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Abstract

We present a comprehensive set of computations of effective mass theory for both the

Kane’s parabolic band approximation and Luttinger-Kohn’s valence band mixing ap-

proximation. We generalize the k · p method to be able to evaluate band structures for

the materials such as zincblende InGaAsN and GaAsBi compounds used in long wave-

length lasers and wurtzite materials used in short wavelength lasers. We investigate

methodology to study band structure of semiconductors that are grown away from natu-

ral direction. The strain influence is introduced via Bir and Pikus model. It is expected

that band structure is strongly dependent on direction of crystal growth and the strain

plays here an important role. The energy levels, and consequently the optical matrix

elements, change with orientation. The optical matrix elements are directly involved in

optical gain calculations, so the growth orientation provides a tool, to control gain in

semiconductor laser.
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Chapter 1

Introduction

At present time many consumer and industrial technologies are based on lasers1, MOS-

FETs, bipolar transistors, diodes, semiconductor sensors of various types and other low

power semiconductor devices, of which the important parameters are: size, shock resis-

tance, reliability etc. The most commonly used lasers are made of solid state semicon-

ductor materials. There are several ways to produce a laser diode out of semiconductor

material. The present work will concentrate on quantum wells (QWs).

The laser diode is a device, similar to what is known as rectifier diode, but with some

important differences. Rectifier diode has two regions: p-type and n-type on each side of

the device, whereas the laser diode has a third region in the middle of these two that is

made of another material, as a variant: p-type doped, undoped intrinsic and n-type doped

semiconductors. When electric current is applied to this semiconductor pie, the carriers

are pumped into the middle of the undoped region: electrons from n-type side and holes

from p-type side. The goal of pumping the carriers is to make them to recombine2 and

produce photons. The use of direct bandgap semiconductors makes the recombination

process to convert all the energy into radiation.

There are two types of radiative emission: spontaneous and stimulated. Spontaneous

emission events occur randomly whereas the stimulated emission is driven by external

factors. Stimulated emission is important for lasers while spontaneous emission dominates

in light emitting diodes (LEDs). The stimulated emission generates pack of photons with

1laser - acronym for “light amplification by stimulated emission of radiation”.
2Recombinations means disappearance of one pair of carriers in semiconductor with the energy output.

1



Chapter 1. Introduction 2

the same frequency, phase and polarization. To produce a laser beam this pack should

increase in its magnitude. This process creates an optical gain. Gain in laser crystal may

be achieved by polishing it on two sides to form mirrors: one is fully reflective and one

is semi-reflective. This structure is known as a Fabry-Pérot resonator. The laser beam

propagates through the semi-reflective mirror. Size of the active3 region is relatively

small, thus the laser beam is coming out through the slot of the size 20-100 Å = 2-10

nm, whereas the light wavelengths vary from ≈ 400 nm to 3000 nm which results in

a significant diffraction effect on the output laser beam. Thus the semiconductor laser

usually requires the optical system at the output, focused on a particular point.

Semiconductor laser has many advantages including size, efficiency in terms of consuming

electricity, etc. Also, variety of semiconductor materials allow to fabricate lasers with

many different wavelengths which are required by different applications. Gas lasers, such

as the widely used Helium-Neon laser in comparison with the semiconductor lasers, are

costly to change its operational wavelength. Typical wavelength emitted by Helium-Neon

laser is 633 nm, while the semiconductor lasers have a variety of operational wavelengths.

QW used in semiconductor laser is formed by at least two materials with different bandgap

energies to make a potential barrier. The value of bandgap energy has a significant

influence on the operational wavelength of the resulting laser. Apart from that, the

probabilities of the populations of energy bands depend on band structure, which affect

the laser output. The external factors which have an influence on band structures are:

well width, barriers width, material compositions, strain and crystal orientation.

Further research in scientific methods was attempted to improve properties of semicon-

ductor lasers. The well thickness and strain may not be the only ways to improve their

properties. A possible method to consider is QW grown on the substrate oriented away

from natural direction, which is (001) when using Miller indices notation. Over the last

twenty years there has been increased interest in analyzing the properties of semicon-

ductor structures at arbitrary oriented substrates; first for cubic crystals and then for

hexagonal crystals. Research is done mostly for a practical reason: how to improve the

properties of devices. It is expected that many properties of crystal lattices will depend

on the growth orientation. As of now most studies were done for cubic crystals, with only

a limited amount of work performed for hexagonal semiconductors.

3The active region’s material responsible for the optical gain.
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1.1 Studies of cubic systems

Typical materials which exhibit cubic4 symmetry, known as zincblende sometimes called

as sphalerite5, are GaAs,CdTe, InAs, InP,GaP,AlAs,GaBi and many other compounds

(including not only semiconductor materials) such as AlGaAs and InGaAsN which are

used in photonics applications.

Early studies of non (001)-oriented substrates began from considering the (11N)-oriented

growth of GaAs. It has been shown that for some particular orientations, such as (110)

and (112), the nucleation and morphology are better than (001) orientation. Chang [1]

reported successful fabrication by molecular beam epitaxy of high quality Ge-GaAs super-

lattices on (100) oriented GaAs substrate at 400◦C, and provided experimental data for

orientation differences obtained by reflection high energy electron diffraction (RHEED).

Later, he provided in [2] similar experimental data for surface of Ge-GaAs systems for

differently oriented substrates. Wright et al. [3] discussed GaP grown on (211) oriented Si

substrate and provided experimental data for reflection electron diffraction and Hall effect

voltages. He also constructed p-n junction for different orientations with this material.

Uppal et al. [4] provided similar work for GaAs grown on Si substrate.

With the semiconductor devices’ aspect in mind, McKenna et al. [5] considered p-n junc-

tion diode made of GaP material. They discussed orientational dependence of power

requirements of the diode prepared by liquid beam epitaxy, made of AlGaAs grown of

GaAs substrate, and concluded that the orientation of growth is very important. Pearsall

et al. [6] presented first systematic study of the dependence of impact ionization by elec-

trons and holes on the details of the electronic band structure. They considered GaAs

and determined that the ionization rate strongly depended on composition of the material

(GaAsSb) and the orientation of growth.

By early 1991 there were already many reports about successful growth of high qual-

ity GaAs/AlxGa1−xAs superlattices with (11N) orientation which had very promising

optical and electronic properties as compared to the usual (001) orientation. For in-

stance, Wang [7] reported on the experiments with (11N)-oriented GaAs/AlxGa1−xAs

with N = 2, 3, 5, 7, 9. His experiments confirm that the Si inserted into GaAs acts as p-

4The cubic symmetry also means rock-salt and diamond, but in the context of this work the cubic
means particularly zincblende.

5The mineral Sphalerite is a wide band gap semiconductor with chemical structure ZnS.
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or n-type dopant depending on orientation and surface index. The two-dimensional car-

rier mobility in modulation-doped heterostructures grown on (11N) planes varies from

∼ 6.3 · 104 up to ∼ 6.4 · 105 cm2 V−1 s−1 (10 times difference!) at low temperatures

(4.2 K). In addition, Subbanna et al. [8] presented first detailed study of the AlGaAs

grown on (211) oriented GaAs substrate and provided photoluminescence spectra of A

and B faces of (211) grown material, which are ∼ 30 times different (B is stronger than

A) and both much stronger than the same spectra for (100) orientation. Besides, Allen

et al. [9] showed that at low temperatures (4 K), the (110) orientation leads to strong

exciton photoluminescence emission and at room temperature the electron mobility is

as high as 5700 cm2 V−1 s−1 (lower than for (100) orientation) for carrier concentration

n ∼ 4 · 1015 cm−2. Hayakawa et al. [10] discovered that for (111) oriented structure the

photoluminescence emission efficiency is higher than for (001) orientation and the thresh-

old current for quantum well lasers is smaller for (111) than for (001) oriented crystals.

Many groups [11][12][13][14] investigated variation of the binding energy of the 1s exciton

for (001), (110), (111), (113) and (310) orientations and it was found that the binding

energy of the light-hole exciton is more sensitive to the substrate orientation than the

heavy-hole exciton.

By 2001 there were many reports of successful high quality grown substrates of various

high index substrates of many semiconductor materials with cubic crystal structure be-

sides GaAs (InP ,ZnSe,ZnS etc.). Xu et al. [15] studied the exciton-localization effect

of AlAs grown on (311) oriented GaAs substrates and obtained the redshift compared

to the exciton emission of (100) oriented samples. To understand the formation and

self-organization of quantum dots on novel index surfaces Henini et al. [16] investigated

structural and optical properties of InAs layers grown on high index GaAs surfaces.

Polimeni et al. [17] carried out a systematic study of optical and microscopic properties

of self-assembled quantum dots of InGaAs/GaAs heterostructures and obtained that

orientation of growth is important in the dots self-aggregation process. Nötzel et al. [18]

reviewed the unique self-organizing growth mechanisms on planar and patterned high-

index substrates leading to wire and quantum dot arrays with unprecedented structural

and electronic properties. Li et al. [19] investigated the effects of InP substrate ori-

entation on self-assembled InAs quantum dots and showed dependence of the infrared

luminescence on the substrate orientation of InAs dots deposited on InP substrates.

Freire et al. [20] performed theoretical calculations for InGaAs QWs grown on oriented
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substrates, including strain effects and explained strong relation between strain, growth

direction and blueshift of the photoluminescence emission.

Since 2011, there have been attempts to investigate properties of dilute nitride semicon-

ductors, because long wavelength (1.3 and 1.5 µm) lasers can be manufactured out of

narrow band gap dilute nitride materials and used in fiber optics. Most researchers fo-

cused on (001) oriented InGaAsN and a few reported the results for other orientations.

Tomić et al. [21][22] presented a comprehensive theoretical and experimental analysis

of ideal and real 1.3-µm InGaAsN/GaAs lasers grown on natural (001) substrates and

compared their gain characteristics. Ibáñez et al. [23] used photoreflectance and high res-

olution x-ray diffraction measurments to assess the composition of InGaAsN thin films

grown on GaAs substrates with different growth orientations and determined corrections

to interpolated values for deformation potentials. Blanc et al. [24] and Miguel-Sánchez et

al. [25] considered (111) oriented InGaAsN/GaAs QW and demonstrated photolumines-

cence emission at wavelength as long as 1.42 µm at 16 K and also observed blueshift and

other optical properties of GaAsN and InGaAsN QWs. Miguel-Sánchez et al. [26][27]

reported successful growth of (111)-oriented InGaAsN laser diode structures by molecu-

lar beam epitaxy and room-temperature laser emission above 1.2µm under pulsed current

conditions. Latkowska et al. [28] applied low temperature micro-photoluminescence to

study InGaAsN bulklike layers grown on various oriented GaAs substrates.

1.2 Studies of hexagonal systems

In the early 1990s, the semiconductors with hexagonal6 crystal lattice received consid-

erable attention due to the use of materials containing wide bandgap GaN , AlN and

InN compounds in blue LEDs and lasers7. There was considerable amount of publica-

tions related to experiments and theory of band structure and optical gain for wurtzite

semiconductors for (0001) oriented substrates. Based on cubic models, Chuang and

Chang [29][30] established theoretical base for band structure calculation for wurtzite

6Hexagonal symmetry is known as wurtzite, by the mineral ZnS - wurtzite (ZnS is zinc sulfide which
in nature may be found both in cubic - zincblende and hexagonal - wurtzite crystals).

7Apart from GaN , AlN and InN there are several materials which have both cubic and hexagonal
forms.
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bulk and QW semiconductors including strain effects. Then, Chuang [31] presented a

theory for the free-carrier optical gain of strained wurtzite QW lasers.

For non (0001)-oriented substrates, many properties of semiconductors are still not un-

derstood. Park and Chuang [32] investigated crystal orientation effects of GaN wurtzite

semiconductors including band structure, piezoelectric field, strain effects, momentum

matrix elements for optical transitions, band gap and wave functions for bulk and QW

structures. Mireles and Ulloa [33] presented derivation of Hamiltonian which is valid for

general (h0il) oriented wurtzite strained substrates and band structure for various ori-

ented GaN/InAlN QWs. Park and Chuang [34] investigated crystal orientation effects

on optical gain of GaN/AlGaN QW lasers and obtained the maximum gain around 60◦

inclined substrate. Park and Ahn [35] investigated band structure and gain for arbitrary

oriented wurtzite ZnO/MgZnO QWs and compared to GaN-based QW structures. Park,

Ahn and Chuang [36] obtained optical gain and electronic properties of natural planes of

wurtzite InGaN/GaN QW structures. Yoo et al. [37] presented simple approach to the

evaluation of strain in zincblende and wurtzite structure for arbitrary orientations.

In recent years, there were also published investigations of particular non-(0001) oriented

wurtzite semiconductors with special properties. Waltereit et al. [38] discuss consequences

of very large electrostatic fields along the wurtzite QW structure. Sun et al. [39] con-

sidered particular (11̄00) orientation and discovered improvements of photoluminescence

characteristics. Reports include the results of various oriented wurtzite multiple quantum

wells grown on lithium aluminate and sapphire substrates. Ng [40] reported on multiple

AlGaN QWs grown on non (0001) sapphire substrates, showing 30 times higher photo-

luminescence intensity than (0001) oriented QW. Craven et al. [41] investigated a-plane

AlGaN multiple QWs. Chitnis et al. [42] reported blue-purple pn-junction light-emitting

diodes with a-plane InGaN multiple QWs active region grown on r-plane sapphire sub-

strates. Domen et al. [43] analyzed specific strained orientation of GaN QW which may

reduce carrier density to create optical gain and generate laser radiation.

1.3 Novel methods of band structure calculations

Commonly used effective mass or k · p method is one of the methods of describing band

structure around the extremum Γ point. The band structures of GaAs/AlxGa1−xAs
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QWs are described by the effective mass theory for cubic (zinc-blende) crystals, which

was obtained for (11N) orientation first by Xia [44] for hole subband structure (4 × 4

Hamiltonian) and with spin-orbit split-off influence by Seo and Donegan [45] (6×6 Hamil-

tonian) for InxGa1−xAs/InP QWs. For dilute nitride semiconductors, InGaAsN , the

influence of nitrogen concentration on band structures is not negligible and is described

by ten band k · p model which was obtained for (11N)-oriented substrates by Fan [46].

Broderick et al. [47] introduced tight binding analysis of band anticrossing in GaBiAs,

12-band k ·p model for dilute bismide alloys and 14-band k ·p Hamiltonian for GaBiNAs

compound grown on (001) oriented substrates. Gladysiewicz et al. [48] derived 8- and 14-

band k ·p models for GaInAsBi QWs grown on (001) oriented GaAs and InP substrates.

There are no reports in literature on the band structure of Bi containing semiconductors

grown on non-(001) oriented substrates.

1.4 About the thesis

In the present thesis we discuss k ·p method of semiconductor band structure calculations

based on Kane’s and Luttinger-Kohn’s models for zincblende and wurtzite semiconduc-

tors. The presented work shows fully detailed calculations and explanation in the area

of k · p method. The strain has a significant influence on band structure and is intro-

duced using Bir and Pikus model. The purpose of the work is to obtain the method of

calculating band structure of semiconductors on arbitrary oriented substrates. There is

very limited literature on the band structure of the semiconductors grown on rotated sub-

strates. In the present work we aimed at fulfilling that gap. In addition, we introduce the

numerical implementation of the theory. We provide, as examples, results of calculations

band structures for a number of materials for the models that we discuss.



Chapter 2

Construction of Kane’s model

Hamiltonian

To understand optical properties of semiconductors we have to know the electronic band

structure including energy bands and corresponding wave functions. For applications

in optical devices, one needs semiconductors with direct band gaps, as main transitions

occur near the band edges. There are various methods of calculating band structure of

semiconductors:

1. Free electron approximation.

2. Pseudo potential method.

3. Tight binding model.

4. Green function model (Korringa, Kohn and Rostocker model).

5. Density-functional theory.

6. Kronig–Penney model.

7. k · p perturbation theory.

Our main focus is on the conduction and valence band structures near the band edges,

where the k · p method is very useful. This theory has been applied specifically in the

8
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framework of the Kane model (after Evan O. Kane), and of the Luttinger–Kohn model

(LKM) (after Joaquin Mazdak Luttinger and Walter Kohn). We consider the case when

extremum point of band structure occurs at the zone center where k0 = 0, here k0 is

a particular point in k space (k is a wave vector). This is a very useful case for III-V

direct band gap semiconductors. Kane model is unrealistic, but it is necessary to find

basis functions, which are going to be used in LKM. Kane model gives incorrect energy

for heavy holes band, due to discarding all but four bands. LKM uses the result of Kane

model and provides realistic results.

2.1 Hamiltonian for Schrödinger equation and basis

functions

In Kane’s model [49] the spin-orbit interaction is taken into account and four bands are

considered (Fig. 2.1): conduction, heavy hole, light hole and the spin orbit split-off band,

while each band is double degenerate with their spin counterparts. Hamiltonian near

~k0 = 0 is expressed in the form:

H = H0 +
~

4m2
0c

2

[
~∇V × ~p

]
· ~σ (2.1)

H0 =
p2

2m0

+ V (~r) (2.2)

where H0 consists of kinetic and potential energies, the second term in (2.1) is the spin-

orbit interaction, and the ~σ is the vector of Pauli spin matrices with components:

σx =

[
0 1

1 0

]
σy =

[
0 −i
i 0

]
σz =

[
1 0

0 −1

]
(2.3)

Relations for Pauli spin matrices (2.3) operating on the spins are:

σx ↑=↓ σy ↑= i ↓ σz ↑=↑
σx ↓=↑ σy ↓= −i ↑ σz ↓= − ↓

(2.4)

where spins orthonormality relations are:
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Figure 2.1: The k · p method in (a) Kane’s model: only a conduction, a heavy hole,
a light hole and a spin-orbit split-off bands with double degeneracy are considered, all
other bands discarded; (b) LKM: the heavy hole, light hole and spin split-off bands in
double degeneracy are of interest and called as class A, all other bands are denoted as

class B. The effect of class B on class A is taken into account.

↑≡

[
1

0

]
↓≡

[
0

1

]
〈↑|↑〉 = 〈↓|↓〉 = 1 〈↑|↓〉 = 〈↓|↑〉 = 0 (2.5)

From the original equation for the Bloch function ψn~k:{
H0 +

~
4m2

0c
2

[
~∇V × ~p

]
· ~σ
}
ψn~k(~r) = En(~k)ψn~k(~r) (2.6)

the Schrödinger equation for cell periodic function un~k(~r) (also known as Bloch periodic

amplitude) is obtained:{
H0 +

~
m0

~k~p+
~

4m2
0c

2

[
~∇V × ~p

]
· ~σ +

~2

4m2
0c

2

[
~∇V × ~k

]
· ~σ
}
un~k(~r) = E ′un~k(~r) (2.7)

where

E ′ = En(~k)− ~2k2

2m0

(2.8)
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The relation between Bloch function and periodic function is ψn~k(~r) = ei
~k~run~k(~r) and the

last term in (2.7) is a ~k dependent spin-orbit interaction which is relatively small and can

be neglected. Thus, Hamiltonian near ~k0 operating on cell periodic function is expressed

in the form:

H = H0 +H1 +H2 = H0 +
~
m0

~k~p+
~

4m2
0c

2

[
~∇V × ~p

]
· ~σ (2.9)

Here H1 appears due to the transition from Bloch function to cell periodic function and H2

is a p dependent spin-orbit interaction. The band edge functions, un0(~r) (corresponding

to k0 = 0) are: |iS ↑〉, |iS ↓〉 - for conduction band and |X ↑〉, |X ↓〉, |Y ↑〉, |Y ↓〉, |Z ↑〉,
|Z ↓〉 - for valence band with corresponding eigenenergies Es and Ep respectively, which

are defined as H0 |S〉 = Ec |S〉, H0 |X〉 = Ep |X〉, etc., see Fig. 2.1. Basis functions are

chosen in a convenient form:

|1〉 = |iS ↓〉 , |2〉 =

∣∣∣∣X − iY√
2
↑
〉
, |3〉 = |Z ↓〉 , |4〉 =

∣∣∣∣−X + iY√
2
↑
〉

(2.10)

|1̄〉 = |iS ↑〉 , |2̄〉 =

∣∣∣∣−X + iY√
2
↓
〉
, |3̄〉 = |Z ↑〉 , |4̄〉 =

∣∣∣∣X − iY√
2
↓
〉

(2.11)

where the conduction band wave function is the s-state wave function and the valence

band basis functions are taken from the p-state wave functions of hydrogen atom model.

Basis functions are related to spherical harmonics as:

Y00 =
1√
4π
≡ |S〉

Y10(θ, φ) =

√
3

4π
cos θ =

√
3

4π

z

r
≡ |Z〉

Y1±1(θ, φ) = ∓
√

3

4π
sin θ e±iφ = ∓

√
3

4π

x± iy
r
≡ ∓ 1√

2
|X ± iY 〉

(2.12)

Spherical harmonics are obtained by the following expression:

Ylm(θ, φ) = (−1)
m+|m|

2

√
2l + 1

4π

(l − |m|)!
(l + |m|)!

Pm
l (cos θ)eimφ (2.13)
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where Pm
l (cos θ) are Legendre polynomials. The Legendre polynomials in explicit form

are:

Pm
l (cos θ) = sinm θ

dm

d(cos θ)m
Pl(cos θ) (2.14)

where Pl for l = 1 is:

P1 = cos θ (2.15)

The spherical harmonics do not include spin. Basis functions which including spin are

discussed at the end of this chapter. The reason of this choice [50](p.68-96) is that in

the crystal potentials of atoms overlap with each other and forming bands, as it is shown

on Fig. 2.2. Due to the fact that our main interest is around band gap, we should use

the highest valence bands and the lowest conduction band. As it is seen, the highest

valence bands are atomic p-states and the lowest conduction bands are atomic s-states.

The p- and s-states originate from the fine structure of energy levels in atomic physics.

Each state with principal quantum number n is degenerate with respect to fine structure

(s-, p-, d-, f -sub-states) due to electron spin and relativistic corrections to Schrödinger

equation. Explicit degenerations are shown at the end of this chapter. For convenience,

Figure 2.2: Evolution of atomic s- and p-states, to form conduction and valence zone
exists in semiconductors; EF - Fermi level; four zones on the right hand of the figure
are (from top to bottom): conduction bands formed by antibonding p- and s-states and

below Fermi level are valence bands formed by bonding p- and s-states.

assume that the wave vector is ~k = kẑ and Kane’s parameter P and spin-orbit split off
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energy ∆ are defined as:

P ≡ −i ~
m0

〈S |pz|Z〉

∆ ≡ i
3~

4m2
0c

2

〈
X

∣∣∣∣∂V∂x py − ∂V

∂y
px

∣∣∣∣Y〉 (2.16)

2.2 Explicit calculations of matrix elements of H

In this section we will determine matrix elements of the Hamiltonian H as given by Eq.

(2.9) within basis functions (2.10) and (2.11). We will calculate only half of the matrix

elements due to the fact that matrix is symmetric. Matrix elements are evaluated for

upper block between states (2.10)1. The resulting structure of the Hamiltonian matrix is

as follows:

H =

[
H̃ 0

0 H̃

]
(2.17)

with the upper and lower blocks of the form:

H̃ =


H11 H12 H13 H14

H21 H22 H23 H24

H31 H32 H33 H34

H41 H42 H43 H44

 (2.18)

In the following we evaluate the relevant matrix elements.

2.2.1 Matrix element H11

Matrix element is defined below along with its value.

H11 = 〈1 |H| 1〉 = 〈−iS ↓ |H| iS ↓〉 = Es (2.19)

1For lower block, the matrix elements should be evaluated between states (2.11), but it will give same
results.
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The evaluation is done as follows. Consider evaluation of each term of Hamiltonian

separately:

〈−iS ↓ |H0| iS ↓〉 = 〈S |Es|S〉 = Es (2.20)

〈−iS ↓ |H1| iS ↓〉 =

〈
S

∣∣∣∣ ~km0

pz

∣∣∣∣S〉 = 0 (2.21)

where pz ≡ −i~ ∂
∂z

.

〈−iS ↓ |H2| iS ↓〉 = 〈↓ |σx| ↓〉︸ ︷︷ ︸
=0

〈S |H2|S〉x + 〈↓ |σy| ↓〉︸ ︷︷ ︸
=0

〈S |H2|S〉y + 〈↓ |σz| ↓〉︸ ︷︷ ︸
=−1

〈S |H2|S〉z

= −〈S |H2|S〉z = −
〈
S

∣∣∣∣ ~
4m2

0c
2

(
∂V

∂x
py −

∂V

∂y
px

)∣∣∣∣S〉 = 0

(2.22)

where matrix elements are zero due to the fact that derivative of a constant number is

zero.

2.2.2 Matrix element H12

Matrix element is defined below in the same way as before.

H12 = 〈1 |H| 2〉 =

〈
−iS ↓

∣∣∣∣∣H
∣∣∣∣∣X − iY√

2
↑

〉
= 0 (2.23)

Due to spin relations (2.5), the only non zero terms are:〈
−iS ↓

∣∣∣∣∣H
∣∣∣∣∣X − iY√

2
↑

〉
=

〈
−iS ↓

∣∣∣∣∣H2

∣∣∣∣∣X − iY√
2
↓

〉
x

+ i

〈
−iS ↓

∣∣∣∣∣H2

∣∣∣∣∣X − iY√
2
↓

〉
y

(2.24)

where subscripts x and y mean the term in H2 which contains σx and σy respectively.

The explicit form of the above and another matrix elements, evaluated in next sections,

contains typical integrals which we evaluate here. The first type of typical integrals do

not contain the potential related terms and have the form2:

∞∫
−∞

x

rn
d~r =

∞∫
−∞

x3

rn
d~r = 0 (2.25)

2Not to be confused by r and ~r, here r =
√
x2 + y2 + z2 and d~r = dxdydz.
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where n = 1, 2, 3, 4, 5.... Here the functions are integrated over the entire space. It is not

necessary to perform the integration, it is enough to consider the parity of such integral:

if the integrand has odd parity, the integral vanishes. We check the above functions:

f(−x) =
−x
rn

= − x

rn
= −f(x) (2.26)

f(−x) =
(−x)3

rn
= −x

3

rn
= −f(x) (2.27)

and find out that functions have odd parity, so the integrals of the form (2.25) vanish.

Other typical integrals, which do not contain the potential are the following:

∞∫
−∞

x2

rn
d~r 6= 0 6=

∞∫
−∞

x4

rn
d~r (2.28)

The functions of the above integrals:

f(−x) =
(−x)2

rn
=
x2

rn
= f(x) (2.29)

have even parity so the integrals of the form (2.28) do not vanish (same arguments applies

to y and z).

The second type of typical integrals has the form where the integrand has the same

functions as above with a multiplier of the form ∂V
∂x

with odd function:

∞∫
−∞

∂V

∂x

x

rn
d~r 6= 0 6=

∞∫
−∞

∂V

∂x

x3

rn
d~r (2.30)

The ∂V
∂x

may be rewritten, assuming that V is spherically symmetric, i.e. depends only

on r and is even, i.e. V (r) = V (−r):

∂V

∂x
=
dV (r)

dr

∂r

∂x
=
dV (r)

dr

∂

∂x

√
x2 + y2 + z2 =

dV (r)

dr

x√
x2 + y2 + z2

=
dV (r)

dr

x

r
(2.31)
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Using (2.31) in one of the integrals3 in Eq. (2.30), we can write explicitly:

∞∫
−∞

∂V

∂x

x

r3
d~r =

∞∫
−∞

dV (r)

dr

x

r

x

r3
d~r =

dV (r)

dr

∞∫
−∞

dy

∞∫
−∞

dz

∞∫
−∞

x2

r4
dx 6= 0 (2.32)

Here, it is obvious that the influence of ∂V
∂x

term lies in the fact that the additional term

changes integrand function’s parity from odd ( x
rn

) to even (x
2

rn
), while as shown above,

the integral of even functions in the infinite limits does not vanish. The integral with

potential and even function converts to:

∞∫
−∞

∂V

∂x

x2

r3
d~r =

∞∫
−∞

dV (r)

dr

x

r

x2

r3
d~r =

dV (r)

dr

∞∫
−∞

dy

∞∫
−∞

dz

∞∫
−∞

x3

r4
dx = 0 (2.33)

the integral with odd integrand function, and therefore vanishes. The other integral has

the form of:

∞∫
−∞

∂V

∂x

y

r3
d~r =

∞∫
−∞

dV (r)

dr

x

r

y

r3
d~r =

dV (r)

dr

∞∫
−∞

ydy

∞∫
−∞

dz

∞∫
−∞

x

r4
dx = 0 (2.34)

Here it is clear that integrand functions do not interact with each other so the property

(2.25) applies directly, and the integral (2.34) disappears.

The equation (2.24) contains two vanishing terms of the form:〈
−iS

∣∣∣∣ ~
4m2

0c
2

(
∂V

∂z
px −

∂V

∂x
pz

)∣∣∣∣ Y√2

〉
y

= C
∞∫
−∞

(
∂V

∂z

−xy
r3
− ∂V

∂x

−yz
r3

)
d~r = 0〈

−iS
∣∣∣∣ ~
4m2

0c
2

(
∂V

∂y
pz −

∂V

∂z
py

)∣∣∣∣ X√2

〉
x

= C
∞∫
−∞

(
∂V

∂y

−xz
r3
− ∂V

∂z

−xy
r3

)
d~r = 0

(2.35)

The two non vanishing terms in (2.24) are4:〈
−S

∣∣∣∣ ~
4m2

0c
2

(
∂V

∂y
pz −

∂V

∂z
py

)∣∣∣∣ Y√2

〉
x

= C
∞∫
−∞

(
∂V

∂y

−yz
r3
− ∂V

∂z

x2 + z2

r3

)
d~r

= −C
∞∫
−∞

∂V

∂z

x2

r3
d~r

(2.36)

3The other gives very similar result.
4Taking into account (2.25), (2.28) and (2.30).
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〈
−S

∣∣∣∣ ~
4m2

0c
2

(
∂V

∂z
px −

∂V

∂x
pz

)∣∣∣∣ X√2

〉
y

= C
∞∫
−∞

(
∂V

∂z

y2 + z2

r3
− ∂V

∂x

−xz
r3

)
d~r

= C
∞∫
−∞

∂V

∂z

y2

r3
d~r

(2.37)

where all constants are denoted as C for convenience. Last two terms (2.36) and (2.37) are

non zero, but due to the fact that in cubic crystals x, y and z axes are crystallographically

equivalent, they are equal to each other and they have opposite signs. Thus, sum of (2.36)

and (2.37) cancel each other.

2.2.3 Matrix element H13

This matrix element is defined below, along with its value.

H13 = 〈1 |H| 3〉 = 〈−iS ↓ |H|Z ↓〉 = kP (2.38)

Consider evaluation of each term of Hamiltonian separately:

〈−iS ↓ |H0|Z ↓〉 = 〈−iS |Ep|Z〉 =

√
3Ep
4π

2π∫
0

cos θ dθ =

√
3Ep
4π

· sin θ
∣∣∣2π
0

= 0 (2.39)

Other terms are:

〈−iS ↓ |H1|Z ↓〉 =

〈
−iS

∣∣∣∣ ~km0

pz

∣∣∣∣Z〉 = −ik ~
m0

〈S |pz|Z〉 = kP (2.40)

Due to spin relations (2.5) the only term left is:

〈−iS |H2|Z〉z =

〈
−iS

∣∣∣∣ ~
4m2

0c
2

(
∂V

∂x
py −

∂V

∂y
px

)∣∣∣∣Z〉 = C

∞∫
−∞

(
∂V

∂x

−zy
r3
− ∂V

∂y

−zx
r3

)
d~r = 0

(2.41)

where all constants are denoted as C for convenience and the property (2.34) is used.

2.2.4 Matrix element H22

The second diagonal matrix element is defined below along with its value.
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H22 = 〈2 |H| 2〉 =

〈
X + iY√

2
↑

∣∣∣∣∣H
∣∣∣∣∣X − iY√

2
↑

〉
= Ep −

∆

3
(2.42)

Consider evaluation of each term of Hamiltonian separately:〈
X + iY√

2

∣∣∣∣∣H0

∣∣∣∣∣X − iY√
2

〉
=

1

2
〈X |H0|X〉 −

1

2
〈iY |H0| iY 〉 −

1

2
〈X |H0| iY 〉+

1

2
〈iY |H0|X〉

=
1

2
Ep +

1

2
Ep − i 〈X |Ep|Y 〉+ i 〈Y |Ep|X〉 = Ep

(2.43)

where last two terms are equal5 and cancel each other. Using the properties (2.25) and

(2.28) one evaluates part H1 of the Hamiltonian:〈
X + iY√

2
↑

∣∣∣∣∣H1

∣∣∣∣∣X − iY√
2
↑

〉
=

〈
X + iY√

2

∣∣∣∣∣ ~km0

pz

∣∣∣∣∣X − iY√
2

〉
= Ck ·

∞∫
−∞

(
x

r
· −xz
r3

+ i
x

r
· yz
r3

+ i
y

r
· xz
r3

+
−y
r
· yz
r3

)
d~r = 0

(2.44)

The last part is evaluated as follows:〈
X + iY√

2

∣∣∣∣∣H2

∣∣∣∣∣X − iY√
2

〉
z

= C

{〈
X

∣∣∣∣∂V∂x py − ∂V

∂y
px

∣∣∣∣X〉−〈X ∣∣∣∣∂V∂x py − ∂V

∂y
px

∣∣∣∣ iY〉
+

〈
iY

∣∣∣∣∂V∂x py − ∂V

∂y
px

∣∣∣∣X〉−〈iY ∣∣∣∣∂V∂x py − ∂V

∂y
px

∣∣∣∣ iY〉}
(2.45)

It is convenient to consider each of the terms in (2.45) separately6 (taking into account

properties (2.25)-(2.34)):

〈X |...|X〉 = C
∞∫
−∞

x

r

(
∂V

∂x

−xy
r3
− ∂V

∂y

y2 + z2

r3

)
d~r = 0

〈Y |...|Y 〉 = C
∞∫
−∞

y

r

(
∂V

∂x

x2 + z2

r3
− ∂V

∂y

xy

r3

)
d~r = 0

(2.46)

5As soon as the Ep is a constant value we have the right to interchange “bra”-term X and “ket”-term
Y inside the matrix element.

6... in each expression corresponds to ∂V
∂x py −

∂V
∂y px.
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〈iY |...|X〉 = C
∞∫
−∞

y

r

(
∂V

∂x

−xy
r3
− ∂V

∂y

y2 + z2

r3

)
d~r

= C
∞∫
−∞

(
∂V

∂x

−xy2

r3
− ∂V

∂y

y3 + yz2

r3

)
d~r

−〈X |...| iY 〉 = C
∞∫
−∞

x

r

(
∂V

∂x

x2 + z2

r3
− ∂V

∂y

−xy
r3

)
d~r

= C
∞∫
−∞

(
∂V

∂x

x3 + xz2

r3
− ∂V

∂y

−x2y

r3

)
d~r

(2.47)

where all constants are denoted as C for convenience. Next, instead of C in (2.47) we

write all constants explicitly, take into account the property of equivalent axes in cube

(interchange y to x and as a result multiplier 2 appears in front of the integral) and

combine non-zero terms (2.43) and (2.47):

Ep −
~2i

4m2
0c

2
· 3

8π

∞∫
−∞

[(
∂V

∂x

−xy2

r3
− ∂V

∂y

y3 + yz2

r3

)
−
(
∂V

∂x

x3 + xz2

r3
− ∂V

∂y

−x2y

r3

)]
d~r

= Ep −
~2i

4m2
0c

2
· 3 · 2

8π

∞∫
−∞

(
∂V

∂x

x3 + xz2

r4
− ∂V

∂y

−x2y

r4

)
d~r ≡ Ep −

∆

3
(2.48)

In order to prove the last equivalence in (2.48) we write the definition of ∆ (2.16) and

expand it in explicit form:

∆ ≡ 3~i
4m2

0c
2

〈
X

∣∣∣∣∂V∂x py − ∂V

∂y
px

∣∣∣∣Y〉 =
3~i

4m2
0c

2
·~· 3

8π
·2·

∞∫
−∞

x

r

(
∂V

∂x

x2 + z2

r3
− ∂V

∂y

−xy
r3

)
d~r

= 3 · ~2i

4m2
0c

2
· 3 · 2

8π

∞∫
−∞

(
∂V

∂x

x3 + xz2

r4
− ∂V

∂y

−x2y

r4

)
d~r (2.49)

where the property (2.32) applied.

2.2.5 Matrix element H23

The off-diagonal matrix element.

H23 = 〈2 |H| 3〉 =

〈
X + iY√

2
↑

∣∣∣∣∣H
∣∣∣∣∣Z ↓

〉
=

√
2

3
∆ (2.50)
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Due to spin properties (2.5) we consider only non zero terms of Hamiltonian:〈
X + iY√

2

∣∣∣∣∣H2

∣∣∣∣∣Z
〉

=

〈
X + iY√

2

∣∣∣∣∣H2

∣∣∣∣∣Z
〉
x

− i

〈
X + iY√

2

∣∣∣∣∣H2

∣∣∣∣∣Z
〉
y

(2.51)

where 〈
X + iY√

2

∣∣∣∣∣H2

∣∣∣∣∣Z
〉
x

=

〈
X√

2

∣∣∣∣∣H2

∣∣∣∣∣Z
〉
x

+

〈
iY√

2

∣∣∣∣∣H2

∣∣∣∣∣Z
〉
x

(2.52)

− i

〈
X + iY√

2

∣∣∣∣∣H2

∣∣∣∣∣Z
〉
y

= −

〈
iX√

2

∣∣∣∣∣H2

∣∣∣∣∣Z
〉
y

+

〈
Y√

2

∣∣∣∣∣H2

∣∣∣∣∣Z
〉
y

(2.53)

It is convenient to consider each of the terms in (2.52) and (2.53) separately and using

the relations (2.32), (2.33) and (2.34):

〈X |...|Z〉x = C

∞∫
−∞

x

r

(
∂V

∂y

x2 + y2

r3
− ∂V

∂z

−zy
r3

)
d~r = 0 (2.54)

〈iY |...|Z〉x = iC
∞∫
−∞

y

r

(
∂V

∂y

x2 + y2

r3
− ∂V

∂z

−zy
r3

)
d~r

= iC
∞∫
−∞

(
∂V

∂y

yx2 + y3

r4
− ∂V

∂z

−zy2

r4

)
d~r

(2.55)

〈iX |...|Z〉y = −iC
∞∫
−∞

x

r

(
∂V

∂z

−xz
r3
− ∂V

∂x

x2 + y2

r3

)
d~r

= −iC
∞∫
−∞

(
∂V

∂z

−x2z

r4
− ∂V

∂x

x3 + xy2

r4

)
d~r

(2.56)

− 〈Y |...|Z〉y = C

∞∫
−∞

y

r

(
∂V

∂z

−zx
r3
− ∂V

∂x

x2 + y2

r3

)
d~r = 0 (2.57)

where all constants are denoted as C for convenience. The only terms left (2.55) and

(2.56) (write C explicitly and interchange x and y):

~2i

4m2
0c

2
· 3

4
√

2π

[ ∞∫
−∞

(
∂V

∂y

yx2 + y3

r4
− ∂V

∂z

−zy2

r4

)
d~r +

∞∫
−∞

(
∂V

∂z

−x2z

r4
− ∂V

∂x

x3 + xy2

r4

)
d~r

]
= 2 · ~2i

4m2
0c

2
· 3

4
√

2π

∞∫
−∞

(
∂V

∂x

x3 + xz2

r4
− ∂V

∂y

−x2y

r4

)
d~r ≡

√
2

3
∆

(2.58)
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where the last equivalence can be found from ∆ expression (2.49) in section 2.2.4.

2.2.6 Matrix element H33

The third diagonal matrix element is defined.

H33 = 〈3 |H| 3〉 = 〈Z ↓ |H|Z ↓〉 = Ep (2.59)

Consider evaluation of each term of Hamiltonian separately:

〈Z ↓ |H0|Z ↓〉 = 〈Z |Ep|Z〉 = Ep (2.60)

The term below is obtained using property (2.25):

〈Z ↓ |H1|Z ↓〉 =

〈
Z

∣∣∣∣ ~km0

pz

∣∣∣∣Z〉 = C

∞∫
−∞

z

r
· x

2 + y2

r3
d~r = C

∞∫
−∞

z

r4
· (x2 + y2) d~r = 0

(2.61)

Due to spin relations (2.5), the only term left is (using property (2.34)):

〈Z |H2|Z〉z =

〈
Z

∣∣∣∣ ~
4m2

0c
2

(
∂V

∂x
py −

∂V

∂y
px

)∣∣∣∣Z〉 = C

∞∫
−∞

z

r

(
∂V

∂x

−zy
r3
− ∂V

∂y

−zx
r3

)
d~r = 0

(2.62)

where all constants combined denoted as C for convenience.

2.3 Explicit Kane’s matrix Hamiltonian

After the evaluation of all matrix elements, a complete upper matrix Hamiltonian, eval-

uated for states (2.10), has the explicit form:

H̃ =


Es 0 kP 0

0 Ep −∆/3
√

2∆/3 0

kP
√

2∆/3 Ep 0

0 0 0 Ep + ∆/3

 (2.63)
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The lower part is identical and evaluated for states (2.11).

2.4 Corrections to basis functions

In order to simplify 4 × 4 matrix (2.63) to 3 × 3 matrix we define the zero of energy on

the top of valence band and define reference energy to be Ep = −∆/3, so the conduction

band minimum is Es = Eg, where Eg is a band gap as it is shown on Fig. 2.1. The

Hamiltonian in (2.63) becomes:

H =


Eg 0 kP 0

0 −2∆/3
√

2∆/3 0

kP
√

2∆/3 −∆/3 0

0 0 0 0

 (2.64)

The determinantal equation |H− E ′I| = 0 gives four eigenvalues for E ′:

E ′ = 0 (2.65)

E ′(E ′ − Eg)(E ′ + ∆)− k2P 2

(
E ′ +

2

3
∆

)
= 0 (2.66)

Due to the fact that k2 is very small, the equation (2.66) can be written as:

E ′(E ′ − Eg)(E ′ + ∆) ≈ 0 (2.67)

From the above it is clear that roots of this equation are going to be very close to the

three band edges E ′ = Eg, E
′ = 0 and E ′ = −∆. Going back to original equation (2.66)

we should add a very small k2 dependent ε, where ε � ∆ and Eg, which leads to three

possible solutions:

1. E ′ = Eg + ε(k2)

2. E ′ = 0 + ε(k2)

3. E ′ = −∆ + ε(k2)
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Substituting the above relations into the equation (2.66), one obtains the explicit form

of ε for each case:

1.

εEg(Eg + ∆)− k2P 2

(
Eg +

2

3
∆

)
= 0

ε =
k2P 2

(
Eg + 2

3
∆
)

Eg(Eg + ∆)

2.

εEg∆− k2P 2 2

3
∆ = 0

ε = −2k2P 2

3Eg

3.

−ε∆(−Eg −∆)− k2P 2

(
−1

3
∆

)
= 0

ε = − k2P 2

3(∆ + Eg)

At this point it is easy to obtain eigenvalues using the relation (2.8):

E ′ = En(~k)− ~2k2

2m0

En(~k) = E ′ +
~2k2

2m0

(2.68)

By substituting the values for E ′, the energies for conduction and valence bands are:

Ec(~k) = Eg +
~2k2

2m0

+
k2P 2

(
Eg + 2

3
∆
)

Eg(Eg + ∆)

Ehh(~k) =
~2k2

2m0

Elh(~k) =
~2k2

2m0

− 2k2P 2

3Eg

Eso(~k) = −∆ +
~2k2

2m0

− k2P 2

3(∆ + Eg)

(2.69)

As it was mentioned above, this result gives an incorrect effective mass for the heavy

hole band. To obtain eigenfunctions, which are useful in LKM, it is necessary to improve



Chapter 2. Construction of Kane’s model Hamiltonian 24

Kane basis functions for the upper (2.63) matrix (here n = c, lh, so and α, β are used to

indicate the basis states for upper and lower block matrix in (2.17) respectively):

φhh,α =

∣∣∣∣−X + iY√
2
↑
〉

φn,α = an |iS ↓〉+ bn

∣∣∣∣X − iY√
2
↑
〉

+ cn |Z ↓〉
(2.70)

and the lower matrix:

φhh,β =

∣∣∣∣X − iY√
2
↓
〉

φn,β = an |iS ↑〉+ bn

∣∣∣∣−X + iY√
2
↓
〉

+ cn |Z ↑〉
(2.71)

by solving the eigenequation:
Eg − E ′n 0 kP

0 −2∆/3− E ′n
√

2∆/3

kP
√

2∆/3 −∆/3− E ′n



an

bn

cn

 = 0 (2.72)

We obtain values for eigenvector column [an, bn, cn] by substituting each eigenvalue into

the eigenequation, and assume limit k2 → 0:

1.

n = c


0 0 0

0 −2∆/3− Eg
√

2∆/3

0
√

2∆/3 −∆/3− Eg



ac

bc

cc

 = 0

From the above, it is clear that this system has infinite number of solutions with

respect to ac, whereas bc and cc can be only 0. To find ac we use normalization such

that (a2
n + b2

n + c2
n)1/2 = 1 and obtain ac = 1. Then the values are:

n = c ac ' 1, bc ' 0, cc ' 0

2.

n = lh


Eg 0 0

0 −2∆/3
√

2∆/3

0
√

2∆/3 −∆/3



alh

blh

clh

 = 0
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From the above, it is clear that alh = 0 and clh =
√

2blh and it has infinite number

of solutions with respect to clh and blh. Using the same normalization as above, we

obtain (b2
lh + c2

lh)
1/2 = 1 which leads to:

3b2
lh = 1 b2

lh =
1

3
blh =

1√
3

clh =

√
2

3

Then the values are:

n = lh alh ' 0, blh =
1√
3
, clh =

√
2

3

3.

n = so


Eg + ∆ 0 0

0 ∆/3
√

2∆/3

0
√

2∆/3 2∆/3



aso

bso

cso

 = 0

From the above, it is clear that aso = 0 and bso = −
√

2cso and it has infinite number

of solutions with respect to bso and cso. Using the same normalization as above, we

obtain (b2
so + c2

so)
1/2 = 1 which leads to:

3b2
so

2
= 1 b2

so =
2

3
bso =

√
2

3
cso = − 1√

3

Then the values are:

n = so aso ' 0, bso =

√
2

3
, cso =

1√
3
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From the above results we obtain improved basis functions which are going to be used in

LKM:
φcα = |iS ↓〉
φcβ = |iS ↑〉

φhh,α =
−1√

2
|(X + iY ) ↑〉 =

∣∣∣∣32 , 3

2

〉
φhh,β =

1√
2
|(X − iY ) ↓〉 =

∣∣∣∣32 , −3

2

〉
φlh,α =

1√
6
|(X − iY ) ↑〉+

√
2

3
|Z ↓〉 =

∣∣∣∣32 , −1

2

〉
φlh,β =

−1√
6
|(X + iY ) ↓〉+

√
2

3
|Z ↑〉 =

∣∣∣∣32 , 1

2

〉
φso,α =

1√
3
|(X − iY ) ↑〉 − 1√

3
|Z ↓〉 =

∣∣∣∣12 , −1

2

〉
φso,β =

1√
3
|(X + iY ) ↓〉+

1√
3
|Z ↑〉 =

∣∣∣∣12 , 1

2

〉

(2.73)

where α, β are used to indicate the basis for upper and lower block matrix in (2.17)

respectively and Dirac’s notation for wave functions is used for simplicity:

|j,m〉

Here j is total angular momentum, which is determined as j = l+s, where l is the angular

momentum and s is the spin, and m is the magnetic quantum number or z component

of j. For p-states l = 1 and spin is always 1/2 for electrons, thus j can be j = l + s and

j = l − s or 3/2 and 1/2. m has 2j + 1 values: j, j − 1, ...,−j + 1,−j and for the case

when j = 3/2 m takes four values: 3/2, 1/2,−1/2,−3/2 and for j = 1/2 - two values: 1/2

and −1/2. The spin orbit interaction is responsible for the spin-orbit split-off ∆ between

j = 1/2 and j = 3/2 states and it’s value is almost constant for most of the materials.

The states (2.73) are labeled with respect to corresponding quantum number. As an

example we consider φhh,α:

φhh,α = Y11 ↑

where ↑ represents the spin up s = 1/2, thus following the above explanations we have

j = 1 + 1/2 = 3/2 and m = 3/2 due to spin up condition which is used above. For the

spin down m = −3/2.



Chapter 3

Construction of Luttinger-Kohn’s

model Hamiltonian

Kane model does not provide a complete result because the effects of distant bands are

neglected and only four bands are considered. In addition to this, it gives incorrect result

for a heavy hole band. Those difficulties were eliminated by LKM, which considered

all bands: bands of main interest considered exactly and the influence of all other bands

treated as perturbation. In this case, it is convenient to use Löwdin’s perturbation method

[51] and treat the six valence bands as a class of states of main interest A and put the

rest of the bands in class B (Fig. 2.1).

3.1 Cubic symmetry (Zincblende)

3.1.1 The Hamiltonian and the basis functions

We write the total Hamiltonian in (2.7) which operates on u~k(~r) as:

H = H0 +
~2k2

2m0

+
~

4m2
0c

2

[
~∇V × ~p

]
· ~σ +H ′ (3.1)

where

H0 =
p2

2m0

+ V (~r) (3.2)

27
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H ′ =
~
m0

~k · ~Π (3.3)

where

~Π = ~p+
~

2m0c2
~σ × ~∇V (3.4)

The last term in (3.4) can be neglected, due to the fact that k dependent term (crystal

momentum) is much smaller than the p dependent term (atomic momentum) ~k � p.

Thus we are left with:

H ′ ∼=
~
m0

~k · ~p (3.5)

This is the only term which is responsible for the coupling class A to class B states.

According to Löwdin’s perturbation method, we expand eigenfunctions of the Schrödinger

equation with the Hamiltonian (3.1):

u~k(~r) =
A∑
j

aj(~k)uj0(~r) +
B∑
γ

aγ(~k)uγ0(~r) (3.6)

where the first summation with index j = 1, ..., 6 refers to states in class A and the

second index γ to states in class B. Explicitly basis functions in class A are taken from

improvements of Kane’s model (2.73) for Heavy-hole (u10, u40), Light-hole (u20, u30) and

Spin Split-off (u50, u60) bands:

u10 (~r) =

∣∣∣∣32 , 3

2

〉
=
−1√

2
|(X + iY ) ↑〉

u20 (~r) =

∣∣∣∣32 , 1

2

〉
=
−1√

6
|(X + iY ) ↓〉+

√
2

3
|Z ↑〉

u30 (~r) =

∣∣∣∣32 , −1

2

〉
=

1√
6
|(X − iY ) ↑〉+

√
2

3
|Z ↓〉

u40 (~r) =

∣∣∣∣32 , −3

2

〉
=

1√
2
|(X − iY ) ↓〉

u50 (~r) =

∣∣∣∣12 , 1

2

〉
=

1√
3
|(X + iY ) ↓〉+

1√
3
|Z ↑〉

u60 (~r) =

∣∣∣∣12 , −1

2

〉
=

1√
3
|(X − iY ) ↑〉 − 1√

3
|Z ↓〉

(3.7)

At ~k = 0, the above band-edge functions satisfy:

H(0)uj0(~r) = Ej(0)uj0(~r) (3.8)
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where

Ej(0) = 0 for j = 1, 2, 3, 4

Ej(0) = −∆ for j = 5, 6

as we set Ep = −∆/3.

Matrix elements of LKH are obtained using Löwdin’s perturbation method [51] by solving

the eigenequation (HLK
jj′ is associated with class A states):

A∑
j′

(
HLK
jj′ − Eδjj′

)
aj′(~k) = 0 (3.9)

where

HLK
jj′ = Hjj′ +

B∑
γ

H ′jγH
′
γj′

E0 − Eγ
(3.10)

where j, j′ = 1, ..., 6 indicate states (3.7), γ 6= j, j′. First (unperturbed) term corresponds

to coupling between states in class A and the second (perturbed) term corresponds to

coupling between states in class A and states in class B; only coupling between states in

class B is neglected:

Hjj′ = 〈uj0 |H|uj′0〉 =

[
Ej(0) +

~2k2

2m0

]
δjj′ (3.11)

H ′jγ
∼=
〈
uj0

∣∣∣∣ ~m0

~k · ~p
∣∣∣∣uγ0

〉
=
∑
α

~kα
m0

pαjγ (3.12)

where α = x, y, z, pjj′ = 0 for j, j′ ∈ A (i.e. the perturbed part has no effect on class A

states) and pαjγ 6= 0 for γ /∈ A where the following notation is used:

pαjγ ≡ 〈uj0 |pα|uγ0〉 (3.13)

where operator pα ≡ −i~ ∂
∂α

. Here equation (3.11) describes the unperturbed part and

(3.12) describes perturbed part. By substituting (3.11) and (3.12) into (3.10) we obtain:

HLK
jj′ =

[
Ej(0) +

~2k2

2m0

]
δjj′ +

~2

m2
0

B∑
γ

∑
α,β

kαkβp
α
jγp

β
γj′

E0 − Eγ
(3.14)
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where α, β = x, y, z and δjj′ is a Kronecker symbol. In a simplified form this expression

is:

HLK
jj′ = Ej(0)δjj′ +

∑
α,β

Dαβ
jj′kαkβ (3.15)

where

Dαβ
jj′ =

~2

2m0

{
δjj′δαβ +

B∑
γ

pαjγp
β
γj′ + pβjγp

α
γj′

m0(E0 − Eγ)

}
(3.16)

To prove the above equivalence, we substitute equation (3.16) into (3.15) and obtain:

HLK
jj′ = Ej(0)δjj′ +

~2

2m0

∑
α,β

kαkβ

{
δjj′δαβ +

B∑
γ

pαjγp
β
γj′ + pβjγp

α
γj′

m0(E0 − Eγ)

}

=

[
Ej(0) +

~2k2

2m0

]
δjj′ +

~2

2m0

B∑
γ

∑
α,β

kαkβ
pαjγp

β
γj′ + pβjγp

α
γj′

m0(E0 − Eγ)

=

[
Ej(0) +

~2k2

2m0

]
δjj′ +

~2

m0

B∑
γ

∑
α,β

kαkβp
α
jγp

β
γj′

m0(E0 − Eγ)

where the last term was obtained by the following relation:

pαjγp
β
γj′ + pβjγp

α
γj′ ≡ 〈uj0 |pα|uγ0〉 〈uγ0 |pβ|uj′0〉+ 〈uj0 |pβ|uγ0〉 〈uγ0 |pα|uj′0〉 ≡ 2pαjγp

β
γj′

In the last step we interchanged α and β. It is convenient to introduce the short notation

which is based on the fact that each basis function consists of |X〉, |Y 〉 and |Z〉 and we

are able to split all matrix elements into the parts containing only one of these basis

functions. Based on those statements the following short notation is used:

A =
~2

2m0

+
~2

m2
0

B∑
γ

pxXγp
x
γX

E0 − Eγ

B =
~2

2m0

+
~2

m2
0

B∑
γ

pyXγp
y
γX

E0 − Eγ

C =
~2

m2
0

B∑
γ

pxXγp
y
γY + pyXγp

x
γY

E0 − Eγ

(3.17)

Here A and B describe coupling of the A class states to all other states, and C relates

to the anisotropy of the band structure around extremum point (Γ point). The above

notation is used to introduce experimental band structure (or Luttinger) parameters γi
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for cubic crystals, and in a convenient form they are defined as:

− ~2

2m0

γ1 =
1

3
(A+ 2B)

− ~2

2m0

γ2 =
1

6
(A−B)

− ~2

2m0

γ3 =
C

6

(3.18)

The definitions are made on the assumption that the right hand side relations are invari-

ant under operations of cubic point group (Appendix F). The relations were labeled by

Luttinger as γi for convenience.

3.1.2 Matrix in |X〉 |Y 〉 |Z〉 basis

The evaluation of matrix elements of Hamiltonian in |X〉 |Y 〉 |Z〉 basis helps to obtain

matrix elements in uj0 basis. In this section indices a, b = |X〉, |Y 〉, |Z〉 and indices

α, β = x, y, z are used.

In this section the following notation for matrix elements is used (the same as in the

expression (3.17) and similar to (3.13) where uj are replaced by |X〉 |Y 〉 |Z〉):

〈X |py| γ〉 ≡ pyXγ

|〈X |py| γ〉|2 ≡ pyXγp
y
γX

(3.19)

where X represents |X〉, |Y 〉 or |Z〉 states, py is the operator −i~ ∂
∂y

and γ labels states

from class B. The property that operator Hamiltonian should be Hermitian1 requires the

following relation (the definition of Hermitian conjugation):

pyXγ = (pyγX)∗

(Dαβ
ab )∗ = Dβα

ba

(3.20)

where “∗” means complex conjugation. The symmetry of cube allows us to write the

following:

pyXγp
y
γX = pzXγp

z
γX 6= pxXγp

x
γX (3.21)

1Hermitian conjugation means complex conjugation and transpose, which is shown as eq. (3.20).
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which means that the properties of materials along all axes in cubic crystal are equal to

each other. To simplify calculations we use the following notation:

A = Dxx
XX

B = Dyy
XX

C = Dxy
XY +Dyx

XY

(3.22)

where A,B,C are given by (3.17). Dαβ
ab is defined by (3.16) with indices a, b instead of

j, j′ and explicitly can be written as:

A = Dxx
XX =

~2

2m0

{
δXXδxx +

B∑
γ

pxXγp
x
γX + pxXγp

x
γX

m0(E0 − Eγ)

}
=

~2

2m0

{
1 + 2

B∑
γ

pxXγp
x
γX

m0(E0 − Eγ)

}

=
~2

2m0

+
~2

m2
0

B∑
γ

pxXγp
x
γX

E0 − Eγ

The other terms are obtained in the same way. We also define:

〈X |H|Y 〉 ≡ DXY (3.23)

where Dab has the following form:

Dab =
∑
αβ

Dαβ
ab kαkβ (3.24)

or in a matrix form the same expression has the following structure:

D =


DXX DXY DXZ

DY X DY Y DY Z

DZX DZY DZZ

 (3.25)

By writing the summation in equation (3.24) explicitly, we obtain the following matrix

elements:

DXX =
∑
αβ

Dαβ
XXkαkβ = Dxx

XXk
2
x+2Dxy

XXkxky+Dyy
XXk

2
y+2Dxz

XXkxkz+Dzz
XXk

2
z +2Dyz

XXkykz

= Dxx
XXk

2
x +Dyy

XXk
2
y +Dzz

XXk
2
z = Ak2

x +B(k2
y + k2

z)
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Figure 3.1: T 2
d symmetry group has main symmetry axis, which is a diagonal of cube,

and rotation of coordinate system around this axis for each 120◦ degree causes the axes
to convert as such: x→ y, y → z, z → x.

DY Y = Dxx
Y Y k

2
x +Dyy

Y Y k
2
y +Dzz

Y Y k
2
z = Ak2

y +B(k2
x + k2

z)

DZZ = Dxx
ZZk

2
x +Dyy

ZZk
2
y +Dzz

ZZk
2
z = Ak2

z +B(k2
x + k2

y)

DXY =
∑
αβ

Dαβ
XY kαkβ =

= Dxx
XY k

2
x +Dxy

XY kxky +Dyx
XY kykx +Dyy

XY k
2
y + 2Dxz

XY kxkz +Dzz
XY k

2
z + 2Dyz

XY kykz

= Dxy
XY kxky +Dyx

XY kykx = Ckxky

DXZ = Dxz
XZkxkz +Dzx

XZkzkx = Ckxkz

DY Z = Dyz
Y Zkykz +Dzy

Y Zkzky = Ckykz

where the following properties (Fig. 3.1), allowed by Td group2 symmetry, are used:

Dxx
XX = Dyy

Y Y = Dzz
ZZ

Dyy
XX = Dzz

XX = Dxx
Y Y = Dzz

Y Y = Dxx
ZZ = Dyy

ZZ

Dxy
XY = Dyx

Y X = Dxz
XZ = Dzx

ZX = Dyz
Y Z = Dzy

ZY

Dyx
XY = Dxy

Y X = Dzx
XZ = Dxz

ZX = Dzy
Y Z = Dyz

ZY

2More details on Td group is provided in Appendix F.
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According to Fig. 3.1, as we exchange the axes with each other the result is going to have

the same form. Matrix elements of the form (with different upper and lower indices):

Dzx
XY = Dzx

XX = Dxy
ZZ = 0

are equal to zero [52](p. 74). For example, matrix element pyXZ = 〈X|py|Z〉 has part

〈X| py with odd parity with respect to x and y so only functions with odd parity with

respect x or y will contribute. The function |Z〉 has odd parity with respect to z and

even with respect to x and y so the matrix elements of the form pyXZ = 0 vanish.

The explicit form of matrix Hamiltonian in |X〉 |Y 〉 |Z〉 basis is the following:

D =


Ak2

x +B(k2
y + k2

z) Ckxky Ckxkz

Ckxky Ak2
y +B(k2

x + k2
z) Ckykz

Ckxkz Ckykz Ak2
z +B(k2

x + k2
y)


|X〉
|Y 〉
|Z〉

(3.26)

3.1.3 Matrix in un0 (~r) basis

It is necessary to express Hamiltonian in the basis uj0, Eq. (3.7). Matrix elements of

Hamiltonian in (3.7) basis are combinations of matrix elements in |X〉 |Y 〉 |Z〉 basis, Eq.

(3.26). In this section, the following notation for matrix elements is introduced:

Pk =
~2

2m0

γ1(k2
x + k2

y + k2
z)

Qk =
~2

2m0

γ2(k2
x + k2

y − 2k2
z)

Rk =
~2

2m0

[
−
√

3γ2(k2
x − k2

y) + i2
√

3γ3kxky
]

Sk =
~2

m0

γ3

√
3(kx − iky)kz

(3.27)

where subscript k means “kinetic”. The following matrix elements are calculated using

the results of Sec. 3.1.2, Eq. (3.26). Hamiltonian H is given by Eq. (3.1). HLK
jj′ ≡

〈uj0 |H|uj′0〉 with j, j′ = 1, ..., 6 which are the indices of basis functions (3.7):

HLK
11 = 〈u10 |H|u10〉 =

1

2
〈(X − iY ) ↑ |H| (X + iY ) ↑〉
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=
1

2
[〈X |H|X〉+ i 〈X |H|Y 〉− i 〈Y |H|X〉+ 〈Y |H|Y 〉] =

1

2
[DXX + iDXY − iDY X +DY Y ]

=
1

2
[A(k2

x + k2
y) +B(k2

x + k2
y + 2k2

z)] = −(Pk +Qk)

where definitions (3.22)-(3.24) are used. Explicitly the above relation is:

−(Pk +Qk) = − ~2

2m0

γ1(k2
x + k2

y + k2
z)−

~2

2m0

γ2(k2
x + k2

y − 2k2
z)

=
1

3
(A+ 2B)(k2

x + k2
y + k2

z) +
1

6
(A−B)(k2

x + k2
y − 2k2

z)

=
2Ak2

x + 2Ak2
y + 2Ak2

z + 4Bk2
x + 4Bk2

y + 4Bk2
z + Ak2

x + Ak2
y − 2Ak2

z −Bk2
x −Bk2

y + 2Bk2
z

6

=
3Ak2

x + 3Ak2
y + 3Bk2

x + 3Bk2
y + 6Bk2

z

6
=
A(k2

x + k2
y) +B(k2

x + k2
y + 2k2

z)

2

Due to spin relations (2.5) terms with opposite spins vanish:

HLK
14 = HLK

41 = 〈u10 |H|u40〉 =
1

2
〈(X − iY ) ↑ |H| (X − iY ) ↓〉 = 0

The other terms are also calculated in a similar way:

HLK
12 = 〈u10 |H|u20〉 = − 1√

3
〈(X − iY ) ↑ |H|Z ↑〉 = − 1√

3
[DXZ − iDY Z ]

= − 1√
3

[C(kxkz)− iC(kykz)] = − C√
3

(kx − iky)kz = Sk

HLK
21 = 〈u20 |H|u10〉 = − 1√

3
〈Z ↑ |H| (X + iY ) ↑〉 = − 1√

3
[DZX + iDZY ]

= − 1√
3

[C(kxkz) + iC(kykz)] = − C√
3

(kx + iky)kz = S+
k

HLK
13 = 〈u10 |H|u30〉 = − 1√

12
〈(X − iY ) ↑ |H| (X − iY ) ↑〉

= − 1√
12

[DXX − iDXY − iDY X −DY Y ] = − 1√
12

[(A−B)(k2
x − k2

y)− 2iCkxky] = −Rk

HLK
31 = 〈u30 |H|u10〉 = − 1√

12
〈(X + iY ) ↑ |H| (X + iY ) ↑〉

= − 1√
12

[DXX + iDXY + iDY X −DY Y ] = − 1√
12

[(A−B)(k2
x − k2

y) + 2iCkxky] = −R+
k
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where superscript “+” means Hermitian conjugation.

Full explicit Luttinger Kohn Hamiltonian, denoted as HLK can be expressed in the fol-

lowing form:

HLK = −



Pk +Qk −Sk Rk 0 − Sk√
2

√
2Rk

−S+
k Pk −Qk 0 Rk −

√
2Qk

√
3

2
Sk

R+
k 0 Pk −Qk Sk

√
3

2
S+
k

√
2Qk

0 R+
k S+

k Pk +Qk −
√

2R+
k −S

+
k√
2

−S
+
k√
2

−
√

2Q+
k

√
3

2
Sk −

√
2Rk Pk + ∆ 0

√
2R+

k

√
3

2
S+
k

√
2Q+

k − Sk√
2

0 Pk + ∆



(3.28)

where the above notation (3.27) is used.

3.1.4 Strain effects on band structures

In this section, we derive the Bir and Pikus Hamiltonian (BPH) for strained semiconduc-

tors [53], [54], [55]. In general the strain may be arbitrary. However, practical cases are

the axial strain, in other words strain along the axes. Following this definition, below we

discuss uniaxial (along one of the axes at a time) and biaxial (along two axes at the same

time with the same value) strain. Strain is defined by strain tensor ε:

ε =


εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

 (3.29)

where the subscripts indicate axes along which the lattice is strained. Axial strain leaves

non zero terms only along main diagonal.

The strain influence on band structure is relatively large and cannot be treated as per-

turbation directly. However, there is a method, developed by Bir and Pikus, of treating

the strain influence as perturbation. Consider the crystal before (Fig. 3.2.a) and after
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Figure 3.2: Positions of vectors ~r and ~r′ for atom A in (a) unstrained and (b) strained
lattice.

(Fig. 3.2.b) deformation. In the undeformed, crystal unit vectors x̂, ŷ can be assumed

as basis vectors for coordinate system. The relations between the unit vectors in the

undeformed and uniformly deformed crystal are the following:

x′ = (1 + εxx)x̂+ εxyŷ + εxz ẑ

y′ = εyxx̂+ (1 + εyy)ŷ + εyz ẑ

z′ = εzxx̂+ εzyŷ + (1 + εzz)ẑ

(3.30)

x′,y′ and z′ are not unit vectors anymore. We define six strain components assuming a

homogeneous3 strain and εαβ = εβα:

e1 = εxx e2 = εyy e3 = εzz

e4 = x′ · y′ = εxy + εyx

e5 = y′ · z′ = εyz + εzy

e6 = z′ · x′ = εzx + εxz

(3.31)

keeping only the linear terms in strain. Fig. 3.2 shows how the position of A (atom A) is

labeled in undeformed crystal:

~r = xx̂+ yŷ + zẑ ≡ (x, y, z) (3.32)

3Homogeneous means that the forces exerted across the faces of a given volume depend only on the
shape and orientation of the volume, not on its location within the solid.
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The same atom in the deformed crystal can be labeled either using the new basis vectors:

~r′ = xx′ + yy′ + zz′ ≈ (1− ε) · ~r (3.33)

or using the original (undeformed) basis vectors:

~r′ = x′x̂+ y′ŷ + z′ẑ ≡ (x′, y′, z′) (3.34)

The change of the volume Ω due to deformation in the linear strain regime:

Ω + δΩ

Ω
= |x′ · (y′ × z′)| = 1 + (εxx + εyy + εzz) (3.35)

From the above expression it is clear that the fractional change of the volume δΩ/Ω of

the crystal under uniform deformation is the trace of matrix ε:

δΩ

Ω
= εxx + εyy + εzz (3.36)

Change of the ~r vector leads to changes in all ~r dependent operators, especially operators

~p and p2:

~p = −i~ ∂
∂~r

= −i~ ∂

∂~r′
∂~r′

∂~r
(3.37)

or the same in component form:

pα = −i~ ∂

∂rα
= −i~ ∂

∂r′β

∂r′β
∂rα

(3.38)

Eq. (3.33) in a component form:

r′β = (δαβ − εαβ)rα (3.39)

Eq. (3.38) contains derivative of the form:

∂r′β
∂rα

= δαβ − εαβ (3.40)

Substituting (3.40) into (3.38) yields the following relation for pα:

pα = −i~ ∂

∂r′β
(δαβ − εαβ) = −i~ ∂

∂r′α
+ i~

∂

∂r′β
εβα (3.41)
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Momentum operator in the deformed system is:

p′α ≡ −i~
∂

∂r′α
(3.42)

thus pα (3.41) may be written in terms of p′α:

pα = p′α − εβαp′β (3.43)

Using (3.43) and the homogeneous strain assumption εαβ = εβα, the p2 = pαpα may be

obtained4:
p2 = (p′α − εβαp′β)(p′α − εαζp′ζ)

= p′2 − 2p′αεαβp
′
β + p′αεαβεβζp

′
ζ

≈ p′2 − 2p′αεαβp
′
β

(3.44)

where the second order effects of ε are neglected. The strain changes the period of the

lattice and consequently changes the ~r dependent potential from V0 to V :

V (~r′) = V0 + Vαβεαβ (3.45)

where

Vαβ =
∂δV

∂εαβ
(3.46)

where δV is a perturbing potential, which is dependent on ε. Perturbing potential is

a very complicated object. The explicit form of δV is more difficult to obtain than

the unperturbed potential V0, as it requires to solve exactly self consistent problem in

deformed crystal, which will show the differences between deformed and undeformed po-

tentials under small deformations. There are theoretical models [56](p.426) for obtaining

the perturbing potential, however the theoretical results for perturbing potential were

completely different from the experimental measurements. To avoid using explicit form

of perturbing potential, the experimental deformation potentials have been introduced,

which are described below. The strain effects are included in the unstrained Hamiltonian

(3.1) by substitution transformed expressions for p2, ~p, ~r,~k and V :

H = H0 +H1 +H2 (3.47)

4Components of p commute.
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where

H0 =
p2

2m0

+ V (~r)

H1 =
~
m0

~k · ~p+

(
− 1

m0

pαpβ + Vαβ

)
εαβ − 2

~k · ε · ~p
m0

H2 =
~2k2

2m0

−
~k · ε · ~k
m0

(3.48)

In addition to k-dependent perturbations the strain effects are added. The above strain

can be assumed small and treated as perturbation as we now work in the deformed crystal.

The effects of ~k are treated to second order and the effects of ε are treated to first order,

thus the terms containing ~k · ε can be neglected because ε is much larger than ~k · ε. Then

the approximate relations may be written as:

H1 ≈
~
m0

~k · ~p+

(
− 1

m0

pαpβ + Vαβ

)
εαβ

H2 ≈
~2k2

2m0

(3.49)

Combining the value Vαβ with the ~p · ε · ~p in H1 we define the deformation potential

operator:

D̂ · ε =

(
− 1

m0

pαpβ + Vαβ

)
εαβ (3.50)

In unstrained semiconductor the LKH is given by (3.15) and in explicit matrix form by

(3.28):

HLK
jj′ = Ej(0)δjj′ +

∑
α,β

Dαβ
jj′kαkβ (3.51)

For strained semiconductor the extra terms to Eq. (3.51) are added5:

(Hε)jj′ =
∑
α,β

D̂αβ
jj′εαβ (3.52)

due to the linear strain, where D̂ transforms as a second-rank tensor under the operations

of crystal point group. At this point, it is clear (by comparing eq. (3.16) and (3.50)) that

the relation D̂ ·ε has similar behavior as D ·~k ·~k. Thus, matrix may be constructed, similar

to (3.26), which will include the matrix elements of the form 〈u| D̂ε |u〉 for conduction

5In this section strain effects on 6× 6 LKH are considered. Strain effects on conduction and nitrogen
level matrix elements are discussed in section 4.6.
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band:

〈S|
(
− 1

m0

pαpβ + Vαβ

)
εαβ |S〉 = 〈S| − 1

m0

pxpx + Vxx |S〉 εxx

+ 〈S| − 1

m0

pypy + Vyy |S〉 εyy + 〈S| − 1

m0

pzpz + Vzz |S〉 εzz

= ac(εxx + εyy + εzz) = acTr(ε)

(3.53)

where ac = 〈S| D̂xx |S〉 = 〈S| D̂yy |S〉 = 〈S| D̂zz |S〉 and off-diagonal terms in D̂ vanish

because |S〉 is odd function in all coordinates. The same for |X〉 from valence band:

〈X|
(
− 1

m0

pαpβ + Vαβ

)
εαβ |X〉 = 〈X| − 1

m0

pxpx + Vxx |X〉 εxx

+ 〈X| − 1

m0

pypy + Vyy |X〉 εyy + 〈X| − 1

m0

pzpz + Vzz |X〉 εzz

= lεεxx +mε(εyy + εzz)

(3.54)

where lε = 〈X| D̂xx |X〉 and mε = 〈X| D̂yy |X〉 = 〈X| D̂zz |X〉 and off-diagonal terms in

D̂ vanish, due to |X〉 is even in x, but odd in y and z. The typical off-diagonal term:

〈X|
(
− 1

m0

pαpβ + Vαβ

)
εαβ |Y 〉 = 〈X| − 1

m0

pxpy + Vxy |Y 〉 εxy = nεεxy (3.55)

where nε = 〈X| D̂xy |Y 〉 and all terms in D̂ except D̂xy vanish due to the fact that D̂ terms

should be odd in x, odd in y and even in z. The lε,mε and nε are different deformation

potentials. The total matrix may be expressed as:

Hε =


acTr(ε) 0 0 0

0 lεεxx +mε(εyy + εzz) nεεxy nεεxz

0 nεεyx lεεyy +mε(εxx + εzz) nεεyz

0 nεεzx nεεzy lεεzz +mε(εxx + εyy)


|S〉
|X〉
|Y 〉
|Z〉

(3.56)

This is the BPH in |S〉 , |X〉 , |Y 〉 , |Z〉 basis. By inspecting the hole part of the (3.56),

the following equivalences between (3.26) and (3.56) are found:

kαkβ → εαβ

A→ lε

B → mε

C → nε

(3.57)
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Both equations are written in the same basis, the parameters A,B and C are linked to

Luttinger parameters by invariant relations (3.18) with respect to spin-orbit coupling,

thus, intuitively, parameters lε,mε and nε should have similar invariant link with mea-

surable valence band deformation potentials:

av =
lε + 2mε

3

b =
lε −mε

3

d =
nε√

3

(3.58)

The similarities between Luttinger parameters and deformation potentials lead to the

following equivalences:

For conduction band
~2

2m∗e
→ ac (3.59)

where ac is the conduction deformation potential. Thus, the conduction band edge dis-

persion is:

E(k) = Ec(0) +
~2

2m∗e
k2 + acTr(ε) (3.60)

For valence band
~2γ1

2m0

→ Dd
v ≡ av (3.61)

~2γ2

2m0

→ Du

3
≡ − b

2
(3.62)

~2γ3

2m0

→ D′u
3
≡ − d

2
√

3
(3.63)
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The total Hamiltonian is obtained as a sum of HLK (3.28) and the strain counterpart

Hε
6:

H = −



P +Q −S R 0 − S√
2

√
2R

−S+ P −Q 0 R −
√

2Q

√
3

2
S

R+ 0 P −Q S

√
3

2
S+

√
2Q

0 R+ S+ P +Q −
√

2R+ −S
+

√
2

−S
+

√
2
−
√

2Q+

√
3

2
S −

√
2R P + ∆ 0

√
2R+

√
3

2
S+

√
2Q+ − S√

2
0 P + ∆



(3.64)

where
P = Pk + Pε Q = Qk +Qε

R = Rk +Rε S = Sk + Sε

Pk =
~2

2m0

γ1(k2
x + k2

y + k2
z) Qk =

~2

2m0

γ2(k2
x + k2

y − 2k2
z)

Rk =
~2

2m0

[
−
√

3γ2(k2
x − k2

y) + i2
√

3γ3kxky
]

Sk =
~2

m0

γ3

√
3(kx − iky)kz

Pε = −av(εxx + εyy + εzz) Qε = − b
2

(εxx + εyy − 2εzz)

Rε =

√
3b

2
(εxx − εyy)− idεxy

Sε = −d(εxz − iεyz)

(3.65)

The Hamiltonian H in (3.64) is written for an arbitrary strain. In the case of a biaxial

strain, the problem can be simplified as:

εxx = εyy 6= εzz

εxy = εyz = εzx = 0
(3.66)

By substitution (3.66) into definition of matrix elements we obtain7:

Rε = Sε = 0

6Here kinetic terms correspond to LKH and strain terms correspond to BPH.
7For arbitrary grown substrate the terms Rε and Sε are not zero.
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The above case covers three strained systems: (001) oriented substrate, bulk semicon-

ductor under external uniaxial stress along the z-direction and external biaxial in-plane

stress along x-y-directions.

For cubic systems, stress tensor is related to strain by the elastic stiffness tensor with

elements Cij (Hooke’s law8):

τxx

τyy

τzz

τxy

τyz

τzx


=



C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44





εxx

εyy

εzz

0

0

0


(3.67)

The tensor C is expressed using Voigt notation [58], which is convenient due to the fact

that the original stiffness tensor C is a four rank tensor with elements Cijkl. The explicit

form of Voigt notation converts four indices ijkl into two indices ab (original indices ijkl

are run from 1 to 3, whereas Voigt indices ab run form 1 to 6):

11→ 1, 22→ 2, 33→ 3, 23, 32→ 4, 31, 13→ 5, 12, 21→ 6

where indices are splitted into pairs as ij = 11 and kl = 11 etc (ij → a and kl→ b).

Here, the most important two cases for (001) orientation should be considered:

a: The case of lattice-mismatched strain:

εxx = εyy =
a0 − a
a

εzz = −2C12

C11

εxx (3.68)

where a0 and a are the lattice constants of the substrate and the well layer material, and

C11 and C12 are the elastic stiffness constants. The terms τxy = τyz = τzx = 0 as there

are no diagonal stresses. There should be no stress in the z-direction due to the fact that

the lattice mismatch exists only in x-y plane, but not along growth direction:

0 = τzz = C12(εxx + εyy) + C11εzz

8In general stiffness tensor C is a four-rank tensor and discussed in detail in [55](p. 98-107), complete
discussions of tensor properties for Hook’s law are found in [57](chapter VIII).
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From the above relation:

εzz = −2C12

C11

εxx

b: The case of an external uniaxial stress T along the z axis9. One has τzz = T and

τxx = τyy = 0, and by substitution τ terms to (3.67) we obtain the system of equations:{
T = 2C12εxx + C11εzz

0 = (C11 + C12)εxx + C12εzz
(3.69)

From the second equation we obtain:

εzz = −C11 + C12

C12

εxx

Substitution of the last expression to the first equation in the system (3.69) leads to:

2C12εxx − C11
C11 + C12

C12

εxx = T ⇒

εxx = εyy =
−C12

C2
11 + C11C12 − 2C2

12

T (3.70)

Substituting the above into the equation for εzz we obtain:

εzz =
C11 + C12

C2
11 + C11C12 − 2C2

12

T

The εxx term is positive for tensile strain and negative for compressive strain10. The elastic

stiffness constants Cij have pressure units and Bir and Pikus deformation constants av, b

and d - energy units.

3.2 Hexagonal symmetry (Wurtzite)

3.2.1 The Hamiltonian and the Basis functions

The method of obtaining LKH for wurtzite crystal is the same as expressed in sec-

tion 3.1.1, but the basis functions in class A for Heavy-hole (u1, u5), Light-hole (u2, u4)

9i.e. external pressure on the crystal.
10εxx is the percentage change in lattice constant.
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and Crystal-field Split-off (u3, u6) bands are the same as (2.10) and (2.11) and ordered

as:

u1 =
−1√

2
|(X ′′ + iY ′′) ↑〉

u2 =
1√
2
|(X ′′ − iY ′′) ↑〉

u3 = |Z ↑〉

u4 =
1√
2
|(X ′′ − iY ′′) ↓〉

u5 =
−1√

2
|(X ′′ + iY ′′) ↓〉

u6 = |Z ↓〉

(3.71)

The basis is chosen according to C4
6v

11 symmetry group [56](p. 97, 285-289) which makes

properties in x − y plane different from along z axis. In other words, the wave func-

tions |X ′′〉 and |Y ′′〉 for hexagonal systems are not the same as for cubic systems. The

Hamiltonian is invariant under 60◦ rotations around the vertical axis z (i.e. c - in hexag-

onal crystal vertical axis). Thus, the hexagonal wave functions have the following form

(obtained in eq. (F.7)):

|X ′′〉 =
1

2
|X〉+

√
3

2
|Y 〉

|Y ′′〉 = −
√

3

2
|X〉+

1

2
|Y 〉

(3.72)

where double primed wave functions create basis for hexagonal system, and unprimed

wave functions are (2.12). Starting here the basis X ′′ used to define experimental param-

eters, but for convenience we drop the double prime index.

The basis (3.71) is given by the inner product of |l,m〉
∣∣1

2
, s
〉

with l = 1,m = 0,±1 and

s = ±1 for each spin (The details about Dirac notation were explained in section 2.4).

In this basis the Hamiltonian is nearly block diagonal. Schrödinger equation is expressed

as:

Hu~k(~r) = E(~k)u~k(~r) (3.73)

H = H0 +
~2

2m0

+Hso +H ′ (3.74)

11More details on C6v group is provided in Appendix F.
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where

Hso =
~

4m2
0c

2
∇V × ~p · ~σ = Hsxσx +Hsyσy +Hszσz (3.75)

H ′ =
~
m0

~k · ~Π (3.76)

~Π = ~p+
~

4m0c2
~σ × ~∇V ' ~p (3.77)

where the last term is neglected because it is much smaller than p dependent term.

The matrix elements of LKH in general form are expressed as the sum of band edge

contribution and a ~k-dependent contribution (in details expressed in section 3.1.1):

HLK
jj′ = Hjj′(~k = 0) +

∑
αβ

Dαβ
jj′kαkβ (3.78)

where the matrix Djj′ at ~k 6= 0:

Dαβ
jj′ =

~2

2m0

{
δjj′δαβ +

B∑
γ

pαjγp
β
γj′ + pβjγp

α
γj′

m0(E0 − Eγ)

}
(3.79)

where the indices j, j′ = 1, 2, 3, 4, 5, 6 ∈ A, γ ∈ B, and α, β = x, y, z.

The band-edge Hamiltonian matrix has been obtained from Kane’s model[29]:

H(~k = 0) =



Ev + ∆1 + ∆2 0 0 0 0 0

0 Ev + ∆1 −∆2 0 0 0
√

2∆3

0 0 Ev 0
√

2∆3 0

0 0 0 Ev + ∆1 + ∆2 0 0

0 0
√

2∆3 0 Ev + ∆1 −∆2 0

0
√

2∆3 0 0 0 Ev


(3.80)

where the energies have the following definitions:

〈X |H0|X〉 = 〈Y |H0|Y 〉 = Ev + ∆1

〈X |H0|Y 〉 = 0

〈Z |H0|Z〉 = Ev

〈X |Hsz|Y 〉 = −i∆2

〈Y |Hsx|Z〉 = 〈Z |Hsy|X〉 = −i∆3

(3.81)
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The sample calculation of Kane’s model band edge matrix element is the following (spin

properties (2.3), (2.4) and (2.5) are used):〈
u1

∣∣∣H(~k = 0)
∣∣∣u1

〉
=

1

2
〈(X − iY ) ↑|H(~k = 0) |(X + iY ) ↑〉

=
1

2
(〈X|H0 |X〉+ 〈Y |H0 |Y 〉+ i 〈X|Hsz |Y 〉 − i 〈Y |Hsz |X〉)

=
1

2
[Ev + ∆1 + Ev + ∆1 + i 〈X|Hsz |Y 〉+ i(〈Y |Hsz |X〉)+]

=
1

2
[2(Ev + ∆1) + 2∆2] = Ev + ∆1 + ∆2

(3.82)

where u1 is defined as (3.71) with double prime “′′” dropped and “+” is Hermitian con-

jugation. For hexagonal crystals the short notation is used based on the same idea as

for cubic systems, but using sixfold rotation symmetry. Thus the following terms, simi-

lar to (3.17) L1, L2,M1,M2,M3, N1, N2 are introduced by substitution α, β = x, y, z and

a, b = X, Y, Z instead of j, j′ into (3.79):

L1 =
~2

2m0

[
1 +

B∑
γ

2pxXγp
x
γX

m0(E0 − Eγ)

]
=

~2

2m0

[
1 +

B∑
γ

2pyY γp
y
γY

m0(E0 − Eγ)

]

L2 =
~2

2m0

[
1 +

B∑
γ

2pzZγp
z
γZ

m0(E0 − Eγ)

]

M1 =
~2

2m0

[
1 +

B∑
γ

2pyXγp
y
γX

m0(E0 − Eγ)

]
=

~2

2m0

[
1 +

B∑
γ

2pxY γp
x
γY

m0(E0 − Eγ)

]

M2 =
~2

2m0

[
1 +

B∑
γ

2pzXγp
z
γX

m0(E0 − Eγ)

]
=

~2

2m0

[
1 +

B∑
γ

2pzY γp
z
γY

m0(E0 − Eγ)

]
(3.83)

M3 =
~2

2m0

[
1 +

B∑
γ

2pyZγp
y
γZ

m0(E0 − Eγ)

]
=

~2

2m0

[
1 +

B∑
γ

2pxZγp
x
γZ

m0(E0 − Eγ)

]

N1 =
~2

m2
0

B∑
γ

pxXγp
y
γY + pyXγp

x
γY

E0 − Eγ

N2 =
~2

m2
0

B∑
γ

pxXγp
z
γZ + pzXγp

x
γZ

E0 − Eγ
=

~2

m2
0

B∑
γ

pyY γp
z
γZ + pzY γp

y
γZ

E0 − Eγ
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The notation for matrix elements is the following:

〈X |py| γ〉 ≡ pyXγ

|〈X |py| γ〉|2 ≡ pyXγp
y
γX

(3.84)

The terms (3.83) are related to experimental band structure parameters Ai which are

known as parameters of Bir and Pikus:

~2

2m0

A1 = L2

~2

2m0

A2 = M3

~2

2m0

A3 = M2 − L2

~2

2m0

A4 =
L1 +M1

2
−M3

~2

2m0

A5 =
N1

2

~2

2m0

A6 =
N2√

2

(3.85)

3.2.2 Hamiltonian matrix in |X〉 |Y 〉 |Z〉 basis

It is convenient to obtain the Hamiltonian matrix in |X〉 |Y 〉 |Z〉 basis, which then helps

to obtain matrix elements of Hamiltonian in uj basis. The short notation and Hermitian

symmetry properties used are the same as in section 3.1.2. The simplified notation is as

follows:
L1 = Dxx

XX = Dyy
Y Y

L2 = Dzz
ZZ

M1 = Dyy
XX = Dxx

Y Y

M2 = Dzz
XX = Dzz

Y Y

M3 = Dxx
ZZ = Dyy

ZZ

N1 = 2Dxy
XY

N2 = 2Dxz
XZ = 2Dyz

Y Z

〈X |H|Y 〉 ≡ DXY

(3.86)
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where Hamiltonian Dab has the following form:

Dab =
∑
αβ

Dαβ
ab kαkβ (3.87)

where indices a, b = |X〉, |Y 〉, |Z〉 and indices α, β = x, y, z, Dαβ
ab is given by (3.79). By

substitution we obtain the following matrix elements (using (3.86)):

DXX = Dxx
XXk

2
x +Dyy

XXk
2
y +Dzz

XXk
2
z = L1k

2
x +M1k

2
y +M2k

2
z

DY Y = Dxx
Y Y k

2
x +Dyy

Y Y k
2
y +Dzz

Y Y k
2
z = L1k

2
y +M1k

2
x +M2k

2
z

DZZ = Dxx
ZZk

2
x +Dyy

ZZk
2
y +Dzz

ZZk
2
z = L2k

2
z +M3(k2

x + k2
y)

DXY = Dxy
XY kxky +Dyx

XY kykx = N1kxky

DXZ = Dxz
XZkxkz +Dzx

XZkzkx = N2kxkz

DY Z = Dyz
Y Zkykz +Dzy

Y Zkzky = N2kykz

(3.88)

The explicit form of matrix Hamiltonian in |X〉 |Y 〉 |Z〉 basis is the following:

D =


L1k

2
x +M1k

2
y +M2k

2
z N1kxky N2kxkz

N1kxky L1k
2
y +M1k

2
x +M2k

2
z N2kykz

N2kxkz N2kykz L2k
2
z +M3(k2

x + k2
y)


|X〉
|Y 〉
|Z〉

(3.89)

3.2.3 Matrix in un basis

Calculations of explicit full matrix Hamiltonian in basis (3.71) is just a combination of

matrix terms in |X〉 |Y 〉 |Z〉 basis. In this section the following notation for matrix
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elements is introduced12:

F = ∆1 + ∆2 + λ+ Θ

G = ∆1 −∆2 + λ+ Θ

λ =
~2

2m0

[A1k
2
z + A2(k2

x + k2
y)]

Θ =
~2

2m0

[A3k
2
z + A4(k2

x + k2
y)]

K =
~2

2m0

A5(kx − iky)2

H =
~2

2m0

A6(kx − iky)kz

∆ =
√

2∆3

(3.90)

The following matrix elements were calculated using the above notation and the results

of equation (3.89). Indices in Hjj′ run j, j′ = 1, ..., 6 which indicates the basis function

Hjj′ ≡ 〈uj |H|uj′〉 with double prime “′′” dropped:

H11 = 〈u1 |H|u1〉 =
1

2
〈(X − iY ) ↑ |H| (X + iY ) ↑〉 = ∆1+∆2+

1

2
[DXX+iDXY−iDY X+DY Y ]

= ∆1+∆2+
DXX +DY Y

2
= ∆1+∆2+

L1k
2
x +M1k

2
y +M2k

2
z + L1k

2
y +M1k

2
x +M2k

2
z

2
= F

H22 = 〈u2 |H|u2〉 =
1

2
〈(X + iY ) ↑ |H| (X − iY ) ↑〉 = ∆1−∆2+

1

2
[DXX−iDXY +iDY X+DY Y ]

= ∆1−∆2+
DXX +DY Y

2
= ∆1−∆2+

L1k
2
x +M1k

2
y +M2k

2
z + L1k

2
y +M1k

2
x +M2k

2
z

2
= G

H12 = 〈u1 |H|u2〉 = −1

2
〈(X − iY ) ↑ |H| (X − iY ) ↑〉 = −1

2
[DXX− iDXY − iDY X−DY Y ]

= −1

2
[L1k

2
x +M1k

2
y +M2k

2
z − L1k

2
y −M1k

2
x −M2k

2
z − 2iN1kxky]

= −1

2
[(L1 −M1)(k2

x − k2
y)− 2iN1kxky] = −K+

H21 = 〈u2 |H|u1〉 = −1

2
〈(X + iY ) ↑ |H| (X + iY ) ↑〉 = −1

2
[DXX + iDXY + iDY X−DY Y ]

= −1

2
[L1k

2
x +M1k

2
y +M2k

2
z − L1k

2
y −M1k

2
x −M2k

2
z + 2iN1kxky]

12Not to confuse matrix element H with the Hamiltonian and matrix element Θ with an angle θ.
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= −1

2
[(L1 −M1)(k2

x − k2
y) + 2iN1kxky] = −K

H13 = 〈u1 |H|u3〉 = − 1√
2
〈(X − iY ) ↑ |H|Z ↑〉 = − 1√

2
[DXZ − iDY Z ]

= − 1√
2

[N2(kxkz)− iN2(kykz)] = −N2√
2

(kx − iky)kz = −H+

H31 = 〈u3 |H|u1〉 = − 1√
2
〈Z ↑ |H| (X + iY ) ↑〉 = − 1√

2
[DXZ + iDY Z ]

= − 1√
2

[N2(kxkz) + iN2(kykz)] = −N2√
2

(kx + iky)kz = −H

Due to spin relations (2.5) terms with opposite spins are:

H53 = 〈u5 |H|u3〉 = − 1√
2
〈(X − iY ) ↓ |H|Z ↑〉 =

√
2∆3 = ∆

H14 = H41 = 〈u1 |H|u4〉 = −1

2
〈(X − iY ) ↑ |H| (X − iY ) ↓〉 = 0

where superscript “+” means Hermitian conjugation.

Full explicit Luttinger Kohn Hamiltonian, denoted as HLK can be expressed in the fol-

lowing form:

HLK = −



F −K+ −H+ 0 0 0

−K G H 0 0 ∆

−H H+ λ 0 ∆ 0

0 0 0 F −K H

0 0 ∆ −K+ G −H+

0 ∆ 0 H+ −H λ


(3.91)

where the notation in eq. (3.90) is used.

3.2.4 Strain effects on band structures

The introduction of strain for wurtzite structures is similar to zincblende (Sec. 3.1.4). The

additional term will be added to Hamiltonian (3.91). This term is obtained by replacing

wave vector terms kαkβ by strain terms εαβ as it was described in section 3.1.4 (vector

~k and strain ε terms correspond to coordinate system axes, not the crystal axes, so for
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hexagonal the same replacement as for cubic is used):

kαkβ → εαβ (3.92)

and replacing Bir and Pikus parameters Ai with the deformation potentials Di, i = 1, ..., 6.

The deformation potentials have their analogs in cubic symmetry: D1 and D2 similar to

hydrostatic deformation potential av; D3 and D4 are similar to the shear deformation

potential b. The modified matrix elements of the Hamiltonian (3.91) have the following

form:
F = ∆1 + ∆2 + λ+ Θ

G = ∆1 −∆2 + λ+ Θ

λ =
~2

2m0

[A1k
2
z + A2(k2

x + k2
y)] + λε

λε = D1εzz +D2(εxx + εyy)

Θ =
~2

2m0

[A3k
2
z + A4(k2

x + k2
y)] + Θε

Θε = D3εzz +D4(εxx + εyy)

K =
~2

2m0

A5(kx − iky)2 +D5ε+

H =
~2

2m0

A6(kx − iky)kz +D6εz+

∆ =
√

2∆3

(3.93)

where Chuang [29] notation is used:

ε± = εxx ± 2iεxy − εyy
εz± = εzx ± iεyz

(3.94)

The next relations allow to use only five band structure parameters A1, A2, A5,∆1 and

∆2 and three deformation potentials for the calculation of the valence band structures:

A1 − A2 = −A3 = 2A4, A3 + 4A5 =
√

2A6, ∆2 = ∆3,

D1 −D2 = −D3 = 2D4, D3 + 4D5 =
√

2D6.
(3.95)



Chapter 3. Construction of Luttinger-Kohn’s model Hamiltonian 54

The stress τ and strain ε tensor for hexagonal crystal are related to each other through

the matrix of elastic stiffness constants:

τxx

τyy

τzz

τxy

τyz

τzx


=



C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0
C11 − C12

2





εxx

εyy

εzz

2εyz

2εzx

2εxy


(3.96)

Assume that the strain tensor is diagonal:

εxy = εyz = εzx = 0 (3.97)

Three cases are considered under the above approximation:

a: A strained-layer wurtzite crystal pseudomorphically grown along the (0001) direction

of a sapphire substrate. The diagonal elements are similar to the ones that are expressed

for lattice mismatch cubic crystal (3.68):

εxx = εyy =
a0 − a
a

εzz = −2C13

C33

εxx (3.98)

where a0 and a are the lattice constants of the substrate and the well layer material.

b: A wurtzite crystal layer under an external biaxial in-plane stress τxx = τyy = T and

τzz = 0. By substitution into (3.96) we obtain:

εxx = εyy =
C33

(C11 + C12)C33 − 2C2
13

T

εzz = −2C13

C33

εxx

(3.99)
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c: A wurtzite crystal layer under an external uniaxial stress τzz = T and τxx = τyy = 0.

By substitution into (3.96) we obtain:

εxx = εyy = − C33

(C11 + C12)C33 − 2C2
13

T

εzz =
C11 + C12

(C11 + C12)C33 − 2C2
13

T

(3.100)



Chapter 4

Luttinger-Kohn’s model

Hamiltonian for semiconductors on

arbitrary-oriented substrates

4.1 Rotation of Luttinger-Kohn’s Hamiltonian for hole

states using angular momentum matrices (4 × 4)

for zincblende crystal

4.1.1 Explanation of transformations

Let the three axes (1,2,3) of the rotated coordinate system be the following (Fig. 4.1): the

axis 3 along the growth direction, the 1 and 3 axes in the (1̄10) plane, and the 2 axis in

the [1̄10] direction. The angle between axis 3 and the x-y plane of the original coordinate

system is denoted by θ; thus when θ varies from 0 to π/2, the growth surface which is

perpendicular to the 3 axis changes from (110) to (111), (112), (113), until (11∞), i.e.,

(001) as shown on Fig. 4.2.

56
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Figure 4.1: Rotation of coordinate system: a) x, y and z are axes of Cartesian
coordinate system where z axis is perpendicular to (001) plane; 1, 2 and 3 are axes of
rotated coordinate system; axis 2 is perpendicular to 1-3 plane which is parallel to (1̄10)
plane; crystal is growing along axis 3; the system is rotated about axis 2 for angle θ; b)
side view of x-z and 1-3 planes; c) upside down view of x-y and 1-2 planes, coordinate

system rotated to π/4 angle.

4.1.2 Coordinate transformations

In order to describe the above rotations and how they affect the Hamiltonian (which is

written in (001) coordinate system), the following transformation has been introduced in

ref. [44]. The components of wave vector ~k transform in the same way as coordinates

(Fig. 4.1):

kx =
s√
2
k1 −

1√
2
k2 +

c√
2
k3

ky =
s√
2
k1 +

1√
2
k2 +

c√
2
k3

kz = −ck1 + sk3

(4.1)
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Figure 4.2: Growth surfaces in Miller indices notation: a - (110), b - (111), c - (112),
d - (113), e - (11∞). Growth direction is perpendicular to plane which is colored gray.

Jx =
s√
2
J1 −

1√
2
J2 +

c√
2
J3

Jy =
s√
2
J1 +

1√
2
J2 +

c√
2
J3

Jz = −cJ1 + sJ3

(4.2)

where s and c represent sin θ and cos θ, respectively. Matrices J1, J2 and J3 satisfy

the commutation rules of angular momentum (Jx, Jy) = iJz and are expressed in the

following form:

J1 =



0 0

√
3

2
0

0 0 1

√
3

2√
3

2
1 0 0

0

√
3

2
0 0


(4.3)
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J2 =



0 0
−
√

3i

2
0

0 0 i
−
√

3i

2
−
√

3i

2
−i 0 0

0
−
√

3i

2
0 0


(4.4)

J3 =



3

2
0 0 0

0 −1

2
0 0

0 0
1

2
0

0 0 0 −3

2


(4.5)

4.1.3 Solution for rotated Hamiltonian

Hole states are described by the following Luttinger effective-mass Hamiltonian [59], writ-

ten in the x, y, z coordinate system:

H =
1

2m0

[(
γ1 +

5

2
γ2

)
k2 − 2γ2

(
k2
xJ

2
x + k2

yJ
2
y + k2

zJ
2
z

)
−4γ3 ({kx, ky} {Jx, Jy}+ {ky, kz} {Jy, Jz}+ {kz, kx} {Jz, Jx})]

(4.6)

where k2 = k2
x+k2

y +k2
z and {kx, ky} is the anticommutator. We want to transform vector

~k and J matrices. To perform the transformation we substitute the expressions of the

transformed ~k (4.1) and J (4.2) into the equation (4.6) using symbolic software Maple 16

and we obtain the effective-mass Hamiltonian in the (1,2,3) coordinate system:

H =
1

2m0

[γ1k
2 + γ2 (Ak2

1 +Bk2
2 + Ck2

3 +Dk1k2 + Ek1k3 + Fk2k3)

+γ3 (A′k2
1 +B′k2

2 + C ′k2
3 +D′k1k2 + E ′k1k3 + F ′k2k3)]

(4.7)
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where A,B,C, ..., E ′, F ′ are 4× 4 matrices with matrix elements being functions of s and

c, which all have the following form:

X =


p r q 0

r+ −p 0 −q
q+ 0 −p r

0 −q+ r+ p

 (4.8)

where superscript ”+” means Hermitian conjugation and the values of p, r and q for each

matrix are provided in Ref. [44] (The values of p, r and q will not be needed in the further

calculations).

4.1.4 Explicit form of rotated Luttinger effective-mass Hamil-

tonian

The Hamiltonian labeled as equation (4.7) in explicit form is a 4× 4 matrix, which was

calculated using Maple 16 (Appendix A) by substituting rotated expression for ~k (4.1)

and matrices J (4.2) into (4.6), and it is expressed as:

H =
1

2m0


P1 R Q 0

R+ P2 0 −Q
Q+ 0 P2 R

0 −Q+ R+ P1

 (4.9)

Hamiltonian can be obtained for any (11N) orientation by the conversion formula for the

angle of rotation θ (which is substituted into eq. (4.1) and (4.2)):

θ = tan−1 N√
2

(4.10)

For N = 1 we have θ = tan−1 1√
2

and we know the relations between sine, cosine and

inverse tangent:

sin
(
tan−1 x

)
=

x√
1 + x2

, cos
(
tan−1 x

)
=

1√
1 + x2

(4.11)
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so for N = 1 we set s = 1/
√

3 and c =
√

2/3 and the result for that case is:

P1 = (γ1 + γ3)k2
‖ + (γ1 − 2γ3)k2

3

P2 = (γ1 − γ3)k2
‖ + (γ1 + 2γ3)k2

3

R = − 1√
3

(γ2 + 2γ3)(k1 − ik2)2 +
2
√

2

3
(γ2 − γ3)(k1 + ik2)k3

Q =

√
2

3
(γ2 − γ3)(k1 + ik2)2 +

2√
3

(2γ2 + γ3)(k1 − ik2)k3

(4.12)

where k2
‖ = k2

x + k2
y. Here we used Xia notation. More commonly used Chuang notation

which is used later, is the following:

−P1 ≡ P +Q

−P2 ≡ P −Q
−R ≡ R

−Q ≡ S

(4.13)

4.2 Rotation of Luttinger-Kohn’s Hamiltonian for hole

states using rotation matrix (4×4) for zincblende

crystal

4.2.1 Introduction

In this section we describe rotations of Hamiltonian using different approach. It is based

on the appropriate transformation of the initial Hamiltonian (4.6) expressed in a coor-

dinate system (x, y, z). The following transformation will transform it into new (trans-

formed) coordinate system defined by axes (1, 2, 3):

k′a = Uackc

H ′ab = UacUbdHcd

kc = Uack
′
a

Hcd = UacUbdH
′
ab

(4.14)
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where H ′ and k′ represent any vectors and tensors in the transformed coordinate sys-

tem and U is the rotation matrix; indices a, b, c, d = 1, 2, 3 indicates the corresponding

components in the transformed system. The transformation of the form:

H ′ = U−1HU (4.15)

is called similarity (collineatory) transformation [60](p. 412). The rotation matrix ap-

proach is more general and with certain assumptions it reduces to one described in sec-

tion 4.1. First, it is necessary to discuss how the rotation matrix is obtained and then

describe the rotations (see Fig. 4.3). It will be shown later that rotation matrix approach

and angular momentum matrices approach give the same result.

Figure 4.3: General transformation for arbitrary rotation from old to new rectangular
coordinate system: a) axes x, y, z correspond to axes 1, 2, 3 respectively, which are
perpendicular to each other; x-y, x-z and 1-3 planes are indicated; angle φ is the angle
between x-z plane and 1-3 plane; angle θ is the angle between z axis and 3 axis; both
of the angles run from 0 to π/2; b) side view of x-z and 1-3 planes, angle of rotation
θ indicated; c) upside down view of x-y and 1-2 planes, coordinate system rotated to

angle φ.
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4.2.2 Rotation matrix

To obtain rotation matrix we will use expressions for rotations of coordinate system about

one of the axes of rectangular Cartesian system [60](p.471). We choose axes x, y, z so that

they correspond to Miller indices h, k, l. Rotations are performed in spherical coordinate

system; thus we rotate about axis 2 and z. Matrices which describe rotations about each

of the axis are denoted as Ax, Ay and Az for rotations about axes x, y and z respectively.

Rotations about y and z axes are expressed in this form:

Ay(θ) =


cos θ 0 sin θ

0 1 0

−sin θ 0 cos θ

 (4.16)

Az(φ) =


cos φ −sin φ 0

sin φ cos φ 0

0 0 1

 (4.17)

where angles θ and φ are right-handed rotations with Euler angles about the positive

coordinate axes y and z. To obtain total rotation matrix, which gives the transforma-

tion for right-handed rotations about axes y and z together (two consecutive rotations

- first about z and then about rotated y i.e. axis 2), it is necessary to perform matrix

multiplication, and as a result we obtain the following matrix:

A = Ay · Az =


cos θ cos φ −cos θ sin φ sin θ

sin φ cos φ 0

−sin θ cos φ sin θ sin φ cos θ

 (4.18)

It represents the right-handed rotation first about axis z and then rotation about axis

2, which was axis y in the old coordinates [60](p. 476). This rotation matrix performs

right-handed rotations. The spherical coordinate system has left handed angles. To

obtain left-handed rotation matrix the angles should be reversed. By switching signs of

angles θ and φ we can write our rotation matrix:

U =


cos θ cos φ cos θ sin φ −sin θ

−sin φ cos φ 0

sin θ cos φ sin θ sin φ cos θ

 (4.19)
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where angles θ and φ defined for spherical coordinate system on the Fig. 4.3. This matrix

leads to the following relation: 
X ′

Y ′

Z ′

 =

 U



X

Y

Z

 (4.20)

The spins in the original coordinate system are assumed to be along the growth direction

z. For rotated system, spins will be rotated by the rotation matrix for spins [61](p.125)1:

Ms =

[
e−i

φ
2 cos θ

2
ei
φ
2 sin θ

2

−e−iφ2 sin θ
2

ei
φ
2 cos θ

2

]
(4.21)

which leads to the following relation:[
↑′

↓′

]
=

[
e−i

φ
2 cos θ

2
ei
φ
2 sin θ

2

−e−iφ2 sin θ
2

ei
φ
2 cos θ

2

][
↑
↓

]
(4.22)

By combining matrices U and Ms we can relate basis functions in rotated coordinate

system [X ′, Y ′, Z ′]T with spins [↑′, ↓′]T and basis functions in original coordinate system

[X, Y, Z]T with spins [↑, ↓]T . Combining matrices U and Ms, we can obtain the ma-

trix that relates [X ′ ↑′, Y ′ ↑′, Z ′ ↑′, X ′ ↓′, Y ′ ↓′, Z ′ ↓′]T and [X ↑, Y ↑, Z ↑, X ↓, Y ↓, Z ↓]T ,

where superscript T means transposition. The combined matrix is obtained as a Kro-

necker product ⊗ (outer product for matrices) of matrices Ms and U :

Mc = Ms ⊗ U = (4.23)

=



cθ cφ c θ
2
e−i

φ
2 cθ sφ c θ

2
e−i

φ
2 −sθ c θ

2
e−i

φ
2 cθ cφ s θ

2
ei
φ
2 cθ sφ s θ

2
ei
φ
2 −sθ s θ

2
ei
φ
2

−sφ c θ
2
e−i

φ
2 cφ c θ

2
e−i

φ
2 0 −sφ s θ

2
ei
φ
2 cφ s θ

2
ei
φ
2 0

sθ cφ c θ
2
e−i

φ
2 sθ sφ c θ

2
e−i

φ
2 cθ c θ

2
e−i

φ
2 sθ cφ s θ

2
ei
φ
2 sθ sφ s θ

2
ei
φ
2 cθ s θ

2
ei
φ
2

−cθ cφ s θ
2
e−i

φ
2 −cθ sφ s θ

2
e−i

φ
2 sθ s θ

2
e−i

φ
2 cθ cφ c θ

2
ei
φ
2 cθ sφ c θ

2
ei
φ
2 −sθ c θ

2
ei
φ
2

sφ s θ
2
e−i

φ
2 −cφ s θ

2
e−i

φ
2 0 −sφ c θ

2
ei
φ
2 cφ c θ

2
ei
φ
2 0

−sθ cφ s θ
2
e−i

φ
2 −sθ sφ s θ

2
e−i

φ
2 −cθ s θ

2
e−i

φ
2 sθ cφ c θ

2
ei
φ
2 sθ sφ c θ

2
ei
φ
2 cθ c θ

2
ei
φ
2


1The rotation matrix for spins is obtained by unitary transformation of Pauli spin matrix and provided

by Wigner [62] in chapter 15.4.
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where the notation cθ ≡ cos θ and sθ ≡ sin θ was used for convenience. The matrix Mc

leads to the following relation between basis functions:

X ′ ↑′

Y ′ ↑′

Z ′ ↑′

X ′ ↓′

Y ′ ↓′

Z ′ ↓′


=

 Mc





X ↑
Y ↑
Z ↑
X ↓
Y ↓
Z ↓


(4.24)

where empty space in square brackets corresponds to matrix Mc. The matrix Mc was

obtained by the following procedure using Maple 16 symbolic software:

with(LinearAlgebra); #the package for working with matrices in Maple 16

theta := 0; #defining angles (0 by default)

phi := 0;

#defining rotation matrix U

U := Matrix([[cos(theta)*cos(phi), cos(theta)*sin(phi), -sin(theta)], [-sin(phi),

cos(phi), 0], [sin(theta)*cos(phi), sin(theta)*sin(phi), cos(theta)]]);

#defining rotations of spin

M[s] := Matrix([[exp(-I*phi*(1/2))*cos((1/2)*theta), exp(I*phi*(1/2))*sin((1/2)

*theta)], [-exp(-I*phi*(1/2))*sin((1/2)*theta), exp(I*phi*(1/2))*cos((1/2)

*theta)]]);

#calculation of total rotation matrix Mc

M[c] := KroneckerProduct(M[s], U);

For electron wave vector ~k the direct transformation is expressed as:

~k′ = U~k (4.25)
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For vector ~k we need inverse transformation:

~k = U−1~k′ (4.26)

where U−1 is the inverse matrix2 of matrix U which by simple manipulations[60](p.407)

it is obtained as:

U−1 =


cos θ cos φ −sin φ sin θ cos φ

cos θ sin φ cos φ sin θ sin φ

−sin θ 0 cos θ

 (4.27)

The corresponding Maple 16 code to this procedure is the following:

#calculating inverse matrix

Uk := simplify(MatrixInverse(U));

#calculation of rotated vector k components

K := VectorMatrixMultiply(Uk, Transpose(Matrix([[k[1], k[2], k[3]]])));

4.2.3 Basis functions for arbitrary growth direction

We consider 4×4 Luttinger-Kohn’s Hamiltonian. Basis functions for heavy hole and light

hole bands for arbitrary growth direction are:

u′10 (~r) =

∣∣∣∣32 , 3

2

〉′
=
−1√

2
|(X ′ + iY ′) ↑′〉

u′20 (~r) =

∣∣∣∣32 , 1

2

〉′
=
−1√

6
|(X ′ + iY ′) ↓′〉+

√
2

3
|Z ′ ↑′〉

u′30 (~r) =

∣∣∣∣32 , −1

2

〉′
=

1√
6
|(X ′ − iY ′) ↑′〉+

√
2

3
|Z ′ ↓′〉

u′40 (~r) =

∣∣∣∣32 , −3

2

〉′
=

1√
2
|(X ′ − iY ′) ↓′〉

(4.28)

where spherical harmonics were introduced in (2.12) and the “ ′ ” (“hatch”) is used to

indicate rotated functions, whereas for coordinates the notation is x, y, z and 1, 2, 3. New

2For rotation matrix the transpose and inverse operations gives the same results due to the fact that
rotation matrix is orthogonal UTU = UUT = I, UT = U−1.
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basis functions are obtained in terms of unrotated basis functions by substitution the

rotated expressions in eq. (4.24) into (3.7). The explicit form of the functions is provided

in Appendix D.

4.2.4 Matrix elements for rotated Luttinger-Kohn Hamiltonian

LKH (3.28) has the form which allows us to express total Hamiltonian in terms of four

values (3.27) only, thus we need to find only these values. These four values expressed in

Luttinger-Kohn’s notation3 are[61](p.129):

P =
~2

2m0

γ1(k2
x + k2

y + k2
z) =

~2

2m0

γ1k
2

Q =
~2

2m0

γ2(k2
x + k2

y − 2k2
z)

R =
~2

2m0

[
−
√

3γ2(k2
x − k2

y) + i2
√

3γ3kxky
]

S =
~2

m0

γ3

√
3(kx − iky)kz

(4.29)

All terms above are expressed in old unrotated coordinate system. To find matrix elements

of Hamiltonian in the rotated system it is necessary to perform few steps. Consider matrix

element P+Q. It corresponds to relation between u∗10 and u10, thus we can write explicitly:

〈u′10 |H|u′10〉 =
1

2
〈(X ′ − iY ′) ↑′ |H| (X ′ + iY ′) ↑′〉

=
1

2
[〈X ′ |H|X ′〉+ i 〈X ′ |H|Y ′〉 − i 〈Y ′ |H|X ′〉+ 〈Y ′ |H|Y ′〉]

(4.30)

After substituting the expressions given by equation (4.24) we obtain matrix element (the

corresponding Maple 16 code is provided in appendix B), which is too large to write for

arbitrary orientation. We will write it only for some particular directions, such as (001)4,

(110) and (111). The convenient way to convert Miller indices (hkl) into angles θ and φ

3Each of the terms contains factor ~2/2m0 or (2m0)−1 as we set units where ~ = 1, which is dropped
below for convenience.

4For (001) orientation axes 1, 2, 3 coincide with x, y, z, but axes labels 1, 2, 3 instead of x, y, z used
below for convenience.
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for cubic systems is the following [37]:

θ = arctan

√
h2 + k2

l

φ = arctan
k

h

(4.31)

Set the angles θ and φ for each orientation as (001) - θ = 0 and φ = 0, (110) - θ = π
2

and

φ = π
4
, (111) - θ = arccos 1√

3
≈ 0.955 and φ = π

4
and obtain:

P = (k2
1 + k2

2 + k2
3)γ1 (4.32)

Q(001) = (k2
1 + k2

2 − 2k2
3)γ2

Q(110) =

(
k2

1 −
k2

2

2
− k2

3

2

)
γ2 + 3

(
k2

2

2
− k2

3

2

)
γ3

Q(111) = (k2
1 + k2

2 − 2k2
3)γ3

(4.33)

P term doesn’t change during rotations. The same approach is used to obtain values of

S and R. Corresponding matrix elements, that we are looking for, are:

〈u′10 |H|u′20〉 =
1

2
√

3
〈(X ′ − iY ′) ↑′ |H| (X ′ + iY ′) ↓′〉 − 1√

3
〈(X ′ − iY ′) ↑′ |H|Z ′ ↑′〉

〈u′10 |H|u′30〉 = − 1

2
√

3
〈(X ′ − iY ′) ↑′ |H| (X ′ − iY ′) ↑′〉 − 1√

3
〈(X ′ − iY ′) ↑′ |H|Z ′ ↓′〉

(4.34)

The expressions of these matrix elements are obtained also for (001), (110) and (111)

oriented substrates (code in Appendix B):

S(001) = −2
√

3γ3(k1 − ik2)k3

S(110) = −2
√

3(k1γ3 − ik2γ2)k3

S(111) =

√
2

3
(k2

1 − k2
2)(γ2 − γ3) + 2

√
2

3
ik1k2(γ2 − γ3) +

2√
3
k3(−k1 + ik2)(2γ2 + γ3)

=

√
2

3
(γ2 − γ3)(k1 + ik2)2 − 2√

3
(2γ2 + γ3)(k1 − ik2)k3

(4.35)
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R(001) = −
√

3(γ2(k2
1 − k2

2)− i2γ3k1k2)

R(110) =

√
3

2
(γ2(−2k2

1 + k2
2 + k2

3) + γ3(k2
2 − k2

3 + 4ik1k2))

R(111) = − 1√
3

(γ2 + 2γ3)(k1 − ik2)2 +
2

3

√
2(γ2 − γ3)(k1 + ik2)k3

(4.36)

Hamiltonian in matrix form is expressed as:

H = − ~2

2m0


P +Q −S R 0

−S+ P −Q 0 R

R+ 0 P −Q S

0 R+ S+ P +Q

 (4.37)

where superscript ”+” means Hermitian conjugation and the notation from section 4.2.4

is used. It is clear that this transformation gives the same result as angular momentum

matrices approach (section 4.1.4).

4.3 Generalization of rotated (4 × 4) Hamiltonian to

rotated (6×6) Hamiltonian for zincblende crystal

(6× 6) Hamiltonian was determined in section 3.1.3 and it is obvious that it includes the

terms, that are already calculated in section 4.2.4, except the term P + ∆. The P term

is already given above and it is invariant under rotations. ∆ term, as it was noted in

section 2.4, is a constant - spin-orbit split-off energy. Thus if we know rotations for 4-band

Hamiltonian, we automatically know rotations for 6-band Hamiltonian. The additional

two basis functions are:

u′50 (~r) =

∣∣∣∣12 , 1

2

〉′
=

1√
3
|(X ′ + iY ′) ↓′〉+

1√
3
|Z ′ ↑′〉

u′60 (~r) =

∣∣∣∣12 , −1

2

〉′
=

1√
3
|(X ′ − iY ′) ↑′〉 − 1√

3
|Z ′ ↓′〉

(4.38)
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Complete 6× 6 matrix Hamiltonian has the following form:

H = −



P +Q −S R 0 − S√
2

√
2R

−S+ P −Q 0 R −
√

2Q

√
3

2
S

R+ 0 P −Q S

√
3

2
S+

√
2Q

0 R+ S+ P +Q −
√

2R+ −S
+

√
2

−S
+

√
2
−
√

2Q+

√
3

2
S −

√
2R P + ∆ 0

√
2R+

√
3

2
S+

√
2Q+ − S√

2
0 P + ∆



(4.39)

where the notation for rotated matrix elements (4.33), (4.36) and (4.35) is used.

4.4 Rotation of Luttinger-Kohn’s Hamiltonian for con-

duction, hole and spin split off states using rota-

tion matrix (8× 8) for zincblende crystal

4.4.1 Basis functions and notation

In this section four-band (8 bands with both spin orientation) Luttinger-Kohn’s model is

considered. Using the same method as it is expressed in section 3.1 we have four bands of

main interest as class A: conduction, heavy-hole, light-hole and spin-orbit split-off band

all double degenerate. All other bands are in class B. Conduction band basis function

|S〉 has symmetry properties as s-state wave function of hydrogen atom model, which

is spherically symmetric. This implies that transformation for conduction band basis

functions will include only transformation for spin:

|S ′〉 = |S〉[
S ′ ↑′

S ′ ↓′

]
=

[
e−i

φ
2 cos θ

2
ei
φ
2 sin θ

2

−e−iφ2 sin θ
2

ei
φ
2 cos θ

2

][
S ↑
S ↓

]
(4.40)
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All notation and transformations for the other three bands are the same as discussed

in section 4.2. The rotations of valence band matrix elements are already given above,

so in this section only the rotations of conduction band interacting matrix elements are

considered. The following expressions are based on the calculations, which are given in

ref.[63]. The basic notation is expressed in terms of empirical Kane’s parameters:

A′ =
~2

m2
0

B∑
γ

pxSγp
x
γS

Eg − Eγ

B = 2
~2

m2
0

B∑
γ

pxSγp
x
γZ

Eg
2
− Eγ

P0 = −i ~
m0

〈S |px|X〉

(4.41)

where short notation is used:

〈S |px| γ〉 ≡ pxSγ (4.42)

In this case constant parameter A′ results from interaction of the conduction band with

class-B states, parameter B results from the mixing interaction of conduction band and

valence band with class-B states, and P0 results from the interaction of conduction and

valence bands.

4.4.2 (8 × 8) Luttinger-Kohn Hamiltonian for arbitrary growth

direction

In this section we discuss matrix elements for interaction between conduction and valence

bands. The order of basis functions is chosen as: |S ↑〉, |S ↓〉, |u10〉,...,|u60〉. Define matrix

elements in the following form5:

〈S |H|S〉 = Ec + A′k2 = A

〈u20 |H|S ↓〉 = HS2

〈S ↑ |H|u30〉 = HS3

〈S ↑ |H|u40〉 = HS4 = 0

〈u50 |H|S ↑〉 = HS5

〈S ↓ |H|u60〉 = HS6

(4.43)

5In ref.[63] basis functions have different form, thus the matrix elements are not the same as in this
paper.
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Using Maple 16 (see code in Appendix C - modified code of Appendix B) we obtain these

matrix elements for some particular orientations (001), (110), (111):

A(001) = Ec +

(
A′ +

~2

2m0

)
k2

H
(001)
S2 = − 1√

6
P0(k1 − ik2)− 1√

6
B(k1 + ik2)k3

H
(001)
S3 =

1√
6
P0(k1 − ik2)− 1√

6
B(k1 + ik2)k3

H
(001)
S5 =

1√
3

(P0k3 + iBk1k2)

H
(001)
S6 = − 1√

3
(P0k3 − iBk1k2)

A(110) = Ec +

(
A′ +

~2

2m0

)
k2

H
(110)
S2 = − 1√

6
P0(k1 − ik2)− 1√

6
B

(
k1k2 +

i

2
(k2

2 − k2
3)

)
H

(110)
S3 =

1√
6
P0(k1 − ik2)− 1√

6
B
(
k1k2 + i

2
(k2

2 − k2
3)
)

H
(110)
S5 =

1√
3

(P0k3 − iBk1k3)

H
(110)
S6 = − 1√

3
(P0k3 + iBk1k3)

A(111) = Ec +

(
A′ +

~2

2m0

)
k2

H
(111)
S2 = − 1√

6
P0(k1 − ik2) +

1

6
B
(
k2

1 − ik2
2 − 2k1k2 +

√
2(k2 + ik1)k3

)
H

(111)
S3 =

1√
6
P0(k1 − ik2) +

1

6
B
(
k2

1 − ik2
2 − 2k1k2 +

√
2(k2 + ik1)k3

)
H

(111)
S5 =

1√
3
P0k3 −

i

6
B(k2

1 + k2
2 − 2k2

3)

H
(111)
S6 = − 1√

3
P0k3 −

i

6
B(k2

1 + k2
2 − 2k2

3)

(4.44)

According to properties, discussed in Appendix F, it is necessary to set asymmetry pa-

rameter B = 0 in matrix elements (4.44) which leads to the same result as it is expressed
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in ref.[64][46]. We set B = 0 in (4.44) and simplify the notation:

HS2 → −T+ = − 1√
6
P0(k1 − ik2)

HS3 → T+ =
1√
6
P0(k1 − ik2)

HS5 → U =
1√
3
P0k3

HS6 → −U = − 1√
3
P0k3

(4.45)

4.4.3 Hamiltonian matrix

The basis functions order here: S ↑, S ↓, u1...u6. Hamiltonian matrix in explicit form for

the notation (4.44) with B 6= 0 is expressed as:

H =



A 0 −
√

3H+
S2

√
2HS6 HS3 0 H+

S5 −
√

2HS3

0 A 0 H+
S2

√
2HS6 −

√
3HS3

√
2H+

S2 HS6

−
√

3HS2 0 − − − − − −
√

2H+
S6 HS2 − − − − − −

H+
S3

√
2H+

S6 − − − − − −
0 −

√
3H+

S3 − − − − − −
HS5

√
2HS2 − − − − − −

−
√

2H+
S3 H+

S6 − − − − − −


(4.46)

for the notation (4.45) with B = 0 is expressed as:

H =



A 0
√

3T −
√

2U T+ 0 U −
√

2T+

0 A 0 −T −
√

2U −
√

3T+ −
√

2T −U
√

3T+ 0 − − − − − −
−
√

2U −T+ − − − − − −
T −

√
2U − − − − − −

0 −
√

3T − − − − − −
U −

√
2T+ − − − − − −

−
√

2T −U − − − − − −


(4.47)
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where superscript ”+” means Hermitian conjugation and the empty space is the 6 × 6

matrix which was calculated in section 4.2 and expressed as equation (4.39). For 8 × 8

Hamiltonian the conduction band is also involved exactly as class A (the valence band

is no longer the highest exact band) and its contribution should be subtracted off the

original Luttinger parameters [65]:

γ1 = γL1 −
1

3

Ep
Eg

γ2 = γL2 −
1

6

Ep
Eg

γ3 = γL3 −
1

6

Ep
Eg

(4.48)

where γLi are Luttinger parameters, which are involved in the original 6× 6 Hamiltonian

(3.18), and γi are called modified Luttinger parameters. Eg is band gap and Ep is the

energy in terms of Kane matrix element P0 (4.41):

Ep =
2m0

~2
P 2

0 (4.49)

The Ep/Eg terms appear as we run indices j in eq. (3.16) as j = S,X, Y, Z and we get

additional terms to eq. (3.17) of the form (above we set asymmetry parameter B = 0 as

the terms P x
Sγ are negligible):

pxSXp
x
XS

Ec − Ev
(4.50)

which is obviously the Ep/Eg term. For instance, consider γ3. The definition of γ3 in eq.

(3.18) may be rewritten in the form:

γL3 = −2m0

~2

C

6
(4.51)

where we redefine the C from eq. (3.17) to include the conduction band in the following

form:

C̃ =
~2

m2
0

B∑
γ

pxXγp
y
γY + pyXγp

x
γY

E0 − Eγ
+
pxSXp

x
XS

Ec − Ev
= C +

P 2
0

Eg
(4.52)

We plug the definition of “new” C̃ into the definition of γ3 and obtain:

γ3 = −2m0

~2

C̃

6
= −2m0

~2

1

6

(
C +

P 2
0

Eg

)
= −2m0

~2

C

6
− 1

6

2m0

~2

P 2
0

Eg
= γL3 −

1

6

Ep
Eg

(4.53)
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4.5 Generalization of (8×8) Hamiltonian rotations to

(10× 10) Hamiltonian for zincblende crystal

10-bands Hamiltonians are discussed in ref. [46][66] and the result is the generalization

of (8× 8) Hamiltonian (4.46) by two additional nitrogen resonant levels with spins:

|SN ↑〉
|SN ↓〉

(4.54)

Nitrogen level basis functions have the same symmetry properties as conduction band

basis functions (section 4.4.1) which are spherically symmetric. This implies that trans-

formation of conduction band basis functions will include only transformation for spin:

|S ′N〉 = |SN〉 (4.55)

Nitrogen level band interacts only with conduction band and both basis functions are

spherically symmetric, so the matrix elements involving nitrogen level and conduction

bands do not change during rotations of coordinate system. Explicit form of (10 × 10)

Hamiltonian is the following:

H =



EN 0 VNC 0 0 0 0 0 0 0

0 EN 0 VNC 0 0 0 0 0 0

VNC 0 − − − − − − − −
0 VNC − − − − − − − −
0 0 − − − − − − − −
0 0 − − − − − − − −
0 0 − − − − − − − −
0 0 − − − − − − − −
0 0 − − − − − − − −
0 0 − − − − − − − −



(4.56)

where the empty space is the 8×8 matrix which was calculated in section 4.4 and expressed

as equation (4.46). The notation is used for nitrogen resonant level energy as EN :

EN = EN0 +N (4.57)
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For coupling between the nitrogen and conduction band:

VNC = VN + V (4.58)

Coefficient N depends on nitrogen composition and the coupling coefficient in the band

anti-crossing (BAC) model as VN which is a constant, depending on the semiconductor

matrix. The order of basis functions is the following: |SN ↑〉,|SN ↓〉, |S ↑〉, |S ↓〉, |u10〉,...,
|u60〉 where |u10〉,..., |u60〉 basis functions explicitly expressed in sections 4.2.3 and 4.3.

4.6 Strain effects on band structures for arbitrary

oriented zincblende crystal

The strain for arbitrary oriented crystal is described by strain tensor ε in the same way

as described in section 3.1.4. To define the rotated strain tensor, the relations (4.14) are

used:
ε′ab = UacUbdεcd

εcd = UacUbdε
′
ab

(4.59)

or the same in explicit form:
εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

 = UT


ε′xx ε′xy ε′xz

ε′yx ε′yy ε′yz

ε′zx ε′zy ε′zz

U (4.60)

where U is defined by (4.19) and UT means matrix transposition. Strain tensor ε has the

same behavior under transformation as tensor k2:
kxkx kxky kxkz

kykx kyky kykz

kzkx kzky kzkz

 = UT


k1k1 k1k2 k1k3

k2k1 k2k2 k2k3

k3k1 k3k2 k3k3

U (4.61)

It was found in section 3.1.4 that strain perturbation operator has the same properties

under rotation as the k-dependent perturbations. It allows us, instead of doing explicit

rotations, to obtain rotated strain Hamiltonian terms by using (3.59), (3.61), (3.62),
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(3.63) and similarity relations:

k′ik
′
j → ε′ij (i, j = x, y, z)

k′i → −
∑
j

ε′ijk
′
j (i, j = x, y, z)

(4.62)

In addition to the above, the strain terms for nitrogen resonant level introduce exper-

imental parameter which have similar behavior as conduction band strain terms (3.59)

and were discussed by [67]:

Nk =
~2

2m0

γNk
2

Nε = aNTr(ε)

Vk =
~2

2m0

γNck
2

Vε = aNcTr(ε)

(4.63)

The four terms of nitrogen resonant level are spherically symmetric and do not change

their form during rotation. Moreover the influence of strain by nitrogen level is very

small. Here γN and γNc both vary at low nitrogen concentration as
√
x, and aN is the

nitrogen resonant level deformation potential. The aNc can be neglected as the effect of

it is partially included in the aN . Similar situation arises with conduction band strain

terms with off-diagonal elements without their own deformation potentials:

Aε = acTr(ε)

Tε =
1√
6
P0

∑
j

(εxj + iεyj)kj

Uε =
1√
3
P0

∑
j

εzjkj

(4.64)

which do not change their form during rotations (The εij terms may change, but the

structure will remains the same).

The terms involving valence bands change during rotations are obtained by application of

the replacement relation (4.62) on the expressions for rotated k-dependent terms (4.33),
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(4.35) and (4.36) (only terms for (110) and (111) orientations are shown):

Q
(110)
ε = − b

4

(
2ε′xx − ε′yy − ε′zz

)
−
√

3

4
d
(
ε′yy − ε′zz

)
Q

(111)
ε = − d

2
√

3
(ε′xx + ε′yy − 2ε′zz)

S
(110)
ε = dε′xz − ib

√
3ε′yz

S
(111)
ε =

−b
√

3 + d

3
√

2
(ε′xx − ε′yy + 2iε′xy)−

2
√

3b+ d

3
(ε′xz − iε′yz)

R
(110)
ε =

√
3b

4
(2ε′xx − ε′yy − ε′zz)−

d

4
(ε′yy − ε′zz + 4iε′xy)

R
(111)
ε =

(
b

2
√

3
+
d

3

)
(ε′xx − ε′yy − i2ε′xy) +

√
2

3

d−
√

3b

3
(ε′xz + iε′yz)

(4.65)

The explicit form of tensor ε is obtained from Hook’s law:

τ ′ij = C ′ijklε
′
kl (4.66)

where rotated strain related to stress by stiffness tensor, which also should be rotated:

C ′ijkl = UipUjqUkrUlsCpqrs

C ′ = UUCUTUT
(4.67)

The general form of C ′ in Voigt notation is the following:

C ′ =



C ′11 C ′12 C ′13 C ′14 C ′15 C ′16

C ′21 C ′22 C ′23 C ′24 C ′25 C ′26

C ′31 C ′32 C ′33 C ′34 C ′35 C ′36

C ′41 C ′42 C ′43 C ′44 C ′45 C ′46

C ′51 C ′52 C ′53 C ′54 C ′55 C ′56

C ′61 C ′62 C ′63 C ′64 C ′65 C ′66


(4.68)

It has symmetric form Cij = Cji, which means that it is necessary to obtain only half

of the terms. The example of the calculation is made for C ′11 in general case by explicit
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expansion of eq. (4.67) (product of rotation matrix U with four rank stiffness tensor C):

C ′11 ≡ C ′1111 = U1pU1qU1rU1sCpqrs = U11{U11[U11(U11C1111 + U12C1112 + U13C1113)

+U12(U11C1121 + U12C1122 + U13C1123) + U13(U11C1131 + U12C1132 + U13C1133)]

+U12[U11(U11C1211 + U12C1212 + U13C1213) + U12(U11C1221 + U12C1222 + U13C1223)

+U13(U11C1231 + U12C1232 + U13C1233)] + U13[U11(U11C1311 + U12C1312 + U13C1313)

+U12(U11C1321 + U12C1322 + U13C1323) + U13(U11C1331 + U12C1332 + U13C1333)]}
+U12{U11[U11(U11C2111 + U12C2112 + U13C2113) + U12(U11C2121 + U12C2122 + U13C2123)

+U13(U11C2131 + U12C2132 + U13C2133)] + U12[U11(U11C2211 + U12C2212 + U13C2213)

+U12(U11C2221 + U12C2222 + U13C2223) + U13(U11C2231 + U12C2232 + U13C2233)]

+U13[U11(U11C2311 + U12C2312 + U13C2313) + U12(U11C2321 + U12C2322 + U13C2323)

+U13(U11C2331 + U12C2332 + U13C2333)]+}+ U13{U11[U11(U11C3111 + U12C3112 + U13C3113)

+U12(U11C3121 + U12C3122 + U13C3123) + U13(U11C3131 + U12C3132 + U13C3133)]

+U12[U11(U11C3211 + U12C3212 + U13C3213) + U12(U11C3221 + U12C3222 + U13C3223)

+U13(U11C3231 + U12C3232 + U13C3233)] + U13[U11(U11C3311 + U12C3312 + U13C3313)

+U12(U11C3321 + U12C3322 + U13C3323) + U13(U11C3331 + U12C3332 + U13C3333)]}
(4.69)

The original tensor C (3.67) has some zero terms and in rotation matrix U there is a zero

term, thus the above general relation (4.69) may be reduced to the following particular

term for cubic systems (using Voigt notation and explicit form of rotation matrix terms

for convenience):

C ′11 = C11(c4
θc

4
φ + c4

θs
4
φ + s4

θ) + (2C12 + 4C44)(c4
θc

2
φs

2
φ + c2

θc
2
φs

2
θ + s2

θc
2
θs

2
φ)

where s and c are sine and cosine of the corresponding angle respectively. The other

terms are obtained in a similar way and they have the form:

C ′22 = C11(s4
φ + c4

φ) + (2C12 + 4C44)c2
φs

2
φ

C ′33 = C11(s4
θc

4
φ + s4

θs
4
φ + c4

θ) + (2C12 + 4C44)(s4
θc

2
φs

2
φ + c2

θc
2
φs

2
θ + s2

θc
2
θs

2
φ)

C ′44 = 2(C11 − C12)s2
φs

2
θc

2
φ + C44(s4

φs
2
θ − 2s2

φs
2
θc

2
φ + s2

φc
2
θ + c4

φs
2
θ + c2

φc
2
θ)

C ′55 = C11(c2
θc

4
φs

2
θ + c2

θs
4
φs

2
θ + s2

θc
2
θ) + 2C12(c2

θc
2
φs

2
θs

2
φ − c2

θc
2
φs

2
θ − c2

θs
2
φs

2
θ)

+C44(4c2
θc

2
φs

2
θs

2
φ + c4

θc
2
φ − 2c2

θc
2
φs

2
θ + c4

θs
2
φ − 2c2

θs
2
φs

2
θ + s4

θc
2
φ + s4

θs
2
φ)
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C ′66 = 2(C11 − C12)c2
φc

2
θs

2
φ + C44(c4

θc
2
φ − 2c2

φc
2
θs

2
φ + s4

φc
2
θ + s2

φs
2
θ + c2

φs
2
θ)

C ′12 = (2C11 + 4C44)c2
θc

2
φs

2
θ + C12(c2

θc
4
φ + c2

θs
4
φ + s2

θs
2
φ + s2

θc
2
φ)

C ′13 = C11(c2
θc

4
φs

2
θ + c2

θs
4
φs

2
θ + s2

θc
2
θ) + C12(2c2

θc
2
φs

2
θs

2
φ + c4

θc
2
φ + c4

θs
2
φ + s4

θc
2
φ + s4

θs
2
φ)

+4C44(c2
θc

2
φs

2
θs

2
φ − c2

θc
2
φs

2
θ − c2

θs
2
φs

2
θ)

C ′14 = (C11 − C12 − 2C44)(c2
θs

3
φcφsθ − c2

θc
3
φsφsθ)

C ′15 = C11(c3
θc

4
φsθ+c

3
θs

4
φsθ−s3

θcθ)+(C12+2C44)(2c3
θc

2
φs

2
φsθ−c3

θc
2
φsθ−c3

θs
2
φsθ+s

3
θcθc

2
φ+s3

θcθs
2
φ)

C ′16 = (C11 − C12 − 2C44)(c3
θs

3
φcφ − c3

θc
3
φsφ)

C ′23 = (2C11 − 4C44)s2
θs

2
φc

2
φ + C12(s2

θs
4
φ + c2

θs
2
φ + s2

θc
4
φ + c2

θc
2
φ)

C ′24 = (C11 − C12 − 2C44)(c3
φsθsφ − s3

φsθcφ)

C ′25 = (2C11 − 4C44)s2
φcθc

2
φsθ + C12(s4

φcθsθ − s4
φsθcθ + c4

φcθsθ − c4
φsθcθ)

C ′26 = (C11 − C12 − 2C44)(c3
φcθsφ − s3

φcθcφ)

C ′34 = (C11 − C12 − 2C44)(s3
θs

3
φcφ − s3

θc
3
φsφ)

C ′35 = C11(s3
θc

4
φcθ+s

3
θs

4
φcθ−c3

θsθ)+(C12+2C44)(2s3
θc

2
φs

2
φcθ−s3

θc
2
φcθ−s3

θs
2
φcθ+c

3
θsθc

2
φ+c3

θsθs
2
φ)

C ′36 = (C11 − C12 − 2C44)(s2
θs

3
φcθcφ − s2

θc
3
φcθsφ)

C ′45 ≡ C ′36 = (C11 − C12 − 2C44)(s2
θs

3
φcθcφ − s2

θc
3
φcθsφ)

C ′46 = 2(C11 − C12)s2
φcθc

2
φsφ − C44(2s2

φc
2
φcθ − s4

φcθsθ + s2
φsθcθ − c4

φsθcθ + c2
φsθcθ)

C ′56 = (C11 − C12 − 2C44)(c2
θs

3
φsθcφ − c2

θc
3
φsθsφ)

By substituting the necessary angles we obtain the elastic stiffness components for (110)

and (111) orientations in the following form:

C
(110)
11 = C11

C
(110)
22 = C

(110)
33 =

C11 + C12

2
+ C44

C
(110)
44 =

C11 − C12

2

C
(110)
55 = C

(110)
66 = C44
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C
(110)
12 = C

(110)
13 = C12

C
(110)
23 =

C11 + C12

2
− C44

C
(111)
11 = C

(111)
22 =

C11 + C12

2
+ C44

C
(111)
33 =

C11 + 2C12 + 4C44

3

C
(111)
44 = C

(111)
55 =

C11 − C12 + C44

3

C
(111)
66 =

C11 − C12 + 4C44

6

C
(111)
12 =

C11 + 5C12 − 2C44

6

C
(111)
13 = C

(111)
23 =

C11 + 2C12 − 2C44

3

C
(111)
15 =

−C11 + C12 + 2C44√
18

C
(111)
25 = C

(111)
46 =

C11 − C12 − 2C44√
18

[Note: the terms which are not listed above are zero (for these two orientations only!)]

To obtain explicit form of ε′, three useful cases are discussed in details, those are ((110)

and (111) orientations only):

a: The lattice-mismatched strain:

ε′xx = ε′yy =
a0 − a
a

= ε‖ (4.70)

where a0 and a are the lattice constants of the substrate and the well layer material, ε‖

is in-plane fractional lattice mismatch6. The terms τ ′xy = τ ′yz = τ ′zx = 0 which leads to ε

off-diagonal terms to zero. There should be no stress in the z′-direction:

0 = τ ′zz = C ′13ε
′
xx + C ′23ε

′
xx + C ′33ε

′
zz

ε′zz = −C
′
13 + C ′23

C ′33

ε′xx

6The notation ε‖ is used for in-plane fractional lattice mismatch by some authors [68].
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By substituting the explicit form for (110) and (111) orientations:

ε(110)
zz = −3C12 + C11 − 2C44

C11 + C12 + 2C44

ε′xx

ε(111)
zz = −2

C11 + 2C12 − 2C44

C11 + 2C12 + 4C44

ε′xx

b: A cubic crystal layer under an external biaxial in-plane stress τ ′xx = τ ′yy = T and τ ′zz =

0. The system of equations leads to the following for both (110) and (111) orientations:

ε′yz = ε′zx = ε′xy = 0

The leftover system with three unknowns:
T = C ′11ε

′
xx + C ′12ε

′
yy + C ′13ε

′
zz

T = C ′12ε
′
xx + C ′22ε

′
yy + C ′23ε

′
zz

0 = C ′13ε
′
xx + C ′23ε

′
yy + C ′33ε

′
zz

By elementary manipulations the ε′ terms are obtained:

ε′xx =
C ′13C

′
23 − C ′223 + C ′22C

′
33 − C ′12C

′
33

C ′11C
′
22C

′
33 − C ′11C

′2
23 − C ′22C

′2
13 − C ′212C

′
33 + 2C ′23C

′
13C

′
12

T

ε′yy =
C ′13C

′
23 − C ′213 + C ′11C

′
33 − C ′12C

′
33

C ′11C
′
22C

′
33 − C ′11C

′2
23 − C ′22C

′2
13 − C ′212C

′
33 + 2C ′23C

′
13C

′
12

T

ε′zz =
C ′12C

′
23 − C ′11C

′
23 − C ′13C

′
22 + C ′12C

′
13

C ′11C
′
22C

′
33 − C ′11C

′2
23 − C ′22C

′2
13 − C ′212C

′
33 + 2C ′23C

′
13C

′
12

T

For (110) and (111) oriented substrates the above terms are converted to:

ε(110)
xx =

C11

C2
11 + C11C12 − 2C2

12

T

ε(110)
yy =

1

4

C2
11 + C11C12 + 2C11C44 − 4C12C44 − 2C2

12

C44(C2
11 + C11C12 − 2C2

12)
T

ε(110)
zz = −1

4

C2
11 + C11C12 − 2C11C44 + 4C12C44 − 2C2

12

C44(C2
11 + C11C12 − 2C2

12)
T

ε(111)
xx = ε(111)

yy =
1

6

C11 + 2C12 + 4C44

C44(C11 + 2C12)
T
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ε(111)
zz = −1

3

C11 + 2C12 − 2C44

C44(C11 + 2C12)
T

c: A cubic crystal layer under an external uniaxial stress along growth direction τ ′zz = T

and τ ′xx = τ ′yy = 0. The system of equations leads to the following, for both (110) and

(111) orientations:

ε′yz = ε′zx = ε′xy = 0

The leftover system with three unknowns:
0 = C ′11ε

′
xx + C ′12ε

′
yy + C ′13ε

′
zz

0 = C ′12ε
′
xx + C ′22ε

′
yy + C ′23ε

′
zz

T = C ′13ε
′
xx + C ′23ε

′
yy + C ′33ε

′
zz

By elementary manipulations the ε′ terms are obtained:

ε′xx =
C ′12C

′
23 − C ′13C

′
22

C ′11C
′
22C

′
33 − C ′11C

′2
23 − C ′22C

′2
13 − C ′212C

′
33 + 2C ′23C

′
13C

′
12

T

ε′yy =
C ′12C

′
13 − C ′11C

′
23

C ′11C
′
22C

′
33 − C ′11C

′2
23 − C ′22C

′2
13 − C ′212C

′
33 + 2C ′23C

′
13C

′
12

T

ε′zz =
C ′11C

′
22 − C ′212

C ′11C
′
22C

′
33 − C ′11C

′2
23 − C ′22C

′2
13 − C ′212C

′
33 + 2C ′23C

′
13C

′
12

T

For (110) and (111) oriented substrates the above terms are converted to:

ε(110)
xx = − C12

C2
11 + C11C12 − 2C2

12

T

ε(110)
yy = −1

4

C2
11 + C11C12 − 2C11C44 − 2C2

12

C44(C2
11 + C11C12 − 2C2

12)
T

ε(110)
zz =

1

4

C2
11 + C11C12 + 2C11C44 − 2C2

12

C44(C2
11 + C11C12 − 2C2

12)
T

ε(111)
xx = ε(111)

yy = −1

6

C11 + 2C12 − 2C44

C44(C11 + 2C12)
T

ε(111)
zz =

1

3

C11 + 2C12 + C44

C44(C11 + 2C12)
T
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4.7 Rotation of Luttinger-Kohn’s Hamiltonian for hole

states using rotation matrix (6 × 6) for wurtzite

crystal

4.7.1 Introduction

The method of rotating hexagonal Hamiltonian is similar to the one discussed is section 4.2

with small differences, which are going to be discussed in this section.

Figure 4.4: The Cartesian coordinate system in wurtzite primitive cell.

The first and major difference is that the axes of Cartesian coordinate system (x, y, z)

do not coincide with the crystallographic axes of hexagon (a1, a2, a3, c), and the con-

venient way to orient the crystal and coordinate system is the one that is shown on

Fig. 4.4 [32] [36], due to the fact that the rotation is performed about y/a2 and z/c axes.

The coordinate system is rotated by using the same transformation as for cubic systems.

The growth direction is assumed along c/z-axis.
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4.7.2 Basis functions

We consider 6×6 Luttinger-Kohn’s Hamiltonian for wurtzite crystal [29]. Basis functions

for arbitrary growth direction are:

u′1 =
−1√

2
|(X ′ + iY ′) ↑′〉

u′2 =
1√
2
|(X ′ − iY ′) ↑′〉

u′3 = |Z ′ ↑′〉

u′4 =
1√
2
|(X ′ − iY ′) ↓′〉

u′5 =
−1√

2
|(X ′ + iY ′) ↓′〉

u′6 = |Z ′ ↓′〉

(4.71)

where the notation used is the same as in section 4.2.3. The explicit form of basis functions

after rotation is given in Appendix D.

4.7.3 Matrix elements for rotated Luttinger-Kohn Hamiltonian

LKH has the form which allows us to express total Hamiltonian in terms of four values

(by inspection of wurtzite LKH (3.91) it is found, that independent parameters are λ, Θ,

K and H) only [29] for (0001), i.e. θ = 0, φ = 0, orientation:

λ =
~2

2m0

[A1k
2
z + A2(k2

x + k2
y)]

Θ =
~2

2m0

[A3k
2
z + A4(k2

x + k2
y)]

K =
~2

2m0

A5(kx − iky)2

H =
~2

2m0

A6(kx − iky)kz

(4.72)
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The rotated matrix elements are obtained by Maple 16 program (code is provided in

Appendix B). The matrix elements below are written for two particular orientations7,

as the terms for other angles are too big and inconvenient to provide here (the same

orientations are used in ref. [32]):

θ =
π

2
, φ = 0

λ =
~2

2m0

[(A1 + A3)k2
1 + (A2 + A4)(k2

2 + k2
3) + A5(k2

2 − k2
3)]

Θ =
~2

2m0

[
−A3

k2
1

2
− A4

k2
2 + k2

3

2
+ A5

3(k2
2 − k2

3)

2

]
K =

~2

2m0

[
−A3

k2
1

2
− A4

k2
2 + k2

3

2
− A5

k2
2 − k2

3

2
+ i
√

2A6k1k2

]
H =

~2

2m0

(A6k1 + i
√

2A5k2)k3

(4.73)

θ =
π

4
, φ = 0

λ =
~2

2m0

[(
A1 +

A3

2

)(
k2

1

2
+
k2

3

2
− k1k3

)
+

(
A2 +

A4

2

)(
k2

1

2
+
k2

3

2
+ k1k3 + k2

2

)
+A5

(
k2

1

4
+
k2

3

4
+
k1k3

2
− k2

2

2

)]
Θ =

~2

2m0

[
A3

4

(
k2

1

2
+
k2

3

2
− k1k3

)
+
A4

4

(
k2

1

2
+
k2

3

2
+ k1k3 + k2

2

)
−3A5

4

(
k2

1

2
+
k2

3

2
+ k1k3 − k2

2

)
+

3
√

2A6

4
(k2

1 − k2
3)

]
K =

~2

2m0

[
−A3

4

(
k2

1

2
+
k2

3

2
− k1k3

)
− A4

4

(
k2

1

2
+
k2

3

2
+ k2

2 + k1k3

)
+

3A5

4

(
k2

1

2
+
k2

3

2
− k2

2 + k1k3 + ik1k2 + ik2k3

)
+

√
2A6

2

(
k2

1

2
+
k2

3

2
+ ik1k2 − ik2k3

)]
H =

~2

2m0

√
2

8
[A3(k2

1 + k2
3 − k1k3) + A4(k2

1 + k2
3 + 2k2

2 + 2k1k3)

+A5(k2
1 + k2

3 − 2k2
2 + 2k1k3 + i4k1k2 + i4k2k3) + i2

√
2A6(k2k3 − k1k2)

]
(4.74)

7The orientations are expressed in terms of angles due to the fact that conversion of angles into
Miller-Bravais indices depends on the lattice constants for each material.
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4.8 Strain effects on band structures for arbitrary

oriented wurtzite crystal

The strain effects on band structure for rotated wurtzite crystals are introduced by the

same method as for cubic. We obtain rotated elastic stiffness tensor C ′ by the eq. (4.67).

The general form of rotated elastic stiffness tensor C ′ (symmetric C ′ij = C ′ji) for wurtzite

in Voigt notation is the following:

C ′ =



C ′11 C ′12 C ′13 0 C ′15 0

C ′21 C ′22 C ′23 0 C ′25 0

C ′31 C ′32 C ′33 0 C ′35 0

0 0 0 C ′44 0 C ′46

C ′51 C ′52 C ′53 0 C ′55 0

0 0 0 C ′64 0 C ′66


(4.75)

where the elastic stiffness tensor components for arbitrary oriented substrate have the

following form (obtained by similar to eq. (4.69) procedure):

C ′11 = C11c
4
θ + C33(s2

θ − c2
θ + c4

θ) + (2C13 + 4C44)(c2
θ − c4

θ)

C ′22 = C11

C ′33 = C11(s2
θ − c2

θ + c4
θ) + C33c

4
θ + (2C13 + 4C44)(c2

θ − c4
θ)

C ′44 = (C11 − C12)
s2
θ

2
+ C44c

2
θ

C ′55 = (C11 + C33 − 2C13 − 4C44)(c2
θ − c4

θ) + C44

C ′66 = C44s
2
θ + (C11 − C12)

c2
θ

2

C ′12 = C12c
2
θ + C13s

2
θ

C ′13 = (C11 + C33 − 4C44)(c2
θ − c4

θ) + C13(s2
θ − c2

θ + 2c4
θ)

C ′15 =
[
C11c

2
θ − C33s

2
θ + (C13 + 2C44)(s2

θ − c2
θ)
]
sθcθ

C ′23 = C12s
2
θ + C13c

2
θ

C ′25 = (C12 − C13)cθsθ
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C ′35 =
[
C11s

2
θ − C33c

2
θ + (C13 + 2C44)(c2

θ − s2
θ)
]
sθcθ

C ′46 = (C11 − C12 − 2C44)
cθsθ

2

It is obvious that elastic stiffness is dependent on angle θ only. For particular orientations

the expression for elastic stiffness tensor components may be simplified by inserting the

proper angle:

C
θ=π/2
11 = C33

C
θ=π/2
22 = C11

C
θ=π/2
33 = C11

C
θ=π/2
44 =

C11 − C12

2

C
θ=π/2
55 = C44

C
θ=π/2
66 = C44

C
θ=π/2
12 = C13

C
θ=π/2
13 = C13

C
θ=π/2
23 = C12

C
θ=π/4
11 =

C11 + C33 + 2C13 + 4C44

4

C
θ=π/4
22 = C11

C
θ=π/4
33 =

C11 + C33 + 2C13 + 4C44

4

C
θ=π/4
44 =

C11 − C12 + 2C44

4

C
θ=π/4
55 =

C11 + C33 − 2C13

4

C
θ=π/4
66 =

C11 − C12 + 2C44

4

C
θ=π/4
12 =

C12 + C13

2

C
θ=π/4
13 =

C11 + C33 + 2C13 − 4C44

4

C
θ=π/4
15 =

C11 + C33

4
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C
θ=π/4
23 =

C12 + C13

2

C
θ=π/4
25 =

C12 − C13

2

C
θ=π/4
35 =

C11 − C33

4

C
θ=π/4
46 =

C11 − C12 − 2C44

4

We obtain matrix elements for Bir and Bikus strain Hamiltonian by using the correspon-

dences (4.62) on matrix elements (4.73) and (4.74) which are allowed as we work in the

same coordinate system as for cubic. We replace Bir and Pikus parameters Ai with de-

formation potentials Di, i = 1, ..., 6. The explicit form of rotated Bir and Pikus strain

Hamiltonian terms:

θ =
π

2
, φ = 0

λ = (D1 +D3)ε′xx + (D2 +D4)(ε′yy + ε′zz) +D5(ε′yy − ε′zz)

Θ = −D3
ε′xx
2
−D4

ε′yy + ε′zz
2

+D5

3(ε′yy − ε′zz)
2

K = −D3
ε′xx
2
−D4

ε′yy + ε′zz
2

−D5

ε′yy − ε′zz
2

+ i
√

2D6ε
′
xy

H = D6ε
′
xz + i

√
2D5ε

′
yz

(4.76)

θ =
π

4
, φ = 0
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λ =

(
D1 +

D3

2

)(
ε′xx
2

+
ε′zz
2
− ε′xz

)
+

(
D2 +

D4

2

)(
ε′xx
2

+
ε′zz
2

+ ε′xz + ε′yy

)
+D5

(
ε′xx
4

+
ε′zz
4

+
ε′xz
2
−
ε′yy
2

)
Θ =

D3

4

(
ε′xx
2

+
ε′zz
2
− ε′xz

)
+
D4

4

(
ε′xx
2

+
ε′zz
2

+ ε′xz + ε′yy

)
−3D5

4

(
ε′xx
2

+
ε′zz
2

+ ε′xz − ε′yy
)

+
3
√

2D6

4
(ε′xx − ε′zz)

K = −D3

4

(
ε′xx
2

+
ε′zz
2
− ε′xz

)
− D4

4

(
ε′xx
2

+
ε′zz
2

+ ε′yy + ε′xz

)
+

3D5

4

(
ε′xx
2

+
ε′zz
2
− ε′yy + ε′xz + iε′xy + iε′yz

)
+

√
2D6

2

(
ε′xx
2

+
ε′zz
2

+ iε′xy − iε′yz
)

H =

√
2

8

[
D3(ε′xx + ε′zz − ε′xz) +D4(ε′xx + ε′zz + 2ε′yy + 2ε′xz)

+D5(ε′xx + ε′zz − 2ε′yy + 2ε′xz + i4ε′xy + i4ε′yz) + i2
√

2D6(ε′yz − ε′xy)
]

(4.77)

where the rotated strain tensor ε components are obtained for three particular strain

situations:

a: Lattice-mismatched strain, using the same assumptions as for cubic:

ε′xx = ε′yy =
a0 − a
a

= ε‖ (4.78)

where a0 and a are the lattice constants of the substrate and the well layer material.

There should be no stress in the growth direction and there are no diagonal stresses, so

τ ′zz = τ ′xy = τ ′yz = τ ′zx = 0 which leads to the system of equations:


0 = C ′13ε

′
xx + C ′23ε

′
yy + C ′33ε

′
zz + 2C ′35ε

′
zx

0 = 2C ′44ε
′
yz + 2C ′46ε

′
xy

0 = C ′15ε
′
xx + C ′25ε

′
yy + C ′35ε

′
zz + 2C ′55ε

′
zx

0 = 2C ′46ε
′
yz + 2C ′66ε

′
xy

⇒


−ε‖(C ′13 + C ′23) = C ′33ε

′
zz + 2C ′35ε

′
zx

−C ′44ε
′
yz = C ′46ε

′
xy

−ε‖(C ′15 + C ′25) = C ′35ε
′
zz + 2C ′55ε

′
zx

−C ′46ε
′
yz = C ′66ε

′
xy

(4.79)

The solution is difficult to provide in general so the solution is provided for particular

cases:

εθ=π/2zz = −C12 + C13

C11

ε‖ (4.80)



Chapter 4. LKH for semiconductors on arbitrary-oriented substrates 91

εθ=π/2zx = εθ=π/2yz = εθ=π/2xy = 0 (4.81)

εθ=π/4zz =
(C11 − C33)2 − 4C55(C11 + C33 + 2C12 + 4C13 − 4C44) + 2(C11 − C33)(C12 − C13)

−(C11 − C33)2 + 4C55(C11 + C33 + 2C13 + 4C44)
ε‖

(4.82)

εθ=π/4zx =
2C33C12 + 4C44(C11 − C33 + C12 − C13 − 4C44)− 2C13(C11 − C12 + C13)

(C11 − C33)2 − 4C55(C11 + C33 + 2C13 + 4C44)
ε‖

(4.83)

εθ=π/4yz = εθ=π/4xy = 0 (4.84)

b: A hexagonal crystal under an external biaxial in-plane stress τ ′xx = τ ′yy = T and

τ ′zz = 0. The system of equations is expressed as:

T = C ′11ε
′
xx + C ′12ε

′
yy + C ′13ε

′
zz + 2C ′15ε

′
zx

T = C ′12ε
′
xx + C ′22ε

′
yy + C ′23ε

′
zz + 2C ′25ε

′
zx

0 = C ′13ε
′
xx + C ′23ε

′
yy + C ′33ε

′
zz + 2C ′35ε

′
zx

0 = 2C ′44ε
′
yz + 2C ′46ε

′
xy

0 = C ′15ε
′
xx + C ′25ε

′
yy + C ′35ε

′
zz + 2C ′55ε

′
zx

0 = 2C ′46ε
′
yz + 2C ′66ε

′
xy

(4.85)

Solving this system of equations for particular orientations we obtain:

εθ=π/2xx =
C11 + C12 − C13

C33(C11 + C12)− 2C2
13

T (4.86)

εθ=π/2yy =
C11C33 − C13(C11 − C12 + C13)

(C11 − C12)(C33(C11 + C12)− 2C2
13)
T (4.87)

εθ=π/2zz =
−C12C33 − C13(C11 − C12 − C13)

(C11 − C12)(C33(C11 + C12)− 2C2
13)
T (4.88)

εθ=π/2zx = εθ=π/2yz = εθ=π/2xy = 0 (4.89)

εθ=π/4xx =
1

4C44

C44(C11(C33 + C11 − 4C13) + C12(2C33 − C12 + 4C13) + C2
13)

(C11 − C12)(C33(C11 + C12)− 2C2
13)

+C11(C11C33 − 2C2
13) + C12(2C2

13 − C12C33)
T (4.90)

εθ=π/4yy =
1

2

C12(C13 − C33)− C11(C13 − 2C33)− C2
13

(C11 − C12)(C33(C11 + C12)− 2C2
13)

T (4.91)

εθ=π/4zz =
1

4C44

C44(C11(C33 + C11 − 4C13) + C12(2C33 − C12 + 4C13) + C2
13)

(C11 − C12)(C33(C11 + C12)− 2C2
13)
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−C11(C11C33 − 2C2
13)− C12(2C2

13 − C12C33)
T (4.92)

εθ=π/4zx =
1

2

C11C33 − C2
11 + C2

12 + C2
13 + 2(C11C13 − C12C13 − C12C33)

(C11 − C12)(C33(C11 + C12)− 2C2
13)

T (4.93)

εθ=π/4yz = εθ=π/4xy = 0 (4.94)

c: A hexagonal crystal under an external uniaxial stress along growth direction τ ′xx =

τ ′yy = 0 and τ ′zz = T . The system of equations is expressed as:

0 = C ′11ε
′
xx + C ′12ε

′
yy + C ′13ε

′
zz + 2C ′15ε

′
zx

0 = C ′12ε
′
xx + C ′22ε

′
yy + C ′23ε

′
zz + 2C ′25ε

′
zx

T = C ′13ε
′
xx + C ′23ε

′
yy + C ′33ε

′
zz + 2C ′35ε

′
zx

0 = 2C ′44ε
′
yz + 2C ′46ε

′
xy

0 = C ′15ε
′
xx + C ′25ε

′
yy + C ′35ε

′
zz + 2C ′55ε

′
zx

0 = 2C ′46ε
′
yz + 2C ′66ε

′
xy

(4.95)

Solving this system of equation for particular orientations we obtain:

εθ=π/2xx =
−C13

C33(C11 + C12)− 2C2
13

T (4.96)

εθ=π/2yy =
C2

13 − C12C33

(C11 − C12)(C33(C11 + C12)− 2C2
13)
T (4.97)

εθ=π/2zz =
C11C33 − C2

13

(C11 − C12)(C33(C11 + C12)− 2C2
13)
T (4.98)

εθ=π/2zx = εθ=π/2yz = εθ=π/2xy = 0 (4.99)

εθ=π/4xx =
1

4C44

C44(C11(C33 + C11 − 2C13) + 2C12C13 − C2
12 − C2

13)

(C11 − C12)(C33(C11 + C12)− 2C2
13)

−C11(C11C33 − 2C2
13)− C12(2C2

13 − C12C33)
T (4.100)

εθ=π/4yy =
1

2

C12(C13 − C33)− C11C13 + C2
13

(C11 − C12)(C33(C11 + C12)− 2C2
13)
T (4.101)

εθ=π/4zz =
1

4C44

C44(C11(C33 + C11 − 2C13) + 2C12C13 − C2
12 − C2

13)

(C11 − C12)(C33(C11 + C12)− 2C2
13)

+C11(C11C33 − 2C2
13) + C12(2C2

13 − C12C33)
T (4.102)
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εθ=π/4zx =
1

2

C11C33 − C2
11 + C2

12 − C2
13

(C11 − C12)(C33(C11 + C12)− 2C2
13)
T (4.103)

εθ=π/4yz = εθ=π/4xy = 0 (4.104)



Chapter 5

Numerical method for band

structure calculations

In this chapter we describe one of the most commonly used methods for numerical calcu-

lations of band structure of QW. The method is called Plane Wave Expansion or Fourier

Series solution of LKH. In general, a finite number of plane wave functions are used as a

basis set. A finite sum of plane waves approximates a true envelop function. Considered

QW of the length L. We solve Schrödinger equation with LKH in rectangular potential of

QW. QW has the form as shown on Fig. 5.1. LKH describes a number of types of coupled

particles. We start with a basis of plane waves for each subband envelope function, and

each envelope function will be a sum of a number of plane waves:

Fν(z) =
M∑

n=−M

fνne
iknz

where kn = 2πn/L and number of plane waves is 2M + 1. This is a truncated Fourier

series representation of the wave function. The other quantities can be represented also

as truncated Fourier series if they depended on z. The following quantities (Luttinger

parameters, potential, spin split-off energy, band-edge energies etc.) are approximated

the same way:

γζ(z) =
2M∑

l=−2M

γζle
iklz

94
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V (z) =
2M∑

l=−2M

vle
iklz

U(z) =
2M∑

l=−2M

ule
iklz

∆(z) =
2M∑

l=−2M

∆le
iklz

α(z) =
2M∑

l=−2M

αle
iklz

where kl = 2πl/L. Fourier series have been written in symmetric form to ensure that

Hamiltonian is Hermitian. We insert Fourier series into the LKH and look for the solution

of the eigenvalue problem:

H
∑
n

fνne
iknz = E

∑
n

fne
iknz (5.1)

Figure 5.1: QW profiles for the conduction and valence bands of a GaAs/AlGaAs
system.
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5.1 Plane wave expansion method for 4× 4 Hamilto-

nian

The example calculation of the eigenvalue problem above is implemented in Matlab and

divided into sections corresponding to the subroutines of the program.

5.1.1 Reading initial data

As a starting point we define the following numerical parameters:

• Lw - length of the QW region measured in angstroms;

• Lb - length of barrier region;

• Npw - number of plane waves used for Plane wave expansion;

• x, y - parameters for material composition;

• kpt - number of points discretizing wave vector ~k;

• kran - range of wave vector ~k;

• T - uniaxial external stress (optional).

5.1.2 Material parameters

Using this initial data, the parameters of material composition are defined using Vegard’s

interpolation formula [69], for example for Al1−xGaxAs/GaAs QW:

Egap = EGaAs
gap (1− x) + EAlAs

gap x− x(1− x)(1.31x− 0.127) (5.2)

Q = QGaAs(1− x) + QAlAsx (5.3)

where Egap is a band gap for corresponding material and Q represents the parameter

such as: γi - Luttinger parameters, me - effective mass, a - lattice constant, ac, av, b -

deformation potentials, etc. Band edges are defined depending on the region:
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- For barrier regions the conduction band edge set as the size of bandgap, heavy and light

hole band edges set as zero for programming convenience, strain terms do not exist in

barrier region.

- For well region heavy and light hole band edges defined by using model-solid the-

ory [70][71][72][73]. The idea is to set up the absolute reference energy level. All energies

can be put on an absolute energy scale and band lineups are derived. The estimation of

band offsets is based on the average energy Ev,av which is the average of three uppermost

valence bands (heavy, light holes and spin split-off bands). For various materials the Ev,av

already calculated [73] and tabulated in Table E.1. The position of valence band edge

then is obtained by:

Ev = Ev,av +
∆

3
(5.4)

but as we define barrier region energy as zero it should be subtracted from the above

energy:

Ev = Ev,av +
∆

3
−
(
Esub
v,av +

∆sub

3

)
(5.5)

where superscript “sub” refers to “substrate”. The conduction band edge is calculated

by adding the band-gap energy to the valence band:

Ec = Ev + Eg (5.6)

If the strain exists (lattice constants of well and substrate materials do not match or

external pressure applied) the additional terms, shifting band edges, are introduced and

the each band edge energy is obtained by:

Ec = E0
v + Eg + Pc (5.7)

EHH = E0
v − Pε −Qε (5.8)

ELH = E0
v − Pε −

∆

2
+
Qε

2
+

1

2

√
∆2 + 2∆Qε + 9Q2

ε (5.9)

where Pc = acTr(ε), Pε and Qε are defined in the strain discussion sections.
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5.1.3 Fourier transform and matrix of Fourier coefficients

Using the geometry of the system Lw and Lb from initial data one dimensional spatial grid

is constructed. The variable of the grid is labeled as z. All material parameters including

strain related terms are calculated for each plane wave using Fourier transformation:

Qij =
1√
L

L∫
0

Qe−iKmzdz (5.10)

where i, j = −Npw, ..., Npw - plane wave index, Q - is the vector of values of the material

parameters and matrix elements of LKH, Km = 2π(i − j)/L, L - the length of the

structure, the integral is normalized with 1√
L

factor. For 4× 4 Hamiltonian the matrix of

Fourier coefficients is created with size 4(2Npw+1). The following parameters corresponds

to matrix elements in LKH (each of them creates a matrix of the size (2Npw+1)×(2Npw+

1)):

fQij = Q(kij)

fhhij = P (kij) +Q(kij)

f lhij = P (kij)−Q(kij)

fRij = R(kij)

fSij = S(kij)

(5.11)

Each of the above parameters evaluated by cyclic operation, for instance, we show fQ for

2 plane waves Npw = 2 it will have the size 5× 5:

fQ11 =
~2

2m0

(
k2
x + k2

y − 2

(
2π

L

)2

· 4

)
· 1√

L

L∫
0

γ2e
−i 2π(−2+2)

L dz

fQ12 =
~2

2m0

(
k2
x + k2

y − 2

(
2π

L

)2

· 2

)
· 1√

L

L∫
0

γ2e
−i 2π(−2+1)

L dz

...

fQ54 =
~2

2m0

(
k2
x + k2

y − 2

(
2π

L

)2

· 2

)
· 1√

L

L∫
0

γ2e
−i 2π(2−1)

L dz

fQ55 =
~2

2m0

(
k2
x + k2

y − 2

(
2π

L

)2

· 4

)
· 1√

L

L∫
0

γ2e
−i 2π(2−2)

L dz

(5.12)
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so the matrix fQ will have the following form:

fQ =



fQ11 fQ12 fQ13 fQ14 fQ15

fQ21 fQ22 fQ23 fQ24 fQ25

fQ31 fQ32 fQ33 fQ34 fQ35

fQ41 fQ42 fQ43 fQ44 fQ45

fQ51 fQ52 fQ53 fQ54 fQ55


(5.13)

The resulting matrices are constructing the matrix of Fourier coefficients which has similar

to LKH matrix form:

HLK =


fhh −fS fR 0

−fS+ f lh 0 fR

fR+ 0 f lh fS

0 fR+ fS+ fhh

 (5.14)

Each element of the matrix is divided by e0

√
L normalization factor where e0 is elementary

charge. The program then evaluates eigenvalues and eigenvectors for the HLK matrix by

using the appropriate in Matlab routine. The eigenvalues are sorted to provide the array

of envelope functions for each band. The resulting vectors for each envelope functions

represent vectors of energy values with respect to wave vector. Explicit examples of band

structure for some materials are provided in the next chapter. Also the arrays for envelope

functions are used in matrix elements for optical transitions to evaluate overlap integrals.

5.2 Generalization plane wave expansion for 4 × 4

Hamiltonian to 6 - 14 band Hamiltonians

The addition of extra calculating parameters generalize the method to higher number of

bands.
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5.2.1 6× 6 Hamiltonian

For 6 band LKH the only additional material parameter - spin split-off band edge energy,

should be evaluated:

ESO = E0
v − Pε −

∆

2
+
Qε

2
− 1

2

√
∆2 + 2∆Qε + 9Q2

ε (5.15)

The matrix of Fourier coefficients (the size of 6(2Npw + 1)× 6(2Npw + 1)) with additional

split-off terms is expressed:

HLK =



fhh −fS fR 0 −fS/
√

2
√

2fR

−fS+ f lh 0 fR −
√

2fQ
√

3/2fS

fR+ 0 f lh fS
√

3/2fS+
√

2fQ

0 fR+ fS+ fhh −
√

2fR+ −fS+/
√

2

−fS+/
√

2 −
√

2fQ+
√

3/2fS −
√

2fR f so 0
√

2fR+
√

3/2fS+
√

2fQ+ −fS/
√

2 0 f so


(5.16)

where
fQij = Q(kij)

f soij = P (kij) + ∆(kij)
(5.17)

5.2.2 8× 8 Hamiltonian

8 band LKH has conduction band treated exactly so the modified Luttinger parame-

ters used (4.48). The additional material parameters (conduction band edge energy and

Kane’s parameter) for conduction band result in the following matrix:

HLK
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=



f cb 0
√

3fT −
√

2fU fT+ 0 fU −
√

2fT+

0 f cb 0 −fT −
√
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5.2.3 10× 10 Hamiltonian

For 10 bands, as it evaluates band structure for four compound material InxGa1−xAs1−yNy,

the interpolation formula for four compound material is used [74][66]:

Q = QGaAs(1− x)(1− y) + QInAsx(1− y) + QGaNy(1− x) + QGaNxy (5.19)

The material parameters for nitrogen band are estimated by:

EN = 1.65(1− x) + 1.44x− 0.38x(1− x)

VNC = 2.7(1− x) + 2x− 3.5x(1− x)
(5.20)

or:
EN = 1.65 + 0.25x− 0.56x

VNC = 2.4(1− x) + 1.75x
(5.21)

depending on the In concentrations.

5.2.4 14× 14 Hamiltonian

For 14 band the interpolation formula is similar to 10 band and as some parameter of

bismuth are unknown they are estimated by plots available in ref. [48] [75](band edges

positions depends on Bi composition), [47](bandgap).
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Band structure calculations results

In this chapter our band structures results are shown and compared with published ones.

The parameters used in calculations are listed in the tables E.1 for Zincblende and E.2

for Wurtzite semiconductors (parameters in published papers may vary).

6.1 Band structures for zincblende semiconductors

6.1.1 4× 4 Hamiltonian

The calculations for 4×4 Hamiltonian are compared with the paper published by Xia [44](the

original Xia’s results are presented here also for convenience). The band structure were

calculated for unstrained and uniaxially strained GaAs/Al0.2Ga0.8As QW with barrier

LB = 50Å and well LW = 100Å. The directions and orientations as well as stress are

listed on the corresponding figures. Figures 6.1 and 6.3 represent the original Xia’s re-

sults and figures 6.2 and 6.4 represent our work results. For convenience our results are

presented with the same scales and the directions.

6.1.2 6× 6 Hamiltonian

The calculations for 6 × 6 Hamiltonian are compared to the paper published by Seo et

al. [45](the original Seo’s results are presented here also for convenience). The band

102
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Figure 6.1: Hole subband for unstrained superlattices grown on (11N)-oriented sub-
strates with (a) N = ∞, (b) N = 0, (c) N = 1. [44]

structure were determined for unstrained and uniaxially strained In0.53Ga0.47As/InP

QW with barrier LB = 50Å1 and well LW = 60Å. The directions and orientations as well

as stress are listed on the corresponding figures. Figure 6.5 and 6.7 represent the original

Seo’s results and figure 6.6 and 6.8 represent this work results. We present our results in

the same scales and the directions as the compared paper for convenience.

1In the original Seo [45] paper many of the parameters are not listed, so for comparing there were
chosen arbitrary values.
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(a) (b)

(c)

Figure 6.2: Hole subband for unstrained superlattices grown on (11N)-oriented sub-
strates with (a) N = ∞, (b) N = 0, (c) N = 1.[this work]

6.1.3 8× 8 Hamiltonian

It is difficult to compare band structures for non-(001) oriented QWs, calculated by 8×8

Hamiltonian, due to the fact that the sample results are not presented in the literature, but

the standalone results are calculated for AlxGa1−xAs/InxGa1−xAs with the compositions
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Figure 6.3: Hole subband for (111)-oriented superlattices under the uniaxial stresses
T = 2.0 and 2.5 kbar. [44]

(a) (b)

Figure 6.4: Hole subband for (111)-oriented superlattices under the uniaxial stresses
(a) T = 2.0 and (b) 2.5 kbar.[this work]

of x = 0.5 for both compounds. The size of well and barriers are chosen to be LW = 100Å

and LB = 50Å. The final result is shown on Figure 6.9.
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Figure 6.5: Hole subband for unstrained superlattices grown on (11N)-oriented sub-
strates with (a) N = ∞, (b) N = 0, (c) N = 1. [45]

(a) (b) (c)

Figure 6.6: Hole subband for unstrained superlattices grown on (11N)-oriented sub-
strates with (a) N = ∞, (b) N = 0, (c) N = 1.[this work]

6.1.4 10× 10 Hamiltonian

The calculations for 10×10 Hamiltonian are compared to the paper published by Fan [46](the

original Fan’s results presented here also for convenience). The band structure calculated

for unstrained and uniaxially strained In0.36Ga0.64As0.973N0.027/GaAs QW with barrier

LB = 100Å and well LW = 70Å. The directions and orientations are listed on the

corresponding figures. Figure 6.10 represents the original Fan’s results and figure 6.11
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Figure 6.7: Hole subband for (111)-oriented superlattices under the uniaxial stresses
(a) T = 1.0 · 109Pa and (b) T = 2.0 · 109Pa. [45]

(a) (b)

Figure 6.8: Hole subband for (111)-oriented superlattices under the uniaxial stresses
(a) T = 1.0 · 109Pa and (b) T = 2.0 · 109Pa.[this work]
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Figure 6.9: Band structure for unstrained AlGaAs/InGaAs QWs grown on (11N)-
oriented substrates with (a) N = ∞, (b) N = 0, (c) N = 1.

represents this work results. This work results made in the same directions for conve-

nience. We made another figure 6.12 with additional orientation for the same QW.

6.1.5 14× 14 Hamiltonian

There is no reference to compare the band structure calculated by 14 × 14 Hamiltonian

so the results are presented standalone. The materials are used GaAsBi/GaAs with 0.05

composition of Bi. The size of well and barriers are chosen to be LW = 100Å and

LB = 50Å. The final result shown on Figure 6.13.
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Figure 6.10: Electron and hole energy dispersion curves of the unstrained (110)-,
(111)-, (113), and (001)-oriented QWs. [46]
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Figure 6.11: Band structure for unstrained InGaAsN/GaAs QWs grown on (a) (110)-,
(b) (111)-, (c) (113), and (d) (001)-oriented QWs.[this work]
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Figure 6.12: Band structure for unstrained InGaAsN/GaAs QWs grown on (a) (001)-,
(b) (110)-, (c) (111), (d) (112), and (e) (113)-oriented QWs.[this work]
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Figure 6.13: Band structure for unstrained GaAsBi/GaAs QWs grown on (11N)-
oriented substrates with (a) N = ∞, (b) N = 0, (c) N = 1, (d) N = 2.



Chapter 7

Optical applications

7.1 Matrix elements in optical transitions

7.1.1 Wave functions

Matrix elements in optical transitions (or just optical) appear in the gain calculation.

Optical transition rates strongly depend on the matrix elements. The matrix element of

the momentum operator is evaluated between initial and final states. The states are given

as wave functions which are the product of the envelope function and the cell periodic

functions. Wave functions are expressed for each state in conduction band:

ΨCBσ

n~kt
(~r) =

ei
~kt·~ρ
√
A
f (CB)
n (z)uσCB(~r) (7.1)

and in valence band for split-off:

ΨSOσ

n~kt
(~r) =

ei
~kt·~ρ
√
A
f (SO)
n (z)uσSO(~r) (7.2)

and heavy/light hole (will be used below) subbands:

ΨHLσ

n~kt
(~r) =

ei
~kt·~ρ
√
A

∑
j=HHσ ,LHσ

f (j)
n (~kt, z)uj(~r) (7.3)

113
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where n - subband index, σ = ± - spin index, kt - transverse (xy-plane) wave vector,

which is forced to satisfy periodic boundary conditions over an area A, ~ρ - transverse (xy-

plane) position vector. Here the heavy and light holes go together as they are strongly

coupled near ~k = 0.

If the Bloch functions are written in the following way:

Ψn~k(~r) =
ei
~k·~r
√

Ω
un~k(~r) (7.4)

then the properties of the cell periodic functions are defined by the following rela-

tion [55](p. 129):

〈
Ψn~k

∣∣ Ψn′~k′

〉
=

1

Ω

∫
Ω

d~re−i(
~k−~k′)·~ru∗

n~k
(~r)un′~k′(~r) = δnn′δ~k~k′ (7.5)

Here the functions are required to be orthonormal when integrated over the full crystal

volume Ω = LxLyLz (Li - is the length of the crystal in x, y and z directions). Eq.

(7.5) is forcing cell periodic functions un~k to satisfy a particular normalization. The cell

periodic function un~k is a periodic in the direct lattice vectors ~R, therefore the following

combination of u functions can be expanded as a Fourier series in vectors from the inverse

lattice ~G(more on that [76] chapter 5):

u∗
n~k

(~r)un′~k′(~r) =
∑
~G

ei
~G·~rBn~k,n′~k′

~G
(7.6)

The cell periodic function has the same value in each real space unit cell with volume

vcell. The expansion coefficient Bn~k,n′~k′

~G
is obtained using the generalized Fourier inversion

relation:

Bn~k,n′~k′

~G
=

1

vcell

∫
vcell

d~re−i
~G·~ru∗

n~k
(~r)un′~k′(~r) (7.7)

Substituting (7.6) into (7.5) gives:

1

Ω

∑
~G

Bn~k,n′~k′

~G

∫
Ω

d~re−i(
~k−~k′− ~G)·~r =

∑
~G

Bn~k,n′~k′

~G
δ~k−~k′, ~G = δnn′δ~k~k′ (7.8)

From here it is obvious that Kronecker delta δ~k−~k′, ~G is non zero only if ~k − ~k′ = ~G, but

both ~k values are restricted to the first Brillouin zone, while ~G is non zero outside the
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zone1, so the condition ~k − ~k′ = ~G satisfied when ~G = 0 which leads to ~k = ~k′, and the

last equivalence reduces to:

Bn~k,n′~k′

0 δ~k~k′ = δnn′δ~k~k′ (7.9)

The equation turns to zero when ~k vectors are not equal, but for ~k = ~k′ one has:

δnn′ = Bn~k,n′~k
0 =

1

vcell

∫
vcell

d~ru∗
n~k

(~r)un′~k(~r) (7.10)

which is the normalization condition for cell periodic functions. So cell periodic functions

un~k are orthogonal if they belongs to the same ~k and to different bands.

7.1.2 Optical momentum matrix element

Optical momentum matrix elements are directly involved in optical gain calculations

and it is a very important parameter of control optical gain in QW (apart from carrier

concentration etc.). Consider two single band states:

Ψ1(~r) = F (1)
α (~r)uα(~r) (7.11)

Ψ2(~r) = F
(2)
β (~r)uβ(~r) (7.12)

where Greek letters indicates bands which may be equal or different, and Fi (i = α, β)

are the envelope functions, defined in general form as:

Fi(~r) =
∑
k∈BZ

ei
~k·~r
√

Ω
ai(~k) (7.13)

where BZ means first Brillouin zone, Ω is the crystal volume, ai(~k) are the solutions

to effective mass equation written in momentum space. The momentum matrix element

between these two states may be written as (using product rule):

〈Ψ1| ~p |Ψ2〉 =
〈
F (1)
α (~r)uα(~r)

∣∣ ~p ∣∣∣F (2)
β (~r)uβ(~r)

〉
=
〈
F (1)
α (~r)

∣∣ F (2)
β (~r)

〉
· 〈uα(~r)| ~p |uβ(~r)〉+

〈
F (1)
α (~r)

∣∣ ~p ∣∣∣F (2)
β (~r)

〉
· 〈uα(~r)| uβ(~r)〉

1By definition first Brillouin zone is the “volume” in inverse lattice space constructed by faces which
are located on the equal distance from the particular inverse lattice site to the adjacent sites.
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=

∫
Ω

d~rF (1)∗
α (~r)F

(2)
β (~r)[u∗α(~r)~puβ(~r)] +

∫
Ω

d~r
[
F (1)∗
α (~r)~pF

(2)
β (~r)

]
u∗α(~r)uβ(~r) (7.14)

where ~p = ~
i
∂
∂~r

. Here both cell periodic terms are periodic in the direct lattice vector ~R,

so they both can be expanded as a Fourier series in vectors of inverse lattice ~G as in Eq.

(7.6):

u∗α(~r)~puβ(~r) =
∑
~G

ei
~G·~rDαβ

~G
(7.15)

u∗α(~r)uβ(~r) =
∑
~G

ei
~G·~rBαβ

~G
(7.16)

where the expansion coefficients Dαβ
~G

and Bαβ
~G

are defined using generalized Fourier ex-

pansion formulas as:

Dαβ
~G

=
1

vcell

∫
vcell

d~re−i
~G·~ru∗α(~r)~puβ(~r) (7.17)

Bαβ
~G

=
1

vcell

∫
vcell

d~re−i
~G·~ru∗α(~r)uβ(~r) (7.18)

where vcell is the volume of real-space unit cell. The same expansions can be done for

F
(1)
α and F

(2)
β :

F (1)
α (~r) =

∑
~k∈BZ

ei
~k·~r
√

Ω
aα(~k) (7.19)

F
(2)
β (~r) =

∑
~k∈BZ

ei
~k·~r
√

Ω
bβ(~k) (7.20)

Now the (7.14) may be rewritten by inserting (7.15), (7.16), (7.19) and (7.20) into it (also

the replacement ~p = ~~k is made):

〈Ψ1| ~p |Ψ2〉 =

[∑
k∈BZ

a∗α(~k)bβ(~k)

]
× 1

vcell

∫
vcell

d~ru∗α(~r)~puβ(~r) (7.21)

+

[∑
k∈BZ

a∗α(~k)~~kbβ(~k)

]
× 1

vcell

∫
vcell

d~ru∗α(~r)uβ(~r)
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where the exponent term integrates to 1 due to the following relation (Parseval’s Theo-

rem2):∫
Ω

d~rF (1)∗
α (~r)F

(2)
β (~r) =

∑
~k~k′∈BZ

a∗α(~k)bβ(~k)× 1

Ω

∫
Ω

d~re−i(
~k−~k′)·~r =

∑
~k∈BZ

a∗α(~k)bβ(~k) (7.22)

where the integral of exponent gives a Kronecker delta δkk′ according to (7.5) which is

consistent with “vertical” transitions statement. The (7.22) leads to the normalizations

of the envelops (using eq. (7.19)):∫
Ω

d~r |Ψ(~r)|2 =
∑
jj′∈A

∑
~k~k′∈BZ

a∗j(
~k)aj′(~k

′)× 1

Ω

∫
Ω

d~re−i(
~k−~k′)·~ru∗j(

~k)uj′(~k
′) (7.23)

=
∑
j∈A

∑
~k∈BZ

∣∣∣aj(~k)
∣∣∣2 =

∑
j∈A

∫
Ω

d~r |Fj(~r)|2

From quantum mechanics it is known that the wave function represents probability dis-

tribution, thus the integral of |Ψ|2 over the entire space should be equal to 1, which leads

to normalization condition: ∑
j∈A

∫
Ω

d~r |Fj(~r)|2 = 1 (7.24)

where A is the “class A” states which are the states of interest used in Löwdin’s pertur-

bation method application. Cell periodic functions u both correspond to ~k = 0 so (7.10)

may be inserted into (7.21) and keeping in mind (7.22) gives:

〈Ψ1| ~p |Ψ2〉 =

∫
Ω

d~rF (1)∗
α (~r)~pF

(2)
β (~r)

 δαβ +

∫
Ω

d~rF (1)∗
α (~r)F

(2)
β (~r)

× 〈uα| ~p |uβ〉 (7.25)

where:
1

vcell

∫
vcell

d~ru∗α(~r)~puβ(~r) = 〈uα| ~p |uβ〉 (7.26)

In the equation (7.25) only one term is non zero. If α 6= β then the first term is zero. If

α = β then the second term is zero because matrix element of ~p between equal u functions

vanish.

2Parseval’s Theorem claims that Fourier transform is unitary, in other words the sum or integral of
the square of a function is equal to the sum or integral of the square of its transform.



Chapter 7. Optical applications 118

7.1.3 Application of the optical momentum matrix element

Consider matrix element between conduction and split-off subband using the definitions

of wave functions (7.1) and (7.2):〈
ΨSOσ

n~kt

∣∣∣∣~p∣∣∣∣ΨCBσ
′

n′~k′t

〉
=

1

A

∫
A

d~ρe−i(kt−k
′
t)·~ρ
∫
dzf (SO)∗

n (z)f
(CB)
n′ (z) ·

〈
uσSO

∣∣∣~p∣∣∣uσ′CB〉 (7.27)

The first integral evaluates to Kronecker delta δktk′t due to the ortonormality of the plane

waves over the area A, which restricts the system to transverse momentum conserving

transitions, ~p - transverse position vector. It means that transition occurs only if initial

and final ~kt vectors are equal to each other, in other words the transition may be called

“vertical” since it occur “vertically” in ~k-space. The second integral may be rewritten in

“bra-ket” notation: ∫
dzf (SO)∗

n (z)f
(CB)
n′ (z) ≡

〈
fSOn

∣∣fCBn′ 〉 (7.28)

Substitution of (7.28) and Kronecker delta back into (7.27) gives:〈
ΨSOσ

n~kt

∣∣∣∣~p∣∣∣∣ΨCBσ
′

n′~k′t

〉
= δktk′t

〈
fSOn

∣∣fCBn′ 〉 〈uσSO ∣∣∣~p ∣∣∣uσ′CB 〉 (7.29)

For heavy and light hole subband levels the same relation (transition between heavy/light

(HL) hole and conduction subband levels) may be obtained:〈
ΨHLσ

n~kt

∣∣∣∣~p∣∣∣∣ΨCBσ
′

n′~k′t

〉
= δktk′t

∑
j=HHσ ,LHσ

〈
f j
n~kt

∣∣fCBn′ 〉〈uj ∣∣∣~p ∣∣∣uσ′CB 〉 (7.30)

For the sum part the short notation may be introduced:

∑
j=HHσ ,LHσ

〈
f j
n~kt

∣∣fCBn′ 〉〈uj ∣∣∣~p ∣∣∣uσ′CB 〉 ≡ ~P σσ′

nn′ (
~kt) (7.31)

It is obvious that the optical matrix elements strongly dependent on the momentum

matrix elements 〈uj| ~p |uj′〉 between the zone-center cell-periodic, i.e. basis functions for

the conduction and valence subbands. These matrix elements contain a non-zero term

(introduced earlier in discussions of Kane’s model):

〈S| px |X〉 = i
m0

~
P0x̂ =

m0

~
Px 〈S| py |Y 〉 = i

m0

~
P0ŷ 〈S| pz |Z〉 = i

m0

~
P0ẑ (7.32)
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where x̂ represent a unit vector along x axis.

7.1.4 Expressions for matrix elements Mc−hh,lh,so

The more important is the squared absolute value of the matrix element 〈uj| ~p |uj′〉 as

it is involved directly in gain calculations. Usually ~k is chosen to be parallel with the

spin (along z axis), but since there is no preferred spin direction we must average over

the spin. As soon as the matrix element will be averaged over the solid angle for bulk

semiconductor and over the x-y plane for quantum wells, the ~k should be expressed in

general coordinates:

~k = k sin θ cosφx̂ + k sin θ sinφŷ + k cos θẑ (7.33)

Then the cell periodic functions uj (3.7) should also be expressed in arbitrary coordinates

in terms of spherical harmonics:

|S ′〉 = |S〉
|X ′〉 = |cos θ cosφX + cos θ sinφY − sin θZ〉
|Y ′〉 = |− sinφX + cosφY 〉
|Z ′〉 = |sin θ cosφX + sin θ sinφY + cos θZ〉

(7.34)

In order to perform the average, the matrix elements Mc−v (v = hh, lh, so) are necessary:

Mc−v = 〈uc| ~p |uv〉 = x̂

〈
uc

∣∣∣∣~i ∂∂x
∣∣∣∣uv〉+ ŷ

〈
uc

∣∣∣∣~i ∂∂y
∣∣∣∣uv〉+ ẑ

〈
uc

∣∣∣∣~i ∂∂z
∣∣∣∣uv〉 (7.35)

where Mc−v includes transitions with both spin orientations. The expressions for all

possible transitions are as follows (terms with opposite spins3 are zero):

Heavy holes:〈
iS ↑′

∣∣∣∣~p ∣∣∣∣32 , 3

2

〉′
= − 1√

2
[〈iS ↑′| px |X ↑′〉 (cos θ cosφ− i sinφ)

+ 〈iS ↑′| py |Y ↑′〉 (cos θ sinφ+ i cosφ)− 〈iS ↑′| pz |Z ↑′〉 sin θ]
3Spin terms ↑′ and ↓′ are not necessary to consider explicitly, so the spins are provided in implicit

form.
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= − Px√
2

[(cos θ cosφ− i sinφ) x̂ + (cos θ sinφ+ i cosφ) ŷ − sin θẑ] (7.36)〈
iS ↓′

∣∣∣∣~p ∣∣∣∣32 ,−3

2

〉′
=

1√
2

[〈iS ↓′| px |X ↓′〉 (cos θ cosφ+ i sinφ)

+ 〈iS ↓′| py |Y ↓′〉 (cos θ sinφ− i cosφ)− 〈iS ↓′| pz |Z ↓′〉 sin θ]

=
Px√

2
[(cos θ cosφ+ i sinφ) x̂ + (cos θ sinφ− i cosφ) ŷ − sin θẑ] (7.37)〈

iS ↓′
∣∣∣∣~p ∣∣∣∣32 , 3

2

〉′
= 0 (7.38)

〈
iS ↑′

∣∣∣∣~p ∣∣∣∣32 ,−3

2

〉′
= 0 (7.39)

Light holes: 〈
iS ↑′

∣∣∣∣~p ∣∣∣∣32 , 1

2

〉′
= Px

√
2

3
(sin θ cosφx̂ + sin θ sinφŷ + cos θẑ) (7.40)

〈
iS ↓′

∣∣∣∣~p ∣∣∣∣32 ,−1

2

〉′
= Px

√
2

3
(sin θ cosφx̂ + sin θ sinφŷ + cos θẑ) (7.41)

〈
iS ↓′

∣∣∣∣~p ∣∣∣∣32 , 1

2

〉′
= − Px√

6
[(cos θ cosφ− i sinφ) x̂ + (cos θ sinφ+ i cosφ) ŷ − sin θẑ]

(7.42)〈
iS ↑′

∣∣∣∣~p ∣∣∣∣32 ,−1

2

〉′
=
Px√

6
[(cos θ cosφ+ i sinφ) x̂ + (cos θ sinφ− i cosφ) ŷ − sin θẑ]

(7.43)

Spin-orbit split-off:〈
iS ↑′

∣∣∣∣~p ∣∣∣∣12 , 1

2

〉′
=
Px√

3
(sin θ cosφx̂ + sin θ sinφŷ + cos θẑ) (7.44)

〈
iS ↓′

∣∣∣∣~p ∣∣∣∣12 ,−1

2

〉′
= − Px√

3
(sin θ cosφx̂ + sin θ sinφŷ + cos θẑ) (7.45)

〈
iS ↓′

∣∣∣∣~p ∣∣∣∣12 , 1

2

〉′
=
Px√

3
[(cos θ cosφ− i sinφ) x̂ + (cos θ sinφ+ i cosφ) ŷ − sin θẑ]

(7.46)〈
iS ↑′

∣∣∣∣~p ∣∣∣∣12 ,−1

2

〉′
=
Px√

3
[(cos θ cosφ+ i sinφ) x̂ + (cos θ sinφ− i cosφ) ŷ − sin θẑ]

(7.47)
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7.1.5 Cell periodic functions part for bulk semiconductor

To be involved in gain calculations the above matrix elements should be averaged over the

spin as there is no way to determine the spin of particular state. For bulk semiconductor

the average over spin is performed with respect to solid angle dΩ which in spherical

coordinates includes the Jacobian dΩ = dxdydz = sin θdθdφ4. For example, for TE

polarization (where ê = x̂), due to transition from the conduction band |iS〉 to heavy

hole bands |u′1〉 and |u′4〉 the average over the spin (spin direction defined by angles) is

performed using the formula:

|x̂ ·Mc−hh|2 =

∣∣∣∣〈iS ↑′ ∣∣∣∣px ∣∣∣∣32 , 3

2

〉′∣∣∣∣2 +

∣∣∣∣〈iS ↑′ ∣∣∣∣px ∣∣∣∣32 ,−3

2

〉′∣∣∣∣2 (7.48)

where due to spin orientation (u1 and u4 have opposite spins) only one of the two tran-

sitions is non zero. The average over the solid angle is the following:

〈
|x̂ · 〈uc| ~p |uhh〉|2

〉
=

1

4π

π∫
θ=0

2π∫
φ=0

|x̂ ·Mc−hh|2 sin θdθdφ (7.49)

Consider squared absolute value first5:

|x̂ ·Mc−hh|2 = x̂·M∗
c−hh·x̂·Mc−hh =

[
− Px√

2
(cos θ cosφ+ i sinφ)

]
·
[
− Px√

2
(cos θ cosφ− i sinφ)

]

=
P 2
x

2

(
cos2 θ cos2 φ− i cos θ cosφ sinφ+ i cos θ cosφ sinφ+ sin2 φ

)
(7.50)

=
P 2
x

2

(
cos2 θ cos2 φ+ sin2 φ

)
Substitute this back into (7.49) and obtain:

1

4π

π∫
0

sin θdθ

2π∫
0

dφ(cos2 θ cos2 φ+ sin2 φ)
P 2
x

2
(7.51)

4By definition of spherical coordinates dxdydz = r2 sin θdrdθdφ, but the expressions does not depend
on r so the integration over r is dropped.

5x̂ is a unit vector and multiplied by x̂ gives 1, multiplied by ŷ or ẑ gives 0.



Chapter 7. Optical applications 122

The goal is the evaluate definite double integral. Consider integral of φ first:

2π∫
0

(cos2 θ cos2 φ+ sin2 φ)dφ = cos2 θ

2π∫
0

cos2 φdφ+

2π∫
0

sin2 φdφ (7.52)

Integrals above easily obtained:

2π∫
0

cos2 φdφ =
1

2

2π∫
0

(1 + cos 2φ)dφ =
1

2

2π∫
0

(1 + cos 2φ)
d(2φ)

2
=

1

4
(2φ+ sin 2φ)

∣∣∣∣2π
0

= π

(7.53)
2π∫

0

sin2 φdφ =
1

2

2π∫
0

(1− cos 2φ)dφ =
1

2

2π∫
0

(1− cos 2φ)
d(2φ)

2
=

1

4
(2φ− sin 2φ)

∣∣∣∣2π
0

= π

(7.54)

Then (7.51) converts to:

1

4π

P 2
x

2

π∫
0

sin θ(cos2 θ + 1)πdθ =
P 2
x

8

π∫
0

sin θ cos2 θdθ +

π∫
0

sin θdθ (7.55)

where the integrals are (substitution u = cos θ ⇒ du = − sin θdθ):

π∫
0

sin θ cos2 θdθ = −
π∫

0

u2du = −u
3

3

∣∣∣∣π
0

= −cos3 θ

3

∣∣∣∣π
0

=
2

3
(7.56)

π∫
0

sin θdθ = − cos θ

∣∣∣∣π
0

= 2 (7.57)

Then the result for the matrix element is:

〈
|ê · 〈uc| ~p |uhh〉|2

〉
=
P 2
x

8

(
2 +

2

3

)
=
P 2
x

8

8

3
=

1

3
P 2
x ≡M2

b (7.58)

where Mb is the bulk Momentum matrix element. It is may be expressed trough the

Kane’s experimental energy parameter:

Ep =
2m0

~2
P 2

0 (7.59)

M2
b =

m0

6
Ep (7.60)



Chapter 7. Optical applications 123

The result is going to be the same for the other spin in conduction band as well as if

polarization would be ê = ŷ or ẑ the result will still be the same due to fact that bulk

crystal is isotropic (i.e. the direction is doesn’t matter). In gain calculations factor of 2

is added to include both spin orientations.

7.1.6 Cell periodic functions part for quantum well

For quantum wells the cavity direction is perpendicular to x-y plane, so the matrix

elements are polarization dependent and averaged over the angle φ (spin direction here

is defined by angle φ only), which lies on the x-y plane [77].

For TE polarization (ê = x̂):

〈
|x̂ ·Mc−hh|2

〉
=

1

2π

2π∫
0

|x̂ ·Mc−hh|2 dφ (7.61)

The integral of this form was already calculated in the previous section (7.50) and using

that result we can write down:

1

2π

2π∫
0

dφ(cos2 θ cos2 φ+ sin2 φ)
P 2
x

2
=
P 2
x

4
(1 + cos2 θ) =

3

4
(1 + cos2 θ)M2

b (7.62)

The same for light-holes:

〈
|x̂ ·Mc−lh|2

〉
=

1

2π

2π∫
0

|x̂ ·Mc−lh|2 dφ (7.63)

Here the light hole absolute value consists of two parts:

|x̂ ·Mc−lh|2 =

∣∣∣∣〈iS ↑′ ∣∣∣∣px ∣∣∣∣32 , 1

2

〉′∣∣∣∣2 +

∣∣∣∣〈iS ↑′ ∣∣∣∣px ∣∣∣∣32 ,−1

2

〉′∣∣∣∣2

=

[
Px

√
2

3
sin θ cosφ

]
·

[
Px

√
2

3
sin θ cosφ

]
(7.64)

+

[
Px√

6
(cos θ cosφ− i sinφ)

]
·
[
Px√

6
(cos θ cosφ+ i sinφ)

]
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=
2

3
P 2
x sin2 θ cos2 φ+

P 2
x

6

(
cos2 θ cos2 φ+ sin2 φ

)
=
P 2
x

6

[(
4 sin2 θ + cos2 θ

)
cos2 φ+ sin2 φ

]
The averaging integral of the above is:

1

2π

P 2
x

6

2π∫
0

[(
4 sin2 θ + cos2 θ

)
cos2 φ+ sin2 φ

]
dφ

=
1

2π

P 2
x

6

(4 sin2 θ + cos2 θ
) 2π∫

0

cos2 φdφ+

2π∫
0

sin2 φdφ

 =
1

2π

P 2
x

6

[(
4 sin2 θ + cos2 θ

)
π + π

]
=
P 2
x

12

(
4 sin2 θ + cos2 θ + 1

)
=
P 2
x

12

(
4− 4 cos2 θ + cos2 θ + 1

)
=
P 2
x

12
(5− 3 cos2 θ) (7.65)

Taking into account (7.58):

〈
|x̂ ·Mc−lh|2

〉
=

1

4
(5− 3 cos2 θ)M2

b (7.66)

For split-off the result is much more simpler than the light and heavy holes:

〈
|x̂ ·Mc−so|2

〉
=

1

2π

2π∫
0

|x̂ ·Mc−so|2 dφ (7.67)

Here the split-off absolute value also consists of two parts:

|x̂ ·Mc−so|2 =

∣∣∣∣〈iS ↑′ ∣∣∣∣px ∣∣∣∣12 , 1

2

〉′∣∣∣∣2 +

∣∣∣∣〈iS ↑′ ∣∣∣∣px ∣∣∣∣12 ,−1

2

〉′∣∣∣∣2

=

[
Px√

3
sin θ cosφ

]
·
[
Px√

3
sin θ cosφ

]
+

[
Px√

3
(cos θ cosφ− i sinφ)

]
·
[
Px√

3
(cos θ cosφ+ i sinφ)

]
(7.68)

=
P 2
x

3
sin2 θ cos2 φ+

P 2
x

3

(
cos2 θ cos2 φ+ sin2 φ

)
=
P 2
x

3

[(
sin2 θ + cos2 θ

)
cos2 φ+ sin2 φ

]
=
P 2
x

3

(
cos2 φ+ sin2 φ

)
=
P 2
x

3

The averaging integral of the above is:

1

2π

P 2
x

3

2π∫
0

dφ =
1

2π

P 2
x

3
· 2π =

P 2
x

3
= M2

b (7.69)
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For TM polarization (ê = ẑ):

〈
|ẑ ·Mc−hh|2

〉
=

1

2π

2π∫
0

|ẑ ·Mc−hh|2 dφ (7.70)

Using the same method as for TE:

|ẑ ·Mc−hh|2 = ẑ ·M∗
c−hh · ẑ ·Mc−hh =

[
Pz√

2
sin θ

]
·
[
Pz√

2
sin θ

]
=
P 2
z

2
sin2 θ (7.71)

The average of the above gives:

1

2π

P 2
z

2
sin2 θ

2π∫
0

dφ =
1

2π

P 2
z

2
sin2 θ · 2π =

P 2
z

2
sin2 θ =

3

2
sin2 θM2

b (7.72)

The same for light holes:

〈
|ẑ ·Mc−lh|2

〉
=

1

2π

2π∫
0

|ẑ ·Mc−lh|2 dφ (7.73)

Here the light hole absolute value also consists of two parts:

|ẑ ·Mc−lh|2 =

∣∣∣∣〈iS ↑′ ∣∣∣∣pz ∣∣∣∣32 , 1

2

〉′∣∣∣∣2 +

∣∣∣∣〈iS ↑′ ∣∣∣∣pz ∣∣∣∣32 ,−1

2

〉′∣∣∣∣2

=

[
Pz

√
2

3
cos θ

]
·

[
Pz

√
2

3
cos θ

]
+

[
Pz√

6
(− sin θ)

]
·
[
Pz√

6
(− sin θ)

]
(7.74)

=
2

3
P 2
z cos2 θ +

P 2
z

6
sin2 θ =

P 2
z

6

(
4 cos2 θ + sin2 θ

)
The averaging integral of the above is:

1

2π

P 2
z

6

(
4 cos2 θ + sin2 θ

) 2π∫
0

dφ =
P 2
z

6

(
4 cos2 θ + sin2 θ

)
=
P 2
z

6

(
1 + 3 cos2 θ

)
=

1 + 3 cos2 θ

2
M2

b

(7.75)
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The same for split-off:

〈
|ẑ ·Mc−so|2

〉
=

1

2π

2π∫
0

|ẑ ·Mc−so|2 dφ (7.76)

|ẑ ·Mc−so|2 =

∣∣∣∣〈iS ↑′ ∣∣∣∣pz ∣∣∣∣12 , 1

2

〉′∣∣∣∣2 +

∣∣∣∣〈iS ↑′ ∣∣∣∣pz ∣∣∣∣12 ,−1

2

〉′∣∣∣∣2
=

[
Pz√

3
cos θ

]
·
[
Pz√

3
cos θ

]
+

[
Pz√

3
(− sin θ)

]
·
[
Pz√

3
(− sin θ)

]
(7.77)

=
P 2
z

3
cos2 θ +

P 2
z

3
sin2 θ =

P 2
z

3

(
cos2 θ + sin2 θ

)
=
P 2
z

3

The averaging integral of the above is:

1

2π

P 2
z

3

2π∫
0

dφ =
1

2π

P 2
z

3
· 2π =

P 2
z

3
= M2

b (7.78)

The angular factor above may be expressed in terms of wave vectors:

cos2 θ =
k2
z

k2
(7.79)



Chapter 8

Conclusions

We summarize the goals that we have achieved during the preparation of this manuscript:

• we discussed Kane’s parabolic four band model for semiconductors with zincblende

crystal structure, and provided the detailed description of this approach;

• we described k · p method for degenerate bands based on Luttinger-Kohn’s model

for zincblende crystals;

• we expanded the original Luttinger Hamiltonian by using band anticrossing model,

which describes the important properties of dilute nitride compounds;

• we generalized Luttinger-Kohn’s and Kane’s approaches on semiconductors with

wurtzite crystal structure;

• we introduced the influence of strain on band structures using Bir and Pikus method

both for zincblende and wurtzite crystals, and discussed three typical strain situa-

tions;

• we derived a method for calculating band structure for QWs grown away from

natural (001) direction for semiconductors with both zincblende and wurtzite crystal

structures, and provided a source code for rotation of Hamiltonian to any arbitrary

orientation;

• we used plane wave expansion method for numerical implementation of Luttinger-

Kohn’s theory to evaluate band structures in QW;
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• we calculated the examples of band structures;

• we obtained the behavior of band structure under orientation of growth and under

internal and external stresses and compared our calculations with published papers;

• we derived optical transition matrix elements;

• we provided a short note on a point group theory as k · p method strongly relies on

that.

The methods which were described in this thesis can be used in calculations of band

structures around extremum Γ point for any new material compositions with zincblende

and wurtzite crystal structures. We provided the theory only for three typical strain

situations, in some cases it can be expanded to other strain situations to achieve the

necessary properties of a particular composition in QW.

We presented the theory of evaluating matrix elements for optical transitions which can be

used for straightforward numerical implementation. Further extension should include the

theory on calculations of optical gain as matrix elements are directly involved in optical

gain calculation methodology. It can be extended to provide the theory on momentum

matrix elements for arbitrary oriented substrates.

Our method can be used for well researched materials based on GaAs or InP , dilute

nitride compounds, bismuth compounds which have attract attention for past couple

of years and expect to grow, and compounds with wurtzite primitive cell already used

in blue-violet lasers, which makes it almost universal. The extensive calculations for

any future materials with special properties are almost straightforward, based on the

discussion presented in this Thesis.



Appendix A

Maple 16 code used in calculations

of rotated Luttinger effective-mass

Hamiltonian

In this appendix Maple 16 code for obtaining rotated Hamiltonian (4.7) in matrix form

(4.9) is provided. The only input for the program is specify sine s and cosine c of the

rotation angle, as we follow the Xia’s methodology. The output of the program is denoted

in the code as H and gives a rotated Hamiltonian in matrix form. In Maple 16 symbol

# means the text after it is a comment.

with(LinearAlgebra); #the package for working with matrices in Maple 16

c := 0;#defining Cos and Sin of the angle of rotation (default is 90 deg)

s := 1;

#defining three J(1,2,3) matrices

J[1] := Matrix([[0, 0, (1/2)*sqrt(3), 0], [0, 0, 1, (1/2)*sqrt(3)], [(1/2)

*sqrt(3), 1, 0, 0], [0, (1/2)*sqrt(3), 0, 0]]);

J[2] := Matrix([[0, 0, (-I*sqrt(3))*(1/2), 0], [0, 0, I, (-I*sqrt(3))*(1/2)],

[I*sqrt(3)*(1/2), -I, 0, 0], [0, I*sqrt(3)*(1/2), 0, 0]]);

J[3] := Matrix([[3/2, 0, 0, 0], [0, -1/2, 0, 0], [0, 0, 1/2, 0], [0, 0, 0, -3
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/2]]);

#calculating J(x,y,z) matrices

J[x] := Typesetting[delayDotProduct](s/sqrt(2), J[1], true)-Typesetting

[delayDotProduct](1/sqrt(2), J[2], true)+Typesetting[delayDotProduct]

(c/sqrt(2), J[3], true);

J[y] := Typesetting[delayDotProduct](s/sqrt(2), J[1], true)+Typesetting

[delayDotProduct](1/sqrt(2), J[2], true)+Typesetting[delayDotProduct]

(c/sqrt(2), J[3], true);

J[z] := -c*J[1]+s*J[3];

#defining rotations for components of k

k[x] := s*k[1]/sqrt(2)-k[2]/sqrt(2)+c*k[3]/sqrt(2);

k[y] := s*k[1]/sqrt(2)+k[2]/sqrt(2)+c*k[3]/sqrt(2);

k[z] := -c*k[1]+s*k[3];

#calculation of k squared

ksq := collect(k[x]^2+k[y]^2+k[z]^2, [k[1], k[2], k[3]]);

#calculation of J(x,y,z) matrices squared

Jxsq := simplify(MatrixMatrixMultiply(J[x], J[x]));

Jysq := simplify(MatrixMatrixMultiply(J[y], J[y]));

Jzsq := simplify(MatrixMatrixMultiply(J[z], J[z]));

#calculation of multplication of k squared and J squared

kxJx := simplify(MatrixScalarMultiply(k[x]^2, Jxsq));

kyJy := simplify(MatrixScalarMultiply(k[y]^2, Jysq));

kzJz := simplify(MatrixScalarMultiply(k[z]^2, Jzsq));

#calculation of sum of product kJ squared multiplied by -2

Bra10 := simplify(MatrixAdd(kxJx, kyJy));

Bra1 := simplify(MatrixAdd(Bra10, kzJz));

Bra21 := collect(MatrixScalarMultiply(-2, Bra1), [k[1], k[2], k[3]]);
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#calculation of factor after gamma2

Gam2 := collect(MatrixAdd((5/2)*ksq, Bra21), [k[1], k[2], k[3]]);

#calculation of factor after gamma3 including anticommutators

JxJy := MatrixScalarMultiply(-2*k[x]*k[y], MatrixAdd(MatrixMatrixMultiply(J

[x], J[y]), MatrixMatrixMultiply(J[y], J[x])));

JyJz := MatrixScalarMultiply(-2*k[y]*k[z], MatrixAdd(MatrixMatrixMultiply(J

[y], J[z]), MatrixMatrixMultiply(J[z], J[y])));

JzJx := MatrixScalarMultiply(-2*k[z]*k[x], MatrixAdd(MatrixMatrixMultiply(J

[z], J[x]), MatrixMatrixMultiply(J[x], J[z])));

Gam3 := collect(MatrixAdd(MatrixAdd(JxJy, JyJz), JzJx), [k[1], k[2], k[3]]);

#calculation of final rotated Hamiltonian matrix

H := collect(simplify(MatrixAdd(MatrixAdd(gamma[1]*ksq, MatrixScalarMulti

ply(gamma[2], Gam2)), MatrixScalarMultiply(gamma[3], Gam3))), [gamma[1],

gamma[2], gamma[3]]);



Appendix B

Maple 16 code used in matrix

elements rotations 4× 4 zincblende

and 6× 6 wurtzite

In this appendix Maple 16 code for obtaining matrix elements for rotated LKH is ex-

pressed.

B.1 Zincblende

The input of this program is only angles of rotation θ and φ, which are found in terms

of Miller indices by eq. (4.31). The output result is denoted in the code as Q, S and R

for each matrix element respectively. Program determines three terms (4.33), (4.36) and

(4.35) at the same time and do not need external intervention. By default angles set as

0.

with(LinearAlgebra); #the package for working with matrices in Maple 16

theta := 0; #defining angles of rotation(0 by default)

phi := 0;
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#defining rotation matrix U

U := Matrix([[cos(theta)*cos(phi), cos(theta)*sin(phi), -sin(theta)], [-sin(phi),

cos(phi), 0], [sin(theta)*cos(phi), sin(theta)*sin(phi), cos(theta)]]);

Uk := simplify(MatrixInverse(U));#calculating inverse matrix

#defining rotations of spin

M[s] := Matrix([[exp(-I*phi*(1/2))*cos((1/2)*theta), exp(I*phi*(1/2))*sin((1/2)

*theta)], [-exp(-I*phi*(1/2))*sin((1/2)*theta), exp(I*phi*(1/2))*cos((1/2)

*theta)]]);

M[c] :=KroneckerProduct(M[s], U);#calculation of total rotation matrix Mc

M[t] := simplify(MatrixInverse(M[c]));#calculating inverse matrix

#matrix in X,Y,Z basis

H[o] := Matrix([[A*k[x]^2+B*k[y]^2+B*k[z]^2, C*k[x]*k[y], C*k[x]*k[z]],

[C*k[x]*k[y], B*k[x]^2+A*k[y]^2+B*k[z]^2, C*k[y]*k[z]], [C*k[x]*k[z],

C*k[y]*k[z], B*k[x]^2+B*k[y]^2+A*k[z]^2]]);

H[a] := KroneckerProduct(Matrix([[1, 0], [0, 1]]), H[o]);

#calculation of rotated vector k components

K := VectorMatrixMultiply(Uk, Transpose(Matrix([[k[1], k[2], k[3]]])));

k[x] := K(1);

k[y] := K(2);

k[z] := K(3);

#transformation U^T H U

H[n] := simplify(MatrixMatrixMultiply(MatrixMatrixMultiply(M[c], H[a]), M[t]));

Q[1] := simplify(-(H[n](1, 1)+H[n](2, 2))*(1/2));

S[1] := simplify((H[n](1, 4)+I*H[n](1, 5)+H[n](2, 5)-I*H[n](4, 2))/sqrt(12)

-(H[n](1, 3)-I*H[n](2, 3))/sqrt(3));

R[1] := simplify((H[n](1, 1)-I*H[n](1, 2)-H[n](2, 2)-I*H[n](1, 2))/sqrt(12)

+(H[n](1, 6)-I*H[n](2, 6))/sqrt(3));
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#result

Q[2] := collect(simplify(subs({A = -gamma[1]-4*gamma[2], B = 2*gamma[2]

-gamma[1], C = -6*gamma[3]}, Q[1])-gamma[1]*(k[x]^2+k[y]^2+k[z]^2)),

[gamma[1], gamma[2], gamma[3]]);

S[2] := collect(simplify(subs({A = -gamma[1]-4*gamma[2], B = 2*gamma[2]

-gamma[1], C = -6*gamma[3]}, S[1])), [gamma[1], gamma[2], gamma[3]]);

R[2] := collect(simplify(subs({A = -gamma[1]-4*gamma[2], B = 2*gamma[2]

-gamma[1], C = -6*gamma[3]}, R[1])), [gamma[1], gamma[2], gamma[3]]);

B.2 Wurtzite

The input of this program is only angles of rotation θ and φ, which is difficult to find in

terms of Miller-Bravais indices for wurtzite. The output of the program denoted in code

as F, lambda, X and K (Theta found by simple F-lambda relation), which corresponds

to rotated matrix elements (4.73) and (4.74).

with(LinearAlgebra);

theta := 0;#input angles of rotation

phi := 0;

U := Matrix([[cos(theta)*cos(phi), cos(theta)*sin(phi), -sin(theta)], [-sin(phi),

cos(phi), 0], [sin(theta)*cos(phi), sin(theta)*sin(phi), cos(theta)]]);

Uk := simplify(MatrixInverse(U));

M[s] := Matrix([[exp(-I*phi*(1/2))*cos((1/2)*theta), exp(I*phi*(1/2))*sin((1/2)

*theta)], [-exp(-I*phi*(1/2))*sin((1/2)*theta), exp(I*phi*(1/2))*cos((1/2)

*theta)]]);

M[c] := KroneckerProduct(M[s], U);

M[t] := simplify(MatrixInverse(M[c]));
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H[o] := Matrix([[L[1]*k[x]^2+M[1]*k[y]^2+M[2]*k[z]^2, N[1]*k[x]*k[y],

N[2]*k[x]*k[z]], [N[1]*k[x]*k[y], M[1]*k[x]^2+L[1]*k[y]^2+M[2]*k[z]^2,

N[2]*k[y]*k[z]], [N[2]*k[x]*k[z], N[2]*k[y]*k[z], M[3]*k[x]^2+M[3]*k[y]^2

+L[2]*k[z]^2]]);

H[a] := KroneckerProduct(Matrix([[1, 0], [0, 1]]), H[o]);

K := VectorMatrixMultiply(Uk, Transpose(Matrix([[k[1], k[2], k[3]]])));

k[x] := K(1);

k[y] := K(2);

k[z] := K(3);

H[n] := simplify(MatrixMatrixMultiply(MatrixMatrixMultiply(M[c], H[a]), M[t]));

F[1] := simplify((H[n](1, 1)+H[n](2, 2))*(1/2));

lambda[1] := simplify(H[n](3, 3));

X[1] := simplify((H[n](1, 3)+I*H[n](2, 3))/sqrt(2));

K[1] := simplify((H[n](1, 1)-H[n](2, 2)+(2*I)*H[n](1, 2))*(1/2));

#resulting matrix elements

F[2] := collect(simplify(subs({L[1] = A[2]+A[4]+A[5], L[2] = A[1], M[1] =

A[2]+A[4]-A[5], M[2] = A[1]+A[3], M[3] = A[2], N[1] = 2*A[5], N[2] =

sqrt(2)*A[6]}, F[1])), [A[1], A[2], A[3], A[4], A[5], A[6]]);

lambda[2] := collect(simplify(subs({L[1] = A[2]+A[4]+A[5], L[2] = A[1],

M[1] = A[2]+A[4]-A[5], M[2] = A[1]+A[3], M[3] = A[2], N[1] = 2*A[5],

N[2] = sqrt(2)*A[6]}, lambda[1])), [A[1], A[2], A[3], A[4], A[5], A[6]]);

X[2] := collect(simplify(subs({L[1] = A[2]+A[4]+A[5], L[2] = A[1], M[1]

= A[2]+A[4]-A[5], M[2] = A[1]+A[3], M[3] = A[2], N[1] = 2*A[5], N[2]
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= sqrt(2)*A[6]}, X[1])), [A[1], A[2], A[3], A[4], A[5], A[6]]);

K[2] := collect(simplify(subs({L[1] = A[2]+A[4]+A[5], L[2] = A[1], M[1]

= A[2]+A[4]-A[5], M[2] = A[1]+A[3], M[3] = A[2], N[1] = 2*A[5], N[2]

= sqrt(2)*A[6]}, K[1])), [A[1], A[2], A[3], A[4], A[5], A[6]]);

Theta := collect(F[2]-lambda[2], [A[1], A[2], A[3], A[4], A[5], A[6]]);



Appendix C

Maple 16 code used in matrix

elements calculations 8× 8

In this appendix Maple 16 code for obtaining rotated matrix elements is provided. The

program start with angles of rotation θ and φ and end with result which is denoted in

code as H0, H2, H3, H5 and H6 for each term in eq. (4.44) respectively. Program

determines all terms at the same time. By default angles set as 0.

with(LinearAlgebra); #the package for working with matrices in Maple 16

theta := 0; #defining angles of rotation(0 by default)

phi := 0;

#defining rotation matrix U

U := Matrix([[cos(theta)*cos(phi), cos(theta)*sin(phi), -sin(theta)], [-sin(phi),

cos(phi), 0], [sin(theta)*cos(phi), sin(theta)*sin(phi), cos(theta)]]);

#calculating inverse matrix

Uk := simplify(MatrixInverse(U));

#defining rotations of spin

M[s] := Matrix([[exp(-I*phi*(1/2))*cos((1/2)*theta), exp(I*phi*(1/2))*sin((1/2)
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*theta)], [-exp(-I*phi*(1/2))*sin((1/2)*theta), exp(I*phi*(1/2))*cos((1/2)

*theta)]]);

#calculation of total rotation matrix Mc

M[c] := KroneckerProduct(M[s], U);

#Calculation of valence rotated basis functions

New := MatrixVectorMultiply(M[c],Transpose(Matrix([[X[u],Y[u],Z[u],X[d],Y[d],

Z[d]]])));

#Calculation of rotated conduction basis finctions

NewS := MatrixVectorMultiply(M[s], Transpose(Matrix([[S[u], S[d]]])));

#define basis functions

s[1] := I*NewS(1);

s[2] := I*NewS(2);

u[2] := -(New(4)+I*New(5))/sqrt(6)+sqrt(2/3)*New(3);

u[3] := (New(1)-I*New(2))/sqrt(6)+sqrt(2/3)*New(6);

u[5] := (New(4)+I*New(5))/sqrt(3)+New(3)/sqrt(3);

u[6] := (New(1)-I*New(2))/sqrt(3)-New(6)/sqrt(3);

n[2] := subs({I = -I}, u[2]);

n[5] := subs({I = -I}, u[5]);

s[3] := subs({I = -I}, s[1]);

s[4] := subs({I = -I}, s[2]);

#calculation matrix elements

H0 := simplify(collect(s[1]*s[3], [S[u], S[d]]));

H2 := simplify(collect(n[2]*s[2], [S[u], S[d]]));

H3 := simplify(collect(s[3]*u[3], [S[u], S[d]]));

H5 := simplify(collect(s[1]*n[5], [S[u], S[d]]));

H6 := simplify(collect(u[6]*s[4], [S[u], S[d]]));

#calculation of rotated vector k components

K := VectorMatrixMultiply(Uk, Transpose(Matrix([[k[1], k[2], k[3]]])));
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#substitution

H01 := collect(simplify(subs({S[d]^2 = E[c]+A*(K(1)^2+K(2)^2+K(3)^2)

+h^2*(K(1)^2+K(2)^2+K(3)^2)/(2*m[0]), S[u]^2 = E[c]+A*(K(1)^2+

K(2)^2+K(3)^2)+h^2*(K(1)^2+K(2)^2+K(3)^2)/(2*m[0])}, H2)), [S[u]

, S[d]]);

H11 := collect(simplify(subs({S[d]^2 = E[c]+A*(K(1)^2+K(2)^2+K(3)^2)

+h^2*(K(1)^2+K(2)^2+K(3)^2)/(2*m[0]), S[u]^2 = E[c]+A*(K(1)^2+

K(2)^2+K(3)^2)+h^2*(K(1)^2+K(2)^2+K(3)^2)/(2*m[0])}, H2)), [S[u]

, S[d]]);

H41 := collect(simplify(subs({S[d]^2 = E[c]+A*(K(1)^2+K(2)^2+K(3)^2)

+h^2*(K(1)^2+K(2)^2+K(3)^2)/(2*m[0]), S[u]^2 = E[c]+A*(K(1)^2+

K(2)^2+K(3)^2)+h^2*(K(1)^2+K(2)^2+K(3)^2)/(2*m[0])}, H3)), [S[u]

, S[d]]);

H51 := collect(simplify(subs({S[d]^2 = E[c]+A*(K(1)^2+K(2)^2+K(3)^2)

+h^2*(K(1)^2+K(2)^2+K(3)^2)/(2*m[0]), S[u]^2 = E[c]+A*(K(1)^2+

K(2)^2+K(3)^2)+h^2*(K(1)^2+K(2)^2+K(3)^2)/(2*m[0])}, H5)), [S[u]

, S[d]]);

H61 := collect(simplify(subs({S[d]^2 = E[c]+A*(K(1)^2+K(2)^2+K(3)^2)

+h^2*(K(1)^2+K(2)^2+K(3)^2)/(2*m[0]), S[u]^2 = E[c]+A*(K(1)^2+

K(2)^2+K(3)^2)+h^2*(K(1)^2+K(2)^2+K(3)^2)/(2*m[0])}, H6)), [S[u]

, S[d]]);

H02 := collect(simplify(subs({S[d] = X[d], S[u] = X[u]}, H01)), [X[u], X[d]]);

H12 := collect(simplify(subs({S[d] = X[d], S[u] = X[u]}, H11)), [X[u], X[d]]);

H42 := collect(simplify(subs({S[d] = X[d], S[u] = X[u]}, H41)), [X[u], X[d]]);

H52 := collect(simplify(subs({S[d] = X[d], S[u] = X[u]}, H51)), [X[u], X[d]]);

H62 := collect(simplify(subs({S[d] = X[d], S[u] = X[u]}, H61)), [X[u], X[d]]);

H03 := subs({X[d]^2 = B*K(2)*K(3)+I*P[0]*K(1), X[u]^2 = B*K(2)*K(3)+

I*P[0]*K(1)}, H02);

H13 := subs({X[d]^2 = B*K(2)*K(3)-I*P[0]*K(1), X[u]^2 = B*K(2)*K(3)-

I*P[0]*K(1)}, H12);

H43 := subs({X[d]^2 = B*K(2)*K(3)+I*P[0]*K(1), X[u]^2 = B*K(2)*K(3)+
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I*P[0]*K(1)}, H42);

H53 := subs({X[d]^2 = B*K(2)*K(3)-I*P[0]*K(1), X[u]^2 = B*K(2)*K(3)-

I*P[0]*K(1)}, H52);

H63 := subs({X[d]^2 = B*K(2)*K(3)+I*P[0]*K(1), X[u]^2 = B*K(2)*K(3)+

I*P[0]*K(1)}, H62);

H04 := collect(subs({X[d] = Y[d], X[u] = Y[u]}, H03), [Y[u], Y[d]]);

H14 := collect(subs({X[d] = Y[d], X[u] = Y[u]}, H13), [Y[u], Y[d]]);

H44 := collect(subs({X[d] = Y[d], X[u] = Y[u]}, H43), [Y[u], Y[d]]);

H54 := collect(subs({X[d] = Y[d], X[u] = Y[u]}, H53), [Y[u], Y[d]]);

H64 := collect(subs({X[d] = Y[d], X[u] = Y[u]}, H63), [Y[u], Y[d]]);

H05 := subs({Y[d]^2 = B*K(1)*K(3)+I*P[0]*K(2), Y[u]^2 = B*K(1)*K(3)

+I*P[0]*K(2)}, H04);

H15 := subs({Y[d]^2 = B*K(1)*K(3)-I*P[0]*K(2), Y[u]^2 = B*K(1)*K(3)

-I*P[0]*K(2)}, H14);

H45 := subs({Y[d]^2 = B*K(1)*K(3)+I*P[0]*K(2), Y[u]^2 = B*K(1)*K(3)

+I*P[0]*K(2)}, H44);

H55 := subs({Y[d]^2 = B*K(1)*K(3)-I*P[0]*K(2), Y[u]^2 = B*K(1)*K(3)

-I*P[0]*K(2)}, H54);

H65 := subs({Y[d]^2 = B*K(1)*K(3)+I*P[0]*K(2), Y[u]^2 = B*K(1)*K(3)

+I*P[0]*K(2)}, H64);

H06 := collect(subs({Y[d] = Z[d], Y[u] = Z[u]}, H05), [Z[u], Z[d]]);

H16 := collect(subs({Y[d] = Z[d], Y[u] = Z[u]}, H15), [Z[u], Z[d]]);

H46 := collect(subs({Y[d] = Z[d], Y[u] = Z[u]}, H45), [Z[u], Z[d]]);

H56 := collect(subs({Y[d] = Z[d], Y[u] = Z[u]}, H55), [Z[u], Z[d]]);

H66 := collect(subs({Y[d] = Z[d], Y[u] = Z[u]}, H65), [Z[u], Z[d]]);

H07 := subs({Z[d]^2 = B*K(1)*K(2)+I*P[0]*K(3), Z[u]^2 = B*K(1)*K(2)

+I*P[0]*K(3)}, H06);

H17 := subs({Z[d]^2 = B*K(1)*K(2)-I*P[0]*K(3), Z[u]^2 = B*K(1)*K(2)-

I*P[0]*K(3)}, H16);

H47 := subs({Z[d]^2 = B*K(1)*K(2)+I*P[0]*K(3), Z[u]^2 = B*K(1)*K(2)+
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I*P[0]*K(3)}, H46);

H57 := subs({Z[d]^2 = B*K(1)*K(2)-I*P[0]*K(3), Z[u]^2 = B*K(1)*K(2)-

I*P[0]*K(3)}, H56);

H67 := subs({Z[d]^2 = B*K(1)*K(2)+I*P[0]*K(3), Z[u]^2 = B*K(1)*K(2)+

I*P[0]*K(3)}, H66);

#output

Hs0 := combine(collect(expand(simplify(subs({Z[d] = 0, Z[u] = 0}, H07))),

[B, P[0], A, h, E[c]]), radical);

Hs2 := combine(collect(expand(simplify(subs({Z[d] = 0, Z[u] = 0}, H17))),

[B, P[0], A, h, E[c]]), radical);

Hs3 := combine(collect(expand(simplify(subs({Z[d] = 0, Z[u] = 0}, H47))),

[B, P[0], A, h, E[c]]), radical);

Hs5 := combine(collect(expand(simplify(subs({Z[d] = 0, Z[u] = 0}, H57))),

[B, P[0], A, h, E[c]]), radical);

Hs6 := combine(collect(expand(simplify(subs({Z[d] = 0, Z[u] = 0}, H67))),

[B, P[0], A, h, E[c]]), radical);
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Basis functions for 6× 6 LKH for

arbitrary orientation

The basis functions for 6× 6 LKH for arbitrary orientation are expressed in terms of old

basis functions:
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where s and c represents sine and cosine of appropriate angle.

D.2 Wurtzite
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where s and c represents sine and cosine of appropriate angle.



Appendix E

Tables of material parameters for

various semiconductor materials

The recommended material parameters are listed in the tables below.
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Table E.1: Important band structure parameters for zincblende GaAs, AlAs, InAs,
InP and GaP [61](p. 803)

Materials
GaAs AlAs InAs InP GaP

Parameters
a0(Å) 5.6533 5.6600 6.0584 5.8688 5.4505
Eg(eV ) 1.424 3.03 0.354 1.344 2.78
∆(eV ) 0.34 0.28 0.38 0.11 0.08
Ev,av(eV ) -6.92 -7.49 -6.67 -7.04 -7.40
Ep(eV ) 25.7 21.1 22.2 20.7 22.2
ac(eV ) -7.17 -5.64 -5.08 -5.04 -7.14
av(eV ) 1.16 2.47 1.00 1.27 1.70
b(eV ) -1.7 -1.5 -1.8 -1.7 -1.8
d(eV ) -4.55 -3.4 -3.6 -5.6 -4.5

C11(1011dyne/cm2) 11.879 12.5 8.329 10.11 14.05
C12(1011dyne/cm2) 5.376 5.34 4.526 5.61 6.203
C44(1011dyne/cm2) 5.94 5.42 3.96 4.56 7.033

m∗e/m0 0.067 0.15 0.023 0.077 0.25
m∗hh/m0 0.50 0.79 0.40 0.60 0.67
m∗lh/m0 0.087 0.15 0.026 0.12 0.17

m∗hh,z/m0 = 1/(γ1 − 2γ2) 0.333 0.478 0.263 0.606 0.326
m∗lh,z/m0 = 1/(γ1 + 2γ2) 0.094 0.208 0.027 0.121 0.199

γ1 6.85 3.45 20.4 4.95 4.05
γ2 2.1 0.68 8.3 1.65 0.49
γ3 2.9 1.29 9.1 2.35 1.25
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Table E.2: Important band structure parameters for wurtzite GaN, AlN and
InN [61](p. 807)

Materials
GaN AlN InN

Parameters
a(Å) 3.189 3.112 3.545
c(Å) 5.185 4.982 5.703
Eg(eV ) 3.44 6.16 0.64
∆cr(eV ) 0.010 -0.169 0.040
∆so(eV ) 0.017 0.019 0.005

m
‖
e/m0 0.20 0.32 0.07

m⊥e /m0 0.20 0.30 0.07
A1 -7.21 -3.86 -8.21
A2 -0.44 -0.25 -0.68
A3 6.68 3.58 7.57
A4 -3.46 -1.32 -5.23
A5 -3.40 -1.47 -5.11
A6 -4.90 -1.64 -5.96

a1(eV ) -4.9 -3.4 -3.5
a2(eV ) -11.3 -11.8 -3.5
D1 -3.7 -17.1 -3.7
D2 4.5 7.9 4.5
D3 8.2 8.8 8.2
D4 -4.1 -3.9 -4.1
D5 -4.0 -3.4 -4.0
D6 -5.5 -3.4 -5.5

C11 (GPa) 390 396 223
C12 (GPa) 145 137 115
C13 (GPa) 106 108 92
C33 (GPa) 398 373 224
C44 (GPa) 105 116 48



Appendix F

Notes on point group theory

In this Appendix we write a short note on point group theory and it’s consequences.

Group theory properties related to k · p method found in Loehr book [55], a list of publi-

cations and explanations of symmetry properties is presented by Knox and Gold [78], the

full group theory of solid state as provided by it’s elaborator Wigner [62], the properties

of deformation and theory of invariants are described by Bir and Pikus [56].

Point group is a group of rotations and reflections leaving specific point invariant. The

axes of rotations meet at this point and this point lies on the planes of reflections. All

the point groups are the subgroups of three dimensional rotations and reflections.

The rotation axis, typically called as an axis of n-th order if it allows the rotation around

the axis by the angle 2πk/n where n ≥ k and they are both integers. The two axes of

point group are equivalent if the group contains an element, which translates one axis to

the other. Two reflection planes are equivalent if the group contains similar translation

element. Rotations of the same angle around equivalent axes or reflections in equivalent

planes create class. Clockwise and counterclockwise rotations are of the same class if the

axis of rotation lies in the plane of symmetry or group has one more turn to angle π

around the axis, which is perpendicular to the given one. The core of classification of the

point groups and their classes is the list of not equivalent axes and planes corresponding

to a given symmetry.
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It should be noted that in group theory there exist a variety of notations which makes it

difficult to read. In our work we use Schoenflies notation for point groups and list them

below.

Cn group is a cyclic group of the n-th order which includes rotations of angles 2πk/n

around n-th order axis. It may elaborated with horizontal symmetry plane, perpendicular

to the axis of rotation (Cnh) or with the symmetry plane passing through the axis of

rotation (Cnv) with both in the order of 2n1.

Dn group made by addition the 2-nd order axis to group Cn, where 2-nd order axis is

perpendicular to n-th order axis.

T group - tetrahedron group consists of the symmetries of regular tetrahedron. It is

included in so called cubic group, as the elements of cubic groups are taken directly from

the elements of the symmetry of the cube. In particular, group T has second order axes

passing through the centers of the opposite faces of the cube and third order axes are the

diagonals of the cube. In total, group T has 12 elements.

Td group is full tetrahedron group, which may be obtained from T group by addition of

the symmetry planes with each of them include one 2-nd axis and one 3-rd order axis.

Each of the planes includes two opposite edges of a cube and two diagonals connecting

vertexes of these edges. The group Td has 24 elements.

Th group is a direct product of groups T and Ci (Th = T × Ci). It adds three more

symmetry planes to T group, dividing cube to octants (1/8 part). The group Th has 24

elements.

O group is a group of regular octahedron (two 4-face pyramids joined by bases) which

consists of rotations translating octahedron into itself. It includes axes of cube: 4-th

order axes passing through the centers of opposite faces of a cube, 3-rd order axes are the

diagonals of a cube, 2-nd order axes are pass through the middles of the opposite edges.

The group O has 24 elements.

Oh group is a full cubic group which includes all symmetries of a cube and is obtained as

a direct product Oh = O × Ci. It includes the elements of groups Td and Th. The group

Oh has 48 elements.

1There may be added a superscript such as C4
6v which is the index of space group, but in our discussion

this index is useless.
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Crystal has translation symmetry which restricts the types and quantity of symmetry

axes in solid state. For crystal, the n-th order rotation axis with n taking n = 1, 2, 3, 4, 6

values only.

In the quantum mechanics, group theory comes from considering the symmetry group

of the Hamiltonian, which is a set of all symmetry operations that do not change the

functional form of the Hamiltonian. In solid state, the Hamiltonian depends only on the

locations of atoms in crystal. The locations are invariant under the transformations of a

crystal point group, so the Hamiltonian is also invariant under these transformations.

Mathematically, the group is a coordinate transformation T that transform ~r to another

~r′ set of coordinates T~r = ~r′. Explicitly the transformation TU of the group element U

is 3× 3 matrix. The symmetry operation τU on a function f is defined by:

τU [f(~r)] ≡ f
(
T−1
U ~r
)

(F.1)

The symmetry operation applied on Hamiltonian:

τU [H (~r)] = H
(
T−1
U ~r
)

= H (~r) (F.2)

If we apply the symmetry operation on the equation of the form:

H (~r) f (~r) = Ef (~r) (F.3)

we obtain:

τU [H (~r) f (~r)] = EτU [f (~r)]⇒ H (~r) f
(
T−1
U ~r
)

= Ef
(
T−1
U ~r
)

(F.4)

Recall that new function f
(
T−1
U ~r
)

as g (~r), so the f is transformed into g by the symmetry

operation τU . Both functions f and g are the eigenfunctions of H with the same eigenvalue

E, so now E is double degenerate.

A representation Γ of the group is a set of finite-dimensional square matrices Γ(A),Γ(B), ...

that obey the same multiplication table as the corresponding group elements A,B, ....

The dimension of representation is the dimension of it’s matrix. A representation is irre-

ducible if no similarity transformation exists that simultaneously reduces all its matrices

to a simpler block-diagonal form. Finite groups have a finite number of elements and have
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finite number of distinct irreducible representations. Consider a particular l-dimensional

representation Γ(ν). A set of l independent functions f
(ν)
1 , ..., f

(ν)
l are basis function for

representation Γ(ν) or belongs to Γ(ν) or transforms like Γ(ν) if for each element U of the

group:

τU

[
f

(ν)
i (~r)

]
=

l∑
j=1

Γ
(ν)
ji (U)f

(ν)
j (~r) (F.5)

where Γ
(ν)
ji (U) is the ij-th element of matrix Γ(ν)(U). The set of distinct irreducible

representations of any group is complete, so any function h may be written as a sum of

functions f (ν), each belonging to a particular irreducible representation of the group:

h =
∑
ν

f (ν) (F.6)

The Hamiltonian H0 (3.2) is the unperturbed Hamiltonian. The Schrödinger equation

with this Hamiltonian gives the eigenfunctions un0 and corresponding energies En(0) at

~k = 0, i.e. the band edge. The Hamiltonian H0 has the symmetry of the crystal point

group, therefore the zone center energies En(0) ≡ En and wave functions un0 ≡ un must

belong to one of the irreducible representations Γi of the crystal point group. But away

from the band edge, the Hamiltonian (3.1) does not have the symmetry of the crystal

point group since the energies En(~k) and wave functions un~k do not belong to distinct

point group representations.

We tabulate the representations of some point groups in tables F.1 and F.22. Here we

should note that the notation of most authors of a group theory related works does not

match with each other completely, which makes it very confusing and difficult to compare.

Zincblende elementary cell has a symmetry of a regular tetrahedron, but unlike diamond

or rock salt it has no inversion symmetry, because it consists of two atoms, where anion

and cation are different. Diamond structure has all atoms the same and therefore it

has inversion symmetry. The diamond is described by point group Oh and zincblende is

described by point group Td. In the table F.1 the representations for diamond split the

representations of zincblende into two separate representations of even and odd parity.

The even parity is labeled with plus sign “+” and odd parity is labeled with minus sign

“-”. Td does not need to have parity defined and any linear combination of the even and

2Jz is pseudovector along z direction.
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Table F.1: Representations for cubic crystals

Td Oh Degeneracy Basis functions
Γ1 Γ+

1 1 r2

Γ−2′ xyz
Γ2 Γ+

2 1 x4(y2 − z2) + y4(z2 − x2) + z4(x2 − y2)
Γ−1′ xyz [x4(y2 − z2) + y4(z2 − x2) + z4(x2 − y2)]

Γ3 Γ+
12 2

{
3z2 − r2,

√
3(x2 − y2)

}
Γ−12′

{
xyz(3z2 − r2), xyz

√
3(x2 − y2)

}
Γ4 Γ+

15′ 3 {xy(x2 − y2), yz(y2 − z2), zx(z2 − x2)}
Γ−25 {z(x2 − y2), x(y2 − z2), y(z2 − x2)}

Γ5 Γ+
25′ 3 {xy, yz, zx}

Γ−15 {x, y, z}

Table F.2: Representations for wurtzite crystals

C6v Basis functions
Γ1 z
Γ2 Jz
Γ3 x3 − 3xy2

Γ4 y3 − 3yx2

Γ5 {x, y}
Γ6 Γ3 ⊗ Γ5

odd Oh representations forms a representation for Td. Each representation possesses basis

functions that transform into each other under the symmetry operations as the functions

in the last column. From the careful comparison the experiment data and the theory

it is established that in zincblende semiconductors conduction band edge belongs to Γ1

representation and the valence band edge belongs to Γ5 representation [79]. In diamond

semiconductors, the conduction band edge has odd parity and valence band edge has

even parity. The zincblende has not difined parity so there is some mixing of even parity

into the conduction band and odd parity states into valence band which results in the

asymmetry terms (B in eq. (4.41)), but the terms are small so we neglect them. As we

neglect the asymmetry terms we assume that zincblende wave functions transform like

diamond functions and have the same parity.

Wurtzite elementary cell has a C6v symmetry of a regular hexagon with vertical axis. The

representations for wurtzite are listed in table F.2 and from the table we can see that

the representations for x, y and representation for z are separated. Verical axis behaves

as one dimensional Γ1 representation, while the x, y axes have the basis of a special
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form. The axes a1, a2 and a3 of hexagon lie on the x-y plane and have a symmetry of

group C3. To obtain the behavior (the behavior means that functions will have the same

transformations under operations of crystal point group, they do not have to be these

actual functions) of basis for wurtzite we apply explicit form of group element C3 [56]

(table 11.1 - C3 part) on ~r:


x′′

y′′

z′′

 = C3


x

y

z

 =


1

2

√
3

2
0

−
√

3

2

1

2
0

0 0 1



x

y

z

 =


1

2
x+

√
3

2
y

−
√

3

2
x+

1

2
y

z

 (F.7)

Under this basis the Hamiltonian is invariant under the symmetry operations of C6v

point group. C3 matrix is obtained from matrix (4.17), which describes right-handed

rotation around vertical axis, by reversing the angles to make it left-handed and substitute

φ = 2π/3.
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