functions of q. Also, from Cardano’s

formula for finding roots of the cubic, we have

q =
2

27
B3 − 1

3
BC +D

which implies

D = q +
BC

3
− 2B3

27
.

Considering a case where x = n in the above discussion, the closed form in Theo-
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rem 2.7 has that
∑

n∈Z
1

n3+Bn2+Cn+D
is equal to

∑
n∈Z

1

(n3 +Bn2 + Cn+ q + BC
3
− 2B3

27
)

=
2πi

(ν − µ)(µ− α)(α− ν)

(
ν − µ

e2πiα − 1
+

α− ν
e2πiµ − 1

+
µ− α
e2πiν − 1

)
=

2πi√
∆

(
ν − µ

e2πiα − 1
+

α− ν
e2πiµ − 1

+
µ− α
e2πiν − 1

)
.

From (1.10), we have that ∆ = −(27q2 + 4p3), therefore, the previous equation can

be further modified as∑
n∈Z

1

(n3 +Bn2 + Cn+ q + BC
3
− 2B3

27
)

=
2πi√

−(27q2 + 4p3)

(
ν − µ

e2πiα − 1
+

α− ν
e2πiµ − 1

+
µ− α
e2πiν − 1

)
=

2π√
(27q2 + 4p3)

(
ν − µ

e2πiα − 1
+

α− ν
e2πiµ − 1

+
µ− α
e2πiν − 1

)
. (2.3)

Clearly, the closed form of the sum in (2.3) can be written as a composition of

different functions of q and to obtain a closed form for
∑

n∈Z
1

(n3+Bn2+Cn+D)k
, we can

differentiate (2.3) with respect to q, k − 1 times. Equation (2.3) can be written as

composition of functions of q as∑
n∈Z

1

n3 +Bn2 + Cn+D
=
∑
n∈Z

1

(n3 +Bn2 + Cn+ q + BC
3
− 2B3

27
)

=

2π[(f1(f2(f3)))((f6 − f5)(f4(f7)) + (f7 − f6)(f4(f5)) + (f5 − f7)(f4(f6)))] (2.4)

where f1(q) = 1
q
, f2(q) =

√
q, f3(q) = 27q2 + 4p3, f4(q) = 1

e2πiq−1 ,

f5(q) = µ = x1, f6(q) = ν = x2, f7(q) = α = x3.

To differentiate (2.3) with respect to q, we need to differentiate this composition of

functions. For this, we will need to make use of some lemmas involving higher order

chain rule and product rule. Stated below are some well known lemmas that shall
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prove to be helpful in differentiating the composition of functions of q in (2.4).

Lemma 2.8 (Faà di Bruno’s Formula) If F and G are functions with a sufficient

number of derivatives, then the mth derivative of F (G) is given by

(F (G))(m) =
∑

b1,...,bm

m!F (b1+···+bm)(G)

b1! · · · bm!

m∏
j=1

(
G(j)

j!

)bj
where the sum is over all nonnegative integers b1, . . . , bm such that

b1 + 2b2 + · · ·+mbm = m.

Faá di Bruno’s Formula is a higher order chain rule and a proof can be found in

[8]. In the formula above, when G(j) = 0 and bj = 0, we interpret
(
G(j)

j!

)bj
= 1. The

following lemma is a higher order product rule which can also be found in [13].

Lemma 2.9 If G and H are functions with a sufficient number of derivatives, then

(GH)(m) =
m∑
i=0

(
m

i

)
G(m−i)H(i).

Proof. We shall prove this lemma using principle of induction. We shall induct on

m. Clearly, the lemma holds for m = 0. For m > 0,

(GH)(m) = ((GH)′)
(m−1)

= (G′H)
(m−1)

+ (GH ′)
(m−1)

=
m−1∑
i=0

(
m− 1

i

)
G(m−i)H(i) +

m−1∑
i=0

(
m− 1

i

)
G(m−1−i)H(i+1)

= G(m)H +
m−1∑
i=1

(
m− 1

i

)
G(m−i)H(i) +

m−1∑
i=0

(
m− 1

i

)
G(m−1−i)H(i+1).
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Replacing i by i− 1 in the second sum, we get

(GH)(m) = G(m)H +
m−1∑
i=1

(
m− 1

i

)
G(m−i)H(i) +

m∑
i=1

(
m− 1

i− 1

)
G(m−i)H(i).

This last sum can be written as

G(m)H +
m−1∑
i=1

((
m− 1

i

)
+

(
m− 1

i− 1

))
G(m−i)H(i) +GH(m).

We shall use Pascal’s identity for binomial coefficients to simplify the previous equa-

tion. Pascal’s Identity simply states that for any natural number n and any 0 ≤ k ≤ n,

we have (
n− 1

k

)
+

(
n− 1

k − 1

)
=

(
n

k

)
.

Using Pascal’s Identity, we find that

(GH)(m) = G(m)H +

(
m−1∑
i=1

(
m

i

)
G(m−i)H(i)

)
+GH(m)

=
m∑
i=0

(
m

i

)
G(m−i)H(i)

We next examine derivatives of the various functions which comprise (2.4). The

first two are well known.

Lemma 2.10 For a function F (x) = 1
x
, we have

F (m)(x) =
(−1)mm!

xm+1
.

Proof. We shall prove this lemma using principle of induction. We shall use induction
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on m. Given F (x) = 1
x
, the result holds true for m = 0 clearly. For m > 0, we have

F (m)(x) = (F (m−1)(x))′

=

(
(−1)m−1(m− 1)!

xm−1+1

)′
= (−1)m−1(m− 1)!(x−m)′

= (−1)mm!x−m−1

=
(−1)mm!

xm+1
.

This completes the proof.

Lemma 2.11 Given a function G(x) =
√
x+ a, we have for m > 0

G(m)(x) =
(−1)m−1(2m− 2)!(x+ a)−

(2m−1)
2

22m−1(m− 1)!
.

Proof: We shall prove this lemma using principle of induction. We shall use induction

on m. Given G(x) =
√
x+ a, the result holds true for m = 1 clearly. For m > 2, we

have

G(m)(x) = (G(m−1)(x))′

=

(
(−1)m−1−1(2(m− 1)− 2)!(x+ a)−

(2(m−1)−1)
2

22(m−1)−1(m− 1− 1)!

)′
=

(−1)m−2(2m− 4)!

22m−3(m− 2)!

(
(x+ a)−

(2m−3)
2

)′
=

(−1)m−2(2m− 4)!

22m−3(m− 2)!
(−(2m− 3)

2
)
(

(x+ a)−
(2m−3)

2
−1
)

=
(−1)m−1(2m− 3)!(x+ a)−

(2m−1)
2

22m−2(m− 2)!

=
(−1)m−1(2m− 2)!(x+ a)−

(2m−1)
2

22m−1(m− 1)!
.
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This completes the proof.

The next lemma is followed from Lemma 3 in [13] and Theorem 3.1 in [24]. The

lemma involves Stirling numbers of the second kind, denoted S(n, k). These numbers

are defined as the number of ways of partitioning n objects into k non-empty parts.

The Stirling numbers of the second kind satisfy the recurrence relation

S(n+ 1, k) = kS(n, k) + S(n, k − 1),

for any natural number n and 0 ≤ k ≤ n. This recurrence relation can be proved

using the principle of inclusion-exclusion.

Lemma 2.12 For m ≥ 0,

(
1

eax − 1

)(m)

= (−1)mam
m+1∑
k=1

(k − 1)!S(m+ 1, k)

(eax − 1)k

where S(m+ 1, k) ∈ Z is a Stirling number of the second kind.

Proof: We shall prove this result by principle of induction. We shall use induction on

m. Clearly, the lemma holds true for m = 0 since S(1, 1) = 1. Let us suppose that it

is true for m− 1. By induction we have((
1

eax − 1

)(m−1)
)′

= (−1)m−1am−1

(
m∑
k=1

(k − 1)!S(m, k)

(eax − 1)k

)′

which equals

(−1)mam
m∑
k=1

k!S(m, k)
eax

(eax − 1)k+1
= (−1)mam

m∑
k=1

k!S(m, k)
eax − 1 + 1

(eax − 1)k+1
.

Writing (eax − 1 + 1)/(eax − 1)k+1 = 1/(eax − 1)k + 1/(eax − 1)k+1, our sum can be
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written as

(−1)mam

(
1

eax − 1
+

m∑
k=2

(k − 1)!(kS(m, k) + S(m, k − 1))

(eax − 1)k
+

m!

(eax − 1)m+1

)

which is same as

(−1)mam

(
S(m+ 1, 1)

eax − 1
+

m∑
k=2

(k − 1)!(kS(m, k) + S(m, k − 1))

(eax − 1)k
+
m!S(m+ 1,m+ 1)

(eax − 1)m+1

)

because S(m + 1, 1) = 1 and S(m + 1,m+ 1) = 1. Using recurrence relation for the

Stirling numbers,S(n+ 1, k) = kS(n, k) + S(n, k − 1), we have the sum equal to

(−1)mam

(
S(m+ 1, 1)

eax − 1
+

m∑
k=2

(k − 1)!S(m+ 1, k)

(eax − 1)k
+
m!S(m+ 1,m+ 1)

(eax − 1)m+1

)

= (−1)mam
m+1∑
k=1

(k − 1)!S(m+ 1, k)

(eax − 1)k
.

This completes the proof.

The combinatorial significance of the Stirling numbers of the second kind in the

formula given in Lemma 2.12 is not clear and could be taken up for research for future

work.

From (2.4) we have that
∑

n∈Z
1

n3+Bn2+Cn+D
is equal to

2π[(f1(f2(f3)))((f6 − f5)(f4(f7)) + (f7 − f6)(f4(f5)) + (f5 − f7)(f4(f6)))]

To obtain a closed form for
∑

n∈Z
1

(n3+Bn2+Cn+D)k
,we shall differentiate 1

n3+Bn2+Cn+D

with respect to q, (k − 1) times. We shall do this step by step by differentiating

smaller compositions of functions embedded within (2.4) because it is not feasible to

differentiate nearly twelve compositions of seven functions altogether.

Step 1.1: Finding 1

(n3+Bn2+Cn+D)k
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Differentiating (2.4) with respect to q, k − 1 times, we get

∑
n∈Z

1

(n3 +Bn2 + Cn+D)k
=
∑
n∈Z

1

(n3 +Bn2 + Cn+ q + BC
3
− 2B3

27
)
k

= 2π[(f1(f2(f3)))((f6 − f5)(f4(f7)) + (f7 − f6)(f4(f5)) + (f5 − f7)(f4(f6)))](k−1)

We let f8 = f1(f2(f3)) and f9 = ((f6−f5)(f4(f7))+(f7−f6)(f4(f5))+(f5−f7)(f4(f6)).
This implies ∑

n∈Z

1

(n3 +Bn2 + Cn+D)k
= ((f8)(f9))

(k−1)

Using Lemma 2.9 we get

∑
n∈Z

1

(n3 +Bn2 + Cn+D)k
=

k−1∑
i1=0

(
k − 1

i1

)
f
(k−1−i1)
8 f

(i1)
9

Step 1.2: Finding f8
(k−1−i1)

f8
(k−1−i1) = f1(f2(f3))

(k−1−i1)

We let f10 = f2(f3) and using Lemma 2.8 we find that f8
(k−1−i1) is equal to

f1(f2(f3))
(k−1−i1) = f1(f10)

(k−1−i1)

=
∑

b1,1,b1,2...,b1,(k−1−i1)

(k − 1− i1)!f
(b1,1+b1,2+···+b1,(k−1−i1))

1 (f10)

b1,1!b1,2! · · · b1,(k−1−i1)!

k−1−i1∏
j1=1

(
f
(j1)
10

j1!

)b1,j1

.

We let R1 = b1,1 + b1,2 + · · ·+ b1,(k−1−i1) and use Lemma 2.10 to get that f8
(k−1−i1) is
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equal to

∑
b1,1,b1,2...,b1,(k−1−i1)

(k − 1− i1)!f (R1)
1 (f10)

b1,1!b1,2! · · · b1,(k−1−i1)!

(k−1−i1)∏
j1=1

(
f
(j1)
10

j1!

)b1,j1

=
∑

b1,1,b1,2...,b1,(k−1−i1)

(k − 1− i1)!(−1)(R1)R1!

b1,1!b1,2! · · · b1,(k−1−i1)!(f10)
R1+1

(k−1−i1)∏
j1=1

(
f
(j1)
10

j1!

)b1,j1

To complete these calculations, we need to know higher derivatives of f10, which are

computed next.

Step 1.3: Finding f
(j1)
10

f
(j1)
10 = (f2(f3))

(j1)

Lemma 2.8 will be used once again here to find the higher derivative. Using the

Lemma, we have that f
(j1)
10 is equal to

∑
b2,1,b2,2...,b2,j1

(j1)!f
(b2,1+b2,2+···+b2,j1 )
2 (f3)

b2,1!b2,2! · · · b2,j1 !

j1∏
j2=1

(
f
(j2)
3

j2!

)b2,j2

We let R2 = b2,1 + b2,2 + · · · + b2,j2 and using Lemma 2.11 with a = 0 we find that

f
(j1)
10

∑
b2,1,b2,2...,b2,j1

(j1)!f
(R2)
2 (f3)

b2,1!b2,2! · · · b2,j1 !

j1∏
j2=1

(
f
(j2)
3

j2!

)b2,j2

=
∑

b2,1,b2,2...,b2,j1

(j1)!

b2,1!b2,2! · · · b2,j1 !
(−1)R2−1(2R2 − 2)!(f3)

− (2R2−1)
2

22R2−1(R2 − 1)!

j1∏
j2=1

(
f
(j2)
3

j2!

)b2,j2

where f3(q) = 27q2 + 4p3 and f
(j2)
3 =


54q, j2 = 1,

54, j2 = 2,

0, j2 > 2.
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Next we compute f
(i1)
9 .

Step 1.4: Finding f
(i1)
9

f
(i1)
9 = ((f6 − f5)(f4(f7)) + (f7 − f6)(f4(f5)) + (f5 − f7)(f4(f6))(i1)

= ((f6 − f5)(f4(f7))(i1) + (f7 − f6)(f4(f5))(i1) + (f5 − f7)(f4(f6))(i1)

Step 1.5: Finding ((f6 − f5)(f4(f7))(i1)

This be calculated with the help of Lemma 2.9, which gives us

((f6 − f5)(f4(f7))(i1) =

i1∑
i2=0

(
i2
i1

)
(f6 − f5)(i2−i1)(f4(f7))(i2)

where f5 = x1, f6 = x2 and (f6 − f5)(i2−i1) = f
(i2−i1)
6 − f (i2−i1)

5 . Higher derivatives of

f5 and f6 are computed later in this section and (f4(f7))
(i2) is computed next.

Step 1.6: Finding (f4(f7))
(i2)

Using Lemma 2.8, we have

(f4(f7))
(i2) =

∑
b3,1,b3,2...,b3,i2

(i2)!f
(b3,1+b3,2+···+b3,i2 )
4 (f7)

b3,1!b3,2! · · · b3,i2 !

i2∏
j3=1

(
f
(j3)
7

j3!

)b3,j3

Letting R3 = b3,1 + b3,2 + · · · + b3,i2 and use of Lemma 2.12 with a = 2πi simplifies

this equation to (f4(f7))
(i2) is equal to

=
∑

b3,1,b3,2...,b3,i2

(i2)!f
(R3)
4 (f7)

b3,1!b3,2! · · · b3,i2 !

i2∏
j3=1

(
f
(j3)
7

j3!

)b3,j3

=
∑

b3,1,b3,2,...,b3,i2

(i2)!(−1)R3(2πi)R3

b3,1!b3,2! · · · b3,i2 !

R3+1∑
i3=1

(i3 − 1)!S(R3 + 1, i3)

(e2πif7(q) − 1)i3

i2∏
j3=1

(
f
(j3)
7

j3!

)b3,j3

where f7(q) = x3 and its higher derivatives are computed towards later parts of this
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section.

Step 1.7: Finding ((f7 − f6)(f4(f5))(i1)

This will be calculated with the help of Lemma 2.9, which gives us

((f7 − f6)(f4(f5))(i1) =

i1∑
i4=0

(
i4
i1

)
(f7 − f6)(i4−i1)(f4(f5))(i4)

where f6 = x2, f7 = x3 and (f7 − f6)(i4−i1) = f
(i4−i1)
7 − f (i4−i1)

6 . Higher derivatives of

f6 and f7 are computed later in this section and (f4(f5))
(i4) is computed next.

Step 1.8: Finding (f4(f5))
(i4)

Using Lemma 2.8, we have

(f4(f5))
(i4) =

∑
b4,1,b4,2,...,b4,i4

(i4)!f
(b4,1+b4,2+···+b4,i4 )
4 (f5)

b4,1!b4,2! · · · b4,i4 !

i4∏
j4=1

(
f
(j4)
5

j4!

)b4,j4

Letting R4 = b4,1 + b4,2 + · · · + b4,i4 and use of Lemma 2.12 with a = 2πi simplifies

this equation to (f4(f5))
(i4) is equal to

=
∑

b4,1,b4,2...,b4,i4

(i4)!f
(R4)
4 (f5)

b4,1!b4,2! · · · b4,i4 !

i4∏
j4=1

(
f
(j4)
5

j4!

)b4,j4

=
∑

b4,1,b4,2,...,b4,i4

(i4)!(−1)R4(2πi)R4

b4,1!b4,2! · · · b4,i4 !

R4+1∑
i5=1

(i5 − 1)!S(R4 + 1, i5)

(e2πif5(q) − 1)i5

i4∏
j4=1

(
f
(j4)
5

j4!

)b4,j4

where f5(q) = x1 and its higher derivatives are computed towards later parts of this

section.

Step 1.9: Finding ((f5 − f7)(f4(f6))(i1)

This be calculated with the help of Lemma 2.9, which gives us

((f5 − f7)(f4(f6))(i1) =

i1∑
i6=0

(
i6
i1

)
(f5 − f7)(i6−i1)(f4(f6))(i6)
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where f5 = x1, f7 = x3 and (f5 − f7)
(i6−i1) = f

(i6−i1)
5 − f

(i6−i1)
7 . Higher derivatives

of f7 and f5 are computed towards the later parts of this section and (f4(f6))
(i6) is

computed next.

Step 1.10: Finding (f4(f6))
(i6)

Using Lemma 2.8, we have

(f4(f6))
(i6) =

∑
b5,1,b5,2...,b5,i6

(i6)!f
(b5,1+b5,2+···+b5,i6 )
4 (f6)

b5,1!b5,2! · · · b5,i6 !

i6∏
j5=1

(
f
(j5)
6

j5!

)b5,j5

Letting R5 = b5,1 + b5,2 + · · · + b5,i6 and use of Lemma 2.12 with a = 2πi simplifies

this equation to (f4(f6))
(i6) is equal to

=
∑

b5,1,b5,2...,b5,i6

(i6)!f
(R5)
4 (f6)

b5,1!b5,2! · · · b5,i6 !

i6∏
j5=1

(
f
(j5)
6

j5!

)b5,j5

=
∑

b5,1,b5,2...,b5,i6

(i6)!(−1)R5(2πi)R3

b5,1!b5,2! · · · b5,i6 !

R5+1∑
i7=1

(i7 − 1)!S(R5 + 1, i7)

(e2πif6(q) − 1)i7

i6∏
j5=1

(
f
(j5)
6

j5!

)b5,j5

where f6(q) = x2 and its higher derivatives are computed next in this section.

The closed form for
∑

n∈Z
1

(n3+Bn2+Cn+D)k
can be obtained by combining the cal-

culations carried out in Steps 1.1 - 1.10. To get simplified closed form, we need to

further calculate higher derivatives of f5, f6 and f7 i.e. x1, x2 and x3 respectively.

Therefore, we shall now attempt to compute higher derivatives of x1, x2 and x3. We

have that

x1 =
3
√
M +

3
√
N − B

3
, x2 =

3
√
Mω +

3
√
Nω2 − B

3
, x3 =

3
√
Mω2 +

3
√
Nω − B

3

where M = −q
2

+
√(

q
2

)2
+
(
p
3

)3
, N = −q

2
−
√(

q
2

)2
+
(
p
3

)3
, p =

(
C − 1

3
B2
)

and q =(
2
27
B3 − 1

3
BC +D

)
. Observing x1, x2 and x3 carefully, one can easily deduce that

to compute their higher derivatives, it is enough to compute higher derivatives of
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any one of them and others can be calculated in similar fashion. Also, to compute

their higher derivatives, it is enough to compute higher derivatives of 3
√
M and 3

√
N .

Therefore, we shall now attempt to compute higher derivatives of 3
√
M and 3

√
N . Let

us write

g±1(q) =
−q
2
±
√(q

2

)2
+
(p

3

)3
Then, g+1 = M and g−1 = N . To compute nth derivative of 3

√
M and 3

√
N , it is

enough to compute nth derivative of 3
√
g±1. We can write 3

√
g±1 as composition of

functions as follows:

3
√
g±1 = g5(g−2 ± g4(g3(g+2)))

where g±2 = ± q
2
, g3 = q2, g4 =

√
q +

(
p
3

)3
and g5 = 3

√
q. Clearly, g

(1)
±2(q) = ±1

2

and g
(m)
±1 (q) = 0 for m > 1. Similarly, it is obvious that g

(1)
3 (q) = 2q, g

(2)
3 (q) = 2 and

g
(m)
3 (q) = 0 for m > 2. Higher derivatives of g4 can be computed using Lemma 2.11

and those of g5 are discussed below in the following well-known lemma.

Lemma 2.13 Given a function H(x) = 3
√
x, we have

H(m)(x) =

(
m∏
k=1

(4− 3k)

)
1

3m
x

(1−3m)
3 .

Proof: We shall prove this by principle of induction. We shall use induction on m.

For H(x) = 3
√
x, the result holds true for m = 0 clearly since the empty product
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∏0
k=1, is by convention, equal to 1. For m > 0, we have

H(m)(x) = (H(m−1)(x))′

=

(
m−1∏
k=1

(4− 3k)

)
1

3m−1

(
x

(1−3(m−1))
3

)′
=

(
m−1∏
k=1

(4− 3k)

)
1

3m−1
(1− 3(m− 1))

3

(
x

(1−3(m−1))
3

−1
)

=

(
m−1∏
k=1

(4− 3k)

)
1

3m−1
(4− 3m)

3

(
x

(1−3(m−1))
3

−1
)

=

(
m∏
k=1

(4− 3k)

)
1

3m
x

(1−3m)
3 .

This completes the proof.

Now that we have the higher derivatives of g±2, g3, g4 and g5, let us find the nth

derivative of 3
√
g±1.

Step 2.1: Finding 3
√
g±1

(n).

We have that

3
√
g±1 = g5(g−2 ± g4(g3(g+2)))

Thus,

3
√
g±1

(n) = (g5(g−2 ± g4(g3(g+2))))
(n)

Letting g±6 = g−2 ± g4(g3(g+2)) and using Faá Di Bruno’s formula stated in Lemma

2.8, we find that

3
√
g±1

(n) = (g5(g±6))
(n) =

∑
b6,1,b6,2,···b6,n

n!g5
(b6,1+b6,2+···+b6,n)(g±6)

b6,1!b6,2! · · · b6,n!

n∏
j6=1

(
g±6

(j6)

j6!

)b6,j6
.
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Letting R6 = b6,1 + b6,2 + · · ·+ b6,n and using Lemma 2.13 we get

3
√
g±1

(n) =
∑

b6,1,b6,2,···b6,n

n!(g±6(q))
(1−3R6)

3

b6,1!b6,2! · · · b6,n!3R6

R6∏
k=1

(1− 3(k − 1))
n∏

j6=1

(
g±6

(j6)

j6!

)b6,j6
.

The higher derivatives of g±6 are computed next.

Step 2.2: Finding (g±6)
(j6).

We have that

g±6 = g−2 ± g4(g3(g+2))

Thus,

(g±6)
(j6) = (g−2 ± g4(g3(g+2)))

(j6)

(g±6)
(j6) = (g−2)

(j6) ± (g4(g3(g+2)))
(j6)

(g±6)
(j6) =

{
−1

2
± (g4(g3(g+2)))

(j6), j6 = 1

±(g4(g3(g+2)))
(j6), j6 > 1.

Step 2.3: Finding (g4(g3(g+2)))
(j6).

Letting g7 = g3(g+2) and using Faá Di Bruno’s formula, we find that

(g4(g3(g+2)))
(j6) =

∑
b7,1,b7,2,···b7,j6

(j6)!g4
(b7,1+b7,2+···+b7,j6 )(g7)

b7,1!b7,2! · · · b7,j6 !

j6∏
j7=1

(
(g7)

(j7)

j7!

)b7,j7

.

Letting R7 = b7,1 + b7,2 + · · ·+ b7,j6 and using Lemma (2.11) with a =
(
p
3

)3
we get,

(g4(g3(g+2)))
(j6) =

∑
b7,1,b7,2,···b7,j6

(j6)!(−1)R7−1(2R7 − 2)!

b7,1!b7,2! · · · b7, j6!22R7−1(R7 − 1)!

(( q
2

)2
+
(p
3

)3)− (2R7−1)
2

j6∏
j7=1

(
(g7)

(j7)

j7!

)b7,j7
.

Step 2.4: Finding g
(j7)
7 .

g7 = g3(g+2)
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which implies

g
(j7)
7 = g3(g+2)

(j7)

Using Faá Di Bruno’s formula, we find that

g
(j7)
7 = g3(g+2)

(j7) =
∑

b8,1,b8,2,···b8,j7

(j7)!g3
(b8,1+b8,2+···+b8,j7 )(g+2)

b8,1!b8,2! · · · b8,j7 !

j7∏
j8=1

(
(g+2)

(j8)

j8!

)b8,j8

.

Letting R8 = b8,1 + b8,2 + · · ·+ b8,j7 , we get

g
(j7)
7 = g3(g+2)

(j7) =
∑

b8,1,b8,2,···b8,j7

(j7)!g3
(R8)(g+2)

b8,1!b8,2! · · · b8,j7 !

j7∏
j8=1

(
(g+2)

(j8)

j8!

)b8,j8

,

where g3
(R8) =


2q, R8 = 1,

2, R8 = 2,

0, R8 > 2

and (g+2)
(j8) =

{
1
2
, j8 = 1,

0, j8 > 1.

Clearly, it is not feasible to write higher derivatives of 3
√
M and 3

√
N explicitly here

and hence the higher derivatives of x1, x2 and x3. However, these can be computed

with the help of computer by building a software or writing a program in which steps

2.1-2.4 can be coded as iterative steps for the calculations and the user can input

different values of n. Once we have the nth derivatives of x1, x2 and x3, we can easily

compute (k−1)th derivative of
∑

n∈Z
1

n3+Bn2+Cn+D
similarly by writing steps 1.1 -1.10

into the program and inputting values for k. This shall give us the closed form for

the sum
∑

n∈Z
1

(n3+Bn2+Cn+D)k
.

In the following section, we shall investigate a new approach to compute the closed

forms for the sums (1.2) and (1.3) and attempt to compute the closed forms using

the new method.
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Chapter 3

Evaluating the sum using the

cotangent function

In this chapter, we will derive many relations found in Chapter 2, using a different

method. Namely, we will make use of the cotangent function and its relation to

exponential functions to compute closed forms for the sums
∑

n∈Z
1

n3+Bn2+Cn+D
and∑

n∈Z
1

(n3+Bn2+Cn+D)k
.

As noted in [18], an important relation is derived from the Hadamard Product for

sin(πz),

sin(πz) = πz
∞∏
n=1

(
1− z2

n2

)
.

Taking the logarithmic we obtain,

log sin(πz) = log πz +
∑
n≥1

log

(
1− z2

n2

)
.

Differentiating the previous equation with respect to z, we get,

π cot(πz) =
1

z
+
∑
n≥1

2z

z2 − n2
.
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Using partial fractions, we can write the last sum as

π cot(πz) =
1

z
+
∑
n≥1

(
1

z − n
+

1

z + n

)
=

∑
n∈Z

1

n+ z
.

Also, it is well known that cosx = eix+e−ix
2

and sin x = eix−e−ix
2i

. This implies

cotx = i

(
eix + e−ix
eix − e−ix

)
= i

(
e2ix + 1

e2ix − 1

)
.

From the above discussion, we deduce that

∑
n∈Z

1

n+ z
= π cot(πz) = πi

(
e2πiz + 1

e2πiz − 1

)
. (3.1)

We shall use this formula to compute closed forms for the sums (1.2) and (1.3).

3.1 Computing a closed form for∑
n∈Z

1

n3 +Bn2 + Cn +D

If α, µ, ν ∈ C are distinct non-integer roots of the cubic polynomial x3+Bx2+Cx+D,

then we can write the sum
∑

n∈Z
1

n3+Bn2+Cn+D
using partial fractions as

∑
n∈Z

1

n3 +Bn2 + Cn+D
=
∑
n∈Z

c1
n− α

+
∑
n∈Z

c2
n− µ

+
∑
n∈Z

c3
n− ν

(3.2)

where c1, c2, c3 ∈ C are non-zero numbers and can be computed using the following

lemma that also appears in [18].

Lemma 3.1 For two polynomials A(x), B(x) ∈ C[x] with deg(A) < deg(B), A(x) 6= 0
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and B(x) having distinct roots α1, α2, . . . αm, we have,

A(x)

B(x)
=

m∑
i=1

ci
1

x− αi
,

where ci = A(αi)
B′(αi)

.

Proof: We have by partial fractions,

A(x)

B(x)
=

m∑
i=1

ci
1

x− αi
.

Without loss of generality, we compute c1 and note that the other ci, 2 ≤ i ≤ m follow

the same pattern. Since α1 is the root of B(x), this implies B(α1) = 0, and thus, we

can re-write the previous equation as

A(x)

B(x)−B(α1)
=

m∑
i=1

ci
1

x− αi

Multiplying (x− α1) on both sides of the equation, we get

A(x)

B(x)−B(α1)
(x− α1) =

m∑
i=1

ci
1

x− αi
(x− α1)

which is same as

A(x)
x− α1

B(x)−B(α1)
= c1 +

m∑
i=2

ci
1

x− αi
(x− α1).

Taking the limit as x approaches α1, we get

lim
x→α1

A(x)
x− α1

B(x)−B(α1)
= lim

x→α1

(
c1 +

m∑
i=2

ci
1

x− αi
(x− α1)

)
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which implies
A(α1)

B′(α1)
= c1.

The coefficients c2, c3, . . . , cm can be computed similarly.

We shall use Lemma (3.1) for A(x) = 1 and B(x) = x3+Bx2+Cx+D to compute

coefficients c1, c2, c3 in (3.2). Clearly, A(x) is constant, so we only need to find B′(x)

for x = α, µ, ν. We have,

B(x) = x3 +Bx2 + Cx+D = (x− α)(x− µ)(x− ν)

and computing the derivatives gives

B′(x) = 3x2 + 2Bx+ C = (x− µ)(x− ν) + (x− α)(x− ν) + (x− α)(x− µ).

Thus,

B′(α) = 3α2 + 2Bα + C = (α− µ)(α− ν),

B′(µ) = 3µ2 + 2Bµ+ C = (µ− α)(µ− ν),

B′(ν) = 3ν2 + 2Bν + C = (ν − α)(ν − µ).

Using Lemma 3.1, we have the partial fractions for 1
x3+Bx2+Cx+D

equal to

1

(α− µ)(α− ν)

1

(x− α)
+

1

(µ− α)(µ− ν)

1

(x− µ)
+

1

(ν − α)(ν − µ)

1

(x− ν)

and so the sum
∑

n∈Z
1

n3+Bn2+Cn+D
is equal to

 1

(α− µ)(α− ν)
∑
n∈Z

1

(n− α)

+

 1

(µ− α)(µ− ν)
∑
n∈Z

1

(n− µ)

+

 1

(ν − α)(ν − µ)
∑
n∈Z

1

(n− ν)

 .

To compute this sum further, we shall now use Equation (3.1) to relate the sum to
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the cotangent function. We have that the sum
∑

n∈Z
1

n3+Bn2+Cn+D
is equal to

π cot(−πα)

(α− µ)(α− ν)
+

π cot(−πµ)

(µ− α)(µ− ν)
+

π cot(−πν)

(ν − α)(ν − µ)

= − π cot(πα)

(α− µ)(α− ν)
− π cot(πµ)

(µ− α)(µ− ν)
− π cot(πν)

(ν − α)(ν − µ)
.

Replacing the cotangent function with its exponential equivalent, we obtain∑
n∈Z

1
n3+Bn2+Cn+D

is equal to

−πi
[

1

(α− µ)(α− ν)

(
e2πiα + 1

e2πiα − 1

)
+

1

(µ− α)(µ− ν)

(
e2πiµ + 1

e2πiµ − 1

)
+

1

(ν − α)(ν − µ)

(
e2πiν + 1

e2πiν − 1

)]
.

We make some modifications to this sum to get a “better” closed form. The sum∑
n∈Z

1
n3+Bn2+Cn+D

can be written

−πi
[

1

(α− µ)(α− ν)

(
e2πiα − 1 + 1 + 1

e2πiα − 1

)
+

1

(µ− α)(µ− ν)

(
e2πiµ − 1 + 1 + 1

e2πiµ − 1

)
+

1

(ν − α)(ν − µ)

(
e2πiν − 1 + 1 + 1

e2πiν − 1

)]
= −πi

[
1

(α− µ)(α− ν)

(
1 +

2

e2πiα − 1

)
+

1

(µ− α)(µ− ν)

(
1 +

2

e2πiµ − 1

)
+

1

(ν − α)(ν − µ)

(
1 +

2

e2πiν − 1

)]
= −πi

[
1

(α− µ)(α− ν)
+

1

(µ− α)(µ− ν)
+

1

(ν − α)(ν − µ)

+
1

(α− µ)(α− ν)

(
2

e2πiα − 1

)
+

1

(µ− α)(µ− ν)

(
2

e2πiµ − 1

)
+

1

(ν − α)(ν − µ)

(
2

e2πiν − 1

)]
.
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The first three terms combine to 0 and we obtain,
∑

n∈Z
1

n3+Bn2+Cn+D
is equal to

−2πi

[
1

(α− µ)(α− ν)

(
1

e2πiα − 1

)
+

1

(µ− α)(µ− ν)

(
1

e2πiµ − 1

)
+

1

(ν − α)(ν − µ)

(
1

e2πiν − 1

)]
= −2πi

[
1

(α− µ)(ν − α)

(
1

1− e2πiα

)
+

1

(α− µ)(µ− ν)

(
1

1− e2πiµ

)
+

1

(ν − α)(µ− ν)

(
1

1− e2πiν

)]
=

−2πi

(α− µ)(µ− ν)(ν − α)

(
µ− ν

1− e2πiα
+

ν − α
1− e2πiµ

+
α− µ

1− e2πiν

)
=

2πi

(ν − µ)(µ− α)(α− ν)

(
ν − µ

e2πiα − 1
+

α− ν
e2πiµ − 1

+
µ− α
e2πiν − 1

)
.

This gives us the closed form for the sum (1.2) which is exactly same as the one

found using Fourier Analysis in Theorem 2.7 but with no convergence conditions.

The results derived in this section are encapsulated in the following theorem.

Theorem 3.2 If α, µ, ν ∈ C \ Z are the distinct roots of the cubic x3+Bx2+Cx+D,

then, we have,
∑
n∈Z

1

n3 +Bn2 + Cn+D
is equal to

2πi

(ν − µ)(µ− α)(α− ν)

(
ν − µ

e2πiα − 1
+

α− ν
e2πiµ − 1

+
µ− α
e2πiν − 1

)
.

Following the same approach of using the cotangent function to compute the closed

form, we shall now attempt to find a closed form for the sum
∑

n∈Z
1

(n3+Bn2+Cn+D)k

in the next section.
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3.2 Computing a closed form for∑
n∈Z

1

(n3 +Bn2 + Cn +D)k
.

Let α, µ, ν ∈ C/Z be the distinct roots of the cubic polynomial (x3 +Bx2 +Cx+D).

If for the sake of simplicity of writing, we write α = α1, µ = α2, ν = α3, then, we

can write that the sum
∑

n∈Z
1

(n3+Bn2+Cn+D)k
is equal to

∑
n∈Z

1

((n− α1)(n− α2)(n− α3))
k

=
∑
n∈Z

1

(n− α1)
k(n− α2)

k(n− α3)
k
.

Drawing parallels with (3.2) in the previous section, we can split this sum using partial

fractions and see that
∑

n∈Z
1

(n3+Bn2+Cn+D)k
is equal to

∑
n∈Z

3∑
i=1

k∑
j=1

ci,j
(n− αi)j

for constants ci,j ∈ C where 1 ≤ i ≤ 3 and 1 ≤ j ≤ k. It is obvious that for

higher values of k it is challenging to compute the ci,j’s by hand as we do not have

any elegant explicit formula to compute these; but it is not that these coefficients

cannot be determined. One can compute these coefficients with the help of computer

by writing a program that has computational steps coded into it as iterations as no

formula is known at this time, in comparison to Lemma 3.1. Once we have these

coefficients, it becomes possible to find the closed form that we are looking for. At

this point, we have that
∑

n∈Z
1

(n3+Bn2+Cn+D)k
is equal to

3∑
i=1

k∑
j=1

ci,j
∑
n∈Z

1

(n− αi)j
. (3.3)
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To simplify this sum further, we need to determine what the sum
∑

n∈Z
1

(n−αi)j
is

equal to. This sum can be evaluated with the help of (3.1).

Lemma 3.3 For j ≥ 1, we have

∑
n∈Z

1

(n− z)j
=


−πi

(
1 + 2

e2πiz−1

)
, j = 1,

(−2πi)j
(j−1)!

j∑
t=1

(t− 1)!S(j, t)

(e2πiz − 1)t
, j ≥ 2;

where S(j, t) ∈ Z is a Stirling number of the second kind.

Proof: Replacing z by (−z) in (3.1), we get

∑
n∈Z

1

n− z
= −π cot(πz) = −πi

(
e2πiz + 1

e2πiz − 1

)
. (3.4)

In this lemma, we have two cases depending on j.

Case I: When j = 1, we have from (3.4) that

∑
n∈Z

1

n− z
= −π cot(πz) = −πi

(
e2πiz + 1

e2πiz − 1

)
.

This implies

∑
n∈Z

1

n− z
= −πi

(
e2πiz − 1 + 1 + 1

e2πiz − 1

)
= −πi

(
1 +

2

e2πiz − 1

)
=

−πi
(j − 1)!

(
1 +

2

e2πiz − 1

)(j−1)

.
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Case II: When j ≥ 2, by computing the (j − 1)st derivative of (3.4), we get

∑
n∈Z

1

(n− z)j
=

(−π cot(πz))(j−1)

(j − 1)!

=
−πi

(j − 1)!

(
1 +

2

e2πiz − 1

)(j−1)

.

For j ≥ 2, we have that j − 1 ≥ 1 and we see that

∑
n∈Z

1

(n− z)j
=
−2πi

(j − 1)!

(
1

e2πiz − 1

)(j−1)

.

From Lemma 2.12 we have that for m ≥ 0,

(
1

eax − 1

)(m)

= (−1)mam
m+1∑
t=1

(t− 1)!S(m+ 1, t)

(eax − 1)t
.

Using this lemma for x = z, a = 2πi,m = j − 1, we find that

∑
n∈Z

1

(n− z)j
=

−2πi

(j − 1)!
(−1)j−1(2πi)j−1

j−1+1∑
t=1

(t− 1)!S(j − 1 + 1, t)

(e2πiz − 1)t

=
(−2πi)j

(j − 1)!

j∑
t=1

(t− 1)!S(j, t)

(e2πiz − 1)t
.

This completes the proof.

The closed form for the sum (1.3) is computed in the following theorem.

Theorem 3.4 If α1, α2, α3 ∈ C \ Z are distinct roots of the cubic x3 +Bx2 +Cx+D,

then the sum
∑

n∈Z
1

(n3+Bn2+Cn+D)k
is equal to

3∑
i=1

(
−πici,1 +

k∑
j=1

ci,j
(−2πi)j

(j − 1)!

j∑
t=1

(t− 1)!S(j, t)

(e2πiαi − 1)t

)
;

where ci,j ∈ C, 1 ≤ i ≤ 3 and 1 ≤ j ≤ k.
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Proof: From (3.3), we have that

∑
n∈Z

1

(n3 +Bn2 + Cn+D)k
=

3∑
i=1

k∑
j=1

ci,j
∑
n∈Z

1

(n− αi)j

=
3∑
i=1

ci,1
∑
n∈Z

1

(n− αi)
+

3∑
i=1

k∑
j=2

ci,j
∑
n∈Z

1

(n− αi)j
.

Using Lemma 3.3 for z = αi, we find that the sum
∑

n∈Z
1

(n3+Bn2+Cn+D)k
is equal to

3∑
i=1

ci,1

(
−πi

(
1 +

2

e2πiαi − 1

))
+

3∑
i=1

k∑
j=2

ci,j
(−2πi)j

(j − 1)!

j∑
t=1

(t− 1)!S(j, t)

(e2πiαi − 1)t

= −πi
3∑
i=1

ci,1 +
3∑
i=1

k∑
j=1

ci,j
(−2πi)j

(j − 1)!

j∑
t=1

(t− 1)!S(j, t)

(e2πiαi − 1)t

=
3∑
i=1

(
−πici,1 +

k∑
j=1

ci,j
(−2πi)j

(j − 1)!

j∑
t=1

(t− 1)!S(j, t)

(e2πiαi − 1)t

)
.

This completes the proof.

Now that we have computed the closed forms for the sums (1.2) and (1.3) using

Fourier analysis and by connecting the sums to the identities involving well-known

trigonometric functions and combinatorial numbers, we shall compare the two ap-

proaches and results derived using each in the next chapter.

49



Chapter 4

Conclusions and future directions

This chapter reviews the goals of the research conducted. The results derived in the

earlier chapters are summarized and compared. Also, a section of this chapter is

allocated to discussion of further research.

4.1 Objectives of research

This thesis has been formulated for partial fulfillment of completion of Master of Sci-

ence degree program in Mathematics at Wilfrid Laurier University. The thesis has

provided me with an excellent opportunity to learn to apply the conceptual under-

standing of Mathematics to conduct and practice research for the abstract mathe-

matical problems in detail. The results derived for writing of this thesis incorporated

the theoretical knowledge gained through the graduate courses taken at Laurier. One

such course was that of the reading course in Combinatorics (MA685) that I took

with Dr. Chester Weatherby in Fall term (2015). Various concepts learnt through

this course helped me build conceptual background that was required to yield results

for the thesis.

This thesis is aimed to evaluate closed forms for the sums
∑

n∈Z
1

(n3+Bn2+Cn+D)k

where B,C,D ∈ C and k ∈ Z. Sums of this form are related to an important function
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in Mathematics, the Riemann zeta function, ζ(s). Though several properties of ζ(s)

have been studied and analyzed, there are still fundamental postulations related to

it, that remain unproved. So, it is important to explore mathematical problems

involving or relating to ζ(s). The computation of the closed forms for the sums∑
n∈Z

1
(n3+Bn2+Cn+D)k

is a step forward of studying the Riemann zeta function.

4.2 Summary of thesis

The thesis begins with building mathematical background and motivation for the

problem in question in Chapter 1. A section in this chapter analyzes the cubic

polynomials of the form ax3 + bx2 + cx + d and various methods of finding their

roots. One of these methods that is used in calculations in later chapters is that of

Cardano’s method. Cardano’s method is discussed in detail and it is learnt that using

this method, the roots obtained for the cubic polynomial ax3 + bx2 + cx + d are of

the form

x1 =
3
√
M +

3
√
N − b

3a
,

x2 =
3
√
Mω +

3
√
Nω2 − b

3a

x3 =
3
√
Mω2 +

3
√
Nω − b

3a

where M = −q
2

+
√(

q
2

)2
+
(
p
3

)3
, N = −q

2
−
√(

q
2

)2
+
(
p
3

)3
, p = c

a
− 1

3

(
b
a

)2
and q =

2
27

(
b
a

)3 − 1
3
bc
a2

+ d
a
.

In chapter 2, we review fundamental concepts of Fourier analysis that are used to

compute the closed forms for the sums
∑

n∈Z
1

n3+Bn2+Cn+D
and

∑
n∈Z

1
(n3+Bn2+Cn+D)k

.

The closed form computed for the sum
∑

n∈Z
1

n3+Bn2+Cn+D
is given by the Theorem

2.7, which is re-written below.

Theorem 4.1 Suppose α, µ, ν ∈ C \ Z are the distinct roots of the cubic u3 +Bu2 +
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Cu+D where B,C,D ∈ C and the cubic can be factored as,

u3 +Bu2 + Cu+D = (u− α)(u2 + βu+ γ) = (u− α)(u− µ)(u− ν)

where α, β, γ, ρ, µ, ν ∈ C and γ = ρ2 + β2

4
, µ = −β

2
− iρ, ν = −β

2
+ iρ such that

1. Im(α) > 0

2. 0 ≤
∣∣∣ Im(β)

2

∣∣∣ < Re(ρ).

Then,

∑
n∈Z

1

(n3 +Bn2 + Cn+D)
=

2πi

(ν − µ)(µ− α)(α− ν)

(
ν − µ

e2πiα − 1
+

α− ν
e2πiµ − 1

+
µ− α
e2πiν − 1

)
.

For the sum
∑

n∈Z
1

(n3+Bn2+Cn+D)k
, the previous sum was written as a composition

of functions of q as follows∑
n∈Z

1

(n3 +Bn2 + Cn+D)
=
∑
n∈Z

1

(n3 +Bn2 + Cn+ q + BC
3
− 2B3

27
)

=

2π[(f1(f2(f3)))((f6 − f5)(f4(f7)) + (f7 − f6)(f4(f5)) + (f5 − f7)(f4(f6)))]

where f1(q) = 1
q
, f2(q) =

√
q, f3(q) = 27q2 + 4p3, f4(q) = 1

e2πiq−1 ,

f5(q) = µ = x1, f6(q) = ν = x2, f7(q) = α = x3. It was then differentiated

with respect to q, k − 1 times using concepts of Faá Di Bruno’s formula, product

rule for higher order derivatives and various lemmas involving generalised derivatives

for parts that make the whole. Since differentiating the sum meant differentiating

the composition of seven different functions of q, and applying multiple applications

of Faá Di Bruno’s formula, product rule for higher order derivatives, etc., it was not

feasible to write an explicit closed form for the sum (1.3) by doing computations by

hand. The differentiation was carried out step by step followed by differentiation of

the roots α, µ and ν, which too involved decomposing the roots into functions of q

and differentiating these in further steps. The closed form in this case using Fourier
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methods, can only be obtained if the information exhibited in the individual steps is

programmed and different values of k can be input into the computer to compute the

closed forms for the sum (1.3) for different values of k.

In Chapter 3, we evaluated the closed forms for the sums (1.2) and (1.3), but by

using a different approach, that involved connecting the sums to the cotangent func-

tion and its exponential equivalents. The closed forms computed using this method

are outlined in Theorems 3.2 and 3.4, that are mentioned below.

Theorem 4.2 (Theorem 3.2) If α, µ, ν ∈ C \ Z are the distinct roots of the cubic

x3 +Bx2 + Cx+D, then, we have,
∑
n∈Z

1

n3 +Bn2 + Cn+D
is equal to

2πi

(ν − µ)(µ− α)(α− ν)

(
ν − µ

e2πiα − 1
+

α− ν
e2πiµ − 1

+
µ− α
e2πiν − 1

)
.

Theorem 4.3 (Theorem 3.4) If α1, α2, α3 ∈ C \ Z are distinct roots of the cubic

x3 +Bx2 + Cx+D, then, the sum
∑

n∈Z
1

(n3+Bn2+Cn+D)k
is equal to

3∑
i=1

(
−πici,1 +

k∑
j=1

ci,j
(−2πi)j

(j − 1)!

j∑
t=1

(t− 1)!S(j, t)

(e2πiαi − 1)t

)
;

where ci,j ∈ C, 1 ≤ i ≤ 3 and 1 ≤ j ≤ k.

The closed forms for the sums (1.2) and (1.3) computed using the two different ap-

proaches, namely, by using tools and techniques of Fourier Analysis and by connecting

the sums to cotangent function, will be compared in the next section.

4.3 Comparison of the results derived

The closed forms obtained for the sum
∑

n∈Z
1

n3+Bn2+Cn+D
using approach of Fourier

analysis in Theorem 2.7 was the same as the one computed by connecting the sum

to the cotangent function and its exponential equivalents in Theorem 3.2; the only
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difference being that the latter did not have any conditions associated with it, while

the former did have certain conditions on the roots of the cubic. So, on comparing

the two methods, it will not be wrong to say that using the cotangent method to

compute the closed form for the sum
∑

n∈Z
1

(n3+Bn2+Cn+D)k
is the “better” method

for computing the closed form in the case of k = 1.

For k > 1, it was found that by using Fourier analysis it was not feasible to

write the closed form for the sum explicitly by making the computations by hand for

the purpose of this thesis, but nevertheless it is not impossible to calculate the closed

form. One can easily compute the closed form for the sum (1.3) by building a software

with the computations programmed into it and inputting different values of k. On

the other hand, in the closed form evaluated using the cotangent function method in

Theorem 3.4, the coefficients ci,j’s ∈ C, 1 ≤ i ≤ 3 and 1 ≤ j ≤ k were unknown for

higher values of k, as no elegant formula to compute these ci,j’s for higher values of

k is known to the writer at this time. If the coefficients ci,j’s were known, we would

get a really “nice” closed form for the sum (1.3). Therefore, as far as the methods

of computing the closed form for the sum (1.3) are concerned, it is the approach of

using cotangent function to compute the closed form that is a “better” approach.

Nonetheless, the approach of using the tools and techniques of Fourier analysis is also

useful. It helps us to get insight into another way of computing the sum in closed

and explicit form in terms of roots of the cubic in question.

4.4 Future work

The research conducted for the formulation of this thesis can be advanced in number

of ways. One, as was mentioned in the previous section, the closed forms obtained for

the sum
∑

n∈Z
1

n3+Bn2+Cn+D
using approach of Fourier analysis in Theorem 2.7 had

certain conditions associated with the roots of the cubic, namely

1. Im(α) > 0
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2. 0 ≤
∣∣∣ Im(β)

2

∣∣∣ < Re(ρ).

It could be attempted to evaluate the closed form for the sum (1.2) using the ap-

proach of Fourier analysis without imposing any conditions on the roots of the cubic

polynomial.

Second, the closed form evaluated using the cotangent function method in Theo-

rem 3.4 gave us a “nice” closed form but the coefficients ci,j’s, 1 ≤ i ≤ k, 1 ≤ j ≤ 3

could not be computed for higher values of k. Future work could be directed toward

seeking a formula for computing the coefficients ci,j’s for higher values of k.

Third, the closed forms were computed for the sums
∑

n∈Z
1

(n3+Bn2+Cn+D)k
where

the cubic x3 + Bx2 + Cx + D had complex but non-integral and distinct roots. It

would be interesting to explore the sums related to cubic polynomials with integral

and repeated roots.

Fourth, Lemma 2.12 involved Stirling numbers of the second kind. The future work

for this thesis could be directed towards researching for the combinatorial significance

of these numbers.

Fifth, based on the approaches followed to compute the sums (1.2) and (1.3), this

thesis research could also be extended by attempting to compute closed forms for

the sums
∑

n∈Z
1

n4+Bn3+Cn2+Dn+E
or
∑

n∈Z
1

P (n)
where B,C,D,E ∈ Z and P (n) is a

polynomial of degree m ∈ Z where m > 3.

The future research described above would enable us to explore the Reimann zeta

function, ζ(s), further.
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[9] Lagrange, J., Réflexions sur la résolution algébrique des équations , œuvres
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