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ABSTRACT 

Parkinson’s disease impairs control of well-learned movements, and therefore, individuals with 

Parkinson’s disease are forced to walk with greater conscious control. This causes difficulties 

while walking and completing a secondary task simultaneously (dual tasking), in that distractions 

from conscious control of walking increase the risk of falls and injury. Although, attention-based 

exercise may be a potential avenue to decrease the demands associated with walking in 

Parkinson’s disease. For example, an external focus of attention (on manipulated objects) has 

been found to recruit the networks that are important for walking with little conscious control 

(automatic control networks). In contrast, an internal focus (on limb movements) has been found 

to recruit conscious control networks. Unexpectedly, an external focus of attention (compared to 

an internal) has been found to improve postural stability in Parkinson’s disease (compared to 

internal) despite that this attentional focus recruits damaged automatic control circuits. 

Therefore, promoting an external focus during goal-based exercise may improve upon automatic 

control functioning, and therefore, improve the ability to dual task and reduce the severity of 

symptoms.  

 A parallel group, single blind, randomized controlled trial was conducted. Thirty-nine 

participants with Parkinson’s disease were randomized to one of two exercise groups: 1) 

External focus of attention (focus on movement of coloured labels attached to limbs, n=19) or 2) 

Internal focus of attention (focus on movement of limbs, n=20). Both exercise groups completed 

33 one-hour goal-based exercise sessions over 11 weeks. Eleven participants were assigned to a 

non-exercise control group. Walking ability (single and dual tasking) and symptom severity 
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(Unified Parkinson’s disease Rating Scale motor subsection [UPDRS-III] ON and OFF 

dopamine medications) were assessed before and after (pre/post) the completion of the program, 

and 8 weeks after exercise cessation (washout). As a result of the intervention, walking ability 

while completing a secondary task became significantly worse in the Internal focus of attention 

exercise group, while dual tasking ability did not change in the external group. Symptom severity 

significantly improved in only the External group from pre to post. From pre to washout, dual 

task walking ability and motor symptom severity improved in both exercise groups. However, 

the Internal group had increased errors on the dual task, whereas the External group did not, 

indicating that improvements were only demonstrated in the External group.  

Thus, External focus of attention exercise may provide benefits that establish a 

foundation for improvements to dual task walking ability in Parkinson’s disease, whereas 

adopting an Internal focus of attention during goal-based exercise appeared to increase reliance 

on conscious control of movement, hindering dual tasking ability. Additionally, after the exercise 

program, greater improvements to symptom severity were found after externally focused 

exercise compared to internally focused. Together, these findings indicate that focusing 

externally on the manipulation of coloured labels while exercising provides greater rehabilitation 

effectiveness in Parkinson’s disease compared to focusing internally on limb movements.  
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PROBLEM STATEMENT 

Despite a great body of research, one of the most devastating aspects of Parkinson’s 

disease, walking detriments unresponsive to Parkinsonian medication, remains to be ameliorated 

by adjunct therapies. More specifically, individuals with Parkinson’s disease are forced to 

constantly attend focus towards walking in order to successfully ambulate. In the event that they 

are distracted while walking, the result can be tripping, falling, serious injury, and even 

hospitalization. To date, understanding the mechanisms underlying this dysfunction is limited, 

and few randomized controlled exercise trials have been conducted.  
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CHAPTER 1: INTRODUCTION 

In healthy individuals, well-learned movements can be performed automatically (without 

conscious control and with little demand on attention) [1,2]. Walking, or gait, is an example of a 

well-learned movement [3], since it is learned as a child and carried with us in a very adaptable 

way throughout our development. When healthy individuals walk, afferent information regarding 

limb position in physical space from proprioceptors is transmitted to the sensorimotor cortices of 

the brain, which relay an efferent copy of this information to the nuclei of the basal ganglia 

where the information is processed and integrated with inputs from various locations of the brain 

[2,4–11]. The information then leaves the basal ganglia and returns to the sensorimotor cortex 

where it is used to guide movement. If this process of integrating sensory information through 

the basal ganglia is functional, and the individual can efficiently use this information, then 

walking can be completed without a great degree of conscious control, and therefore 

automatically [1–3]. Without the necessity to consciously control walking, the degrees of 

movement freedom are minimized [12–16], and therefore spatio-temporal walking parameters 

(ie. length, time, and variability of stepping behaviour) are consistent between steps and 

accomplished successfully with little vigilance. Since automatic walking requires very little 

central processing capacity, it also allows one to dual task, or walk while performing another 

task simultaneously, without interference to gait parameters, which would present as decreased 

step length and time, slower velocity and increased step-to-step variability [17–22]. The ability 

to dual task with minimal interference is possible in healthy individuals because frontal areas of 

the brain involved in conscious control of limb movements are less required to complete the 

automatic movement (ie. walking), and are therefore available for performance of a secondary 
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task [12,23–28]. It then stands to reason that if there is a segment of dysfunction in the process of 

completing a movement automatically, dual task performance (ie. walking and completing a 

secondary task) might be impaired. This is the case in Parkinson’s disease.  

When individuals with Parkinson’s disease walk, the integrated information that projects 

from the basal ganglia and return to the sensorimotor cortex is “noisy” (i.e. abnormal electrical 

oscillatory frequencies), due to degeneration of dopamine producing cells of the basal ganglia 

[4]. In other words, the processing of proprioception (or the sensory information regarding limb 

position in physical space) is impaired in Parkinson’s disease [4,11,29]. Without the functional 

integration of sensory information through the basal ganglia, individuals with Parkinson’s 

disease cannot efficiently use proprioception to guide movements [11,30–40]. To compensate for 

this problem, individuals with Parkinson’s disease attempt to consciously control their 

movements [24,40–45]. Increased demand on conscious control increases the problematic 

degrees of freedom associated with the complexity of walking [46]. This problem further results 

in inaccurate perception of where one’s own lower limbs are in physical space [30] and thus a 

greater chance of tripping over obstacles when one is forced to rely on proprioception (when 

vision of the lower limbs is occluded) [47]. With greater demand required to consciously control 

walking (compared to healthy individuals), the availability of attentional resources to complete a 

secondary task is limited [19–21,48,49]. Walking while simultaneously attempting to complete 

another task (dual tasking) thus significantly deteriorates gait in individuals with Parkinson’s 

disease, such that step length decreases, whereas time spent in double support and gait variability 

increase [19–22,38,43,50–52]. These impairments in gait have been found to lead to increased 

risk of falls [17,53–56]. Interestingly, previous work has found that walking resulted in the 

greatest percentage of falls compared to turning, transferring, reaching, and standing up from a 
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seated position [57]. A recent 8-year cohort study investigating the history of falls in individuals 

with Parkinson’s found that among participants who were classified as non-fallers at baseline, 

68% became consistent fallers by the end of the study [58], matching previous findings [59]. 

These falls unfortunately underlie the leading cause of hospitalization in Parkinson’s disease [60] 

where typically in Canada, 54% of falls in individuals over the age of 75 years result in 

hospitalization [57].  

Unfortunately, dopaminergic medications aimed to alleviate symptoms of Parkinson’s 

disease offer only limited alleviation to gait impairments that are exacerbated when dual tasking 

and linked to increased risk of falls. For example, regardless of medication state (ON vs. OFF 

dopaminergic medication states), previous work utilizing measures of proprioception have 

consistently found that individuals with Parkinson’s disease are more variable in their ability to 

perceive where their limbs and body are in physical space compared to healthy age-matched 

individuals [4]. Specifically, the increased threshold of limb movement perception and decreased 

accuracy of limb placement (which translate into greater deficits in postural stability) are not 

improved in Parkinson’s disease with dopamine replacement medication [11,32,61–64]. With 

respect to gait, while individuals with Parkinson’s disease walk at a comfortable pace, impaired 

step time and length variability (i.e. increased variability) are also not alleviated by dopamine 

replacement medication [65,66]. Furthermore, Lord and colleagues (2011) found that dopamine 

replacement does not alleviate increased variability of the percentage of time spent in double 

support when individuals with Parkinson’s disease walked and completed a secondary task [66]. 

In fact, dopaminergic replacement medications have been found to exacerbate dysfunctional 

proprioception [64], which may explain findings of increased step time variability while 

individuals with Parkinson’s disease walk with dopaminergic replacement compared to walking 
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after withdrawn from medication [67]. In general, sensory processing that allows the automatic 

system to function is not enhanced by dopaminergic medication in Parkinson’s disease. 

Therefore, alternative methods to improve upon the ability to dual task in Parkinson’s disease is 

necessary to improve quality of life in individuals with Parkinson’s disease and decrease the 

potential of falls.  

Aiming to improve dual task walking in Parkinson’s disease is not a new concept. It has 

been proposed by research groups that to improve dual task walking, one must simply train dual 

tasking specifically [68,69]. Previous work has found that one session of dual task training 

(combination of gait training and working memory language tasks) led individuals with 

Parkinson’s disease to significantly increase step length and velocity (ie. improve gait) while 

dual tasking at post-test compared to pre-test [70,71]. Longer dual task gait training interventions 

that have included 1 session per week for 3 weeks [72], 3 sessions per week for 4 weeks [73], 

and 3 sessions per week for 6 weeks [74] have each demonstrated improved dual task walking 

step length and velocity in individuals with Parkinson’s disease. Interestingly, Yogev-Seligmann 

and colleagues (2012) demonstrated that dual task training significantly decreased stride time 

variability while walking and completing a secondary task [73], an impaired domain of walking 

not responsive to dopaminergic medication [65,66]. Most recently, a single-blind randomized 

controlled trial investigated the influence of a 10-week (3 sessions per week) dual task balance 

training intervention on dual task walking ability in individuals with Parkinson’s disease [75]. 

Although dual task walking (step length and velocity) was not improved, Conradsson and 

colleagues (2015) found that performance on the secondary task (measured in % error compared 

to baseline) significantly improved at post-test compared to pre-test without causing greater 

interference to walking. This suggests an improvement to dual task capability since participants 
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were better able to prioritize the secondary task at post-assessment compared to pre without 

detriments to gait [75]. It should be noted that the previously mentioned studies compared all 

dual task training groups to a control group that was not given an intervention, and found 

significant differences between groups that suggest improvements to dual task ability in those 

with Parkinson’s disease who completed the associated interventions.  

Dual task training interventions have therefore successfully improved upon the ability to 

walk and complete a secondary task simultaneously in individuals with Parkinson’s disease. 

However, when individuals with Parkinson’s disease dual task, they naturally recruit futile areas 

of the brain to compensate for the inaccurate information that is output from the basal ganglia 

[24]. For example, in an innovative functional magnetic resonance imaging study, Wu and 

Hallett (2005) measured cortical activity in healthy individuals while they completed a dual task 

(finger-tapping task while simultaneously completing a secondary cognitive task). These 

measures were collected before participants were given an opportunity to practice the finger-

tapping and cognitive dual task (to the point where the cognitive task no longer interfered with 

the finger-tapping task) and after. The researchers found that after the dual task was well learned 

(ie. finger-tapping became automatic), areas of the brain involved in conscious control of 

movements became less recruited at post-test compared to pre-test, whereas areas of the brain 

involved in automatic control became more recruited. In contrast, when this protocol was 

completed in individuals with Parkinson’s disease, practicing the dual task to the point where no 

dual task interference was found did not result in decreased recruitment of areas in the brain 

involved in conscious control like that found in healthy individuals. Therefore, dual task training 

interventions, such as those presented above, would only be expected to improve upon conscious 

control abilities in Parkinson’s disease, but not unconscious control associated with their 
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impaired automatic control networks. Thus, after completion of a dual task intervention, 

individuals with Parkinson’s disease would still be unable to efficiently use their automatic 

control networks during walking so that conscious control networks could be used to accomplish 

secondary tasks. To improve upon one’s ability to efficiently use their automatic control 

networks, a modality that fosters increased drive of sensory areas of the brain (since sensory 

areas of the brain underlie automatic control networks) could be utilized. Exercise has been 

found to be one such modality. 

 The purpose of using exercise (specifically goal-based exercise to train walking) as an 

intervention is to induce neuroplastic changes in the brain, or more specifically, changes to 

neuronal connections in response to new stimulation and/or information that bring about altered 

behaviour [76–78]. By using an exercise intervention that increases neuronal drive of areas in the 

brain associated with the automatic system (i.e. sensorimotor cortex projections into the basal 

ganglia), functioning neuronal connections could be strengthened or formed, allowing for 

improved automatic control, and therefore, ability to dual task. Many forms of exercise would be 

expected to increase sensorimotor drive in the brain, since the very act of increasing muscle 

activation would also increase the amount of afferent sensory information projecting to the brain 

from proprioceptors such as muscle spindles sensitive to muscle stretch and golgi tendon organs 

sensitive to muscle tension [79–84]. However, since automatic control over the vast degrees of 

freedom associated with gait requires the interaction of visual, vestibular, and somatosensory 

information that are specific to walking, an exercise program that trains aspects of gait (such as 

dynamic balance and coordination) and increases neuronal drive in sensorimotor areas of the 

brain (due to proprioceptor activity) would be optimal to improve dual task walking. A previous 

functional magnetic resonance imaging study investigated the influence of the long-term effects 
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on neurological function resulting from goal-based exercise that trains dynamic balance and 

coordination in healthy individuals. Wei and colleagues (2014) found significantly greater 

sensorimotor cortex synchronization in individuals who trained dynamic balance and 

coordination through Tai Chi (n=18, average age=52.4), compared to a group of individuals who 

did not (n=22, average age=54.8) [85]. Greater synchronization of the automatic system might 

allow for more effective and unconscious recruitment of muscle synergies involved in well-

learned movements, decreasing the degrees of freedom that need to be controlled and the 

demand placed on attentional resources. However, as discussed previously, when individuals 

with Parkinson’s disease complete movements such as those that would be involved in a goal-

based exercise program, they naturally recruit vast cortical areas of the brain [24]. This is 

presumably to compensate for the inaccurate information that is being output from the basal 

ganglia [24], such as sensory information that they are unable to efficiently use. By recruiting 

areas of the brain to compensate for the impaired automatic processes, a goal-based exercise that 

increases sensorimotor drive into the basal ganglia would not be expected to improve ones’ use 

of this information alone because the individuals with Parkinson’s would not be trained to 

efficiently use the sensory information, only compensate for it. Therefore, an instruction that 

forces individuals with Parkinson’s disease to utilize their automatic control networks in addition 

to goal-based exercise might improve upon the functioning and ability to efficiently use 

automatic processes, allowing for improved ability to walk and complete a second task. An 

instruction that pertains to where attention is focused while performing different movements has 

been found to allow individuals with Parkinson’s disease to efficiently use automatic processes 

to control movement, and benefits to movement performance result.  
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While performing movements, one can focus on the control of an object that is being 

manipulated (such as the control of a golf ball while completing a golf putt), or they can focus on 

their limbs to ensure that the movement is accurate. Previous work has demonstrated that when 

healthy individuals perform tasks and focus attention on the control of an object that is being 

manipulated (i.e. an external focus of attention), movement performance is typically more 

successful than when the movement is completed while attention is focused towards controlling 

movement of ones’ limbs (i.e. an internal focus of attention) [86–91]. Adopting an external focus 

of attention while completing a movement has been argued to naturally recruit automatic 

processes indicative of unconscious control of the movement [46]. Thus, an external focus of 

attention might improve recruitment of muscle synergies that decrease the number of degrees of 

freedom that need to be controlled for. In contrast, it has been argued that an internal focus of 

attention promotes a more conscious control of movement, increasing the number of degrees of 

freedom that need to be controlled and causing detriments to performance [46]. However, the 

pathophysiological mechanism underlying the influence of an external and internal focus of 

attention is not completely understood. Regardless, Zentgraf and colleagues (2009) found 

through functional magnetic resonance imaging, that when healthy individuals adopted an 

external focus of attention (i.e. focus attention on pressing keys) during a finger tapping task, 

greater involvement of cortical areas that are typically recruited during automatic movement 

control was demonstrated [23,92]. On the other hand, directing attention internally (i.e. on the 

movements of ones’ fingers) promoted recruitment of frontal areas of the brain involved in 

conscious control of movement [92]. Therefore, one might expect that if an external focus of 

attention promotes the involvement of impaired automatic processes in Parkinson’s disease, 

movement performance should be worse if an external focus of attention is adopted throughout 
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the control of a movement task. In contrast to this assumption, Wulf and colleagues (2009) found 

that when individuals with Parkinson’s disease were asked to control their postural stability on 

an inflated disk, participants demonstrated significantly less postural sway (improved control of 

postural stability) when focus of attention was directed to minimizing movements of the platform 

they stood on (external focus of attention) compared to minimizing movements of their feet 

(internal focus of attention) [93,94]. Importantly, postural stability testing in the previously 

mentioned study took place while individuals with Parkinson’s were ON dopamine replacement 

medications (continuing their normal Parkinsonian medication regimen). This suggests that as 

long as dopamine is present in the basal ganglia, individuals with Parkinson’s disease are able to 

effectively use their automatic control networks to perform movements, and this proves 

beneficial for control. On the other hand, removing dopamine from the basal ganglia (OFF 

medication state) might be expected to negate the benefits of an external focus of attention while 

controlling posture. With greater understanding regarding how dopamine modulates focus of 

attention strategies during postural control, an effective intervention that manipulates focus of 

attention could be formed. For this reason, Beck and Almeida (2016) investigated the influence 

of dopaminergic modulation (ON dopamine medication vs. OFF dopamine medication) on 

postural stability while contrasting focus of attention strategies were adopted (external vs. 

internal vs. control) in Parkinson’s disease [95].  

 Since an external focus of attention was found to be more beneficial for control of 

postural stability in Parkinson’s disease compared to an internal focus of attention while 

participants were ON dopaminergic medications, but was detrimental to postural control while 

participants were OFF dopamine medications, an external focus of attention was suggested to 

recruit automatic processes that include the basal ganglia [95]. This also suggests that training an 



 

10 

external focus of attention in combination with a goal-based exercise program could improve 

upon automatic processes in Parkinson’s disease, whereas training an internal focus of attention 

in combination with an identical exercise program would not be expected to improve upon these 

automatic control networks. Therefore, in the present study, we aimed to investigate whether 

combining a goal-based exercise program with an external focus of attention could improve upon 

dual task walking (ability to efficiently use automatic processes) in individuals with Parkinson’s 

disease. It was expected that promoting an external focus of attention (i.e. adopt use of the 

automatic system) while individuals with Parkinson’s disease complete a goal-based exercise 

program would improve dual task walking (i.e. increase step length, decrease % of time in 

double support, and decrease step-to-step variability) at post-test compared to pre-test. In 

contrast, it was expected that promoting an internal focus of attention (i.e. recruit conscious 

control networks) while individuals with Parkinson’s disease complete a goal-based exercise 

program might hinder dual task walking performance since this training might increase reliance 

on conscious control of movement. Additionally, since automatic processes rely on basal ganglia 

function, it was expected that goal-based exercise combined with an external focus of attention 

would improve upon Parkinson’s disease symptom severity associated with basal ganglia 

dysfunction (measured with the Unified Parkinson’s Disease Rating scale motor subsection). In 

contrast, it was expected that goal-based exercise combined with an internal focus of attention 

that promotes the use of conscious control networks less influenced by the basal ganglia would 

not improve upon Parkinson’s disease symptom severity. By extension, if changes to neuronal 

connections took place (neuroplasticity) to either automatic and/or conscious networks, one 

might expect that any changes to walking behaviour (both single and dual task) should endure 

for a given period of time after cessation of an exercise intervention [40,73,74,96–99]. Therefore, 
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the last aim of the present study was to determine whether changes to gait and symptom severity 

as a result of a goal-based exercise program persist throughout a washout period. 
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CHAPTER 2 

 

CAN DUAL TASK WALKING IMPROVE IN PARKINSON’S DISEASE AFTER 
EXTERNAL FOCUS OF ATTENTION EXERCISE? A SINGLE BLIND RANDOMIZED 

CONTROLLED TRIAL 
 

ABSTRACT 

Background. Individuals with Parkinson’s disease demonstrate difficulty walking while 

completing a secondary task (dual tasking), which increases risk of falls and injury. It may be 

possible to use attention-based exercise to decrease the demands associated with walking ability. 

For example, an external focus of attention (on movement of manipulated objects) is argued to 

recruit automatic control networks in the basal ganglia, whereas an internal focus (on limb 

movements) may recruit conscious control networks. Thus, it might be expected that promoting 

an external focus in exercise may improve automatic control, and therefore lead to improved 

dual tasking and the severity of symptoms in Parkinson’s disease. Therefore, we aimed to 

investigate how training with external focus compared to internal focus of attention during 

exercise influences dual task walking ability and symptom severity in Parkinson’s disease. 

Methods. Thirty-nine participants with Parkinson’s disease randomized to one of two focus of 

attention exercise groups: 1) External (focus on coloured labels attached to limbs, n=19) or 2) 

Internal (focus on limb movements, n=20). Each group completed 33 one-hour exercise 

rehabilitation sessions (Parkinson’s disease Sensory Attention Focused Exercise, PD-SAFEx™) 

over 11 weeks. Eleven participants were assigned to a non-exercise control group. Before and 

after (pre/post) program completion, and at 8 weeks after exercise cessation (washout), 
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spatiotemporal gait patterns were measured during single and dual task walking, and symptom 

severity (UPDRS-III) was assessed ON and OFF dopamine replacement. A Two-part analysis 

was conducted: Part A evaluated changes from pre to post in the External, Internal and control 

groups; Part B evaluated pre to post to washout changes in the External and Internal groups. 

Results. Part A: From pre assessment to post, neither single task nor dual task walking ability 

changed in the external group. The Internal group had significantly shorter step length (p<0.001) 

and slower velocity (p=0.007) while dual task walking as a result of intervention. Additionally, 

motor symptom severity significantly improved in only the External group from pre to post 

(p=0.002). Part B: From pre to washout, while dual tasking, step time (p=0.005) and percentage 

of time in double support (p=0.014) significantly decreased in both exercise groups, although the 

Internal group increased errors on the dual task by 51%, whereas the External group increased 

error on the dual task by 8%. Finally, at washout, both groups had significantly lower UPDRS-III 

scores (p=0.001) compared to pre.   

Conclusions. Although improvements to dual task walking were not found immediately at post, 

external focus of attention exercise may have provided a foundation for continued benefit that 

eventually (washout) amounted to improvements to dual task walking. Internal focus of attention 

exercise appeared to increase reliance on conscious control of movement, hindering dual tasking 

ability. Despite that Part A analysis demonstrated benefits to motor symptom severity in only the 

external group, Part B demonstrated that both externally and internally focused exercise 

improved UPDRS-III at post and this benefit persisted for 8 weeks. Thus, these findings suggest 

that externally focused exercise leads to greater rehabilitation benefits (to dual tasking and 

symptom severity) than internally focused exercise (symptom severity) in Parkinson’s disease.  
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INTRODUCTION 

In healthy individuals without any neurological disorders, well-learned movements can 

be accomplished with minimal conscious control or demand on attention, and it is argued to be 

under more automatic control [1,2]. Walking, or gait, is believed to be one such well-learned 

movement [3]. These well-learned movements are believed to be facilitated by a group of 

subcortical nuclei, known as the basal ganglia, especially through motor loops of the dorsal 

striatum [4–6] that link with the sensorimotor cortex [2,7–14]. Without the necessity to 

consciously control walking, spatio-temporal gait parameters (ie. length, time, and variability of 

stepping behaviour) are consistent (i.e. little variability) between footfalls [15]. During the more 

automatic control of gait, there are less overall cortical processing demands on conscious control, 

which also allows one to walk without interference to gait parameters (ie. decreased step length, 

increased step time, increased percentage of time spent in double support, and increase step-to-

step variability) while performing another task simultaneously (dual task). These conscious 

control areas are thus available for performance of a secondary task [16–22]. In individuals with 

Parkinson’s disease, the dopamine producing cells of the basal ganglia degenerate, initially in 

dorsal areas of the striatum more involved in motor loops [4–6], causing impairment to 

automatic control. In compensation, individuals with Parkinson’s disease shift to a more 

conscious control of walking [18,23–29], and as a result there is greater demand on attention 

resources to control gait (compared to healthy individuals) [30–34]. Thus, attempting to 

consciously control walking and complete a secondary task has been found to overload 

conscious control resources, causing substantial deterioration to gait in individuals with 

Parkinson’s disease [15,25,30–32,35–38]. Decreased gait amplitude and increased gait 

variability inherently increase the risk of falling [39–43], and therefore place individuals with 
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Parkinson’s disease at greater susceptibility to injury [44,45] and hospitalization [46,47]. 

Unfortunately, dopaminergic replacement medications offer limited mitigation to gait 

impairments exacerbated when dual tasking, suggesting that adjunct rehabilitation is necessary.   

Previous work investigating gait in Parkinson’s disease have found that impaired step 

time (ie. greater step time), step time and length variability (ie. increased variability) are not 

alleviated by dopamine replacement medication (ON dopamine vs. OFF dopamine) [48,49]. 

Dopamine replacement has also been found to be ineffective at improving upon increased 

percentage of time in double support variability when individuals with Parkinson’s disease 

walked and completed a secondary task [49]. Therefore, to decrease the potential of falls 

associated with diverting attention away from walking in individuals with Parkinson’s disease, 

alternative methods to improve upon the ability to dual task (and thus improve upon functioning 

of ones’ automatic control) are necessary. One such possibility may be goal-based exercise 

rehabilitation that strives to draw attention to impaired movements as they are being performed.   

While performing a movement, individuals can direct their focus of attention towards the 

control of a manipulated object (for example, towards a golf ball during a putt), or towards their 

limbs to ensure movement accuracy. Task performance is typically more successful in healthy 

individuals when focus of attention is directed towards control of an object that is being 

manipulated (ie. external focus of attention) compared to the completion of movements while 

attention is focused towards controlling ones’ limbs (ie. an internal focus of attention) [50–55]. It 

has been argued that an external focus of attention naturally promotes recruitment of automatic 

processes indicative of automatic (or unconscious) movement control, providing benefits to 

performance [56,57]. In contrast, it has been argued that an internal focus of attention promotes a 

more conscious control of movement that can be detrimental to motor performance [56,57]. 
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Interestingly, when individuals with Parkinson’s disease were asked to control postural stability 

on an inflated disk (to increase task difficulty) in a previous study, significantly less postural 

sway (improved control) was found when participants were instructed to focus attention on 

minimizing movements of the platform (external focus) compared to minimizing movements of 

their feet (internal focus) [58]. Moreover, Beck and Almeida (2016) found that improvements to 

postural control that were modulated by attention were dependent on the presence of dopamine 

in individuals with Parkinson’s disease [59]. Specifically, an external focus of attention was only 

found beneficial to movement control (compared to an internal focus of attention) when 

dopamine replacement was present, but not in the absence of dopamine. These findings suggest 

that as long as dopamine replacement is present, individuals with Parkinson’s disease are better 

able to effectively use their automatic systems to perform movements, and this proves beneficial 

for overall motor control [58]. However, due to years of progressive basal ganglia degeneration 

and conscious compensation, individuals with Parkinson’s disease either refrain from, or are 

unable to effectively utilize their automatic processes, regardless of whether the automatic 

networks function properly. Therefore, by combining a goal-based exercise program that trains 

specific aspects of walking with an external focus of attention, ability to dual task might be 

improved through enhanced automatic control.  

Thus, the present study aimed to investigate if combining a goal-based exercise program 

with an external focus of attention might improve upon dual task walking in individuals with 

Parkinson’s disease. It was expected that if an external focus of attention does promote the use of 

automatic control networks while completing a goal-based exercise program, then improvements 

to dual task walking might be fostered (ie. increase step length, decrease step time, decrease 

percentage of time in double support, and decrease step-to-step variability) in individuals with 
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Parkinson’s disease. In contrast, it was expected that promoting an internal focus of attention 

while individuals with Parkinson’s disease complete a goal-based exercise program might hinder 

dual task walking performance since this training might increase reliance on conscious control of 

movement. The present study further aimed to explore the influence of external and internal 

focus of attention exercise on motor symptom severity (measured with the Unified Parkinson’s 

disease Rating scale motor subsection). Since automatic processes rely on basal ganglia function, 

it was expected that goal-based exercise combined with an external focus of attention would lead 

to greater improvements to motor symptom severity when compared to an internal focus of 

attention, which it is argued promotes the use of conscious control networks less influenced by 

the basal ganglia. Finally, if changes to neuronal connections took place (neuroplasticity) after 

the present intervention to either automatic and/or conscious control networks, one might expect 

that changes to single and dual task walking behaviour should persist for a given period of time 

after cessation of the exercise intervention [26,60–65]. Therefore, we also sought to explore 

whether changes to gait and symptom severity as a result of a goal-based exercise program 

persist throughout an eight-week washout period. 

METHODS 

Participants  

Participants diagnosed with idiopathic Parkinson’s disease by a neurologist were 

randomly recruited from the Movement Disorders Research and Rehabilitation Centre (MDRC) 

exercise database at Wilfrid Laurier University, Waterloo, Canada. Participants of both genders 

were included in the present study if they possessed the ability to understand verbal instructions 

in English, were able to walk 10-metres unassisted, and were able to stand for 5 minutes 
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unassisted. Exclusion criteria included a diagnosis of a neurological disease other than 

Parkinson’s disease, peripheral neuropathy, diabetes, or a clinical diagnosis of dementia (as 

stated in the participant’s information chart). The prescription of dopaminergic replacement 

medications was not a requirement, and thus participants naive to anti-Parkinsonian medications 

were not excluded. Prior to any evaluation or participation in exercise, written informed consent 

was obtained from individuals interested in participation according to the Declaration of 

Helsinki. The Research Ethics Board at Wilfrid Laurier University granted full ethical approval 

of this research study. This study was registered with the U.S. National Institutes of Health 

(ClinicalTrials.gov Identifier: NCT02476240). All individuals included in the rehabilitation 

program were also required to complete a Physical Activity Readiness Medical Examination 

(ParMed X) signed by a physician prior to joining the rehabilitation program.  

Study Design and Exercise Intervention 

The present study was a parallel group, single center, single blind, randomized controlled 

trial. Although this was single blind (in that assessment evaluators were blinded to group 

allocation), participants in both exercise groups were receiving an intervention that was believed 

to be beneficial [63,66]. All individuals with Parkinson’s disease interested in participating in the 

study, and who fit the inclusion criteria, were asked to visit the MDRC one week prior to the 

scheduled start-date of the exercise program for pre assessment evaluation of baseline walking 

ability and symptom severity (discussed further in the evaluation section). After pre assessment, 

participants interested in the exercise program were randomized to one of two groups: 

i) External Focus of Attention Exercise (External)- Participants randomized to this 

group were consistently instructed to focus on the movement of coloured labels 
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attached to the posterior side of their hands (red label), medial epicondyle of the 

humerus (yellow label), superior aspect of the patella (green label), and dorsal 

aspect of the foot (blue label; Fig1). An example of instruction given to this group 

during a knee raise movement was “focus on pushing the green label up in a slow, 

controlled manner”.    

ii) Internal Focus of Attention Exercise (Internal)- Participants randomized to this 

group were consistently instructed to focus on the movement of their limbs in 

physical space. An example of instruction given to this group during a knee raise 

movement was “focus on lifting your knee up in a slow, controlled manner”.    

Individuals who were not interested in participating in the exercise program (despite their 

inclusion in the exercise database) and/or believed they could not meet the necessary time 

commitment for involvement in the program, but were interested in participating, were assigned 

to the: 

iii) Non-Active Control Group- Participants in this group did not participate in an 

exercise program. Rather, they were asked to continue with their normal daily 

routine. 

 

 

 

 

 

 

 



 

28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1: Participants randomized the External focus of attention exercise group wore coloured 
labels on the posterior side of their hands (red label), medial epicondyle of the humerus (yellow 
label), superior aspect of the patella (green label), and dorsal aspect of the foot (blue label). 
These individuals were consistently instructed to focus on the movement of the coloured labels. 
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The randomization of individuals who were involved in exercise began with 

computerized randomization to one of two ambiguous groups (not to either the External or 

Internal, but rather two separate groups without designation). After randomization, group 

demographics and outcome measures were checked for homogeneity. If groups were not similar, 

computer randomization took place again. Once groups were similar, one group was assigned as 

group A and the other assigned group B. Two pieces of paper were then used, one with the 

designation A (and then folded), the other with the designation B (also folded). Pieces of paper 

were then entered into a bin. Starting with the randomization to the External group, an impartial 

blinded party then selected either the group A or B designation from the bin. Participants who 

were randomized to the designation selected by the impartial party were therefore randomized to 

the External group. The participants who had been randomized to the other designation were by 

default randomized to the Internal group. Therefore, randomization took place twice, once to a 

designation (A vs. B, 50% chance), and then to a group (External vs. Internal, 50% chance). 

Ensuring similar demographics and outcome measures between exercise groups and the control 

was not an objective since the purpose of the control group was to present typical disease 

progression and control for bias and learning effects.      

The exercise program commenced one week after pre assessment, and lasted a duration 

of 11-weeks, one week shorter than exercise program durations that have consistently shown 

improvements to gait and UPDRS-III scores [63,66]). Participants in the exercise groups 

completed walking, balance, stretching and coordination exercises each session, following the 

Parkinson’s disease Sensory Attention Focused Exercise (PD-SAFEx™) program designed by 

Sage and Almeida (2009). Each exercise session duration was 60 minutes and was completed 

three times per week. PD-SAFEx™ is a group setting intervention that progressively increases in 
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difficulty each week to ensure that balance and coordination are constantly challenged 

throughout the program. The only amendment made to the program design pertained to the 

manipulation of vision. Since one group was asked to focus on the manipulation of an external 

object (coloured labels) that could only be perceived through vision (as opposed to tactile 

stimulation), removing vision in this group was expected to impede the effects that focusing 

externally was hypothesized to provide. Therefore, the program was completed with full use of 

vision in both exercise groups. To aid participants in completing the exercise protocol, trained 

undergraduate Kinesiology student volunteers were present (participant to volunteer ratio was 

1:1). Participants were asked to complete exercises slowly, correctly, and under control. Both 

exercise groups completed the PD-SAFEx™ program identically (with regards to the type of 

movements completed, number of sets, repetitions and sets completed). The only difference 

between the exercise groups was the instruction which the exercise instructor directed 

participants’ attention toward with respect to their movements. Post assessment of walking 

ability and symptom severity was assessed one-week immediately after the cessation of the 

exercise program. A washout assessment took place 8 weeks after the cessation of the 

intervention, a period of time in which participants were asked to continue activities of daily 

living, but not asked to attend exercise sessions at the centre, or make any further adjustments to 

their medications. The control group did not participate in the washout evaluation since the 

purpose of this group was to control for bias and learning effects, and any changes that may have 

occurred over the 11-week intervention period would not be expected to differ over another 

subsequent 8 weeks. Participants completed all exercise sessions in the ON dopaminergic 

medication state (approximately 1 hour after taking their normal dopaminergic medication). 

Individuals’ naïve to dopaminergic medication (Internal group n=1) completed exercise sessions 
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in the OFF dopaminergic state. Participants were asked not to change any aspects of their 

Parkinsonian medication regime throughout the duration of the study. However, to control for 

any changes that may have taken place, the levodopa equivalent dose (LED) was calculated for 

each assessment time point. Please see the profile flow chart in Figure 2 for a full breakdown of 

participant recruitment, randomization, assessment time points, and withdraws from the study.   

 

Fig 2: Profile flow chart for the present single-blind randomized controlled trial 

 



 

32 

Evaluation at Pre, Post and Washout Assessments 

Since the present study aimed to not only investigate the influence of an external and 

internal focus of attention exercise program on dual task walking in Parkinson’s disease, but also 

the mechanism that might underlie this influence, motor symptom severity was measured with 

the Unified Parkinson’s Disease Rating Scale Motor Section (UPDRS Sub-section III) in 

participants while they were both OFF (>12 hour withdrawal from dopaminergic medication) 

and ON (1 hour after taking their normal dopaminergic medication) their dopaminergic 

medication. The UPDRS-III assessment has been found to reflect the level of dopamine present 

in the basal ganglia [67]. Therefore, the purpose of assessing the UPDRS-III both OFF and ON 

dopaminergic medications was to investigate the effects of the exercise program on endogenous 

basal ganglia function without and with the influence of exogenous dopamine, respectively, that 

has been found to mask true UPDRS-III improvements after an exercise intervention [68].  

During pre assessment, post assessment, and washout evaluation time-points, participants 

visited the centre while in the OFF medication state, unless they opted out of the OFF 

medications UPDRS-III assessment portion of the research study (External n=2; Internal n=2; 

Control n=1). UPDRS-III assessment was completed immediately by a movement disorders 

specialist, whom at post-assessment and washout evaluation time-points was blinded to which 

group participants were randomized and to whom was allocated to the control group. Participants 

subsequently took their normal dopaminergic medications and completed the Community Health 

Activities Model Program for Seniors questionnaire (CHAMPS) while the medications were 

digested. The CHAMPS questionnaire is a validated self-report measure utilized to quantify how 

physically active one has been during the previous 4 weeks. This measure allowed determination 
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of all physical activity (specified by the measure) and specifically moderate intensity physical 

activity (≥3 METs) levels prior to commencement in the program, during the program, and after 

the program for the washout period [69]. The CHAMPS questionnaire further allowed for more 

effective comparisons to be made between the exercise and control groups. After one hour ON 

medications [48,70], participants were re-assessed with the UPDRS-III assessment by the same 

(blinded) movement disorders specialist. Individuals naïve to dopaminergic medication were 

only assessed once in the OFF dopaminergic state (EFA n=0; IFA n=1; Control n=0).  

After the ON medication UPDRS-III assessment, the degree to which gait was affected 

by a dual task was evaluated. However, before walking parameters could be tested, participants 

completed three seated trials of the secondary task to familiarize them with the protocol and to 

assess baseline ability. For a full description of the secondary task, see Beck et al. (2015) and 

Pieruccini-Faria et al. (2014) [38,71]. In brief, participants listened to an audio track of numbers 

between 1 and 9. They were assigned two digits and asked to count (without manual aid) the 

number of times they heard the two assigned digits announced by the audio track, separately. 

When the trial ended, participants informed the researcher (blinded to group allocation at post-

assessment and washout evaluation time-points) of the number of times they heard each digit. 

The difference between participants’ response and the actual number of digits that were 

announced by the audio track was calculated. Therefore, the degree to which participants 

prioritized the digit-monitoring task compared to walking was quantified. During walking trials, 

participants were asked to walk across a 9.75m long and 0.61m wide electronic walkway carpet 

(Zeno Walkway – ProtoKinetics, Havertown, PA, USA) at a comfortable pace. Participants 

began walking 2 meters before the start of the Zeno Walkway to avoid collecting acceleration, 

and to continue walking past the end of the Zeno Walkway to avoid collecting deceleration. Two 
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walking tasks were assessed. Three single task, and three dual task (walking while 

simultaneously completing the digit-monitoring secondary task) walking trials were completed in 

random order after the seated baseline assessment of the secondary task performance. After 

walking trials were completed, participants’ general cognitive status was evaluated with the 

Montreal Cognitive Assessment (MoCA), and the participants’ perceived quality of life was 

quantified with the 39-item Parkinson’s disease Questionnaire (PDQ-39).    

Data and Statistical Analysis 

 Since a combined seven participants from the exercise groups were unable to complete 

the washout assessment, and the control group was not included in this assessment, statistical 

analysis was divided in two parts: Part A included statistical analysis of External, Internal and 

control participant assessments at pre and post exercise, while Part B included statistical analysis 

of only those participants in the External and Internal groups who completed pre, post and 

washout assessments. 

PART A: Pre and Post Assessments 

Participant demographics 

To determine whether significant differences between the External, Internal and control 

groups existed at pre assessment that could not have been influenced by the exercise intervention 

but may have had an influence on benefits that could be gained (such as age, number of years 

diagnosed with Parkinson’s disease), one-way analysis of variance (ANOVA) statistical tests 

were utilized. Although body mass could have changed, it was not measured at post-assessment, 

and therefore, a one-way ANOVA was utilized to determine whether groups were different at pre 
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assessment. The percentage of exercise program adherence was calculated ([# of classes 

attended/33] x 100) and an independent samples t-test was used to determine whether one group 

participated in more or fewer sessions than the other. To determine whether any significant 

differences were obtained, Tukey’s Honest Significant Difference post hoc was utilized. Alpha 

level was set to p<0.05. Tukey’s post hoc and alpha level of p<0.05 were also used for all 

statistical analyses in this study. 

Single and dual tasking data and statistical analysis 

 ProtoKinetics Movement Analysis Software™ (ProtoKinetics, Havertown, PA, USA) 

was used to analyze gait parameters. Despite the fact that walking acceleration and deceleration 

were not collected on the Zeno Walkway, the first and last footfalls were removed offline. Left 

and right footfalls were collapsed. The Zeno Walkway captured the following spatiotemporal 

gait characteristics that were used in the statistical analyses: i) step length (cm), ii) step length 

variability (coefficient of variation [CV]), iii) step time (s), iv) step time variability (CV), v) 

double support time percentage (%), vi) double support time percentage variability (CV), and 

vii) velocity (cm/s). Four-factor mixed repeated measures ANOVA (3 groups x 2 evaluation 

times x 2 tasks [single and dual tasks] x 3 trials) assessed group differences and changes at each 

evaluation time-point, with respect to each gait parameter.  

 To determine if participants prioritized walking or the secondary task while completing 

the dual task walking assessment, error on the digit-monitoring task was calculated after both the 

baseline (completed the secondary task while seated quietly) and the dual task walking 

conditions at pre and post assessment. The three trials of both baseline and dual task conditions 
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were then averaged and input into a three-factor mixed repeated measures ANOVA (3 groups x 2 

evaluation times x 2 tasks) [38,71]. 

Motor symptom severity data and statistical analysis 

The UPDRS-III assessment provides a single discrete score on a scale that ranges from 0 

to 108. Three-factor mixed repeated measures ANOVA (3 groups x 2 evaluation times x 2 

medication states) assessed group differences and changes at each evaluation time-point, with 

respect to each motor symptom severity. 

Secondary outcome measures 

To investigate whether significant differences in cognitive status, levels of physical 

activity, and perceived quality of life (MoCA, CHAMPS, and PDQ-39, respectively) were 

present between groups at pre assessment and post assessment; and to determine whether 

significant changes within groups took place between evaluation time-points that might have 

been influenced by the exercise program, 2 two-factor mixed repeated measures ANOVA were 

utilized (3 groups x 2 evaluation times). Finally, although participants were instructed not to 

change any aspects of their dopaminergic medication regime while participating in the present 

study, 2 two-factor mixed repeated measures ANOVA (3 groups x 2 evaluation times) were used 

to evaluate whether significant differences between groups were present, and changes within 

groups took place, with respect to LED. 

PART B: Pre, Post, and Washout Assessments 

Participant demographics 
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Independent samples t-tests were used to identify differences between the External and 

Internal groups at pre assessment with respect to age, number of years since diagnosis, body-

mass, and percent adherence to the exercise program.  

Single and dual tasking data and statistical analysis 

 Gait data in Part B was analyzed in an identical fashion to Part A. Four-factor mixed 

repeated measures ANOVA (2 groups x 3 evaluation times x 2 tasks x 3 trials) assessed group 

differences and changes at each evaluation time-point, for each gait parameter. Performance on 

the secondary task that was completed while walking during the dual task condition was assessed 

with a three-factor mixed repeated measures ANOVA (2 groups x 3 evaluation times x 2 tasks). 

Motor symptom severity data and statistical analysis 

Three-factor mixed repeated measures ANOVA (2 groups x 3 evaluation times x 2 

medication states) assessed group differences and changes between each evaluation time-point, 

with respect to UPDRS-III scores.  

Secondary outcome measures 

Two-factor mixed repeated measures ANOVA were utilized (2 groups x 3 evaluation 

times) to determine whether significant differences (between groups and evaluation times) were 

present with respect to LED and CHAMPS. An independent samples t-test was used to discern 

whether one group adhered to exercise more than the other (percentage of exercise program 

adherence). 
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RESULTS 

 Fifty-nine participants diagnosed with idiopathic Parkinson’s disease by a neurologist 

completed pre assessment. Forty-seven of these individuals were randomized to either the 

External or Internal focus of attention exercise groups. Of the remaining twelve, four wished to 

discontinue their inclusion and eight believed they could not meet the necessary time 

commitment for involvement in the program, but participated in the Control group. A separate 

exercise research study was conducted at the centre simultaneously, in which nine individuals 

from that sample also wished to be part of the Control group. Therefore, seventeen individuals 

with Parkinson’s disease in the Control group were shared between research studies. After 

randomization and commencement in the exercise program, five participants from the External 

group, five from the Internal group, and six from the Control group withdrew from the study. 

Reasons for withdraw can be found in Figure 2. Both exercise rehabilitation programs were well 

tolerated, and besides expected fatigue associated with physical activity, no adverse effects  

related to the PD SAFEx exercise programs were reported. Since the purpose of the washout 

assessment was to determine whether gait measures or motor symptoms revert back to pre 

assessment levels or persist, data from participants who withdrew after post assessment were not 

carried forward.  

PART A: Pre and Post Assessments 

Participant demographics 

 All participant demographic effects can be found in Table 1. No significant differences 

were found between groups at pre assessment. 
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Table 1: Part A participant demographics as group averages (standard deviation in brackets).  

 

 

Influence of the intervention on single and dual tasking 

Significant main effects and interactions, with respect to gait parameters, are presented in 

Table 2. Significant interactions between group, evaluation time (pre and post) and task (single 

and dual task) were found with respect to step length (F(2,41)=5.34, p=0.009), step length 

variability (F(2,41)=3.92, p=0.028), percentage of time in double support (F(2,41)=7.13, 

p=0.002) and velocity (F(2,41)=4.00, p=0.026). Across both pre and post assessment, all groups 

were influenced (as expected) by the addition of a secondary counting task, with significantly 

shorter step length (p<0.001), greater percentage of time in double support (p<0.001), and slower 

velocity (p<0.001) compared to the single task condition. Post hoc analysis also revealed that at 

pre assessment, all groups walked with significantly greater step length variability during the 

dual task condition compared to the single task (p<0.01). However, at post assessment (but not 

pre assessment), only the External and Internal groups walked with significantly greater step 

length variability during the dual task condition compared to the single task condition (p<0.001), 

whereas the control group did not (p=1.00). Main effects of task were found with respect to step 

time (F(1,41)=10.65, p=0.002) and step time variability (F(1,41)=7.09, p=0.011), demonstrating 

Demographics External Internal Control 
Effect 

Number	(M/F) 19	(15/4) 20	(16/4) 11	(10/1) 
Age	(years) 68.63	(9.91) 73.05	(7.84) 71.27	(6.57) p=0.273 

Number	of	Years	Since	
Diagnosis 7.0	(5.01) 6.7	(4.16) 8.36	(5.87) p=0.652 

Weight	(kg) 76.53	(21.10) 87.15	(20.86) 83.33	(12.61) p=0.241 
Percent	Adherence	to	
Exercise	Program	(%) 95.53	(4.56) 97.42	(2.65) - p=0.120 



 

40 

that participants walked with a significantly greater step time and step time variability while dual 

task walking compared to single task walking. With respect to single task walking, no changes to 

any gait parameters from pre assessment to post were found. Dual task walking ability did not 

change from pre assessment to post in the external or control groups. Importantly, post hoc 

analyses revealed that participants in the Internal exercise group walked with a significantly 

shorter step length (p<0.001) and slower velocity (p=0.007) while dual task walking at post 

assessment compared to pre (Fig 3). The Internal group also walked with a greater percentage of 

time in double support while dual tasking at post assessment compared to pre that approached 

significance (p=0.081; Fig 3).  
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Table 2: Part A gait parameter averages (Standard deviations in brackets), significant main 
effects and interactions.  

	
Single	Task	 Dual	Task	

Effects	
External	 Internal	 Control	 External	 Internal	 Control	

Step	Length	(cm)	 Group*Time*	
Task	

Interaction:	
F(2,41)=5.337,	

p=0.0087	

Pre	 57.00	
(14.1)	

54.67	
(11.2)	

59.01	
(9.7)	

54.21	
(15.5)	

51.22	
(11.8)	

55.30	
(9.7)	

Post	 56.02	
(14.9)	

53.50	
(13.0)	

58.46	
(10.9)	

52.94	
(15.6)	

48.62	
(13.3)	

55.88	
(10.9)	

Step	Length	Variability	(CV)	 Group*Time*	
Task	

Interaction:	
F(2,41)=3.920
4,	p=0.02767	

Pre	 6.92	
(5.9)	

6.54	
(5.8)	

5.15	
(2.6)	

9.23	
(9.3)	

9.01	
(9.7)	

6.45	
(4.5)	

Post	 7.29	
(5.5)	

7.58	
(8.7)	

5.16	
(2.0)	

9.79	
(8.9)	

9.71	
(11.2)	

5.59	
(2.6)	

Step	Time	(s)	
Task:	(F(1,41)=	

10.65,	
p=0.002)	

Pre	 0.61	
(0.2)	

0.55	
(0.1)	

0.54	
(0.05)	

0.63	
(0.2)	

0.56	
(0.1)	

0.55	
(0.1)	

Post	 0.56	
(0.1)	

0.54	
(0.1)	

0.54	
(0.05)	

0.59	
(0.1)	

0.56	
(0.1)	

0.56	
(0.1)	

Step	Time	Variability	(CV)	

Task:	(F(1,41)=	
7.09,	p=0.011)	

Pre	 6.74	
(8.3)	

5.29	
(3.2)	

4.19	
(1.5)	

8.37	
(8.2)	

7.12	
(9.2)	

5.15	
(3.2)	

Post	 5.19	
(2.5)	

5.73	
(5.6)	

3.63	
(1.1)	

8.38	
(14.7)	

7.55	
(10.3)	

4.69	
(1.7)	

Percentage	of	Time	Spent	in	Double	Support	(%)	 Group*Time*	
Task	

Interaction:	
F(2,41)=7.13,	

p=0.002	

Pre	 28.65	
(9.2)	

28.85	
(5.8)	

26.06	
(4.6)	

30.75	
(9.7)	

30.98	
(7.6)	

28.07	
(4.7)	

Post	 27.60	
(6.9)	

28.88	
(7.5)	

26.58	
(4.9)	

30.03	
(8.1)	

32.12	
(8.8)	

28.02	
(5.6)	

Percentage	of	Time	Spent	in	Double	Support	Variability	(CV)	
No	Significant	
Effects	or	

Interactions	

Pre	 7.18	
(3.8)	

6.02	
(1.7)	

6.19	
(2.5)	

7.64	
(4.2)	

6.55	
(3.2)	

6.45	
(2.4)	

Post	 6.90	
(3.0)	

7.15	
(2.9)	

5.84	
(2.4)	

7.97	
(4.9)	

7.01	
(3.5)	

6.09	
(2.1)	

Velocity	(cm/s)	 Group*Time*	
Task	

Interaction:	
F(2,41)=4.00,	

p=0.026	

Pre	 101.55	
(34.2)	

100.53	
(22.9)	

110.40	
(17.8)	

94.50	
(35.4)	

93.71	
(24.0)	

101.30	
(17.2)	

Post	 102.71	
(30.8)	

99.53	
(25.0)	

108.57	
(21.6)	

94.01	
(32.8)	

88.39	
(25.0)	

101.69	
(23.7)	

CV = Coefficient of Variation 
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Fig 3: Graphical illustrations of part A significant gait interactions between group (External, 
Internal and Control), evaluation time (pre and post), and task (single task and dual task) with 
respect to step length (top left), percentage of time in double support (top right), and velocity 
(bottom left). Illustration of absolute error on the secondary digit-motoring task can also be 
found in the bottom right graph. * represents a significant difference at the p<0.05. 
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There were no significant main effects or interactions found for performance on the 

secondary digit-monitoring task employed during the dual task walking trials (Fig 3). However, 

it should be noted that the number of errors made on the secondary digit-monitoring task, while 

dual task walking, increased from pre assessment to post by 9.82% in the External group, 1.28% 

in the Internal group, and 33.06% in the control group.  

Influence of the intervention on motor symptom severity 

A significant main effect of medication state was found (F(1,41)=90.37, p<0.001), 

demonstrating that UPDRS-III scores were significantly greater in the OFF medication state 

compared to the ON state, regardless of evaluation time. A significant interaction between group 

and evaluation time was found in regards to UPDRS-III scores (F(2,41)=3.89, p=0.028), and 

Tukey’s post hoc analysis revealed that motor symptom severity scores were significantly lower 

at post assessment compared to pre in only the External group (p=0.002; Fig 4) (UPDRS-III 

point score changes and percent improvement from pre assessment to post: External group ON = 

-4.58 [17.7%], OFF = -5.4 [15.7%]; Internal group ON = -3.92 [14.4%], OFF = -2.56 [8.7%]; 

Control group ON = +0.95 [-9.5%], OFF = +0.05 [-2.9%]).  
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Fig 4: Graphical Illustration of the significant interaction between group (External, Internal, and 
Control) and evaluation time (pre and post assessment) for the Unified Parkinson’s disease 
Rating Scale Motor subsection-III (UPDRS-III). UPDRS-III Point Changes from pre assessment 
to post: External OFF = -5.4, ON = -4.58; Internal OFF = -2.56, ON = -3.92; control OFF = 
+0.05, ON = +0.95. 
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Secondary Measures 

Average pre and post outcomes for secondary measures (MOCA, LED, CHAMPS, and 

PDQ-39) can be found in Table 3. The only significant finding was a group by time interaction 

for PDQ-39 score (F(2,37)=4.06, p=0.025). Tukey’s post hoc did not reveal any significant 

differences between groups or evaluation time points. However, on the PDQ-39 in which greater 

numbers indicate poorer reported quality of life, scores increased in both the external and control 

group, whereas scores decreased in the internal group.  

Table 3. Part A secondary measures. 

Measure	 External	 Internal	 Control	 Effect	

MOCA 
Pre 23.5	(4.64) 23.5	(4.22)	 22.8	(6.38) Group:	p=0.844	

Time:	p=0.083	
Group*Time:	p=0.793	Post 23.87	(5.63) 24.16	(4.69) 23.50	(6.13) 

Levodopa	
Equivalent	

Dose	
(mg/day) 

Pre 647.97	
(232.86) 

594.04	
(358.25) 

867.73	
(674.62) Group:	p=0.214	

Time:	p=0.186	
Group*Time:	p=0.316 Post 630.45	

(220.75) 
596.54	
(358.32) 

858.64	
(684.38) 

Activity	Level	
(CHAMPS)	
(kcal/week) 

Pre 3056.98	
(3290.96) 

4446.60	
(2862.48) 

4420.00	
(2331.97) Group:	p=0.666	

Time:	p=0.068	
Group*Time:	p=0.733 Post 4326.30	

(4649.48) 
5280.89	
(3937.88) 

4705.66	
(1743.92) 

Activity	Level	
>	3METs	
(CHAMPS)	
(kcal/week) 

Pre 1479.37	
(2050.33) 

2956.68	
(2408.31) 

2968.55	
(2240.72) Group:	p=0.361	

Time:	p=0.520	
Group*Time:	p=0.857 Post 2083.19	

(2659.12) 
2880.80	
(2963.80) 

2826.29	
(1819.40) 

PDQ-39 Pre 39.33	(27.08) 38.73	(20.35) 37.36	
(24.27) 

Group:	p=0.653	
Time:	p=0.499	

Group*Time:	p=0.025 Post 42.38	(31.35) 31.72	(19.83) 41.30	(25.4) 
 

Montreal Cognitive Assessment = MoCA; Community Health Activities Model Program for 
Seniors questionnaire = CHAMPS; kilocalorie = kcal; Metabolic Equivalent = MET; 39-item 
Parkinson’s disease Questionnaire = PDQ-39 
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PART B: Pre, Post, and Washout Assessments 

Participant demographics 

Part B participant demographic effects can be found in Table 4. No significant 

differences were found between groups at pre assessment.  

Table 4. Part B participant demographics as group averages (standard deviation in brackets). 

Demographics External Internal 
Effect 

Number	(M/F) 16	(12/4) 16	(12/4) 
Age	(years) 68.81	(10.05) 73.69	(8.57) p=0.154 

Number	of	Years	Since	Diagnosis 6.38	(5.02) 6.38	(4.21) p=1.000 
Weight	(kg) 75.86	(23.99) 83.26	(17.89) p=0.327 

Percent	Adherence	to	Exercise	
Program	(%) 95.64	(4.66) 97.54	(2.28) p=0.174 

 

 

Influence of the intervention on single and dual tasking 

 Table 5 presents all significant Part B gait parameter main effects and interactions. With 

respect to step length, a significant interaction between group and task was found (F(1,23)=4.56, 

p=0.044), although post hoc only revealed a main effect of task, in that both the External and 

Internal group walked with a significantly shorter step length while dual task walking compared 

to single task walking (p<0.02). Main effects of task were found, and demonstrated that 

participants walked with a significantly greater step length variability (F(1,23)=11.07, p=0.003), 

step time (F(1,23)=7.60, p=0.011), step time variability (F(1,23)=5.87, p=0.023), percentage of 

time in double support (F(1,23)=38.40, p<0.001), and slower velocity (F(1,23)=39.15, p<0.0001) 
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while dual tasking compared to single tasking, regardless of training group or evaluation time. 

Significant main effects of evaluation time, with respect to step time (F(2,46)=5.43, p=0.008) 

and percentage of time in double support (F(2,46)=4.25, p=0.02), were found (Fig 5). Post hoc 

analysis showed that participants demonstrated significantly shorter step time (p=0.005) and 

lower percentage of time in double support (p=0.014) at washout compared to pre assessment, 

but not post. 
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Table 5: Part B gait parameter averages (standard deviations in brackets), significant main 
effects and interactions. 

	
Single	Task	 Dual	Task	

Effect	
External	 Internal	 External	 Internal	

Step	Length	(cm)	

Group*Task	
Interaction:	

F(1,23)=4.56,	p=0.044)	

Pre	 55.93		
(14.5)	

53.75	
(12.3)	

53.17		
(16.2)	

49.57	
(12.6)	

Post	 55.47		
(15.6)	

52.63	
(13.8)	

52.43		
(16.2)	

47.16	
(14.0)	

Washout	 55.77	
(14.1)	

55.63	
(14.6)	

52.70		
(14.6)	

51.16	
(12.7)	

Step	Length	Variability	(CV)	
Group*Time*Task*Trial	

Interaction:	
F(4,92)=3.16,	p=0.017	

Pre	 7.47	(6.2)	 6.54	(6.1)	 9.69	(10.0)	 9.23	(10.6)	
Post	 7.74	(5.8)	 7.78	(9.3)	 10.11	(9.5)	 10.23(12.0)	

Washout	 7.74	(8.5)	 7.61	(14.9)	 8.38	(7.4)	 8.82	(17.6)	
Step	Time	(s)	 Time:	(F(2,46)=5.43,	

p=0.008)																								
Task:	(F(1,23)=7.60,	

p=0.011)																							
Trials:	(F(2,46)=18.06,	

p<0.001)	

Pre	 0.63	(0.2)	 0.55	(0.1)	 0.65	(0.2)	 0.56	(0.1)	

Post	 0.57	(0.1)	 0.54	(0.1)	 0.60	(0.1)	 0.56	(0.1)	

Washout	 0.50	(0.2)	 0.50	(0.1)	 0.53	(0.2)	 0.51	(0.2)	

Step	Time	Variability	(CV)	 Task:	(F(1,23)=5.87,	
p=0.023)																							

Trials:	(F(2,46)=3.83,	
p=0.029)	

Pre	 7.35	(9.0)	 5.21	(3.4)	 8.88	(8.8)	 7.48	(10.3)	
Post	 5.36	(2.7)	 6.05	(6.3)	 8.89	(16.0)	 8.04	(11.4)	

Washout	 4.98	(3.8)	 4.76	(3.8)	 5.66	(3.4)	 6.72	(11.0)	
Percentage	of	Time	Spent	in	Double	Support	(%)	 Time:	(F(2,46)=4.25,	

p=0.020)	
Tasks*Trial	Interaction:	

F(2,46)=3.5907,	
p=0.03556	

Pre	 29.60	(9.8)	 29.38	(6.2)	 31.64	(10.2)	 31.92	(8.1)	

Post	 27.99	(7.3)	 29.09	(8.0)	 30.36	(8.7)	 32.85	(9.5)	

Washout	 24.44	(11.4)	 26.07(10.3)	 26.64	(12.2)	 28.34(11.1)	

Percentage	of	Time	Spent	in	Double	Support	Variability	(CV)	
Trials:	(F(2,46)=5.82,	

p=0.006)	
Pre	 7.47	(4.0)	 5.94	(1.9)	 7.72	(4.4)	 6.74	(3.4)	
Post	 6.99	(3.1)	 7.01	(2.8)	 8.04	(5.1)	 6.80	(2.8)	

Washout	 6.10	(3.4)	 6.30	(2.7)	 6.00	(3.2)	 5.94	(2.9)	
Velocity	(cm/s)	

Task:	(F(1,23)=39.15,	
p<0.001)																											

Trial:	F(2,46)=16.58,	
p<0.001)	

Pre	 98.08		
(35.7)	

99.09	
(24.9)	

90.77		
(36.6)	

90.63	
(25.6)	

Post	 100.77	
(32.5)	

97.48	
(26.1)	

92.40		
(34.4)	

84.92	
(25.8)	

Washout	 93.62	
(37.3)	

98.73	
(37.3)	

88.47	
(42.1)	

89.69	
(34.5)	
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CV = Coefficient of Variation 

 

 

 

 

Fig 5: Graphical illustrations of part B significant gait parameter main effects of evaluation time 
(pre, post and washout) with respect to step time (top left) and percentage of time in double 
support (top right). Absolute error on the secondary digit-motoring task can also be found in the 
bottom graph. * represents a significant difference at the p<0.05.  
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No significant main effects or interactions were found for performance on the secondary 

digit-monitoring task employed during the dual task walking trials. However, it is important to 

note that from pre assessment to washout, participants in the External group increased the 

number of errors on the secondary task while dual task walking by 8.23%, and decreased by 

1.58% from post assessment to washout. In contrast to these minimal changes, the Internal group 

increased the number of errors on the secondary task while dual task walking by 53.04% from 

pre assessment to washout, and 51.11% from post assessment to washout (Fig 5).   

Influence of the intervention on motor symptom severity 

Illustrated by a significant main effect of evaluation time (F(2,52)=11.09, p<0.001), 

UPDRS-III scores were significantly lower at post assessment compared to pre (p<0.001) in both 

exercise groups, and these lower scores persisted to the washout assessment where UPDRS-III 

scores were significantly lower at washout assessment compared to pre (p=0.001; Fig 6). No 

other main effects or significant interactions were found.  
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Fig 6: Graphical Illustration of the significant main effect of evaluation time (pre, post, and 
washout) for the Unified Parkinson’s disease Rating Scale Motor subsection-III (UPDRS-III) 
(left graph) and levodopa equivalent dosage (right graph). * represents a significant difference at 
the p<0.05.  

 

 

 

Secondary Measures 

Average pre, post and washout outcomes for secondary measures (LED and CHAMPS) 

can be found in Table 6. A significant main effect of evaluation time was found for LED 

(F(2,60)=4.04, p=0.023). Tukey’s post hoc uncovered that on average, participants in the 

exercise groups significantly decreased their LED per day from pre assessment to washout 

(p=0.026, Fig 6 above). 
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Table 6. Part B secondary measures. 

Measure External Internal Effect 

Levodopa	
Equivalent	Dose	

(mg/day) 

Pre 629.00	(220.01) 604.89	(384.26) Group:	p=0.959																									
Time:	p=0.023	
Group*Time:	

p=0.652 

Post 608.19	(202.23) 608.02	(384.25) 

Washout 564.53	(138.02) 572.70	(350.39) 

Activity	Level	
(CHAMPS)	
(kcal/week) 

Pre 3150.82	
(3768.68) 

4347.89	
(3045.56) Group:	p=0.981																									

Time:	p=0.067																				
Group*Time:	

p=0.755 

Post 5134.12	
(5040.94) 

4801.18	
(2861.29) 

Washout 3494.48	
(1949.46) 

4138.51	
(2828.65) 

Activity	Level	>	
3METS	

(CHAMPS)	
(kcal/week) 

Pre 1616.92	
(2329.71) 

2944.36	
(2573.73) Group:	p=0.689																									

Time:	p=0.305																				
Group*Time:	

p=0.713 

Post 2439.10	
(2949.12) 

2528.42	
(2077.11) 

Washout 1509.34	
(974.17) 

2077.61	
(2188.94) 

 

Montreal Cognitive Assessment = MoCA; Community Health Activities Model Program for 
Seniors questionnaire = CHAMPS; kilocalorie = kcal; Metabolic Equivalent = MET 

 

DISCUSSION 

This is the first single-blind randomized controlled trial investigating the effects of goal-

based exercise with an external and internal focus of attention on Parkinson’s disease. However, 

the proposition that external focus of attention exercise should be beneficial for Parkinson’s 

disease has been in existence for nearly a decade. It was hypothesized that if an external focus of 

attention does promote the use of automatic control during an exercise program, then the ability 

to walk and complete a secondary task (dual task) might be improved in individuals with 

Parkinson’s disease. Further, if the automatic networks are basal ganglia dependent, then it might 
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be possible that overall motor symptom severity might also improve with externally focused 

exercise. Since gait during the dual task did not significantly improve from pre to post (ie. no 

increases in step length, decreases in percentage of time in double support, nor step-to-step 

variability decrease was found) our hypothesis was not supported. It could even be suggested 

that the dual task performance was worse at post assessment compared to pre, since error on the 

secondary task increased by 9.82% (not significant), indicating that gait may have become more 

consciously controlled. However, since a 9.82% increase in dual task error indicates only a 0.2 

digit error, it could be argued that this increase does not demonstrate a meaningful change in 

dual task performance. The only finding that might signify improved dual tasking ability in the 

External group was a non-significant decrease in percentage of time spent in double support 

(p=0.20, Fig 3) while dual tasking at post assessment compared to pre, indicating greater 

dynamic stability. Nevertheless, these results might suggest that either the external focus of 

attention exercise increased the demand of walking on conscious control, did not improve upon 

functioning of participants’ automatic control networks, or that improvements to automatic 

processes were not translated to the walking. It is also possible that improvements began to 

emerge (non-significant decrease in percentage of time in double support while dual tasking), but 

a longer exercise program may be necessary to fully improve upon the complex neuronal 

connections associated with dual task walking.   

In contrast, it was hypothesized that an internal focus of attention during completion of a 

goal-based exercise program might interfere with dual task walking performance since this 

training was expected to increase reliance on conscious control of movement. Interestingly, this 

hypothesis was supported, in that dual tasking step length and velocity significantly decreased 

from pre assessment to post in only the Internal group. The percentage of time spent in double 
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support while dual tasking also increased in the internal group from pre assessment to post 

(which might indicate worse dynamic stability [72–74]), but this only demonstrated a trend 

towards significance (p=0.081). It is also important to note that error on the secondary task did 

not increase in the internal group after the intervention. These findings might suggest that an 

internal focus of attention during goal-based exercise increased reliance on a less damaged 

compensatory conscious control system, in that control of gait became more consciously 

demanding after the internal focus of attention exercise [4–6,23,25–28]. This may have left 

participants more susceptible to deterioration in gait parameters when attentional focus was 

directed away from one’s own movements after the exercise program. These findings align with 

those reported by Sage and Almeida (2009) in which individuals with Parkinson’s disease 

improved conscious movement control, but walked with a greater step length variability after a 

12-week PD-SAFEx™ program that directed attention towards sensory information (similar to 

the directions in the present study provided to the Internal group). Other goal-based exercise 

studies that have not found increased gait demand on conscious control [64,75,76] may have not 

instructed participants to focus attention internally on sensory information, and therefore, may 

not have increased the degree of reliance on compensatory conscious control systems in the 

associated individuals with Parkinson’s disease. Nonetheless, it would appear that internal focus 

of attention exercise increased one’s reliance on conscious control networks, hindering dual task 

performance, whereas after an external focus of attention exercise program, no changes to 

notwork predominance (conscious or automatic) seemed to emerge. To gain further 

understanding of the potential effects that the differing exercise instructions had on the 

underlying function of automatic and conscious control networks, the second aim of the study 
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explored the influence of externally and internally focused exercise on UPDRS-III scores that 

reflect basal ganglia function [67], central to automatic control.   

Since automatic processes rely on basal ganglia function, particularly dorsal striatal areas 

more affected by the progressive pathology of Parkinson’s disease [2,4–6], it was expected that 

goal-based exercise combined with an external focus of attention (promoting use of automatic 

systems) would provide greater improvements to Parkinson’s disease motor symptoms compared 

to internally focused exercise (believed to promote the use of ventral conscious control networks 

less affected by disease progression). In support of this hypothesis, it was found that UPDRS-III 

scores improved significantly from pre assessment to post in only the external focus of attention 

exercise group (UPDRS-III changes: External OFF = -5.4, ON = -4.58; Internal OFF = -2.56, 

ON = -3.92; control OFF = +0.05, ON = +0.95) (Fig 4). Although there was no interaction with 

medication state, anecdotally, it appeared that the OFF medications UPDRS-III improvement in 

the external group was the driving force for the interaction. The OFF medication improvement in 

UPDRS-III scores in the external group was also the only change to reach clinical significance 

(greater than a five point change)[77]. These results might suggest that since the UPDRS-III 

assessment reflects functionality of the basal ganglia (especially OFF medications in which 

dopamine replacement is not masking endogenous functioning), the external focus of attention 

exercise was able to significantly improve basal ganglia function, whereas focusing internally 

while completing the exercise program was not. The reason for the differing effects of the 

exercise interventions on UPDRS-III scores may be the result of recruiting opposing networks 

that project through the basal ganglia. For instance, our recent work (see Beck and Almeida, 

2016) suggests that when an external focus of attention is adopted, one might recruit automatic 

processes that project through the dorsal region of the striatum (from the sensorimotor cortex), 
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the same area of the basal ganglia where degeneration initiates and is more severe compared to 

the ventral aspects of the striatum [4–6]. Therefore, combining goal-based exercise with an 

external focus of attention may have increased sensorimotor drive [57] into the more damaged 

dorsal area of the basal ganglia, potentially promoting improvements to these impaired circuits 

that were revealed as improvement to motor symptoms [26,78–81]. Unexpectedly, these 

improvements to basal ganglia functioning after an exercise program that instructed external 

focus did not foster improvements to dual task walking, as previously mentioned. This may be 

due to vast brain regions that contribute to walking, especially dual task walking, in addition to 

the automatic system that includes the basal ganglia [82]. The automatic control networks that 

comprise basal ganglia functioning may have been enhanced by the external focus of attention 

exercise, but erroneous functioning in the remaining areas of the brain necessary for dual tasking 

[18] may have masked the potential benefits to automatic system processing. It is important to 

note, however, that although improvements to dual task walking were not found in the External 

group, this group still received benefits to motor symptoms while protected from detriments to 

dual task walking that were found in the internal focus of attention exercise group. This may also 

be further explained by the long-term progression of disease pathology.    

The results from a recent study by Beck and Almeida (2016) suggest that an internal 

focus of attention may recruit conscious control processes that project through the ventral region 

of the striatum [59]. Thus, if ventral areas of the striatum were relatively preserved in 

participants randomized to the internal focus of attention exercise group, there may not have 

been opportunity for improved functioning through these ventral circuits that may be without a 

large degree of dysfunction associated with movement [83]. In general, combining goal-based 

exercise with an internal focus of attention may have increased neuronal drive into less damaged 
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ventral areas of the basal ganglia as opposed to more dorsal impaired areas, thus impeding 

potential for greater improvements to basal ganglia functioning that the external focus of 

attention exercise provided for Parkinson’s disease. This is further supported by increased dual 

task walking impairment found at post assessment in the Internal group, which suggested that 

recruitment of the ventral striatum areas involved in conscious control of movement increased 

reliance on these circuits for movement control. To add some confirmation to these suggestions, 

we lastly aimed to investigate if changes to dual task walking behaviour and symptom severity 

(as a result of the goal-based exercise program) persisted for 8 weeks following cessation of the 

exercise program. 

If changes to neuronal connections took place (neuroplasticity) after the present 

intervention to either automatic and/or conscious control networks, one might expect these 

changes to persist throughout an 8 week washout [26,61,60,62–65]. The results from Part B of 

the present study demonstrate that from pre assessment to washout, both groups demonstrated 

significantly decreased step time and percentage of time in double support while single and dual 

task walking. However, as can be observed in figure 5, the External group demonstrated 

increased number of errors on the secondary task by only 8.23%, whereas the Internal group 

increased number of errors on the secondary task by 53.04%. This suggests that at washout, the 

External group prioritized the secondary task and demonstrated significant improvements to dual 

task walking. In contrast, the internal group prioritized walking instead of the secondary task, 

which most likely reflects that improvement to step time and percentage of time spent in double 

support was the result of consciously controlling gait, and not representing improved dual task 

ability at washout assessment compared to pre. These findings might suggest that improvements 

to dual task ability induced by external focus of attention exercise could have been subject to a 
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delayed effect, in that the exercise program may have provided the training foundation necessary 

to enhance automatic processes, but more time was needed to further establish an efficient use of 

this information. This is speculative, and requires further investigation. However, without 

collecting gait data from the control group at washout, a practice effect cannot be ruled out since 

the washout assessment was the third time participants were subject to the dual task protocol. 

Regardless, to confirm where the neurological improvements may have taken place in the basal 

ganglia after external and internal focus of attention exercise programs for individuals with 

Parkinson’s disease, future work should utilize three-dimensional [18F] radiolabeled N-(3-

fluoropropyl)- 2β-carboxymethoxy-3β-(4-iodophenyl) nortropane positron emission 

tomography to investigate post-synaptic functioning at the dorsal and ventral striatum. This 

would provide evidence to whether external and internal focus of attention exercise can improve 

functioning at the dorsal and ventral striatum, respectively.  

The final important finding to report was a significant main effect of evaluation time, 

which demonstrated that UPDRS-III scores (ie. participant motor symptom severity) were 

significantly lower at post assessment compared to pre, and persisted at this level 8-weeks after 

the exercise program had ceased. What is most unique about these findings is that despite our 

instructions to participants to refrain from changing aspects of their dopaminergic medication 

regime, participants required significantly less dopaminergic medications consumed each day 

from pre assessment to washout. Therefore, improved symptom severity persisted for 8 weeks 

after cessation of the exercise program despite decreased levels of dopamine consumed each day. 

Due to a realm of unpleasant side effects that may accompany medications, these findings are 

novel and carry great importance. 
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CONCLUSION 

 Minimal evidence was found to suggest that external focus of attention exercise could 

provide benefits to dual task walking in Parkinson’s disease. However, dual task walking ability 

did significantly improve 8-weeks after exercise cessation (compared to pre assessment), 

suggesting that externally focused exercise may have provided a foundation for continued 

improvements to dual task walking over the 8-weeks following the intervention. Internal focus of 

attention exercise proved detrimental to dual task walking. Finally, although benefits to motor 

symptoms were found after both externally and internally focused exercise, focusing externally 

on the movement of a manipulated object while exercising provided greater improvements to 

UPDRS-III scores in Parkinson’s disease.  
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CHAPTER 3: GENERAL DISCUSSION 

The purpose of the present study was to investigate whether combining a goal-based 

exercise program with an external focus of attention might improve dual task walking in 

individuals with Parkinson’s disease. We hypothesized that if an external focus of attention 

promotes the use of one’s automatic control networks [1–7], then completing a goal-based 

exercise program while focusing externally on labels attached to individuals’ limbs might 

improve dual task walking in those with Parkinson’s disease. In contrast, promoting an internal 

focus of attention during goal-based exercise was expected to hinder dual task walking 

performance since this training might increase reliance on conscious control of movement [1–7]. 

After the completion of an 11-week external focus of attention exercise program, dual task 

walking did not significantly improve after the exercise program, but rather gait parameters 

throughout single and dual task walking did not change from pre assessment to post. In contrast, 

dual task walking was negatively effected by the internal focus of attention exercise program, in 

that step length and velocity significantly decreased while dual task walking from pre assessment 

to post. Interestingly, after an 8-week washout period, where individuals in the exercise program 

were not asked to attend exercise sessions, both the external and internal focus of attention 

exercise groups demonstrated improvements to dual task walking, in that step time and 

percentage of time in double support significantly decreased from pre assessment to the washout. 

However, the internal group increased error on the secondary task by 53% while walking, 

whereas the external group increased error by 8% (from pre assessment to washout). This would 

indicate that the internal group prioritized their walking as opposed to the secondary task, and 

therefore internal focus of attention exercise did not actually improve dual task walking, but 

rather increased the requirement for conscious control of gait. In contrast, since the external 
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group demonstrated significantly improved gait while dual tasking at washout compared to pre, 

and the error on the secondary task did not change a meaningful amount, external focus of 

attention exercise did improve dual task walking in Parkinson’s disease, although there was a 

delayed effect. These changes in dual tasking ability from pre assessment to post to washout are 

interesting, but the potential mechanisms underlying these changes are various. To determine 

whether these changes were mediated by dopamine modulation in the basal ganglia that is 

critical for automatic control processes, motor symptom severity was measured.  

Furthermore, since automatic control processes rely on basal ganglia function [8–16], it 

was expected that goal-based exercise combined with an external focus of attention would lead 

to greater motor symptom improvements than an internal focus of attention, which may promote 

the use of conscious control processes less influenced by the basal ganglia. In support of these 

hypotheses, UPDRS-III scores significantly decreased from pre assessment to post (improved) in 

only the external focus of attention exercise group (Fig 4), potentially signifying improved basal 

ganglia (which are implicated in automatic control networks) function [17]. Separate analyses 

(subset of each group that completed pre and post assessment) also demonstrated a main effect of 

time, in which both exercise groups showed significant improvements from pre assessment to 

post that persisted to the washout period. Although these findings are behavioural, they do align 

with findings from previous literature, and allow for inferences to be made regarding the 

mechanisms underlying external and internal focus of attention exercise. 

THE MECHANISM BEHIND EXTERNAL AND INTERNAL FOCUS OF ATTENTION 
EXERCISE 

In general, it would appear that there are two primary circuits that are at play (Please 

refer to Fig 7 below). Instructing participants to focus externally on the manipulation of an object 
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(whether it be controlling a platform underneath one’s feet or pushing coloured labels attached to 

their limbs [Chapter 2]) during movements may have promoted recruitment of automatic control 

networks that project through the dorsal areas of the striatum [7,8,15,16,18–20]. These dorsal 

areas of the striatum are primarily involved in the basal ganglia motor loops [8,10,11,21–23], and 

typically more compromised in Parkinson’s disease in the initial stages [24–26]. Despite the 

damage to dorsal striatal areas, previous work suggests that individuals with Parkinson’s disease 

are able to effectively recruit these automatic control areas [20,27]. Thus, during exercise where 

an external focus of attention was used, the dorsal striatum may have been recruited, potentially 

promoting changes somewhere in the complex circuitry involved in automatic processing, 

providing benefits to symptoms of Parkinson’s disease, as well as delayed improvements to a 

measure that reflects automatic processing (ie. dual tasking).      

In contrast, instructing individuals to focus internally on limb movements (such as 

pushing their knee up during the exercise program) may have promoted recruitment of conscious 

control networks that project through ventral areas of the striatum [7,8,15,16,18–20]. These 

ventral areas comprise more cognitive and limbic loops that pass through the basal ganglia 

[8,10,11,21–23], and are typically more preserved in the earlier stages of Parkinson’s disease 

[24–26]. Therefore, the effect of exercise may have been solidification of conscious control 

networks that pass through the ventral striatum [28], explaining the greater demand on conscious 

control that gait posed after the internally focused intervention, supported by the slower walking 

with shorter steps while dual task walking at post assessment compared to pre. The reasoning for 

only subtle improvements to UPDRS-III were most likely a potential ceiling effect, in the sense 

that there may not have been as great of a capacity for improvement to the less damaged ventral 

striatum (compared to dorsal striatum). With reference to previous research, changes in 



 

70 

behaviour after the external and internal focus of attention exercise programs may have been due 

to neurological changes within the basal ganglia.   

 

Fig 7. Theoretical framework for the mechanism underlying an external and internal focus of 
attention during movement in Parkinson’s disease.  

 

 Previous work has demonstrated that after an exercise program that improved UPDRS-III 

score in individuals with Parkinson’s disease, ability to inhibit excitatory stimulation 

administered through transcranial magnetic stimulation (a direct measure of basal ganglia 

functioning) also improved [29]. When excitatory magnetic stimulation is applied through 

transcranial magnetic stimulation into the motor cortex, prior to an efferent signal, there is a 

cortical silent period in which the brain attempts to inhibit the incoming excitation [30]. This 

inhibition that produces the cortical silent period is interceded by GABA-B receptors mediated 
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by the basal ganglia [31]. It is therefore no surprise that the cortical silent period is consistently 

shorter in individuals with Parkinson’s disease [30]. In light of this, Fisher and colleagues (2008) 

proposed that the lengthening in cortical silent period that they found after an exercise program 

was the result of improved propagation through the basal ganglia. In relation to the findings from 

the present study, this might indicate that improved UPDRS-III scores found at post assessment 

compared to pre (Part A) in only the external focus of attention exercise group was the result of 

improved basal ganglia functioning. Since an external focus of attention promotes recruitment of 

automatic control processes that largely implicate the basal ganglia, goal-based exercise 

combined with an external focus of attention may have facilitated greater motor symptom 

improvements than an internal focus of attention. Improvements to basal ganglia functioning 

after exercise may be the result of many different events at the microscopic level. Despite the 

degeneration of the basal ganglia that occurs in Parkinson’s disease, previous work has 

demonstrated that neuroplastic changes in this sub-cortical area of the brain affected in 

Parkinson’s disease can take place after exercise. 

The mechanism underlying improved basal ganglia function may be attributed to neuro-

restorative and protective properties of a brain-derived neurotrophic factor [32] found to increase 

in Parkinson’s disease with exercise [33]. Since individuals with Parkinson’s disease possess 

preserved nerve-growth factor binding sites within the striatum despite the neurodegeneration 

[34], this mechanism holds merit. Exercise has the potential to foster numerous additional 

physiological changes in the basal ganglia, such as increasing striatal dopamine [35], increasing 

the expression of D1 and D2 dopamine receptors (post-synaptic dopamine receptors of the 

striatum) while down-regulating the expression of dopamine active transporters (that promote 

dopamine reuptake back into the presynaptic substantia nigra cell that produces dopamine) 
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[36,37], enhancing the binding potential of dopamine to D2 receptors of the dorsal striatum [38], 

and even increasing the structural volume of the striatum [39]. Therefore, the improvements to 

symptom severity found after external focus of attention exercise may have been the result of 

multiple neuroplastic changes in the basal ganglia presented above. For example, since external 

focus of attention exercise is believed increase sensorimotor drive [7] and recruit the damaged 

dorsal striatum, D2 receptor up-regulation and dopamine active-transporter down-regulation may 

have taken place in this area, providing benefits to motor symptoms and eventually functioning 

of automatic control processes since dual tasking ability improved at washout assessment 

compared to pre. If this were the case, we might expect that if a transcranial magnetic stimulation 

protocol were utilized before and after the present study, such as that employed by Fisher et al. 

(2008), a lengthening of the cortical silent period might be found after the external focus 

intervention, but not the internal focus intervention. In contrast, since internal focus of attention 

exercise is believed to recruit the preserved ventral striatum, D1 receptor up-regulation at the 

ventral striatum and dopamine active-transporter down-regulation in this area may not provide 

further benefits (ceiling effect). However, cholinergic activity in circuitry between the frontal 

areas, such as the anterior cingulate cortex, and the ventral striatum may have strengthened after 

internal focus of attention exercise [28]. This is supported by previous work that has 

demonstrated greater specialization of the anterior cingulate cortex in instructors of Tai Chi 

(goal-based exercise in which attention is guided towards one’s movement, similar to the internal 

instruction) compared to a control group [28]. More effective anterior cingulate cortex 

specialization would foster improved error detection [40] and potentially promote greater 

reliance on conscious control, providing explanation for impaired dual tasking ability after 

internally focused exercise.  
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SHOULD AN EXTERNAL OR INTERNAL FOCUS OF ATTENTION EXERCISE BE 
APPLIED TO A CLINICAL SETTING? 

Goal-based exercise combined with an external focus of attention was able to 

significantly improve motor symptoms and eventually, dual task walking ability to an extent. 

Despite these delayed improvements to dual task walking, if individuals with Parkinson’s disease 

were interested in enhancing dual task performance more efficiently without the aim to improve 

symptoms, external focus of attention exercise may not be as effective as other therapeutic 

strategies. For example, previous work has demonstrated that one dual task training (combination 

of gait training and working memory language tasks) session led individuals with Parkinson’s 

disease to increase step length and velocity while dual tasking [41,42]. Longer dual task gait 

training interventions [43–45] have found similar results. Most interesting, dual task training 

significantly decreased stride time variability while walking and completing a secondary task 

[45], which is typically not improved by dopaminergic medication [46,47]. Most recently, a 

well-conducted single-blind randomized controlled trial with longer duration (10-weeks) found 

that training balance while dual tasking in Parkinson’s disease improved performance on the 

secondary task significantly without greater interference to walking [48]. The findings from the 

present study suggest that directly training one’s ability to dual task might provide more effective 

improvements to dual tasking ability in Parkinson’s disease compared to an external focus of 

attention exercise, but without the level of benefits to motor symptoms that were demonstrated 

with this intervention. For instance, severity of motor symptoms was significantly lowered by the 

end of the external focus of attention exercise program, and persisted 8-weeks after the program 

had ceased. This was even the case despite a significant decrease in dose of dopaminergic 

medications consumed each day by participants. Due to various side effects that accompany 
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medications for Parkinson’s disease, these findings carry clinical importance. Improving upon 

the severity of symptoms while decreasing the amount of unpleasant side effects are goals of any 

physician. But how do these benefits to motor symptom severity compare with other previously 

conducted goal-based exercise programs? 

To date, thirty-two exercise studies classified as goal-based with at least a quasi-

randomization protocol have been conducted that assessed UPDRS-III scores in Parkinson’s 

disease [49–80]. Twenty of these studies reported a significant improvement in motor symptom 

severity. Cugusi et al. (2015), Frazzita et al. (2012), Ganeson et al. (2014, 2015), Monteiro et al. 

(2016), Picelli et al. (2012) and Sale et al. (2013) all reported significant improvements in 

UPDRS-III scores after gait training exercises (reported range of improvement from 5.8 - 16.0 

points). Studies conducted by Dashtipour et al. (2015) and Ebersbach et al. (2014) demonstrated 

that emphasis on increasing movement amplitude (LSVT BIG) also significantly improves 

UPDRS-III scores (6.8 and 6.6 point improvements, respectively). Moreover, Sage and Almeida 

(2011) further showed that focusing attention on sensory feedback during exercise significantly 

improved symptom severity, more so than aquatic, aerobic, and strength training exercises (6.7 

points). Interestingly, various forms of dancing, including Tango and Irish set dancing, have 

been found to improve motor symptom severity as well (ranging from 4.1 – 12.55 points) 

[56,63,71]. UPDRS-III improvements were also found after simple physical therapy exercises 

with various modalities of intervention (ranging from 4.1 – 13.0 point decreases) 

[54,66,69,70,72,79]. Notably, the goal-based intervention with the largest sample size and most 

effective methodology investigated the influence of Tai Chi on balance and fall prevention in 

Parkinson’s disease, reporting an 8.05-point decrease with no associated adverse effects [61]. 

Although these goal-based exercise interventions appear to provide significant improvements, 
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these studies were examined carefully since multiple limitations were evident and many 

confounding effects could have influenced results. Thus, comparing across studies provides only 

superficial indication as to how effective the present intervention was for motor symptom 

improvements.  

In general, the findings from the current study would suggest that adopting an external 

focus of attention (and internal focus of attention to a lesser extent) during goal-based exercise 

provides benefits to UPDRS-III scores similar to those published by other groups. However, 

previous work, such as that by Sage and Almeida (2010), has demonstrated that directing focus 

towards sensory information (homologous to the internal focus of attention exercise intervention) 

provided significant benefits to motor symptoms. Potential reasoning for contradicting results 

between the present study and previous work that has promoted an internal focus of attention 

might be due to the mechanism proposed in figure 7 above. Depending on the severity of disease 

progression (ie. more or less degeneration that has begun to effect ventral striatum areas) and the 

instruction provided by the instructor (a precise instruction for an internal focus as opposed to an 

ambiguous instruction), variable improvements may be found. For example, a group of 

individuals with Parkinson’s disease who were further along in the disease progression (greater 

ventral striatum degeneration) and instructed to focus attention internally might receive similar 

benefits to motor symptoms as a group of individuals with Parkinson’s disease that had less 

severe symptoms and were instructed to focus externally throughout the intervention. Whereas, a 

group of individuals with Parkinson’s disease who have only minor motor symptoms would be 

predicted to not receive a significant benefit from focusing internally during exercise (based on 

the proposed mechanism). Thus, contradicting findings across exercise intervention studies may 

very well be the result of differing symptom severities across studies, as well as variable 
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instruction that promotes recruitment of striatal projections. Another potential confounding 

influence might be dopaminergic medication. Until the present study, no goal-based intervention 

has investigated the effect of the exercise program on symptoms while in the OFF medication 

state, and therefore some improvements may have been influenced by variability associated with 

medications.    

 Nevertheless, gait training, LSVT BIG, PD-SAFEx, Tai Chi, dancing, and physical 

therapy were grouped together as goal-based exercise programs since they aim to improve 

performance of a specific task [81]. Emphasis of these modalities of intervention is aimed toward 

improvement of motor control including gait, postural stability, coordination, body awareness, 

and others. However, due to the variation in aspects emphasized between interventions, as well 

as limitations of protocol designs, it cannot yet be concluded what qualities of these goal-based 

exercise programs were responsible for improving motor symptom severity in Parkinson’s 

disease. This fact highlights the importance of the present research in which a randomized 

controlled trial with blinded assessments and a washout period was utilized to focus on the 

rudimentary aspect of the movements, controlling for location of attention. 

It should be noted that although the internal focus of attention exercise program did not 

provide benefits to gait, and less improvement to motor symptom severity (compared to 

externally focused exercise), this was not all that surprising since we would expect an internal 

focus to recruit ventral striatal areas that comprise cognitive and limbic areas, in contrast to the 

external focus that causes recruitment of dorsal motor areas. However, it does anecdotally appear 

that internal focus of attention exercise provided improvements to how individuals felt. For 

example, at post assessment, the internal focus of attention exercise group reported lower 
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numbers on the PDQ-39 compared to pre (Table 3), suggesting that these individuals reported an 

improvement to their perceived quality of life. Therefore, although an external focus of attention 

improved upon dual task walking and symptom severity, if individuals wished to improve how 

they felt affectively in general, an internal focus of attention may be a suitable option.   

In conclusion, since no adverse events related to the exercise program were reported, the 

findings from the present study suggest that an external focus of attention exercise could be 

beneficial for improving upon dual task walking and motor symptoms in Parkinson’s disease.  

THESIS LIMITATIONS 

A few limitations were evident that were inherently difficult to avoid. First, the primary 

investigator instructed all participants through the exercise interventions (both External and 

Internal), and therefore, one might be concerned with experimenter bias associated with 

preconceived hypotheses. However, by training both exercise groups, the instructor was able to 

provide identical time and repetition prescription aspects to the exercise, which might decrease 

the potential for bias to emerge. Also, blinded research assistants and a movement disorders 

specialist (for UPDRS-III assessment) conducted pre, post, and washout assessment measures, 

further minimizing the chance of bias. Second, although participants were consistently asked to 

focus their attention on the movement of coloured labels (External) or their sensory information 

(Internal), it could not be confirmed that these strategies were efficiently adopted, especially 

since significant differences between groups after the intervention were not found. Although, the 

different attentional methods of exercise intervention transferred to dissimilar changes in dual 

task ability and symptom severity, and since participants were not demographically different at 

pre assessment, it can be concluded that the manipulations did have an effect, and were therefore 
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adopted. Third, unlike a previous study that investigated how focus of attention exercise may 

influence static and dynamic balance in Parkinson’s disease [82], a third exercise group which 

did not receive attentional instruction was not included in the present study. The purpose of this 

was two-fold: i) to maximize the number of individuals in completely unique manipulations, and 

ii) differences between an Internal focus of attention and control were not expected since 

individuals with Parkinson’s disease naturally recruit conscious control networks (ie. focus 

internally) to compensate for impaired automatic processes. Fourth, since the control group did 

not complete the washout assessment, it cannot be clear whether the improvements to dual task 

walking found in the external focus of attention group (at washout compared to pre assessment) 

were the result of improved automatic control networks, or a simple practice effect. Last, ruling 

out a placebo effect is very difficult, if not impossible, in exercise studies. Participants were 

obviously aware that they were randomized to an exercise group that one would expect to 

naturally provide benefit. However, participants were not made aware of the research hypotheses 

associated with the present study. Therefore, expectation of improvement would have been the 

same in both exercise groups. 

FUTURE DIRECTIONS 

Future work should explore synaptic function at the striatum through [18F]FP-CIT PET 

before and after external and internal focus of attention exercise to gain an objective 

understanding with regards to the influence these interventions have in Parkinson’s disease. This 

will allow for the design of more precise interventions so that maximal mitigation of dual tasking 

ability and motor symptoms might be achieved. Furthermore, it might be expected that since the 

frontal loops of the basal ganglia that are recruited during an internal focus of attention are 
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closely linked with limbic centers underlying emotion and anxiety processing, internally focused 

exercise may provide benefits to clinical anxiety in individuals with Parkinson’s disease. Future 

studies should investigate the influence of external and internal focus of attention exercise on a 

very prevalent non-motor symptom associated with Parkinson’s disease, anxiety.  
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