Partitioning Evapotranspiration in Forested Peatlands within the Western Boreal Plain, Fort McMurray, Alberta, Canada

Elise C. Gabrielli
gabr3950@mylaurier.ca

Follow this and additional works at: https://scholars.wlu.ca/etd

Part of the Hydrology Commons

Recommended Citation
Gabrielli, Elise C., "Partitioning Evapotranspiration in Forested Peatlands within the Western Boreal Plain, Fort McMurray, Alberta, Canada" (2016). Theses and Dissertations (Comprehensive). 1820.
https://scholars.wlu.ca/etd/1820

This Thesis is brought to you for free and open access by Scholars Commons @ Laurier. It has been accepted for inclusion in Theses and Dissertations (Comprehensive) by an authorized administrator of Scholars Commons @ Laurier. For more information, please contact scholarscommons@wlu.ca.
Partitioning Evapotranspiration in Forested Peatlands within the Western Boreal Plain, Fort McMurray, Alberta, Canada

by

Elise Catherine Gabrielli
Honours B.A. with Administration Option,
Wilfrid Laurier University, 2012

THESIS
Submitted to the Department of Geography and Environmental Studies
in partial fulfillment of the requirements for
Degree in Masters of Science
Wilfrid Laurier University

© Elise Catherine Gabrielli 2016
Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.
Abstract

Forested peatlands in the Western Boreal Plain (WBP) represent hydrologically sensitive ecosystems that often support an open-crown forest of *Picea mariana* and/or *Larix laricina*. These systems store globally significant soil carbon, containing one-fourth to one-third of the world’s soil organic carbon pool (Turunen *et al*., 2002), serving a critical role in regulating atmospheric CO₂. Recent studies indicate that the hydrological conditions are the critical determinant of a peatland’s carbon budget (Price *et al*., 2005; Aurela *et al*., 2007). To understand current hydrological conditions, it is essential to accurately estimate the rate of ET, due to its dominance within a peatland’s water balance (Price and Maloney, 1994; Fraser *et al*., 2001; Lafleur, 2008). The mechanism by which peatlands retain and exchange water with the atmosphere is important to maintain the stability of these systems. However, this stability is threatened by the impacts of both warmer and drier conditions associated with climate change, and altered hydroclimatic cycles as a result of landscape disturbance. Increasing drought (frequency and severity) has the potential to increase tree growth, modifying density, size and spatial arrangement of the trees (Kettridge *et al*., 2013). This expansion impedes incoming solar radiation from reaching the peat surface, potentially limiting surface evapotranspiration (ET), which at present, represents the main flux water loss from these systems. A reduction in surface ET (ET_{surf}) could further produce a reduction in total fen ET, despite predicted increases in canopy transpiration (T) attributed to the higher stem density.

This research partitions ET between the canopy and understory between two typical fens, under current climate conditions, within the oil sands region of Fort McMurray, Alberta. The effects of climate, tree canopy and surface vegetation on the energy balance and ET processes were analyzed using a micrometeorology (MET) and eddy-covariance (EC) data in two typical Western Boreal Plain (WBP) fens during the growing 2013 season. Flux data were partitioned through the application of the stem heat balance (SHB) method and dynamic closed chambers. The two fens are distinguished as a poor fen with an open canopy composed of *Picea mariana*, and a rich fen, with a dense *Larix laricina* canopy. Additionally, the two fens are distinguished by differences in localized climate, with the poor fen subjected to significantly cooler air (T_a) and soil (T_s) temperatures.

The energy balance of both fens was regulated by the latent heat flux (Q_E). The seasonal pattern of ET was closely linked with growing season net radiation ($Q*$), vapour pressure deficit...
(VPD), T_a and precipitation (P) events, averaging 2.3 mm d$^{-1}$ and 3.5 mm d$^{-1}$ between the poor, open canopy fen and rich, dense canopy fen, respectively. A strong, positive linear correlation was exhibited between the control parameters Q^*, T_a and daily transpiration (T). Seasonal mean T rates varied over the four month growing season at the *Picea mariana* poor fen, averaging 0.3 mm d$^{-1}$, while T rates at the *Larix laricina* rich fen supplied a higher contribution to the fen’s total ET flux, averaging 2.7 mm d$^{-1}$. Both ET and T reached maxima in conditions of high Q^*, T_a and moderate to high VPD, that coincided with lower relative humidity (RH) and moderate windspeed (u). Neither ET nor T demonstrated a direct relationship with volumetric moisture content (VMC), due to the consistently high water table, generally at or above the peat surface, maintained at both sites.

The poor fen’s discontinuous *Picea mariana* canopy permitted a larger degree of incoming radiation to reach the underlying peat surface, while the rich fen’s higher tree density composed of the *Larix laricina*, limited incoming radiation due to shading. Subsequently, surface vegetation of the former was dominated by *Sphagnum* moss, while the latter was composed of a variety of feather moss and the brown moss, *Tomentypnum nitens*. The poor fen’s open canopy and dominant *Sphagnum* moss resulted in the dominance of the ET_{surf}, with a mean of 0.8 mm d$^{-1}$, contributing approximately > 80% to the daily ET budget. Conversely, the rich fen’s dense canopy diminished the impact of ET_{surf} to 0.5 mm d$^{-1}$, contributing < 20% to the total ET flux. Increased tree density from a *Picea mariana* open-canopy, to a *Larix laricina* dense canopy, reduced average PAR reaching the underlying surface to < 500 μmol m$^{-2}$ s$^{-1}$ and < 300 μmol m$^{-2}$ s$^{-1}$. Although the presence of an overstory did not produce a microclimate that was statistically different between open and covered plot conditions, it did generally support cooler, wet conditions that inhibited ET_{surf}.
Acknowledgements

First and foremost I would like to extend my sincerest gratitude to my supervisor, Dr. Richard Petrone for your patient support, guidance and invaluable mentorship over the past few years.

It started with one simple slide at the beginning of an undergraduate hydrology class with Dr. Fereidoun Rezanezhad, detailing an oil sands project in Fort McMurray, Alberta. Little known to me, how one simple inquiry would dramatically alter the next several years, pushing myself to new limits, reshaping me as an academic and on an individual level.

I could not have achieved this without the incredible support of the staff and students of the Fort Mac team. I cannot express enough thanks to George Sutherland for continually solving all my data problems, seemingly using just a little ‘black magic’ to resolve any issue I threw his way. Many thanks for the tremendous guidance in data collection from Justin Straker and Trevor Baker at IEG Consulting, as you navigated me through the world of sapflow. And a very special thanks to the incredible assistance from Laura Chasmer, generously sharing your knowledge of LiDAR and classification methodologies.

I cannot express enough thanks to my colleagues that not only spent long days in the field assisting in data collection, but provided countless laughs while creating so many fond memories. Tahni Phillips, Meagan Wood and Carolina Spagnuolo, you kindly and patiently showed me the ropes as I started my first summer in Fort Mac. My sincere thanks to Josh Feener and Tristan Gingras-Hill for keeping me sane with countless burritos, allowing me to blast my old-school country music and conveniently keeping chocolate in the truck for those especially trying days.

It goes without saying, I wouldn’t be where I am today without the constant emotional support of my friends and family. To my parents who have been my biggest cheerleaders throughout all my educational pursuits. I cannot express how grateful I am for all your guidance and unwavering support. Whether it was just a simple pep talk or calm words of encouragement, you’ve always believed in me and in turn, taught me to believe in myself. To my sister Olivia, you were my port in the storm. Gestures big or small, you were there with constant words of encouragement, food when I was harnessed to my desk, and to accompany me on numerous late night drives. Living in Waterloo would not have been nearly as much fun without you. Last but not least, I would like to thank my patient best friend and partner in crime, Martin Schroder, who has been by my side from early undergrad days, through my seemingly endless academic career.

I am forever humbled to have met and worked with so many amazing individuals and express my sincere gratitude.
Table of Contents

Author’s Declaration .. ii
Abstract... iii
Acknowledgements ..v
Table of Contents .. vi
List of Figures .. viii
List of Tables .. xi

Chapter One: Introduction ...1

Chapter Two: Literature Review ...6
 2.1 Western Boreal Plain ..6
 2.2 Evapotranspiration in the WBP ..7
 2.3 Future Climate Change Scenario ..9
 2.4 Thesis Objectives and Research Questions ...10
 2.5 Study Sites and Climate Characteristics ..11

Chapter Three: Methods ...15
 3.1 Energy Balance ..15
 3.2 Eddy Covariance Theory ...16
 3.3 Sapflow Measurements of Transpiration ...17
 3.4 Calculating Tree Transpiration ...24
 3.5 Surface ET ..25
 3.6 Meteorological Tower Flux Footprint ...28
 3.7 Scaling T and ET Flux Data ..28
 3.7.1 Forest Inventory Surveys ...28
 3.7.2 Leaf Area Index and Biomass ...31
 3.7.3 LiDAR Land Classification ...32
 3.8 Statistical and Error Analysis ...34

Chapter Four: Results ...36
 4.1 Climate ...36
 4.2 Meteorological Tower Flux Footprint ...40
 4.3 LiDAR Land Classification ...43
 4.4 Energy Flux Densities ..48
List of Figures

Figure 1: Map of research sites Poplar and Pauciflora fens within the Western Boreal Plain (WBP) in the Fort McMurray region, Alberta, Canada.

Figure 2: Map of Pauciflora fen study site instrumentation and forestry inventory sampling plots.

Figure 3: Map of Poplar fen study site instrumentation and forestry inventory sampling plots.

Figure 4: (a) Vertical cross-section through a stem heat balance (SHB) gauge. (b) Schematic of gauge thermocouples; copper wires shown as solid lines and constant wires shown as dotted lines. For the determination of sapflow, the temperature differentials ΔT_a, ΔT_b, ΔT, are obtained from measurements of voltages across AH, BH and CH, respectively. (c) Schematic of conductive heat fluxes within the heated stem segment, where P (P_{in}) is the applied heat to the stem, q_v is the rate of vertical heat loss, q_r is radial heat loss and q_f is heat uptake by the sap stream (Smith and Allen, 1996).

Figure 5: Example of diurnal regression model, stem sapwood area (SA) (cm2) in relation to total tree water use (L day$^{-1}$).

Figure 6: Daily (a)(b) maximum and minimum air temperatures (T_a, °C) (6m)(3m), (c)(d) mean soil temperatures (T_g, °C) (2,5,10 cm depths), (e)(f) mean relative humidity (RH, %) (6m)(3m) and (g)(h) total precipitation (P, mm) over the 2013 growing season at Pauciflora and Poplar fen, Fort McMurray, Alberta, Canada.

Figure 7: Cumulative precipitation recorded at the Pauciflora and Poplar fens over the 2013 growing season, Fort McMurray, Alberta, Canada.

Figure 8: Monthly average windspeed (u, m s$^{-1}$) and vapour pressure deficit (VPD, kPa) with standard deviation error bars measured during the daylight hours at (a) Pauciflora and (b) Poplar fen, Fort McMurray, Alberta, Canada.

Figure 9: WindRose diagram partitioning wind direction and speed (m/s) over the 2013 growing season at (a) Pauciflora and (b) Poplar fen, Fort McMurray, Alberta, Canada.

Figure 10: LiDAR output data, groundcover classification with applied maximum likelihood classification and fusion with topographic morphology and vegetation structure of species types and mixed vegetation cover within microforms, (b) classified microforms, (c) 80% contribution footprint vectors (x_{frac}) and (d) peak footprint vectors (x_{max}), Pauciflora fen, Fort McMurray

Figure 11: LiDAR output data (a) groundcover classification with a vector machine supervised classification and fusion with topographic morphology and vegetation structure of species types and mixed vegetation cover within microforms, and (b) classified microforms, cb) 80% contribution footprint vectors (x_{frac}), and (d) peak footprint vectors (x_{max}), Poplar fen, Fort McMurray, Alberta.
Figure 12: Mean daily wetland energy flux densities (W m\(^{-2}\)) for the 2013 growing season, at (a) Pauciflora, and (b) Poplar fen, Fort McMurray, Alberta, Canada.

Figure 13: Hourly mean wetland energy flux densities (W m\(^{-2}\)) for each month in the 2013 growing season, at Pauciflora and Poplar fen, Fort McMurray, Alberta, Canada.

Figure 14: Daily evapotranspiration (\(ET\)) (mm d\(^{-1}\)) and precipitation (\(P\)) (bars) (mm) by DOY for the 2013 growing season, measured at (a) Pauciflora and (b) Poplar fen, Fort McMurray, Alberta, Canada.

Figure 15: Relationship between \(ET\) (mm d\(^{-1}\)) and (a)(b) available Energy (W m\(^{-2}\)), (b)(c) air temperature (°C), (d)(e)
\(VPD\) (kPa), and (f)(g) volumetric moisture content (\(VMC\)), Pauciflora and Poplar fen, Fort McMurray, Alberta, Canada.

Figure 16: Hourly mean (a)(b) evapotranspiration (\(ET\)) (mm d\(^{-1}\)), (c)(d) net radiation (\(Q^*\)) (W m\(^{-2}\)) and (e)(f) vapour pressure deficit (\(VPD\)) (kPa), Pauciflora and Poplar fen, Fort McMurray, Alberta, Canada.

Figure 17: (a) Pauciflora and (b) Poplar fen, evapotranspiration (\(ET\)) (mm d\(^{-1}\)) (seasonal mean solid line) and canopy transpiration (\(T\)) (mm d\(^{-1}\)) (seasonal mean dashed line) by DOY for the 2013 growing season, Fort McMurray, Alberta, Canada.

Figure 18: Daily canopy transpiration (mm d\(^{-1}\)) (bars) and accumulated water use (dashed line) (mm) at (a) Pauciflora and (b) Poplar fen, by DOY for the 2013 growing season, Fort McMurray, Alberta, Canada.

Figure 19: Average \(DBH\) (box-plot) and \(LAI\) (line) per plot, measured from Forest Inventory Surveys at (a) Pauciflora and (b) Poplar fen, during the 2013 growing season, Fort McMurray, Alberta, Canada. (Green symbol represents plot \(LAI\))

Figure 20: Accumulative monthly Transpiration (mm) plotted against plot \(LAI\), for (a) Pauciflora and (b) Poplar fen, measured over the 2013 growing season, Fort McMurray, Alberta, Canada.

Figure 21: \(T\) (mm d\(^{-1}\)) plotted against (a)(b) max and min daily air temperature (°C), (c)(d) available energy (W m\(^{-2}\)), and (e)(f) precipitation (mm) by DOY at Pauciflora and Poplar fen, Fort McMurray, Alberta.

Figure 22: Relationship between \(T\) (mm d\(^{-1}\)) and \(VPD\) (kPa), Pauciflora fen, Fort McMurray, Alberta, Canada.

Figure 23: Relationship between (a) \(Picea mariana\) and (b) \(Larix laricina\) (mm d\(^{-1}\)) against \(VPD\) (kPa), Poplar fen, Fort McMurray, Alberta, Canada.

Figure 24: Mean growing season \(LAI\) (m\(^2\) m\(^{-2}\)) by canopy cover and microform at (a) Pauciflora and (b) Poplar fen, Fort McMurray, Alberta, Canada, 2013 (Error bars signify standard deviation (S.D.) of variables).
Figure 25: Mean growing season (a)(b) above (AGB) and (c)(d) belowground biomass (BGB) (g m\(^{-2}\)) by canopy cover and microform at Pauciflora and Poplar fen, Fort McMurray, Alberta, Canada, 2013 (Error bars signify standard deviation (S.D.) of variables).

Figure 26: Period averages \(ET\) (mm hr\(^{-1}\)) by (a)(b) month, and by (c)(d) microform, at Pauciflora and Poplar fen, Fort McMurray, Alberta, Canada, 2013 (Error bars signify standard deviation (S.D.) of variables).

Figure 27: Monthly averaged \(ET\) (mm hr\(^{-1}\)) by (a)(b) canopy cover, and by (c)(d) canopy cover and microform, at Pauciflora and Poplar fen, Fort McMurray, Alberta, Canada, 2013 (Bars signify standard deviation (S.D.) of variables).

Figure 28: Average seasonal (a)(b) \(PAR\) (\(\mu\)mol m\(^{-2}\) s\(^{-1}\)) (c)(d) air temperature (\(T_a\), °C), (e)(f) \(RH\) (%), (g)(h) soil temperature (\(T_g\), °C), (i)(j) volumetric moisture content (VMC, %) and (k)(l) ice depth (cm) partitioned by canopy cover at Pauciflora and Poplar fen, Fort McMurray, Alberta, Canada, 2013 (Error bars signify standard deviation (S.D.) of variables).

Figure 29: Relationship between \(ET\) (mm hr\(^{-1}\)) and (a)(b) \(PAR\) (\(\mu\)mol m\(^{-2}\) s\(^{-1}\)) (c)(d) air temperature (\(T_a\), °C), (e)(f) \(RH\) (%), (g)(h) soil temperature (\(T_g\), °C), (i)(j) volumetric moisture content (VMC, %) and (k)(l) ice depth (cm) partitioned by canopy cover at Pauciflora and Poplar fen, Fort McMurray, Alberta, Canada, 2013 (Error bars signify standard deviation (S.D.) of variables).

Figure 30: A comparison of hourly Fen \(ET\), \(T\) and Surface (Chamber) \(ET\) scaled within the MET tower footprint, recorded over the 2013 growing season, (a) Pauciflora and (b) Poplar fen, Fort McMurray, Alberta, Canada. (Error bars signify standard deviation (S.D.) of variables).
List of Tables

Table 1: Sapflow monitored trees and understory species, including species size and sensor specifications, installed at Pauciflora (PFLORA) and Poplar fen. Sapling trees are denoted by (sp.) and tree diameter measured at peat surface (D_o).

Table 2: Tree specific data required for calculation of sapflow. Fractional Sapwood Area (FSA) was determined for each tree species captured in forest mensuration data at each fen.

Table 3: Forest Inventory Survey data, including plot count, plot size (m^2), average canopy LAI_c (m^2), stem count, average DBH (cm) and Height (cm) per plot, at Pauciflora fen. (S.D. represents standard deviation). Missing plots indicate no tree canopy. Missing values indicate presence of dead tree species.

Table 4: Forest Inventory Survey data, including plot count, plot size (m^2), average canopy LAI_c (m^2), tree species (Lt, Larch; Sb, Black Spruce), stem count, average DBH (cm) and Height (cm) per plot, at Poplar fen. (S.D. represents standard deviation). Missing values indicate presence of dead tree species.

Table 5: The 2013 growing season mean wind speed (u, m s$^{-1}$), mean frictional velocity (u^*, m s$^{-1}$), wind direction (degrees) and averaged flux footprint length of the peak contributing area (x_{max}, m) and the 80 % contribution area (x_{frac}, m) for the EC tower installed at Pauciflora (PFLORA) and Poplar Fen, Fort McMurray, Alberta, Canada.

Table 6: Summary of results from the land-cover classification, derived from fusion-based spectral and airborne LiDAR data, Pauciflora fen, Fort McMurray, Alberta, Canada (2013). Associated with Figure 10.

Table 7: Summary of results from the land-cover classification derived from fusion-based spectral and airborne LiDAR data, Poplar fen, Fort McMurray, Alberta, Canada (2013). Associated with Figure 11.

Table 8: The monthly mean net radiation (Q^*), soil heat flux (Q_c), latent heat flux (Q_e), sensible heat flux (Q_h) and available energy (Q^*-Q_c), relative latent heat flux (Q_e/Q^*-Q_c) and relative sensible heat flux (Q_h/Q^*-Q_c) for the 2013 growing season at Pauciflora (PFLORA) and Poplar Fen, Fort McMurray, Alberta, Canada. (Pauciflora August means contain missing data; instrument failure).

Table 9: Average ET, T and associated predictor variables: available energy (Q^*-Q_c), windspeed (u), VPD, air temperature (T_a), RH, P and volumetric moisture content (VMC) by plant growth period (early green (EG) (DOY 121-158), green (G) (DOY 159-218) and late green (LG) (DOY 219-260), over the 2013 growing season, at (a) Pauciflora and (b) Poplar fen, Fort McMurray, Alberta, Canada.
Table 10: Dominant vegetation, above and belowground biomass (g m⁻²) of community-scale plots, separated between hummock (even) and hollow (odd) microforms and canopy cover, Pauciflora fen, Fort McMurray, Alberta, 2013. OPEN canopy cover, \(PAR > 500 \, \mu\text{mol m}^{-2} \, \text{s}^{-1} \), COVERED, \(PAR < 500 \, \mu\text{mol m}^{-2} \, \text{s}^{-1} \).

Table 11: Dominant vegetation, above and belowground biomass (g m⁻²) of community-scale plots, separated between hummock (even) and hollow (odd) microforms and canopy cover, Poplar fen, Fort McMurray, Alberta, 2013. OPEN canopy cover, \(PAR > 300 \, \mu\text{mol m}^{-2} \, \text{s}^{-1} \), COVERED, \(PAR < 300 \, \mu\text{mol m}^{-2} \, \text{s}^{-1} \).

Table 12: Overview of error and uncertainties of flux measurements. (See Appendix IV for specific equations)
Chapter One
Introduction

Canada’s Western Boreal Plains (WBP) ecozone represents an extremely diverse landscape consisting of coniferous and mixed-wood forests and a variety of wetland types (Vitt et al., 2003), extending across Alberta to Manitoba (National Working Group, 1988). In this region wetlands account for 65% of the landscape, with bog and fen peatlands representing the dominant wetland class despite a sub-humid climate (Woynillowicz et al., 2005). From a global perspective, although only covering 3% of the terrestrial land surface (Yu, 2012), peatlands store approximately 30% of soil carbon (Limpens et al., 2014; Gorham, 1991; Limpens et al., 2008).

The WBP is composed of three common landforms including coarse-grained glaciofluvial outwash deposits, fine-grained disintegration moraines and low-lying glaciolacustrine plains (Devito et al., 2005a). Peatlands persist primarily in areas of poor drainage supported by enhanced groundwater flow from glacial deposits in addition to direct precipitation input (Devito and Mendoza, 2007). Moreover, it is the persistence of water-deficit conditions that shapes the unique hydrology of the WBP. Peatland hydrology, ecological functioning, and development are largely dependent on the local energy balance and whether precipitation (P) is balanced by evapotranspiration (ET) (Runkle et al., 2014). The WBP peatlands exist within a sub-humid climate where P is less than or equivalent to potential evapotranspiration (PET) (van der Kamp., 2003; Devito et al., 2005b; Brown et al., 2010), therefore ET constitutes a dominant hydrological flux (Bridgham et al., 1999; Eaton et al., 2001; Johnson and Miyanishi, 2008). It is the dominance of ET and persistence of a sub-humid climate that suggest that these peatland systems may be the most sensitive to any climatic variability (Petrone et al., 2011). Previous research has suggested that climate-induced expansion of trees and shrubs has the potential to turn these ecosystems from net carbon sinks into sources when associated with reduced water tables. Increased water loss
through canopy transpiration (T) could further draw down water tables, thus stimulating peat decomposition and carbon release (Limpens et al., 2014). It is evident that future climate change scenarios may have profound effects on the maintenance of these systems, altering their capacity to store carbon.

Further threatening these peatland systems, is the rapid development of natural resource based industries that affect vast areas of the WBP. Specifically, mining practices within the oil sands region of Fort McMurray, Alberta have caused significant disturbance and/or the complete removal of vast areas of wetland (Alberta Environmental Protection, 1998). The Athabasca deposit surrounds the city of Fort McMurray, and encompasses approximately 475,000 ha of boreal Alberta, of which 99% is already leased (Rooney et al., 2012). Open-pit mining involves the complete removal of peat layers, leaving landscapes with very large pits up to 100 m in depth (Johnson and Miyanishi, 2008). Constraints imposed by the post-mining landscape coupled with the sensitivity of peatland vegetation prevent the natural restoration of the pre-mined landscape (Rooney et al., 2012). Threats imposed by climate change will further complicate the future trajectories of these systems.

Previous hydrologic research has shown that temporal climate patterns exert a strong control on the hydrologic processes driving wetland sustainability, vegetation patterns and regional groundwater recharge (Ferone and Devito, 2004; Devito et al., 2005b; Smerdon et al., 2005; Petrone et al., 2007; Smerdon et al., 2007). Recent attention has focused on the interactions between hydrology and the carbon cycle within peatland environments, and there is a general consensus that the hydrological cycle is an important first-order control to carbon fluxes, changes in vegetation cover, and microtopographic patterning (Billett et al., 2004; Couwenberg and Joosten, 2005; Limpens et al., 2008). Thus, quantifying impacts caused by anthropogenic
development requires a detailed understanding of the natural variability of the hydrologic processes (especially ET) and water cycling unique to this region, under past, present and future climatic conditions (Comer et al., 2000; Cleugh et al., 2007; Raddatz et al., 2009). This requires a better understanding of the driving factors and controls on ET. This study focuses on the processes controlling the surface energy and water budgets within two relatively undisturbed peatlands in the Fort McMurray region.

Peatland surface vegetation exerts a significant control on the hydrology and microclimate of the system (Oechel and Van Cleve, 1986; Bisbee et al., 2001; Heijmans et al., 2001), integrating a range of environmental controls that influence the spatial variability of carbon exchange processes (Waddington and Roulet, 1996; Swanson and Flanagan, 2001; Bubier et al., 2003). This is especially significant within black spruce (Picea mariana) dominated peatlands, which represent the most widespread boreal forest system in North America (Oechel and Van Cleve, 1986). Because black spruce cover is relatively open due to the narrow structure and low density of the trees (Heijmans et al., 2004), a substantial portion of incoming solar radiation is able to reach the underlying peat surface, often dominated by Sphagnum species. Thus, the understory/surface vegetation exerts a significant role on the system’s CO₂ (Goulden et al., 1997; Waddington et al., 1998) and water exchange (Williams and Flanagan, 1996). As such, moss evaporation rates are strongly dependent on the openness of forest canopy (Heijmans et al., 2004).

This study seeks to characterize the typical partitioning of ET among ecosystem components within two typical WBP fens, and determine how the partitioning of ET varies with the density and spatial organization of the trees. Souch et al. (1996) conclude that our understanding of ET and the related physical processes are not well characterized for many wetland types. Drexler et al. (2004) further state that despite the numerous methods available to quantify
wetland ET, it remains insufficiently characterized due to the diversity and complexity of wetland types. Therefore, this research will not only reduce uncertainty surrounding wetland ET, but understanding how the components of these systems contribute to the overall ET flux is essential to understand how a peatland ecosystem may respond to both climate change and anthropogenic disturbance. Further, such information will form a baseline study for future fen reclamation projects. Specifically, the first objective is to quantify the ecosystem scale energy and ET budgets of each fen throughout the growing season. The second objective seeks to understand the climatic and vegetational controls governing ecosystem scale ET and T via a comparison of two fens with distinct differences in canopy cover. The third objective will examine how surface microclimate and ETsurf varies within varying degrees of canopy cover. Lastly, the fourth objective will partition ET flux components between peat surface and canopy.

This thesis follows the manuscript format and has been organized into seven chapters including this introduction, which provides a brief overview of the research objectives and questions. General background information on relevant research in the WBP, the nature of ET in the WBP and a future climate change scenario, as well as, study rationale and site description are provided in Chapter two. Chapter three details the applied field and lab methods including the use of micrometeorological (MET) measurements, and the eddy covariance (EC) technique to measure ecosystem scale energy balance and ET data. An estimation of canopy transpiration (T) was obtained through the application of the stem heat balance (SHB) method. The use of dynamic closed chambers was used to characterize ETsurf. Forest inventory surveys and LiDAR derived land surface classification was employed to scale flux data to the fen boundary. Chapter four summarizes the results, and Chapter five includes of discussion of results as they pertain to the
research objectives. Finally, chapter six provides a summary of results and elaborates on the applicability of this research to industry, and within the context of future climate change scenarios.
Chapter Two
Literature Review

2.1 Western Boreal Plain

Boreal forest ecosystems constitute the second largest biome on Earth, occupying 10% of the entire global land area (McGuire et al., 1995), containing an estimated 22% of the total terrestrial carbon pool and more freshwater resources than any other terrestrial ecosystem (Watson et al., 2000). Within Canada, the composition of boreal forest vegetation is strongly dictated by climate (Wieder et al., 2006; Johnson and Miyanishi, 2008). Limited by long, cold winters and short growing seasons, boreal peatlands are typically species poor, dominated by conifer forests and shrub vegetation (Walter, 1973; Vitt, 2006; Wieder et al., 2006). However, in much of the WBP, it is the sub-humid climate, thick overburden layer and gentle topographic grade, comprising hillslopes and poorly drained lowlands that supports a landscape with one of the highest densities of peatlands globally (Gorham, 1991; Kuhry et al., 1992; Johnson and Miyanishi, 2008). The systems provide unique ecosystem services including the regulation of globally significant carbon stocks (Frolking et al., 2006; Wieder et al., 2009), storing one-fourth to one-third of the world’s soil organic carbon pool (Turunen et al., 2002). However, these ecosystems are threatened by climate-mediated warming and anthropogenic disturbance, of particular concern within the oil sands region of northern Alberta.

To minimize the impacts produced from oil and gas-based mining, Alberta’s Environmental Protection and Enhancement Act (EPEA) requires that the impacted landscape be restored as a functioning ecosystem of equivalent capabilities to the pre-disturbed conditions (Chymko, 2000; Grant et al., 2008), and that peatlands, specifically fens, be given primary consideration for reclamation projects within the region of Fort McMurray (Alberta Environment, 2008b; Trites and Bailey, 2009). It is essential that the reconstructed system be self-sustaining,
carbon-accumulating, capable of supporting a representative assemblages of boreal species, tolerant of normal, periodic stress and can maintain appropriate peat moisture dynamics (Price et al., 2011). To successfully construct a fen with equivalent function, it is necessary to understand the dominant processes that sustained the pre-disturbed systems and incorporate them into design reclamation strategies. Therefore, it is recommended that these processes are first understood within naturally occurring peatlands within the area of reclamation (Guo and Sun, 2012).

2.2 Evapotranspiration in the WBP

Peatlands within the WBP operate within a sub-humid climate where P is generally less than or equivalent to potential evapotranspiration (PET), and ET constitutes a dominant hydrological flux (Bridgham et al., 1999; Eaton et al., 2001; Petrone et al., 2007; Johnson and Miyanishi, 2008). It is the persistence of a sub-humid climate and the dominance of ET in summer hydrologic budgets that indicates that peatlands may be extremely sensitive to any climatic variability (Petrone et al., 2011). ET is controlled by atmospheric demand (PET), and surface water availability, which are in turn influenced by climate, vegetation and soil (Wang et al., 2015). Due to the persistence of a sub-humid climate and sensitive linkages between the soil, vegetation and atmosphere, peatlands are extremely susceptible to the slightest variability that may disturb the balance between P and actual evapotranspiration (AET) (Loiselle et al., 2001; Petrone et al., 2007; Matsumoto et al., 2008; Lafleur, 2008; Brown et al., 2010; Phillips, 2014). Therefore, to understand these systems it is crucial to understand ET and identify the processes by which different components of the system retain and exchange water vapour with the atmosphere (Brown et al., 2010). Previous studies have illustrated the importance of air and soil temperatures, position of water table and the atmospheric demand (PET) as the primary variables controlling evaporation and transpiration among the different layers or components of the peatland (Petrone et al., 2000; Admiral et al., 2006;
Overgaard et al., 2006; Admiral and Lafleur, 2007; Petrone et al., 2007, Lafleur, 2008; Brown et al., 2010). The cold subsurface exerts a direct thermal regulation on peatland plants, impedes drainage thus promoting peatland development and exerts a strong control on the availability of soil water (Rouse, 2000). The surface exchange and atmospheric fluxes further influence the temperature and wetness of the soil surface, which, by governing the conditions for biological and chemical processes are significant for soil carbon balance and methane emissions (Bubier and Moore, 1994). Since the process of ET determine both water and heat balance for a peatland surface, a detailed description of ET control is essential (Lafleur, 1990).

ET can fluctuate both spatially and temporally, according (but not limited) to the variability in vegetation cover and water availability. Topographic highs and lows influence the soil moisture gradient and the microclimate at the peatland surface, and thus the processes, interactions, and the exchange of energy and mass within the system (Raupach and Finnigan, 1997; Drexler et al., 2004; Petrone et al., 2007). Within treed peatlands, this interaction is multidimensional with cumulative effects occurring at both the canopy and sub-canopy interface. The multi-layer canopy of a typical peatland is often dominated by woody evergreen vegetation interspersed with deciduous shrubs, underlain by a relatively continuous surface cover of moss species (Sonnentag et al., 2007). The effects of canopy cover on the underlying surface energy exchange is dependent on the density of the tree species (Moore et al., 2002; Lafleur et al., 2005; Petrone et al., 2011). However, detailed studies focusing on peatland canopy LAI, associated controls and their interactions with ET processes are lacking (Sonnentag et al., 2007).

Within the WBP, black spruce dominated peatlands represent the most widespread boreal forest system (Oechel and Van Cleve, 1986). Because black spruce cover is relatively open due to the narrow structure and low density of the trees (Heijmans et al., 2004), a substantial portion of
incoming solar radiation is able to reach the underlying peat surface, and consequently provides a significant contribution to ecosystem’s flux exchange (Petrone et al., 2011). Previous studies have shown that the water loss from the peat surface is strongly governed by canopy cover, which creates a microclimate that either boosts or impedes ground surface ET (Limpens et al., 2014). To analyze this interrelationship a stratification of ET and T within varying height and degrees of canopy cover is needed. Quantifying and characterizing the plant-atmosphere exchange has received increased focus within climate change research in order to clarify the potential response of specific species (Sellers et al., 1995a). Climate-mediated warming, and associated increase in drought conditions (frequency and severity) within the northern hemisphere have been linked to higher vascular plant cover (Weltzin et al., 2001; Breeuwer et al., 2009; Limpens et al., 2014), and reduced moss vitality (Robroek et al., 2009; Limpens et al., 2014).

2.3 Future Climate Change Scenario

It is anticipated, under future climate change scenarios, that changing P patterns and increasing air temperatures could limit the potential for an ecosystem to dissipate its incident energy via the sensible heat flux (Q_H) in favour of the soil (Q_G) and latent heat flux (Q_E) (Worrall et al., 2015). The effects of shrub and tree encroachment on peatland functioning and, ultimately, their successional pathways are complex (Limpens et al., 2014; Heijmans et al., 2013). Previous studies have examined the effects of tree shading on moss ET and species composition (Kettridge et al., 2013; Limpens et al., 2014; Thompson et al., 2015). Canopy T is generally limited by low stem density, and nutrient poor conditions that are typical of Picea mariana dominant fens (Wieder et al., 2009), as well as the persistence of anaerobic conditions (Clulow et al., 2013). Consequently, surface ET is maximized by the significant proportion of solar radiation reaching the often saturated understory (Kim and Verma, 1996; Heijmans et al., 2004; Brown et al., 2010). It has
been predicted that despite increased T rates that are associated with a warmer climate and higher stem density, it may still be insufficient to counteract the reduction in surface ET resulting from reduced available energy at the surface (Kettridge et al., 2013). Furthermore, an increase in the tree and/or shrub canopy can result in a shift in surface vegetation to be outcompeted by shade-tolerant species (Marschall and Proctor, 2004; Hájek et al., 2009). However, current understanding of the magnitude and form of this potentially significant feedback mechanism is limited (Moore et al., 1998; Waddington et al., 2014). The effect on surface ET cannot be considered in isolation and therefore must be examined in parallel with changes to microclimatic and surface species composition.

2.4 Study Objectives

The objective of this research is to understand the vegetational processes controlling the rates and variability of ET and T of two typical fens during the 2013 growing season, within the Athabasca oils sands region of Fort McMurray, Alberta. The first objective is of this study is to quantify and characterize the magnitude of ecosystem-scale energy partitioning and ET in two typical WBP treed fens throughout the growing season. The fens are generally characterized as a poor fen, black spruce ($Picea mariana$) dominant, and a rich fen, larch ($Larix laricina$) dominant. Canopy cover varies significantly between the two sites, with the larch fen possessing a denser tree canopy. Due to the sensitivity of ET and T to environmental and physiological conditions (Brown et al., 2010), the second objective is to determine how the dominant controls governing site ET and T vary between the two fens. The third objective will quantify the spatial pattern of surface vegetation and ET_{surf} within varying tree density. This relationship will be examined alongside the effects of overstory canopy cover on micro- and hydro-climatological controls that regulate ET_{surf}. Finally,
the four objective will partition ET vertically between the canopy and understory, and how it varies between the two fens. This research addresses the following research questions:

1. How does the magnitude of ecosystems-scale energy partitioning and ET temporally vary between the two fens with differing canopies (differing dominant species and densities)?

2. What are the dominant controls governing site ET and canopy T?

3. What are the environmental and physiological controls that govern ET_{surf} and how do they vary in varying degrees of canopy cover? How does the magnitude of ET_{surf} differ within varying degrees of canopy cover?

4. How is ET partitioned vertically between the peat surface and the tree canopy?

2.5 Study Sites and Climate Characteristics

Two fens, Pauciflora and Poplar, are located in close proximity to Fort McMurray, Alberta. Pauciflora, an 8 ha, poor fen, is located approximately 40 km south of the city (56.2230N, 111.14296W), while Poplar, an 11 ha, rich fen, is located approximately 25 km north (56.56192N, 111.32550W) (Figure 1). Mean air temperatures within the region vary from -2 to +1°C, with summer and winter averages fluctuating between 10 and 16 °C and -18 and -14 °C, respectively (Environment Canada, 2013). Both sites reside within the sub-humid climate of the WBP, where annual precipitation is approximately 300 to 600 mm, of which 70% typically occurs as rainfall during the four month growing season (May to August) (Johnson and Miyanishi, 2008).
Figure 1: Map of research sites Poplar and Pauciflora fens within the Western Boreal Plain (WBP) in the Fort McMurray region, Alberta, Canada.

Pauciflora Fen is characterized as a poor (groundwater pH ~ 4.5), treed fen located on a regional topographic high (Stoney Mountain, ~740 masl). During the period of data collection, P was higher, and temperatures were cooler than the averages collected by Environment Canada at the Fort McMurray airport (Environment Canada, 2015). Bocking (2015) reported Pauciflora fen as receiving > 50% P and mean T_a that was consistently a few degrees cooler than the Fort McMurray airport, between the study periods 2011 to 2014. Canopy cover is dominated by stunted *Picea mariana* with sparse occurrences of *Larix laricina*, with tree age ranging between 30 to 40 years. The canopy is discontinuous, consisting of densely treed plots to entirely open plots devoid
of any tree species. Average leaf area index (LAI) obtained from forestry inventory surveys conducted on 15 100 m² plots, delineated within the immediate vicinity of the micrometeorology (MET) tower at each site (Figure 2), displayed an average LAI value of 0.55 (IEG, 2014). Mean fen canopy closure is ≤ 35%. The understory is characterized by a microtopography of hummocks and hollows with an average peat depth of 2 m. Hummock vegetation is characterized by few shrub species, *Betula pumila*, dominated by *Rhododendron groenlandicum*, *Smilacena trifolia*, as well as *Carex aquatilis*. Other common species include *Andromeda polifolia*, *Rubus chamaemorus*, *Vaccinium vitis-idaea* and *Carex pauciflora* (few-flowered sedge). Groundcover was composed of *Sphagnum* moss, primarily *S. angustifolium*, *S. magellanicum*, *S. capillifolium*; hereinafter generalized as *Sphagnum* ssp. Hollow vegetation consisted of similar species with the addition of *Carex pauciflora* and *Eriophorum vaginatum*, but was devoid of shrub species.

![Figure 2: Map of Pauciflora fen study site instrumentation and forestry inventory sampling plots.](image-url)
Poplar Fen, is a rich fen (groundwater pH ~ 6.6) dominated by a dense cover of *Larix laricina*, with sparse occurrences of *Picea mariana* within the immediate vicinity of the MET tower, which represents the focus of this study. *Picea mariana* is more prevalent within the fen and upland ecosites that surround this study area. In comparison to Pauciflora, Poplar supports a dense canopy with an average LAI of 2.82, obtained from 7 plots that surround the MET tower (Figure 3; IEG, 2014) and average tree age ranges from 25 to 35 yrs. Mean fen canopy closure is greater at ≥ 35%. The surface is composed of microtopographic highs and lows consisting of an average peat depth of 1 m. Understory vegetation consisted of a dense shrub layer of *Betula pumila, Equisetum fluviatile, Smilacena trifolia, Carex prairea*, and *Carex diandra*. Groundcover is composed of various moss species including the dominant *Tomenthypnum nitens* (Hedw.) Loeske and *Aulacomnium palustre* (Hedw.) with traces of traces of *Pleurozium schreberi* (Brid.) Mitt., *Hylocomium splendens* (Hedw.) BSG., *Sphagnum capillifolium* (Ehrh.) Hedw., *Bryum pseudotriquetrum* (Hedw.) and *Drepanocladus aduncus* (Hedw.) Warnst. (Goetz and Price, 2015).

Figure 3: Map of Poplar fen study site instrumentation and forestry inventory sampling plots.
Chapter Three
Methods

3.1 Energy Balance

The surface energy balance can be estimated using,

\[Q^* = Q_E + Q_H + Q_G \]

where \(Q^* \) represents net radiation (W m\(^{-2}\)), \(Q_E \) is the latent heat flux (W m\(^{-2}\)), \(Q_H \) is the sensible heat flux (W m\(^{-2}\)), and \(Q_G \) is the ground heat flux (W m\(^{-2}\)).

To quantify the energy balance components, a MET tower was installed at each site. Measurements included wind and speed direction (Model 05103, R.M. Young Company, USA), net radiation (NR-Lite2, Campbell Scientific, Canada; installed 6 m above the surface at Pauciflora and 10 m at Poplar, with an additional sensor at 3 m at Poplar), relative humidity (\(RH \)) and temperature (HOBO U23 Pro v2, Onset Computer Corporation, Bourne, MA; installed at 6 and 1 m at Pauciflora, and 6, 3 and 1 m above the peatland surface at Poplar). \(Q_G \) was measured in both microforms at a 5 cm depth using soil heat flow transducers (Model HFT3.1, Campbell Scientific, Canada) and soil temperature profiles of 2, 5, 10 cm depths (Omega copper-constantin, Campbell Scientific Inc., USA). Precipitation (\(P \)) was measured in close proximity to the MET tower at each site using a tipping bucket rain gauge (HOBO U23 Pro v2, Onset Computer Corporation, Bourne, MA). Data were sampled every 60 s, and averaged over 30-minute intervals over 151 days (May through September). Quality control data filtering and gap filling were done according to Restrepo and Arain (2005), Falge et al. (2001), Phillips et al. (2014).
3.2 Eddy Covariance Theory

The eddy covariance (EC) technique was used to measure site-wide surface energy fluxes and ET, which requires a determination of turbulent fluxes of water vapour, momentum and sensible heat from the covariance of their respective eddies (Peixoto and Oort, 1992; Petrone et al., 2001). The mean vertical flux of the sensible and latent heat fluxes were calculated,

\[Q_H = \rho \ C_p \ w'T' \] \hspace{1cm} (2.2)
\[Q_E = L\rho \ w'q' \] \hspace{1cm} (2.3)

where \(\rho \) (kg m\(^{-3}\)) is the density of air, \(C_p \) (MJ kg\(^{-1}\) K\(^{-1}\)) is the heat capacity of the air, \(L \) (MJ kg\(^{-1}\) kPa\(^{-1}\)) is the latent heat of vaporization, \(w' \) (ms\(^{-1}\)), \(T' \) (K) and \(q' \) (kPa) are the instantaneous variance in the vertical windspeed, air temperature and specific humidity measured at the same height. The covariances between \(w' \), \(q' \) and \(T' \) were measured by an electronic analog computation consisting of a multiplication and averaging process on the CR23X datalogger. The CR23X sampled \(w' \), \(q' \), and \(T' \) at 20 Hz and averages calculated every 30 minutes. ET (mm d\(^{-1}\)) was then calculated from the product \(Q_E \),

\[ET = \frac{Q_E}{L_v \rho_w} \] \hspace{1cm} (2.4)

where \(L_v \) is the latent heat of vaporization (J kg\(^{-1}\)) and \(\rho_w \) is the density of water (kg m\(^{-3}\)) (Oke, 1987).

EC systems were installed June 2013 on the pre-existing MET tower located at 5 and 10 m above the peat surface, at Pauciflora and Poplar, respectively, and consisted of LI-7200 closed path IRGAs and flow modules (Li-Cor Biosciences, Lincoln, NE, USA), and sonic anemometers (WindMaster Pro, Gill Instruments, Lymington, Hampshire, UK).
Prior to analysis, EC data were first filtered for periods of low turbulence ($u^* < 0.23$ m/s), then corrected for density effects (Webb et al., 1980; Leuning and Judd, 1996) and sensor separation (Blanford and Gay, 1992; Leuning and Judd, 1996). As a final correction to the flux data, the energy balance closure was calculated and forced to close for the study period (Petrone et al., 2015). Closure is most reasonably forced by assuming that the measured available energy is representative of the plot that the EC sensors are measuring (Petrone et al., 2015; Petrone et al., 2001), leaving Q_H and Q_E to be adjusted (Barr et al., 1994; Blanken et al., 1997; Twine et al., 2000; Petrone et al., 2001). To determine contributing areas of the measured EC fluxes, a footprint analysis was conducted for each site according to Schuepp et al. (1990). Results from the footprint model were used to filter-out data that originated outside the study area.

3.3 Sapflow Measurements of Transpiration

The theory of the stem heat balance (SHB) approach to measure sapflow has been described in detail by Sakuratani (1979) and Baker and Van Bavel (1987). The SHB method can be used to measure sapflow in both woody (Steinberg et al., 1989) and herbaceous (Baker and van Bavel, 1987) stems. Sapflow systems (Dynamax Flow32-1K, Houston, TX, USA) were installed at each site to estimate sapflow rates of selected trees throughout the months of May to September over two consecutive years, 2012 and 2013, using the steam heat balance (SHB) method. Continuous measurements were stored on a data logger (CR1000, Campbell Scientific Inc., UT, USA) installed at each site. Each system was additionally equipped with a 12 volt deep-cycle marine battery maintained by a 50-watt solar panel. To obtain a representative estimation of canopy T rates, each system was instrumented with seven separate sensors including five trees and two understory species. Sapflow systems were installed within close proximity to the MET tower, based on representative canopy species, size, and average height as well as proximity to each other due to
cable length limitations of the Flow32 monitoring system. System installation complied with size requirements outlined by the manufacturer (Dynamax Inc., 2007), with sensors adhering to recommended size specifications (Table 2.4.1). Each gauge consists of a flexible heater that is wrapped around the stem and enclosed by a layer of cork, insulation and an aluminum coated PVC weather shield (Figure 4a). Pairs of thermocouple junctions are embedded in the cork band to form a thermopile. Displayed in Figure 2.4.1b, one thermocouple junction is placed on the inner and outer surface of the cork to measure radial temperature gradients away from the heater (ΔT_r) (Steinberg et al., 1989). Additional junctions are positioned axially along the surface of the stem, with one junction from each pair staggered above and below the heater to measure temperature gradients ΔT_a and ΔT_b, which are used to calculate components of the heat balance of the stem (Figure 4c).
Figure 4: (a) Vertical cross-section through a stem heat balance (SHB) gauge. (b) Schematic of gauge thermocouples; copper wires shown as solid lines and constantan wires shown as dotted lines. For the determination of sapflow, the temperature differentials ΔT_a, ΔT_b, ΔT_r are obtained from measurements of voltages across AH, BH and CH, respectively. (c) Schematic of conductive heat fluxes within the heated stem segment, where P (P_{in}) is the applied heat to the stem, q_v is the rate of vertical heat loss, q_r is radial heat loss and q_f is heat uptake by the sap stream (Smith and Allen, 1996).
Table 1: Sapflow monitored trees and understory species, including species size and sensor specifications, installed at Pauciflora (PFLORA) and Poplar fen. Sapling trees are denoted by (sp.) and tree diameter measured at peat surface (D_0).

The system requires a constant energy input that is balanced by heat flow out of the system (Figure 4c). Assuming no heat storage, P_{in} represents the power input to the stem from the heater, and the outward heat flow that is partitioned into conductive fluxes including vertical or axial heat conduction (q_v) (which has two components including an upward (q_u) and downward (q_d) heat flux (not shown)), radial conduction (q_r) away from the stem and mass heat transport by the sap stream (q_f). Through the measurement of P_{in}, q_r, q_u, q_d, heat convection carried by the sap (q_f) can be calculated as the residual of the energy balance expressed as (Sakuratani, 1981; Baker and van Bavel, 1987),

$$P_{in} = q_r + q_v + q_f \text{ (W)} \quad (2.5)$$

The value of P_{in} is calculated from the electrical resistance and voltage across the heater, while q_v and q_r are determined from measurements of ΔT_u, ΔT_b and ΔT_r. Finally, q_f is converted to a mass flow rate of sap.
The value of q_v is calculated using Fourier’s Law for one-dimensional heat flow from the upward and downward temperature gradients (Sakuratani, 1981; Baker and van Bavel, 1987). The sum of these gradients is algebraically equivalent to $(\Delta T_b - \Delta T_a)$ (K m$^{-1}$) (Steinberg et al., 1990b), and q_v is calculated,

$$q_v = \frac{A_st Kst (\Delta T_b - \Delta T_a)}{x}$$

where A_{st} is the cross-sectional area of the heated section (m2), K_{st} is the stem thermal conductivity (W m$^{-1}$ K$^{-1}$), and x is the distance between the two junctions positioned above and below the heater (m) obtained from Dynagage specifications. The value of K_{st} was taken from the literature as 0.42 W m$^{-1}$ K$^{-1}$ for woody stems (Steinberg et al., 1989). Additionally, the factor 0.040 mV C$^{-1}$ is applied to convert the thermocouple differential signals to degrees C (Dynamax Flow32-1K, Houston, TX, USA).

Radial conduction, q_r, is determined from ΔT_r using,

$$q_r = K_{sh} \Delta T_r$$

where K_{sh} is the effective thermal conductance of the sheath of materials surrounding the heater (W mV$^{-1}$). The value is dependent on the thermal conductivity of the insulating sheath and stem. It generally changes for each new installation and therefore must be calculated from ΔT_r and additional components of SHB during periods when sapflow is known to be zero (Baker and van Bavel, 1987; Baker and Nieber, 1989).

Once all other components of the SHB are known, q_f is calculated from difference and mass flow rate of the sap per unit time (F_m) (g h$^{-1}$) is calculated using (Sakuratani, 1981; Baker and van Bavel, 1987; Steinberg et al., 1990b). This equation takes the residual of the energy balance (W), and converts it to a flow rate by dividing by the temperature increase of the sap and heat capacity of water,
\[F_m = \frac{2q_f}{c_s (\Delta T_a + \Delta T_b)} \]

where \(c_s\) is the specific heat capacity of water (4.186 J g\(^{-1}\) C) and \((\Delta T_a + \Delta T_b)/2\) is the increase in sap temperature across the heater, assuming the sap is radially uniform. Once more, the temperature increase of the sap (mV) is converted to degrees C by dividing by the thermocouple temperature conversion constant (0.040 mV C\(^{-1}\)).

Previous studies have reported errors in sapflow rates measured using the SHB method if changes in heat storage, within the heated section of the stem, are neglected. The size of these errors has been determined to increase with stem diameter (Groot and King, 1992; Shackel et al., 1992; Grime et al., 1995a). However, errors become less important when daily rates of transpiration (\(T\)) are determined, as the change in heat storage over a 24-hr period is generally zero (Weibel and Boersma, 1995), and provides a reasonable estimation of steady state sapflow even for larger stems (Perämäki et al., 2001). \(F_m\) was calculated for each of the monitored sapflow trees, and was then divided by the density of water (1 g cm\(^{-3}\)), of which resulting sapflow velocities (cm\(^3\) hr\(^{-1}\)) were converted to litres (L hr\(^{-1}\)), and finally summed over a 24-hr period to derive the total volume of water transpired (\(F_s\)) per tree per day (L day\(^{-1}\)) (Clulow et al., 2013). Daily regression models were fitted to forest inventory mensuration data using sapwood area (\(S_A\)) (cm\(^2\)) (at the height of the sensor) as the independent function (Ford et al., 2007).

To determine \(S_A\), 15 sample trees from each site were harvested between the studied periods 2012 and 2013, selected based on proximity to the monitored sapflow trees to maintain consistency imposed by environmental constraints. Additionally, samples were stratified by diameter and species to ensure a statistically significant representation of each the five monitored sapflow trees (three samples per monitored tree). Before harvesting, diameter at peat surface (\(D_o\), cm), determined from the widest diameter flare separating stem from root (Fritts, 1976), height of
the live crown (m) and location were recorded. Recognized by Bond-Lamberty et al. (2002), the application of D_o as the primary, independent allometric variable for small trees and shrubs has been successfully used in previous studies (Smith and Brand, 1983). Additionally, D_o samples provide increased accuracy when estimating the number of growth years (Fraver et al., 2011).

Determining the extent of SA contained within the xylem requires a differentiation of the hydro-active from the inactive xylem. Located internal to the active SA, the heartwood represents primary or old growth rings incapable of water conduction or storage (Taylor et al., 2007). Often the heartwood can be determined through visual observation due to its dark pigmentation, however, this is not true for all species (Köstner et al., 1998). A commonly used method in estimating the hydro-active SA is to dye the xylem. For the purpose of this study, two separate dyeing techniques were applied to the harvested stem discs. Ferric nitrate ($Fe(NO_3)_3$) and Iodine-potassium iodide (Lugol’s solution), a known indicator for starch (Vötter, 2005) were selected as effective indicator solutions in differentiating the heartwood-sapwood boundary for spruce and larch species (Kutscha and Sachs, 1962).

Sapwood cross-sectional area was determined on each sample disc by measuring xylem and heartwood diameters (cm), calculated as the mean diameter from two perpendicular measurements obtained from each sample disc. Measurements were recorded to the nearest 1 mm, from which xylem and heartwood cross-sectional areas (cm2) were calculated using an ellipse formula (Maguire and Hann, 1987), and estimated SA by subtraction (Husch et al., 1972; Ryan, 1989). Total SA was estimated assuming a consistent cylindrical shape throughout the stem (Quiñonez-Piñó, 2007), with mean SA, obtained from three corresponding samples for each of the monitored sapflow trees at each site. Allometric correlations were established with a strong degree of confidence as the sample trees were subjected to same environmental constraints and growth
conditions as the monitored trees. SA (cm2) at the height of the sensor was calculated from the ratio of SA to total stem cross-sectional area at crown base, Fractional Sapwood Area (FSA). The ratio was applied to the cross-sectional area measured at the height of the sapflow sensor. Due to the narrow structure of the tree stems, variation in SA were negligible.

<table>
<thead>
<tr>
<th>Site</th>
<th>Ref. No.</th>
<th>Species</th>
<th>AVG Sapwood Area (cm2)</th>
<th>AVG No. Sapwood Rings</th>
<th>Percent of Stem Cross-section (%)</th>
<th>Fractional Sapwood Area (FSA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFLORA</td>
<td>4</td>
<td>Larix laricina</td>
<td>7.8</td>
<td>20</td>
<td>62.1</td>
<td>0.8304</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Picea mariana</td>
<td>15.6</td>
<td>37</td>
<td>81.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Picea mariana</td>
<td>11.1</td>
<td>29</td>
<td>84.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Larix laricina</td>
<td>16.6</td>
<td>21</td>
<td>63.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Picea mariana</td>
<td>27.6</td>
<td>39</td>
<td>85.0</td>
<td></td>
</tr>
<tr>
<td>POPLAR</td>
<td>3</td>
<td>Larix laricina</td>
<td>8.3</td>
<td>14</td>
<td>66.2</td>
<td>0.7271</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Larix laricina</td>
<td>20.5</td>
<td>12</td>
<td>73.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Picea mariana</td>
<td>15.5</td>
<td>28</td>
<td>89.4</td>
<td>0.8938</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Larix laricina</td>
<td>33.2</td>
<td>15</td>
<td>78.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Picea mariana</td>
<td>23.8</td>
<td>27</td>
<td>89.4</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Tree specific data required for calculation of sapflow. Fractional Sapwood Area (FSA) was determined for each tree species captured in forest mensuration data at each fen.

3.4 Calculating Tree Transpiration

A bottom-up scaling approach was used to scale sapflow (L day$^{-1}$) using SA. A sum sapflow of all trees within each forest mensuration plot was used to represent plot T, assuming the sum of the mass flow within the monitored tree stems is equivalent to total canopy T with a short time lag (Ford et al., 2007),

$$\hat{y} = \beta_0 + \beta_1 (SA) \quad (2.9)$$

where β_0 represents the linear regression model intercept and β_1 represents the linear regression model slope (Quiñonez-Piñón, 2007).
Diurnal linear regression equations modeling diurnal T (L) against SA (cm2) were developed for both species present at each site, *Picea mariana* and *Larix laricina* ($R^2 > 0.95$) (Vertessy *et al*., 1995) (specific equations provided in Appendix I, II, III). Total T (L day$^{-1}$) was averaged per plot, expressed per unit LAI, and then averaged across the fen study area (Ford *et al*., 2007). T was converted to mm d$^{-1}$ following a series of conversions described in Allen *et al*. (1998).

3.5 Surface ET

ET_{surf} measurements were collected between the daylight hours of 08:00 and 16:00 MST using dynamic closed chambers, six times per month from May to September 2013 to acquire an adequate sample size and to ensure seasonal variation was captured (Brown *et al*., 2010; Solondz *et al*., 2008). 16 and 14 representative sites were selected at Pauciflora and Poplar, respectively, in both hummocks and hollows (Figure 2, 3). Additionally, sites were selected in varying degrees of overstory canopy closure. A canopy gap fraction was determined from the LiDAR land classification data, and was expressed as a mean percent canopy closure for each fen. Results coincided with previous research comparing canopy closure of tree peatlands of *Sphagnum* and
feathermoss-dominated plots (Solondz et al., 2008). Plots classified as covered were selected within immediate proximity to a cluster of trees or overstory, whereas plots classified as open had no immediate overstory. Due to Pauciflora’s sparse canopy, covered plots were installed adjacent to a cluster of two to three trees, measuring ≥ 5 cm in DBH with a LAI of 0.55 (fen overstory average). Covered plots at Poplar were installed in areas with approximately 20 trees, with a mean DBH of > 5 cm and an average LAI 2.51. Consequently, covered plots at Pauciflora maintained average PAR values ≤ 500 μmol m−2 s−1, while a reduced threshold of ~300 μmol m−2 s−1 was demonstrated at Poplar. Both thresholds fell within the range of values presented by Solondz et al. (2008).

Collars constructed from polyvinyl chloride (PVC) plastic piping with a height of 16 cm and an inside diameter of 19 cm were installed 10 cm into the peat at each site (Brown et al., 2010).

*ET*surf was determined through changes in vapour pressure (*e*) over time, measured in a clear enclosed Plexiglas chamber (Waddington and Roulet, 2000; McLeod, et al. 2004; Brown et al., 2010), recorded over a two minute interval using a CIRAS-SC CO2/H2O Infrared Gas Analyzer (IRGA) (PP Systems, Amesbury, MA) (LeCain et al., 2002). The order of sampling sequence at each site was randomly varied throughout each sampling day to reduce confounding effects of the different light, temperature and moisture regimes that occur throughout the day, and to ensure sampling over a wide range of environmental conditions (LeCain et al., 2002; Brown et al., 2010; Phillips, 2014). Increases in *e* within the chamber is proportional to the instantaneous rate of *ET*, estimated using (McLeod et al., 2004),

$$ET_{surf} = 3.6 \frac{MVC}{A}$$ \hspace{1cm} (2.10)
where ET_{surf} is the instantaneous rate of evaporation (mm hr$^{-1}$), 3.6 is a conversion coefficient to convert a volume of water into a flux rate (mm hr$^{-1}$), M is the constant slope of the vapour pressure for each interval over the time step (g m$^{-3}$ s$^{-1}$), V is the volume inside the chamber (m3), C is the calibration factor to account for vapour absorption by the chamber material (dimensionless) (described in Stannard, 1988; Brown et al., 2010), and A is the area of the fen surface that is covered by the chamber (m2).

Environmental variables were sampled along with ET_{surf} at each site during the incubation period included air temperature (T_a) (thermocouple wire sealed in the chamber), photosynthetically active radiation (PAR) (Quantum Sensor LI-190SL, LI-COR, USA), peat temperature (2, 5, 10 and 20 cm; Omega, USA), and volumetric moisture content (VMC) at a depth of 12 cm (HydroSense, Campbell Scientific Inc., Canada). The HydroSense was calibrated for each site (specific equations and methods referenced in Goetz (2014)). Depth to water table was continuously monitored using the Odyssey™ capacitance water level loggers (Dataflow Systems PTY. Ltd., New Zealand) located in close proximity to each fen’s MET tower, additional water tables measurements were manually recorded in wells installed adjacent to all sites. Finally, ET_{surf} values were classified using LiDAR land classification data following steps Phillips (2014), described in the following sections, and relative surface flux contributions were extrapolated over the daylight hour 08:00 and 16:00 to coincide with daily ET and T, and to assess the relative contribution of ET_{surf}.

27
3.6 Meteorological Tower Flux Footprint

The flux footprint was calculated to correctly identify the measurement signals recorded by the meteorological instruments to the original emission area. For this study it was measured using the methods described by Scheupp et al. (1990). Every source area will contribute to the flux profile downwind to a degree that varies with distance from the source (i.e. max length), elevation of observation (instrument elevation), characteristics of the turbulent boundary layer and atmospheric stability (Scheupp et al., 1990). Both the position of the peak footprint (x_{max}), the area to which the observation is most sensitive, and the position of 80% flux contribution (x_{frac}) were determined. Periods when fluxes originated from outside the calculated footprint were removed from analysis. (Measurements were omitted when > 80% of the flux measured at a height of 5 and 10 m above the peat surface were estimated to originate outside the fen boundary, approximately 45 m in the east or west direction and 80 m in the north or southward direction from the tower at Pauciflora and Poplar, respectively). Vegetation community distributions within each tower’s footprint were determined with use of LiDAR land classification data, described in the preceding section.

3.7 Scaling T and ET Flux Data

To ensure that both canopy T and surface ET were representative of the larger fen boundary, two separate scaling techniques were employed. Canopy mensuration data were obtained through forest inventory surveys (IEG, 2014), and used to scale T data to the study area. Additionally, airborne light detection and ranging (LiDAR) data were used to classify groundcover within the fen boundary.

3.7.1 Forest Inventory Surveys

Survey plots, each measuring 100 m², were delineated within the immediate vicinity of the MET tower and sapflow system (Figure 2, 3). In 2013, 17 survey plots were selected for Pauciflora, and
8 plots allocated at Poplar. Sampling locations were constructed to ensure sufficient spatial coverage to capture the dominant species and size class at each site. The initial survey was conducted in August 2013, in which tree species, stem count and density, diameter at breast height (DBH, cm), total height (cm), and mean LAI per plot were measured (Table 3, 4). Centered within each 100 m² plot, a second 10 m² plot was delineated to include sapling species. Supplementary measurements included groundcover classification, slope and microtopography. A subsequent survey was conducted in 2014 within the original 25 plots; changes including stem count, size and species decay were recorded.

Canopy LAI values were attained with an LAI-2000 plant canopy analyzer (LI-COR, USA), and comprised of understory (LAI_U) and canopy (LAI_C) measurement, as well as a cumulative LAI (LAI_T) per plot, following similar techniques described in Vertessy et al. (1995). For a few select plots, LAI_C was estimated from a formulated regression between measured LAI_C and canopy cover (%). A conifer correction was applied to all LAI_C measurements. Additionally, a sun-scattering correction was applied using FV-2200 software (Gower et al., 1999). A bottom-up scaling approach was used to scale sapflow estimated T (L day$^{-1}$), summed for all trees within the forest survey plots using SA per tree. Previously described, T was then averaged per plot, expressed per unit LAI, and then averaged across the study area, expressed in mm day$^{-1}$ (Vertessy et al., 1995; Ford et al., 2007).
<table>
<thead>
<tr>
<th>Plot</th>
<th>Plot Size (m2)</th>
<th>LAI_C (m2)</th>
<th>Stem Count</th>
<th>AVG DBH (cm)</th>
<th>S.D.</th>
<th>AVG Height (cm)</th>
<th>S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>0.89</td>
<td>15</td>
<td>5.8</td>
<td>±1.7</td>
<td>480</td>
<td>±116</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0.36</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0.45</td>
<td>3</td>
<td>5.4</td>
<td>±0.9</td>
<td>441</td>
<td>±6.6</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>2.61</td>
<td>16</td>
<td>5.8</td>
<td>±1.1</td>
<td>500</td>
<td>±87</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>0.30</td>
<td>5</td>
<td>5.2</td>
<td>±1.7</td>
<td>255</td>
<td>±247</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>0.18</td>
<td>2</td>
<td>5.9</td>
<td>±0.1</td>
<td>439</td>
<td>±64</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>0.41</td>
<td>1</td>
<td>4.8</td>
<td></td>
<td>377</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>0.77</td>
<td>3</td>
<td>4.4</td>
<td>±0.4</td>
<td>412</td>
<td>±25</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>0.47</td>
<td>2</td>
<td>5.8</td>
<td>±1.1</td>
<td>430</td>
<td>±25</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>0.06</td>
<td>2</td>
<td>5.4</td>
<td>±0.3</td>
<td>427</td>
<td>±7.1</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>0.14</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>0.29</td>
<td>1</td>
<td>4.8</td>
<td></td>
<td>407</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>0.84</td>
<td>4</td>
<td>4.4</td>
<td>±0.3</td>
<td>355</td>
<td>±22</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>0.35</td>
<td>1</td>
<td>4.2</td>
<td></td>
<td>327</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>0.15</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVG</td>
<td></td>
<td>0.55</td>
<td></td>
<td>5.5</td>
<td>±1.3</td>
<td>424</td>
<td>±148</td>
</tr>
</tbody>
</table>

Table 3: Forest Inventory Survey data, including plot count, plot size (m2), average canopy LAI_C (m2), stem count, average DBH (cm) and Height (cm) per plot, at Pauciflora fen. (S.D. represents standard deviation). Missing plots indicate no tree canopy. Missing values indicate presence of dead tree species.
Table 4: Forest Inventory Survey data, including plot count, plot size (m2), average canopy LAIC (m2), tree species (Lt, Larch; Sb, Black Spruce), stem count, average DBH (cm) and Height (cm) per plot, at Poplar fen. (S.D. represents standard deviation). Missing values indicate presence of dead tree species.

3.7.2 Leaf Area Index and Biomass

Field measurements of LAI were obtained at each collar with a LP-80 PAR/LAI Ceptometer (Decagon, USA) in early August, the late period of peak plant growth (Solondz et al., 2010; Brown et al., 2010). Canopy mensuration data were obtained through forest inventory surveys (Figure 3.2.2, 3.2.3; IEG, 2014). Canopy LAI values were attained with an LAI-2000 plant canopy analyzer (LI-COR, USA), and comprised of understory (LAIU) and canopy (LAIC) measurement, as well as a cumulative LAI (LAIT) per plot, following similar techniques described in Vertessy et al. (1995).

For a few select plots, LAIC was estimated from a formulated regression between measured LAIC and canopy cover (%). A conifer correction was applied to all LAIC measurements. Additionally, a sun-scattering correction was applied using FV-2200 software. Supplementary collar measurements were obtained in the lab using the LI-3100C Area Meter (LI-COR, USA) with plant
material harvested from each collar in September 2013, which was then used to calculate LAI based on the area of the collars (Sims and Bradford, 2001). Following harvest and prior to LAI measurements, plants were removed at root depth, grouped by species, oven-dried (24 hours at 80°C), and weighed for total aboveground biomass (AGB) (Sims and Bradford, 2001). The roots were subsequently removed from the peat cores and then oven-dried (24 hours at 80°C), and weighed for below ground biomass (BGB) (Sims and Bradford, 2001).

3.7.3 LiDAR Land Cover Classification

Land cover classification employed methods described by Chasmer et al. (2016). Optical (spaceborne) and active (airborne) remote sensing data were used to characterize vegetation species types and structural characteristics as they are found in micro-topographic hummocks and hollows and with varying structural vegetation characteristics. Discrete return Airborne Light Detection and Ranging (LiDAR) data were acquired using an ALTM3100 on August 4, 2010 by Airborne Imaging Calgary and licensed for use by the Government of Alberta. LiDAR data were classified into ground and non-ground returns using TerraScan (TerraSolid, FI). Initial data products including a digital elevation model (DEM), digital surface model (DSM) and canopy height model ($CHM = DSM – DEM$) and gap fraction were created for an area of exceeding 2300 km2 in Golden Software Surfer (Golden Software Inc. CO). The DEM was derived from ground returns using an inverse distance weighting (IDW) to a resolution of 1 m. The DSM was derived from all returns greater than 0.3 m above ground classified returns using the maximum return within a $1 \times 1 \times z$ column. Canopy gap fraction at the Poplar site (in particularly due to dense shrub and tree vegetation) was rasterised based on the ratio of returns exceeding 1.3 m (often associated with DBH, represented by tree canopies) and returns exceeding 0.3 m to total returns within each $1 \times 1 \times z$ column, representing canopy and canopy with understory gap fraction,
respectively. Hummocks and hollows were determined at Pauciflora and Poplar (but applied only to Pauciflora classification) sites using a 6 m radius search window, subtracted from the DEM at both sites for estimates of residual differences above and below the mean planar (normalized) surface.

Optical imagery data processing and analysis

WorldView2 multi-spectral and panchromatic data were acquired from Blackbridge Inc. (Lethbridge, AB) for Poplar fen on August 5, 2011. Digital numbers were converted to radiance and then converted to reflectance via atmospheric correction using Fast Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH) in Exelis ENVI. Orthorectification was performed using the DEM derived from LiDAR data. Pleiades multi-spectral were also acquired from Blackbridge Inc. for Pauciflora fen on August 8, 2012. The same procedures were applied for conversion of digital numbers to radiance and reflectance in ENVI. Orthorectification was performed using the LiDAR DEM.

Classification of vegetation species types, vegetation structure and micro-topography

Poplar was classified with a support vector machine supervised classification based on visual assessment of vegetation optical characteristics and LiDAR structural data fusion based on a linear kernel. Input data included 8-band (WorldView-2), canopy height, and above and below canopy gap fraction. Approximately 15-25 training sets were created per species type. Four species classes were created and further aggregated based on a 3 pixel majority filter to remove speckle. Species classes were then divided into 2 m binned vegetation height characteristics. As a result of taller vegetation and occlusion of ground-cover vegetation, species distribution did not appear to be associated with micro-topography (hummocks and hollows), and therefore, micro-topography was excluded from the resulting classification.
Pauciflora was classified with a maximum likelihood classification (MLC) using similar methods of 4-band multi-spectral (Pleiades) and LiDAR data fusion based on visual examination of optical differences in species characteristics (and other land cover types within and adjacent to the fen). Between 15 and 25 training sets were created per species type, and 12 classes were created (including road). Species were further classified into hummocks, hollows and flat areas, and have naming conventions 1-5 that includes: conifer (*Larix laricina*), road, deciduous, conifer (*Picea mariana*), and other woody-shrub species, respectively. Numbers 106-312 refer to hummocks (100s), mid- or flat (200s) and hollows (300s) wetland ground cover and shrub species growing in these areas.

3.8 Statistical and Error Analysis

The data were delineated by month and by period of plant growth into Early Green (*EG*, DOY 121 to 158), Green (*G*, DOY 158 to 218) and Late Green (*LG*, DOY 219 to 260) to better understand temporal and seasonal trends. *EG* is generally defined as the period in which vascular species emerged but are immature, the *G* period corresponds with the stage vascular species were maturing, and the *LG* period represents the stage vascular species reached maturity and *LAI* reached a maximum (Solondz *et al.*, 2008). Results were compared using a two-way analysis of variance (ANOVA) and independent sample *t*-tests, reported with the sample mean, if the data were normally distributed. If the data did not satisfy the test of normality, the Mann-Whitney or the Wilcoxon signed rank test was used to demine the statistical significance between variables. Differences were deemed to be statistically significant if they met a significance level of 0.05. Literature that has examined flux measurements has generally reported standard deviation (± S.D.) to access the daily uncertainty between and within sites (Kellner, 2001; McNeil and Waddington, 2003; Botting and Fredeen, 2006; Strack *et al.*, 2006; Brown *et al.*, 2014; Runkle *et al.*, 2014). For
this study, standard deviation was used to describe the natural variability of the reported mean. Multiple regression equations were used to explain the relative contribution of control parameters in regulating both \(ET \) and \(T \) (Clulow et al., 2013). Error associated with EC flux measurements was determined following methods in Kroon et al. (2010). The accuracy of the SHB method and steady-state assumption was calculated using methods described in Skauratani (1982), Groot and King (1992) and Grime et al. (1995). Finally, ventilated chamber error, frequently associated with changes to \(Q^* \) and the underlying microclimate, was calculated following McLeod et al. (2004).
Chapter Four
Results

4.1 Climate

Over the study period the May to August monthly mean daytime T_a were 11.7 °C, 15.9 °C, 15.9 °C, and 18.0 °C at Pauciflora, and 13.9 °C, 19.6 °C, 20.5 °C, and 19.6 °C at Poplar, respectively (Figures 6). T_a varied significantly between the two sites ($Z = -9.149, p < 0.01$) (n=113); Poplar generally reported higher values with a seasonal mean of 18.4 °C compared to Pauciflora at 15.2 °C. However, mean T_a averaged between both sites were higher than climate normal for the region (1981-2010) (Environment Canada, 2015). Mean daily T_g at Pauciflora were below freezing (mean -0.04 °C) between DOY 121 – 131, while mean T_g at Poplar remained above freezing throughout the duration of the study period aside from the first two days in May (mean -0.87 °C) (DOY 121 – 122). The highest T_g recorded at a depth of 2 cm was 19.9 °C and 21.5 °C on DOY 183 at Pauciflora and Poplar, respectively. A comparison of T_g reported at both fens demonstrated a significant variation ($Z = -3.491, p < 0.01$) (n=123) between the seasonal means of 13.4 °C and 13.9 °C, at Pauciflora and Poplar respectively. RH tended to increase over the study period with both sites reporting a seasonal mean of approximately 67%; demonstrating spikes that corresponded with P events. RH did not significantly vary between the two fens ($t = 0.130, p > 0.05$) (n=113).
Figure 6: Daily (a)(b) maximum and minimum air temperatures (T_a, °C) (6m)(3m), (c)(d) mean soil temperatures (T_g, °C) (2,5,10 cm depths), (e)(f) mean relative humidity (RH, %) (6m)(3m) and (g)(h) total precipitation (P, mm) over the 2013 growing season at Pauciflora and Poplar fen, Fort McMurray, Alberta, Canada.
The majority of P fell midseason, with Pauciflora and Poplar receiving 327.1 and 320.8 mm of rain between May to August, respectively (Figure 7). Pauciflora and Poplar received 79.5 and 73.2 mm more P for this period, respectively, relative to the 30-year average of 247.6 mm for May to August (Environment Canada, 2015). Flooding conditions developed early in the season at both sites due to multiple high magnitude P events that occurred in early June. Maximum P events occurred on DOY 161 and 210 Pauciflora received 66.8 and 39.8 mm of rain, while Poplar received 43.8 and 47.4 mm respectively.

Figure 7: Cumulative precipitation recorded at the Pauciflora and Poplar fens over the 2013 growing season, Fort McMurray, Alberta, Canada.
Monthly average daytime vapor pressure deficits (VPD) ranged between 0.7 and 0.8 kPa at Pauciflora, and 1.0 to 1.2 kPa at Poplar. VPD reached maximum values when Q^* was also the largest, peaking at 2.1 and 3.0 kPa on DOY 182 at Pauciflora and Poplar, respectively. VPD fluctuated throughout the study period, generally demonstrating an inverse relationship to windspeed (u, m s$^{-1}$) (Figure 8); seasonal patterns are described in the following section.

Figure 8: Monthly average windspeed (u, m s$^{-1}$) and vapour pressure deficit (VPD, kPa) with standard deviation error bars measured during the daylight hours at (a) Pauciflora and (b) Poplar fen, Fort McMurray, Alberta, Canada.
4.2 Meteorological Tower Flux Footprint

During the 2013 growing season the upwind location of the x_{frac} flux originated approximately 100 m and 120 m from an upwind distance (Table 5) at Pauciflora and Poplar, respectively. The upwind flux distance was largest in May, during the EG period of plant growth, at 112 m and 133 m, and smallest in August, the LG period, with averages dropping to 48 m and 109 m at Pauciflora and Poplar, respectively. Flux source areas are dependent on windspeed (u) (m s$^{-1}$) and wind direction (degrees), in conjunction with the upwind source vegetation and canopy structure. The mean u at Pauciflora was 1.7 m s$^{-1}$; reaching peak momentums throughout the months of June and July ranging between 3.0 and 4.6 m s$^{-1}$. Poplar reported a lower average of 1.0 m s$^{-1}$, with maxima occurring sporadically throughout May to July ranging between 1.8 and 3.0 m s$^{-1}$. Consistently higher u rates at Pauciflora contributed to the fen’s smaller footprint. Frictional velocity (u^*) (m s$^{-1}$) averaged 0.002 at Pauciflora and 0.39 at Poplar over the entire growing season. Results are dictated by roughness height; Pauciflora’s sparse canopy measured at an average height of 4.2 m compared to 6.5 m at Poplar (Table 3, 4), while the understory reached a maximum height of ~0.4 m in contrast to Poplar at ~0.7 m.

<table>
<thead>
<tr>
<th>Site</th>
<th>Month</th>
<th>u (m s$^{-1}$)</th>
<th>u^* (m s$^{-1}$)</th>
<th>Wind Direction (degrees)</th>
<th>Footprint Length x_{max} (m)</th>
<th>Footprint Length x_{frac} (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFLORA</td>
<td>MAY</td>
<td>1.88</td>
<td>0.002</td>
<td>194</td>
<td>24.9</td>
<td>112.0</td>
</tr>
<tr>
<td></td>
<td>JUN</td>
<td>1.74</td>
<td>0.001</td>
<td>203</td>
<td>19.8</td>
<td>88.7</td>
</tr>
<tr>
<td></td>
<td>JUL</td>
<td>1.85</td>
<td>-</td>
<td>186</td>
<td>22.0</td>
<td>98.6</td>
</tr>
<tr>
<td></td>
<td>AUG</td>
<td>1.46</td>
<td>0.000</td>
<td>188</td>
<td>10.6</td>
<td>47.7</td>
</tr>
<tr>
<td>POPLAR</td>
<td>MAY</td>
<td>1.19</td>
<td>0.186</td>
<td>170</td>
<td>29.8</td>
<td>133.6</td>
</tr>
<tr>
<td></td>
<td>JUN</td>
<td>1.00</td>
<td>0.142</td>
<td>179</td>
<td>26.5</td>
<td>118.7</td>
</tr>
<tr>
<td></td>
<td>JUL</td>
<td>0.93</td>
<td>0.388</td>
<td>160</td>
<td>28.4</td>
<td>127.2</td>
</tr>
<tr>
<td></td>
<td>AUG</td>
<td>0.69</td>
<td>0.233</td>
<td>176</td>
<td>24.5</td>
<td>109.8</td>
</tr>
</tbody>
</table>

Table 5: The 2013 growing season mean wind speed (u, m s$^{-1}$), mean frictional velocity (u^*, m s$^{-1}$), wind direction (degrees) and averaged flux footprint length of the peak contributing area (x_{max}, m) and the 80 % contribution area (x_{frac}, m) for the EC tower installed at Pauciflora (PFLORA) and Poplar Fen, Fort McMurray, Alberta, Canada.
In addition, it is necessary to define the nature of the flux based on wind direction. The upwind source governs the direction of the fluxes and was estimated with a WindRose diagram (Figures 10) (Lakes Environmental Software). The results reveal that the majority of the flux footprint originated from the east and south-east portion of the fens, with Pauciflora tending towards the south and Poplar towards the east. The southern portion of Pauciflora consists of a sparse to completely bare canopy that includes the dominant tree species *Picea mariana*. The understory is composed of the dominant shrub species *Oxycoccus microcarpus*, *Rhododendron groenlandicum*, *Andromeda polifolia* as well as *Carex aquatilis*. The eastern portion of Poplar is composed of a dense canopy of the dominant tree species *Larix laricina*, with a dense understory consisting of *Betula pumila*, *Ledum groenlandicum*, and *Equisetum fluviatile*.
Figure 10: WindRose diagram partitioning wind direction and speed (m/s) over the 2013 growing season at (a) Pauciflora and (b) Poplar fen, Fort McMurray, Alberta, Canada.
4.3 LiDAR Land Cover Classification

Groundcover species captured within chamber plots, accurately classified ~ 50% and ~ 60% of the vegetation communities projected by the LiDAR land-cover classification within the entire fen boundary, at Pauciflora and Poplar, respectively. Table 6 and 7 display the results from the fusion-based spectral and airborne LiDAR derived land-cover classification. Four output maps for each fen are shown in Figure 10 and 11, which display classified vegetation cover (Figure 10a, 11a), microforms (hummocks, hollows, lawns and saturated areas) (Figure 10b, 11b), dominant vegetation cover captured by the flux footprint x_{frac} (Figure 10c, 11c) and x_{max} (Figure 10d, 11d).

Pauciflora is composed of 35% hummocks and 35% hollows, with remaining ground cover either consisting of lawn or saturated areas. In comparison, Poplar’s microtopography is 47% hummocks and 53% hollows within the fen area. Poplar’s dense canopy limited the degree of ground cover that could be detected and classified through airborne LiDAR, therefore identified chamber species were compared against additional vegetation surveys conducted within the fen (data not shown). The hummocks at Pauciflora are on average covered by 33% vascular vegetation with a mean height of 17 cm, while vascular vegetation cover within hollows are marginally lower with a mean of 30% and an average plant height of 16.5 cm. The hummocks at Poplar were on average covered by 25% vascular species and sustained a mean height of only a few centimeters. This does not account for the dominant *Betula pumila* sub-canopy that averages a few meters in height. Conversely, hollows were covered by < 10% vascular vegetation with a mean height of < 1 cm. The hollows are concave features that occasionally contained pooling water at Pauciflora with a mean VMC of 80%, but a majority remained permanently flooded at Poplar. Conversely, hummocks were on average topographically higher than hollows, by 12 cm at Pauciflora and only 5 cm higher at Poplar.
<table>
<thead>
<tr>
<th>Class</th>
<th>Species</th>
<th>Topography</th>
<th>Percent cover within fen boundary</th>
<th>Percent cover within the tower footprint (80% Contribution)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>High cover Rhododendron gro., High cover Sphagnum ang.</td>
<td>Hummock</td>
<td>6.4</td>
<td>1.4</td>
</tr>
<tr>
<td>5</td>
<td>Medium cover Rhododendron gro., High cover Sphagnum ang.</td>
<td>Hummock</td>
<td>18.4</td>
<td>26.7</td>
</tr>
<tr>
<td>106</td>
<td>Low cover Rhododendron gro. High cover Sphagnum ang.</td>
<td>Hollow</td>
<td>4.0</td>
<td>1.5</td>
</tr>
<tr>
<td>111</td>
<td>Medium cover Smilacena trifolia, High cover Sphagnum ang.</td>
<td>Hollow</td>
<td>2.4</td>
<td>2.5</td>
</tr>
<tr>
<td>112</td>
<td>Medium cover Carex aquatilis, High cover Sphagnum ang.</td>
<td>Lawn</td>
<td>3.1</td>
<td>2.6</td>
</tr>
<tr>
<td>206</td>
<td>Low cover Carex aquatilis, High cover Sphagnum ang.</td>
<td>Hollow</td>
<td>3.9</td>
<td>2.1</td>
</tr>
<tr>
<td>210</td>
<td>High cover Sphagnum ang.</td>
<td>Lawn</td>
<td>1.7</td>
<td>3.2</td>
</tr>
<tr>
<td>211</td>
<td>Medium cover Sphagnum ang., Medium cover Sphagnum mag.</td>
<td>Lawn</td>
<td>1.8</td>
<td>2.5</td>
</tr>
<tr>
<td>308</td>
<td>High cover Andromeda polifolia, Medium cover Sphagnum mag.</td>
<td>Hummock</td>
<td>5.9</td>
<td>7.4</td>
</tr>
<tr>
<td>312</td>
<td>Medium cover Rhododendro gro.</td>
<td>Hummock</td>
<td>3.2</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Table 6: Summary of results from the land-cover classification, derived from fusion-based spectral and airborne LiDAR data, Pauciflora fen, Fort McMurray, Alberta, Canada (2013). Associated with Figure 10.
<table>
<thead>
<tr>
<th>Class</th>
<th>Species</th>
<th>Topography</th>
<th>Percent cover within fen boundary (%)</th>
<th>Percent cover within the tower footprint (80% Contribution)</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>Low cover Larix laricina</td>
<td>Hummock</td>
<td>8.4</td>
<td>5.8</td>
</tr>
<tr>
<td>42</td>
<td>Medium cover Larix laricina</td>
<td>Hummock</td>
<td>11.4</td>
<td>9.4</td>
</tr>
<tr>
<td>44</td>
<td>High cover Larix laricina</td>
<td>Hummock</td>
<td>10.8</td>
<td>10.8</td>
</tr>
<tr>
<td>70</td>
<td>Saturated area</td>
<td>Hollow</td>
<td>2.6</td>
<td>2.5</td>
</tr>
<tr>
<td>71</td>
<td>High cover Betula pumila</td>
<td>Hummock</td>
<td>6.0</td>
<td>5.5</td>
</tr>
<tr>
<td>72</td>
<td>Low cover Picea mariana, High cover Tomentypnum nitens</td>
<td>Hummock</td>
<td>9.8</td>
<td>8.8</td>
</tr>
<tr>
<td>73</td>
<td>Medium cover Picea mariana, Medium cover Tomentypnum nitens</td>
<td>Hummock</td>
<td>9.2</td>
<td>8.1</td>
</tr>
<tr>
<td>74</td>
<td>High cover Picea mariana, Low cover Tomentypnum nitens</td>
<td>Hummock</td>
<td>8.0</td>
<td>6.6</td>
</tr>
</tbody>
</table>

Table 7: Summary of results from the land-cover classification derived from fusion-based spectral and airborne LiDAR data, Poplar fen, Fort McMurray, Alberta, Canada (2013). Associated with Figure 11.
Figure 10: LiDAR output data, groundcover classification with applied maximum likelihood classification and fusion with topographic morphology and vegetation structure of species types and mixed vegetation cover within microforms, (b) classified microforms, (c) 80% contribution footprint vectors (x_{frac}) and (d) peak footprint vectors (x_{max}), Pauciflora fen, Fort McMurray
Figure 11: LiDAR output data (a) groundcover classification with a vector machine supervised classification and fusion with topographic morphology and vegetation structure of species types and mixed vegetation cover within microforms, and (b) classified microforms, cb) 80\% contribution footprint vectors \(x_{frac} \), and (d) peak footprint vectors \(x_{max} \), Poplar fen, Fort McMurray, Alberta.
4.4 Energy Flux Densities

Q^* fluctuated throughout the season, peaking in mid-May through to early July, reaching a maximum of 201 W m$^{-2}$ on DOY 172 and 215 W m$^{-2}$ on DOY 154 at Pauciflora and Poplar, correspondingly. Q^* declined during the last month of the study period, mean August Q^* was 95 W m$^{-2}$ compared to the seasonal mean of 111 W m$^{-2}$ at Pauciflora, and 120 W m$^{-2}$ compared to the seasonal mean of 137 W m$^{-2}$ at Poplar. Throughout the growing season, mean Q^* remained significantly higher at Poplar compared to Pauciflora ($U = 4963, p < 0.01$). However, missing Q^* data, between DOY 234 and 243, is likely producing an inflated seasonal average. Both sites displayed similar seasonality in energy balance components with peaks generally occurring on the same DOY, reaching a maximum between 1200-1430 MST (Figure 13) and decreasing in intensity in the evening (1700-1900 MST) and early morning (0630-0830 MST). Energy fluxes Q^*, Q_E and Q_H were generally positive during the day and negative at night.
Figure 12: Mean daily wetland energy flux densities (W m$^{-2}$) for the 2013 growing season, at (a) Pauciflora, and (b) Poplar fen, Fort McMurray, Alberta, Canada.
Q_E represented the dominant flux at Pauciflora for a majority of the growing season, averaging 65 W m$^{-2}$. Q_E reached a seasonal maximum of 134 W m$^{-2}$ on DOY 182, compared to Q_H that peaked later in the season at 95 W m$^{-2}$ on DOY 197. Mean Q_H was 47 W m$^{-2}$ (Figure 12a). Similarly, there was a marked dominance of Q_E over Q_H at Poplar throughout a majority of the growing season, with the exception of energy fluxes recorded during the early green period (Figure 12b). Q_E peaked at 137 W m$^{-2}$ on DOY 171, 190 and 207, during the defined G period of plant growth. Peaks in Q_E generally followed periods of moderate P (events >10 mm) and increasing Q^*. Mean Q_E was 80 W m$^{-2}$ compared to the seasonal mean of Q_H of 53 W m$^{-2}$. As previously mentioned, Q_H peaked early in the season at 118 W m$^{-2}$ on DOY 138.

<table>
<thead>
<tr>
<th>Site</th>
<th>Month</th>
<th>Q^* (W m$^{-2}$)</th>
<th>S.D.</th>
<th>Q_G (W m$^{-2}$)</th>
<th>S.D.</th>
<th>Q_E (W m$^{-2}$)</th>
<th>S.D.</th>
<th>Q_H (W m$^{-2}$)</th>
<th>S.D.</th>
<th>Q^*-Q_G</th>
<th>Q_E/Q^*-Q_G</th>
<th>Q_H/Q^*-Q_G</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFLORA</td>
<td>MAY</td>
<td>143.7 ±34.8</td>
<td></td>
<td>8.7 ±3.7</td>
<td></td>
<td>74.4 ±19.7</td>
<td></td>
<td>60.5 ±16.8</td>
<td></td>
<td>135.0</td>
<td>0.55</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>JUN</td>
<td>111.0 ±62.7</td>
<td>4.7</td>
<td>±3.2</td>
<td>62.9</td>
<td>±37.8</td>
<td>43.5</td>
<td>±23.3</td>
<td>106.3</td>
<td>0.57</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JUL</td>
<td>110.4 ±60.5</td>
<td>2.5</td>
<td>±3.5</td>
<td>63.2</td>
<td>±36.7</td>
<td>44.8</td>
<td>±24.6</td>
<td>107.9</td>
<td>0.58</td>
<td>0.42</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AUG</td>
<td>95.4 ±40.0</td>
<td>1.0</td>
<td>±2.9</td>
<td>71.7</td>
<td>±26.7</td>
<td>54.0</td>
<td>±39.5</td>
<td>99.6</td>
<td>0.60</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>POPLAR</td>
<td>MAY</td>
<td>173.1 ±26.1</td>
<td>3.0</td>
<td>±0.6</td>
<td>85.0</td>
<td>±15.7</td>
<td>85.1</td>
<td>±16.7</td>
<td>170.1</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JUN</td>
<td>133.2 ±64.7</td>
<td>2.4</td>
<td>±1.3</td>
<td>81.0</td>
<td>±41.1</td>
<td>50.0</td>
<td>±23.7</td>
<td>130.8</td>
<td>0.62</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JUL</td>
<td>132.2 ±62.5</td>
<td>1.0</td>
<td>±1.4</td>
<td>83.3</td>
<td>±40.0</td>
<td>48.0</td>
<td>±23.1</td>
<td>131.2</td>
<td>0.64</td>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AUG</td>
<td>117.0 ±44.2</td>
<td>0.9</td>
<td>±1.1</td>
<td>71.6</td>
<td>±26.5</td>
<td>44.6</td>
<td>±20.8</td>
<td>116.1</td>
<td>0.62</td>
<td>0.38</td>
<td></td>
</tr>
</tbody>
</table>

Table 8: The monthly mean net radiation (Q^*), soil heat flux (Q_G), latent heat flux (Q_E), sensible heat flux (Q_H) and available energy (Q^*-Q_G); relative latent heat flux (Q_E/Q^*-Q_G) and relative sensible heat flux (Q_H/Q^*-Q_G) for the 2013 growing season at Pauciflora (PFLORA) and Poplar Fen, Fort McMurray, Alberta, Canada. (Pauciflora August means contain missing data; instrument failure).

Energy flux components, expressed as a ratio of Q^*-Q_G, are shown in Table 8. Pauciflora was governed by the relative latent heat flux (Q_E/Q^*-Q_G), peaking following high magnitude P events, or multiple low magnitude P events. Conversely, at Poplar there was a shift from the early season green period that was equally governed by Q_H/Q^*-Q_G that switched with the onset of ‘leaf out’ to periods regulated by the relative latent heat flux (Q_E/Q^*-Q_G).
Figure 13: Hourly mean wetland energy flux densities (W m⁻²) for each month in the 2013 growing season, at Pauciflora and Poplar fen, Fort McMurray, Alberta, Canada.
4.5 Total Evapotranspiration

Pauciflora ET fluctuated over the growing season, averaging 2.3 mm d\(^{-1}\) (± 1.2). Although missing data may be inflating the ET fluxes throughout August, as the late study period exhibited a notable reduction in \(Q^*\) and increase in RH. ET reached a maximum on DOY 182 at 4.6 mm d\(^{-1}\). Conversely, daily ET at Poplar was less variable, averaging ~1 mm d\(^{-1}\) higher than Pauciflora with a seasonal mean of 3.6 mm d\(^{-1}\) (± 0.6). Daily ET demonstrated a noticeable decline throughout August with a mean of 3.3 mm d\(^{-1}\) (± 0.4). In contrast to Pauciflora, Poplar recorded multiple peak ET events (> 4.5 mm d\(^{-1}\)) throughout the green period of plant growth. Both sites displayed similar seasonality, peaking mid-season during the period of maximum ‘leaf out.’ Due to Poplar’s dense canopy, ET was more reactive to the growth cycles of the vegetation. Overall, Pauciflora reported lower seasonal ET rates exhibiting greater variance (\(\sigma^2\)), 1.4 \((n=77)\) from the mean, whereas ET recorded at Poplar was not only higher but exhibited lower \(\sigma^2\), 0.33 \((n=95)\), from the seasonal mean.
Figure 14: Daily evapotranspiration (ET) (mm d$^{-1}$) and precipitation (P) (bars) (mm) by DOY for the 2013 growing season, measured at (a) Pauciflora and (b) Poplar fen, Fort McMurray, Alberta, Canada.
Pauciflora ET was significantly correlated with available energy (Q^*-Q_G) ($F(1,75) = 21.981, p < 0.01$), and formed a strong linear relationship with daily ET ($R^2 = 0.95$) ($n=56$). ET demonstrated a similar response to VPD ($F(1,75) = 20.368, p < 0.01; R^2 = 0.60$) ($n=56$) but it was less responsive to mean daily T_a ($F(1,75) = 14.745, p < 0.01; R^2 = 0.47$) ($n=56$) (Figure 15). ET did not exhibit a distinguishable response to changes in VMC, because the water table remained at or above the surface, VMC was never limited. Daily ET at Poplar was significantly correlated with available energy ET ($F(1,93) = 73.349, p < 0.01$), however it provided a weak explanation for the variation in ET ($R^2 = 0.41$) ($n=74$). Daily ET demonstrated a similar response to VPD ($F(1,93) = 84.892, p < 0.01; R^2 = 0.48$) ($n=74$), and mean daily T_a ($F(1,93) = 67.992, p < 0.01, R^2 = 0.42$) ($n=74$) (Figure 15). Additionally, peak ET events at both fens generally followed large P events (Figure 14). Daily ET peaked between the daylight hours 1100-1300 MST, when Q^* reached a maximum, followed by a decline when VPD reached a daily maximum (Figure 16).
Figure 15: Relationship between ET (mm d$^{-1}$) and (a)(b) available Energy (W m$^{-2}$), (b)(c) air temperature (T_a)(°C), (d)(e) VPD (kPa), and (f)(g) volumetric moisture content (VMC), Pauciflora and Poplar fen, Fort McMurray, Alberta, Canada.
Figure 16: Hourly mean (a)(b) evapotranspiration (ET) (mm d$^{-1}$), (c)(d) net radiation (Q^*) (W m$^{-2}$) and (e)(f) vapour pressure deficit (VPD) (kPa), Pauciflora and Poplar fen, Fort McMurray, Alberta, Canada.
4.6 Canopy Transpiration

Similar to ET, canopy transpiration (T) at Pauciflora remained fairly consistent over the duration of the study period, exhibiting a seasonal mean of 0.3 mm d$^{-1}$. Both ET and T demonstrated comparable seasonal trends that peaked during the G period of plant growth, followed by declining rates throughout August. T monthly mean was 0.6 mm d$^{-1}$ (± 0.3), 0.3 mm d$^{-1}$ (± 0.2) and 0.2 mm d$^{-1}$ (± 0.1) in June, July and August, respectively (Figure 17a). Poplar T and ET displayed similar seasonality, with a seasonal mean considerably higher than Pauciflora, averaging 2.7 mm d$^{-1}$, with larch species contributing roughly 1.5 mm d$^{-1}$ (± 0.5) and black spruce comprising the last 1.2 mm d$^{-1}$ (± 0.3). Monthly means exhibited greater consistency at Poplar than at Pauciflora, with both June and July averaging 3.0 mm d$^{-1}$ (± 0.6), followed by a decline to 2.0 mm d$^{-1}$ (± 0.5) throughout August (Figure 17b).
Figure 17: (a) Pauciflora and (b) Poplar fen, evapotranspiration (ET) (mm d$^{-1}$) (seasonal mean solid line) and canopy transpiration (T) (mm d$^{-1}$) (seasonal mean dashed line) by DOY for the 2013 growing season, Fort McMurray, Alberta, Canada.
Cumulative canopy transpiration measured between May and August was 29 mm at Pauciflora and approximately 202 mm at Poplar; not accounting for missing data between DOY 234 to 243 (Figure 18). Pauciflora was composed of a smaller stem density of 58 trees compared to Poplar that supported a substantially higher stem density of 237 trees that were captured in the forest inventory surveys (IEG, 2014).

Figure 18: Daily canopy transpiration (mm d\(^{-1}\)) (bars) and accumulated water use (dashed line) (mm) at (a) Pauciflora and (b) Poplar fen, by DOY for the 2013 growing season, Fort McMurray, Alberta, Canada.
Canopy Stem Density and LAI

The tree canopy at Pauciflora is predominately *Picea mariana*; the only species captured within the forestry industry surveys (IEG, 2014). Tree growth was stunted, with the largest surveyed tree measuring 9.0 cm in diameter (*DBH*). Mean *DBH* was 5.5 cm (± 1.3) with a corresponding sapwood area of 20.7 cm² (*n*=43) (Figure 19a). In contrast, the canopy at Poplar is more diverse, consisting of both *Picea mariana* and *Larix laricina* across a larger size distribution. *Picea mariana* species were generally larger than those at Pauciflora, with the largest tree measuring 17.5 cm in stem diameter. Mean *DBH* of black spruce species was 8.4 cm (± 3.5) with a corresponding sapwood area of 50.0 cm² (*n*=51) (Figure 19b). However, within the immediate vicinity of the EC tower (*xmax* footprint), larch represents the dominant species that were on average slightly smaller, with a mean *DBH* of 6.0 cm (± 2.8), and sapwood area of 25.3 cm² (*n*=184).
Figure 19: Average DBH (box-plot) and LAI (line) per plot, measured from Forest Inventory Surveys at (a) Pauciflora and (b) Poplar fen, during the 2013 growing season, Fort McMurray, Alberta, Canada. (Green symbol represent plot LAI)
LAI is the leaf material (m²) per unit of ground area (m²), and is a biophysical property closely linked to plant ET (Allen et al., 1998). Pauciflora had a mean LAI of 0.55 (± 0.67) while the canopy at Poplar was significantly higher at 2.82 (± 0.96). However, of the 16 plots measured at Pauciflora, only one plot reported a LAI above 1.0. The remaining plots were significantly lower, with some plots completely devoid of tree cover. Removing the outlier plot reduced mean LAI to 0.41 (± 0.27). Cumulative monthly T at Pauciflora was significantly correlated with canopy LAI ($p < 0.01$) when analyzed against all 16 plots (Figure 20a). However, removing the outlier plot diminished the strength of the relationship and the correlation was not significant ($p > 0.01$). Similarly, cumulative monthly T at Poplar demonstrated a weak to moderate correlation with canopy LAI, with an average $R^2 = 0.30$ (Figure 20b).

Figure 20: Accumulative monthly Transpiration (mm) plotted against plot LAI, for (a) Pauciflora and (b) Poplar fen, measured over the 2013 growing season, Fort McMurray, Alberta, Canada.
Micrometeorological and Climate Controls

T was compared to micrometeorological parameters including Q^*-Q_G, $T_a\ RH\ P$, and VMC to determine the individual and combined drivers of T (Figure 21, Table 9). Additionally, T was compared by simple linear regression to VPD (Figure 22, 23). An analysis of the aforementioned variables produced a significantly correlated relationship with T ($p < 0.05$). An individual analysis of each variable revealed that Q^*-Q_G was the most significantly correlated with T. The multiple regression produced an $R^2 = 0.50$, moderately explaining variation in T; generally exhibiting an increase in T that corresponded with an increase in magnitude of the predictor variables. Residuals were normally distributed and an analysis of accumulated observed against accumulated predicted values produced a strong fit $R^2 = 0.96$. Conversely, Poplar T was not significantly correlated with the aforementioned variables. However, T was the most responsive to changes to Q^*-Q_G, demonstrating similarity between peak events, and moderately responsive to changes in T_a (Figure 21, Table 9).
Figure 21: T (mm d$^{-1}$) plotted against (a)(b) max and min daily air temperature ($^\circ$C), (c)(d) available energy (W m$^{-2}$), and (e)(f) precipitation (mm) by DOY at Pauciflora and Poplar fen, Fort McMurray, Alberta.
Table 9: Average ET, T and associated predictor variables: available energy (Q*-QG), windspeed (u), VPD, air temperature (Ta), RH, P and volumetric moisture content (VMC) by plant growth period (early green (EG) (DOY 121-158), green (G) (DOY 159-218) and late green (LG) (DOY 219-260), over the 2013 growing season, at (a) Pauciflora and (b) Poplar fen, Fort McMurray, Alberta, Canada.

Canopy T was monitored at the beginning of the G through to the LG periods of plant growth. Q*-QG peaked in the EG period at both sites at with a mean of 135 and 165 W m\(^{-2}\) at Pauciflora and Poplar, respectively. Q*-QG was the lowest during the latter part of the growing season, Poplar reported a mean of 108 W m\(^{-2}\). Despite missing data for the LG period at Pauciflora, Q*-QG likely declined given the similar trends exhibited between the two fens. Although Q*-QG was significantly correlated with Ta, air temperatures remained consistently high despite declining Q* throughout August. Mean Ta was lowest during the EG period at 5 and 3 °C and peaked in the LG period at 22 and 30 °C at Pauciflora and Poplar, respectively. Average RH reached a maximum of ~ 75% mid-season at Pauciflora, and late season at Poplar reaching ~ 74%. However, RH was more variable at Pauciflora compared to Poplar. There is a notable spike in RH (RH ≥ 70%) at Poplar with the onset of ‘leaf out,’ which parallels a reduction in average windspeed (u < 1 m s\(^{-1}\)) that is maintained throughout the duration of the study period. Correspondingly, windspeed at Pauciflora exhibited greater irregularity, with no noticeable decline following ‘leaf out.’
Two high magnitude \(P \) events (\(P > 40 \) mm) occurred at the beginning and end of the \(G \) period at both sites. The first event (DOY 160) was followed by a pronounced spike in \(T \). The period was again marked by the onset of ‘leaf out,’ increasing \(Q^* \) and \(T_a \). The second peak event (DOY 209) was, in contrast, followed by a gradual reduction of \(T \) that persisted into the \(LG \) period. The late growing season was marked by a decline in \(Q^* \), less frequent \(P \) events, increased \(RH \), and reduced \(u \). However, it is late season increase in \(RH \) (Figure 6) and persistence of cooler \(T_a \) at Pauciflora that is likely driving the substantial reduction in late season \(T \) at Pauciflora, in comparison to Poplar. Finally, \(VMC \) and groundwater elevation did not fluctuate significantly over the study period. As previously shown, fluxes was not significantly correlated with \(VMC \) (Figure 15).

Finally, a comparison of \(T \) against \(VPD \) did not demonstrate a statistically significant correlation at either fen however Pauciflora \(T \) is more responsive to changes \(VPD \) compared to Poplar, generally increasing with increasing \(VPD \) until the threshold of approximately 1.5 kPa was surpassed (Figure 22). Poplar’s \textit{Picea mariana} displayed a negligible response to changes in \(VPD \), whereas \textit{Larix laricina} not only exhibited greater variability but it peaked in conditions of nearly 0 kPa, suggesting a log-normal curve (\(T \) was negatively correlated with \(VPD \)) (Figure 23). However, a closer examination for potential outlier variables would be necessary to confirm this response.
Figure 22: Relationship between T (mm d$^{-1}$) and VPD (kPa), Pauciflora fen, Fort McMurray, Alberta, Canada.

Figure 23: Relationship between (a) *Picea mariana* and (b) *Larix laricina* (mm d$^{-1}$) against VPD (kPa), Poplar fen, Fort McMurray, Alberta, Canada.
4.7 Groundcover Vegetation Captured within Chamber Plots

Pauciflora was dominated by typical poor fen species, including *Rhododendron groenlandicum*, *Oxycoccus microcarpus*, and *Smilacena trifolia* that were equally captured within hummocks and hollows. *Carex aquatilis* was largely present within hollow microforms, while *Rubus chamaemorus*, *Vaccinium vitis-idaea*, and *Picea mariana* were present only on hummocks (Table 10). The dominant species captured within chamber plots at Poplar included *Equisetum fluviatile* and a variety of sedge species, in which *Carex aquatilis* was the most dominant. Both species were present in both hummock and hollow microforms, however *E. fluviatile* was the only species present within completely flooded plots. *B. pumila*, *S. trifolia* and *Salix* species were strongly correlated with hummock microforms (Table 11).

Microform LAI did not vary significantly between microforms at Pauciflora ($U=30$, $p>0.05$) ($n=16$). Hummocks supported a higher mean of LAI of 0.76 and hollows just slightly less at 0.70 (Figure 24a). Results were similar when LAI was stratified by canopy ($U=17$, $p>0.05$) ($n=16$). Differences in microform LAI at Poplar were not significant ($U=24$, $p>0.05$) ($n=14$), with a mean LAI of 1.04 and 1.08 between hummocks and hollows, respectively (Figure 24b). However, when LAI was separated by canopy cover, differences were significant ($U=5$, $p<0.05$) ($n=14$), supporting a mean LAI 0.92 and 1.26 between open and covered plots, respectively. Finally, when surface LAI was cumulatively grouped for each fen, results demonstrated a significant difference ($U=37$, $p=0.01$) ($n=30$) between the seasonal mean of 0.73 and 1.06 at Pauciflora and Poplar, respectively.
Mean aboveground biomass (AGB, g m$^{-2}$) of hummocks at Pauciflora was significantly higher than hollow AGB biomass; with means of 1770 and 930 g m$^{-2}$, respectively ($U = 12, p < 0.05$) ($n=16$). Belowground biomass (BGB, g m$^{-2}$) measured between microforms at Pauciflora was not significantly different, averaging 84 and 585 g m$^{-2}$ between hummocks and hollows ($U = 23, p > 0.05$) ($n=16$). When results were separated by canopy cover, neither AGB ($U = 17, p > 0.05$) or BGB ($U = 16, p > 0.05$) were determined to be significantly different (Figure 25a.c, Table 10). Conversely, there was no significant difference between AGB ($U = 13, p > 0.05$) or BGB ($U = 17, p > 0.05$) between microforms at Poplar, averaging AGB of \sim 490 and 300 g m$^{-2}$, and BGB of \sim 60 and 80 g m$^{-2}$, between hummocks and hollows, respectively. Finally, when results were separated by canopy cover, both AGB ($U = 14, p > 0.05$) and BGB ($U = 23, p > 0.05$) exhibited consistency between means (Figure 25b.c, Table 11)
Figure 25: Mean growing season (a)(b) above (AGB) and (c)(d) belowground biomass (BGB) (g m⁻²) by canopy cover and microform at Pauciflora and Poplar fen, Fort McMurray, Alberta, Canada, 2013 (Error bars signify standard deviation (S.D.) of variables).
<table>
<thead>
<tr>
<th>Hummock</th>
<th>Biomass</th>
<th>LAI</th>
<th>Hollow</th>
<th>Biomass</th>
<th>LAI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canopy Cover</td>
<td>Dominant Vegetation</td>
<td>AB (g m⁻²)</td>
<td>BG (g m⁻²)</td>
<td>Collar (m² m⁻²)</td>
<td>Tree (m² m⁻²)</td>
</tr>
<tr>
<td>OPEN</td>
<td>Sphagnum sp. C. calyculata S. trifolia R. chamaem.</td>
<td>2479</td>
<td>171</td>
<td>1.04</td>
<td>-</td>
</tr>
<tr>
<td>OPEN</td>
<td>Sphagnum sp. S. trifolia C. calyculata O. microcar.</td>
<td>620</td>
<td>46</td>
<td>0.94</td>
<td>-</td>
</tr>
<tr>
<td>OPEN</td>
<td>Sphagnum sp. L. groenland. O. microcar. R. chamaem. C. calyculata</td>
<td>3580</td>
<td>23</td>
<td>0.48</td>
<td>-</td>
</tr>
<tr>
<td>OPEN</td>
<td>Sphagnum sp. C. calyculata C. pauciflora V. vitis-idaea O. microcar.</td>
<td>1784</td>
<td>113</td>
<td>0.73</td>
<td>-</td>
</tr>
<tr>
<td>PART COVERED</td>
<td>Sphagnum sp. S. trifolia L. groenland. C. calyculata V. vitis-idaea</td>
<td>883</td>
<td>110</td>
<td>1.27</td>
<td>0.17</td>
</tr>
<tr>
<td>COVERED</td>
<td>Sphagnum sp. Carex sp. S. trifolia O. microcar. A. polifolia C. calyculata S. trifolia</td>
<td>1157</td>
<td>48</td>
<td>0.68</td>
<td>0.45</td>
</tr>
<tr>
<td>OPEN</td>
<td>Sphagnum sp. A. polifolia C. calyculata S. trifolia</td>
<td>2059</td>
<td>117</td>
<td>0.45</td>
<td>-</td>
</tr>
<tr>
<td>OPEN</td>
<td>Sphagnum sp. S. trifolia C. calyculata L. groenland. A. polifolia</td>
<td>1614</td>
<td>46</td>
<td>0.48</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 10: Dominant vegetation, above and belowground biomass (g m⁻²) of community-scale plots, separated between hummock (even) and hollow (odd) microforms and canopy cover, Pauciflora fen, Fort McMurray, Alberta, 2013. OPEN canopy cover, PAR > 500 μmol m⁻² s⁻¹, COVERED, PAR < 500 μmol m⁻² s⁻¹.
<table>
<thead>
<tr>
<th></th>
<th>Canopy Cover</th>
<th>Dominant Vegetation</th>
<th>Biomass AB (g m$^{-2}$)</th>
<th>Biomass BG (g m$^{-2}$)</th>
<th>LAI Collar (m2 m$^{-2}$)</th>
<th>LAI Tree (m2 m$^{-2}$)</th>
<th></th>
<th>Canopy Cover</th>
<th>Dominant Vegetation</th>
<th>Biomass AB (g m$^{-2}$)</th>
<th>Biomass BG (g m$^{-2}$)</th>
<th>LAI Collar (m2 m$^{-2}$)</th>
<th>LAI Tree (m2 m$^{-2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OPEN</td>
<td>S. trifolia, E. fluviatile, B. pumila</td>
<td>310</td>
<td>15</td>
<td>1.04</td>
<td>-</td>
<td>2</td>
<td>OPEN</td>
<td>E. fluviatile</td>
<td>483</td>
<td>95</td>
<td>0.89</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>OPEN</td>
<td>T. nitens, E. fluviatile, B. pumila</td>
<td>473</td>
<td>152</td>
<td>0.87</td>
<td>-</td>
<td>4</td>
<td>OPEN</td>
<td>E. fluviatile Carex ssp.</td>
<td>133</td>
<td>95</td>
<td>0.75</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>OPEN</td>
<td>T. nitens, S. trifolia Carex ssp.</td>
<td>707</td>
<td>49</td>
<td>1.10</td>
<td>-</td>
<td>6</td>
<td>OPEN</td>
<td>T. nitens S. trifolia Carex ssp.</td>
<td>532</td>
<td>98</td>
<td>0.86</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>COVERED</td>
<td>H. splendidens S. trifolia Carex ssp.</td>
<td>203</td>
<td>40</td>
<td>1.40</td>
<td>2.12</td>
<td>8</td>
<td>COVERED</td>
<td>E. fluviatile Carex ssp.</td>
<td>114</td>
<td>72</td>
<td>1.38</td>
<td>2.12</td>
</tr>
<tr>
<td>9</td>
<td>OPEN</td>
<td>S. trifolia, B. pumila, E. fluviatile</td>
<td>804</td>
<td>61</td>
<td>0.67</td>
<td>-</td>
<td>10</td>
<td>COVERED</td>
<td>E. fluviatile</td>
<td>10</td>
<td>103</td>
<td>1.00</td>
<td>2.43</td>
</tr>
<tr>
<td>11</td>
<td>OPEN</td>
<td>S. trifolia, E. fluviatile Salix ssp.</td>
<td>354</td>
<td>10</td>
<td>1.14</td>
<td>-</td>
<td>12</td>
<td>COVERED</td>
<td>T. nitens S. trifolia G. trifidum</td>
<td>565</td>
<td>8</td>
<td>1.27</td>
<td>4.17</td>
</tr>
<tr>
<td>13</td>
<td>COVERED</td>
<td>T. nitens, E. fluviatile Carex ssp.</td>
<td>574</td>
<td>99</td>
<td>1.09</td>
<td>2.12</td>
<td>14</td>
<td>COVERED</td>
<td>T. nitens S. trifolia Carex ssp.</td>
<td>297</td>
<td>64</td>
<td>1.42</td>
<td>2.12</td>
</tr>
</tbody>
</table>

Table 11: Dominant vegetation, above and belowground biomass (g m$^{-2}$) of community-scale plots, separated between hummock (even) and hollow (odd) microforms and canopy cover, Poplar fen, Fort McMurray, Alberta, 2013. OPEN canopy cover, \(PAR > 300 \ \mu\text{mol m}^{-2} \ \text{s}^{-1} \), COVERED, \(PAR < 300 \ \mu\text{mol m}^{-2} \ \text{s}^{-1} \).
In general, Pauciflora’s *Picea mariana* produced a low canopy cover that permitted an understory that was dominated by *Sphagnum*, whereas Poplar’s *Larix laricina* produced a dense cover that was dominated by *Tomentypnum nitens* and feather moss species regardless of topographic position. To access potential differences in understory species, specifically whether certain species favoured open or covered canopy conditions, plots were stratified based on moss and vascular percent cover. Generally, plots were classified as *Sphagnum* dominant if they comprised < 20% vascular species, whereas plots were classified as mixed if they consisted of at least > 20% vascular plant cover. A comparison of *LAI*, *AGB* and *BGB* exhibited no significant difference (\(U = 27, 26, 14, p > 0.05\)) between *Sphagnum* and vascular dominated plots. However, when plots were stratified by both canopy cover and dominant understory, the aforementioned variables were generally lower in *Sphagnum* dominant plots, while vascular dominant plots demonstrated lower *LAI* and *AGB* values, but higher *BGB* (Table 10). Conversely, plots at Poplar were generally composed of fewer vascular species, with moss dominated plots supporting < 10% vascular species and mixed plots ranging from 20 – 80% percent cover. A comparison between *LAI*, *AGB* and *BGB* demonstrated no significant difference (\(U = 17, 14, 9, p > 0.05\)). Vascular dominant plots typically supported lower averages of the aforementioned with the presence of an overstory. Moss dominant plots generally exhibited a minimal decrease or no change in *AGB* and *BGB* averages, however *LAI* demonstrated a mean increase between open and covered plots (Table 11).
4.8 Temporal and Spatial Variability of Surface ET

To understand the variation in instantaneous ET throughout the 2013 snow free growing season, the community-scale measurements were grouped by month. Seasonal mean ET at Pauciflora was ≤ 0.1 mm hr$^{-1}$ (± 0.05) (Figure 26a). ET rates at Pauciflora were not significantly different when compared against microform plots ($U = 6490.500$, $p > 0.05$); hummocks generally sustained slightly higher rates (Figure 26c). Seasonal mean ET at Poplar was comparable ≤ 0.1 mm hr$^{-1}$ (Figure 26b). However, a comparison of seasonal rates measured between microforms was significantly different ($U = 4372.500$, $p = 0.001$), with hummocks generally supporting higher rates (Figure 26d).

Figure 26: Period averages ET (mm hr$^{-1}$) by (a)(b) month, and by (c)(d) microform, at Pauciflora and Poplar fen, Fort McMurray, Alberta, Canada, 2013 (Error bars signify standard deviation (S.D.) of variables).
A comparison of ET when stratified by canopy cover demonstrated no significant difference at either fen ($U = 3702.000$, $p > 0.05$) ($U = 5276.500$, $p > 0.05$), at Pauciflora and Poplar, respectively (Figure 27a.b). Finally, when ET rates were further classified by both canopy cover and microform, results displayed that open hummocks maintained the highest rates, while covered hollows generally supported the lowest rates (Figure 27c.d).

Figure 27: Monthly averaged ET (mm hr$^{-1}$) by (a)(b) canopy cover, and by (c)(d) canopy cover and microform, at Pauciflora and Poplar fen, Fort McMurray, Alberta, Canada, 2013 (Bars signify standard deviation (S.D.) of variables).
4.9 Micro- and hydro-climatic Controls on ET

Microclimatological variables were examined at the same temporal scale as instantaneous ET to determine whether there was variation between canopy and microtopographic cover. Pauciflora recorded no significant difference in T_a, (ANOVA ($F(1,238) = 0.718$, $p > 0.05$), RH (ANOVA ($F(1,238) = 0.037$, $p > 0.05$), or ice depth ($U = 4296$, $p > 0.05$) when results were grouped by canopy cover (Figure 28). Conversely, open plots reported statistically higher values of $PAR (U = 2544.5$, $p < 0.01$) and T_g at 2 cm ($U = 3303$, $p < 0.05$), while covered plots maintained significantly higher $VMC (U = 2814$, $p < 0.01$) (Figure 28). A comparison of the same variables when stratified by microtopography reported significant differences in $T_g (U = 4794$, $p < 0.01$), and $VMC (U = 515.5$, $p < 0.01$) (data not shown). All subsequent variables, including PAR did not display a statistical difference ($p > 0.05$). Conversely, Poplar only displayed significant variation in $PAR (U = 3579$, $p < 0.01$) when data were grouped by canopy cover. However, when the same variables were stratified by microtopography, both $T_g (U = 3164.5$, $p < 0.01$) and $VMC (U = 2732.5$, $p < 0.01$) exhibited a statistical difference, while remaining variables demonstrated no significant differences ($p > 0.05$) (data not shown). Due to the relative similarity of results, only microclimatic variables stratified by canopy cover are displayed in the following figure (Figure 28).
Figure 28: Average seasonal (a)(b) \(PAR \ (\mu \text{mol m}^{-2} \text{s}^{-1}) \) (c)(d) air temperature \((T_a, \ ^\circ\text{C}) \), (e)(f) \(RH \ (%) \), (g)(h) soil temperature \((T_g, \ ^\circ\text{C}) \), (i)(j) volumetric moisture content \((VMC, \ %) \) and (k)(l) ice depth (cm) partitioned by canopy cover at Pauciflora and Poplar fen, Fort McMurray, Alberta, Canada, 2013 (Error bars signify standard deviation (S.D.) of variables).
PAR reached maxima in the early to mid-season within open plots, averaging > 1000 μmol m$^{-2}$ s$^{-1}$, and > 700 μmol m$^{-2}$ s$^{-1}$, at Pauciflora and Poplar, respectively. Both T_a and T_g at Pauciflora displayed similar seasonality, and were generally higher in open plots, reaching maxima of ~ 25 °C (± 4.5) and 20 °C (± 3.7), respectively. Conversely, Poplar demonstrated less seasonal and spatial variation in the aforementioned variables, with seasonal means of ~ 25 °C (± 3.9) and 20 °C (± 2.8). RH increased through the study period at both sites. VMC was consistently higher within covered plots at Pauciflora, averaging 72%, while open plots averaged 55%. Seasonal mean VMC at Poplar was consistent between open and covered plots, with a mean of 63%. Ice depth was prevalent early in the season, averaging ~ 56 cm and ~ 28 cm, at Pauciflora and Poplar, respectively.

An analysis of microclimatic variables against instantaneous ET at Pauciflora exhibited a significant, positive correlation between T_a and T_g ($p < 0.01$), and a significant, negative correlation with RH ($p < 0.01$). Poplar demonstrated analogous results with the addition of PAR, forming a positive correlation with ET ($p < 0.01$) and VMC that produced a negative correlation ($p < 0.01$). A multiple regression analysis of the aforementioned variables (excluding depth to ice) provided a weak to moderate explanation for changes in ET at Pauciflora ($F(5,232) = 33.776$, $p < 0.01$, $R^2 = 0.42$) and Poplar ($F(5, 187) = 28.561$, $p < 0.01$, $R^2 = 0.43$); without distinguishing between the spatial variability of plots. When the same variables were separated by canopy cover, the multiple regression reasonably explained changes in ET in open canopy conditions ($F(5,8) = 5.213$, $p < 0.05$, $R^2 = 0.77$) ($F(5,8) = 5.333$, $p < 0.05$, $R^2 = 0.77$), at Pauciflora and Poplar, respectively (Figure 29). Conversely, covered canopy ET at Pauciflora demonstrated a weak response when regressed against covered canopy conditions ($F(5,8) = 0.900$, $p > 0.05$, $R^2 = 0.39$), whereas Poplar’s covered microclimate provided a strong prediction for changes in ET ($F(5,8) = 12.507$, $p = 0.001$, $R^2 = 0.77$).
0.89) (Figure 29). The presence of an overstory, significantly reduced mean PAR and T_g ($p < 0.05$) while significantly increasing VMC ($p < 0.01$) at Pauciflora; producing a cool, saturated microclimatic. Whereas, differences in canopy cover at Poplar significantly reduced PAR ($p < 0.01$), while remaining variables remained fairly consistent. However, despite distinct differences in canopy structure between the two fens, a comparison of surface ET was not statistically different between the two sites ($U = 23938, p > 0.05$).
Figure 29: Relationship between ET (mm hr$^{-1}$) and (a)(b) PAR (μmol m$^{-2}$ s$^{-1}$) (c)(d) air temperature (T_a, °C), (e)(f) RH (%), (g)(h) soil temperature (T_g, °C), (i)(j) and volumetric moisture content (VMC, %) partitioned by canopy cover at Pauciflora and Poplar fen, Fort McMurray, Alberta, Canada, 2013 (Error bars signify standard deviation (S.D.) of variables).
4.10 Vertical Partitioning of ET

The seasonal mean classified ET_{surf} at Pauciflora was 0.8 mm d$^{-1}$, and 0.5 m d$^{-1}$ at Poplar. A comparison of hourly total fen ET, T and ET_{surf} (chamber) exhibited differences in each variable’s contribution to the total ET budget. On average, Pauciflora T accounted for < 20% of fen ET, while ET_{surf} (chamber) vegetation generally exceeded T, often contributing > 80%. Conversely, Poplar T accounted for > 80% of fen ET, while surface vegetation contributed only < 20% to the total ET flux.

Figure 30: A comparison of hourly Fen ET, T and Surface (Chamber) ET scaled within the MET tower footprint, recorded over the 2013 growing season, (a) Pauciflora and (b) Poplar fen, Fort McMurray, Alberta, Canada. (Error bars signify standard deviation (S.D.) of variables).
4.11 Statistical Error Analysis

EC error was determined using methods by Kroon et al. (2010). Results are comparable with studies applying the described and other methods (Kroon et al., 2010; Litt et al., 2015; Wand et al., 2015), suggesting normalized sampling error can range 10-12% (Litt et al., 2015; Wang et al., 2015) from sensible heat and 20-30% for trace gases (Finkelstein and Sims, 2001). The accuracy of the SHB gauge design and measurement resolution has been analyzed in detail (Sakuratani, 1981, 1982; Baker and Nieber, 1989; Ham and Heilman, 1990; Groot and King, 1992) and it has been reported at ± 10-15% (Groot and King, 1992). However, it has been recognized that the fundamental steady-state assumption produces decreased accuracy in both high and low flow rate conditions, the later condition is more common in conifer seedlings (Groot and King, 1992). Groot and King (1992) reported inaccuracies of ≤ 48% in low flow rate conditions of conifer seedlings when heat storage was not included in the sapflow calculation, while Steinberg et al. (1982) and Grime et al. (1995) suggest an error of ≤ 10%. Heat storage was not included in the sapflow calculation, however, measurements were rejected when ΔT was ≤ 0.5 °C. Groot and King (1992) suggested a similar technique using ΔT threshold of 2.5 °C. Additionally, high flow rates were excluded from the sapflow calculation when a maximum velocity was surpassed, specified by the manufacturer (Dynamax Inc., 2007). Deviations from the steady-state condition is more problematic in larger stems (Perämäki et al., 2001), in which Shackel et al. (1992) reported significant error when the SHB method was applied to stems 60 mm in diameter, while Grime and Sinclair (1999) concluded significant error with 35 mm stems. Grime and Sinclair (1999) suggest an ideal gauge range within 10-30 g hr⁻¹, of which 50-90% of measurements from each of the monitored stems in this study generally fell within this range. Recognizing the combined effects of error inherent to the system and error introduced from environmental variables (monitored trees ± 2 S.D. from fen...
mean), Perämäki et al. (2001) concluded that the SHB method is satisfactory despite deviations from the basic steady-state assumption. Total SHB error estimated for this study was 15-30% (Shackel et al., 1992). Finally, the use of ventilated chambers to measure ET has been criticized on the basis that Q^* and microclimate within the chamber may not be representative of ambient conditions (McLeod et al., 2004). Previous studies have estimated Q^* in the chamber at approximately 95% of conditions outside the chamber (Greenwood and Beresford, 1979), while others have reported a reduction of 8-10% (Reicosky et al., 1983). It has been concluded that changes to Q^* and the microclimate within the chamber only produced a minimal error on absolute ET (Reicosky et al., 1983), which for this study has been estimated at $\leq 7\%$ (Hamel et al., 2015).

<table>
<thead>
<tr>
<th>Flux Contribution</th>
<th>Method</th>
<th>Description</th>
<th>Root Mean Square Error (%)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET</td>
<td>EC</td>
<td>One-point Uncertainty</td>
<td>8.3</td>
<td>Kroon et al. 210</td>
</tr>
<tr>
<td>ET_{surf}</td>
<td>Chamber</td>
<td>Lower Q^*, Altered Microclimate</td>
<td>6.6</td>
<td>Reicosky et al., 1983, McLeod et al., 2004, Hamel et al., 2015</td>
</tr>
</tbody>
</table>

Table 12: Overview of error and uncertainties of flux measurements. (See Appendix IV for specific equations)
Chapter Five
Discussion

5.1 ET and Energy Balance Components

5.1.1 Fen ET and Energy Balance Components

Fen ET generally exhibited “typical” seasonal variability by which peaks in ET are generally coupled with the warmest temperatures in July (Rouse, 2000; Brown et al., 2010; Runkle et al., 2014). ET was fairly consistent throughout the growing season, averaging 2.3 mm d⁻¹ and 3.5 mm d⁻¹ at Pauciflora and Poplar, comparable to results displayed in similar studies (Petrone et al., 2003; Wu et al., 2010; Brümmer et al., 2012; Kettridge et al., 2013). Over the four-month growing season, Q_E was the dominant flux at both fens which has been commonly demonstrated by other studies that have examined northern peatlands and peat swap forest environments (Rouse, 2000; Wu et al., 2010; Clulow et al., 2013; Runkle et al., 2014). It is not uncommon for peatlands to exhibit a dominance in Q_H in the pre- and early growing season, as exhibited at Poplar (Table 8), and during plant senescence (Brown et al., 2010; Petrone et al., 2000; Petrone et al., 2004; Admiral and Lafleur, 2007). However, once the vegetation has reached adequate growth, the plant’s physiological processes become the dominant energy consumers driving Q_E. Q^* was highest in the first half of the study period (mid-May through early July) and remained distinctly higher at Poplar (Figure 12). Q_G was considerably smaller than the major terms of the surface energy balance (Brutsaert, 1982), accounting for ~3% of Q^* at Pauciflora and ~1% at Poplar. Q_G was the largest in May when the ice-rich ground was rapidly thawing, ~ 9 and 3 W m⁻² at Pauciflora and Poplar, respectively.

5.1.2 Surface ET

The average range in growing season instantaneous ET_{surf} averaged < 0.1 mm hr⁻¹ (± 0.05) between both fens. Although fluxes represent short duration (2-minute) period midday fluxes, inferred daily
fluxes fell within the ranges detailed in other studies (Brown et al., 2010, Brümmer et al., 2012; Kettridge et al., 2013, Limpens et al., 2014) (Figure 30), conducted within similar climatic and/or peatland ecosystems. ET$_{surf}$ patterns do not follow the ‘typical’ seasonal variability as depicted by previous studies (Rouse, 2000), in which peak ET rates are coupled with the warmest temperatures (July). Deviations from the predicted state is especially evident at Pauciflora that exhibited a notable peak early in the season (Figure 26). Brown et al. (2010) similarly reported early season ET peaks that was attributed to the persistence of an early season ice layer that acts as an impermeable layer to moisture close to the surface. This impermeable layer acts to prevent infiltration of incoming precipitation events, thus creating a moisture-rich environment that fosters early season ET peaks (Petrone et al., 2006). As the ice begins to melt, it competes against ET$_{surf}$, consuming a significant portion of Q^*-Q_g, and this period is often characterized by lower ET$_{surf}$ rates.

5.2 Understanding Canopy T and ET$_{surf}$

The results from this study demonstrate the contribution of T within a treed peatland that increase with a higher tree density (Clulow et al., 2013). Poplar T was the principal contributor to ET compared to that at Pauciflora where T accounted for < 20% of ET, common of Picea mariana dominated peatlands. Due to Pauciflora’s sparse canopy that permitted incoming radiation to reach the surface, the major contributors to ET were the understory species, peat and standing water that was present as a result of the elevated water table. The understory generally paralleled the seasonal trends exhibited by ET and T at both sites (Figure 30). Surface ET peaked on DOY 180 at ~ 0.3 mm hr$^{-1}$, during the G period at Pauciflora, whereas Poplar peaked earlier in the season on DOY 169 at < 0.1 mm hr$^{-1}$. Figure 30 exhibits substantially low surface ET fluxes recorded at Pauciflora on DOY 165, 194 and 201, these measurements days were characterized by high P events, high
RH and cool T_a. This highlights the immediate response of the surface to changes in microclimate. Furthermore, the late season conditions that was characterized by lower Q^* and higher RH, proved unfavourable for T, did not have the same negative impact on surface ET. Pauciflora exhibits a typical response of an open canopy, *Picea mariana* dominated peatland in which surface ET is the primary contributor to the ecosystem flux exchange (Petrone et al. 2011). The dense canopy at Poplar inhibits incoming solar radiation from reaching the peat surface and therefore reduces the surface ET flux contribution. The remaining portion of ET that was not accounted for is likely attributed to vascular plants present within the subcanopy, which has been recognized as providing an important component to the ET flux within forested peatlands (Lafleur and Schreader, 1994; Heijmans et al., 2004; Thompson, 2012).

5.3 Environmental Controls on T and ET_{surf}

5.3.1 Environmental Controls on T

Despite the proximity of the two sites, each fen is subjected to unique differences in climate. Pauciflora is distinctly cooler and has historically received greater P, producing wetter and more humid conditions, whereas Poplar is generally warmer, receiving higher Q^* and T_a. As such, conditions at Poplar are more favourable for higher T, compared to Pauciflora that supported a lower T (Figure 17). Additionally, T_s was significantly cooler at Pauciflora compared to Poplar. Cold soil can significantly increase the root resistance to water uptake (Lopushinsky and Kaufmann, 1984), further inhibiting T rates. External regulation of T has been attributed to numerous variables including the radiative transfer of solar energy through the canopy (Clulow et al., 2013), canopy atmospheric turbulence and VPD (Dang et al., 1997; Mahrt et al., 2002), intercepted precipitation (Ahrends and Penne, 2010), water availability (Oren et al., 1999), as well as canopy structure and associated leaf area (Granier et al., 2000). However, it has been determined
that trees can have several mechanisms of internal regulation related to specific morphology and physiology that is partially uncoupled from external conditions (Zweifel et al., 2002), that have not been examined within this study. Nevertheless, in most trees with actively transpiring leaves and readily available soil moisture, a diurnal pattern of T results from a combination on internal and external conditions, which determines how the canopy contributes to ET. Common trends exhibited between both sites demonstrate maximized T, exhibited mid-season during the G period of plant growth, rates in conditions of high Q^*, T_a and moderate to high VPD, that coincides with lower RH and moderate u (Table 9).

A separate analysis of VPD on sapflow within conditions of unrestricted water access has been previously described by Oren et al. (1999), reporting that half-hourly water uptake was linearly related to VPD at < 0.6 kPa. The evaporation from needle surfaces is proportional to the gradient of vapour pressure between stomatal cavities and the air and, therefore, the vapour pressure deficit of the air. Additionally, VPD and its interaction with T_a strongly impacts stomatal conductance to water vapour (Dang et al., 1997). Although T was not significantly correlated with VPD at either fen, attributed to the low stomatal sensitivity of conifers to VPD (Dang et al., 1997), however the water vapour flux generally becomes limited when VPD exceeds approximately 1.0 kPa (Dang et al., 1997; Mahrt et al., 2002). The stomata partially close with large vapour pressure deficits in order to maintain a constant flow of water within the limits of water availability. As a result, T exhibits minimal variation beyond a certain VPD threshold. Pauciflora T is more responsive to changes in VPD compared to Poplar, generally increasing with increasing VPD until the threshold of approximately 1.5 kPa was surpassed (Figure 22). Poplar’s *Picea mariana* displayed a negligible response to changes in VPD, whereas *Larix laricina* not only exhibited greater variability but seem to peak in conditions of nearly 0 kPa, suggesting a log normal curve.
(T was negatively correlated with VPD). *Larix laricina* T became limited once an approximate value of 0.5 kPa was surpassed (Figure 23). Results would suggest that tree water-use at Poplar increases with no constraints imposed by VMC, coupled with warmer T_a that encourages a higher saturated vapour pressure. Conversely, tree water-use at Pauciflora is limited by either an environmental or physiological control.

5.3.2 Environmental Controls on ET_{surf}

The study demonstrates that the interaction of P, T_a, T_g and vegetation type in controlling ET_{surf} and their variable influence on the amount and temporal distribution of ET (Brummer *et al*., 2012). The seasonal course of ET_{surf} was strongly influenced by P distribution and the length of the growing season; T_a and PAR. ET_{surf} was maximized in favourable conditions following high P events that paralleled high PAR and T_a; but plateaued with excess P. Surplus P would likely contribute to higher VMC or runoff, rather than being used by surface vegetation. For example, there was a notable decline in ET_{surf} in July at Pauciflora (Figure 26), during which a number of measurement days were characterized by high P events, high RH and cool T_a. This highlights the immediate response of the surface to changes in microclimate.

Previous studies that have examined inter-annual ET variability, have observed significant differences in fluxes between canopy cover, and microtopography (Admiral and Lafleur, 2007; Kettridge *et al*., 2013; Wang *et al*., 2015). Although, Pauciflora’s open canopy permitted a greater degree of PAR to reach the surface, favourable for the establishment of *Sphagnum* moss, cooler climates of the high altitude fen limited seasonal ET across the entire site. Conversely, aside from limiting PAR, Poplar’s dense canopy created a microclimate that was not statistically different between open and covered plots, which is typical of a dense canopy (Kettridge *et al*., 2011). The dense canopy was favourable for the establishment of brown and feathermoss.
5.4 Vegetation Controls on ET_{surf} Dynamics

The presence of a dense tree and/or shrub canopy directly impedes incoming radiation, which has been widely recognized to modify the underlying vegetation composition (Petrone et al., 2011; Waddington et al., 2014), and localized soil moisture regimes (Solondz et al., 2008). Pronounced differences in groundcover between the two fens equally demonstrated the ability of shade-tolerant brown and feathermosses to out-compete *Sphagnum* moss under low-light conditions (Marschall and Proctor, 2004; Hájek et al., 2009). Additionally, *Sphagnum* mosses exist within a less wet moisture regime, compared to brown and feathermosses that have the ability to thrive in moisture rich environments. Despite drier conditions, *Sphagnum* have been previously recognized for their ability to support higher ET rates compared to feather mosses, as a result of their morphological structure and ability to retain moisture (Price, 1997). However, Goetz and Price (2015) compared ET rates of *Sphagnum* and *Tomenthypnum* and reported that the active-water conducting structures of the two species were similar.

In *Sphagnum*, water is transported by an external wicking system and adsorption along the stem and leaf surfaces (Nichols and Brown, 1980). Such transport mechanism is lacking within feathermoss (Callaghan et al., 1978). As such, it is expected that an open canopy, *Sphagnum* dominant fen would sustain significantly higher surface ET rates compared to a covered canopy, feathermoss dominant fen. However, ET rates were not statistically different between the two fens. This was partially explained by differences in climate, but it could also be attributed to the establishment of *Tomenthypnum* at Poplar. Despite the ability of *Sphagnum* to retain a large amount of water, Goetz and Price (2015) reported similarity in the active water-conducting structure of *Sphagnum* and *Tomenthypnum*, when the latter species has access to a high water table. Analyzing physiological differences between the two species is beyond the scope of this paper,
however, it may further explain why there did not exist a statistically significant difference in ET fluxes between the two fens, despite the dominance of $Sphagnum$ at Pauciflora.

5.5 Tree Density Effect

It has been well documented that the presence of a dense canopy will increase the degree of shading on the peat surface and in turn, diffuse radiation reaching the surface (Kettridge et al., 2013). However, diffused radiation cannot be considered in isolation as it induces a range of additional feedback mechanisms that regulate ET losses. Variations in the density and spatial arrangement of trees also impacts the aerodynamic properties of the subsurface, modifying aerodynamic resistance to ET. For example, the surface roughness of a treeless poor fen in Sweden and a treed fen in Central Alberta, were equal to 0.02 m (Mölder and Kellner, 2002) and 0.22 m (Thompson, 2012), respectively. Comparable results were exemplified by the differences in u^* from 0.002 to 0.24 m s$^{-1}$ between Pauciflora and Poplar. A higher tree density generally produces a smoother aerodynamic surface as the tree canopy fills in, reducing surface roughness, this additionally raises the displacement height, which is equal to zero in a treeless peatland (Mölder and Kellner, 2002), and therefore increases the resistance from the subcanopy to ET (Niu and Yang, 2004). The aforementioned variables were favourable for higher surface ET at Pauciflora within the limits of Pauciflora’s cooler climate. The impact of environmental conditions coupled with associated differences in understory species, Poplar’s dense canopy was more favourable for the establishment of feathermoss which is generally more resistant to ET (Kettridge et al., 2013) compared to Pauciflora’s dominant $Sphagnum$ moss, cumulatively controlled understory ET. Correspondingly, surface ET at Pauciflora contributed $>80\%$ to the total ET flux whereas at Poplar it contributed $<20\%$.
5.6 Microclimate and Canopy Cover on ET$_{surf}$ Flux Dynamics

Both the microtopography and the spatial organization of trees has been shown to produce a fundamental control on ET. Although neither fen exhibited statistically significant differences in microclimate between canopy or microtopographic relief elements, covered plots and hollow microforms were generally cooler and wetter at both sites, and generally sustained lower ET (Figure 3.5.7). *Sphagnum* hummocks at Pauciflora maintained higher flux rates compared to *Sphagnum* hollows. Petrone et al. (2011) reported similar results, again suggesting that *Sphagnum* are better suited for more moderate moisture conditions, generally growing in a lower degree of canopy closure. Differences in ET were more pronounced when plots were separated by canopy closure; open plots continually supported higher flux rates (Figure 27). Finally, when fluxes were grouped by microtopography and canopy, open hummocks and hollows generally maintained higher ET compared to covered conditions; suggesting a dominance of *Sphagnum* to the flux budget within those locations. Goetz and Price (2015) reported similar trends as Petrone et al. (2011), concluding that *Tomenthypnum* and feathermosses are poorly suited for open conditions due to the species poor water transport structure, attributed to stressed induced by drying, as such, conditions at Poplar were more favourable for the establishment of these mosses.

Poplar demonstrated similar differences in ET that appeared to vary according to microtopography. Hummocks maintained higher ET, however unlike Pauciflora, numerous hollows at Poplar were under flooded conditions for the entire study period. Consequently, lower ET rates could be attributed to flood stress reported in other studies (Phillips, 2014) (Figure 26). Once more, when fluxes were separated by microtopography and canopy, both open and covered hummock microforms sustained higher ET, compared to open and covered hollows; suggesting the hummock microclimate was more favourable for underlying moss species (Figure 27).
Chapter Six
Conclusions and Implications for Climate and Land-use Change

The WBP is a region that encompasses a high density of wetlands, in particular peatlands (Woynillowicz et al., 2005), which continually sustains moisture deficit conditions. As such, these systems are already at a hydrological risk to future climate change scenarios and land use change (Petrone et al., 2011), which has implications for carbon sink status. It is well documented that the hydrological response of peatlands represent a first order response to the fate of future carbon storage (Billett et al., 2004; Couwenberg and Joosten, 2005; Limpens et al., 2008). Understanding the controls on the partitioning of ET within typical WBP peatlands is essential to interpreting the influences of climate change on water flux components. Potential increases in global temperatures through climate change is considered to directly impact boreal peatlands through water-level drawdown due to higher tree density (Laine et al., 1995; Laiho et al., 2003). It has been predicted that future, drier systems could increase canopy cover, therefore reducing or furthermore inhibiting the underlying peat surface from incoming solar radiant energy. It is anticipated that this shift could limit the potential for these peatland ecosystems to dissipate energy via Q_H in favour of Q_E (Worrall et al., 2015). Furthermore, this shift has not only been predicted to reduce surface ET_{surf}, but Kettridge et al. (2013) suggest a total reduction in ET across the entire peatland system that cannot be offset by increased T, associated with higher stem density. This not only threatens the future stability and functioning of peatland systems, but it directly threatens carbon stores, providing a positive feedback to atmospheric CO$_2$ concentrations (Flanagan and Syed, 2011). This is of particular concern for the low density of $P. mariana$ dominated peatlands that, at present, allow incoming solar radiation to reach the underlying surface, often dominated by $Sphagnum$, and recognized for its contribution in regulating atmospheric CO$_2$ (Petrone et al., 2011).
This research emphasized differences in ET and ET partitioning with respect to peatland type, climate and vegetation cover. The results indicate that the seasonal pattern of ET was closely linked with growing season Q^*, T_a and precipitation (P) events, as well, VPD represented a key factor in controlling fluxes. Seasonal mean T rates demonstrated little change across Pauciflora’s open canopy, averaging 0.3 mm d$^{-1}$, while Poplar exhibited greater diversity and a higher contribution of T to the ET flux, averaging 2.7 mm d$^{-1}$. Both ET and T reached maxima in conditions of high Q^* and T_a, moderate to high VPD, that coincided with low RH and moderate windspeed (u). Poplar’s dense canopy limited the contribution of understory species to < 20%, compared to Pauciflora that maintained surface ET_{surf} at > 80% contribution.

The presence of an overstory did not produce a microclimate that was significantly different between the two fens, however, Poplar’s dense canopy generally supported a more-wet understory. Subsequently, surface vegetation at Pauciflora was dominated by $Sphagnum$ moss, while Poplar was composed of a variety of feather moss and the brown moss, $Tomenthypnum$ nitens. Both T_a and T_g formed strong, positive correlations with ET_{surf}, while RH formed a strong, negative correlation. Despite the dominance of $Sphagnum$ at Pauciflora, ET_{surf} was limited by cooler T_a, whereas warmer T_a, coupled with the establishment of $Tomenthypnum$ at Poplar largely diminished differences in ET_{surf} fluxes between the two fens. As such, ET_{surf} was not significantly different between the two fens despite distinct differences in canopy structure.

Despite the dominance of high water tables at both sites, the analysis begins to highlight the impacts induced from disturbance, in particular, climate-mediated warming that, in its most basic terms, has been predicted to increase canopy cover, maintained warmer T_a, and alter precipitation patterns. Both ET and T were the most significantly correlated with Q^*, T_a and P events. Higher Q^* and T_a supported higher ET rates at Poplar, compared to Pauciflora which
supported lower seasonal mean Q^* and T_a. However, it is important to recognize that this represents a small component of the complex response of peatlands to disturbance.

The ultimate goal of this research was to accurately assess the partitioning of ET within two typical peatland systems with divergent tree canopies. It is essential to quantify energy balance and flux components within typically occurring peatlands to provide a better understanding of potential feedbacks induced by disturbance. The region of Fort McMurray, Alberta is not only subjected to disturbance from resource extraction but climate-mediated warming has been predicted to be the most pronounced within northern peatlands. Current multidisciplinary research within Fort McMurray has focused on landscape reclamation to create fen ecosystems on post oil sands mine sites, which further necessitates a better understanding of the dominant processes that sustained the pre-disturbed system. It is evident that any disruption to climate and moisture regimes has to potential to disrupt the natural functioning of these systems, altering ET.

Industrial pressures will play a significant role in altering local hydrological cycles, for example, corridor creation to access prime regions for the extraction of timber, oil and gas exploration may cause enhanced aerobic soil respiration due to the lowering of water tables and higher peat temperatures due to canopy removal (Devito et al., 2005; Petrone et al., 2005), causing the release of stored carbon to the atmosphere. Climate-mediated warming has the potential to further intensify drought conditions that will perpetuate the shift to a tree-dominated state, and can further increase water level draw-down (Heijmans et al., 2013), and permanently alter peatland functioning. This research highlights the role of climate and tree density within treed peatlands, and how changes in either variable can produce strong influences on ET. However, further research is necessary to understand and assess these changes over a longer period of time. To understand the potential feedback mechanisms, it is necessary to account for increased tree biomass and the
direct influence on radiation received at the peat surface, potential shifts of the underlying microclimate and controls regulating the *Sphagnum*-feathermoss transition.
Chapter Seven
References

Dynamax Inc. 2007. Flow32-1K Manual. Dynamax Inc., Houston, TX, USA.

Appendix I

PAUCIFLORA Picea mariana

<table>
<thead>
<tr>
<th>DOY</th>
<th>Daily Regression Model</th>
<th>DOY</th>
<th>Daily Regression Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>159</td>
<td>$y=1336x-17080$</td>
<td>195</td>
<td>$y=966.6x-12441$</td>
</tr>
<tr>
<td>160</td>
<td>$y=-2122x+29930$</td>
<td>196</td>
<td>$y=944.6x-12064$</td>
</tr>
<tr>
<td>161</td>
<td>$y=859.1x - 9500$</td>
<td>197</td>
<td>$y=996x-12807$</td>
</tr>
<tr>
<td>162</td>
<td>$y=3840.2x - 48930$</td>
<td>198</td>
<td>$y=1080.2x-13816$</td>
</tr>
<tr>
<td>163</td>
<td>$y=4872x-62204$</td>
<td>199</td>
<td>$y=920.8x-11603$</td>
</tr>
<tr>
<td>164</td>
<td>$y=2512.6x-32976$</td>
<td>200</td>
<td>$y=873.6x-11070$</td>
</tr>
<tr>
<td>165</td>
<td>$y=1957.2x-25421$</td>
<td>201</td>
<td>$y=1238.8x-15960$</td>
</tr>
<tr>
<td>166</td>
<td>$y=1738.4x-22556$</td>
<td>202</td>
<td>$y=744x-9431$</td>
</tr>
<tr>
<td>167</td>
<td>$y=1882x - 24468$</td>
<td>203</td>
<td>$y=1099x-14034$</td>
</tr>
<tr>
<td>168</td>
<td>$y=2209.8x-28721$</td>
<td>204</td>
<td>$y=33.2x-285.72$</td>
</tr>
<tr>
<td>169</td>
<td>$y=1774.6x-22959$</td>
<td>205</td>
<td>$y=1124.8x-14684$</td>
</tr>
<tr>
<td>170</td>
<td>$y=2696x-34980$</td>
<td>206</td>
<td>$y=950.2x-12219$</td>
</tr>
<tr>
<td>171</td>
<td>$y=3159.4x-40903$</td>
<td>207</td>
<td>$y=908.2x-11500$</td>
</tr>
<tr>
<td>172</td>
<td>$y=2839x-36734$</td>
<td>208</td>
<td>$y=1235.6x-15961$</td>
</tr>
<tr>
<td>173</td>
<td>$y=2809.8x-36352$</td>
<td>209</td>
<td>$y=455.6x-5852.8$</td>
</tr>
<tr>
<td>174</td>
<td>$y=2323x-30025$</td>
<td>210</td>
<td>$y=481.4x-6232.6$</td>
</tr>
<tr>
<td>175</td>
<td>$y=1881.2x-24409$</td>
<td>211</td>
<td>$y = 945.64x - 12217$</td>
</tr>
<tr>
<td>176</td>
<td>$y=1687.2x - 21860$</td>
<td>212</td>
<td>$y=1133.6x-14661$</td>
</tr>
<tr>
<td>177</td>
<td>$y=2022.4x-26205$</td>
<td>213</td>
<td>$y=765.8x-9797.7$</td>
</tr>
<tr>
<td>178</td>
<td>$y=746.68x - 9657.8$</td>
<td>214</td>
<td>$y=1168.2x-15044$</td>
</tr>
<tr>
<td>179</td>
<td>$y=889x-11510$</td>
<td>215</td>
<td>$y=1637.4x-21169$</td>
</tr>
<tr>
<td>180</td>
<td>$y=2183.6x-28313$</td>
<td>216</td>
<td>$y=1111.8x-14349$</td>
</tr>
<tr>
<td>181</td>
<td>$y=1556.6x-20100$</td>
<td>217</td>
<td>$y=691x-8833$</td>
</tr>
<tr>
<td>182</td>
<td>$y=1979.8x-25720$</td>
<td>218</td>
<td>$y=1129.4x-14664$</td>
</tr>
<tr>
<td>183</td>
<td>$y=2202.8x-28532$</td>
<td>219</td>
<td>$y=764.2x-9652$</td>
</tr>
<tr>
<td>184</td>
<td>$y=2764x-35957$</td>
<td>220</td>
<td>$y=641.4x-8138.5$</td>
</tr>
<tr>
<td>185</td>
<td>$y=2160x-27926$</td>
<td>221</td>
<td>$y=639x-7937.9$</td>
</tr>
<tr>
<td>186</td>
<td>$y=2410.8x-31291$</td>
<td>222</td>
<td>$y=405x-4906.9$</td>
</tr>
<tr>
<td>187</td>
<td>$y = 520.08x - 6750.2$</td>
<td>223</td>
<td>$y=407.6x-4846.1$</td>
</tr>
<tr>
<td>188</td>
<td>$y=616.4x-8008.9$</td>
<td>224</td>
<td>$y=141x-1578.1$</td>
</tr>
<tr>
<td>189</td>
<td>$y=1143.8x - 14610$</td>
<td>225</td>
<td>$y=378.6x-4597.7$</td>
</tr>
<tr>
<td>190</td>
<td>$y=1388.6x-17756$</td>
<td>226</td>
<td>$y=345.8x-4300.8$</td>
</tr>
<tr>
<td>191</td>
<td>$y=1633.8x-21055$</td>
<td>227</td>
<td>$y=120.8x-1128.1$</td>
</tr>
<tr>
<td>192</td>
<td>$y=1836.2x-23649$</td>
<td>228</td>
<td>$y=40x-62$</td>
</tr>
<tr>
<td>193</td>
<td>$y=816x-10360$</td>
<td>229</td>
<td>$y=290.2x-3607.4$</td>
</tr>
<tr>
<td>194</td>
<td>$y=905.8x-11662$</td>
<td>230</td>
<td>$y=345x-4202.3$</td>
</tr>
</tbody>
</table>
Appendix I: Daily regression modelled for *Picea mariana* at Pauciflora fen.
Appendix II

Larix laricina

<table>
<thead>
<tr>
<th>DOY</th>
<th>Daily Regression Model</th>
<th>DOY</th>
<th>Daily Regression Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>159</td>
<td>$y = 362.92x - 680.73$</td>
<td>195</td>
<td>$y = 278.9x + 2342.6$</td>
</tr>
<tr>
<td>160</td>
<td>$y = 347.26x - 953.35$</td>
<td>196</td>
<td>$y = 199.79x + 2656.9$</td>
</tr>
<tr>
<td>161</td>
<td>$y = 347.26x - 953.35$</td>
<td>197</td>
<td>$y = 319.08x + 1675.9$</td>
</tr>
<tr>
<td>162</td>
<td>$y = 483.92x - 1271.6$</td>
<td>198</td>
<td>$y = 251.06x + 2471.7$</td>
</tr>
<tr>
<td>163</td>
<td>$y = 196.42x - 764.74$</td>
<td>199</td>
<td>$y = 212.98x + 2791$</td>
</tr>
<tr>
<td>164</td>
<td>$y = 309.66x - 933.45$</td>
<td>200</td>
<td>$y = 343.04x + 1332.8$</td>
</tr>
<tr>
<td>165</td>
<td>$y = 340.52x - 875.82$</td>
<td>201</td>
<td>$y = -1051x + 20891$</td>
</tr>
<tr>
<td>166</td>
<td>$y = 355.18x - 1033.9$</td>
<td>202</td>
<td>$y = -1286.8x + 23987$</td>
</tr>
<tr>
<td>167</td>
<td>$y = 336.01x - 886.99$</td>
<td>203</td>
<td>$y = -1933.7x + 33444$</td>
</tr>
<tr>
<td>168</td>
<td>$y = 347.26x - 1203.9$</td>
<td>204</td>
<td>$y = -1331.3x + 24494$</td>
</tr>
<tr>
<td>169</td>
<td>$y = 352.31x - 921.99$</td>
<td>205</td>
<td>$y = -927.08x + 18282$</td>
</tr>
<tr>
<td>170</td>
<td>$y = 357.93x - 1006.2$</td>
<td>206</td>
<td>$y = -1220.9x + 23260$</td>
</tr>
<tr>
<td>171</td>
<td>$y = 361.18x - 989.02$</td>
<td>207</td>
<td>$y = -1404.1x + 25823$</td>
</tr>
<tr>
<td>172</td>
<td>$y = 405.2x - 1319.8$</td>
<td>208</td>
<td>$y = -1259.1x + 23413$</td>
</tr>
<tr>
<td>173</td>
<td>$y = 285.57x - 376.31$</td>
<td>209</td>
<td>$y = -1259.1x + 23413$</td>
</tr>
<tr>
<td>174</td>
<td>$y = 411.29x - 1099.1$</td>
<td>210</td>
<td>$y = -1236.1x + 23185$</td>
</tr>
<tr>
<td>175</td>
<td>$y = 252.03x - 154.77$</td>
<td>211</td>
<td>$y = -1529.8x + 27023$</td>
</tr>
<tr>
<td>176</td>
<td>$y = 201.33x + 76.43$</td>
<td>212</td>
<td>$y = -1689x + 29580$</td>
</tr>
<tr>
<td>177</td>
<td>$y = 246.57x - 63.542$</td>
<td>213</td>
<td>$y = -792.35x + 15955$</td>
</tr>
<tr>
<td>178</td>
<td>$y = 235.61x - 31.037$</td>
<td>214</td>
<td>$y = 262.9x - 614.11$</td>
</tr>
<tr>
<td>179</td>
<td>$y = 219.74x + 29.426$</td>
<td>215</td>
<td>$y = 65.72x + 1367.8$</td>
</tr>
<tr>
<td>180</td>
<td>$y = 180.26x + 352.35$</td>
<td>216</td>
<td>$y = 177.63x + 128.52$</td>
</tr>
<tr>
<td>181</td>
<td>$y = 167.01x + 553.6$</td>
<td>217</td>
<td>$y = 96.222x + 756.23$</td>
</tr>
<tr>
<td>182</td>
<td>$y = 195.36x + 285.72$</td>
<td>218</td>
<td>$y = 224.7x - 828.64$</td>
</tr>
<tr>
<td>183</td>
<td>$y = 245.12x + 55.294$</td>
<td>219</td>
<td>$y = 324.95x - 1979.7$</td>
</tr>
<tr>
<td>184</td>
<td>$y = 211.15x + 301.47$</td>
<td>220</td>
<td>$y = 227.53x - 808.95$</td>
</tr>
<tr>
<td>185</td>
<td>$y = 236.06x + 55.97$</td>
<td>221</td>
<td>$y = 297.09x - 1657.8$</td>
</tr>
<tr>
<td>186</td>
<td>$y = 292.3x + 1137.5$</td>
<td>222</td>
<td>$y = 250.94x - 1059.1$</td>
</tr>
<tr>
<td>187</td>
<td>$y = 246.44x + 1983.8$</td>
<td>223</td>
<td>$y = 247.87x - 895.64$</td>
</tr>
<tr>
<td>188</td>
<td>$y = 310.52x + 1001.4$</td>
<td>224</td>
<td>$y = 157.81x - 65.933$</td>
</tr>
<tr>
<td>189</td>
<td>$y = 288.77x + 1154.3$</td>
<td>225</td>
<td>$y = 226.1x - 690.11$</td>
</tr>
<tr>
<td>190</td>
<td>$y = 357.12x + 310.59$</td>
<td>226</td>
<td>$y = 182.15x - 297.37$</td>
</tr>
<tr>
<td>191</td>
<td>$y = 297.92x + 1047.5$</td>
<td>227</td>
<td>$y = 137.61x + 141.19$</td>
</tr>
<tr>
<td>192</td>
<td>$y = 276.47x + 1889.8$</td>
<td>228</td>
<td>$y = 149.62x + 601.87$</td>
</tr>
<tr>
<td>193</td>
<td>$y = 259x + 2717.9$</td>
<td>229</td>
<td>$y = 281.32x - 2547$</td>
</tr>
<tr>
<td>194</td>
<td>$y = 266.35x + 2221.5$</td>
<td>230</td>
<td>$y = 218.71x - 1895.2$</td>
</tr>
</tbody>
</table>
Appendix II: Daily regression modelled for *Larix laricina* at Poplar fen.
Appendix III

POPLAR Picea mariana

<table>
<thead>
<tr>
<th>DOY</th>
<th>Daily Regression Model</th>
<th>DOY</th>
<th>Daily Regression Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>159</td>
<td>$y = 362.92x - 680.73$</td>
<td>195</td>
<td>$y = 278.9x + 2342.6$</td>
</tr>
<tr>
<td>160</td>
<td>$y = 347.26x - 953.35$</td>
<td>196</td>
<td>$y = 199.79x + 2656.9$</td>
</tr>
<tr>
<td>161</td>
<td>$y = 347.26x - 953.35$</td>
<td>197</td>
<td>$y = 319.08x + 1675.9$</td>
</tr>
<tr>
<td>162</td>
<td>$y = 483.92x - 1271.6$</td>
<td>198</td>
<td>$y = 251.06x + 2471.7$</td>
</tr>
<tr>
<td>163</td>
<td>$y = 196.42x - 764.74$</td>
<td>199</td>
<td>$y = 212.98x + 2791$</td>
</tr>
<tr>
<td>164</td>
<td>$y = 309.66x - 933.45$</td>
<td>200</td>
<td>$y = 343.04x + 1332.8$</td>
</tr>
<tr>
<td>165</td>
<td>$y = 340.52x - 875.82$</td>
<td>201</td>
<td>$y = -1051x + 20891$</td>
</tr>
<tr>
<td>166</td>
<td>$y = 355.18x - 1033.9$</td>
<td>202</td>
<td>$y = -1286.8x + 23987$</td>
</tr>
<tr>
<td>167</td>
<td>$y = 336.01x - 886.99$</td>
<td>203</td>
<td>$y = -1933.7x + 33444$</td>
</tr>
<tr>
<td>168</td>
<td>$y = 383.26x - 1203.9$</td>
<td>204</td>
<td>$y = -1331.3x + 24494$</td>
</tr>
<tr>
<td>169</td>
<td>$y = 357.93x - 1006.2$</td>
<td>205</td>
<td>$y = -927.08x + 18282$</td>
</tr>
<tr>
<td>170</td>
<td>$y = 285.57x - 376.31$</td>
<td>206</td>
<td>$y = -1220.9x + 23260$</td>
</tr>
<tr>
<td>171</td>
<td>$y = 411.29x - 1099.1$</td>
<td>207</td>
<td>$y = -1404.1x + 25823$</td>
</tr>
<tr>
<td>172</td>
<td>$y = 201.33x - 154.77$</td>
<td>208</td>
<td>$y = -1259.1x + 23413$</td>
</tr>
<tr>
<td>173</td>
<td>$y = 252.03x - 76.43$</td>
<td>209</td>
<td>$y = -1529.8x + 27023$</td>
</tr>
<tr>
<td>174</td>
<td>$y = 246.57x - 63.54$</td>
<td>210</td>
<td>$y = -1236.1x + 23185$</td>
</tr>
<tr>
<td>175</td>
<td>$y = 245.12x + 55.29$</td>
<td>211</td>
<td>$y = -1689x + 29580$</td>
</tr>
<tr>
<td>176</td>
<td>$y = 292.3x + 1137.5$</td>
<td>212</td>
<td>$y = -927.08x + 18282$</td>
</tr>
<tr>
<td>177</td>
<td>$y = 297.92x + 1047.5$</td>
<td>213</td>
<td>$y = -262.9x + 614.11$</td>
</tr>
<tr>
<td>178</td>
<td>$y = 259.03x - 680.73$</td>
<td>214</td>
<td>$y = -262.9x - 614.11$</td>
</tr>
<tr>
<td>179</td>
<td>$y = 297.92x + 1047.5$</td>
<td>215</td>
<td>$y = -1529.8x + 27023$</td>
</tr>
<tr>
<td>180</td>
<td>$y = 310.52x + 1001.4$</td>
<td>216</td>
<td>$y = -1529.8x + 27023$</td>
</tr>
<tr>
<td>181</td>
<td>$y = 357.93x - 1006.2$</td>
<td>217</td>
<td>$y = -1236.1x + 23185$</td>
</tr>
<tr>
<td>182</td>
<td>$y = 357.93x - 1006.2$</td>
<td>218</td>
<td>$y = -1236.1x + 23185$</td>
</tr>
<tr>
<td>183</td>
<td>$y = 357.93x - 1006.2$</td>
<td>219</td>
<td>$y = -1236.1x + 23185$</td>
</tr>
<tr>
<td>184</td>
<td>$y = 357.93x - 1006.2$</td>
<td>220</td>
<td>$y = -1236.1x + 23185$</td>
</tr>
<tr>
<td>185</td>
<td>$y = 357.93x - 1006.2$</td>
<td>221</td>
<td>$y = -1236.1x + 23185$</td>
</tr>
<tr>
<td>186</td>
<td>$y = 357.93x - 1006.2$</td>
<td>222</td>
<td>$y = -1236.1x + 23185$</td>
</tr>
<tr>
<td>187</td>
<td>$y = 357.93x - 1006.2$</td>
<td>223</td>
<td>$y = -1236.1x + 23185$</td>
</tr>
<tr>
<td>188</td>
<td>$y = 357.93x - 1006.2$</td>
<td>224</td>
<td>$y = -1236.1x + 23185$</td>
</tr>
<tr>
<td>189</td>
<td>$y = 357.93x - 1006.2$</td>
<td>225</td>
<td>$y = -1236.1x + 23185$</td>
</tr>
<tr>
<td>190</td>
<td>$y = 357.93x - 1006.2$</td>
<td>226</td>
<td>$y = -1236.1x + 23185$</td>
</tr>
<tr>
<td>191</td>
<td>$y = 357.93x - 1006.2$</td>
<td>227</td>
<td>$y = -1236.1x + 23185$</td>
</tr>
<tr>
<td>192</td>
<td>$y = 357.93x - 1006.2$</td>
<td>228</td>
<td>$y = -1236.1x + 23185$</td>
</tr>
<tr>
<td>193</td>
<td>$y = 357.93x - 1006.2$</td>
<td>229</td>
<td>$y = -1236.1x + 23185$</td>
</tr>
<tr>
<td>194</td>
<td>$y = 357.93x - 1006.2$</td>
<td>230</td>
<td>$y = -1236.1x + 23185$</td>
</tr>
<tr>
<td></td>
<td>Regression Equation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>231</td>
<td>$y = 264.82x - 2514.7$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>232</td>
<td>$y = 254.95x - 2319$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>233</td>
<td>$y = 201.13x - 1869$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Appendix III: Daily regression modelled for *Picea mariana* at Poplar fen.
Appendix IV: Specific equations used to determine error for each parameter

Table

<table>
<thead>
<tr>
<th>Method</th>
<th>Parameter</th>
<th>Error Percent (%)</th>
<th>Mean Error (%)</th>
<th>Root Mean Square Error</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHB</td>
<td>Measurement resolution</td>
<td>10.0</td>
<td>17.0</td>
<td>4.1</td>
<td>Groot and King, 1992</td>
</tr>
<tr>
<td></td>
<td>Steady-state Assumption</td>
<td>30.0</td>
<td></td>
<td></td>
<td>Shackel et al., 1992</td>
</tr>
<tr>
<td></td>
<td>Heat Storage</td>
<td>10.0</td>
<td></td>
<td></td>
<td>Grime et al., 1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Perämäki et al., 2001</td>
</tr>
<tr>
<td>Chamber</td>
<td>Reduced Q^*</td>
<td>10.0</td>
<td>6.7</td>
<td>3.0</td>
<td>Reicosky et al., 1983</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.0</td>
<td></td>
<td></td>
<td>McLeod et al., 2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hamel et al., 2015</td>
</tr>
</tbody>
</table>

Appendix IV: Specific equations used to determine error for each parameter

\[
\text{Fen} \quad \text{Parameter} \quad \text{Equation} \\
\hspace{2cm} = \sqrt{\left(\frac{2}{M\sigma}\right)^{(w'c')}} \\
\text{M represents the number of independent measurements of} \\
w'c' \\
PFLORA \quad \text{EC} \quad = \sqrt{\left(\frac{2}{3670}\right)^{0.0842}} \\
POPLAR \quad \text{EC} \quad = \sqrt{\left(\frac{92}{2194}\right)^{0.0657}} \\
\]