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ABSTRACT 

Background: The visual system provides the body with an accurate sensory system; designed to 

gather information at a distance and acts as a feedforward control mechanism during human 

locomotion. By doing so, visual information contributes coordination of the head-arm-trunk 

(HAT) segment and modulating foot placement. The purpose of this study was to examine the 

effects of a constrained pathway during a complex navigational stone-stepping task on HAT 

segment control and how the visual system guides locomotion during a complex foot placement 

task.  

Methods: Nine university-aged females (Mean age: 22.5 years old +/-1.75) participated in this 

study. Participants were instrumented with four rigid bodies (4x3 IRED markers) on the head, 

trunk and feet and two IRED markers on the wrists in order to measure kinematic data, collected 

by Optotrak system (NDI, Waterloo, Canada). Additionally, each participant was outfitted with 

an ASL H7-HS High Speed Head Mounted Optics (ASL, Bedford, USA) eye tracking unit to 

assess gaze behaviours. The experimental protocol required participants to perform 40 walking 

trials across four conditions (i.e., constrained and self-selected pathways; starting with either the 

left or the right foot), on a 7.2m x 1.2m raised-target platform. The platform consisted of 60 

sloper-style rock climbing holds, whose location was designed to satisfy one of three criterion: 1) 

in line with natural footfall locations (e.g. normal step length and/or width dimensions of 60cm 

by 10cm); 2) greater or less than one of the dimensions of a natural step length or width; or 3) to 

act as a possible option/distractor on the pathway. The two constrained pathways were indicated 

with a high-contrasting moldable material placed inside each hold’s screw hole. Measurements 

were compared across conditions (i.e., constrained versus unconstrained), time points (e.g. first, 

middle, and last trial performed of each condition), and segment (Segment 1: first 3m of path or 
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Segment 2: last 3m of path). The measurements included: horizontal and vertical pupil velocity 

RMS; average walking speed; trunk rotations about the hip (i.e., pitch and roll), and whole-body 

movement (i.e., ML COM variability).   

Results: Findings revealed that there was a significant difference between conditions such that: 

1) the constrained vertical pupil RMS velocity was higher than the unconstrained (F(3,24)=4.71; 

p= .04; d=.46); 2) the unconstrained horizontal pupil RMS velocity was higher than the 

unconstrained (F(3,24)=4.40; p= .03; d=.36); 3) the constrained average walking speed was greater 

than the unconstrained (F(3,24)=23.27; p=0.04; d=.30); 4) the constrained trunk roll was greater 

than the unconstrained (F(3,21)=4.84; p=0.01; d=.45); and 5) the unconstrained dynamic stability 

margin minimum (DSMmin) was greater than the constrained (F(3,21)=4.89; p= .01; d=.41).  

Conclusions: The complex nature of the raised-target foot placement task challenged individuals 

from the start of each condition, forcing participants to learn how to control body movements—

especially in the AP direction. During constrained condition, there was evidence to suggest that 

there was a greater regulation of trunk control than during unconstrained trials. This was 

attributed to the conditional demands of predetermined pathway to follow. However, during 

unconstrained trials, individuals were able to choose footholds, which were most likely based on 

their current state of stability. And thus, conditional demands of the pathway influenced gaze 

behaviours, such that during the constrained condition participants used a scanning behaviour 

(i.e., greater vertical pupil velocity RMS) whereas participants used more of a sampling 

behaviour (i.e., greater horizontal and slower vertical pupil velocities) during the free choice 

pathway condition. Therefore, the finding from this study suggest that gaze behaviours are 

influenced by stepping characteristics and these different gaze behaviours have different effects 

on trunk control. 
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1.0 INTRODUCTION 

An Introduction to Adaptive Locomotion 

Walking, just one example of locomotion, is one of the most integral parts of human life. 

Walking—commonly referred to as locomotion—requires the individual to accommodate for a 

variety of internal and external perturbations, such as avoiding obstacles, anticipatory postural 

adjustments, navigating complex surfaces (e.g. an icy sidewalk, narrow path, a sloping hill, etc.), 

and selecting a path towards a goal (e.g. stepping on river stones).  Throughout the course of a 

step (and gait) cycle, individuals make adjustments and modifications to behaviour to perform 

successful steps.  These kinds of adjustments and accommodations are referred to as adaptive 

locomotion [Patla & Shumway-Cook, 1997; Andriacchi, T. & Alexander, E., 2000; Patla, 2004]. 

As a result, humans learn to adapt and modify movements of the body in order to avoid objects, 

select secure footholds, and maintain upright locomotion.   

Underlining adaptive locomotion properties are the principles of locomotion. Das and 

McCollum (1988) first discussed the three principles of locomotion as the essential elements of 

adaptive locomotion: 1) postural control; 2) progression; and 3) adaptation.  Postural control is 

characterized by the maintenance of upright stability of body segments in a manner that attempts 

to counteract perturbations that act on the body [Das & McCollum, 1988]. Essentially, postural 

control refers to one’s ability to remain upright and able to move as a dynamic system. 

Progression is simply moving from that hypothetical ‘point A’ to ‘point B’, or more simply, 

towards an intended goal. Whether there is an obstacle in the way or an alternative stepping 

strategy to perform, progression is simply getting to the goal, beginning from gait initiation to 

termination. However, as a part of human nature, progression towards the goal is often 

performed in a manner that is as efficient as possible [Inman, 1966]. Adaptation is the process in 
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which response measures are altered according to the demands of the task [Das & McCollum, 

1988]. This particular element is influenced by the environment, stability of the individual, 

attention demands, along with a variety of other factors that may come into play. 

The process of locomotion produces internal perturbations and the individual must 

overcome and counteract those perturbations in order to remain upright. Regardless of the source 

of the perturbation, a common effect has been noted: the main cause of falls and increasing the 

risk of falling is as a result of the center of mass (COM) moving outside of the base of support 

(BOS) and the control of the center of pressure (COP) in a fast manner: COM can be defined as 

the distribution of mass that takes into account the total mass of the body and its segments; BOS 

refers to the area beneath a person outlined by every point of contact that makes the supporting 

surface; COP is defined as the point of application of ground reaction forces, acting as the sum of 

all forces acting between the individual and the supporting surface [Lee & Farley, 1998; Chou et 

al., 2003; Popovic, Goswami, & Hugh, 2005; Benda, Riley, & Krebs, 1994]. 

The process of adaptive locomotion can be broken down into the simpler terms of 

describing the biomechanical forces present which act on the body. Winter (1991) describes the 

relationship of COM, BOS, and COP in figure 1 below: note that COM is referred to as center of 

gravity (C of G) and COP is referred to as C of P. In the figure, the COM travels towards the 

medial border of the right foot whereas the COP extends beyond the COM to control and corral 

the COM towards the potential new footfall location of the left foot, following right heel strike 

and left toe off. COP is essentially acting here as a regulatory mechanism to keep the COM 

within the confines of the BOS. This is where maintaining dynamic stability during locomotion 

comes into the picture. For the remaining portion of this review, I will be introducing ideas and 
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concepts related to adaptive locomotion and control strategies used to coordinate body 

movement.  

 

Figure 1- Centre of Gravity (C of G) and Centre of Pressure (C of P) under the support foot of 

flat ground walking [Winter, 1991]. This figure visually represents the sheep and sheep dog 

relationship between COM, COP, and BOS: the COP accelerates to the medial border of the foot, 

acting on the COM direct towards the new support foot during single support in order to keep the 

COM within the confines of the BOS.  

 

Modulation of Stability During Locomotion 

Stability is crucial to locomotion and maintaining stability is considered a constant battle 

with each step; from a static perspective, each step is unstable. To maintain stability, the central 

nervous system (CNS) coordinates the body and its segments to control the COM from moving 

outside an ever-changing BOS. In order to do so, the CNS acts on muscles to change the size 

and/or location of the BOS to control the movement and direction of the COM to fall within the 

new BOS, aligning with what is referred to as postural control [Winter, 1991]. However, in order 

to coincide with the principles of locomotion, individuals use some combination of reactive, 

predictive, and proactive control mechanisms [Patla, 2004].   
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Reactive control strategies are described as a response elicited following the detection of 

a perturbation by the sensory systems [Patla, 2004]. In other words, the body senses a disruption 

to its stability and responds accordingly. For instance, during a slip a series of complex 

sensorimotor transformations occur in order to maintain stability in the perturbed and the 

unperturbed limb [Tang, Woollacott, & Chong, 1998]. Tang and colleagues (1998) examined the 

role that proximal trunk and hip muscles (e.g. biceps femoris, rectus femoris) play in a reactive 

balance control study. In order to determine the latency of muscle activation, EMG was used to 

record muscle activity for biceps femoris, rectus femoris, and gastrocnemius during an anterior 

slip during locomotion. However, the results did not support the hypothesis that proximal leg 

muscles activate earlier and longer than distal leg muscles. In fact, the results revealed that distal 

and intermediate leg and thigh muscles are crucial to reactive balance control strategies. This 

study was one of many studies that suggested the importance of interlimb coordination during 

locomotion. Knowing and understanding the importance of interlimb coordination is crucial to 

studies conducted with an objective of examining whole body biomechanics and strategies used 

to accomplish such coordinated movements.  

Predictive control strategies are described as responses elicited prior to the detection of a 

known perturbation based on ongoing movement [Patla, 2004]. Essentially, predictive control 

strategies rely on modifying current movements of the body to predict movement outcome as a 

result of an upcoming perturbation in which the individual is expecting and relies heavily on 

feedforward control; feedforward control is where external information is used as the input to 

elicit a preset response, producing an action until the information is no longer available 

[Stanfield, 2012]. One main mechanism of predictive control is through joint moments that 

counteract the known perturbations of locomotion [Winter, 1991]. Winter (1991) has described 
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and connected movements that begin in the trunk and extend distally to foot placement and 

regulation of each mechanism. Winter (1991) also explained each strategy and its respective 

control/regulating mechanism, starting with: pitching the trunk, as regulated by the acceleration 

and deceleration of each step as controlled by moments about the hip joint; tipping the trunk to 

the unsupported side—regulated by the hip abductors; preventing a collapse in the vertical 

direction—as controlled by moments about the knee joint; decelerating the swing limb—

hamstrings decrease the speed of the swing limb in order to produce precise and gentle foot 

placement [Winter, 1991]. Winter (1991) is suggesting here that trunk control is crucial to the 

control and maintenance of dynamic stability as a predictive control strategy. 

Proactive control strategies are described as responses elicited and mediated at a distance 

due to pertinent information [Patla, 2004]. Proactive control strategies are deemed as one of the 

most powerful control strategies in controlling dynamic stability during locomotion. With this 

particular strategy, humans have the power to acquire information—mainly through the visual 

system—and develop a plan to modify body movements according to the task [Patla, 2004]. By 

identifying possible threats to the body and stability, information can be used to avoid obstacles, 

plan a route, and/or perform precise foot placement.  

Within locomotion-focused research, there has been a shift to investigate the role and the 

mechanisms underlying proactive control strategies to contribute to the current understanding 

within literature. Patla and colleagues (1999) demonstrated the weighting of body control was 

examined during a simple walking task. Using whole body kinematics, they monitored the onsets 

of body movements as participants changed directions according to visual cues. The results 

revealed that the CNS controls the onset of movement such that body segment reorientation was 

initiated sequentially, beginning with the head, trunk, and then feet, referred to as a top down 



13 

 

adjustment (refer to figure 2 below) [Patla, Adkin, & Ballard, 1999]. It was believed that by 

initiating head movements first allowed the individual to gather visual information about their 

future path, whereas trunk and foot movements controlled the COM in the direction of travel. 

This finding is essentially suggesting that the body tends to coordinate movements in response to 

perturbations, initiated in the head, trunk, and then in the foot placement. Furthermore, this study 

highlights the importance of two key concepts: 1) the role of the visual system with respect to 

body coordination—the body is controlled in a top-down approach, starting with the head; and 2) 

the effect of head and trunk stability and the influence of foot placement—as a proactive/reactive 

means stabilizing the head/trunk, foot placement is the ‘last line of defense’ with respect to body 

coordination during adaptive locomotion.   

 

Figure 2- Initiation of head yaw (Hy), trunk roll (Tr), trunk yaw (Ty), and foot medio-lateral 

displacement (F) with respect to transition stride (RFC1) as a function of visual cue time (top 

graph) and direction change magnitude (bottom graph). The top graph demonstrates a segmental 

approach to the initiation of body movements, beginning with head yaw, trunk roll, trunk yaw, 

and then foot displacement. The bottom graph displays a similar representation.  

 

The initial understanding of how individuals control balance and posture stems from the 

work conducted by Winter (1991). Winter treated the body and all of the moving segments as a 

dynamic, biomechanical system, to understand how the body is able to move the way it does. 
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Winter (1991) suggested that the hip, knee, and ankle joints produce moments of force in order 

to counteract perturbations experienced by the body during locomotion. In a follow up study, 

Winter and colleagues (1993) performed two-dimensional assessments of trunk movement (angle 

and hip moments) in the sagittal plane during natural walking. The results indicated a 

predominant pitching motion (i.e., rotation about the horizontal axis) of the trunk accelerated and 

decelerated in each step cycle [MacKinnon & Winter, 1993]. This trunk movement was 

controlled by moments at the hip and trunk musculature [Winter, 1991]. However, to remain 

stable, the CNS activates the muscles around the knee and ankle in order to produce moments 

necessary to counteract the movement of the trunk [Winter, 1991]. For instance, as the hip begins 

to generate an extensor moment, the knee and ankle follows suit by generating extensor 

moments. Once again, trunk movements present themselves as control strategy used to 

counteract perturbations created via locomotion.  

Previous research also indicated that ankle muscle activation is a first responder to 

perturbations, acting to refine movement of the lower limb in response to changes with each step 

cycle [Horak & Nasher, 1986; MacKinnon & Winter, 1993]. By doing so, movements about the 

knee and ankle can co-vary with the hip to adapt the overall movement of the lower limb. As a 

result, activating muscles of the trunk and hip regulate flexion and extension, coinciding with the 

top-down approach to the coordination of the body that ultimately treats each step on a step-by-

step basis (i.e. adaptive locomotion) [Winter, 1991; MacKinnon & Winter, 1993]. However, 

stabilization of the system (i.e. the body) presents itself as an issue as a result of a few major 

reasons: a narrow BOS, a small contact surface with the ground, and the fact that two-thirds of 

our body mass is distributed above two-thirds of the distance above the ground [MacKinnon & 

Winter, 1993]. The last point is of interest because the majority of body mass is a far distance 
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away from the two small contact points (i.e. feet) and yet individuals are able control this mass 

and move about space without falling over.  

To further illustrate this point, work by MacLellan and Patla (2006) examined the 

adaptations made during a walking task on a compliant surface. Participants were asked to 

perform walking trials under two conditions: flat ground and compliant surface walking. When 

walking on the compliant surface (e.g. a giant foam mat), participants performed particular gait 

strategies to increase stability—such as stepping wide and stepping long to increase BOS 

[MacLellan & Patla, 2006]. Additionally, strategies to regulate dynamic stability were assessed 

and it was found that there was increased variability about the hips in the anterior-posterior (AP) 

direction [MacLellan & Patla, 2006]. Thus, it was suggested that the main method to regulate 

dynamic stability was through a series of constant overcompensation and corrections of the 

COM to control trunk movements in response to the compliant surface.  

Knowing how individuals control their body and in what fashion is vital to understanding 

how to challenge people. Researchers like Fajen, Patla, and Winter (and their respective 

colleagues) demonstrated that control strategies used to counteract perturbations created as a 

result of human locomotion follow a top-down approach; relying heavily on trunk movement to 

control the accurate placement of one’s feet such that the COM is controlled and dynamic 

stability is maintained. Once again, dynamic stability control is maintained by trunk stability 

(e.g. trunk pitch/roll, trunk acceleration/deceleration, etc.), we can then further challenge 

individuals to determine whether these strategies emerge during a complex foot placement task, 

such as a stone stepping task. For example, in comparison to a flat ground foot placement task, a 

raised ground foot placement task should provide an added element of complexity to the design 

of the experiment and challenge the individual’s dynamic stability control even further. In the 
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next section, I will be discussing the role of the visual system as it pertains to where and when 

we look.  

Where Do We Look and When?  

As an integral part to proactive control strategies, the visual system is a predominate 

system used to gather information. Vision is used as a coordinator for whole body movements, 

collecting information about movements and positioning in order to reorganize and maintain 

upright locomotion. Much of one’s knowledge about the environment’s properties and layout are 

through the visual system, which in turn guides movements [Patla, 2004]. In a pioneering paper 

reviewing the roles of vision in human locomotion, Patla (1997) describes visual control as the 

dominate force behind the establishment of initial body posture in order to initiate locomotion 

through producing rhythmic and coordinated movements, all the way to termination of 

locomotion [Patla, 1997].  As individuals navigate, visual information is used almost as a 

feedback system to inform the individual about the body and its segments.  

Additionally, vision acts as a feedforward control of exproprioceptive information—

vision is used to contribute knowledge acquired through past experiences and current limb 

position and movement in space (exproprioceptive information). Conversely, vision acts as an 

on-line control mechanism of exproprioceptive information about limb position—in order to 

fine-tune the swing limb, limb movement information is gathered via the visual system to 

monitor swing limb trajectory and potential landing position of the swing limb. And finally, 

vision is relied upon heavily to sample  the terrain—in order to monitor where to move about in 

the environment, the visual system plays a major role in assessing and detecting relevant cues 

[Patla, 1997].  
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Another role of vision is to assess and survey the environment. From varying terrains to 

different conditions, vision is used to gather information about the current and upcoming 

environmental demands. However, the role vision plays differs when varying degrees of complex 

terrain: when individuals walk along a flat and uncluttered surface, there really is no need to use 

the visual system to guide each foot placement; in more complex terrains, the visual system is 

used to fixate on possible future footholds [Lands, 2006]. 

In order to establish a stable foothold, three main sensory systems are used to help guide 

the swinging limb to a secure and stable location: vestibular, somatosensory, and vision. Out of 

all the senses, vision is arguably the dominant sensory system as it is able to collect information 

at a distance. Vision is a unique sense as it has the abilities to attend to an area that may be more 

local (e.g. step-by-step basis) or a global (e.g. route planning) with respect to the individual 

[Patla, 1997]. This aspect of vision comes into play when individuals are navigating the 

environment, especially when it comes to regulating locomotive patterns [Patla, 1997]. Across 

the literature, vision was found to be the primary mechanism of control of adaptive locomotion 

[Patla, 1997; Patla, 2004; Patla & Vickers, 2003]. During locomotion, the visual system is 

constantly searching and fixating (i.e., stabilizing gaze on a particular location for more than 

100ms) on objects and areas within the environment to plan a path per se.   

Within the literature, Patla and Vickers (2003) found that people tend to fixate on objects 

in their path two steps ahead or 800-1000ms in travel time of where their limb is placed. In this 

study, participants were asked to step on 17 irregularly or regularly spaced footprints along a 

10m path; regular spacing fell within natural footfall dimensions of a natural step (e.g. 10cm 

wide and 60cm long). As the figure below demonstrates, regardless of the spacing of the 

footprints, people tend to fixate (>99ms) on the footprints that are two steps away from their 
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current position. Fixating on objects two steps ahead allows the individual to update information 

(e.g. internal and external cues) in order to modulate behaviour (e.g. trunk movements, foot 

placement, etc.).  

 

Figure 3- Histograms of the number of observations and the number of steps one looks ahead for 

regular spaced footprints and irregular spaced footprints. The frequency histograms demonstrate 

the overall finding that people tend to look two steps ahead of their current position [Patla & 

Vickers, 2003]. 

 

Patla and colleagues go on to describe visual control strategies categorized into two 

divisions: travel fixation and footprint fixation. Travel fixation is characterized by an individual 

holding a steady gaze out in front, surveying the environment in their respective field of vision 

[Hollands, Patla & Vickers, 2002]. The travel fixation strategy follows the previous findings of 

assessing the local environment around 800-1000ms ahead, doing so at a fixed distance. One 

could look at this proposed strategy as a ‘flashlight model’: during a simple walking task, the 

individual uses their eyes—the bulb of the flashlight—as the working part of the system whereas 
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the area of focus—the beam of the flashlight—is used to illuminate and take in environmental 

cues at roughly two steps ahead. However, differing from a fixed, stable gaze of travel fixation, 

footprint fixation strategies align themselves on future footfall locations [Patla, 1997; Patla & 

Vickers, 2003]. As the individual walks, their gaze tends to prioritize possible footholds—an 

area of interest that is considered to be a possible area of foot placement [Yamada et al, 2012]. 

Similar to travel fixation, footprint fixation occurs approximately 800-1000ms, or roughly two 

steps, away from the individual [Patla, 1997; Patla & Vickers, 2003]. This is in order to plan for 

and accommodate according to potential foothold locations.  

 With this understanding of where and how long people look while navigating a pathway, 

Mathis & colleagues (2015) examined the role of visual information with respect to a precision 

foot placement task during locomotion over a complex terrain. In this study, participants walked 

along a 5m path of six irregularly-spaced targets. However, this study differs from the Patla & 

Vickers (2003) study in setup of visual constrains: during a trial, vision was either occluded 

during the step to the target or during the step prior to placing the foot on the target.  This 

experimental design was in place to determine at which step leading up to the precise foot 

placement is most important with respect to visual information. As figure 4 demonstrates, there 

is a significant increase in stepping error when the target becomes nonvisible prior to toe off of 

the foot being placed on the target; the figure below represents the overall stepping error up to 

two steps prior to precise foot placement on the target. It is suggested that vision is critical in this 

phase of the step as it is a control phase in the gait cycle [Mathis, Barton, & Fajen, 2015].  
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Figure 4- Stepping error measured in two dimensions. Double support phase represents the 

transition from N-2 to N-1; prior to one step away, an increase in stepping error is observed, 

indicating that vision is crucial during the step prior to toe off.  

 

In order to explain this, we must turn to previous work conducted by Mathis and Fajen 

(2013) which found that humans were able to use vision to exploit biomechanical efficiency. 

However, in this study, participants were required to avoid the obstacles rather than step on the 

targets either with full vision of limited vision conditions. The results agreed with previous 

findings that people tended to require two steps of information. When performing flat, free 

walking trials, foot placement was determined by the COM movement; when obstacles were 

present, vision proved to be the main mechanism of control, modifying the movement of COM 

according to restrains of the environment [Mathis & Fajen, 2013]. With two steps of information, 

participants were able to visually guide foot placement and redirect COM towards the available 

footfall locations that promoted energetic efficiency (e.g. proactive control strategy).  

Mathis and colleagues furthered this study by examining visual control of locomotion 

during a precise foot placement task [Mathis & Fajen, 2014; Mathis, Barton, & Fajen, 2015]. In 

this particular study, participants were required to step along six planar footholds along a 

pathway with vision occluded at various stages during the swing phase. Mathis and colleagues 

suggest that the reason as to how individuals exploit the biomechanical properties of locomotion 
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is using visual control strategies up to the point of opposite leg toe-off to guide foot placement 

[Mathis & Fajen, 2014; Mathis, Barton, & Fajen, 2015]. As the figure below shows, the critical 

phase of visual control of foot placement is just prior to two steps away in order to exploit 

passive properties of locomotion and ensure foot placement accuracy.  

     

Figure 5- The figure depicts the critical phase for visual control of foot placement occurs during 

the latter half of the preceding step. This figure is from the findings that suggest that in order to 

fixate two steps ahead and to exploit the passive properties of locomotion; the window of critical 

visual control is just prior to StepN, or approximately two steps away from the future foothold 

[Mathis & Fajen, 2014; Mathis, Barton, & Fajen, 2015].  

 

Furthering this study was an experiment conducted by Marigold & Patla (2008). In this 

particular study, participants were required to navigate predetermined pathways, crossing nine 

potential 0.5m by 0.5m blocks of multi-surface complex terrain (e.g. slippery, compliant, tilt, and 

rocky terrain) in order to get to a goal. The main results discussed the importance of the lower 

visual field of view but more importantly, Marigold and Patla (2008) suggested that the complex 

nature of the multi-surface terrain resulted in the participants performing altered gait patterns and 

visual control strategies.  

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=4365914_i1534-7362-15-3-10-f06.jpg
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From these highlighted studies, it is known that individuals need at least two steps of 

visual information in order to exploit the mechanical forces of human locomotion. However, in 

to order successfully exploit such forces, vision is needed up to the point at which toe off of one 

step away is about to be performed. This is known across experimental designs that incorporate 

obstacle avoidance and precision foot placement tasks. Furthermore, the role of vision changes 

with task demands. In an environment with greater terrain demands (e.g. cracked sidewalks, river 

stones, etc.), visual control strategies differ. One possible suggestion could align with previous 

discussion of head/trunk movements or another could suggest the influence of foot placement 

strategies.  

Foot Placement Strategies 

When an individual must choose where to place the foot in a short period of time, the 

individual must: 1) quickly and accurately assess environmental risks; 2) compare potential 

contact surfaces for a preferential landing spot of the swing foot (e.g. flat, stable, even ground); 

3) coordinate head and body movements in a manner that controls the COM in the direction of 

the swing foot’s future position; and 4) prepare the body with an anticipatory postural adjustment 

in order to ensure a stable foothold [Das & McCallum, 1988]. Seeing as though foot placement 

tasks require a significant amount of sensory integration and information processing, countless 

studies have examined the effects of paradigms that require individuals to selectively place their 

foot on a given location (e.g. target selection tasks).  

In this area of research, alternative foot placement strategies arise when individuals must 

deviate from their normal footfall location. For instance, Patla and colleagues (1999) determined 

factors that guided individuals to select alternate foot placement strategies. This study set the 

precedence of alternative foot placement strategies in order to determine what individuals do and 
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why. It was found that individuals will choose to minimize their displacement of the foot such 

that in the event of a perturbation, their alternative foot placement location is as close to their 

normal foot fall location as possible to help maintain stability [Patla et al., 1999]. As a result of 

minimizing foot displacement, muscle activity and thus, locomotive movement is limited in 

interruptions and promotes continuous stepping behaviours.  

Following up that study, Moraes and colleagues determined that if response choices 

satisfied minimizing foot displacement, then people will generally follow three alternate foot 

placement strategies: 1) placing the foot along the plane of progression; 2) choosing to take a 

longer step than a shorter step; and 3) selecting a more medial foot placement opposed to a 

lateral foot placement [Moraes, Lewis, & Patla, 2006; Moraes & Patla, 2004]. However, foot 

placement strategies, such as stepping more medial or placing the foot along the plane of 

progression seem to be counterintuitive in the sense that these strategies may compromise the 

dynamic stability of the individual. With the reduced BOS, the individual has a limited area to 

control their COM, which may increase the risk of losing balance, leading to an increased risk of 

falling [Hak et al., 2012]. A way to combat this risky stepping behaviour has been to increase the 

stability margin (i.e. stepping laterally to increase the BOS) [Hak et al., 2013]. By doing so, a 

more conservative approach to a foot placement strategy is performed, resulting in a decrease 

risk of falls. Thus, suggesting that stability is taken into the highest of priorities in effort to stay 

upright and injury-free; as previously mentioned, stability is one of the three essential elements 

of locomotion [Das & McCallum, 1988].   

Research examining foot placement has shifted to assessing strategies used during the 

navigation of complex terrains. Complex terrains can include elements of uneven, challenging 

surfaces that require individuals to assess future foot placement locations to a much greater 
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degree. Within literature, there have been a few examples of complex terrain, ranging from 

shortened multi-surface terrain to a few irregularly spaced target footholds. Marigold and Patla 

(2008), participants were required to walk across six varying types of ground terrain (two solid, 

three compliant three rocky, three irregular, three tilt, and one slippery); the design was setup in 

a way where only the middle portion challenged individuals with its multi-surface terrain. The 

researchers reported findings of increased variability with respect to step, trunk, and head when 

comparing multi-surface terrain to flat ground walking and young to older adults (Marigold & 

Patla, 2008).  However, the step, trunk, and head variability could have been due to the layout of 

the experiment itself opposed to the multi-surface terrain: with each square of the multi-surface 

terrain being 0.5m and the average step length of a young adult being 0.6m, the variability could 

be as a result of unnatural stepping dimensions of the required pathway—or some may be 

avoided completely, unless told otherwise.  

Throughout navigational locomotion tasks (e.g. target selection tasks), literature 

demonstrates the importance of the visual system with respect to foot placement strategies. 

Vision is required to gather information about the environment and find safe, secure foothold 

locations; secure foot placement is required to adjust and regulate one’s stability in efforts to 

remain upright during locomotion. Mathis and Fajen (2015 describe the role of vision up to the 

point of opposite foot toe off during a navigational task, suggesting that the reason is to exploit 

mechanical properties of locomotion, but never really suggests the interaction between postural 

and visual control with respect to foot placement.  
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CURRENT STUDY 

As the previous section highlighted, several research projects and articles stand out in the 

adaptive locomotion field of research. Researchers such as: Patla, Winters, and Fajen—just to 

name a few—contributed  to the current study in some fashion; whether providing insight into 

results and/or building upon experimental design to further explore visual control of locomotion. 

In particular, three main studies have provided the foundation to the current study.  

The first study by MacLellan and Patla (2006) examined the stability control strategies 

(e.g. adaptations of stepping patterns, COM movement, and lower limb muscle activity) of 

young adults while walking on a compliant surface. In order to maintain upright locomotion with 

a highly variable COM movement, individuals tended to increase their BOS by choosing to step 

wide and long. This study provided a great amount of insight into the operation of the CNS with 

respect to organizing muscle activities in order to control constant overcompensation and 

subsequent correction strategies as a means to control the COM. Furthermore, this particular 

study contributed to the understanding and implementation of assessing the dynamic stability 

margin of an individual during a difficult walking task. 

The second influential study was by Marigold and Patla (2008) in which they designed a 

study with the objective of determining the importance of vision while navigating a 2.5m multi-

surface complex terrain. As previously mentioned, this study contained two main research design 

flaws: 1) the 0.5m by 0.5m blocks of terrain is less than the average step length (i.e. ~60cm), 

therefore, an individual could step over a terrain in one step, unless otherwise instructed; and 2) a 

2.5m pathway is not long enough to suggest that participants were able to achieve what is 

deemed a steady state of locomotion. Rietdyk and Drifmeyer (2009) argue that during an 

accurate foot targeting task, the visual system is scanning to gather information in order to 
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contribute to an overall plan in the first four steps. Therefore, to accurately assess visual control 

strategies of complex terrain (and to ensure the individual reaches steady state locomotion), the 

pathway should incorporate more than four steps.   

The final influential study was by Mathis and colleagues (2015) who examined the role 

of vision and its influence on whole body mechanics during a pathway walking task, using six 

targets across 5m. The participants were exposed to the same path for 200 trials with no variation 

in target placement, which could suggest a learning effect from start to finish. However, this 

experimental design did highlight a key finding: individuals tend to use a visual-guidance of foot 

placement within two steps away—and up to toe off of opposite foot—in order to exploit 

biomechanical forces of the body when performing a precision foot placement task [Mathis, 

Barton, & Fajen, 2015; Mathis & Fajen, 2014; 2013]. This finding significantly contributed to 

the understanding of why people tend to look two steps ahead during a complex navigational 

task.    

  Based on these previous studies, some questions are left unanswered. The current study 

forced individuals to place their feet on the superior surface of irregularly shaped objects (e.g. 

rock climbing holds), moving from stone to stone. Participants navigated these stones following 

a predetermined pathway (e.g. constrained) or self-selecting the pathway (e.g. unconstrained). 

This study was designed with the notion of answering the following questions:  

1) How is control of the head and trunk affected when individuals choose their 

own path opposed to following a predetermined path? 

2) What are the differences in visual control strategies exhibited when self-

selecting a pathway opposed to following a predetermined path? And how is 

the DSM of an individual affected? 
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The purpose of this study is to further understand the postural and visual control 

mechanisms during a complex navigational task (e.g. stone stepping) and whether either were 

affected by the type of path (i.e., free or constrained) one walked.  The current study assessed the 

role of visual control during a complex navigational task and strategies used. Furthermore, the 

study was designed to examine the stability of individuals during a predetermined path opposed 

to a self-selected path, incorporating the challenging task of precision foot placement. With a 

task such as stone stepping, it was unknown whether the level of task difficulty would influence 

the visual control strategies, coinciding with previous work or not.   

HYPOTHESES 

For this study, two main hypotheses emerge, centralizing around the conditions of the 

pathways (e.g. whether it they are predetermined or self-selected). The primary hypothesis 

includes a comparison of the whole-body control, focusing on the HAT segment with respect to 

the condition of the trials.    

I. It is hypothesized that the constrained will cause individuals to exhibit greater 

variability—in the form of trunk movements about the hip—when compared to 

the unconstrained task. For instance, during the constrained trials, individuals 

should produce greater trunk movements in effort to control the HAT segment as 

a result of the unnatural foothold locations of the predetermined path. In 

comparison, unconstrained trials enable individuals to choose their path based on 

their current state of postural control, thus showing less trunk movements about 

the hip (e.g. trunk pitch and trunk roll).   

II. According to the conditions of the pathway (e.g. constrained versus 

unconstrained), it is hypothesized that individuals will not perform the previously 
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reported strategy of using visual information from two steps away. This notion 

comes as a result of the complexity of the task; previous literature reasoned that 

individuals fixate two steps away to exploit biomechanical factors of human 

locomotion during a simple pathway walking task [Mathis & Fajen, 2013; 2014; 

Mathis, Barton, & Fajen, 2015]. However, with a difficult paradigm—such that of 

the current study—the body may be greatly challenged. In order to remain upright 

and on the raised-ground path, visual control strategies may differ from the travel 

fixation strategies of more than two steps away [Hollands, Patla, & Vickers, 2002; 

Patla & Vickers, 2003]. Instead, it is hypothesized that fixations will occur on 

more immediate foothold locations as a way to compensate for the variable trunk 

movements and modulate foot placement to ensure accuracy.  
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2.0 METHODS 

2.1 Participants 

Nine university-aged females (mean age: 22.5 years old +/-1.75, range 20-24 years) 

volunteered for participation in this study. Inclusion criteria was designed and outlined as 

follows: 1) participants must not have any neurological, muscular, or joint disorders that could 

affect their performance and/or behaviour in this study; 2) participants must not have received 

any formal, sport-specific training within the past five years and/or be rostered to a competitive 

club/university field sport (e.g. rugby, soccer, field hockey, etc.) in order to have the most 

homogenous group as possible; 3) participant must have a shoe size smaller than US size 9 

females (size 7 males) in order to allow for roughly 70% of the entire foot to fit on a single rock 

climbing hold; and 4) participants have normal or corrected-to-normal vision. Please note: during 

pilot testing, the working inclusion criteria became a focal point as it was noted that males with a 

foot size larger than US size 9 would not work for two main reasons: 1) the foot was too large 

and would make contact with the plywood surface, offering a point of stabilization; and 2) the 

foot was too large that it would cover up to three rock climbing holds at once, offering a point of 

stabilization. For these reasons, females were recruited, with an inclusion criterion of women’s 

US size 9 or smaller. Once it was decided that females would be recruited as participants for the 

study, the placement of the rock climb holds were selected based on average step length and 

width for females. 

The current experiment has received ethical approval from the Wilfrid Laurier University 

Research Ethics Board (REB #4246). 
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2.2 Experimental Set Up 

Each participant was outfitted with four rigid bodies which contained three infrared 

emitting diodes (IREDs) in a triangular formation, allowing for thirteen digitized points (refer to 

Figure 6). One rigid body was placed on the occipital region (back of the head), mounted on the 

posterior head strap of the ASL gaze tracking system, with two corresponding digitized points 

located at both the left and right external ear; another rigid body was placed on the right scapula, 

specifically on the infraspinous fossa, with five digitized points corresponding with the rigid 

body: bilateral intertubercular grooves of the humerus, spinous process of T10, and both 

posterior superior iliac spines (PSIS); and one rigid body on each of the posterior aspects of the 

foot, specifically on the calcaneal region, corresponding with digitized points of the outer bounds 

of the 1st and 5th metatarsals as well as the anterior ankle (i.e. anterior aspect of the ankle, 

situated directly between both malleoli). Additionally, one marker was placed on the styloid 

processes of each the left and right ulna in order to show movements of the arm—and for COM 

calculations. Kinematic data were collected at a sampling frequency of 120Hz. 
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Figure 6- The location of the rigid bodies and digitized points; markers will be captured by three 

Optotrak camera systems (Northern Digital Inc., Waterloo, Ontario) in order to represent the 

body in space. The black triangles represent the four of the rigid bodies, located on the occipital 

lobe (mounted on ASL eye tracker); the black dots represent markers on both styloid processes 

of the ulna; the red dots represent nine (of the thirteen) digitized points on the TMJs, 

intertubercular grooves, T10, PSIS, and 5th metatarsals—the digitized points missing from this 

figure are: anterior ankles, and 1st metatarsals. 

  

Five OPTOTRAK position sensors (Northern Digital Inc.; Waterloo, Ontario, Canada) 

were positioned to the surroundings of the participant, in a semicircular shape in order to collect 

rear facing IRED markers as the individuals walked from the start of the pathway toward the end 

(refer to Figure 7 for setup). This particular setup was used to assess whole-body movements, 

with an emphasis on rotational trunk movements about the hip (e.g. trunk angles). Trunk angles 

= Rigid Body 

= Single Marker 

= Digitized Point  
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were calculated using the displacement of the digitized points on the left and right glenohumeral 

joints and T10. 

𝑷𝒊𝒕𝒄𝒉: ∅ =  𝐭𝐚𝐧−𝟏[
𝒎𝒊𝒅𝒑𝒐𝒊𝒏𝒕 𝒐𝒇 𝑮𝑯 𝒋𝒐𝒊𝒏𝒕𝒔𝑴𝑳−𝑻𝟏𝟎𝑴𝑳

𝒎𝒊𝒅𝒑𝒐𝒊𝒏𝒕 𝒐𝒇 𝑮𝑯 𝒋𝒐𝒊𝒏𝒕𝑽𝒆𝒓𝒕𝒊𝒄𝒂𝒍−𝑻𝟏𝟎𝑽𝒆𝒓𝒕𝒊𝒄𝒂𝒍
]  

𝑹𝒐𝒍𝒍: ∅ =  𝐭𝐚𝐧−𝟏[
𝒎𝒊𝒅𝒑𝒐𝒊𝒏𝒕 𝒐𝒇 𝑮𝑯 𝒋𝒐𝒊𝒏𝒕𝒔𝑨𝑷−𝑻𝟏𝟎𝑨𝑷

𝒎𝒊𝒅𝒑𝒐𝒊𝒏𝒕 𝒐𝒇 𝑮𝑯 𝒋𝒐𝒊𝒏𝒕𝑽𝒆𝒓𝒕𝒊𝒄𝒂𝒍−𝑻𝟏𝟎𝑽𝒆𝒓𝒕𝒊𝒄𝒂𝒍
]  

 

Additionally, gaze behaviours were monitored and recorded with the ASL H7-HS High 

Speed Head Mounted Optics eye tracking unit (Applied Science Laboratory; Bedford, 

Massachusetts, USA). One of the five rigid bodies was secured on the posterior portion of the 

head mounting unit (refer to figure 7). The gaze data was collected at a sampling frequency of 

120Hz. In order to calibrate the gaze tracker, participants were instructed to stand 1m away from 

the platform to ensure the entire first piece of the 7.2m by 1.2m plywood was fully visible to the 

participant and the scene camera. Using the ASL Results Plus software in calibration mode, the 

participant was instructed to just move eyes to the points indicated on the platform. Nine points 

were used on the first piece of plywood of the 7.2m pathway to calibrate: points 1, 3, 7, and 9 

were at all four corners of the 2.4m x 1.2m sheet of plywood; points 2 and 8 were directly in the 

middle of points 1/3 and 7/9, respectively; and points 4, 5, & 6 were outlined by finding the 

halfway point between 1/7, 2/8, and 3/9. Once fixation occurred at each of these points, the 

participant was directed to the next point of interest to fixate on. If calibration was not 

successful, the monocle and/or the pupil camera was adjusted and calibration was attempted 

again; calibration was considered to be unsuccessful if there was excessive movement of the 

pupil cursor when fixating on points of interest in addition to the experimenter being unsure of 

the exact point of interest (e.g. when asked to fixate on a rock, the experimenter was unsure of 

the exact rock due to inaccurate pupil cursor location).  
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A) Anterior View of ASL H7       B) Posterior View of ASL H7 

Figure 7- The ASL H7-HS High Speed Head Mounted Optics eye tracking unit (Applied 

Science Laboratory; Bedford, Massachusetts, USA). The head mounted unit contains two 

adjustable claps to ensure fit and comfort; the unit is also equipped with two cameras, an 

adjustable monocle, and wire that is positioned down the back left side of the unit. Figure 6a 

shows the anterior view of the head mounted system with two visible cameras: the scene camera 

is used to record the environmental surroundings (e.g. the scene) while the eye camera is 

positioned in accordance to the monocle in order to record eye movements. One of the adjustable 

clasps is visible from this angle along. Figure 6b shows the posterior view of the head mounted 

system with one of the rigid bodies used during this paradigm. The rigid body was in place to 

collect movement about the head during the stone stepping task. The second adjustable clasp and 

the cable connected to ASL software are visible from this perspective.  

   

The study was conducted in a 13m x 9m room, virtually unconfined when it comes to a 

navigational task (refer to Figure 8). The current study focused on raised-target pathway 

walking, with 60 rock climbing holds secured to superior surfaces of three consecutive pieces of 

plywood with a total measurement of 7.2m x 1.3m x 0.012m.  
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Figure 8- The experiment took place in a 13m by 9m space, with full lighting. Within this space 

was the 7.2m by 1.2m pathway which contained the raised rock climbing holds. Five Optotrak 

cameras were positioned in a semicircular formation in order to capture full-body kinematics of 

the participants throughout the entire pathway. 

  

2.3 Experimental Design 

The raised ground walking task was performed on a platform containing 60 rock 

climbing holds. Each hold was placed strategically to fulfill one of three criterion: 1) in line with 

natural footfall locations (e.g. normal step length and/or width dimensions of 60cm by 10cm); 2) 

greater or less than one of the dimensions of a natural step length or width; or 3) to act as a 

possible option/distractor on the pathway (refer to Figure 9).  
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Figure 9- An aerial view of the raised pathway in which participants were instructed to walk 

along. The ovals and the small rectangles within the space represent the 60 rock climbing holds 

which made up the possible foot placement targets. The red and blue ovals represent the right 

and left respectively predetermined paths in which the participants had to follow during 

constrained walking trials. The small rectangles represent the additional stones placed as options 

for the participants to step on during unconstrained walking trials and act as distractors during 

the constrained walking trials. The yellow ovals are the four planned foot placements in which 

the participants had to step on every trial, regardless of condition (i.e. constrained or 

unconstrained). On each trial the participants were required to place their right foot on the first 

yellow oval followed by placing their left foot on the second target. The participants began each 

trial by stepping on either the first red or blue oval and continued to the last set of planned 

yellow ovals.  

 

Two pathways (i.e., left foot start or right foot start) were constructed along the pathway 

in order to rule out any effects of starting with one foot over the other. Furthermore, the two 

pathways were mirror images of each other, manipulating the same dimension, just different 

direction. For instance, the blue path below begins by manipulating natural step length to 

decrease the step length by 33.3%; the next step manipulated natural step width by decreasing 

step width by 50%; followed by manipulating the natural step length by increasing step length by 

33.3%; increasing step width by 50%; and decreasing step length by 33.3%. And the red pathway 

begins by manipulating natural step width to decrease the step width by 50%; the next step 

manipulated natural step width by decreasing step length by 33.3%; followed by manipulating 

the natural step width by increasing step width by 50%; increasing step length by 33.3%; and 

decreasing step width by 50%. Each of the previously described pathways is only one segment, 
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consisting of five steps each approaching the first set of preplanned foot placements secured at a 

natural step length of 60cm and a natural step width of 20cm. The segments were then repeated 

in the same order for the second segment of the platform (Table 1). 

With each step, one dimension was manipulated with the other dimension remaining 

consistent with a natural step. Thus, to increase step length, the subsequent stone was placed 

80cm in the AP direction and 10cm in the ML direction away from the previous stone; 80cm 

being roughly 33% longer than the average person’s step length and 10cm being the average 

person’s step width. Conversely, to decrease step length, the subsequent stone was placed 40cm 

in the AP direction and 10cm in the ML direction away from the previous stone; 40cm being 

roughly 33% shorter than the average person’s step length and 10cm being the average person’s 

step width. To increase step width, the subsequent stone was placed 20cm in the ML direction 

and 60cm in the AP direction away from the previous stone; 20cm being roughly 50% wider than 

the average person’s step width and 60cm being the average person’s step width. Conversely, to 

decrease step width, the subsequent stone was placed 5cm in the ML direction and 60cm in the 

AP direction away from the previous stone; 5cm being roughly 50% narrower than the average 

person’s step width and 60cm being the average person’s step width.  
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Table 1- A summary of step manipulations for both the red and blue pathways, separated into 

two segments by the preplanned foot placements; the preplanned foot placements were fastened 

at a natural step length dimension of 60cm and a natural step width dimension of 20cm. Each 

pathway contains ten manipulations in total, with five manipulations (i.e. steps) in the first 

segment and five in the second segment. The Blue pathway begins by manipulating decreasing 

step length by 33.3%; decreasing step width by 50%; increasing step length by 33.3%; increasing 

step width by 50%; and decreasing step length by 33.3%. And the red pathway begins by 

decreasing step width by 50%; decreasing step length by 33.3%; increasing step width by 50%; 

increasing step length by 33.3%; and decreasing step width by 50%. The segments were then 

repeated in the same order for the second segment of the platform.  

 

Step Blue Pathway Red Pathway 

N (starting) Left Foot Start Right Foot Start 

N+1 (step one) Decrease step length by 33.3% Decrease step width by 50% 

N+2 (step two) Decrease step width by 50% Decrease step length by 33.3% 

N+3 (step three) Increase step length by 33.3% Increase step width by 50% 

N+4 (step four) Increase step width by 50% Increase step length by 33.3% 

N+5 (step five) Decrease step length by 33.3% Decrease step width by 50% 

N+6 (step six):  

Preplanned Step 

60cm step length by 20 cm 

step width  

60cm step length by 20 cm 

step width 

N+7 (step seven): 

Preplanned Step 

60cm step length by 20 cm 

step width  

60cm step length by 20 cm 

step width 

N+8 (step eight) Decrease step length by 33.3% Decrease step width by 50% 

N+9 (step nine) Decrease step width by 50% Decrease step length by 33.3% 

N+10 (step ten) Increase step length by 33.3% Increase step width by 50% 

N+11 (step eleven) Increase step width by 50% Increase step length by 33.3% 

N+12 (step twelve) Decrease step length by 33.3% Decrease step width by 50% 

 

 

The two sets of planned foot placements (represented as the yellow ovals in Figure 8) 

were placed 2.4m and 6m from the starting positions. The position of these foot holds fell in line 

with one’s natural step length and width dimensions (i.e., 60cm step length and 10cm step 

width). This was done for a few reasons: 1) to increase the level of control—regardless of 

condition, participants were instructed to incorporate a right-left stepping behaviour on the set of 

planned foot placements for post-hoc analysis of gait parameters; 2) the two sets of planned 

placements were designed to analyze the Dynamic Stability Margin (DSM) at those four rocks to 

help ensure that all participants had similar stepping parameters across all trials; and 3) to act as 
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a divider, separating the pathway into two separate segments. The purpose of the segments was 

to compare the effects of segments and to compare whether or not both segments had the same 

effect on the participants and that they were unaffected by the planned foot placements. The four 

planned foot placements were clearly marked with high-contrasting moldable material (i.e., pink 

Play-Doh) placed within the bolt hole of the rock climbing hold, visible from a minimum of four 

steps away.  

   The superior surfaces of the rock climbing holds were flat enough to allow the 

participants to make contact with the pads and the arches of their feet (refer to Figure 10). In 

order to control for shoe mechanics and contacting surface area, each participant wore canvas 

style Converse Chuck Taylor shoes because of their flat rubber sole bottoms that offered limited 

ankle support and possess a medium density insole. 
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Figure 10- Picture of rock climbing hold used in current study alongside a standard-size 

ballpoint pen. The rock was fastened to the wood platform with a 2 ½” bolt and secured with 

carpenter’s glue. Each rock was laid out in a specific location to either fall in line with a natural 

footfall location, to larger or smaller than one of the dimensions of a natural step length or step 

width, or act as an additional option/distractor. Participants were instructed to place each of their 

feet on the superior surface of the stone without spanning across more than one and/or making 

contact with the wood platform. A high-contrasting moldable substance was placed in the bolt 

hole of the superior surface of rocks to indicate to individuals which stones to step on; one of the 

starting stones and all four planned foot placements always had the high-contrasting moldable 

substance to ensure that participants always stepped on those rocks.    
 

 

2.4 Experimental Procedure 

Prior to the start of data collection, all participants were given the same set of 

instructions:  

Before the start of every trial, an experimenter will calibrate your vision to ensure 

accuracy of the ASL gaze tracking equipment. Prior to the ‘go’ command, you will face 

the opposite direction of the walkway and one experimenter indicate whether the 

upcoming trial is a free choice or forced trial and which foot to start with. When you hear 

the experimenter say “go”, you will turn around to face the walkway and you will begin 
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walking as ‘normal’ as possible, placing your feet on the top of each stone without 

spanning across more than one stone at a time and/or making contact with the board. 

Each participant walked at a self-selected pace and performed a total of 40 randomized 

trials of the following four conditions: 1) constrained predetermined path, starting with left foot; 

2) constrained predetermined path, starting with right foot; 3) unconstrained self-selected path, 

starting with left foot; and 4) unconstrained self-selected path, starting with right foot. The 

constrained pathways were differentiated from the unconstrained ones using a high-contrasting 

moldable material (e.g. pink Play-Doh) on the superior surfaces of designated rocks, according to 

the given trial.  

Trials were redone if participant fell off of the stones completely and/or they failed to 

conform to the above-mentioned “rules” (i.e., do not let foot come in contact with platform).  

2.5 Data Analysis 

In order to answer the research questions at hand, the data was analyzed as two separate 

entities: Gaze Behaviours and Kinematics. However, with two separate units and unsynchronized 

software, the start of the data analysis window was defined as the frame in which the first foot 

broke the positive X/Y plane.  With +X/+Y plane setup such that the anterior-posterior (A-P) and 

medial-lateral (M-L) axes of the board, corresponded to the X+ and Y+ axes respectively. The 

first positive value in the X direction indicated the starting frame; the origin of the global axis 

coordinate system was located in the bottom left corner of the platform. The analysis window 

ended once the individual reached 7.2m in the X direction.  

Using this defined analysis window, gaze behaviours and kinematics were further broken 

down into segment number, condition, and time.  
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Segment number was divided into two portions: Segment 1 which began at heel contact 

during the first stone of the pathway and ended just prior to heel contact with the first stone of 

the first set of predetermined footholds; Segment 2 began at heel contact with the first stone of 

the pathway after the first set of predetermined footholds and ended just prior to heel contact of 

the first stone of the second set of predetermined footholds.  

Condition was characterized by the task demands as well as starting foot. For instance, if 

the participant was asked to start the trial with their left foot and follow the pathway, that trial 

would be classified as a ControlLeft (CL). Conversely, if the participant was asked to start with 

their right foot and choose their own path, that trial would be classified as FreeRight (FR). 

Therefore, with two starting foot options and two conditional demands, there are four conditions: 

ControlLeft (CL), ControlRight (CR), FreeLeft (FL), and FreeRight (FR).  

Time was measured at three separate time points throughout the experimental protocol 

and characterized by the number of completed trials of a particular condition. For all four 

conditions, the first, the middle (i.e., 5th), and the last (i.e., 10th) trials successfully completed 

were taken into account when analyzing each dependent variable. For instance, for the condition 

CR which had a total number of ten trials completed, trial number one, five, and ten were 

highlighted to extract any values from to measure across segments and conditions. This 

characterization of time point was used to assess whether learning occurred from the beginning 

of the experimental protocol through the end.   

2.5.1 Gaze Behaviours  

The gaze data was first viewed real-time playing speed to qualitatively assess observable 

gaze strategies of each trial performed by all participants. Number of fixations and fixation 

durations (ms) were analyzed to determine if there were any differences in the processing time of 
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individuals between the two conditions. Then, average pupil velocity was calculated using output 

from ASL H7-HS High Speed Head Mounted Optics eye tracking unit, separating velocity 

values (pixels/s) into vertical and horizontal components. To gain an understanding into the 

fluctuation of velocity values about a mean, the root mean square (RMS) of horizontal and 

vertical values were calculated across all trials using the following equation: 

  

Horizontal and vertical pupil velocity values were used as a means to determine how 

quickly individuals fixated between points. Horizontal and vertical pupil velocity values were 

analyzed to provide a quantitative approach to describing observable gaze strategies. For 

instance, a higher velocity value suggests greater movement of the pupil (and eye). However, a 

greater velocity value also suggests that an individual moved quickly from one fixation point 

(i.e., foothold) to another. With respect to the vertical component, a greater velocity value may 

be indicative of producing a visual control strategy similar to the documented travel fixation 

strategy [Hollands, Patla, & Vickers, 2002]. The travel fixation strategy incorporates the use of a 

scanning pupil behaviour that travels ahead to locate possible future footholds and returns to 

more immediate footholds, fixating in this sort of scanning pattern. Conversely, with greater 

velocity values in the horizontal component may be indicative of more of a sampling fixation 

strategy [Wilkie & Wann, 2003]. The sampling fixation strategy is essentially that—the eye is 

sampling the environment and relevant possible foothold locations to discriminate between 

attractive and unattractive foothold locations.     
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However, these analyses failed to indicate where the individual was looking with respect 

to potential foothold locations. In order to gain insight into a possible location, a representative 

of the group of participants was selected for a frame-by-frame analysis of fixation location.   

2.5.2 Kinematics  

Kinematic data was collected using a five positioning OPTOTRAK camera systems with 

the use of four rigid bodies and two individual IRED markers (refer to Figure 5). Raw data was 

processed using Optofix software (Mishac Kinetics, Waterloo, Canada); a cubic spline 

interpolation was used to filter any missing data at a threshold of 15 frames. All kinematic data 

was then filtered further using a 4th order low-pass Butterworth filter with a 3Hz cutoff—to be 

conservative and remove step-by-step variability, a 1Hz cutoff was used for average walking 

velocity.    

Kinematic data was characterized based on the dependent measure being assessed. In 

order to depict the most informative understanding of the results of the current study, six 

dependent measures were analyzed. 

I. Average walking speed (cm/s) 

Average walking speed was calculated based on the average of the instantanoues speeds 

during segment one and segment two of the platform. Average walking speed of Segment 

1 was calculated from heel contact of the starting foot to heel contact of the first 

predetermined right heel contact. Average walking speed  of Segment 2 was measured 

from heel contact of the first stone following the first set of predetermined foot 

placements to right heel contact of the second set of predetermined foot placements. The 

purpose of analyzing walking speed was to gain an understanding of the amount of time 

an individual took to complete both segments of the task. The comparison of walking 
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speed across conditions could be used as an indirect measure the level of difficulty of 

each condition (i.e., slower velocity equals a more difficult task).  

II. Medial-Lateral Centre of Mass Variability (cm) 

Medial-lateral centre of mass variability (ML COMvar) was analyzed as a means to 

describe whole body kinematic data. In order to do so, the weighted whole body COM was 

calculated using a formula derived from Winter (2008) for the x, y, and z planes and the 

standard deviation of the average position during each segment was calculated as follows:  

COM = 0.46 *((Left Glenohumeral Joint + Right Glenohumeral Joint + T10) / 3) + 0.22 * ((Left 

PSIS + Right PSIS) / 2) + 0.16 * (0.625 * Left PSIS + 0.375 * Left Ankle) + 0.16 * (0.625 * Right 

PSIS + 0.375 * Right Ankle) 

𝑀𝐿 𝐶𝑂𝑀𝑣𝑎𝑟 = √
1

𝑁
∑(𝑥𝑖

𝑁

𝑖=1

−𝜇)2 

This equation was used to provide insight into the variability in linear movement of the 

whole body COM as a measure over the two segments.    

III. Trunk Pitch and Roll (degrees) 

Trunk pitch and roll was used to assess rotational trunk movement abouth the hip joint in 

the sagiital and frontal planes, adding to the descriptive understanding of trunk control 

during the task. However, with this concentration of trunk movements, we extend work by 

Winter (1991; 1995) as well as MacKinnon and Winter (1993) that assessed the rotation 

about the hip and the movement of what is commonly referred to as the inverted pendulum. 

RMS of trunk pitch and roll were analyzed to show how the trunk was moving about the 

mean and provide further insight into control strategies used.    
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IV. Trunk-Head Control 

Trunk-Head control is a measure of providing further insight into angluar head control 

relative to trunk angular control in both the sagittal and frontal planes. Trunk-head control 

assesses the level of segmental control that the body uses to coordinate movements of the 

head-arm-trunk (HAT) segment. In order to assess this level of control, head movements 

(e.g. pitch and roll) were subtracted from the repsective trunk movements (e.g. pitch and 

roll), equating an integer. This integer was then assessed based on the relationship to the 

integer less than or greater than 0: if the trunk-head value was greater than zero, the level 

of segmental control was predominently the trunk; if the trunk-head value was less than 

zero, the level of segmental control was predominently the head; if the trunk-head value 

was 0, trunk and head movements were occuring together as a means to segmental control.  

V. Dynamic Stability Margin minimum (cm) 

The DSMmin is a measure of medialateral (ML) stability within a particular time window; 

DSM in the ML direction was measured from the lateral border of the BOS to the COM at 

heel contact, added to the instantaneous ML velocity of the COM, divided by the square 

root of height to the COM divided by gravity [Hof et al., 2005; MacLellan & Patla, 2006]. 

More simply put, DSMmin was measured during single support and was calculated as the 

M-L difference between the COM and the lateral border of the BOS (i.e., 5th metatarsal) 

[Denomme et al., 2014; Perry et al., 2008]. DSMmin was chosen as the value of interest 

because it represents the closest that the COM is allowed to get to the lateral border of the 

BOS before it is redirected. Larger DSMmin values are indicative of better dynamic 

stability than smaller values (refer to figure 11).  
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In order to highlight any differences in DSM leading up to the first set of preplanned foot 

placements, the DSM was characterized with an additional factor of foot (i.e. right foot 

versus left foot). This was with the intention of understanding how individuals treated the 

first preplanned foot placement with respect to the second preplanned foot placement.  

 

Figure 11- Representation of the DSMmin that demonstrates the control of the COM as it 

approaches the borders of the BOS [Maki et al., 2008]. The stability margin can be estimated by 

measuring the minimum distance the COM moves in relation to the lateral bounds of the BOS; a 

larger DSMmin suggests a greater dynamic stability.  

 
2.6 Statistical Analysis 

In order to determine significant effects across all dependent variables (e.g. horizontal 

pupil velocity RMS, vertical pupil velocity RMS, average walking speed, trunk pitch, trunk roll, 

trunk-head control, and DSMmin), a 2 (Segment 1 vs. Segment 2) by 4 (constrained left foot 

start, constrained right foot start, unconstrained left foot start, unconstrained right foot start) by 3 

(trial 1, 5, and 10) repeated measures ANOVA was used.  
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3.0 RESULTS 

All nine participants completed all experimental trials. Across all trials, only 16 falls 

were observed where the participant remained upright but failed to remain on the stone pathway. 

All failed trial attempts were redone at the end of the scheduled protocol. Specific outcomes of 

both gaze and kinematic behaviours are outlined below. 

 

3.1. Gaze Behaviours 

  

3.1.1. Vertical Pupil Velocity RMS (pixels/s) 

The analysis of vertical pupil velocity RMS (in pixels/s) was calculated to determine 

participants’ quick eye movements in the vertical direction (indicative of scanning behaviours) 

the results revealed that there was no significant interaction effect of segment and condition 

(F(3,24)=2.27; p= .11; d=.22); no significant interaction of condition and time (F(6,48)=1.76; p= .13; 

d=.18; no significant interaction of segment and time (F(2,16)=3.29; p= .06; d=.29); and there was 

no significant interaction of condition and segment and time (F(6,48)=.88; p= .52; d=.10). 

As for main effects, the analysis revealed a significant main effect of condition 

(F(3,24)=4.71; p= .04; d=.46). Post hoc analysis revealed that the mean vertical velocity RMS of 

both the right and left foot starts during the constrained trials ( Rconstrained=1859.46 pixels/s, 

SD=395.45; Lconstrained=2002.23 pixels/s, SD=226.39) were greater than that of the velocity 

RMS of right and left foot starts for unconstrained trials ( Runconstrained=1494.23 pixels/s, 

SD=305.46; Lunconstrained=1483.66 pixels/s, SD=226.64) (refer to Figure 12).  
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Figure 12- Vertical pupil velocity RMS was significantly affected by condition, such that the 

constrained trials (left and right start) were greater than the unconstrained trials  (F(3,24)=4.71; p= 

.04; d=.46).  

 

 

However, the analysis revealed that Segment 1 was not different from Segment 2 

(F(1,8)=1.21; p=.31; d=.13) and pupil velocity RMS was consistent from the first trial to the last 

(i.e., time) (F(2,16)=0.44; p=.65; d=.05).    

 

3.1.2. Horizontal Pupil Velocity RMS (pixels/s) 

Similar to the vertical pupil velocity, the horizontal pupil velocity RMS (in pixels/s) was 

calculated to determine the velocity that participants’ eyes moved horizontally (i.e., scanning 

between right and left foot placements), the results revealed that there was no significant effect 

of segment number on condition (F(3,24)=1.14; p= .35; d=.13); no significant interaction of 

condition and time (F(6,48)=1.82; p= .13; d=.19); no significant interaction of segment and time 

(F(2,16)=.90; p= .46; d=.10); and no significant interaction condition and segment and time 

(F(6,48)=1.95; p= .09; d=.20).    
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As for main effects, the analysis revealed that Segment 1 was not different from Segment 

2 (F(1,8)=.50; p= .50; d=.06) nor was the first trial significantly different from the middle or last 

trial (i.e., time)  (F(2,16)=1.37; p= .28; d=.15). However, there was a significant main effect of 

condition (F(3,24)=4.40; p= .03; d=.36).  Post hoc analysis revealed that the mean horizontal 

velocity RMS of both the right and left foot starts during the unconstrained trials (

Runconstrained=2695.53 pixels/s, SD=476.31; Lunconstrained=2826.66 pixels/s, SD=835.59) were 

greater than that of the velocity RMS of right and left foot starts for constrained trials (

Rconstrained=2012.46 pixels/s, SD=451.31; Lconstrained=1925.25 pixels/s, SD=255.80) (refer to 

Figure 13). 

 

Figure 13- The results from the horizontal pupil velocity RMS revealed that the constrained 

trials (left and right start) were significantly greater than the unconstrained trials (F(3,24)=4.40; p= 

.03; d=.36).  

 

 

3.1.3. Number and Duration of Gaze Fixations 

The total number of fixations (i.e., gaze remained fixed for >100ms) and the mean 

duration of each fixation for each trial for all participants were recorded via the ASL H7-HS 
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High Speed Head Mounted Optics eye tracking unit. The number of fixations and the duration of 

fixations were separated based on condition (i.e. constrained and unconstrained).  

On average, the participants performed more gaze fixations during the unconstrained 

trials ( unconstrained=31.65; SD=16.25) than during the constrained trials ( constrained=30.26; 

SD=17.95). However, the mean number of fixations did not show a significant conditional effect 

(t(53)=0.65, p=0.52) and thus, we can conclude that there was not a significant difference in the 

number of fixations between conditions and participants.  

On average, the participants performed a similarly with respect to gaze fixation duration 

during unconstrained trials ( unconstrained=0.16s; SD=0.017) when compared constrained trials (

constrained=0.16s; SD=0.021). Therefore, the mean duration of fixations did not reveal a significant 

conditional effect (t(53)=-0.61s, p=0.54) and thus, we can conclude that there was not a significant 

difference in the duration of fixations between conditions and participants.  

 

3.1.4. Approximate Fixation Location: A Representative Participant  

 One participant was randomly selected to represent the participant group in order to 

suggest the approximate fixation location during constrained and unconstrained trials. A frame-

by-frame analysis was performed and fixations were categorized based on condition and steps 

away from the individual (i.e. one, two, or three steps away).  

 There was a significant association between  the condition and the location of fixation 

being one, two, or three steps away from the individual x2 (2)=1362.64, p<0.001. This seems to 

suggest that a conditional effect is present based on approximate location of the gaze during 

constrained and unconstrained trials.  
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3.2. Kinematic  

3.2.1 Average Walking Speed (cm/s)   

The analysis for average walking speed revealed that there were no significant 

interactions found: there was not a significant interaction of condition and time (F(6,48)=2.24; 

p=0.06; d=.22); there was not a significant interaction of condition and segment (F(3,24)=0.34; 

p=0.80; d=.04); there was not a significant interaction of time and segment (F(2,16)=4.33; p=0.07; 

d=.35); nor was there a significant interaction of condition and time and segment (F(6,48)=1.38; 

p=0.28; d=.15).  

However, there was a main effect of condition (F(3,24)=23.27; p=0.04; d=.30). Post hoc 

analysis revealed that the average walking speeds of both right and left foot starts during the 

constrained trials ( Rconstrained=80.51 cm/s, SD=5.45; Lconstrained=81.98 cm/s, SD=4.53) were 

greater than that of the average walking speeds of right and left foot starts for unconstrained 

trials ( Runconstrained=69.71 cm/s, SD=4.60; Lunconstrained=67.48 cm/s, SD=4.16) (Figure 14). 

 

Figure 14- The results revealed that average walking speed during the constrained conditions 

(left and right foot starts) were significantly faster than the unconstrained conditions 

(F(3,24)=4.40; p= .03; d=.36).  
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Additionally, there was a main effect of time (F(2,16)=23.27; p< .001; d=.74). Post hoc 

analysis revealed that the first trial ( time1=66.16 cm/s, SD=5.62) and the middle trial (

time2=74.09 cm/s , SD=4.39) were significantly slower than that of the mean walking speed of the 

last trial ( time3=90.51 cm/s , SD=3.96) (refer to Figure 15). Furthermore, average walking speed 

was not different during Segment 1 ( segment1=75.96 cm/s, SD=4.66) as compared to Segment 2 (

segment2=77.88 cm/s, SD=3.88). 

 

Figure 15- Average walking speed was significantly affected by the trial number (time) 

(F(2,16)=23.27; p<0.001; d=.74) such that the first (Time1) and middle (Time2) trials were 

significantly slower than the last trial (Time 3) completed.  

 

3.2.2 Medial-Lateral Centre of Mass Variability (cm)  

The analysis of the ML COMvar was calculated to determine the participants’ medial-

lateral linear stability during the trials. The results did not reveal any significant interactions: 

there was no significant interaction of segment and condition (F(3,24)=.82; p= .50; d=.09); there 

was no significant interaction of condition and time (F(6,48)=.67; p= .67; d=.08); there was no 
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significant interaction of segment and time (F(2,16)=1.19; p= .33; d=.13); and no significant 

interaction condition and segment and time (F(6,48)=.78; p= .59; d=.09).    

Additionally, there was no significant main effects observed: there was not a significant 

main of condition (F(3,24)=.45; p= .72; d=.05); there was not a significant main effect of segment 

(F(1,8)=1.12; p= .32; d=.12); nor was there a significant main effect of time  (F(2,16)=1.39; p= .28; 

d=.15).  

 

3.2.3 Trunk Roll (degrees)   

The analysis of the trunk roll was calculated to determine whether or not the walking 

conditions produced different levels of sagittal angular trunk control. A paired-samples t test was 

performed to determine whether mean trunk roll was significantly different between the two 

conditions; we fail to reject the null (t(constrained)=0.42; p=0.34)  and conclude that mean trunk roll 

during constrained trials ( constrained=6.84°) was not significantly different than the mean trunk 

roll of the unconstrained trials ( unconstrained=9.42°).  

RMS of trunk roll was analyzed to assess trunk variability about the mean. There were no 

significant interactions: there was no significant interaction of segment and condition (F(3,18)=.34; 

p= .80; d=.05); there was no significant interaction of condition and time (F(6,36)=1.00; p= .44; 

d=.14); there was no significant interaction of segment and time (F(2,12)=1.70; p= .22; d=.22); and 

no significant interaction condition and segment and time (F(6,36)=1.25; p= .30; d=.18).   

Additionally, trunk roll angles were not significantly affected by trial number 

(F(2,12)=1.10; p=0.37; d=.16) nor segment number (F(1,6)=1.32; p=0.29; d=.18). However, trunk 

roll angle was significantly affected by condition (F(3,21)=4.84; p=0.01; d=.45). Post hoc analysis 

revealed that the mean trunk roll of both the right and left foot starts during the unconstrained 
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trials ( Runconstrained=9.71°, SD=1.15; Lunconstrained=9.26°, SD=.88) were greater than that of the 

mean trunk roll of right and left foot starts for constrained trials ( Rconstrained=7.34°, SD=.59; 

Lconstrained=7.02°, SD=.73) (refer to Figure 16). 

 

Figure 16- The results revealed that mean trunk roll angle was significantly affected by 

condition (F(3,21)=4.84; p=0.01; d=.45), such that the constrained trials (left and right start) were 

significantly greater than the unconstrained trials.  

 

 

3.2.4 Trunk Pitch (degrees)  

The analysis of the trunk pitch was calculated to determine whether or not the walking 

conditions produced different levels of frontal angular trunk control. A paired-samples t test was 

performed to determine whether mean trunk pitch was significantly different between the two 

conditions; we fail to reject the null (t(constrained)=0.73; p=0.24)  and conclude that mean trunk 

pitch during constrained trials ( constrained=-28.77°) was not significantly different than the mean 

trunk roll of the unconstrained trials ( unconstrained=-29.16°).  

RMS of trunk roll was analyzed to assess trunk variability about the mean. There were no 

significant interactions: there was no significant interaction of segment and condition (F(3,18)=.88; 
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p= .47; d=.13); there was no significant interaction of condition and time (F(6,36)=1.13; p= .37; 

d=.16); there was no significant interaction of segment and time (F(2,12)=.81; p= .47; d=.120); and 

no significant interaction condition and segment and time (F(6,36)=1.45; p= .22; d=.20).   

Additionally, trunk pitch angles were not significantly affected by condition (F(3,18)=.94; 

p= .44; d=.14); time (F(2,12)=1.49; p= .27; d=.20); nor segment number (F(1,6)=2.26; p= .18; 

d=.27).  

 

3.2.5 Trunk-Head Control 

The analysis of trunk-head pitch was calculated to determine if the head and trunk were 

independently controlled. The results did not reveal a significant interactions of condition and 

segment (F(3,24)=0.95; p= .43; d=.11); condition and time (F(6,48)=1.65; p= .15; d=.17); nor 

segment and time (F(2,16)=.81; p=0.46; d=.09). As well, there was no significant interaction effect 

of condition and time and segment (F(6,48)=.90; p= .50; d=.10). 

Additionally, there was no main effect of trunk-head pitch to report. Trunk-head pitch 

was not affected by segment number (F(1,8)=1.55; p= .25; d=.16); nor did it change from the first 

trial to the last (F(2,16)=.42; p= .66; d=.05). As well, the trunk-head pitch was not different 

between the constrained and unconstrained trials (F(3,24)=.18; p= .91; d=.02). 

 

3.2.6 Dynamic Stability Margin minimum (cm)  

The analysis of the DSMmin is an indication of one’s stability during single support. The 

results did not reveal any significant interactions, such that stability during left single support 

and right single support were not affected by condition (F(3,24)=1.15; p= .35; d=.14) nor trial 

number (i.e., foot by time) (F(2,14)=.68; p= .52; d=.09). Also, the type of condition was not 
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affected by trial number (condition by time) (F(6,42)=2.01; p= .09; d=.22). No significant 

interaction was observed between condition and foot in single support and trial number 

(F(6,42)=.63; p= .71; d=.08).   

However, DSMmin was affected solely by the type of condition (F(3,21)=4.89; p= .01; 

d=.41). Post hoc analysis revealed that the mean DSMmin of both the right and left foot starts 

during the unconstrained trials ( Runconstrained=9.67cm, SD=.44; Lunconstrained=9.40cm, SD=.59) 

was greater than that of the DSMmin of right and left foot starts for constrained trials (

Rconstrained=6.30cm, SD=.53; Lconstrained=6.09cm, SD=.49) (refer to Figure 17). 

 

Figure 17- The results revealed that mean DSMmin during the constrained conditions (left and 

right foot starts) were significantly greater than the unconstrained conditions (F(3,21)=4.885; p= 

.01; d=.411).  

 

Additionally, there was a main effect of trial number (F(2,14)=7.85; p= .01; d=.53). Post 

hoc analysis revealed that the first trial ( time1=10.31cm, SD=.74) was significantly greater than 

the last trial completed ( time3=5.69cm, SD=1.16). However, the DSMmin for the middle trial 
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completed ( time2=7.97cm, SD=.36) was not significantly different than that of the DSMmin of 

the first trial (refer to Figure 18).  

 

Figure 18- The DSMmin was significantly affected by trial number (F(2,14)=7.85; p= .005; 

d=.53), such that the first trial (Time1) ( time1=10.31, SD=.74) was significantly greater than that 

of the mean DSMmin of the last trial ( time3=5.69, SD=1.16). The DSMmin of the middle trial 

(time point two) ( time2=7.97, SD=.36) did not significantly differ from either the DSMmin of 

the first of last trials.  

 

And furthermore, there was a main effect of foot in single support (F(1,7)=6.22; p= .04; 

d=.47), such that when the left foot was in single support the average DSMmin ( Lfoot=9.09, 

SD=.61) was greater than when the right foot was in single support ( Lfoot=6.89, SD=.68) (refer 

to Figure 19). 
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Figure 19- The DSMmin when the left foot ( Lfoot=9.09, SD=.61) was in single support during 

the first set of predetermined foot positions was significantly greater than when the right foot (

Lfoot=6.89, SD=.68) was in single support (F(1,7)=6.22; p= .041; d=.471).  
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4.0 DISCUSSION 

The purpose of this study was to examine the effect of a complex navigational stone 

stepping task on HAT segment control. It was hypothesized that the conditional demands of the 

task would produce gaze and kinematic behaviours which were dependent on whether or not the 

participants’ path was constrained or not and these differences in behaviours would be the result 

of a means to maintain upright postural control. In order to determine whether this was true or 

not, the primary objective of the current study was to understand possible relationships between 

gaze and kinematic behaviours across all participants.  

The visual system is the only sensory system which is capable of gathering information at 

a distance while integrating information from other sensory systems to coordinate whole-body 

movements. Thus, researchers measure behaviours produced and strategies exhibited to begin to 

understand the role that the visual system has on the control of locomotion.  In the current study, 

gaze behaviours were separated into vertical and horizontal pupil movements to quantitatively 

analyze observable real-time strategies.     

 

4.1. Visual Control of Whole-Body Kinematics  

Results from the current study did not show any differences in gaze fixation duration and 

frequency, meaning that the two conditions did not require individuals to perform different gaze 

behaviours with respect to the number of fixations and the duration of fixations. From a quiet eye 

perspective, Vickers (2007) suggests that the quiet eye (i.e. final fixation prior to action) stems 

from processing abilities of the individual such that an inverse relationship between number of 

fixations and duration of fixations forms: as processing abilities increase, so too does the 

duration of fixations while the number of fixations decrease. However, the results indicate no 
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such differences are present, which may suggest that the two conditions of individuals navigated 

essentially placed the same cognitive load on the individuals. One proposed theory is that with 

no difference in the number of fixations or duration of fixations between conditions, it is possible 

that both had equal number of task relevant items [Vickers, 1992]. However, it is possible that 

the participants gathered visual information differently between the two conditions. 

As an insight into where individuals were gathering information about task relevant items 

during both tasks, a representative participant was selected to understand where participants were 

looking and gathering information about the environment. In order to do so, a frame-by-frame 

analysis was performed to begin to understand where fixations were located with respect to the 

participant’s location. As the results demonstrate, there were differences in the general location 

of fixation between the two conditions, suggesting that during unconstrained trials more fixations 

were approximately two steps ahead whereas during constrained trials the fixation location was 

roughly split between one and two steps ahead. If this was the case, a difference in fixation 

location would make sense as the two conditions require the individual to perform two different 

gaze behaviours—scanning versus sampling. During scanning, the individual looks ahead to 

predetermined footholds as a means of planning and scans back to guide foot placement. 

Conversely, during sampling, the individual is searching for the ideal foothold. These two 

proposed gaze behaviours are possible if in fact fixation location is a factor, providing some 

insight in where the approximate fixation location may be. Moving forward, research should 

direct attention to pinpoint the exact location of gaze to fully understand how individuals are 

using pertinent information.  

In order to be able to characterize observable eye movements, it is suggested to separate 

pupil/eye movements into vertical and horizontal components to gain an understanding of how 
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eye/pupil movements influence the rest of the body [Rottach et al, 1996]. This type of analysis is 

possible through an Eye-Head Integration (EHI) technique that combines visual data from the 

Eye Tracker program and kinematic data with respect to head and body movements in space. 

However, EHI could not be setup and calibrated properly for the current study and so the 

discussion will focus on visual control strategies of the one representative participant and how 

fixations relate to whole-body control. The first fixation behaviour was characterized within the 

vertical plane. During real-time gaze behaviour analysis, an observable gaze strategy borrowed 

elements of travel fixation and footprint fixation strategies, specifically during constrained 

navigation trials. As indicated, fixation appeared to be approximately one or two footholds away 

from the individual before shifting gaze to a more imminent foothold, guiding foot placement; 

then, gaze was redirected back to predetermined footholds that were approximately two steps 

away. As demonstrated in the Figure 13, fixation location was roughly even between one and 

two steps away; fixations two steps away were greater in proportion to scan upcoming footholds.  

One possible suggestion for this particular fixation location behaviour could be to scan 

future footholds, quickly gather information about the foothold and return gaze to more local 

footholds in order to accurately guide foot placement. This scanning type of gaze behaviour was 

similar to that observed in a study by Hollands et al. (1995) in which participants were asked to 

step on specific footholds and occurred predominantly in the vertical (with respect to the scene) 

direction. And by doing so, it could be argued that the reason why there is almost an even split in 

the proportion of fixations two steps away versus one step away could be this alternation 

between future footholds and local footholds. By scanning ahead two steps and returning back to 

a foothold that is one step away, environmental cues can be assessed and taken into account 

when following the predetermined path (i.e. constrained condition). However, with that said, it 
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should be noted that fixations two steps away were slightly more predominant than fixations one 

step away. This could be as a result of scanning further ahead to plan and prepare for upcoming 

foot placements in addition to controlling trunk rotations.      

 As a means to quantify these visual control strategy observations in the vertical 

direction, the root mean square (RMS) of vertical pupil velocity was analyzed. As the results 

indicate, there was a greater mean vertical velocity RMS of both right and left foot starts for 

constrained trials in comparison to unconstrained trials (Figure 13). The greater vertical velocity 

RMS is consistent with the sampling behaviours observed from the one participant and is in line 

with the conditional demands of navigating a predetermined pathway, stepping only on the 

superior surfaces of indicated stones in succession.  

When the stability of the individual was not challenged, as in previous flat ground target 

stepping (Hollands et al., 1995; Patla & Vickers, 2003), gaze behaviours would quickly move 

from one foothold to the next to control foot placement in an online fashion. However, when 

stability was challenged—as in the current study—it seemed as though possible observable gaze 

strategies emerged as a way to ensure stability, guiding foot placement. In order to do so, 

participants from the current study tended to fixate to the next immediate foothold before moving 

fixation to future footholds on the path. It is possible that alternating between immediate and 

further footholds (i.e., scanning) was performed to ensure greater trunk control in an anticipatory 

manner.  Anticipatory postural adjustments (APAs) have been documented as a term to describe 

postural changes associated with shifts in COP that are observed prior to the initiation of 

voluntary movement [Massion, 1992]. APAs are strategies used to counteract perturbations that 

affect balance and stability, typically associated with the goal to minimize displacement of COP 

[Bouisset & Zattara, 1987]. 
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One suggestion as to why individuals performed a scanning strategy was to plan and 

prepare the body for upcoming anticipated perturbations. By doing so, the individual can scan 

two steps ahead while returning fixation in order to modulate foot placement at more immediate 

footholds based on dynamic stability at that instant. This particular strategy is demonstrated as a 

means to maintain upright postural control during locomotion. Moreover, Winter (1991; 1995) 

suggested that movements about the hip are the predominant control mechanism to counteract 

perturbations. And with the HAT segment comprising approximately 70% of total body mass, it 

can be argued that trunk control is the main mechanism of postural control. 

As the results from the current study demonstrate, trunk roll RMS revealed a significant, 

but moderate difference in magnitude of roll between the conditions. Trunk roll was greater 

during the unconstrained trials than during the constrained trials (refer to Figure 16). One 

proposed theory is that that the vertical scanning behaviours of the participants between one and 

two steps away—primarily during the constrained trials—provides insights into the manner in 

which participants used vision to assist in controlling trunk rotations better (i.e., lower trunk 

roll). This theory arises from work conducted by MacLellan and Patla (2006) who suggested that 

a tighter regulation (e.g. less movement about the hips) in the trunk could argue better trunk 

control. This moderate difference in trunk roll between the two conditions could be the result of 

the participants having to step on predetermined footholds along the pathway versus choosing 

where to place their feet. Future foot placement selection is based on arriving at one’s desired 

location and one’s current state of stability (Warren, 2007). Therefore, participants in the current 

study most likely had larger trunk roll angles during the unconstrained pathway because they had 

the freedom to select where to place their feet and foot placement was in response to this 

increased trunk rotation, whereas during the constrained pathway foot placement was 
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predetermined and therefore participants had to control trunk rotations in order to accomplish 

proper foot placements. Similarly, Patla and colleagues (1999) suggested that this whole body 

stabilization formulates in a top-down fashion, stabilizing the head to stabilize gaze; the trunk is 

free move about the hips. This demonstrates the role of head stabilization and trunk movement as 

a means to stabilize gaze while propelling the body forward. 

With this idea of head stabilization and free trunk movement, the current study assessed 

head and trunk movements to determine if similar segmental control strategies were present. 

Head and trunk control were assessed by subtracted head pitch (RMS angle) from trunk roll 

(RMS angle) to provide further insight into identifying which segment had great movement 

within the sagittal plane. Values greater than zero indicated that the level of segmental control 

was predominantly controlled via the trunk; any values less than zero indicated that the level of 

segmental control was predominantly controlled via the head. The results of this study did not 

reveal any significant differences in trunk-head values between conditions, segments, or time 

points. However, all reported mean values were greater than zero, suggesting that there were 

greater amounts of movement within the trunk. This finding could be attributed to the possible 

stabilization of the head and gaze in space in order to better select appropriate footholds. By 

stabilizing the head and gaze, it can be suggested that the individual is able to accurately fixate 

on possible foothold locations and guide foot placement more successfully.  

The inverted pendulum model is important to discuss as the HAT segment is a large mass 

that sits atop a balance point (e.g. the hips), rotating about that point. Winter (1995) suggested 

that the trunk fluctuated ±1° over the course of a stride. However, due to the complex nature and 

uneven terrain of the current paradigm, it was observed that the trunk tended to rotate more than 

7° across all conditions (refer to Figure 15). Moreover, Mathis and colleagues (2015; 2014; 
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2013) suggested that during a foot placement task similar to the current study, individuals gather 

visual information at a distance in order to exploit the biomechanical properties of this inverted 

pendulum. Thus, providing reasoning as to why individuals tend to perform certain visual control 

strategies. For instance, in a simple six-target navigation task, as in previous studies, travel 

fixation behaviour (i.e., gathering information two steps ahead) was the dominant gaze behaviour 

performed. Therefore, as a result of a need to step on particular footholds during constrained 

trials, individuals need to tightly regulate postural control of the trunk in order to conform to the 

unnatural footfalls of the predetermined path. By doing so, angular trunk movements in the AP 

direction were reduced as the individual needed to scan ahead in order to prepare for future 

footholds.  

And this makes sense when looking at the average walking speed. The results show that 

there was a conditional effect of walking speed, suggesting that individuals tended to walk faster 

during the constrained condition opposed to the unconstrained condition. From the previous 

findings we see that individuals tend to fixate roughly two steps ahead roughly and scan back 

while preparing their trunk for the next preplanned step. In order to do so, it is suggested that 

individuals typically walk at a greater speed to successfully place their foot on the targeted 

foothold. However, previous research suggests that walking speed is not a controlling factor 

rather than a supporting one in the sense of controlling whole-body stability [Mohler, Thompson, 

& Warren, 2007].  

The second fixation behaviour was characterized within the horizontal plane. During real-

time gaze behaviour analysis, an observable gaze strategy borrowed some elements of travel 

fixation at approximately two steps away. However, this particular strategy was observed 

predominantly during the unconstrained conditions where the individual had the freedom to 
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choose her own path. As the individual traversed the pathway, the gaze tended to shift 

horizontally, from one stone to the next as if the individual was sampling possible footholds. As 

the results indicate, there was an overall greater mean horizontal velocity RMS across all 

participants for unconstrained trials in comparison to constrained trials. The difference in RMS 

velocity in the horizontal direction along with the individual participant’s frame by frame 

analysis provides some evidence that during the unconstrained conditions individuals were more 

likely to adopt a visual sampling strategy to locate possible footholds.   

Travel fixation and footprint fixation strategies are considered visual control strategies 

for locomotion, however visual sampling is not thought to provide the same amount of control as 

evidenced in greater trunk roll RMS during the unconstrained condition (Figure 13) [Hollands, 

Patla & Vickers, 2002; Patla, 1997; Patla & Vickers, 2003]. In fact, it seemed as though (from 

the one participant’s frame by frame analysis) visual sampling was used not to fixate on 

successive future footholds, but rather more immediate potential footholds as a collective. One 

possible reason as to why individuals typically performed this scanning behaviour during the 

unconstrained conditions was to quickly assess their options of potential footholds to gauge their 

upcoming step under a possible hierarchical scheme. For instance, if an individual is on stone A 

and about to step on stone B—while sampling the stones around stone B- he or she could 

determine other possible options in the event the individual needs to opt-out of stepping on stone 

B during mid-swing in order to regain balance and step on another nearby stone that would 

increase his or her stability. To regain stability, the individual could do one of two things: 1) step 

long as a means to increase their BOS, placing their foot along the plane of progression [Moraes, 

Allard, & Patla, 2007]; or 2) step laterally to widen BOS to regain stability more effectively [Hak 

et al., 2012]. Therefore, unlike the constrained trials, it seems as though sampling behaviour 
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promotes more of a local, step-by-step scene survey, performing online adjustments according to 

each step rather than using vision to plan and coordinate body movements ahead of time.  

One proposed theory for this visual control strategy could be based upon the current state 

of stability. Since the sampling behaviour could be more of a ‘step-by-step’ control strategy, it 

makes sense that this is performed more often during unconstrained trials (i.e. participants 

choose their own path). As the results show, RMS trunk roll is significantly greater during 

unconstrained conditions (with a moderate effect size; Figure 16). This finding suggests that ML 

movement of the trunk was much more variable about the mean trunk position during the 

unconstrained trials where the individual was free to choose their own path. Thus, two arguments 

could be made with respect to greater trunk roll and foot placement: 1) individuals were able to 

choose their foot positions and in doing so they could have selected footholds to regain stability; 

2) individuals could have chosen footholds that they thought would have been ideal but actually 

resulted in less stability which forced them to find a foothold to regain stability.  On the other 

hand, there was no significant difference with respect to average trunk pitch and RMS trunk 

pitch between conditions. A possible reason as to why there was no difference in trunk pitch 

RMS between conditions could be that the participants tried to maintain similar trunk pitch 

movements between the two conditions in order to ensure overall stability. This is similar to 

findings by VanOoteghem and colleagues (2008), who found that during platform perturbations 

individuals try to minimize trunk movements in order to possibly stabilize gaze and maintain 

stability. The desire to control trunk pitch similarly across conditions is further supported 

through the analysis of walking velocities across the two conditions; average walking velocity 

was influenced by conditional demands yet trunk pitch was not.  During the constrained trials, 

individuals were confined to a predetermined pathway where each step was critical with respect 
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to the proper foot placement on each stone along the predetermined path. As a result, individuals 

walked at a much faster speed in order to place each foot on the predetermined stone and spend 

as little time on each of these footholds because they were not necessarily located ideally for 

proper control of stability. Therefore, better active regulation of the trunk in the AP direction, the 

body—specifically the trunk—is able to move freely while the head stabilizes in space [Winter, 

1991]. This strategy becomes important when considering the visual control strategy used to 

sample the terrain and locate ideal footholds.  

Furthermore, when assessing the control of the trunk from another perspective, the results 

showed that DSMmin significantly differed between conditions. During unconstrained trials, the 

DSMmin was greater than during the constrained trials; a greater DSMmin (i.e., COM is further 

from BOS outer limits) value suggests a greater measure of stability. This finding further 

supports the ideal that when free to choose, individuals will carefully select footholds that 

promote dynamic stability. Unfortunately, it is difficult to determine if this was the case for 

every step along the path because DSMmin was only calculated during the predetermined foot 

placements. Originally, the idea of two sets of predetermined foot placements offered a level of 

control to each trial as each participant was instructed to incorporate and step on the two sets of 

predetermined foot placements. With a condition that centralized around freedom of path 

selection, the predetermined foot placements were important to estimate the individual’s 

DSMmin halfway through the path and at the end of the pathway for every trial. However, there 

were two main issues with regards to the setup/layout of the predetermined foot placements: 1) 

the length of the pathway inhibited data collection of foot markers near the second set of 

predetermined stones. With the path being 7.2m long and the Optotrak cameras only being able 

to accurately record marker information up to 6m away, the foot markers were not always visible 
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by all cameras. That made it difficult to calculate the DSMmin at that end of the pathway; and 2) 

the first set of predetermined foot placements acted almost as a reset for any instabilities incurred 

during the first half of the pathway. This was demonstrated by Figure 19 which showed that the 

first step (e.g. right foot) had a significantly lower DMSmin than the second step (e.g. left foot), 

which suggests that the individual’s margin of stability was increased over that second step. 

However, it is believed that the first step did serve as a good indication of the participants’ 

dynamic stability prior to that point in time. Thus, similar to the findings of Glize and Laurent 

(1997), any cumulative instability accumulated during the first part of the trial was observed in 

the first step (i.e., right foot) but reset by the second predetermined step (i.e., left foot).  

Even though this study did shed light into some interesting findings, given the chance to 

redesign/make modifications to the paradigm, the first aspect to alter would be the predetermined 

foot placements; more specifically, the location and the options around the predetermined foot 

placements. The current paradigm arranged the predetermined foot placements to be at an 

average step length and width (e.g. 60cm long and 10cm wide) with no other options/distractors. 

Each participant was given the instructions to always incorporate those stones into their pathway, 

stepping with the right foot first followed by the left. The purpose of the DSMmin measurement 

was to assess each participant’s margin of stability during each trial and determine how 

conditions may influence the DSMmin of the individual. For this study, the analysis time 

window for DSM was measured at the first set of predetermined footholds as means to 

consistently estimate each participant’s DSM every trial—during unconstrained trials, the 

participant was free to choose their own path which would make it difficult to assess DSM at a 

certain point for every trial, across every participant.  
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However, an improvement to this design would incorporate the predetermined foot 

placements into the path without necessarily pointing out key footholds so that all participants 

would approach each potential footfall location as the same. The constrained pathway would be 

easy to modify—more rock climbing holds would have to be fastened down and the pathway 

would incorporate the two predetermined foot placements. The issue arises when looking at the 

unconstrained condition: with the freedom to choose any sequence, it may be difficult to find a 

particular foothold that is consistent across all trials. As their current state of stability may 

change from one foothold to the next, participants may select various pathways, making it 

difficult to compare their DSMmin at particular location on the pathway.  
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5.0 CONCLUSION 

 The current experiment combined visual and kinematic data to determine the effects of a 

complex navigational task on the segmental control of the HAT segment. The results 

demonstrated a conditional effect across most variables, suggesting that individuals treated the 

two types of conditions differently. 

During the constrained trials, observable gaze behaviour was decipherable as eye 

movements seemed to concentrate on vertical movement more than horizontal. It was found that 

there was a greater vertical velocity during constrained trials, leading to the classification of eye 

movements to be referred to a scanning behaviour. Scanning promoted fixating on the pathway 

two steps ahead, gathering visual information, and returning gaze fixation to more immediate 

footholds before fixating ahead once again. This strategy was performed during the constrained 

trials as the pathway was already determined: all the individual had to do was locate future 

footholds and use visual information to guide successful foot placement.  

Furthermore, it was discussed that scanning behaviour was a byproduct of trunk control 

during the constrained pathway trials. Using visual information from two steps ahead, the 

individual would have time to plan and prepare the body for upcoming footholds. As a result, 

there was dampened angular movement about the trunk in the AP direction when compared to 

unconstrained trials. This was in effort to tightly regulate postural control of the trunk as a means 

stabilize head/gaze. 

During unconstrained trials, observable gaze behaviour was decipherable as eye 

movements seemed to concentrate on horizontal movement more than vertical. It was found that 

there was a greater horizontal velocity during unconstrained trials, leading to the classification of 

eye movements to be referred to a sampling behaviour. Sampling promoted the surveying of the 
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environment over a cluster of possible footholds, rather than a specific one. While sampling, it 

could be suggested that the individual was able to quickly distinguish desirable from undesirable 

footholds, taking into account the physical features and location of the stone. However, it could 

be argued that the current state of postural control was held as a higher priority. This was 

supported by the findings of greater angular trunk movement in the AP direction—during 

unconstrained trials—that suggests that the freedom of path selection enabled individuals to 

navigate on a step-by-step basis.  

Therefore, with conditional demands influencing whole-body kinematics and visual 

behaviours, the argument for what individuals do and why can synthesize down to a need versus 

a want. During constrained trials, individuals need to step on a particular stone in sequence and 

in order to do so, they need to regulate trunk movement and control their stability to a greater 

degree. On the contrary, during unconstrained trials, individuals step to the location where they 

want to, based on their current state of postural control.  

 The current study provided insight into the segmental postural control during a complex 

target-foot placement task. This project provides some understanding of what people are doing to 

control their body during a complex task and sheds some light onto some visual control 

strategies used to navigate a complex terrain. By assessing whole-body kinematics and visual 

control, we get some insight into how the CNS organizes and coordinates movements to 

maintain postural control. Future studies could examine muscle activity of the lower limb and 

trunk to provide further insight into the regulation of control. More specifically, this would 

provide a further understanding of postural control as the trunk moves about the hips and the 

muscles involved with maintaining upright locomotion during a complex navigational task. 

Furthermore, this design could be applied to examine the importance of other sensory systems 
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and how they contribute to whole-body movement control. Such methods could include removal 

of a particular sensory system or the manipulation of that particular system (e.g. affecting 

somatosensory information in the feet), as well as assessing the effects of age-related 

degenerative changes.  
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