
Wilfrid Laurier University Wilfrid Laurier University 

Scholars Commons @ Laurier Scholars Commons @ Laurier 

Theses and Dissertations (Comprehensive) 

2016 

An Examination of the Factors that Dictate the Relative Weighting An Examination of the Factors that Dictate the Relative Weighting 

of Feedback and Feedforward Input for Speech Motor Control of Feedback and Feedforward Input for Speech Motor Control 

Nichole E. Scheerer 
Wilfrid Laurier University, nikkischeerer@gmail.com 

Follow this and additional works at: https://scholars.wlu.ca/etd 

 Part of the Cognition and Perception Commons, Cognitive Psychology Commons, and the 

Developmental Psychology Commons 

Recommended Citation Recommended Citation 
Scheerer, Nichole E., "An Examination of the Factors that Dictate the Relative Weighting of Feedback and 
Feedforward Input for Speech Motor Control" (2016). Theses and Dissertations (Comprehensive). 1802. 
https://scholars.wlu.ca/etd/1802 

This Thesis is brought to you for free and open access by Scholars Commons @ Laurier. It has been accepted for 
inclusion in Theses and Dissertations (Comprehensive) by an authorized administrator of Scholars Commons @ 
Laurier. For more information, please contact scholarscommons@wlu.ca. 

https://scholars.wlu.ca/
https://scholars.wlu.ca/etd
https://scholars.wlu.ca/etd?utm_source=scholars.wlu.ca%2Fetd%2F1802&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/407?utm_source=scholars.wlu.ca%2Fetd%2F1802&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/408?utm_source=scholars.wlu.ca%2Fetd%2F1802&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/410?utm_source=scholars.wlu.ca%2Fetd%2F1802&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.wlu.ca/etd/1802?utm_source=scholars.wlu.ca%2Fetd%2F1802&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarscommons@wlu.ca


An Examination of the Factors that Dictate the Relative Weighting of Feedback and 

Feedforward Input for Speech Motor Control

by

Nichole Elizabeth Scheerer

Submitted to the Department of Psychology

in partial fulfilment of the requirements for

Doctor of Philosophy in Psychology: Cognitive Neuroscience

Wilfrid Laurier University

© Nichole E. Scheerer 2015



Declaration of Co-Authorship/Previous Publication

Study 1:

Scheerer, N.E, Jacobson, D.S., & Jones, J.A. (In Prep). The Role of Auditory Feedback for 

Speech Motor Control in Toddlers.

Study 2: 

Published as:

Scheerer, N., Liu, H., & Jones, J.A. (2013). The Developmental Trajectory of Vocal and ERP 

Responses to Frequency Altered Auditory Feedback. European Journal of Neuroscience, 38(8), 

3189-3200. 

Study 3:

Submitted as:

Scheerer, N.E., Jacobson, D.S., & Jones, J.A. (2015). Sensorimotor Learning in Children and 

Adults: Exposure to Frequency-Altered Auditory Feedback during Speech Production. 

Neuroscience. Accepted: November 18, 2015.

Study 4: 

Published as:

Scheerer, N. & Jones, J.A. (2012). The relationship between vocal accuracy and variability to 

the level of compensation to altered auditory feedback. Neuroscience Letters, 529, 128-132. 



Study 5: 

Scheerer, N.E., & Jones, J.A. (In Prep). The relationship between vocal variability and 

sensorimotor learning.

Study 6:

Published as:

Scheerer, N.E., & Jones, J.A. (2014). The predictability of frequency-altered auditory feedback 

changes the weighting of feedback and feedforward input for speech motor control. European 

Journal of Neuroscience, 40(12), 3793-3806. 



Abstract

Speech is arguably the most important form of human communication. Fluent speech 
production relies on auditory feedback for the planning, execution, and monitoring of speech 
movements. Auditory feedback is particularly important during the acquisition of speech, 
however, it has been suggested that over time speakers rely less on auditory feedback as they 
develop robust sensorimotor representations that allow speech motor commands to be 
executed in a feedforward manner. The studies reported in this thesis recorded speaker’s vocal 
and neural responses to altered auditory feedback in order to explore the factors that dictate the 
relative importance of auditory feedback for speech motor control. More specifically, studies 1 
through 3 examined how the role of auditory feedback changes throughout development, while 
studies 4 and 5 examined the relationship between vocal variability and auditory feedback 
control, and lastly study 6 looked at how the predictability of auditory feedback errors influences 
the role of auditory feedback for speech motor control. Results of the first study demonstrated 
that toddlers use auditory feedback to regulate their speech motor commands, supporting the 
long held notion that auditory feedback is important during the acquisition of speech. While 
mapping out the developmental trajectory of vocal and event related potential responses to 
altered auditory feedback, the second study demonstrated that vocal variability, rather than age, 
best predicts responses to altered auditory feedback. Importantly, this suggests that the 
maturation of the speech motor control system is not strictly dependent on age. The third study 
in this thesis demonstrated that children and adults show similar rates of sensorimotor 
adaptation, suggesting that once speech is acquired, speakers are proficient at using sensory 
information to modify the planning of future speech motor commands. However, since adults 
produced larger compensatory responses, these results also suggested that adults are more 
proficient at comparing incoming auditory feedback with the feedback predicted by their 
sensorimotor representations, as a result of possessing more precisely mapped sensorimotor 
representations. The results of studies four and five demonstrated that vocal variability can be 
used to predict the size of compensatory responses and sensorimotor adaptation to changes in 
one’s auditory feedback, respectively. Furthermore, these studies demonstrated that increased 
variability was related to increased auditory feedback control of speech. Finally, the sixth study 
in this thesis demonstrated that experimentally induced predictability and variability can be used 
to induce increases in feedforward and auditory feedback control, respectively. In conclusion, 
the results reported in this thesis demonstrate that age and vocal variability, both naturally 
occurring and experimentally induced, are important determinants of the role of auditory 
feedback in speech motor control. 
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General Introduction

Speech is arguably the most important form of human communication. Speech allows 

complex ideas and emotions to be conveyed between individuals, and is a skill that is unique to 

the human species (Rauschecker & Scott, 2009; Kingyon et al., 2015). Since the functional goal 

of speech production is the transfer of information, speech production must be carefully 

regulated to ensure its intelligibility is maintained (Burnett, Senner, & Larson, 1997; Perkell, 

2012). The regulation of speech production requires the precise coordination of the respiratory, 

laryngeal, and supralaryngeal (articulatory) systems, as speech would not be possible without 

air passing through the glottis, vibration of the vocal folds, and the resonance characteristics 

imposed by movements of the articulators, respectively (Jurgens, 2002, 2009; Zarate, 2013). In 

order to regulate the activity of the muscles that make up the speech motor control system, the 

central nervous system relies on peripheral sensory feedback, such as auditory and 

somatosensory feedback for the planning, execution, and monitoring of speech movements 

(Guenther, 2006). Regulation of the speech motor control system is particularly challenging 

during development, as the structures involved in speech production undergo dramatic changes 

(Guenther, 1994; Callan, Kent, Guenther, & Vorperian, 2000). For this reason, it is likely that 

sensory feedback plays a critical role in maintaining the intelligibility of speech throughout 

development (Callan et al., 2000). However, once the speech motor control system is fully 

developed, and the structures involved in speech production have stabilized, the role of sensory 

feedback for speech motor control may change.  

The Role of Auditory Feedback for Speech Motor Control 

It has been argued that auditory feedback, or the sound of one’s voice, is critical for the 

acquisition of speech (Oller & Eilers, 1988; Hickok, Houde, & Rong, 2011). Support for this 

argument comes from examining individuals with congenital deafness, as without auditory 
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feedback these individuals fail to acquire fluent speech (Smith, 1975; Svirsky, Teoh, & 

Neuburger, 2004). However, individuals who become deafened post-lingually are generally able 

to maintain relatively fluent speech, despite the loss of auditory feedback, suggesting that the 

role of auditory feedback for speech motor control changes throughout one’s lifespan (Cowie, 

Douglas-Cowie, & Kerr, 1982; Goehl & Kaufman, 1984; Cowie & Douglas-Cowie, 1992).      

Models of Speech Motor Control 

Fluent speech production depends on the precise control of the musculature of the 

respiratory, laryngeal, and articulatory systems (Tourville & Guenther, 2011; Guenther & 

Vladusich, 2012). For this reason, speech production models are generally built upon more 

general motor control principles. In the motor control literature, movement regulation is often 

described as being under feedback or feedforward control (Max, Guenther, Gracco, & Ghosh, 

2004). Under feedback control, motor commands are generated by constantly monitoring 

sensory information regarding effector positions and comparing this sensory information to the 

target position of the effector (Max et al., 2004). Based on this information, motor commands 

are then executed in parallel with the movement (Max et al., 2004). On the other hand, under 

feedforward control, motor commands are generated prior to the onset of a movement, and are 

executed by the musculature without alteration (Max et al., 2004). Since speech production 

occurs rapidly, and the processing of peripheral sensory feedback is not instantaneous, a 

speech motor control system relying solely on feedback control would result in disfluent speech 

(Perkell, Matthies, Lane, & Guenther, 1997; Perkell, 2012). However, a speech motor control 

system operating under strict feedforward control would also be implausible, as it would result in 

a rigid control system incapable of adjusting to fluctuating environmental conditions and 

developmental changes to the respiratory, laryngeal, and articulatory systems, amongst other 

things (Perkell et al., 1997). For this reason, the two most widely accepted models of speech 
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motor control, the directions into the velocities of the articulators model (DIVA; Guenther, 2006; 

Villacorta, Perkell, & Guenther, 2007; Tourville, Reilly, & Guenther, 2008), and the state 

feedback control model (SFC; Hickok et al., 2011; Houde & Nagarajan, 2011; Houde & Chang, 

2015), suggest that fluent speech production relies on an integrated control system that 

combines both feedback and feedforward control. 

Directions into the Velocities of the Articulators (DIVA)

The DIVA model is a neurocomputational model that describes the roles of various brain 

regions in the acquisition and production of speech (Guenther, 1994, 1995, 2006; Guenther, 

Ghosh, & Tourville, 2006; Guenther, Hampson, & Johnson, 1998; Tourville et al., 2011; Guenther 

& Vladusich, 2012). According to the DIVA model, the production of a speech sound begins with 

the activation of a small population of neurons, or a neural representation, associated with the 

to-be-produced sound (Tourville et al., 2011). These neural representations have been 

suggested to reside in the left ventral premotor cortex (vPMC), as well as the posterior inferior 

frontal gyrus (pIFG; Guenther & Vladusich, 2012). Following the activation of a neural 

representation, both the feedback and feedforward control systems send motor commands to 

the primary motor cortex (Tourville et al., 2011; Guenther & Vladusich, 2012). The motor 

commands executed by the feedforward system travel from the neural representation to 

articulatory control units in the cerebellum, before arriving at the primary motor cortex. Whereas, 

the motor commands executed by the feedback system pass through auditory and 

somatosensory feedback control subsystems, before reaching the primary motor cortex. These 

sensory feedback control subsystems are proposed to play a critical role in the sensorimotor 

transformations required for the execution and maintenance of sensorimotor representations 

(Tourville et al., 2011; Guenther & Vladusich, 2012). 
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During development, the DIVA model suggests that random articulatory movements, or 

babbling, leads to the detection of novel speech sounds (Guenther, 2006). These novel speech 

sounds activate neurons in the vPMC and pIFC that were previously unused. This activation 

creates an auditory target, represented as a time-varying acoustic signal, for the novel sound 

(Guenther, 2006; Tourville et al., 2011; Guenther & Vladusich, 2012). This auditory target is then 

encoded in synaptic projections from the newly formed neural representation to the auditory 

brain regions including Heschl’s gyrus, the posterior superior temporal gyrus, the posterior 

superior temporal sulcus, and the planum temporale. Importantly, this auditory target encodes 

the allowable variability in the acoustic signal, which is crucial for later error monitoring and 

correction during the production of the speech sound (Tourville et al., 2011; Guenther & 

Vladusich, 2012). Once the neural representation for the auditory target is established, it can 

then be activated for production of the associated speech sound (Guenther, 2006). During 

production, activation of the neural representation results in projections to both the feedforward 

and feedback control systems. The projection to the feedforward system is in the form of a time-

varying signal that encodes the articulator velocities for the production of the auditory target, 

and is sent to the articulatory control regions of the motor cortex. On the other hand, the 

projection to the feedback system contains the time-varying auditory expectations associated 

with the activated neural representation. These projections to the feedback system result in 

inhibition of the auditory regions dedicated to processing the expected auditory feedback for the 

auditory target. At the same time, these auditory regions are also receiving the auditory 

feedback resulting from the articulatory movements. Since the auditory regions are receiving 

inhibitory input from the activated neural representation, and excitatory input resulting from the 

articulatory movements, the net activity in the auditory regions represents the size of the 

auditory error. This auditory error, calculated as the difference between the expected and actual 

sensory consequences of the activated neural representation, is then transformed into a 
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feedback-based articulator velocity command using an auditory-to-motor transformation. This 

feedback-based articulator velocity command is sent to the articulatory control regions of the 

motor cortex to modify the ongoing movement. This corrective command is also incorporated 

into the feedforward command associated with the activated neural representation, such that 

future activation of the representation results in more accurate articulatory movements 

(Guenther, 2006; Tourville et al., 2011; Guenther & Vladusich, 2012). Importantly, the DIVA 

model predicts that eventually the feedforward command will be sufficient for the production of 

the auditory target (Guenther, 2006). Specifically, once the feedforward command is well tuned, 

the actual sensory consequences of the articulatory movements will match the auditory 

predictions from the neural representation, making feedback based movement corrections 

unnecessary. Following repeated production of a speech sound, a somatosensory target for the 

sound is also learned (Guenther, 2006). This somatosensory target encodes the expected 

tactile and proprioceptive sensations associated with the production of the sound, and allows 

somatosensory feedback based error correction to occur in a manner similar to that described 

for auditory feedback (Guenther, 2006; Tourville et al., 2011; Guenther & Vladusich, 2012). 

State Feedback Control (SFC)

The state feedback control model (Hickok et al., 2011; Hickok, 2012; Houde and Chang, 

2015) is a speech motor control model that is derived from optimal feedback control models of 

motor behaviour (c.f. Todorov, 2004). The SFC model states that when a speech sound is 

produced, a motor controller sends a motor command to the vocal tract in a ‘feedforward’ 

manner, while also sending an efference copy of the motor command to an internal model of the 

vocal tract. This efference copy of the motor command contains an estimate of the current 

dynamic state of the vocal tract, which is based on previously learned mappings between 

speech motor commands and their resultant sensory consequences. This state estimate allows 
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for both internal and external feedback control. Internal feedback control uses the state estimate 

to predict the sensory consequences of the motor command prior to the arrival of peripheral 

sensory feedback. If the sensory consequences predicted based on the state estimate differ 

from the intended speech target, corrective feedback can be sent to the motor controller so that 

the motor behaviour is modified before the erroneous peripheral sensory feedback arrives. 

Similarly, external feedback control allows peripheral sensory feedback to be compared with the 

state estimate, and deviations from this state estimate can then be used to generate an error 

correction signal that is sent to the motor controller to modify the ongoing movements. The 

external feedback system also sends a copy of the corrective command to the internal model to 

update the state estimate, so that future motor commands are more accurate. While the 

conceptualization of speech motor control by the SFC model is quite similar to that of the DIVA 

model, the SFC model emphasizes the role of state feedback (internal feedback) over 

peripheral sensory feedback (external feedback) for the regulation of ongoing speech 

movements (Hickok et al., 2011; Hickok, 2012). 

Both the DIVA and SFC models of speech motor control emphasize the role of auditory 

feedback for creating and maintaining representations that support speech motor control. 

However, both the DIVA and SFC models also recognize that online error correction using 

peripheral sensory feedback is impractical, as peripheral sensory feedback is unreliable as it 

can be noisy, delayed, and intermittently absent (Guenther, 2006; Purcell & Munhall, 2006a; 

Tourville et al., 2008; Hickok et al., 2011; Hickok, 2012). Hence, it has been suggested that as 

development progresses, the speech motor control system relies more heavily on feedforward 

commands (Bailly, 1997; Guenther & Bohland, 2002, Max et al., 2004; Guenther, 2006; 

Villacorta et al., 2007; Tourville et al., 2008; Perkell, 2012; Beal, Quraan, Cheyne, Taylor, 

Gracco, DeNil, 2011; Kim & Max, 2014). Feedforward control permits speech motor commands 
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to be executed by stored sensorimotor representations that encode the relationship between the 

motor commands responsible for speech, and the sensory consequences of these commands 

(Tourville et al., 2008). Since these feedforward commands are read out from memory, the 

delays associated with the processing of peripheral sensory feedback are avoided (Houde, 

Nagarajan, & Sekihara, 2002; Jones & Munhall, 2002; Guenther et al., 2006). Despite this 

transition to feedforward control, auditory feedback continues to play an important role in 

maintaining the precision and accuracy of the mapping of the sensorimotor representations that 

drive feedforward control (Perkell et al., 1997; Civier, Tasko & Guenther, 2010). While the role of 

auditory feedback in fluent speech production has been suggested to change over time, it is 

currently unclear which factors dictate the relative weighting of feedback and feedforward input 

for speech motor control (Kim & Max, 2014). 

Frequency Altered Feedback 

Much of the empirical evidence that supports the involvement of both feedback and 

feedforward control systems in fluent speech production comes from experimental paradigms 

that utilize frequency altered feedback (FAF; Elman, 1981; Burnett et al., 1997; Burnett, 

Freedland, Larson, & Hain, 1998; Burnett & Larson, 2002; Jones & Munhall, 2005; Jones & 

Keough, 2008; Hawco & Jones, 2009; Keough & Jones, 2009, 2011; Liu, Chen, Larson, Huang, 

& Liu, 2010a, Liu, Russo, & Larson, 2010b; Scheerer et al., 2013a; Tumber, Scheerer, & Jones, 

2014). As part of these paradigms, speakers are exposed to changes to their auditory feedback, 

and any changes in the speaker’s fundamental frequency (F0) resulting from the manipulation 

are measured. Previous research has shown that speakers tend to compensate for the FAF 

manipulation by shifting their voice in the opposite direction of the change. For example, in 

response to an increase in the vocal pitch of a speaker’s auditory feedback, the speaker tends 

to respond by decreasing their vocal pitch (Burnett et al., 1997, 1998, 2002; Jones & Munhall, 
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2005; Jones & Keough, 2008; Hawco & Jones, 2009; Keough & Jones, 2009, 2011; Scheerer et 

al., 2013a; Tumber et al., 2014). By exposing speakers to unexpected FAF perturbations to their 

ongoing speech, it is possible to assess how the speakers monitor and correct for errors in their 

ongoing speech. On the other hand, by exposing speakers to persistent predictable FAF, in 

addition to assessing how speakers monitor and correct for errors in their ongoing speech, it is 

also possible to assess if, and how, speakers use the deviant auditory feedback to plan future 

speech motor commands (Villacorta et al., 2007). For this reason, the FAF perturbation 

paradigm is useful for identifying the role of the feedback control system in the online control of 

speech motor commands, while the FAF adaptation paradigm can be used to assess both 

feedback and feedforward control simultaneously. Furthermore, since the synthetic 

manipulations imposed on a speaker’s auditory feedback during FAF tasks mimic naturally 

occurring sensory events that may arise as a result of developmental changes or environmental 

fluctuations, amongst other things, FAF provides an effective means for revealing important 

properties of the speech motor control system (Bauer & Larson, 2003). 

Frequency Altered Feedback (FAF) Perturbation Paradigm 

The FAF perturbation paradigm is most commonly used to assess responses to changes 

to the F0 of a speaker’s auditory feedback. As part of this paradigm speakers are exposed to 

brief unpredictable perturbations to the F0 of their auditory feedback (Burnett et al., 1997, 1998, 

2002; Jones & Munhall, 2005; Liu et al., 2010a, 2010b; Scheerer et al., 2013a; Tumber et al., 

2014). These brief perturbations have been shown to consistently elicit a rapid compensatory 

response, with a latency of approximately 100-150 ms (Burnett et al., 1997, 1998), that has 

been termed the ‘pitch-shift reflex’ (Larson, Carrell, Senner, Burnett, & Nichols, 1995; Burnett et 

al., 1998, 2002; Bauer et al., 2003; Bauer, Mittal, Larson, & Hain, 2006; Liu et al., 2010a; Liu, 

Meshman, Behroozmand, & Larson, 2011). Due to its reflexive nature, this response has been 
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suggested to play a role in stabilizing voice F0 around a desired target (Hain et al., 2000; Natke, 

Donath, & Kalveram, 2003, Bauer et al., 2006; Hawco & Jones, 2009). Using the FAF 

perturbation paradigm, researchers have been able to assess how various manipulations to the 

F0 of a speaker’s auditory feedback influences the pitch shift reflex. Valuable information about 

the feedback control of speech motor control has come from studies that have varied task 

instruction (Hain et al., 2000), perturbation magnitude (Scheerer et al., 2013a), and perturbation 

onset (Hawco & Jones, 2009). 

i. Task Instruction

Hain and colleagues (2000) exposed speakers to FAF perturbations and asked them to 

respond by either opposing the direction of the pitch shift stimulus, following the direction of the 

pitch shift stimulus, or ignoring the pitch shift stimulus, in attempt to investigate the extent to 

which the pitch shift reflex is under voluntary control. The results of this study revealed that 

speakers made both an early and a late response to the pitch shift. The early response had a 

shorter latency and smaller magnitude than the late response, and was almost always 

compensatory regardless of the task instructions. On the other hand, the late response was 

larger and was almost always produced in the direction specified by the task instructions. These 

results suggest that changes in voice F0 elicit an automatic compensatory response that may 

serve to stabilize F0 against internal perturbations. However, these changes in voice F0 are also 

regulated by slower more voluntary response that may serve to maintain F0 at a desired level. 

ii. Perturbation Magnitude

A consistent finding in the FAF literature is that compensatory responses to FAF are only 

a fraction of the size of the imposed feedback perturbation (Burnett et al., 1997, 1998; Donath, 

Natke, & Kalveram, 2002; Bauer & Larson, 2003; Natke et al., 2003; Chen et al., 2007). In order 
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to systematically investigate the relationship between FAF perturbation magnitudes and 

compensatory responses to FAF, Scheerer and colleagues (2013a) parametrically manipulated 

the magnitude of perturbations to speaker’s auditory feedback and recorded the size of the 

speaker’s compensatory responses. The results of this study indicated that smaller magnitude 

feedback perturbations (50-250 cents, 100 cents = 1 semitone) elicited a small but reliable 

response that was similar across the varying perturbation magnitudes. On the other hand, larger 

feedback perturbations (> 300 cents) resulted in relatively smaller vocal response magnitudes. 

These results suggest that smaller magnitude feedback perturbations elicit one size of 

response, while larger magnitude feedback perturbations result in relatively smaller vocal 

response magnitudes. These results support the notion that the reflexive response to FAF is a 

limited response intended to stabilize vocal F0 (Burnett et al., 1998; Hain et al., 2000; Bauer et 

al., 2006). In addition, the drop in magnitude of speaker’s responses for relatively large 

perturbation magnitudes, may indicate that speakers ignore auditory feedback if it is 

dramatically different from the sound in which they are trying to produce (Burnett et al., 1997; 

Scheerer et al., 2013a). This control strategy is optimal, as large feedback errors likely fall 

outside of the range of errors normally experienced by the speaker, thus they are unlikely to 

represent true production errors (Burnett et al., 1997; Sober & Brainard, 2012; Scheerer et al., 

2013a; Kuebrich & Sober, 2015).

iii. Perturbation Onset

Hawco and Jones (2009) investigated whether the timing of the onset of a perturbation 

influenced responses to that perturbation. In this study, speakers were adapted to a 100 cent 

shift in their auditory feedback, which was then briefly removed to induce an auditory feedback 

perturbation. In a control condition, a 100 cent perturbation was introduced midway through an 

unaltered vocalization, or the vocalization was randomly shifted upwards 100 cents, and then a 
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perturbation was introduced by briefly removing the feedback alteration. Speakers produced 

similar sized compensatory responses to all mid-vocalization auditory feedback perturbations, 

regardless of whether the perturbation was introducing a pitch shift, or removing a pitch shift. 

However, compensatory responses to pitch changes at voice onset in both the adaptation and 

control conditions were much larger than those induced mid-vocalization. These results suggest 

that auditory feedback control operates differently at voice onset and midway through a 

vocalization. Based on these results the authors suggest that at vocalization onset a static 

reference, such as a sensorimotor representation or a target note, is used to match auditory 

feedback to the intended F0. On the other hand, after vocalization onset a more dynamic 

reference, such as the current F0, is used to match auditory feedback to the target F0. 

 

Assessing responses to brief FAF perturbations of varying magnitudes, onsets, and 

under various task instructions has provided valuable information regarding the auditory 

feedback control of speech motor control. Generally speaking, these results suggest that 

individuals automatically compensate to deviations in their auditory feedback in order to stabilize 

their voice F0 (Burnett et al., 1998; Hain et al., 2000; Bauer et al., 2006). Furthermore, the size 

and the conditions under which these responses are produced suggest that the reflexive 

responses to changes in auditory feedback are part of a fine tuning mechanism, rather than a 

system geared to make elaborate adjustments to vocal F0 (Burnett et al., 1998; Bauer et al., 

2006). The limited nature of these reflexive responses seems optimal for speech motor control, 

as it allows cognitive and voluntary mechanisms of voice control to dominate and prevents 

excessive feedback control, which may result in unwanted fluctuations of voice F0 with nearby 

environmental sounds, other speaker’s voices, etc. (Burnett et al., 1998; Bauer et al., 2006). 
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Frequency Altered Feedback Adaptation Paradigm 

While the FAF perturbation paradigm is useful for assessing online control of voice F0, it 

does not allow researchers to assess the role of auditory feedback in motor planning. For this 

reason, researchers often utilize the FAF adaptation paradigm. As part of this paradigm, 

speakers are exposed to persistent and predictable changes to aspects of their auditory 

feedback, such as its F0 (Jones & Keough, 2008, Keough & Jones, 2009, 2011; Hawco & 

Jones, 2010; Keough, Hawco, & Jones, 2013) or its formant frequencies (Houde & Jordan, 

1998, 2002; Purcell & Munhall, 2006a; Villacorta et al., 2007; Cai et al., 2012). Much like the 

FAF perturbations, these manipulations tend to elicit compensatory vocal responses, allowing 

the role of auditory feedback for ongoing vocal control to be assessed. In addition, persistent 

exposure to these FAF manipulations results in aftereffects, or a persistence of the 

compensatory response after the FAF manipulation has been removed (Jones & Keough, 2008; 

Hawco & Jones, 2009). These aftereffects suggest that the deviant auditory feedback was used 

to update the mapping of the speaker’s sensorimotor representations, so that subsequent vocal 

productions more closely resemble the characteristics of the speaker’s unaltered voice (Jones & 

Keough, 2008; Hawco & Jones, 2009). For this reason, these aftereffects can be used to assess 

the influence of auditory feedback on motor planning. 

i. Fundamental Frequency Manipulations

When F0 is manipulated as part of the FAF adaptation paradigm, speakers produce 

vocalizations that are initially unaltered (the baseline phase), followed by vocalizations where 

the researcher alters the F0 of the speaker’s vocalization by shifting it upwards or downwards 

(the shifted phase) either gradually (Keough & Jones, 2009, 2011; Keough, Hawco, & Jones, 

2013) or abruptly (Jones & Keough, 2009, Hawco & Jones, 2010). During the shifted phase the 

speaker’s vocalizations are altered prior to voice onset, and this alteration is maintained for 
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several trials, which results in persistent and predictable exposure to FAF (Keough & Jones, 

2009, 2011; Hawco & Jones, 2010; Keough et al., 2013). Following the shifted phase, the F0 

manipulation is abruptly removed (the test phase), and speaker’s once again produce 

vocalizations while listening to their unaltered auditory feedback (Keough & Jones, 2009, 2011; 

Hawco & Jones, 2010; Keough et al., 2013). 

To assess speaker’s responses during the FAF adaptation paradigm researchers 

generally focus on two different measures, one that assesses the speaker’s F0 at the beginning 

of their vocalization, and one that assesses the speaker’s F0 across their entire vocalization 

(Keough & Jones, 2009, 2011; Hawco & Jones, 2010; Keough et al., 2013). Measuring the 

speaker’s F0 at the beginning of their vocalization allows sensorimotor learning to be assessed 

(Keough & Jones, 2009, 2011; Hawco & Jones, 2010; Keough et al., 2013). Since auditory 

feedback is delayed by cortical processing, the F0 at the beginning of a speaker’s vocalization 

can be used to index feedforward control, or the extent to which the deviant auditory feedback is 

used for the planning of subsequent speech motor commands (Keough & Jones, 2009, 2011; 

Hawco & Jones, 2010; Keough, et al., 2013). On the other hand, by looking at the speaker’s F0 

across each vocalization, it is possible to index the extent to which the deviant auditory 

feedback modulated the ongoing vocalization (Keough & Jones, 2009, 2011; Hawco & Jones, 

2010; Keough et al., 2013). 

Results of previous studies utilizing the FAF adaptation paradigm have demonstrated 

that the F0 at the beginning of a speaker’s vocalization gradually changes in the direction 

opposite to that of the FAF manipulation (Keough & Jones, 2009, 2011; Hawco & Jones, 2010; 

Keough et al., 2013). This demonstrates that the speaker is using the deviant auditory feedback 

to modify the subsequent speech motor commands so that their auditory feedback is more in 

line with their intended speech target. Once the FAF manipulation is removed, the 

compensatory response persists, further demonstrating that the deviant auditory feedback was 
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used to modify the speaker’s sensorimotor representation, and thus their subsequent speech 

motor commands (Keough & Jones, 2009, 2011; Hawco & Jones, 2010; Keough et al., 2013). 

Similarly, the speaker’s F0 across the entire vocalization also changes in the direction opposite 

to the FAF manipulation (Keough & Jones, 2009, 2011; Hawco & Jones, 2010; Keough et al., 

2013). Unlike the compensatory responses recorded following FAF perturbations, the magnitude 

of the compensatory response to these full vocalization shifts is quite large, often approximating 

the size of the FAF manipulation (Keough & Jones, 2009, 2011; Hawco & Jones, 2010; Keough 

et al., 2013). Thus, the compensatory responses produced in response to perturbation and 

adaptation F0 manipulations appear to be controlled in different manners.   

i. Formant Frequency Manipulations

Similarly, when formant frequencies are manipulated as part of a FAF adaptation 

paradigm, speakers produce consonant-vowel-consonant (CVC) word(s) that are initially 

unaltered (the baseline phase), followed by CVC word(s) where the researcher alters the 

formant frequencies of the speaker’s vocalization (the ramp phase) by gradually shifting the 

formant frequencies of the vowel upwards or downwards (Houde & Jordan, 1998, 2002; Purcell 

& Munhall, 2006a; Villacorta et al., 2007; Cai et al., 2012). Once the formant manipulation 

reaches its maximum value, the manipulation is held for a series of trials (the hold phase). 

Lastly, the speaker once again produces CVC word(s) while no longer exposed to the 

manipulated auditory feedback (the test phase), rather they hear their own unaltered auditory 

feedback (Houde & Jordan, 1998, 2002; Purcell & Munhall, 2006a; Villacorta et al., 2007). 

During the ramp phase of the FAF adaptation paradigm, the formant frequency 

manipulations cause the production of a vowel sound, for example /ε/, to sound like another 

vowel sound, for example /i/, which induces a compensatory response where the speaker 

produces a vowel sound that more closely resembles the intended vowel sound (Houde & 
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Jordan, 1998, 2002; Purcell & Munhall, 2006a; Villacorta et al., 2007). Once the speaker’s 

auditory feedback is returned to normal, the compensatory response persists, indicating the 

deviant auditory feedback was used to update the sensorimotor representation, thus future 

motor acts are influenced by exposure to the deviant auditory feedback (Purcell & Munhall, 

2006a).

Assessing responses to both manipulations of fundamental and formant frequencies 

using the FAF adaptation paradigm provides further support for the notion that feedback and 

feedforward control systems regulate speech motor control. Online compensatory responses 

during the shifted phase of these experiments demonstrate that auditory feedback is being used 

to modify ongoing vocalizations in a feedback-like manner. On the other hand, the aftereffects 

measured when speakers auditory feedback is returned to normal, following exposure to the 

deviant auditory feedback, demonstrates that the deviant auditory feedback is used to update 

the speaker’s sensorimotor representations. Thus, the fact that the deviant auditory feedback 

not only influences ongoing vocalizations, but also influences subsequent vocalizations, 

provides support for the notion that speech is regulated by both feedback and feedforward 

control systems. 

Importantly, while both compensatory responses and aftereffects are observed following 

manipulations to F0 and formant frequencies using the adaptation paradigm, these responses 

differ in some respects. For example, when the F0 of a speaker’s auditory feedback is 

manipulated, the size of the compensatory vocal response approximates the size of the F0 

manipulation (Keough & Jones, 2009, 2011; Hawco & Jones, 2009, 2010; Keough et al., 2013). 

However, when the formant frequencies of a speaker’s auditory feedback are manipulated, the 

compensatory vocal responses are often incomplete, and only account for a portion of the 

frequency manipulation (Purcell and Munhall, 2006a). These differences highlight the fact that 

not all of a sounds spectral characteristics are equally sensitive to sensory perturbations 
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(Smotherman, 2007). F0 is considered a postural setting of speech (Perkell et al., 1997), and is 

regulated by varying muscle tension in the larynx (Smotherman, 2007). This regulation of F0 

helps to maintain the intelligibility of speech sounds (Perkell et al., 1997). On the other hand, 

formant frequencies are considered part of the phonemic speech settings (Perkell et al., 1997), 

and are regulated by changing the shape of the oral and nasal cavities (Smotherman, 2007). 

This regulation helps to maintain phonemic distinctions (Perkell et al., 1997). Interestingly, 

following a change in hearing status, F0 values (Cowie and Douglas-Cowie, 1992; Perkell et al., 

1997, 2010), but not formant frequencies are found to change rapidly (Perkell et al., 1997). 

Since F0 values are found to change more rapidly following hearing loss, and manipulations of a 

speaker’s F0 produces larger compensatory responses, relative to formant frequencies, these 

results suggest that F0 and formant frequencies may be regulated in different manners. For this 

reason, it is important to consider manipulations to F0 and formant frequencies separately. 

Electroencephalography (EEG)

Assessing changes to speakers’ vocal output following exposure to deviant auditory 

feedback provides a useful means for evaluating the role of auditory feedback in speech motor 

control. However, by monitoring auditory-cortical processing using EEG responses it is also 

possible to identify the neural correlates of speech motor control. Many neural imaging and 

recording techniques, including diffusion tensor imaging (DTI; Sommer, Koch, Paulus, Weiller, & 

Buchel, 2002; Peeva et al., 2013), functional magnetic resonance imaging (fMRI; Christoffels, 

Formisano, & Schiller, 2007; Tourville, Reilly, & Guenther, 2008; Beal et al., 2010, 2011; 

Golfinopoulos et al., 2011; Behroozmand et al., 2015), magnetoencephalography (MEG; Houde, 

Nagarajan, Sekihara, & Merzenich, 2002; Heinks-Maldonado, Nagarajan, & Houde, 2006; Aliu, 

Houde, and Nagarajan, 2009; Ventura, Nagarajan, & Houde, 2009; Niziolek, Nagarajan, & 

Houde, 2013; Tian & Poeppel, 2014), positron emission tomography (PET; Fox et al., 1996, 
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2000; Braun, Varga, Stager, Schulz, & Selbie, 1997), single-cell recordings (Eliades, 2002; 

Eliades & Wang, 2005, 2008; Greenlee et al., 2011; Kingyon et al., 2015), and transcranial 

magnetic stimulation (TMS; Grabski et al., 2013; Mottonen, van de Ven, & Watkins, 2014), have 

provided valuable information to aid in our understanding of the neural processes involved in 

speech motor control. However, since fluent speech production is a highly rapid motor 

behaviour, the superior temporal resolution that EEG affords (Jeste & Nelson III, 2008) makes it 

ideal for monitoring the neural correlates of speech production.  

EEG is one of the oldest and most widely used experimental techniques for recording 

electrical activity from the brain (Buzsaki, Anastassiou, and Koch, 2012a). The electrical activity 

recorded from scalp EEG electrodes provides an index of the local field potential integrated over 

a small area (Buzsaki et al., 2012a). Due to the distorting and attenuating effects of the soft and 

hard tissues between the current source and the recording electrodes, EEG signals are not 

directly related to the firing patterns of individuals neurons (Buzsaki et al., 2012a). Rather, the 

recorded local field potential reflects the combined activity of all ionic processes, from fast action 

potentials to slow fluctuations in glia (Buzsaki et al., 2012a).

A typical EEG session yields a continuous recording of oscillating neural activity, and the 

frequency and amplitude of these oscillations can be used to infer information about a subject’s 

behavioural state (Roach & Mathalon, 2008; Lapenta & Boggio, 2014). However, in order to take 

advantage of the superior temporal resolution of EEG, event-related potentials (ERPs) are often 

extracted from the continuous recording. ERPs are an average of many EEG waves that are 

time locked to a specific stimulus or event. Accordingly, ERPs represent transient changes in 

neural activity in response to the presentation of a stimulus or event (Friedman, Cycowicz, & 

Gaeta, 2001; Jeste & Nelson III, 2008). ERPs are generally classified by their latency with 

respect to the stimulus, with early components beginning 50 ms post stimulus onset, and late 

components occurring as late as 600 - 1000 ms post stimulus onset (Jeste & Nelson III, 2008). 
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Early ERP components are thought to reflect the basic sensory processing of stimuli, while later 

components are thought to reflect the perceptual and cognitive processing of stimuli (Picton & 

Hillyard 1988; Banaschewski & Brandeis 2007; Jeste & Nelson III, 2008). 

Speech Induced Suppression 

One of the first neurophysiological phenomena found to be associated with auditory 

feedback processing during speech was ‘speech induced suppression’ (Ford & Mathalon, 2005; 

Heinks-Maldonado, Mathalon, Gray, & Ford, 2005; Heinks-Maldonado et al., 2006; Beal et al., 

2010; Sitek et al., 2013; Wang, Mathalon, Roach, Reilly, & Keedy, 2014; Houde & Chang, 2015). 

Sensory feedback regarding motor movements, such as auditory feedback resulting from the 

production of speech, is processed differently than sensory information generated by an 

external source (Heinks-Maldonado et al., 2005, 2006). According to forward modelling theories, 

or “re-afference hypotheses,” when a motor command is generated an efference copy of that 

motor command is sent to sensory areas of the brain, which allows the sensory consequences 

of the motor command to be predicted (Blakemore, Wolpert, & Frith, 2000; Heinks-Maldonado 

et al., 2005, 2006; Sitek et al., 2013). When the actual sensory consequences of the motor 

command are processed, a comparison of the predicted and perceived sensory feedback 

occurs (Blakemore et al., 2000; Heinks-Maldonado et al., 2005, 2006). If the perceived sensory 

feedback matches the sensory feedback predicted by the efference copy, a cancellation occurs 

(Weiskrantz et al., 1971; Blakemore et al., 1998; Blakemore Wolpert, & Frith, 2000; Heinks-

Maldonado et al., 2005, 2006). This cancellation results in suppressed neural activation during 

the perception of self generated sensory feedback, relative to externally generated sensory 

feedback (Weiskrantz, Elliott, & Darlington, 1971; Blakemore, Rees, & Frith, 1998; Blakemore et 

al., 2000; Heinks-Maldonado et al., 2005, 2006; Sitek et al., 2013). 
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The term ‘speech induced suppression’ was coined following a series of experiments 

that demonstrated that self-produced speech results in a dampened sensory experience relative 

to the perception of externally generated speech, or the playback of self-generated speech 

(Heinks-Maldonado et al., 2005, 2006). For example, Heinks-Maldonado and colleagues 

conducted an EEG experiment (2005) as well as a MEG experiment (2006) where speakers 

were asked to produce vowel sounds while they listened to real-time playback of their unaltered 

voice, a pitch-shifted version of their voice, or an alien voice substituted for their own voice. In 

addition, the speakers also participated in a listening phase, where they heard recordings of 

their unaltered voice, a pitch-shifted version of their voice, and an alien voice played back to 

them. Examination of the auditory N1 event-related potential (ERP; 2005) and its magnetic 

equivalent the M1 (2006) revealed that speakers perception of their own unaltered voice 

resulted in a dampened sensory experience, or smaller N1/M1 amplitudes, relative to the N1/

M1s elicited by the playback of their own unaltered voice, as well as the pitch-shifted and alien 

voice substituted versions of their voice in both the production and playback conditions. 

Together these results suggest that the neural processing of auditory feedback resulting from 

self-produced speech is suppressed (Heinks-Maldonado et al., 2005, 2006). Furthermore, the 

fact that this suppression was specific to the perception of self-produced unaltered speech, and 

not speech that was being altered in real-time, suggests that this suppression is not the result of 

a general dampening of all incoming auditory information during speech production, but rather a 

highly specific mechanism for processing the auditory consequences of self-produced speech 

(Heinks-Maldonado et al., 2005, 2006; Chen, Chen, Liu, Huang, & Liu, 2012a).  

The results of these speech induced suppression studies support the forward or ‘re-

afference’ hypotheses that suggest that when a motor command is executed, a copy of this 

motor command is sent to sensory cortical areas in preparation for the upcoming sensory 

feedback (Blakemore et al., 1998; Blakemore et al., 2000; Heinks-Maldonado et al., 2005, 
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2006). The results of these speech induced suppression studies are also in accordance with the 

DIVA and SFC speech motor control models, which both suggest that when speech motor 

commands are executed in a feedforward manner, a copy of the motor command is sent to 

sensory cortical areas for comparison with the resultant sensory consequence of the motor 

movements. This speech induced suppression is thought to play an important role in speakers’ 

abilities to detect speech production errors, as the comparison between predicted and perceived 

auditory feedback allows deviations from the intended speech motor act to be readily detected. 

This rapid detection in turn facilitates rapid error correction by the feedback control system, thus 

promoting fluent speech production. In addition, since the sensory feedback resulting from self 

produced actions is predictable, cortical activation only increases following unpredictable 

sensory stimulation. This means that instead of fully processing our own speech while talking, 

processing resources are freed up in order to process potentially important external events 

(Wang et al., 2014). As a result, externally generated sounds, which are unpredictable, are 

easily distinguished from self produced sounds. Since externally generated sounds may be 

indicative of potential threats to the speaker, this rapid discrimination of externally generated 

sounds may promote additional evaluation of the stimuli in order to determine if a response is 

necessary (Blakemore et al., 2000; Heinks-Maldonado et al., 2005, 2006).

Event-Related Potentials (ERPs) 

In addition to the use of ERPs in investigating speech induced suppression, ERPs are 

often utilized to investigate the neural correlates of auditory feedback based error correction 

during ongoing speech. For example, when speakers are exposed to FAF, the deviant auditory 

feedback reliably elicits the P1-N1-P2 ERP complex (Behroozmand, Karvelis, Liu, & Larson, 

2009; Behroozmand, Korzyukov, & Larson, 2011a; Behroozmand, Korzyukov, & Larson, 2012; 
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Chen et al., 2012; Korzyukov, Karvelis, Behroozmand, & Larson, 2012a; Liu et al., 2013; 

Scheerer et al., 2013a; Tumber et al., 2014). 

i. The P100 (P1)

The P1 is a positive deflection that occurs approximately 50 to 100 ms after the onset of 

FAF (Scheerer et al., 2013a; Tumber et al., 2014). Intracerebral recordings from auditory cortical 

areas in humans indicate that the auditory P1 response represents activity in the lateral portion 

of Heschl’s gyrus, or the secondary auditory cortex (Ponton, Eggermont, Kwong, & Don, 2000; 

Moore, 2002). Based on its origin in secondary cortex, it has been suggested that the auditory 

P1 represents a relatively low level of auditory processing (Moore, 2002). Accordingly, previous 

FAF studies suggest that changes in the amplitude of the P1 component reflect the basic 

detection of deviant auditory feedback, as its amplitude increases in an all-or-nothing manner in 

responses to deviant auditory feedback (Scheerer et al., 2013a). In other words, these results 

suggest that although the auditory P1 is sensitive to FAF, its amplitude does not reflect specific 

properties of the eliciting stimulus.   

ii. The N100 (N1)

The N1 is a negative deflection that occurs approximately 100 to 200 ms after the onset 

of FAF (Korzyukov et al., 2012a; Scheerer et al., 2013a; Tumber et al., 2014), and has been 

suggested to be the most robust and reproducible auditory component across subjects (Beal et 

al., 2010). The N1 is maximally distributed over fronto-central scalp regions (Picton, 1974) and 

is thought to be generated in the primary and secondary auditory cortices (Sitek et al., 2013). 

The auditory N1 can reflect specific stimulus attributes, such as sound intensity (Sitek et al., 

2013) or stimulus frequency (Butler, 1968), and may also provide an indication of how the 

auditory stimulus is being perceptually evaluated (Picton, 1974), as well as the amount of 
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resources dedicated to processing the stimulus (Sitek et al., 2013). As previously mentioned, 

the N1 has been found to be maximally attenuated during the perception of one’s own unaltered 

speech, relative to FAF (Heinks-Maldonado et al., 2005, 2006; Sitek et al., 2013), alien speech 

(Heinks-Maldonado et al., 2005, 2006), and the playback of self-produced speech (Houde et al., 

2002; Beal et al., 2011). This neural modulation has been suggested to reflect suppression in 

the auditory cortex during the perception of one’s own unaltered speech, as a result of a match 

between perceived and predicted sensory feedback. In comparison, increases in activation 

when sensory feedback is incongruent with the predicted feedback is thought to reflect a 

violation of the prediction created by the feedforward system (Heinks-Maldonado et al., 2006; 

Beal et al., 2011). 

iii. The P200 (P2)

The P2 is a positive deflection that occurs approximately 200 to 300 ms after the onset 

of FAF (Korzyukov et al., 2012a; Scheerer et al., 2013a; Tumber et al., 2014). Unlike the P1 and 

N1 components, the P2 is not generated in temporal cortex, rather the P2 component is thought 

to reflect auditory driven output of the mesencephalic reticular activating system (Ponton et al., 

2000). Similar to the N1, the P2 is maximally distributed over fronto-central scalp regions, and is 

thought to reflect stimulus specific attributes, in addition to providing an indication of how the 

stimulus is being perceptually evaluated (Picton, 1974). Accordingly, FAF studies have shown 

that the amplitude of the P2 ERP component increases linearly with increasing feedback 

perturbation magnitudes (Behroozmand et al., 2009; Scheerer et al., 2013a). As the size of the 

P2 response varies with the size of the feedback manipulation, it has been suggested that the 

P2 component indexes the size of the mismatch between the perceived and predicted auditory 

feedback (Scheerer et al., 2013a). 
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Together, these results suggest that the P1, N1, and P2 neural responses are valuable 

for assessing feedback and feedforward input to the speech motor control system.

Current Studies 

The neurocomputational models of speech motor control, such as the DIVA (Guenther, 

1994, 1995, 2006; Guenther, et al., 1998, 2006; Tourville & Guenther, 2011; Guenther & 

Vladusich, 2012) and SFC models (Hickok et al, 2011; Hickok, 2012; Houde & Chang, 2015), as 

well as experimental evidence (e.g. Jones & Munhall, 2005; Jones & Keough, 2008; Hawco & 

Jones, 2009; Keough & Jones, 2009, 2011; Scheerer et al., 2013a) have provided adequate 

support for the notion that both feedback and feedforward control systems support speech 

motor control. Early in speech acquisition, feedback control plays an important role in mapping 

speech sounds onto the appropriate speech motor commands (Guenther, 2006; Callan et al., 

2000). However, once these mappings are well learned feedback control becomes less crucial, 

as the information provided by sensory feedback becomes redundant. In addition, since there 

are delays involved in processing peripheral sensory feedback, strict feedback control has the 

potential to induce speech disfluencies. For this reason, it has been suggested that speech 

motor control transitions to a more feedforward dominant system (Guenther, 2006; Beal et al., 

2010). Since feedforward commands are executed from stored sensorimotor representations, 

the delays associated with processing peripheral sensory feedback are avoided. However, it is 

important to note that although speech motor control transitions to a more feedforward 

dependent system, the feedback control system still plays an important role in error correction 

as well as the maintenance of the sensorimotor representations supporting the feedforward 

control system (Guenther, 2006; Beal et al., 2010). While it is clear that the relative weighting of 

feedback and feedforward control changes throughout development, it is currently unclear which 

factors dictate this relative weighting (Kim & Max, 2014). With this in mind, the purpose of this 
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thesis was to explore the factors that dictate the relative weighting of feedback and feedforward 

input for speech motor control using both the FAF perturbation and FAF adaptation paradigms, 

as well as ERP responses. More specifically, experiments 1 through 3  examined how the role of 

auditory feedback changes throughout development, while experiments 4 and 5 examined the 

relationship between vocal variability and feedback control, and experiment 6 looked at how the 

predictability of auditory feedback errors influences the weighting of feedback control and 

feedforward control.

Study 1: The Role of Auditory Feedback for Speech Motor Control in Toddlers 

Scheerer, N.E, Jacobson, D.S., & Jones, J.A. (In Prep). The Role of Auditory Feedback for 

Speech Motor Control in Toddlers.

MacDonald, Johnson, Forsythe, Plante, and Munhall (2012) reported that toddlers aged 

2-3 years old do not use auditory feedback to compensate for formant frequency manipulations 

imposed during ongoing speech. Despite these findings, observation of individuals suffering 

from congenital deafness would argue that auditory feedback is necessary for speech 

development (Svirsky et al., 2004). For this reason, we exposed toddlers aged 2-3 years old to 

brief unpredictable perturbations of the F0 of their auditory feedback in order to assess whether 

these changes in their auditory feedback would elicit compensatory responses. If the toddlers 

produced compensatory responses following changes in their auditory feedback, these results 

would provide evidence to support the notion that auditory feedback is important for the 

regulation of voice F0 early in development.  
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Abstract

Children maintain relatively fluent speech despite the dramatic changes that occur to the 

shape, size, and musculature of their articulators as they develop (Guenther, 1994). 

Behavioural, clinical, and neurophysiological evidence demonstrates that auditory feedback aids 

in the acquisition and lifelong maintenance of the sensorimotor mechanisms that underlie vocal 

motor control in both humans and songbirds (Guenther, 1994, Perkell et al., 1997, Doupe & 

Kuhl, 1999, Callan et al., 2000, Sakata & Brainard, 2008, Civier et al., 2010; Kelly & Sober, 

2014). Surprisingly, a recent study by MacDonald and colleagues reported that in toddlers, the 

speech motor control system may “suppress” the influence of auditory feedback since exposure 

to altered auditory feedback regarding their formant frequencies did not lead to reciprocal 

modifications to their speech, counter to what was observed for older children and adults. 

Specifically, the authors argued that a social context may be necessary to promote auditory 

feedback based error correction in toddlers. Although plausible, as social reinforcement certainly 

plays a role during speech acquisition (Goldstein, King, & West, 2003; Kuhl, 2004), a lack of 

sensory feedback based error correction before 4 years of age is not parsimonious with current 

theories of vocal motor control (Guenther, 1994; Callan et al., 2000). Here, we exposed toddlers 

to brief perturbations to their auditory feedback regarding the pitch of their ongoing 

vocalizations. Toddlers compensated for the auditory feedback manipulations by rapidly shifting 

their vocal pitch in the opposite direction of the manipulation, producing significantly different 

responses to upward and downward perturbations. These data represent the first empirical 

demonstration that toddlers integrate auditory feedback into their ongoing vocal motor control. 

Furthermore, our findings suggest that toddlers may be more sensitive to changes to the 

postural properties of their auditory feedback, such as fundamental frequency, relative to the 

phonemic properties, such as formant frequencies. 
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Introduction

Throughout development children maintain relatively fluent speech despite dramatic 

changes to the shape, size, and musculature of the articulators involved in speech production 

(Guenther, 1994; Callan et al., 2000). The vocal tract of a child is not simply a smaller version of 

an adult vocal tract, as there are many differences in the structures supporting speech 

production in children relative to adults (Kent & Vorperian, 1995; Kent, 1999; Callan et al., 

2000). In both humans and songbirds, auditory feedback has been suggested to not only aid in 

the acquisition of vocal motor control, but also act as an adaptive signal to guide movements of 

the articulators during development (Guenther, 1994; Perkell et al., 1997; Doupe & Kuhl, 1999; 

Callan et al., 2000; Sakata & Brainard, 2008; Civier et al., 2010; Kelly & Sober, 2014).

The importance of auditory feedback for monitoring and correcting ongoing vocalizations 

has been demonstrated by utilizing the frequency altered feedback (FAF) paradigm to 

synthetically alter speakers’ auditory feedback (Burnett et al., 1997; Burnett et al., 1998; 

Scheerer & Jones, 2012; Scheerer, et al., 2013a; Scheerer & Jones, 2014). When a speaker’s 

auditory feedback is manipulated by changing properties such as the fundamental frequency 

(F0; Burnett et al., 1997; Burnett et al., 1998; Scheerer & Jones, 2012; Scheerer et al., 2013a; 

Scheerer & Jones, 2014), or the formant frequencies (Houde & Jordan, 1998, 2002; Purcell & 

Munhall, 2006a; Villacorta et al., 2007; Cai et al., 2012), the speaker reflexively responds by 

opposing the manipulation. These compensatory responses demonstrate that when a speaker 

detects changes in their auditory feedback, they use information from the deviant auditory 

feedback to modify their ongoing vocalization. 

Scheerer and colleagues (2013b) investigated the developmental trajectory of the 

speech motor control system by exposing children and adults to changes in their F0 using the 

FAF paradigm. The results of that study indicated that children as young as 4 years old produce 

compensatory responses to changes in their voice F0, consistent with the notion that auditory 
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feedback is important for monitoring and correcting for speech production errors. Surprisingly, 

MacDonald and colleagues (2012) reported that children and adults, but not toddlers, 

compensate for manipulations of the formant frequencies of their auditory feedback. The results 

of that study led to the suggestion that the auditory feedback component of the speech motor 

control system may be ‘suppressed’ in toddlers. However, given the dramatic changes occurring 

to the acoustic properties of the vocal tract during development (Callan et al., 2000), it is hard to 

imagine how toddlers can preserve speech fluency without the aid of auditory feedback.

Auditory feedback is important for maintaining both the phonemic and postural settings 

of speech, which ensure that phonemic distinctions are preserved and that speech remains 

intelligible in dynamic acoustic environments, respectively (Perkell et al., 1997). F0, a property 

of auditory feedback related to postural control, has been shown to be more sensitive to the loss 

of auditory feedback, relative to formant frequency, a property of phonemic control (Perkell et 

al., 1997). Since the phonemic and postural settings of speech appear to be regulated 

independently, it is also possible that these speech properties develop at different rates. 

Early in development, caregivers communicate with infants using infant directed speech 

(IDS), which is characterized by exaggerated prosodic features including longer pauses, a 

slower tempo, more prosodic repetitions, a higher mean F0, and a wider F0 range (Fernald, 

1993; Cooper & Aslin, 1994; Kuhl, 1994; Saint-Georges et al., 2013). These prosodic features 

vary according to the caregivers intentions, and have been shown to provide an effective way to 

communicate affect with prelinguistic children (Fernald, 1993; Saint-Georges et al., 2013). For 

example, Fernald (1993) demonstrated that even when hearing IDS in another language, infants 

smile more to positive expressions of IDS, and express negative affect in response to 

expressions of disapproval. Since recognizing changes in F0 provides young children with a 

means for comprehending the affect and intentions of caregivers, prior to becoming linguistically 

proficient (Saint-Georges et al., 2013), IDS may increase the saliency of the prosodic features of 
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speech such as F0. On the other hand, since non-prosodic features of the speech signal, such 

as formant frequencies, are less beneficial for speech comprehension in prelinguistic children 

(Saint-Georges et al., 2013), these features may be less salient. Thus it is possible that 

exposure to IDS may facilitate infants’ ability to process prosodic aspects of speech, which may 

later manifest itself in an increased proficiency at monitoring and correcting for prosodic 

changes in their own speech. 

 In the current study, we utilized the FAF paradigm to manipulate the F0 of toddlers 

auditory feedback in order to investigate whether toddlers are capable of extracting information 

from their auditory feedback in order to modify their speech motor commands during ongoing 

speech, or whether the auditory feedback component of the speech motor control system is in 

fact ‘suppressed’. Although previous research suggests that toddlers do not produce 

compensatory responses to manipulations of the formant frequencies of their auditory feedback 

(MacDonald et al., 2012), formant frequency and F0 control have been shown to be regulated 

independently (Perkell et al., 1997). In addition, research on IDS indicates that prosodic aspects 

of speech, such as F0, play a crucial role in communication with prelinguistic children. For this 

reason, we expected that toddlers would produce compensatory responses to the F0 

manipulations, demonstrating the role of auditory feedback for the ongoing monitoring and 

maintenance of the toddlers’ speech motor control. Furthermore, coupled with the findings of 

MacDonald and colleagues (2012), these results would suggest toddlers are more proficient at 

regulating the postural aspects of their speech, such as F0, relative to the phonemic aspects, 

such as formant frequencies.   
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Methods

i. Participants

Twenty-five toddlers between the ages of 2 and 3 years (M = 36.15 months, SD = 6.05 

months; 11 females) participated in this study. However, five of the toddlers did not complete the 

study, as they refused to produce the vocalizations. The remaining 20 toddlers were divided into 

two groups: younger toddlers who were between 24 and 35 months (n = 11, M = 31.55 months, 

SD = 3.64 months) and older toddlers who were between 40 and 46 months (n = 9, M = 41.78 

months, SD = 2.33 months). All participants were Canadian-English speakers who did not speak 

a tonal language, and had no formal vocal training. Informed consent was obtained from all 

participants, as well as from a parent or guardian of each participant. All procedures were 

approved by the Wilfrid Laurier Research Ethics Board and were in accordance with the World 

Medical Association 2013 Declaration of Helsinki.

ii. Procedure

Participants were seated in front of a computer monitor that displayed an interactive farm 

game. As part of the game, a pre-recorded voice produced a ‘baa’ sound and the toddler was 

asked to mimic the ‘baa’ sound in order to progress through the game. This process was 

repeated until approximately 100 vocalizations were completed.

Participants were asked to vocalize at a loud, but comfortable volume. Vocalizations 

were played back to the participants in real time via headphones. Since the participants were 

quite young, sound level was not precisely monitored. However, the experimenter provided 

online feedback throughout the experiment if the participant was vocalizing too loudly or too 

softly to help regulate the participants’ volume. This volume monitoring technique was deemed 

adequate as previous research has shown that the relative loudness of auditory feedback has 

no influence on the amplitude or latency of responses to FAF (Burnett et al., 1998).  Participants 
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were also told that during the experiment their voice might sound different, but they should 

ignore these differences and continue to produce their vocalizations at a consistent pitch.

The experiment consisted of four blocks of 25 trials, and lasted approximately 20 minutes. 

During each vocalization the participant’s voice was perturbed one semitone (100 cents) 

upwards or downwards three times. Each perturbation lasted for 200 ms, with an interstimulus 

interval of 900-1100 ms (see Figure 1). The perturbation direction was held constant in each 

block, but alternated across blocks. The block orders were also counterbalanced so that half of 

the participants were initially exposed to the upward shift, while the other half were initially 

exposed to the downward shift. 

iii. Apparatus

Participants were seated in front of a computer monitor and fitted with a headset-

microphone (Sennheiser HMD 280-13 Pro, Sennheiser Electronics, Germany). Presentation of 

the visual stimuli were controlled by powerpoint, while the onset and offset of the auditory 

feedback perturbations were controlled by Max/MSP (v.5.0, Cycling ‘74). During the experiment 

vocalizations were sent to a Mac Mini (Apple, Cupertino, CA) where they were mixed using 

Studio One Software (Presonus, Baton Rouge, LA) and then sent to a digital signal processor 

(VoiceOne, T.C. Hellicon, Victoria, BC), which allowed the pitch of the participant’s voice to be 

altered. This process introduced approximately a 10 millisecond delay in the feedback signal, 

which was then presented back to the participant as auditory feedback. Both the altered and the 

unaltered voice signals were digitally recorded (Presonus FireStudio Project, Baton Rouge, LA) 

at a sampling rate of 44.01 kHz for later analysis.
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Figure 1: Experimental Paradigm 

A - Participants vocalized a /baa/ sound while their F0 was perturbed either upwards or 

downwards one semitone (+/- 100 cents) three times per vocalization for 200 ms, with an 

interstimulus interval of 900-1100 ms. B - Each vocalization was segmented relative to the voice 

perturbation (blue arrow), with the 50 ms prior to the voice perturbation serving as a baseline to 

normalize the vocalization. The response magnitude was calculated by determining the 

maximum deviation from the baseline in the 500 ms following the voice perturbation (red arrow).
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iv. Data Analysis

The digital recording of the vocalizations was segmented into separate utterances and 

F0 values were calculated for each utterance. Utterances were then segmented on the basis of 

the pitch-shift onset (see Figure 1). F0 values for each of the three segments were normalized 

to the baseline (50 ms of speech prior to the onset of the pitch shift) by converting Hertz values 

to cents using the following formula:

Cents = 100 (12 log2 F/B)

In this formula, F is the F0 value in Hertz and B is the mean frequency of the baseline 

period. Cents values were calculated for 100 ms before and 500 ms after the pitch shift. An 

averaged F0 trace was constructed for each shift magnitude (-100 cents, +100 cents), for each 

participant. The magnitude of each vocal response, as well as the participants’ vocal variability 

(SD of the baseline period), were evaluated. The magnitude of each participant’s compensatory 

response was determined by finding the point at which the averaged F0 trace deviated 

maximally from the baseline mean, while the SD of the baseline period was calculated on the 

basis averaged F0 of the 50 ms of unaltered voice prior to the pitch shift.

Results

Averaged F0 traces were created for each participant and averaged separately for the 

younger toddlers and older toddlers (see Figure 2). Both the younger and older toddlers 

compensated for the auditory feedback perturbations by changing their vocal pitch in the 

opposite direction of the manipulation. To confirm these observations, response magnitudes 

were subjected to a repeated measures analysis of variance (RM-ANOVA) with perturbation 

direction (upward, downward) and age (younger toddler, older toddler) as factors. A main effect 
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of perturbation direction, F1,18 = 43.522, P < .001, confirmed that participants compensated for 

the perturbations by increasing their F0 in response to downward perturbations (M = 12.23 

cents, SD = 14.76), and decreasing their F0 in response to upward perturbations (M = -25.07 

cents, SD = 19.19). However, the main effect of age, F1,18 = .387, P = .541, and the interaction 

between perturbation direction and age, F1,18 = .017, P = .897, were not significant. 

Since a relationship between the age and vocal variability has previously been identified 

(Scheerer & Jones, 2012), a RM-ANOVA was also conducted to investigate the effect of 

perturbation direction (upward, downward) and age (younger toddler, older toddler) on vocal 

variability. This analysis revealed a main effect of age, F1,18 = 4.60, P = .046, as the younger 

toddlers (M = 2.14 cents, SD = 1.19) were more variable than the older toddlers (M = 1.32 

cents, SD = 0.99). However, the main effect of perturbation direction, F1,18 = 1.716, P = .207, 

and the interaction between perturbation direction and age, F1,18 = .277, P = .605, were not 

significant.
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Figure 2: Averaged F0 Trace

Averaged F0 trace for both the upward perturbation (red) and downward perturbation (blue) 

conditions plotted separately for younger toddlers (top) and older toddlers (bottom). 

Discussion

The aim of the current study was to investigate whether toddlers are capable of 

extracting information from their auditory feedback in order to regulate their speech motor 

control system during ongoing speech. The results indicate that toddlers produced 

compensatory responses to brief perturbations of the F0 of their auditory feedback. As the 
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responses produced following upward perturbations were significantly different than those 

produced following downward perturbations, these findings indicate that toddlers can in fact 

extract information from their auditory feedback to modify their ongoing vocalizations. 

MacDonald and colleagues (MacDonald et al., 2012) reported that children and adults 

compensate for alterations of the frequency of the first and second formants of their auditory 

feedback, but toddlers do not. Based on these findings, the authors concluded that the auditory 

feedback component of speech motor control system may be suppressed in toddlers, or may 

not develop until closer to the age of 4. The results of the current study argue against these 

conclusions, as they clearly demonstrate that toddlers under the age of 4 are actively using 

auditory feedback to monitor and correct for errors in their ongoing speech. However, it is 

important to note that MacDonald and colleagues (MacDonald et al., 2012) manipulated the 

formant frequencies of the toddlers’ auditory feedback, while the current study manipulated the 

F0 of the toddlers’ auditory feedback. Auditory feedback plays an important role in maintaining 

the phonemic settings of speech, in order to ensure phonemic distinctions are preserved 

(Perkell et al., 1997). However, auditory feedback is also important for maintaining the postural 

settings of speech, which ensure that speech remains intelligible in dynamic acoustic 

environments (Perkell et al., 1997). Formant frequency, a property of auditory feedback related 

to phonemic control, has been shown to be less sensitive to the loss of auditory feedback, 

relative to F0, a property of postural control (Perkell et al., 1997). This difference may explain 

why toddlers were able to modify their F0 using information from the deviant auditory feedback 

in the current study, but were unaffected by the formant frequency manipulations imposed by 

MacDonald and colleagues (MacDonald et al., 2012). Importantly, these differences suggest 

that toddlers may be more proficient at regulating the postural properties of their speech, 

relative to the phonemic settings, using auditory feedback.
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Toddlers increased proficiency at regulating the postural properties of speech, 

specifically F0, may also be a consequence of exposure to infant directed speech (IDS). Early in 

development, caregivers communicate with infants using IDS, and this IDS has been shown to 

provide an effective way to communicate affect with prelinguistic children (Fernald, 1993, Saint-

Georges et al., 2013). Since recognizing changes in F0 provides young children with a means 

for comprehending the affect and intentions of caregivers, prior to becoming linguistically 

proficient (Saint-Georges et al., 2013), IDS may increase the saliency of the prosodic features of 

speech such as F0. On the other hand, since non-prosodic features of the speech signal, such 

as formant frequencies, are less beneficial for speech comprehension in prelinguistic children 

(Saint-Georges et al., 2013), these features may be less salient. For this reason, we suggest 

that exposure to IDS may facilitate infants’ ability to process prosodic aspects of speech, which 

later manifests itself as an increased proficiency at monitoring and correcting for prosodic 

changes in their own speech. 

Although the younger and older toddlers in this study produced similar sized 

compensatory responses to the FAF, the younger toddlers were found to be more variable than 

the older toddlers. This finding is in line with previous studies that have demonstrated that vocal 

variability decreases with age (Scheerer et al., 2013b). Scheerer and colleagues (2012, 2013b, 

2014) have suggested that vocal variability is related to the proficiency of speech motor control. 

As vocal stability improves through vocal training or development, speakers become less 

dependent on auditory feedback for closed-loop speech motor control (Scheerer & Jones, 2012; 

Scheerer et al., 2013b, 2014). Instead, speakers transition to a predominantly open-loop speech 

motor control system, where speech motor commands are generated from stored 

representations (Perkell et al., 1997; Scheerer & Jones, 2012; Chen et al., 2013, Max et al., 

2004; Guenther, 2006; Tourville et al., 2008; Civier et al., 2010). The decreased variability with 
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age observed in this study, may reflect a gradual maturation of the speech motor control system 

throughout development.

In summary, the current results demonstrate that toddlers as young as 2 years old 

produce compensatory responses to changes in their auditory feedback. These results provide 

empirical support for the long held assumption that auditory feedback functions as an adaptive 

signal to guide movements of the articulators in order to preserve speech fluency while the 

articulators are restructured during development. In addition, these results suggest that toddlers 

may be more sensitive to changes to the postural properties of their auditory feedback, such as 

fundamental frequency, relative to the phonemic properties, such a formant frequencies. 

Risk factors for speech disorders often appear early in childhood (Schneider, Zumtobel, 

Prettenhofer, Aichstill, & Jocher, 2010). Understanding the normal development of auditory 

feedback control of speech can aid in identifying irregularities in the vocal system, which may 

serve as precursors to future pathologies. The future application of this research to the 

diagnosis of disorders with known disturbances in vocal control, such as Autism Spectrum 

Disorders, which are lacking viable diagnostic markers, may prove invaluable. 

Study 2: The Developmental Trajectory of Vocal and ERP Responses to Frequency 

Altered Feedback

Published As:

Scheerer, N., Liu, H., & Jones, J.A. (2013). The Developmental Trajectory of Vocal and ERP 

Responses to Frequency Altered Auditory Feedback. European Journal of 

Neuroscience, 38(8), 3189-3200. 

Neurocomputational models of speech suggest that speech motor control develops 

gradually as the acoustics of speech are mapped onto the positions and movements of the 
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articulators (Guenther, 2006). In this ERP study, children and adults produced vocalizations 

while exposed to FAF. Behaviourally, vocal response magnitudes, vocal response latencies, and 

vocal variability were measured to assess whether the role of auditory feedback for ongoing 

speech differs across different age groups and genders. In addition, P1-N1-P2 ERP responses 

were recorded in order to assess whether the neural systems that integrate auditory feedback 

during vocal motor control undergo changes with age and gender. The results of this study will 

help to map out the developmental trajectory of auditory feedback control of speech.

Abstract

Speech motor control develops gradually as the acoustics of speech are mapped onto 

the positions and movements of the articulators. In this event-related potential (ERP) study, 

children and adults aged 4–30 years produced vocalizations while exposed to frequency-altered 

feedback. Vocal pitch variability and the latency of vocal responses were found to differ as a 

function of age. ERP responses indexed by the P1–N1–P2 complex were also modulated as a 

function of age. P1 amplitudes decreased with age, whereas N1 and P2 amplitudes increased 

with age. In addition, a correlation between vocal variability and N1 amplitudes was found, 

suggesting a complex interaction between behavioural and neurological responses to 

frequency-altered feedback. These results suggest that the neural systems that integrate 

auditory feedback during vocal motor control undergo robust changes with age and 

physiological development.

Introduction

The ability to produce speech develops gradually as speech sounds are mapped onto 

the positions and movements of the articulators. This sensorimotor mapping begins as infants 

explore auditory and somatosensory space by babbling (de Boisson-Bardies, 1999; Civier et al., 
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2010) and it remains plastic throughout development to accommodate growth of the articulators 

and vocal folds, increases in musculature, and changes in lung capacity (McAllister et al., 1993; 

Callan et al., 2000; Guenther, 2006). Although proprioception plays a role in speech motor 

control (Larson, Altman, Liu, & Hain, 2008), it is clear that the development and maintenance of 

fluent speech is largely dependent on auditory feedback (Lombard, 1911; Siegel, Pick, Olsen, & 

Sawin, 1976; Burnett & Larson, 2002; Jones & Munhall, 2002; Chen et al., 2012b; MacDonald et 

al., 2012). The importance of auditory feedback for maintaining accurate vocal output has been 

demonstrated by studies that have used the frequency-altered feedback (FAF) paradigm. The 

FAF paradigm involves shifting the fundamental frequency (F0) of an individual’s vocalizations 

and instantaneously presenting the altered auditory feedback (AAF) back to the individual 

through headphones (Elman, 1981; Burnett et al., 1997). This paradigm consistently elicits a 

response termed the pitch-shift reflex (Burnett et al., 1998; Jones & Munhall, 2002; Natke et al., 

2003). The pitch-shift reflex is the tendency of speakers to respond to the FAF by shifting their 

vocal pitch in the opposite direction of the alteration (Burnett et al., 1998). This response has 

been suggested to play a role in stabilizing voice F0 around a desired target (Hain et al., 2000; 

Natke et al., 2003; Hawco & Jones, 2009).

Although the role of auditory feedback during ongoing speech production has been 

extensively studied in the adult population, attempts to investigate the developmental trajectory 

of sensorimotor control of speech in children have been limited by narrow age ranges and 

contradictory results. For example, Liu and colleagues (2010b) investigated vocal responses to 

FAF in a group of English-speaking children aged between 7 and 12 years. The authors 

reported that the children produced longer-latency vocal responses to the FAF relative to the 

young adults (Liu et al., 2010b). A follow-up study testing Mandarin-speaking children aged 

between 7 and 12 years, showed that Chinese children produced larger-magnitude and longer-

latency voice F0 responses than young adults (Liu et al., 2010a). Although these studies provide 
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evidence of developmental changes in the feedback control of vocal production, they fail to 

portray a clear picture of the developmental trajectory of speech motor control, owing to the 

limited age ranges. Furthermore, the neural activity related to these audio-vocal responses 

throughout development is currently unclear.

Auditory cortical processing is often indexed with the use of electroencephalography 

(EEG) and magnetoencephalography. It has been suggested that the M50, the magnetic 

equivalent of the P1 event-related potential (ERP) component, is the most prominent and 

reliable indicator of auditory processing in children, whereas the M100 component, the magnetic 

equivalent of the N1 component, is the most robust component in adults (Bruneau & Gomot, 

1998; Oram Cardy, Ferrari, Flagg, Roberts, & Roberts, 2004; Kotecha et al., 2009; Beal et al., 

2011). Ponton & Eggermont (2007) suggested that the P1 component develops early in 

childhood, reaches its maximum in toddlers, and declines shortly thereafter. On the other hand, 

the N1 component is generally found to be smaller in children, and increases in amplitude into 

adulthood (Oram Cardy et al., 2004). The magnitude of the P2 component is generally 

unaffected by age.

Previous research has shown that, when adults are exposed to FAF, the P1, N1 and P2 

components increase in amplitude, reflecting a mismatch between expected and perceived 

auditory feedback (Behroozmand et al., 2009; Scheerer et al., 2013a). The P1 component has 

been found to increase in an all-or-nothing manner in response to FAF, suggesting that it is 

sensitive to deviant auditory feedback in a nonspecific manner (Scheerer et al., 2013a). The N1 

ERP component is more sensitive to the size of the deviant feedback, as it shows small 

increases in response to small feedback perturbations, and larger increases in response to 

larger feedback perturbations. It has been suggested that deviant, but still physiologically 

feasible feedback perturbations elicit small increases in N1 amplitudes, whereas larger 

feedback perturbations that are more obviously externally generated elicit relatively larger N1 
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responses. For this reason, it has been proposed that the N1 component plays a role in 

classifying auditory feedback as internally or externally produced. Similarly, P2 amplitudes have 

been found to increase in a stepwise manner in response to increasingly large feedback 

perturbations. For this reason, it has been suggested that the P2 component indexes the size of 

the mismatch between perceived and expected auditory feedback (Scheerer et al., 2013a). 

Although these neural changes in response to FAF have been well studied in the adult 

population, few studies have investigated neural responses to FAF in children.

Although children’s auditory responses to FAF have rarely been reported, more 

generalized auditory cortical responses to stimuli such as pure tones have been well 

documented. As positive peaks tend to be more robust and consistent in younger subjects, the 

P1 component is the most frequently reported auditory evoked potential (AEP; Ceponiene, 

Rinne, & Nantanen, 2002). The results of developmental AEP studies are unanimous in showing 

that P1 amplitudes decrease with age (Ponton et al., 2000; Ponton, Eggermont, Khosla, Kwong, 

& Don, 2002; Ponton & Eggermont, 2001, 2007; Ceponiene et al., 2002; Oram Cardy et al., 

2004; Sussman, Steinschneider, Gumenyuk, Grushko, & Lawson, 2008), whereas P1 latencies 

become shorter with age (Ponton et al., 2000, 2002; Ceponiene et al., 2002; Gage et al., 2003; 

Oram Cardy et al., 2004; Beal et al., 2011). Reports regarding the N1 component have been far 

less consistent. It has been suggested that the superimposition of the strong P1 component 

leads to difficulty in detecting a robust N1 component (Ponton et al., 2000, 2002). However, in 

studies where the N1 component has been detected, some have reported that the N1 

component increases in amplitude with age (Goodin, Squires, Henderson, & Starr, 1978; Allison, 

Hume, Wood, & Goff, 1984; Polich, Ladish, & Burns, 1990; Bruneau, Roux, Guerin, Barthelemy, 

& Lelord, 1997; Cunningham, Nicol, Zecker, & Kraus, 2000; Oram Cardy et al., 2004), whereas 

others have found that it decreases with age (Ceponiene et al., 2002). Bruneau et al. (1997) 

reported that the N1 component decreases in amplitude with age until the age of 8 years, at 
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which point it begins to resemble the characteristic adult-like form. Although there is some 

debate about the developmental pattern of N1 amplitudes, latency trends have been more 

consistent. Similarly to P1 latency, N1 latency has been found to decrease with age (Goodin et 

al., 1978; Allison et al., 1984; Polich et al., 1990; Paetau, Ahonen, Salonen, & Sams, 1995; 

Tonnquist-Uhlen, Borg, & Spens, 1995; Bruneau et al., 1997; Ponton et al., 2000; Gage et al., 

2003; Oram Cardy et al., 2004). Although less frequently reported, the P2 component has also 

been found to vary throughout development. Some studies have reported increases in P2 

amplitude with age (Kraus et al., 1993; Johnstone, Barry, Anderson, & Coyle, 1996; Oades, 

Dittman-Balear, & Zerbin, 1997), others have reported decreases in amplitude with age (Ponton 

et al., 2000), and still others have reported no systematic change in P2 amplitude as a function 

of age (Tonnquist-Uhlen, 1996; Ceponiene et al., 2002). Reports of P2 latency, however, have 

reliably reported a lack of change as a function of age (Johnstone et al., 1996; Tonnquist-Uhlen, 

1996; Ponton et al., 2000).

Whereas the AEP literature is useful for determining the developmental course of 

auditory cortical processing, a specific investigation of auditory cortical responses to AAF would 

help to identify the neural changes accompanying speech development. To date, there has only 

been one study investigating the neural responses of children to FAF. Liu et al. (2013) 

investigated the modulation of the P1–N1–P2 complex in response to FAF in 10–15-year-old 

Mandarin-speaking children, relative to young adults (18–30 years). The results indicated that 

P1 amplitudes decreased with age, whereas N1 and P2 amplitudes were modulated by an 

interaction between sex and age. Response latencies for the P1 and N1 components decreased 

with age, whereas P2 latencies were not modulated by age (Liu et al., 2013). Although these 

results suggest a developmental sex-specific change in neural responses to FAF, the small 

range of ages tested fails to adequately depict the developmental trajectory of neural responses 

to FAF. In addition, the fact that a Mandarin-speaking population was used in this study limits 
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the generalizability of these results. It has been shown that both vocal and cortical responses to 

FAF are sensitive to language experience (Chen et al., 2012b), which suggests that an English-

speaking population may show different patterns of neural activation in response to FAF.

Given that the precursors of many speech-related disorders are already evident during 

childhood, establishing an understanding of the normal developmental trajectory of responses to 

AAF is necessary (Schneider et al., 2010). The aim of the current study was to do exactly that – 

investigate the developmental trajectory of the audio-vocal system, both behaviourally and 

neurologically. During this study, Canadian English-speaking individuals ranging in age from 4 to 

30 years participated in a FAF paradigm in order to investigate the use of auditory feedback 

during vocalization. In addition, P1–N1–P2 ERP responses were recorded in order to enable 

comparison of the neural activity in response to FAF throughout development. As developmental 

changes occur at different rates for males and females, we also investigated sex-related 

differences in the development of speech motor control.

Successful motor learning relies on the ability to form internal models that predict the 

sensory consequences of motor commands (Miall & Wolpert, 1996; Shadmehr, Smith, & 

Krakauer, 2010). Accordingly, both empirical research and computational models of speech 

motor control (e.g. directions into velocities of articulators model; Guenther, 2006) suggest that 

fluent speech motor control results from the combined effort of feedback and feedforward 

control systems. Feedforward control relies on sensorimotor representations, or internal models, 

which contain an estimate of the current dynamic state of the vocal tract, based on incoming 

motor commands as well as previously learned mappings between articulatory movements and 

the resultant sensory consequences of these movements. This feedforward control system 

regulates speech motor control by providing internal feedback to speech motor control planning 

systems, while avoiding the delays associated with peripheral feedback (Miall & Wolpert, 1996; 

Guenther, 2006). On the other hand, feedback control relies on auditory feedback for detection 
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and correction of overt production errors. Although feedback control is crucial for learning the 

mapping between articulator movements and the sensory consequences of the movements, it 

has been suggested that as speech development progresses a transition from feedback control 

to feedforward control takes place (Bailly, 1997; Guenther & Bohland, 2002; Schmidt & Lee, 

2005; Guenther, 2006; Civier et al., 2010; Beal et al., 2011).

On the basis of the previous empirical and modelling research, we expected that the 

magnitude of compensation to the FAF would decrease with age, reflecting increasingly 

proficient speech motor control, and a transition from feedback to feedforward control. We also 

predicted that behavioural response latencies would decrease with age, reflecting increasingly 

efficient speech motor control. Neurologically, we hypothesized that P1 amplitudes would 

decrease with age, as shown in previous research (Liu et al., 2013). On the other hand, we 

expected N1 and P2 amplitudes to increase with age. We believed that larger N1 and P2 

amplitudes with age would reflect the development of increasingly stable sensorimotor 

representations (Goodin et al., 1978; Allison et al., 1984; Polich et al., 1990; Bruneau et al., 

1997; Cunningham et al., 2000; Oram Cardy et al., 2004; Scheerer et al., 2013a). As the 

sensorimotor representation becomes more stable, the evaluation of the mismatch between 

perceived and expected feedback should likewise be more precise, and thus the amplitude of 

the N1 and P2 components should increase. Finally, we predicted that P1, N1 and P2 latencies 

would decrease with age, reflecting the increased synaptic efficiency that occurs with 

development (Tonnquist-Uhlen et al., 1995; Sharma, Kraus, McGee, & Nicol, 1997; Albrecht, 

Suchodoletz, & Uwer, 2000; Devous, Altuna, Ngai, Chiu, & Harris, 2006).
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Methods

i. Participants

One hundred participants were recruited. Participants were divided into five age groups: 

4–6 years [mean, 5.88; SD, 0.60], 7–10 years (mean, 8.47; SD, 1.26), 11–13 years (mean, 

11.88; SD, 0.69), 14–17 years (mean, 16.37; SD, 0.89), and 18–30 years (mean, 22.72; SD, 

3.03), with 10 males and 10 females in each group. These age groups were chosen in order to 

allow vocal and neural responses to FAF to be compared throughout development. All 

participants were native Canadian English speakers, did not speak a tonal language, reported 

no formal vocal training, and were right-handed. Prior to testing, participants were screened with 

a diagnostic audiometer (Midimate 602; Madsen Electronics, Minneapolis, MN, USA) to ensure 

that hearing thresholds were ≤ 20 dB HL at 250, 500, 1000, 2000, 4000 and 8000 Hz. All 

participants received financial compensation or course credit for participation in this study. 

Informed consent was obtained from all participants, as well as from a parent or guardian of 

participants under the age of 18 years, in accordance with the Code of Ethics of the World 

Medical Association (Declaration of Helsinki). All procedures were approved by the Wilfrid 

Laurier University Research Ethics Board.

ii. Apparatus 

Participants sat in an electrically shielded booth (Raymond EMC, Ottawa, Ontario, 

Canada), wearing a HydroCel GSN 64 1.0 Cap (Electrical Geodesics, Eugene, OR, USA) and a 

headset microphone (Countryman Isomax E6 Omnidirectional Microphone). During the 

experiment, vocalizations were sent to a mixer (Mackie Oynx 1220; Loud Technologies, 

Woodinville, WA, USA) and pitch-shifted by a digital signal processor (VoiceOne; T. C. Hellicon, 

Victoria, BC, Canada). The pitch-shifted vocalization was then presented back to the participant 

as auditory feedback through insert headphones (ER- 3; Etymotic, Elk Grove Village, IL, USA). 
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The unaltered voice signal was digitally recorded (HD-P2; TASCAM, Montebello, CA, USA) at a 

sampling rate of 44.1 kHz for later analysis.

iii. Procedure

Participants sat in front of a computer screen that displayed an interactive space game. 

Participants were instructed that when a red box with the word ‘activate’ appeared they should 

keep their gaze fixed on the box, while vocalizing the sound /a/. They were further instructed to 

stop vocalizing when the red box disappeared. This process was repeated until 100 

vocalizations were completed.

Participants were asked to vocalize at a loud, but comfortable, volume. Vocalizations 

were played back to the participants in real time via headphones. Owing to the young age of 

many of the participants, sound level was not precisely monitored. However, previous research 

has shown that the relative loudness of auditory feedback has no influence on the amplitude or 

latency of responses to FAF (Burnett et al., 1998). Despite this fact, the experimenter monitored 

the volume of participants’ vocalizations and provided feedback if individuals were too loud or 

too soft. All participants were instructed to refrain from blinking and making extraneous 

movements while vocalizing.

During 50 of the 100 vocalizations produced, the participant’s voice was unaltered. 

Although the voice was unaltered, three samples were randomly taken per utterance, with an 

intersample interval of 1000–1200 ms. During the other 50 vocalizations the participant’s voice 

was shifted –100 cents (down one semitone), three times per vocalization, with an interstimulus 

interval of 1000–1200 ms. Each perturbation had a fixed duration of 200 ms. This resulted in 

vocalizations between 4 and 5 s in length. Altered and unaltered trials were pseudo-randomly 

presented throughout the experiment.
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iv. Behavioural Analysis

The digital recording of the vocalizations was segmented into separate utterances, and 

F0 values were calculated for each utterance. Utterances were then segmented on the basis of 

the pitch-shift onset. F0 values for each of the three segments were normalized to the baseline 

period (the segment 200 ms prior to the onset of the pitch-shift) by converting Hertz values to 

cents with the following formula:

Cents = 100 (12 log2 F/B)

In this formula, F is the F0 value in Hertz, and B is the mean frequency of the baseline period.

Cent values were calculated for 200 ms before and 1000 ms after the pitch-shift. An 

averaged F0 trace was constructed for each shift magnitude, 0 and -100, for each participant. 

The magnitude and latency of vocal responses, as well as participants’ vocal variability (SD of 

the baseline period), were evaluated. The magnitude of each participant’s compensatory 

response was determined by finding the point at which the averaged F0 trace deviated 

maximally from the baseline mean, and the latency was calculated as the time at which this 

maximal deviation occurred. The SD of the baseline period was calculated on the basis of the 

200 ms of unaltered voice prior to the pitch-shift.

v. EEG Recording and Analysis

Electroencephalography data were recorded from 64 scalp electrodes referenced to an 

electrode at the vertex (Cz) by use of a HydroCel GSN 64 1.0 Cap, and amplified with a Net 

Amps 300 system (Electrical Geodesics), with a fixed anti-aliasing filter with a frequency of 6 

kHz. Data were bandpass-filtered (1–30 Hz) and digitized (12-bit precision) at 1000 samples per 

second. Electrode impedances were adjusted and maintained below 50 kΩ (Ferree, Luu, 
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Russell, & Tucker, 2001). After data acquisition, the EEG signals were re-referenced to the 

average voltage across all sites. The data were then epoched into segments from 100 ms 

before to 500 ms after perturbation onset. Data were analyzed offline for movement artifacts, 

and any segment with voltage values exceeding 55 μV of the moving average over an 80-ms 

span were rejected. Additional visual inspection of all data ensured that artifacts were being 

adequately detected. On the basis of the rejection criterion and visual inspection, participants 

with > 50% of their trials rejected in a single condition were not included in further analyses. This 

resulted in 47 rejected participants, most of whom were young children who were either unable 

to perform the task, or had excessive rejected trials because of ocular and movement artifacts.

Five electrodes were included in the analysis, and divided for anteriority [Fz (frontal), Cz 

(medial), and Pz (posterior)] and laterality [C3 (left) and C4 (right)] analyses. These electrodes 

were chosen in order to allow for comparison with previous FAF (Liu et al., 2013) and AEP 

(Bruneau et al., 1997) research.

For each participant, averaged waveforms were created for the unaltered and the -100 

cent shift conditions for each electrode. Grand-averaged waveforms were created for both 

conditions by averaging the data from all participants for each electrode, and then performing 

baseline correction. For all averaged files for each participant, the amplitude and latency were 

calculated for the P1–N1–P2 complex. These components were extracted at time windows of 

50–100 ms, 100–200 ms, and 200–300 ms, respectively. These windows were chosen on the 

basis of a visual inspection of the data.

vi. Statistical Analysis

In order to ensure that the recorded responses were the result of the FAF manipulation, 

preliminary repeated measures (RM)-ANOVAs were conducted to compare vocal response 

magnitude and ERP amplitudes in the -100 cent condition relative to the 0 cent (unaltered) 
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condition. As expected, a main effect of shift magnitude indicated that responses were larger in 

the -100 cent condition than in the 0 cent (unaltered) condition for all measures. For this reason, 

subsequent analyses included only FAF trials. In addition, the 0 cent (unaltered) condition was 

not included in latency comparisons, as data were randomly sampled from vocalizations in the 0 

cent condition, so latency values have no true reference.

For FAF trials, ANOVAs were conducted comparing the vocal responses across age 

groups and sex, and ERP responses across age groups, sex, and electrode site. Regression 

analyses were also conducted to investigate relationships between the behavioural and ERP 

data. In cases where Mauchley’s assumption of sphericity was violated, the Greenhouse–

Geisser correction was used (Greenhouse & Geisser, 1959). However, for ease of 

interpretation, original degrees of freedom were reported.

Results

i. Behavioural Results

Response Magnitude

A two-way ANOVA was conducted to compare the effects of age and sex on vocal 

response magnitude. The main effects of age, F4,90 = 1.845, P = 0.127, (see Figure 3) and sex, 

F1,90 = 1.849, P = 0.177, and the interaction between age and sex, F4,90 = 1.383, P = 0.246, 

failed to reach significance.

Response Latency 

A two-way ANOVA was conducted to investigate the effects of age and sex on vocal 

response latency. The results indicated a main effect of age, F4,90 = 3.024, P = 0.022. Least 

significant difference (LSD) comparisons indicated that 4–6-year-olds (P = 0.004), 7–10- year-

olds (P = 0.045) and 11–13-year-olds (P = 0.003) had significantly longer response latencies 
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than 18–30-year-olds. In addition, the interaction between age and sex, F4,90 = 2.602, P = 0.041, 

was significant, as males and females had similar responses, with the exception of the 14–17-

year-old males, who had significantly faster responses than the females (P = 0.005; see Figure 

4). However, the main effect of sex, F1,90 = 0.263, P = 0.609, failed to reach significance.

Figure 3: Vocal Response Magnitudes (mean and standard error) in the -100 cent (blue) and 0 

cent (purple) conditions as a function of age group.
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Figure 4: Vocal response latencies (mean and standard error) in the -100 cent condition as a 

function of age and sex.

Vocal Variability

A two-way ANOVA was conducted to compare the effects of age and sex on vocal 

variability (as indexed by baseline SD). The main effect of age, F4,90 = 2.626, P = 0.040, was 

significant (see Figure 5). LSD comparisons indicated that 4–6-year-olds were significantly more 

variable than 18–30-year-olds (P = 0.002). The main effect of sex, F1,90 = 0.754, P = 0.388, and 

all interactions failed to reach significance.

In order to determine whether baseline variability predicted the magnitude of the 

responses to FAF, a correlational analysis was conducted. As baseline variability did not differ 

as a function of the shift magnitude, F1,90 = 0.036, P = 0.851, baseline variability values were 

collapsed across the -100 cent shift and unaltered feedback conditions. The results indicated a 

significant correlation, r = 0.628, P(two-tailed) < 0.001, n = 100, between baseline variability and the 

magnitude of responses to FAF. As vocal variability was found to vary as a function of age (P = 

0.040), a regression analysis was performed to determine whether age and vocal variability 

could account for a significant proportion of the variance in vocal response magnitude. The 

results indicated that vocal variability, b = 21.013, t97 = 7.683, P < 0.001, but not age, b = 0.074, 

t97 = 0.336, P = 0.738, accounted for a significant proportion of the variance in vocal response 

magnitude. Together, both age and vocal variability accounted for a significant proportion of the 

variance, R2 = 0.395, F2,97 = 31.632, P < 0.001, in vocal response magnitude.
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Figure 5: Vocal pitch (F0) variability as indexed by baseline standard deviation (mean and 

standard error) in the -100 cent (purple) and 0 cent (blue) conditions as a function of age group. 

ii. ERP Results

P1 Amplitude Anteriority

A RM-ANOVA was conducted to investigate the effects of age and sex on P1 amplitudes 

across three midline electrodes. The results indicated a significant main effect of anteriority, 

F2,180 = 53.168, P < 0.001, as P1 amplitudes were largest at the anterior site, followed by the 

medial and then the posterior site (all three sites significantly different at P < 0.001). The main 

effect of age was also significant, F4,90 = 8.844, P < 0.001 (see Figure 6), with LSD comparisons 

indicating that 4–6-year-olds had significantly larger P1 amplitudes than 11–13-year-olds (P = 

0.001), 14–17-year-olds (P < 0.001), and 18–30-year-olds (P < 0.001), and that 7–10-year-olds 

had significantly larger P1 amplitudes than 14–17-year-olds (P = 0.002) and 18–30-year-olds (P 

= 0.003). The interaction between sex and age was significant, F4,90 = 3.012, P = 0.022, as male 

4–6-year-olds had larger P1 amplitudes than females (P = 0.035), whereas 7–10-year-old 
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females had larger P1 amplitudes than males (P = 0.010). The main effect of sex, F1,90 = 0.192, 

P = 0.662, and all other interactions, failed to reach significance.

Figure 6: P1 (blue), N1 (purple), and P2 (orange) amplitudes (mean and standard error) 

collapsed across all three electrode sites (Fz, Cz, and Pz) as a function of age. 

P1 Amplitude Laterality

A RM-ANOVA was conducted to investigate the effects of age and sex on P1 amplitudes 

in the right and left hemispheres. A significant main effect of sex, F1,90 = 13.051, P < 0.001, was 

found, as males had larger P1 amplitudes than females. The main effect of age was also 

significant, F4,90 = 4.297, P = 0.003. Least significant difference comparisons indicated that 4–6-

year-olds had significantly larger P1 amplitudes than 14–17-year-olds (P = 0.003) and 18–30 

year-olds (P = 0.001), 7–10-year-olds had significantly larger P1 amplitudes than 18–30-year-
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olds (P = 0.016), and 11–13-year-olds had significantly larger P1 amplitudes than 18–30-year-

olds (P = 0.046). The main effect of laterality, F1,90 = 0.001, P = 0.972, and all other interactions, 

failed to reach significance.

P1 Latency Anteriority

A RM-ANOVA was conducted to investigate the effects of sex and age on P1 latency 

across three midline electrodes. A main effect of anteriority was found, F2,180 = 67.272, P < 

0.001, as P1s peaked more rapidly at the posterior sites, with latency increasing from posterior 

to anterior electrodes on the scalp (P < 0.01 for all comparisons). There was also an anteriority 

x age interaction, F8,180 = 4.217, P < 0.001, as changes in latency across the three midline sites 

were robust in the 4–6-year-olds, 7–10-year-olds, and 11–13-year-olds, whereas they were 

more moderate in the 14–17- year-olds and 18–30-year-olds. Similarly, a main effect of age was 

also found, F4,90 = 2.745, P = 0.033. LSD comparisons indicated that 18–30-year-olds had 

significantly faster P1s than 4–6-year-olds (P = 0.003), 7–10-year-olds (P = 0.031), 11–13-year-

olds (P = 0.033), and 14–17-year-olds (P = 0.015). Finally, the main effect of sex was significant, 

F1,90 = 8.317, P = 0.005, as females had faster P1s than males. All other interactions failed to 

reach significance.

P1 Latency Laterality 

A RM-ANOVA was conducted to investigate the effects of sex and age on P1 latency in 

the right and left hemispheres. Although the main effect of laterality, F1,90 = 0.592, P = 0.444, 

failed to reach significance, main effects of sex, F1,90 = 16.333, P < 0.001, and age, F4,90 = 

4.769, P = 0.002, were found. LSD comparisons indicated that females had faster P1s than 

males (P = 0.002). Furthermore, LSD comparisons indicated that 4–6-year-olds had significantly 

slower P1s than 14–17-year-olds (P = 0.002) and 18– 30-year-olds (P < 0.001), 7–10-year-olds 
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had significantly slower P1s than 14–17-year-olds (P = 0.039) and 18–30-year-olds (P = 0.009), 

and 11–13-year-olds had significantly slower P1s than 18–30-year-olds (P = 0.014). All 

interactions failed to reach significance.

N1 Amplitude Anteriority 

A RM-ANOVA was conducted to investigate the effects of sex and age on N1 amplitudes 

over three midline sites. A main effect of anteriority, F2,180 = 21.740, P < 0.001, was found (see 

Figure 6 and 8), as N1 amplitudes were significantly larger at the posterior site than at the 

medial site (P = 0.012) and anterior site (P < 0.001), which were also significantly different from 

one another (P < 0.001). The interaction between anteriority and age was significant, F8,180 = 

7.679, P = 0.001, as the younger age groups (4–6, 7–10 and 11–13 years) had robust N1 

amplitude differences across the midline electrode sites, with the largest amplitude occurring at 

the posterior electrode, whereas the older age groups (14–17 and 18–30 years) had more 

moderate N1 amplitude differences across the midline electrode sites, with the largest N1 

amplitude occurring at the medial electrode site (see Figure 7). Accordingly, the main effect of 

age, F4,90 = 5.128, P = 0.001, was also significant (see Figure 6), with 4–6-year-olds having 

significantly smaller amplitudes than 7–10-year-olds (P = 0.002), 11–13-year-olds (P = 0.005), 

and 18–30-year-olds (P < 0.001). In addition, 14–17-year-olds had significantly smaller 

amplitudes than 18–30-year-olds (P = 0.024). The main effect of sex, F1,90 = 8.178, P = 0.005, 

was also significant, as females had significantly larger amplitudes than males. All other 

interactions failed to reach significance.
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Figure 7: N1 Amplitudes (mean and standard error) as a function of age and electrode site 

(anterior, Fz; medial, Cz; posterior, Pz). 

N1 Amplitude Laterality

A RM-ANOVA was conducted to investigate the effects of sex and age on N1 amplitudes 

in the right and left hemispheres. The main effects of laterality, F1,90 = 0.092, P = 0.762, sex, 

F1,90 = 0.779, P = 0.380, and age, F4,90 = 1.881, P = 0.121, and all interactions, failed to reach 

significance.

N1 Latency Anteriority

A RM-ANOVA was conducted to investigate the effects of sex and age on N1 latency 

across three midline electrodes. A significant main effect of anteriority was found, F2,180 = 

58.111, P < 0.001, as N1s were faster at the posterior site than at the anterior site (P < 0.001) 

and medial site (P < 0.001). A main effect of sex was also found, F1,90 = 9.650, P = 0.003, as 
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females had faster N1s than males. Finally, a main effect of age was found, F4,90 = 2.819, P = 

0.030. LSD comparisons indicated that 18–30-year-olds had significantly faster N1s than 4–6-

year-olds (P = 0.013), 7–10-year-olds (P = 0.002), and 11–13-year-olds (P = 0.029). All 

interactions failed to reach significance.

N1 Latency Laterality 

A RM-ANOVA was conducted to investigate the effects of sex and age on N1 latency in 

the right and left hemispheres. A significant main effect of age was found, F4,90 = 9.711, P < 

0.001. LSD comparisons indicated that 14–17-year-olds had significantly faster N1s than 4–6-

year-olds (P = 0.001), 7–10-year-olds (P < 0.001), and 11–13-year-olds (P = 0.010), whereas 

18–30-year-olds also had significantly faster N1s than 4–6-year-olds (P < 0.001), 7–10-year-

olds (P < 0.001), and 11–13-year-olds (P = 0.001). The interaction between age and laterality 

was also significant, as 4–6-year-olds showed faster N1s in the right hemisphere, whereas 11–

13-year-olds and 14–17-year-olds showed faster N1s in the left hemisphere. Finally, a 

significant main effect of sex was found, F1,90 = 9.680, P = 0.002, as females had faster N1s 

than males. The main effect of laterality, F1,90 = 1.607, P = 0.208, failed to reach significance.

P2 Amplitude Anteriority 

A RM-ANOVA was conducted to investigate the effects of sex and age on P2 amplitudes 

across three midline sites. A significant main effect of anteriority was found, F2,180 = 8.045, P = 

0.001, as P2 amplitudes were smaller at the posterior site relative to the medial site, (P = 

0.004), and anterior site (P = 0.002). The interaction between anteriority and age was also 

significant, F8,180 = 2.727, P = 0.007. Correspondingly, the main effect of age was significant, 

F4,90 = 5.521, P = 0.001 (see Figure 6). LSD comparisons indicated that 4–6-year-olds had 

significantly larger P2 amplitudes than 7–10-year-olds (P = 0.002), 11–13-year-olds (P < 0.001), 
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and 14–17-year-olds (P < 0.001), while 18–30-year-olds had significantly larger P2 amplitudes 

than 11–13-year-olds (P = 0.024) and 14–17-year-olds (P = 0.018). The main effect of sex, F1,90 

= 0.832, P = 0.507, and all other interactions, failed to reach significance.

P2 Amplitude Laterality

A RM-ANOVA was conducted to investigate the effects of sex and age on P2 amplitudes 

in the right and left hemispheres. A significant main effect of age was found, F4,90 = 3.575, P = 

0.009, as 7–10-year-olds and 11–13-year-olds had significantly smaller P2 amplitudes than all 

other age groups (P < 0.05). However, the main effects of laterality, F1,90 = 0.351, P = 0.555, and 

sex, F1,90 = 3.353, P = 0.070, and all other interactions, failed to reach significance.

P2 Latency Anteriority 

A RM-ANOVA was conducted to investigate the effects of sex and age on P2 latency 

across three midline electrodes. A significant main effect of anteriority was found, F2,180 = 4.043, 

P = 0.022, as latencies were significantly longer at the anterior site relative to the medial site (P 

= 0.006) and posterior site (P = 0.042). A main effect of sex was also found, F1,90 = 4.617, P = 

0.034, as females had faster P2s than males. The main effect of age, F4,90 = 0.210, P = 0.932, 

and all interactions, failed to reach significance.

P2 Latency Laterality 

A RM-ANOVA was conducted to investigate the effects of sex and age on P2 latency in 

the right and left hemispheres. A significant main effect of laterality was found, F1,90 = 6.278, P = 

0.014, as P2 latency was shorter in the left hemisphere than in the right hemisphere. The main 

effects of sex, F1,90 = 0.208, P = 0.650, and age, F4,90 = 1.194, P = 0.319, and all interactions, 

failed to reach significance.
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Figure 8: Left column: ERP waveforms averaged across three electrode sites (Fz, Cz, 

and Pz) for each age group. The blue lines depict ERPs during the 0 cent condition, and the red 

lines depict ERPs during the -100 cent condition. Time zero represents the point at which the 

feedback perturbation was initiated. Right column: topographical scalp distribution of ERPs in 

the -100 cent condition between 100 and 200 ms following the feedback perturbation.
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iii. Regression Analyses

A regression analysis was conducted to determine whether the variance in P1 

amplitudes and latencies could be accounted for by age, vocal response magnitude, and vocal 

variability. Age, b = -0.496, t96 = -5.351, P < 0.001, significantly predicted P1 amplitude; 

however, vocal response magnitude, b = -0.147, t96 = -1.290, P = 0.200, and vocal variability, b 

= 0.011, t96 = 0.096, P = 0.924, did not. Together, age, vocal response magnitude and vocal 

variability explained a significant proportion of the variance in P1 amplitudes, R2 = 0.245, F3,96 = 

10.363, P < 0.001. Similarly, age, b = -0.349, t96 = -3.610, P < 0.001, but not vocal response 

magnitude, b = -0.239, t96 = -2.009, P = 0.051, or vocal variability, b = 0.217, t96 = 1.771, P = 

0.080, significantly predicted P1 latencies. Together, age, vocal response magnitude and vocal 

variability explained a significant proportion of the variance in P1 latencies, R2 = 0.177, F3,96 = 

6.890, P < 0.001.

The regression analysis of N1 amplitudes revealed that age, b = -0.234, t96 = -2.325, P = 

0.022, and vocal variability, b = 0.260, t96 = 2.054, P = 0.043, were both significant predictors of 

N1 amplitude; however, vocal response magnitude was not, b = -0.141, t96 = -1.145, P = 0.255. 

Together, age, vocal variability and vocal response magnitude explained a significant proportion 

of the variance in N1 amplitudes, R2 = 0.120, F3,96 = 4.354, P < 0.001. Analysis of N1 latencies 

indicated that age, b = -0.488, t96 = -5.306, P < 0.001, but not vocal response magnitude, b = 

-0.026, t96 = -0.226, P = 0.821, or vocal variability, b = 0.101, t96 = 0.891, P = 0.375, significantly 

predicted N1 latency. Together, age, vocal variability and vocal response magnitude explained a 

significant proportion of the variance in N1 latency, R2 = 0.255, F3,96 = 10.949, P < 0.001.

The regression analysis of P2 amplitudes revealed that neither age, b = 0.090, t96 = 

0.855, P = 0.395, vocal response magnitude, b = -0.130, t96 = -0.999, P = 0.320, nor vocal 

variability, b = 0.181, t96 = 1.358, P = 0.178, accounted for a significant proportion of the 

variance in P2 amplitudes. Accordingly, overall age, vocal variability and response magnitude 
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did not significantly correlate with P2 amplitudes, R2 = 0.023, F3,96 = 0.744, P = 0.528. This trend 

continued for P2 latency, as neither age, b = -0.074, t96 = -0.670, P = 0.486, vocal response 

magnitude, b = -0.061, t96 = -0.467, P = 0.642, nor vocal variability, b = 0.005, t96 = 0.039, P = 

0.969, accounted for a significant proportion of the variance in P2 latency. Together, as 

expected, age, vocal response magnitude and vocal variability failed to account for a significant 

proportion of the variance in P2 latency, R2 = 0.008, F3,96 = 0.245, P = 0.865.

Discussion

In this study, behavioural and neurological responses to FAF were examined to 

investigate developmental changes in the processing of auditory feedback. Overall, the 

behavioural results indicated that vocal responses to FAF were modulated as a function of age, 

as both response latency and vocal variability decreased with age. In addition, a strong 

correlation between vocal variability and response magnitude further highlighted the modulatory 

effects of vocal skill on vocal responses to FAF. Neurological changes to FAF were also 

observed, as the P1–N1–P2 complex varied as a function of age. Developmental changes in the 

P1 component were indexed by a decrease in amplitude and latency with age. The N1 

component was found to increase in amplitude and decrease in latency with age, whereas the 

P2 component was found to increase in amplitude with age. Besides the overall effect of age, 

age by electrode site interactions also existed, which showed changes in the location of the 

peak amplitudes and latencies across the age groups tested. In addition to developmentally 

related changes, the P1–N1–P2 complex was found to differ as a function of sex, as females 

showed faster responses across all three components. Although, as hypothesized, age was 

shown to modulate a number of behavioural and neurological responses independently, 

regression analyses also highlighted relationships between the N1 component and both age 
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and vocal variability, suggesting a complex relationship between behavioural and neurological 

responses to FAF.

To date, only one other study has investigated both behavioural and neurological 

responses to FAF in children. As in the current study, Liu et al. (2013) found that vocal response 

magnitude did not differ as a function of age. However, they did find a main effect of sex, 

suggesting that males produced larger responses than females, a result that was not confirmed 

by the results of the current study. In line with the current study, Liu et al. (2013) also found that 

vocal response latency varied as a function of age. However, their results did not show that 

females produce more rapid vocal responses than males, as reported here. When considering 

the ERP results of Liu et al. (2013), we found that both P1 amplitude and latency, as well as N1 

latency, were modulated by age in the same fashion as reported here. In addition, P2 amplitude 

modulation showed a similar trend as in Liu et al. (2013), who found that P2 amplitudes 

increased for older girls relative to younger girls, whereas the current study found that P2 

amplitudes increased with age, independently of sex. However, both N1 and P2 latency, as well 

as the sex-related differences reported by Liu et al. (2013), are incongruent with the results 

found here. Although Liu et al. (2013) used a very similar paradigm, the current study 

investigated responses to FAF across a larger range of ages. The current study investigated 

FAF responses in 4–30-year-olds, whereas the study by Liu et al. (2013) looked at children and 

adults between the ages of 10 and 25 years. As many of the age-related differences found in 

this study were the result of comparisons between children under the age of 10 years, and older 

children and adults, the differences found between these two studies may have resulted from 

the ages of the participants. Another confounding factor is the language experience of the 

participants. The participants in the Liu et al. (2013) study were Mandarin-speaking children and 

adults. Previous behavioural and neurophysiological studies have shown that vocal and neural 

responses to FAF are language-specific (Liu et al., 2010a,b; Chen et al., 2012b), and tonal 
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language speakers, such as Mandarin speakers, respond to FAF faster than non-tonal language 

speakers, such as English speakers (Chen et al., 2007; Liu et al., 2010a,b). These findings 

suggest that the differences found between the current study and that of Liu et al. (2013) may 

have also arisen as a result of differences in the way in which tonal and non-tonal language 

speakers process FAF. Further investigation is required to determine whether the neural 

activation in response to FAF differs between tonal and non-tonal language speakers.

Although children’s neurological responses to FAF have been rarely reported, there is an 

abundance of literature reporting on the developmental trajectory of AEPs. AEP research has 

consistently shown that P1 amplitudes decrease with age (Nelson, Hall III, & Jacobson, 1997; 

Ponton et al., 2000, 2002; Ponton & Eggermont, 2001, 2007; Ceponiene et al., 2002; Oram 

Cardy et al., 2004; Sussman et al., 2008), whereas P1 latencies become shorter with age 

(Ponton et al., 2000, 2002; Ceponiene et al., 2002; Gage et al., 2003; Oram Cardy et al., 2004; 

Beal et al., 2011). Both of these trends are in line with the P1 results reported in this study, as 

well as the FAF study by Liu et al. (2013). The N1 latency results obtained in this study are also 

in line with previous AEP research, as it has been well documented that N1 latencies decrease 

with age (Goodin et al., 1978; Allison et al., 1984; Polich et al., 1990; Paetau et al., 1995; 

Tonnquist-Uhlen et al., 1995; Bruneau et al., 1997; Ponton et al., 2000; Gage et al., 2003; Oram 

Cardy et al., 2004). However, the AEP literature is far less clear regarding N1 amplitude. Many 

AEP studies have found that N1 amplitudes increase with age (Goodin et al., 1978; Allison et 

al., 1984; Polich et al., 1990; Bruneau et al., 1997; Cunningham et al., 2000; Oram Cardy et al., 

2004), as we found here. However, other studies have reported that N1 amplitudes decrease 

with age (Ceponiene et al., 2002) or are absent in younger children (Ponton et al., 2000, 2002), 

making it difficult to compare the current N1 amplitude results with previous AEP studies. 

Although the pattern is more complicated, the results of this study suggest that P2 amplitude 

increases with age, which is consistent with the previous AEP literature (Kraus et al., 1993; 
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Johnstone et al., 1996; Oades et al., 1997). Also in line with previous AEP research, P2 

latencies were not found to vary systematically as a function of age (Johnstone et al., 1996; 

Tonnquist-Uhlen, 1996; Ponton et al., 2000). The strong similarities between the P1–N1–P2 

values found in this study and previous AEP studies suggest that many of the ERP differences 

found in this study result from generalized changes in auditory cortical processing throughout 

development.

It has commonly been suggested in AEP research that the P1 component is the 

childhood correlate of the adult N1 component (Sharma et al., 1997; Ceponiene et al., 2002). 

The P1 component has been suggested to reflect the analysis of the basic sound features of a 

stimulus, whereas the adult N1 wave is thought to reflect a higher-level analysis that is 

integrated with ongoing mental activity (Ceponiene et al., 2002). This is in line with the results of 

the current study, as it was found that P1 amplitudes decreased with age, whereas N1 

amplitudes increased with age. Furthermore, the P1 component was not found to vary 

systematically with any of the behavioural responses, suggesting that P1 amplitude modulation 

was the result of developmental changes in auditory cortical processing. On the other hand, N1 

amplitude was found to correlate with vocal variability. Previous work with adults has shown 

modulation of the N1 component by FAF (Heinks-Maldonado et al., 2005; Behroozmand & 

Larson, 2011; Scheerer et al., 2013a). It is likely, then, that the N1 responses in the current 

study were likewise altered by vocal motor input, and were not purely the result of 

developmental changes in auditory cortical processing. Like the P1 component, P2 amplitudes 

were not found to vary systematically with any of the behavioural measures. Previous FAF 

research has suggested that the P2 component indexes the size of the mismatch between 

perceived and expected feedback. Accordingly, the trend for an increase in P2 amplitudes with 

age may reflect the fact that, with age, individuals develop more accurate sensorimotor 

representations, which result in better detection of the deviation between perceived and 
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expected feedback. However, as the 4–6-year-old group also showed significantly larger P2 

amplitudes, and previous FAF studies have utilized multiple perturbation magnitudes, further 

investigation is required to elucidate the relationship between age and P2 amplitude modulation.

In addition to amplitude differences, both P1 and N1 latencies were found to differ as a function 

of age. It has been suggested that latency changes reflect changes in synaptic density and 

efficacy in the auditory cortex (Eggermont, 1989; Tonnquist-Uhlen, 1996; Albrecht et al., 2000). 

As developmental changes in the vocal tract and articulators of adults are infrequent, one would 

expect the synaptic connections in the auditory cortex, as well as the pathways between 

speech-related brain regions, to remain relatively consistent. As a result of this consistent 

processing, long term potentiation is likely to create synaptically efficient connections within the 

auditory cortex and between speech-related brain regions, thus increasing the speed of 

processing (Devous et al., 2006). As a result of this increased processing speed, one would 

expect responses to also be more rapid, accounting for the decreased latencies found here.

From the results of previous studies, it was expected that the magnitude of the vocal 

responses to FAF would decrease with age, reflecting increased speech motor control, and a 

transition from feedback to feedforward control. However, there are discrepancies in the 

literature as to whether response magnitudes increase with age (Liu et al., 2010b; MacDonald et 

al., 2012), decrease with age (Liu et al., 2010a), or are unaffected by age (Liu et al., 2013). The 

results of this study suggest that response magnitudes do not vary as a function of age, but that 

vocal variability does. Interestingly, vocal variability differed across the age groups, and also 

correlated with response magnitude and N1 amplitude. When they were combined in a 

regression analysis, it was found that age and vocal variability accounted for a significant 

proportion of the variance in response magnitudes and in N1 amplitudes. These results suggest 

that, although age can have a modulatory effect on response magnitudes, vocal variability is a 

more reliable predictor of response magnitudes.
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Previous research has also shown a significant correlation between vocal variability and 

vocal response magnitude (Scheerer & Jones, 2012). It has been suggested that vocal 

variability is related to the proficiency of speech motor control (Scheerer & Jones, 2012). When 

vocal stability improves through vocal training or development, vocal variability decreases, and 

speech motor control transitions from a feedback-biased control system to a feedforward-biased 

control system (Schmidt & Lee, 2005; Civier et al., 2010). This transition from a feedback-biased 

control system to a feedforward-biased control system is hypothesized to be driven by the 

stability of the sensorimotor representation (Scheerer & Jones, 2012). When the mapping 

between the motor commands responsible for speech production and their sensory 

consequences is weak, auditory feedback is required to monitor and retune the sensorimotor 

representation (Tourville et al., 2008). However, when the sensorimotor representation becomes 

more reliable at predicting the sensory consequences of the upcoming articulations, the 

additional information provided by auditory feedback becomes redundant, and a transition from 

feedback to feedforward control occurs. However, strict feedforward control is not ideal, as 

auditory feedback would no longer be available to retune the sensorimotor representations 

(Tourville et al., 2008). In the case of development, auditory feedback is particularly important, 

as the size and shape of the vocal tract and articulators change throughout development, so 

retuning of the sensorimotor representation is necessary (MacDonald et al., 2012). Strict 

feedback control is also not ideal, as it introduces time lags and disfluencies (Civier et al., 2010). 

Instead, current speech production models suggest that speech production involves a 

combination of feedback and feedforward control (Guenther, 2006; Hickok et al., 2011).

Although it does not appear that age was directly related to changes in vocal response 

magnitude, vocal response latency was found to vary with age. This result is consistent with 

previous research investigating the processing of FAF in children (Liu et al., 2010a,b, 2013). 

This decrease in latency with age may simply reflect neurophysiological maturation (Rojas et al., 
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1998; Kotecha et al., 2009). As discussed with regard to ERP latencies, it has been suggested 

that decreases in neural response latencies reflect changes in synaptic density and efficacy in 

the auditory cortex (Eggermont, 1989). It is likely that these changes in efficacy also influence 

behavioural response latencies, as increased synaptic efficacy promotes faster neural 

processing, which should result in more rapid behavioural responses. Ultimately, this result 

suggests that vocal response latency can be used as an index of the maturation of the audio-

vocal system.

A regression analysis performed to disentangle the relationship between vocal and 

neurological responses indicated that age and vocal variability accounted for a significant 

proportion of the variance in N1 amplitude. More specifically, as vocal variability increased, N1 

amplitude decreased, or became more positive. To our knowledge, this is the first study to report 

a relationship between N1 amplitude and vocal variability. Previous research (Scheerer et al., 

2013a) has shown that N1 amplitude increases in an all-or-nothing manner in response to 

auditory feedback that is deviant, but is still considered to be self-produced. However, when 

deviant feedback becomes large enough to be classified as externally produced, N1 amplitudes 

increase further (Scheerer et al., 2013a). We suggest that N1 amplitude is modulated by the 

proficiency of speech motor control, or the weighting of the feedback vs. the feedforward control 

system. As mentioned previously, the transition from feedback control to feedforward control is 

driven by the stability of the sensorimotor representation (Schmidt & Lee, 2005; Civier et al., 

2010). In accordance with the results found here, we suggest that individuals who weigh the 

feedback control system more heavily, as a result of poor speech motor control, are likely to 

accept a larger range of deviant feedback as internally produced. As a result, larger feedback 

perturbations are required to elicit larger N1 responses. On the other hand, individuals who 

weigh the feedforward control system more heavily, as a result of stable speech motor control, 

are more likely to classify the deviant feedback as externally produced, thus resulting in larger 
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N1 amplitudes in response to relatively smaller feedback perturbations. This would explain why, 

in the current study, individuals with increased vocal variability produced smaller N1 amplitudes 

in response to FAF, whereas individuals with more stable vocal output produced larger N1 

amplitudes. This relationship between N1 amplitude and vocal variability highlights the complex 

interaction between vocal and neurological responses to FAF.

Although the focus of this study was to investigate the developmental trajectory of 

behavioural and neurological responses to FAF, sex and ERP distribution across the scalp were 

also investigated. The results indicated that females produced faster responses both 

behaviourally and neurologically, as both vocal response and P1– N1–P2 latencies were shorter 

for females than for males. Chen et al. (2010) previously reported shorter vocal response 

latencies in response to FAF in females than in males. Shorter ERP latencies in females than in 

males have also previously been reported in both FAF (Liu et al., 2013) and AEP (Allison et al., 

1984; Nanova, Lyamova, Hadjigeorgieva, Kolev, & Yordanova, 2008) studies. Although it is also 

unclear why females produce faster ERP responses, Nanova and colleagues (2011) have 

suggested that females have stronger functional synchronization of oscillatory responses during 

stimulus processing, resulting in shorter-latency ERPs. Despite the general trend for females to 

respond faster than males, 14–17-year-old males were found to have significantly shorter vocal 

response latencies than 14–17-year-old females. As the vocal response latencies recorded for 

14–17-year-old males are similar to those reported for 18–30-year-olds, these results suggest 

that the vocal motor control system may mature faster in males than in females. However, 

further investigation is required to elucidate the cause of the sex-related latency differences in 

these age groups. In addition to sex related differences in latency, females were found to have 

larger N1 amplitudes. Further investigation is required to clarify sex-related differences in the 

processing of FAF.

�68



In addition to sex, behavioural and neurological responses to FAF also varied as a 

function of electrode site. Both amplitudes and latencies of the P1–N1–P2 complex varied as a 

function of anteriority. ERP latencies were shortest at the posterior electrode site relative to the 

medial and anterior sites, which is consistent with previous AEP studies (Bruneau et al., 1997; 

Ponton et al., 2000). Also in accordance with previous AEP (Nelson et al., 1997; Ponton et al., 

2000) and FAF (Liu et al., 2013) studies, P1 amplitudes were found to be largest at the anterior 

site. Similarly, P2 amplitudes were largest at the anterior site, which is also in accordance with 

previous FAF studies (Korzyukov et al., 2012; Liu et al., 2012). In contrast with AEP studies, 

which have consistently reported the largest N1 amplitudes at anterior sites (Bruneau et al., 

1997; Ponton et al., 2000; Nanova et al., 2008), the results of this study showed the largest N1 

amplitudes at the posterior site in children (4–13 years) and at the medial site in young adults 

(14–30 years). Previous FAF studies have also reported N1 amplitudes to be maximal at medial 

sites in adults (Korzyukov et al., 2012a; Scheerer et al., 2013a). Although the site of maximal N1 

amplitude found in this study is inconsistent with previous AEP research, N1 amplitude was 

found to correlate with vocal variability, suggesting that N1 amplitude was not only modulated by 

basic auditory processing, but was also influenced by the motor aspect involved in producing a 

response to FAF. With regards to laterality, P2 latency was found to differ as a function of 

laterality, with more rapid P2s occurring in the left hemisphere. Once again, the congruency of 

the P1 and P2 activation patterns with the AEP literature suggests that the results found here 

were predominantly attributable to changes in basic auditory processing with age. However, the 

incongruency of the N1 amplitude results with the AEP literature suggests that N1 amplitudes 

were further modulated by the FAF manipulation.
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Conclusion

The age-related differences in both behavioural and neurological responses to FAF 

found in this study suggest that children and adults process auditory feedback in different ways. 

This trend demonstrates that the auditory feedback system undergoes robust changes with age 

and physiological development. Although many of the responses to FAF reported here appear to 

be the result of developmentally related changes in auditory processing, the relationship 

between vocal variability and N1 amplitude suggests that a complex interaction between vocal 

and neural responses to FAF exists. Furthermore, the finding that vocal variability, rather than 

age, significantly predicts the magnitude of the vocal response to FAF suggests that audio-vocal 

proficiency is independent of age. Although this study has begun to uncover the developmental 

trajectory of the audio-vocal system, further work is required to adequately describe the 

influence of age on the processing of FAF. Studies utilizing multiple shift magnitudes would help 

to more effectively delineate the effects of FAF from developmental changes in auditory 

processing. In addition, performing a similar study with the addition of a playback condition 

would help to separate the influence of the auditory system from that of the auditory and motor 

systems working in concert. Finally, the new sex-based and electrode site-based trends 

reported here warrant more extensive investigation.
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Speech is acquired early in childhood, with many children speaking fluently by the age of 

3 (Ingram, 1989; Singleton & Ryan, 2004). However, the speech motor control system continues 

to develop for many years after the initial acquisition of speech. Throughout development the 

shape, size, and muscle innervation of the articulators involved in speech production undergo 

dramatic changes, which influence the acoustic properties of the vocal tract (Callan et al., 2000). 

Despite these changes, the speech motor control system accomplishes the same functional 

goals, allowing children to maintain relatively fluent speech. In addition to facilitating the 

acquisition of speech, auditory feedback may also function as an adaptive signal to guide 

movements of the articulators in order to preserve speech fluency while the articulators are 

restructured during development (Callan et al., 2000). Although auditory feedback plays an 

important role in the acquisition of fluent speech, this role may change once speech is acquired 

and individuals are no longer experiencing persistent developmental changes to their speech 

motor control system. For this reason, this study was designed to investigate if younger children 

who are still experiencing ongoing changes to their speech motor control system, demonstrate 

different rates of sensorimotor learning following persistent exposure to deviant auditory 

feedback, relative to young adults. In order to investigate this research question, young children 

aged 5-8 years, and young adults aged 18-30 years produced vocalizations as part of a FAF 

adaptation paradigm. The results of this study will help to uncover how development influences 

the plasticity of sensorimotor representations, and in turn modulates feedforward control.

Abstract

Auditory feedback plays an important role in the acquisition of fluent speech; however, 

this role may change once speech is acquired and individuals no longer experience persistent 

developmental changes to the brain and vocal tract. For this reason, we investigated whether 
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the role of auditory feedback in sensorimotor learning differs across children and adult 

speakers. Participants produced vocalizations while they heard their vocal pitch predictably or 

unpredictably shifted downward one semitone. The participants’ vocal pitches were measured at 

the beginning of each vocalization, before auditory feedback was available, to assess the extent 

to which the deviant auditory feedback modified subsequent speech motor commands. 

Sensorimotor learning was observed in both children and adults, with participants’ initial vocal 

pitch increasing following trials where they were exposed to predictable, but not unpredictable, 

frequency-altered feedback. Participants’ vocal pitch was also measured across each 

vocalization, to index the extent to which the deviant auditory feedback was used to modify 

ongoing vocalizations. While both children and adults were found to increase their vocal pitch 

following predictable and unpredictable changes to their auditory feedback, adults produced 

larger compensatory responses. The results of the current study demonstrate that both children 

and adults rapidly integrate information derived from their auditory feedback to modify 

subsequent speech motor commands. However, these results also demonstrate that children 

and adults differ in their ability to use auditory feedback to generate compensatory vocal 

responses during ongoing vocalizations. Since vocal variability also differed across the children 

and adult groups, these results also suggest that compensatory vocal responses to frequency 

altered feedback manipulations initiated at vocalization onset may be modulated by vocal 

variability.

Introduction

Speech is acquired early in childhood, with many children speaking fluently by the age of 

3 (Ingram, 1989; Kuhl, 1994; Singleton & Ryan, 2004). However, the speech motor control 

system continues to develop for many years after the initial acquisition of speech. Throughout 

development the shape, size, and musculature supporting the articulators involved in speech 
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production undergo dramatic changes, which influence the acoustic properties of the vocal tract 

(Guenther, 1994; Callan et al., 2000, Max et al., 2004). Despite these changes, the speech 

motor control system accomplishes the same functional goals, allowing children to maintain 

relatively fluent speech (Guenther, 1994). Investigation of individuals suffering from congenital 

deafness provides support for the notion that auditory feedback is crucial during the acquisition 

of speech (Oller & Eilers, 1988), as without prosthetic devices such as cochlear implants, these 

individuals often fail to acquire fluent speech (Svirsky et al., 2004). In addition to facilitating the 

acquisition of speech, auditory feedback may also function as an adaptive signal that guides the 

movements of the articulators in order to preserve speech fluency while the articulators are 

restructured during development (Guenther, 1994; Callan et al., 2000). Although auditory 

feedback plays an important role in the acquisition of fluent speech, this role may change once 

speech is acquired and individuals no longer experience persistent developmental changes to 

their brain and vocal tract. 

Speech production is rapid, and the processing of sensory feedback is not 

instantaneous, thus a speech motor control system that relies solely on auditory feedback would 

result in dysfluent speech (Perkell et al., 1997; Max et al., 2004). For this reason, experimental 

evidence (Perkell et al., 1997; Scheerer & Jones, 2012; Chen et al., 2013), and 

neurocomputational models of speech motor control, such as the "directions into the velocities 

of articulators" model (DIVA; Max et al., 2004; Guenther, 2006; Tourville et al., 2008; Civier et 

al., 2010), suggest that fluent speech production relies on the combined effort of a feedback and 

a feedforward control system. While these researchers acknowledge the fundamental role of 

auditory feedback in mapping the relationship between the motor commands responsible for 

speech, and their sensory consequences, it has been suggested that as development 

progresses, the speech motor control system relies more heavily on feedforward commands. 

Under feedforward control, speech motor commands are executed by stored sensorimotor 
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representations that encode the relationship between the motor commands responsible for 

speech and the sensory consequences of these commands. Since these feedforward 

commands are read out from memory, the delays associated with the processing of peripheral 

sensory feedback are avoided (Houde et al., 2002; Guenther et al., 2006; Scheerer & Jones 

2012, 2014). Despite this transition to feedforward control, auditory feedback continues to play 

an important role in maintaining the precision and accuracy of the mapping of the sensorimotor 

representations that drive feedforward control (Perkell et al., 1997; Civier et al., 2010). While the 

role of auditory feedback in fluent speech production has been suggested to change over time, 

it is currently unclear how these changes influence the role of auditory feedback in sensorimotor 

learning. 

Speech is often produced in dynamic and unpredictable environments, so even after the 

speech motor control system is fully developed, adult speakers must use sensory information to 

calibrate their speech motor commands. Since adult speech is thought to occur in a primarily 

feedforward manner, it is unclear if this decreased reliance on auditory feedback influences the 

rate of sensorimotor learning in adults. The role of auditory feedback in the sensorimotor 

learning of speech motor commands is often investigated using the frequency-altered-feedback 

(FAF) adaptation paradigm (Jones & Keough, 2008; Hawco & Jones, 2009, 2010; Keough & 

Jones, 2009, 2011; Keough, Hawco, & Jones, 2013; Scheerer & Jones, submitted; Scheerer, 

Tumber, & Jones, submitted). As part of this paradigm, participants are exposed to predictable 

changes to their auditory feedback (e.g., their vocal pitch is decreased), followed by a sudden 

removal of the manipulation (Jones & Keough, 2008; Hawco & Jones, 2009, 2010; Keough & 

Jones, 2009, 2011; Keough, Hawco, & Jones, 2013; Scheerer & Jones, submitted; Scheerer et 

al., submitted). Previous research has shown that individuals tend to compensate for the FAF 

manipulation, by shifting their voice in the opposite direction of the change (e.g., they increase 

their vocal pitch; Jones & Keough, 2008; Hawco & Jones, 2009, 2010; Keough & Jones, 2009, 

�74



2011; Keough, Hawco, & Jones, 2013; Scheerer & Jones, submitted; Scheerer et al., 

submitted). These compensatory responses can be used to index the extent to which auditory 

feedback is used to modify ongoing vocalizations. In addition, participants often show after-

effects, that is their compensatory response persists for some time after the FAF manipulation is 

removed (Jones & Keough, 2008; Scheerer et al., 2015; Scheerer & Jones, In Prep). These 

after-effects suggest that the deviant auditory feedback was used to update the mapping of the 

speaker’s sensorimotor representations, so that subsequent vocal productions more closely 

resembled their unaltered voice. 

Jones and Keough (2008) used this FAF adaptation paradigm to investigate 

sensorimotor learning in trained singers and non-singers. During this study a group of singers, 

and a group of non-singers, produced vocalizations while exposed to a persistent -100 cent 

(one semitone decrease) manipulation of their fundamental frequency (F0; perceived as vocal 

pitch). The results of this study indicated that relative to singers, non-singers produced larger 

compensatory responses to the FAF. On the other hand, singers demonstrated larger after-

effects, which were not observed in the non-singers. Based on this pattern of results, it was 

suggested that as a result of their extensive training, singers rely less on auditory feedback and 

more on their precisely tuned feedforward system. This decreased reliance on auditory 

feedback reduced the singers’ susceptibility to the feedback manipulation, resulting in smaller 

compensatory responses. However, their increased reliance on feedforward control appears to 

have facilitated sensorimotor learning. Based on the results of this study, we hypothesized that 

as a result of differences in the weighting of feedback and feedforward control, children and 

adults may demonstrate different amounts of sensorimotor adaptation. 

Previous research has demonstrated that children and adults, but not toddlers, show 

sensorimotor adaptation to changes in formant frequencies during vocalization (MacDonald et 

al., 2012). In addition, the results of that study indicated that toddlers, young children, and adults 
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demonstrated differences in vocal variability, with variability decreasing with age (MacDonald et 

al., 2012). However, it is unclear if the same pattern would be observed in response to changes 

in F0. As demonstrated by Perkell and colleagues (1997) when investigating patients with 

cochlear implants, auditory feedback has two important roles. Auditory feedback is important for 

maintaining phonemic settings, which ensure phonemic distinctions are preserved, but it is also 

important for maintaining postural settings, which ensure that speech remains intelligible in 

changing acoustic environments. Formant frequencies, a property of auditory feedback related 

to phonemic control, were shown to be less affected by hearing loss in patients with cochlear 

implants, while F0, a property of auditory feedback related to postural control, changed rapidly 

following changes in hearing (Perkell et al., 1997). Since formant frequencies and F0 have been 

shown to be differentially influenced by hearing loss (Perkell et al., 1997) it is plausible that they 

also develop at different rates. 

When considering other postural settings of speech such as vocal intensity and vocal 

timing, the results of studies investigating the control of these settings throughout development 

have been mixed. For example, when exposed to changes in sidetone amplification, younger 

children produced smaller changes in vocal intensity relative to older children (Siegel et al., 

1976). Yet when exposed to increases in background noise, both children and adults 

demonstrated the ‘Lombard Effect’, increasing their vocal intensity in the presence of 

background noise (Siegel et al., 1976). Thus it is unclear if age influences the regulation of vocal 

intensity. Similarly, studies utilizing delayed auditory feedback (DAF) in participants of various 

ages have also demonstrated mixed results. Chase and colleagues (1961) reported that DAF 

impairs the speech of young children less than older children, while MacKay (1968) reported 

that young children are more sensitive to DAF than adults. Thus, when considering the 

developmental pattern of various speech parameters such as formant frequencies, vocal 

intensity, and vocal timing, there is no clear developmental trend across these parameters. For 
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this reason, it is possible that each of these speech parameters are controlled by separate 

mechanisms, necessitating the specific investigation of F0 control throughout development. 

One reason to suspect that F0 control develops earlier than other speech parameters 

such as formant frequencies is its importance for infant directed speech. Early in development 

caregivers use infant directed speech, characterized by exaggerated prosodic features such as 

F0, in order to communicate their intentions and affect (Fernald, 1993; Cooper & Aslin, 1994; 

Kuhl, 1994; Saint-Georges et al., 2013). Since changes in F0 provide an effective means for 

communication in pre-linguistic children, infant directed speech may promote the rapid 

development of F0 processing. On the other hand, since phonemic aspects of the speech 

signal, such as formant frequencies, are less beneficial for speech comprehension in pre-

linguistic children (Saint-Georges et al., 2013), the processing of these features may develop 

more gradually. That being said, it is reasonable to expect that sensorimotor adaptation to 

changes in formant frequencies and F0 may be differentially influenced by age.

Although it is unclear if children and adults show the same pattern of sensorimotor 

adaptation in response to persistent changes in the F0 of their auditory feedback, Scheerer and 

colleagues (2013b) examined the vocal responses of children and adults between the ages of 

4-30 years when exposed to brief unpredictable changes in the F0 of their auditory feedback. 

The results of that study indicated that vocal variability, rather than age, predicted the size of the 

compensatory response to the FAF. Since the children in that study were also found to be more 

variable than the adults (Scheerer et al., 2013b), these results suggest that sensorimotor 

adaptation may differ between children and adults, with vocal variability acting as a mediating 

factor. 

In line with the findings reported by Scheerer and colleagues (2013b), previous research 

has also demonstrated that increased vocal variability leads to larger compensatory responses 

to brief unpredictable (Scheerer & Jones, 2012) changes to the F0 of adults’ auditory feedback 

�77



during ongoing vocalizations. Based on the results of these studies it has been suggested that 

increased stability of the speech motor control system results in increased feedforward control, 

and smaller compensatory responses to FAF. On the other hand, more variable speech motor 

control results in increased reliance on feedback control, making these individuals more 

susceptible to deviant auditory feedback, and thus resulting in larger compensatory responses 

to FAF. However, it is currently unclear if younger children, who are still experiencing ongoing 

changes to their speech motor control system, will demonstrate different rates of sensorimotor 

adaptation following persistent exposure to deviant auditory feedback. To investigate this 

research question, we exposed children and adults to both predictable and unpredictable 

changes to their auditory feedback. The predictable changes to the children and adults’ auditory 

feedback allowed the extent to which auditory feedback is used for sensorimotor learning and 

motor planning, or feedforward control, to be assessed. On the other hand, the unpredictable 

auditory feedback manipulation allowed the extent to which auditory feedback is used for 

ongoing motor control, or feedback control, to be assessed. We expected that since children’s 

speech motor control systems have yet to reach maturity, children would demonstrate an 

increased reliance on feedback control, manifesting in larger compensatory responses to the 

deviant auditory feedback following predictable and unpredictable auditory feedback 

manipulations, relative to adults. On the other hand, since adults are no longer experiencing 

persistent developmental changes, we expected that they would demonstrate an increased 

reliance on feedforward control, which would result in larger after-effects following exposure to 

the predictable FAF. Investigation of the pattern of sensorimotor adaptation following exposure 

to persistent changes to the F0 of children’s and adults’ auditory feedback will help to further our 

understanding of how the role of auditory feedback in speech motor control changes throughout 

the lifespan. 
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Methods

i. Participants

Twenty-five children between the ages of 3 and 8 years (M = 6.1, SD = 1.7; 6 females) 

and 25 young adults between the ages of 19 and 27 years (M = 21.8, SD = 2.4; 16 females) 

participated in this study. All participants were Canadian-English speakers who did not speak a 

tonal language, and had no formal vocal training. Participants received course credit, or 

financial compensation for participating in this study. Informed consent was obtained from all 

participants, as well as from a parent or guardian of participants under the age of 18 years. All 

procedures were approved by the Wilfrid Laurier Research Ethics Board and were in 

accordance with the World Medical Association 2013 Declaration of Helsinki. 

ii. Procedure

Participants were seated in front of a computer monitor that displayed an interactive 

space game. Participants were instructed to start vocalizing an /a/ sound each time a red box 

with the word ‘activate’ appeared on the screen, and to stop vocalizing when the red box 

disappeared. This process was repeated until 100 vocalizations were completed. 

Participants were asked to vocalize at a loud, but comfortable volume. Vocalizations 

were played back to the participants in real time via headphones. Since the child participants 

were quite young, sound level was not precisely monitored. However, the experimenter provided 

online feedback throughout the experiment if the participant was vocalizing too loudly or too 

softly to help regulate the participants’ volume. This volume monitoring technique was deemed 

adequate as previous research has shown that the relative loudness of auditory feedback has 

no influence on the amplitude or latency of responses to FAF (Burnett et al., 1998).  Participants 

were also told that during the experiment their voice might sound different, but they should 

ignore these differences and continue to produce their vocalizations at a consistent pitch.
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The experiment consisted of four blocks of 25 trials, and lasted approximately 20 

minutes. The first and third blocks were identical, and the second and fourth blocks were also 

identical (see Figure 9). During the first and third blocks, the first five vocalizations were left 

unaltered, while the last 20 vocalizations were pitch shifted downwards 100 cents (1 semitone) 

for the entire utterance. During the second and fourth blocks, the first five vocalizations were left 

unaltered, while half of the last 20 vocalizations were randomly shifted downwards 100 cents (1 

semitone) for the entire utterance, and the other half were left unaltered.  

Figure 9: Each experimental block contained 25 trials. (A) Blocks 1 and 3 were identical. The 

first 5 vocalizations were left unaltered, while the last 20 vocalizations were pitch shifted 

downwards 100 cents (1 semitone) for the entire utterance. (B) Blocks 2 and 4 were also 

identical. The first 5 vocalizations were left unaltered, while half of the last 20 vocalizations were 

randomly shifted downwards 100 cents (1 semitone) for the entire utterance, and the other half 

were left unaltered. 
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iii. Apparatus

Participants were seated in a double-walled sound attenuated booth (Industrial Acoustics 

Company, Model 1601-01) and fitted with a headset-microphone (Sennheiser HMD 280-13 Pro, 

Sennheiser Electronics, Germany). Presentation of the visual stimuli was controlled by Max/

MSP (v.5.0, Cycling ‘74). During the experiment vocalizations were sent to a mixer (Mackie 

Oynx 1640, Loud Technologies, Woodinville, WA), followed by a digital signal processor 

(VoiceOne, T.C. Hellicon, Victoria, BC), which allow the pitch of the participant’s voice to be 

altered. This process introduced approximately a 10 ms delay in the feedback signal, which was 

then presented back to the participant as auditory feedback. The onset and offset of the pitch 

alterations were controlled manually by the experimenter between the experimental phases. 

Both the altered and the unaltered voice signals were digitally recorded (TASCAM HD-P2, 

Montebello, CA) at a sampling rate of 44.01 Hz for later analysis. 

iv. Data Analysis

The digital recording of the vocalizations was segmented into separate utterances and 

F0 values were calculated for each utterance using the SWIPE algorithm (Camacho and Harris, 

2008). F0 values were normalized to the participants habitual F0, by converting Hertz values to 

cents using the following formula:

Cents = 100 (12 log2 F/B)

In this formula, F is the F0 value in Hertz and B is the participant's habitual F0. 

Participants habitual F0 was estimated separately for each block, and for each measure 

(median 50 and median 1500) by calculating the average median 50 (the median F0 of the first 

50 ms of the vocalization) and median 1500 (the median F0 of the first 1500 ms of the 
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vocalization) of the participants’ vocalizations using trials 2-5 of blocks 1 and 3 (the last four 

trials before the feedback manipulation was introduced). Only trials from block 1 and 3 were 

used to measure these habitual F0 measures, as these baseline trials were not immediately 

following the persistent F0 manipulation, making them less prone to contamination as a result of 

after-effects of the manipulations in the previous block. Similarly, the first trial of blocks 1 and 3 

were not included in the baseline measure to allow for acclimation to the experimental setup 

and wash-out from the previous block, respectively.  

For each vocalization the median F0 of the first 50 ms (the ‘median 50’ value) and 

median F0 of the first 1500 ms (the ‘median 1500’ value) were calculated. Since neural 

processing delays prevent the auditory feedback resulting from a vocal motor command from 

being processed for at least 100 ms (Hawco & Jones, 2009; Keough & Jones, 2009; Keough, 

Hawco, & Jones, 2013), the median 50 value provides an index of the F0 at which the 

vocalization was initiated, before auditory feedback was available. On the other hand, median 

1500 values provide an index of the F0 of the vocalization once auditory feedback becomes 

available. In addition, in order to index the normal amount of variability in each participant’s 

habitual F0, the standard deviation of the median 1500 of trial 5, the last trial before the 

feedback manipulations was introduced, was calculated and then averaged over these trials 

from each block (4 trials total). 

To investigate changes in speech motor control following persistent and predictable 

changes in the pitch of one’s auditory feedback, commonly referred to as sensorimotor 

adaptation, four groups of experimental trials were used for statistical analysis: baseline (the 

2nd-5th trial of blocks 1 and 3), shift-start (the first five shifted trials of blocks 1 and 3), shift-end 

(the last five trials of blocks 1 and 3), and post-shift (the first 5 trials of blocks 2 and 4). The size 

of each participant’s compensatory response at the end of the shift-phase was calculated by 

subtracting the average of the baseline trials from the average of the shift-end trials for median 
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1500. Lastly, to assess whether the compensatory behaviour persisted after the participant’s 

auditory feedback was returned to normal, an after-effect value was calculated by subtracting 

the average of the baseline trials from the average of the post-shift trials for median 50. 

Following calculation of the compensatory response, it became clear that five children and five 

adults followed the direction of the manipulation, rather than compensating for the manipulation, 

as their compensation response was a negative value. Since the aim of this experiment was to 

understand the typical pattern of sensorimotor adaptation and compensatory responses across 

children and adults, these participants were excluded as their responses represented statistical 

outliers, and thus were atypical. For this reason, data from a total of 20 children and 20 young 

adults were subjected to statistical analyses.

To investigate changes in speech motor control as a result of exposure to unpredictable 

changes in the pitch of one’s auditory feedback, two groups of experimental trials were utilized 

for statistical analysis: shifted trials (10 shifted trials from each of blocks 2 and 4), and unshifted 

trials (10 unshifted trials from each of blocks 2 and 4). As the first 5 trials of both blocks 2 and 4 

were used to assess the after-effects resulting from the persistent exposure to FAF in blocks 1 

and 3, these trials were obtained by taking the last 20 trials from each of blocks 1 and 3. 

v. Statistical Analysis

Since the F0 of the baseline phase was used to normalize the F0 values for all trials, the 

mean and standard deviation of the baseline phase became zero. For this reason, to investigate  

sensorimotor adaptation, a series of one-sample t-tests were conducted to compare both 

median 50 and median 1500 values across the trial types (shift-start, shift-end, and post-shift) 

for both experimental groups (children and adults), relative to the baseline. In order to control for 

multiple comparisons, a Bonferroni adjusted alpha level of 0.0167 was utilized to assess 
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statistical significance. Independent samples t-tests were also conducted to compare 

compensatory responses and after-effects across the children and adult groups. 

To investigate compensatory responses to the unpredictable pitch shifts in block 2 and 4, 

a RM-ANOVA was performed to assess the influence of trial type (shifted and unshifted) and 

experimental group (children and adults) on median 50 and median 1500 values. In all 

instances where the sphericity assumption was violated, the Greenhouse-Geisser correction 

was applied (Greenhouse & Geisser, 1959). However, for ease of interpretation original degrees 

of freedom are reported.

Vocal variability differences were assessed by comparing baseline standard deviation 

across the children and adult groups using an independent samples t-test. Pearson correlations 

were also calculated to investigate the relationship between habitual vocal variability and both 

the size of the compensatory responses (median 1500) and the after-effects (median 50).

Results

i. Sensorimotor Adaptation (Blocks 1 and 3)

Median 50

One-sample t-tests were conducted on median 50 values to assess whether the children 

and adults’ F0 values deviated from their habitual F0 throughout the sensorimotor adaptation 

blocks (see Figure 10). The children’s median 50 values were significantly larger than their 

baseline F0 at shift-start, t19 = 3.337, P = .003, shift-end, t19 = 3.360, P = .003, and post-shift, t19 

= 2.758, P = .013. Similarly, the adults’ median 50 values were significantly larger than their 

baseline F0 at shift-start, t19 = 3.522, P = .002, shift-end, t19 = 4.032, P = .001, and post-shift, t19 

= 2.901, P = .009. Independent samples t-tests revealed that the magnitude of the after-effects, 

t38 = -.100, P = .921, did not differ across the experimental groups.  
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Figure 10: (A) Median 50 (top) and (B) Median 1500 (bottom) responses for each trial, 

averaged across block 1 and 3, for children (grey) and adults (black). The grey area represents 

the portion of the experiment where participants voice was shifted downwards 1 semitone (100 

cents). Error bars represent the standard error of the mean.

Median 1500

One-sample t-tests were also conducted on median 1500 values to assess whether the 

children and adults’ F0 values deviated from their habitual F0 throughout the sensorimotor 

adaptation blocks (see Figure 10). The children’s median 1500 values were significantly larger 
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than their baseline F0 at shift-start, t19 = 3.895, P = .001, shift-end, t19 = 5.498, P < .001, and 

post-shift, t19 = 2.636, P = .0162. Similarly, the adults’ median 1500 values were significantly 

larger than their baseline F0 at shift-start, t19 = 10.009, P < .001, shift-end, t19 = 8.789, P < .001, 

and post-shift, t19 = 2.867, P = .010. An independent samples t-tests comparing the size of 

compensatory responses across children and adults was significant, t38 = 2.366, P = .023, as 

adults produced larger responses than children. 

ii. Compensatory Responses (Blocks 2 and 4)

Median 50

A RM-ANOVA was conducted to investigate the effect of trial group (shifted and 

unshifted) and experimental group (children and adults) on median 50 values. The main effect of 

trial group, F1, 38 = .549, P = .463, the main effect of experimental group, F1, 38 = .001, P = .971, 

and the interaction between trial group and experimental group, F1, 38 = .205, P = .205, were not 

significant (see Figure 11).

Median 1500

The RM-ANOVA conducted to investigate the effect of trial group (shifted and unshifted) 

and experimental group (children and adults) on median 1500 values, revealed a main effect of 

trial group, F1, 38 = 116.884, P < .001, as overall median 1500 values were larger for shifted trials 

compared to unshifted trials (see Figure 3). The interaction between trial group and 

experimental group was marginally significant, F1, 38 = 3.343, P = .075, as both groups produced 

similar sized responses during the unshifted trials, while adults produced larger responses than 

the children during the shifted trials (see Figure 11). However, the main effect of experimental 

group, F1, 38 = .613, P = .438, was not significant. 
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Figure 11: Median 50 (top) and Median 1500 (bottom) responses for the shifted and unshifted 

trials, averaged across block 2 and 4, for children (right) and adults (left).

iii. Vocal Variability 

The independent samples t-test revealed that vocal variability differed across the 

experimental groups (children and adults), t38 = -2.064, P = .046, as the children (M = 41.21, SD 

= 13.42) were more variable than the adults (M = 30.93, SD = 17.79). Correlational analyses 

indicated that vocal variability did not correlate significantly with the size of compensatory 

responses in the sensorimotor adaptation blocks (median 1500: r38 = -.179, P = .268), the 

compensatory responses to the shifted trials in the unpredictable shift blocks (median 1500: r38 
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=.029 P = .860), or the size of the after-effects on the sensorimotor adaptation blocks (median 

50: r38 = -.202, P = .210).

Discussion

The aim of the current study was to investigate whether younger children who are still 

experiencing ongoing changes to their speech motor control system demonstrate different rates 

of sensorimotor adaptation following persistent exposure to deviant auditory feedback. During 

this study young children and adults were exposed to persistent predictable changes to their 

auditory feedback (blocks 1 and 3), as well as unpredictable changes to their auditory feedback 

(blocks 2 and 4). To assess sensorimotor learning the F0 of the first 50 ms of each participant’s 

vocalizations, or the median 50, was measured. Since auditory feedback is delayed by cortical 

processing, the F0 at the beginning of a participant’s vocalization was used to index feedforward 

control, or the extent to which deviant auditory feedback was incorporated into the planning of 

subsequent vocalizations (Keough & Jones, 2008, 2011; Hawco et al., 2009; Keough, Hawco, & 

Jones, 2013). On the other hand, by measuring participants’ F0 across a larger portion of the 

vocalization, the median 1500, or the extent to which deviant auditory feedback was used to 

modify ongoing vocalizations was assessed (Keough & Jones, 2008, 2011; Hawco et al., 2009; 

Keough, Hawco, & Jones, 2013). 

Sensorimotor learning was demonstrated in this study, as median 50 values were found 

to increase after persistent and predictable exposure to the FAF (blocks 1 and 3), but median 50 

values were not found to differ when participants were exposed to the unpredictable FAF 

manipulation (blocks 2 and 4). More specifically, in the sensorimotor adaptation blocks, median 

50 values were larger in the shift-start, shift-end, and post-shift phases, relative to the baseline 

phase. Changes in the median 50 values following predictable exposure to FAF indicate that the 

way in which speech motor commands were executed by the feedforward controller changed as 
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a result of the exposure to FAF. Furthermore, the fact that median 50 values in the post-shift 

phase were larger than those recorded in the baseline phase, suggests that the effects of 

sensorimotor learning persisted even when the FAF manipulation was removed. On the other 

hand, the fact that median 50 values did not differ across the shifted and non-shifted trials in the 

unpredictable FAF manipulation blocks, demonstrates that it is the persistent and predictable 

nature of the FAF manipulation that drives sensorimotor learning.  

Although sensorimotor learning was demonstrated across the experimental phases, 

sensorimotor adaptation was not found to vary across the two experimental groups. This result 

suggests that children and adults show similar rates of sensorimotor adaptation following 

persistent exposure to deviant auditory feedback. Also, since children and adults produced 

similarly sized after-effects, these results suggest that both children and adults used the deviant 

auditory feedback for motor planning. In line with the current findings, MacDonald and 

colleagues (2012) found that young children and adults, but not toddlers, demonstrated 

sensorimotor adaptation to changes in formant frequencies while vocalizing. Together these 

results suggest that once fluent speech is acquired, generally around the age of 3 (Kuhl, 1994), 

speakers are proficient at using sensory information to modify the planning of future motor 

commands. While we hypothesized that an increased reliance on auditory feedback for speech 

motor control in children may influence their rate of sensorimotor learning and thus their use of 

auditory feedback for motor planning, this is not the case. Neurocomputational models of 

speech motor control suggest that as speech development progresses children transition from a 

primarily feedback driven speech motor control system, to a primarily feedforward driven speech 

motor control system, but adequate feedforward control is necessary even at a young age to 

ensure that speech is produced fluently (Max et al., 2004; Guenther, 2006; Tourville et al., 2008; 

Civier et al., 2010). If the speech motor control system relied too heavily on feedback control, 

the time lags between the execution of the motor commands and the processing of their 
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sensory consequences would result in an unstable speech motor control system. As a result of 

this instability speakers would produce disfluent speech (Max et. al, 2004). So although 

previous research has suggested that children have an increased reliance on auditory feedback 

(Scheerer et al., 2013b), if this is the case, it does not appear that increased weighting of the 

feedback control system influences sensorimotor learning.     

In addition to investigating sensorimotor learning, the current study also investigated the 

role of auditory feedback for the regulation of the F0 of ongoing vocalizations in young children 

and adults. Following persistent exposure to FAF (blocks 1 and 3), both the young children and 

adults were found to increase their F0, as their median 1500 values were larger in the shift-start, 

shift-end, and post-shift phases, relative to the baseline phase. This increase in median 1500 

across the experimental phases indicates that participants were increasing their F0 in order to 

compensate for the auditory feedback manipulation. Interestingly, adults were found to produce 

larger compensatory responses than young children, as there was a significant difference 

between young children’s and adults’ median 1500 values at shift-end. Similarly, following 

unpredictable exposure to FAF (blocks 2 and 4) both young children and adults were found to 

produce larger compensatory responses during shifted trials, relative to non-shifted trials. In 

addition, adults were found to produce larger compensatory responses during the shifted trials, 

relative to the young children. The finding that in both the predictable and unpredictable FAF 

conditions adults demonstrated larger changes in their median 1500 values was unexpected. 

Previous studies have shown that when exposed to brief changes to the F0 of their 

auditory feedback, children and adults produce similar sized responses (Liu et al., 2013; 

Scheerer et al., 2013b). However, in the current study participants’ vocalizations were 

manipulated at vocalization onset, with the manipulation persisting for the duration of the 

vocalization. The earlier studies that have compared the compensatory responses to FAF in 

children and adults used brief 200 ms perturbations, with the onset of the perturbation always 
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occurring after the onset of the vocalization (Liu et al., 2013; Scheerer et al., 2013b). These 

methodological differences may explain the observed findings. Specifically, Hawco and Jones 

(2009) demonstrated that compensatory responses to FAF manipulations at voice onset are 

much larger than those introduced mid-utterance. For this reason, it was proposed that different 

control strategies are used at voice onset, relative to mid-utterance. Hawco and Jones 

suggested that at utterance onset auditory feedback is compared to the feedback predicted by 

the sensorimotor representation in order to ensure the intended F0 is produced. On the other 

hand, after utterance onset auditory feedback is compared to the F0 of the auditory feedback 

received prior to the manipulation, in attempt to stabilize the F0 of the vocalization (Hawco & 

Jones, 2009). In light of these previous findings, we suggest that although children and adults 

may not differ in their reflexive responses to brief perturbations in their auditory feedback (Liu et 

al., 2013; Scheerer et al., 2013b), adults may be more proficient at comparing incoming auditory 

feedback with the feedback predicted by their sensorimotor representations. We propose that 

this increased proficiency may be the result of adults possessing more precisely mapped 

sensorimotor representations. Since adults are no longer experiencing developmental changes 

to their speech motor control system, it is likely that their speech motor control system is more 

finely tuned, resulting in more consistent sensory predictions. On the other hand, since children 

are still experiencing developmental changes, it is likely that their speech motor control system 

is more plastic, resulting in more variable sensory predictions. For this reason, we suggest that 

adults may produce larger compensatory responses, as they are better at resolving the 

discrepancy between the deviant auditory feedback and their sensory prediction because their 

sensory prediction is more precise. 

Another possible explanation for the differences in the size of the compensatory 

responses produced by the children and adults is attention. Scheerer and colleagues 

(submitted) reported that while participating in a FAF adaptation study, participants produced 
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smaller compensatory responses when their attention was divided. For this reason, it was 

suggested that divided attention interferes with the use of auditory feedback for the regulation of 

ongoing speech. The current experiment utilized an interactive space game to prompt both 

children and adults to produce the required vocalizations. As it is likely that relative to the adults, 

the children were more captivated by the game, it is possible that less attentional resources 

were available for processing their auditory feedback, resulting in smaller compensatory 

responses to the deviant auditory feedback. However, it is important to note that Scheerer and 

colleagues (submitted) also found that divided attention diminished sensorimotor learning. Since 

compensatory responses, but not sensorimotor adaptation, differed across children and adults, 

it is likely that the observed differences in compensatory response magnitudes reflect 

differences in speech motor control across children and adults.    

While adults produced larger compensatory responses to the FAF manipulations, 

children were found to produce more variable vocalizations. This finding is in line with previous 

studies that have reported that children demonstrate more vocal variability (MacDonald et al., 

2012; Scheerer et al., 2013b). However, unlike previous studies that have reported a 

relationship between vocal variability and the size of compensatory responses to FAF (Scheerer 

& Jones, 2012; Scheerer et al., 2013b), vocal variability was not found to vary with the size of 

the compensatory responses produced in this experiment. Interestingly, although previous 

studies have shown that vocal variability correlates with the size of the compensatory responses 

produced following exposure to brief mid-utterance auditory feedback perturbations (Scheerer & 

Jones, 2012; Scheerer et al., 2013b), this finding has not be replicated in studies using FAF 

manipulations imposed at utterance onset. As previously discussed, compensatory responses to 

FAF manipulations imposed at vocal onset have been suggested to be planned by comparing 

the deviant auditory feedback to the feedback predicted by the speaker’s sensorimotor 

representation. Individuals who demonstrate greater vocal variability have been argued to have 
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less precisely mapped sensorimotor representations (Scheerer & Jones, 2012; Scheerer et al., 

2013b). Although the measures were not found to correlate, as a group children produced more 

variable vocal responses, but smaller compensatory responses. Perhaps then as a result of 

increased vocal variability, children have less precisely mapped sensorimotor representations, 

which decrease their proficiency in planning compensatory responses to FAF manipulations 

imposed at vocalization onset.

The aim of the current study was to investigate whether the role of auditory feedback for 

sensorimotor learning changes with development. The results of the current study demonstrate 

that children and adults can both rapidly integrate information derived from their auditory 

feedback to modify subsequent speech motor commands. Since even young children were able 

to extract information from their auditory feedback to modify future speech motor acts, these 

results provide support for the notion that auditory feedback functions as an adaptive signal that 

guides movements of the articulators in order to preserve speech fluency while the articulators 

are being restructured during development (Callan et al., 2000). However, these results also 

demonstrate that children and adults differ in their ability to use auditory feedback to generate 

compensatory vocal responses. Since vocal variability also differed across the children and 

adult groups, it is possible that the size of compensatory vocal responses to FAF manipulations 

initiated at vocalization onset may be related to vocal variability. In conclusion, although both 

children and adults were able to extract information from their auditory feedback to regulate their 

speech motor control systems, differences in the size of the compensatory responses produced 

by children and adults suggests that the ability to incorporate information derived from auditory 

feedback to modify ongoing vocalizations may change with age.  
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Study 4: The Relationship Between Vocal Accuracy and Variability to the Level of 

Compensation to Altered Auditory Feedback.

Published As:

Scheerer, N. & Jones, J.A. (2012). The relationship between vocal accuracy and variability to 

the level of compensation to altered auditory feedback. Neuroscience Letters, 529, 

128-132. 

Jones and Keough (2008) demonstrated that non-singers produced larger compensatory 

responses to FAF relative to trained singers. This finding suggests that superior vocal control 

may make individuals less susceptible to deviant auditory feedback. Since even without training 

the degree of vocal control varies naturally amongst non-singers, we aimed to investigate 

whether there is a relationship between vocal variability and the size of the compensatory 

response elicited by FAF. In order to examine this research question, we had non-trained 

singers produce vocalizations while we exposed them to unpredictable changes in their auditory 

feedback. It was expected that the results of this study would demonstrate that increased vocal 

variability is related to larger compensatory responses to FAF. If the expected pattern of results 

is obtained, it will suggest that vocal variability increases the weighting of the feedback control 

system, making these individuals more susceptible to deviant auditory feedback.

Abstract

Auditory feedback plays an important role in monitoring vocal output and determining 

when adjustments are necessary. In this study a group of untrained singers participated in a 

frequency altered feedback experiment to examine if accuracy at matching a note could predict 

the amount of compensation to auditory feedback that was shifted in frequency. Participants 
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were presented with a target note and instructed to match the note in pitch and duration. 

Following the onset of the participants’ vocalizations their vocal pitch was shifted down one 

semitone at a random time during their utterance. This altered auditory feedback was 

instantaneously presented back to them through headphones. Results indicated that note 

matching accuracy did not correlate with compensation magnitude, however, a significant 

correlation was found between baseline variability and compensation magnitude. These results 

suggest that individuals with a more stable baseline fundamental frequency rely more on 

feedforward control mechanisms than individuals with more variable vocal productions. This 

increased weighting of feedforward control means they are less sensitive to mismatches 

between their intended vocal production and auditory feedback.

Introduction

The act of singing involves monitoring one’s fundamental frequency (F0) in order to 

produce and maintain an intended vocal pitch (Elliott & Niemoeller, 1970). Particular pitch 

targets are produced and maintained through adjustments of the positioning of laryngeal 

structures, as well as changes in subglottal air pressure (Watts, Murphy, & Barnes-Burroughs, 

2003). Several decades of research indicates that auditory feedback plays an important role in 

monitoring vocal output and determining when adjustments are necessary. For example, 

research has shown that when an individual’s auditory feedback is altered it influences the 

quality of their vocal productions. When auditory feedback is delayed (Yates, 1963), masked 

(Bauer et al., 2006), or formant frequencies (Houde & Jordan, 1998; Purcell & Munhall, 2006b) 

or F0 are shifted (Elman, 1981; Burnett et al., 1998; Jones & Munhall, 2000), individuals tend to 

compensate for the manipulation by adjusting their vocal output. Despite this fact, the ability of 

singers to produce accurate pitches when reliable auditory feedback is masked, as in the case 
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of individuals singing in a choir or in the presence of a band, suggests that auditory feedback is 

only partially responsible for monitoring voice F0.

According to the DIVA (directions into velocities of articulators) model, a neural network 

model capable of simulating speech, fluent speech is the result of a combination of feedback 

and feedforward control systems (Guenther, 2006). The feedforward control system relies on 

stored motor commands that contain detailed instructions on how to move the articulators, 

which are read out directly from memory. On the other hand, the feedback component relies on 

auditory feedback for detection and correction of production errors. Since strict feedforward 

control results in difficulties correcting for errors in auditory feedback, and strict feedback control 

introduces time lags and disfluencies of speech, the DIVA model relies on a combination of 

feedback and feedforward commands (Civier et al., 2010). Although the DIVA model has led to 

the successful simulation of speech, many questions regarding how auditory feedback 

contributes to successful speech production in humans remain unanswered.

In order to assess the importance of auditory feedback during vocal production, the 

frequency altered feedback (FAF) paradigm is often utilized. FAF has been consistently shown 

to elicit the pitch shift reflex (PSR) [e.g., Elman, 1981; Burnett et al., 1998; Jones & Munhall, 

2000, 2002, 2005; Natke et al., 2003), which is the tendency for speakers to unconsciously 

respond to perturbations in their vocal output by shifting their F0 in the direction opposite of the 

perturbation (Burnett et al., 1998). Although this compensatory response has been reliably 

shown, it is a fraction of the size of the imposed perturbation, except when very small 

perturbations are used (Liu & Larson, 2007).

Although many FAF studies focus on perturbations to auditory feedback while speaking, 

results obtained in tasks requiring participants to sing have shown similar compensation 

patterns (e.g., Burnett et al., 1997; Natke et al., 2003). Interestingly, it has also been shown that 

perturbing the vocal output of trained singers leads to smaller compensatory responses than 
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when testing untrained singers (Jones & Keough, 2008). This smaller response in singers may 

be the result of a decreased reliance on auditory feedback. It is suggested that auditory 

feedback is important when trying to produce a particular note, but over time as an individual 

has more experience producing the note, a sensorimotor representation encoding the 

relationship between the motor commands responsible for producing the note, and the sensory 

consequences of those motor commands is created (Keough & Jones, 2009). Subsequent 

attempts to produce the same note can then be executed by virtue of this established 

sensorimotor representation, independent of auditory feedback (Proteau, Marteniuk, Girouard, & 

Dugas, 1987; Proteau, Marteniuk, & Levesque, 1992; Keough & Jones, 2009).

Jones and Keough (2008) investigated whether or not trained singers rely more on 

sensorimotor representations than untrained singers while participating in a FAF study. They 

found that not only did singers compensate less when exposed to FAF, but singers also showed 

large aftereffects when their feedback was returned to normal. These results suggest that 

trained singers rely more on sensorimotor representations, that guide feedforward control, than 

untrained singers do.

Natke et al. (2003) investigated note matching accuracy and degree of compensation to 

FAF in German speaking participants. They found that when participants spoke a nonsense 

word and their voice was perturbed, there was no correlation between accuracy and 

compensation magnitude. On the other hand, when participants sang a nonsense word and 

their voice was perturbed, there was a significant inverse correlation between accuracy 

(measured as the absolute deviation from the target F0) and compensation magnitude. These 

results counter those of Jones and Keough (2008) who found that trained singers, who as a 

result of training or natural talent were more accurate than untrained singers, compensated less 

than the untrained singers in the study.
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In order to further investigate the relationship between singing accuracy and 

compensation magnitude, we had a group of untrained singers participate in an FAF study and 

asked them to sing a target note. We aimed to determine if accuracy at matching a note could 

predict the degree of compensation to FAF in the auditory feedback of an untrained population. 

These results may help to further disentangle the relationship between singing ability and 

reliance on auditory feedback versus feedforward control.

Methods

i. Participants

Forty-nine female participants (aged 17–36, mean age 20.7, SD 3.1) were recruited for 

participation in this study. All participants reported no formal vocal training, did not speak a tonal 

language, and were right-handed. All participants received financial compensation for 

participation in this study. Informed consent was obtained from each participant, in accordance 

with the ethical policies at Wilfrid Laurier University.

ii. Apparatus 

Participants were seated in an electrically shielded booth and fitted with Etymotic ER-3 

insert headphones (Etymotic Research, Elk Grove Village, IL) and a headset microphone 

(Countryman Isomax E6 Omnidirectional Microphone). Presentation of the visual stimuli, target 

notes, as well as the shift onsets were controlled by Max/MSP 4 (Cycling ‘74, San Francisco, 

CA). The target notes were processed by combining three sine wave tones to create a harmonic 

tone using the program Praat (Boersma, 2001). The three target notes, 261.63 (C4), 277.18 

(C#4), or 293.66 (D4) Hz, were chosen as they fall within the physiological frequency range of a 

healthy female’s voice (Moore, Keaton, & Watts, 2007). During the experiment vocalizations 

were sent to a mixer (Mackie Oynx 1220, Loud Technologies, Woodinville, WA), followed by a 

�98



digital signal processor (DSP; VoiceOne, T.C. Hellicon, Victoria, BC), which shifted the pitch of 

the participant’s voice. This pitch-shifted vocalization was then presented back to the participant 

as auditory feedback. The unaltered voice signal and the tone that was triggered by the 

command to the DSP were digitally recorded (TASCAM HD-P2, Montebello, CA) at a sampling 

rate of 44.1 Hz for later analysis.

iii. Procedure

Participants were seated in front of a computer screen displaying a small box in the 

centre of the screen that alternated in colour from red to green. When the box was red 

participants were presented with a target tone (C4, C#4, or D4) for 2000 ms. Following the 

presentation of the target tone, the participants were told that the box would turn green, and this 

was their cue to begin matching the target tone in pitch and duration by vocalizing the vowel 

sound /a/. Participants were instructed to vocalize at a loud, but comfortable amplitude. 

Vocalizations were played back to the participants in real time via headphones. Participants 

were told that during the experiment their feedback might be altered, but they should ignore any 

alterations and continue trying to match the target note in pitch and duration.

The experiment consisted of one block of 150 trials, and lasted approximately 20 min. 

Each target note was presented a total of 50 times, and the order of the note presentation was 

varied pseudorandomly throughout the experiment. During each trial the pitch of the 

participant’s voice was shifted downwards 100 cents (1 semitone). The pitch shift occurred at a 

random time between 500 ms and 1500 ms after utterance onset and lasted for the duration of 

the utterance.
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iv. Data Analysis

The digital recording of the vocalizations was segmented into separate utterances and 

F0 values were calculated for each utterance using the SWIPE algorithm (Camacho & Harris, 

2008). F0 values were normalized to the target tone (C4, C#4, or D4) by converting Hz values to 

cents using the following formula:

Cents = 100 (12 log2 F/B)

In the formula, F is the F0 value in Hz and B is frequency of the target tone participants 

were to vocalize (261.63, 277.18, or 293.66).

Cents values were calculated for 200 ms before the pitch shift (the baseline period), and 

500 ms after the pitch shift. An average F0 trace was constructed for each of the three notes for 

each participant. For each average F0 trace the mean baseline value was calculated, or the 

average of the first 200 ms of the vocalization. Since cents values were normalized to the target 

tone, a cents value of 0 indicated a perfect match to the target tone. In order to index the normal 

amount of variability in each participant’s vocalizations, the standard deviation of the baseline 

period was also calculated. The amplitude of the compensation response was also determined 

by finding the point at which the participant’s average F0 trace deviated maximally from the 

baseline mean. Participants who followed the direction of the FAF manipulation rather than 

compensating for it (n = 10) were excluded from the analyses. Thus in total 39 subjects were 

included in the statistical analyses.

A repeated measures analysis of variance was performed for each of the three 

measures: accuracy, compensation magnitude, and baseline variability, in order to determine if 

responses differed significantly across notes. In instances where the assumption of sphericity 

was violated, the Greenhouse–Geisser correction was applied and adjusted values are reported 
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(Greenhouse & Geisser, 1959). Pearson correlations were calculated to investigate the 

relationship between the accuracy at matching the target notes and the degree of compensation 

to the FAF. Pearson correlations were also calculated to investigate the relationship between the 

variability of the participants’ baseline periods and the magnitude of compensation to the FAF.

Results

In order to determine if accuracy at matching a note could predict the degree of 

compensation to the FAF, the absolute deviation from the target F0 and the magnitude of 

compensation were calculated for each participant for each note. Since absolute deviation from 

the target F0, F1.49,56.50=2.178, P=0.135, and the magnitude of compensation, F1.39,52.74=1.135, 

P=0.311, did not significantly differ as a function of note, values were collapsed across all three 

notes for the correlation analysis. No significant correlation was found, r = −0.132, P(2-tailed) = 

0.424, n = 39) between degree of compensation and absolute deviation from the target F0. 

Magnitude of compensation and absolute deviation from the target F0 are plotted against each 

other in Figure 12.
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Figure 12: Relationship between Accuracy and Compensation Individual’s absolute deviation 

from the target F0 (an index of their target note matching ability) is plotted against their 

magnitude of compensation to the FAF.

In addition, we investigated whether the variability of the participants’ baseline periods 

could be indicative of the magnitude of their compensation to the FAF. The variability of the 

participants’ baseline periods were found to differ significantly as a function of note,  F2,76 = 

11.014, P < 0.001, thus correlational analyses were calculated separately for each note. 

Significant correlations were found between the standard deviation of the participants’ baseline 

periods, and their magnitude of compensation to the FAF for each note (C: r = 0.611, P(2-tailed) < 

0.001, n = 39; C#: r = 0.406, P(2-tailed) = 0.010, n = 39; D: r = 0.637, P(2-tailed) < 0.001, n = 39). 
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The magnitude of compensation and baseline period standard deviations for each note are 

plotted against each other in Figure 13.

Figure 13: Relationship between Baseline Standard Deviation and Compensation Individual’s 

baseline period standard deviation (an index of their F0 control) is plotted against their 

magnitude of compensation to the FAF for all three notes (a = C, b = C#, c=D).

�103



Discussion

In this study, individuals’ ability to match a target note, as well as their magnitude of 

compensation to online pitch shifts were examined in order to investigate if accuracy at 

matching a target note could predict the magnitude of compensation to a pitch shift. It was found 

that the ability to match a target note did not correlate with the magnitude of compensation to 

feedback pitch shifts, thus accuracy was not predictive of compensation magnitude.

Although accuracy did not predict compensation, the variability of the participants’ baseline 

periods were found to correlate significantly with their magnitude of compensation to the pitch 

shift. A highly variable baseline F0 likely reflects poor F0 control.

Speech motor commands are refined and F0 stability improves as F0 control transitions 

from feedback to feedforward control (Schmidt & Lee, 2005; Civier et al., 2010). The transition 

from feedback to feedforward control is driven by the stability of the sensorimotor 

representation, or the mapping between motor commands and the resultant sensory 

consequences. As the sensorimotor representation becomes more reliable and consistently 

allows for the execution of the correct motor command required to produce the intended sound, 

auditory feedback becomes redundant. This is because auditory feedback is no longer 

necessary to refine the mapping between motor commands and their resultant sensory 

consequences. As a result of this decreased reliance on auditory feedback, feedforward control 

becomes predominant. Despite this transition, individuals can never rely completely on a 

feedforward control system, as this would prevent detection of errors in auditory feedback. 

Civier and colleagues (2010) suggest that successful execution of motor commands for speech 

production involves a weighting of feedback and feedforward control systems. We suggest that 

when F0 control is poor, there is an increased reliance, or ‘weighting,’ of feedback control, 

relative to feedforward control. This suggests that individuals with more variability in their 

baseline periods have less consistent vocal output, thus they weight their auditory feedback 
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more heavily to ensure production errors are detected, and their sensorimotor representations 

are updated. On the other hand, participants relying more on sensorimotor representations, or 

‘weighting’ the feedforward system more heavily, have more consistent vocal output. The higher 

weighting these individuals place on their sensorimotor representation causes them to ‘ignore’ 

sounds that are in violation of their sensorimotor representation.

This weighting of feedback control vs. feedforward control has direct implications for the 

amount of compensation to FAF. When there is an increased weighting of auditory feedback, or 

feedback control, individuals are more susceptible to FAF, because they constantly monitor and 

adjust their vocal output in order to keep their auditory feedback in line with their perception of 

the target note. Thus when a pitch shift occurs, it results in a large compensatory response as 

the participant uses this feedback to guide their vocal output back in line with the target note. On 

the other hand, when there is an increased weighting of sensorimotor representations, or 

feedforward control, deviant auditory feedback is more readily ignored, and thus participants are 

less susceptible to changes in their auditory feedback. For this reason, when their vocal output 

is pitch shifted they will show less of a compensatory response.

The fact that we did not find a correlation between the magnitude of compensation and 

the ability to match a target note is in contrast with the results found by Natke and colleagues 

(2003), who found that the degree of compensation to FAF correlated inversely with accuracy at 

matching a target note. Although the results of this current study are in contrast to those of 

Natke and colleagues (2003), it is likely due to differences in experimental design, as the current 

study differs from their study in three fundamental ways, including number of trials, type of pitch 

shift, and target stimuli.

In the study by Natke and colleagues (2003), participants were only exposed to six FAF 

trials, whereas in the current study participants performed vocalizations during 150 FAF trials. 

The small number of trials used to produce individual averages in the Natke and colleagues 
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(2003) study, relative to the current study, would suggest that this current data is a more reliable 

representation of the individuals’ performances. Furthermore, to eliminate the possibility that the 

lack of effect found in this study is the result of habituation over the large number of trials, we 

also examined the data for the first 6 trials of this study. Consistent with the previously reported 

results over 150 trials, a non-significant correlation was found between compensation to the 

pitch shift and accuracy at matching the target note over the first 6 trials (r = −0.279, P(2-tailed) = 

0.052, n = 49). The consistency of the results when examining either 6 trials or 150 trials, 

provides further support for the notion that there is no significant relationship between 

compensation to a pitch shift and accuracy at matching a target note.

Examining further differences between the current study and the study by Natke and 

colleagues (2003) it was found that Natke and colleagues utilized whole utterance pitch shifts, 

whereas in the current study participants experienced mid-utterance pitch shifts. In a study by 

Hawco and Jones (2009), they found that compensation responses to mid-utterance pitch shifts 

were consistently smaller than compensation responses to shifts occurring at utterance onset. 

Furthermore, they concluded that different control strategies are utilized prior to vocalization 

onset, compared to within an ongoing vocalization (Hawco & Jones, 2009). For this reason, it 

may not be surprising that these different FAF techniques elicited different responses when 

comparing the current study to that of Natke and colleagues (2003).

Lastly, in the current study participants were required to match three different notes that 

were pseudorandomly presented throughout the experiment. It was found that participants’ 

baseline variability differed significantly as a function of the note being matched. This result 

suggests that F0 control is differentially affected by different target notes. In the Natke and 

colleagues (2003) study, the participants were matching the same note for all six trials. This 

difference in design may have further magnified the discrepancy in results found in these two 

studies. A study by Liu and Larson (2007) found that participants compensate more to difficult 
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(high) target pitches, compared to easy target pitches. The results from Liu and Larson (2007) 

would suggest that the compensation magnitudes calculated in this current study, as well as the 

study by Natke and colleagues (2003) are modulated by the proximity of the target note to the 

participants’ baseline F0. In the Natke and colleagues (2003) study, the fact that all participants 

were matching the same target note may indicate that the inverse correlation found is partially 

related to closeness of the target note to the participants’ baseline F0s. Participants may have 

compensated more to the FAF simply because the target was farther away from their baseline 

F0, irrespective of their ability to match the target note. On the other hand, in this current study 

participants matched three target notes. Since these three notes were chosen in a range that 

corresponds to the average F0 for women, it is likely that one of the three notes was close to the 

baseline F0 of each participant, while the other two notes would be further away from their 

preferred F0. This combination of easy and difficult target notes for each participant, relative to 

their preferred baseline F0, should cancel out any advantage to a single participant due to the 

proximity of the target note to their own baseline F0.

It is important to note that in the current study only female participants were recruited. 

While gender related differences in vocal responses to FAF have not been previously identified 

(Scheerer et al., 2013b), future research should also investigate whether this pattern is 

maintained with male participants. 

Conclusion

Previous research has shown that singers compensate less to pitch shifts in their 

feedback, relative to untrained singers during whole utterance shifts (Jones & Keough, 2008). 

For this reason, it was expected that accuracy at matching a target note would be related to 

smaller compensatory responses. Instead, the variability of the participants’ baseline periods 

was more predictive of the degree of compensation to FAF. In order to see if this finding holds 
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true, a future study looking at the adaptive behaviours of these two groups would help to 

validate this finding. If individuals with stable baseline periods also display robust aftereffects as 

seen in the group of singers participating in the Jones and Keough (2008) adaptation study, it 

would lend support to the idea that individuals with more stable F0s rely more on sensorimotor 

representations. Similarly, if individuals with more variable baseline periods show greater 

compensation and fewer aftereffects, then it is likely that they rely more on auditory feedback, 

as seen in the group of untrained singers in the Jones and Keough (2008) adaptation study.

In closing, the results of this study suggest that the ability to match a target note is not 

predictive of the magnitude of compensation to frequency altered feedback. Instead, F0 control, 

as indexed by the variability of participants’ baseline periods, is a better indicator of the degree 

of compensation to FAF.

Study 5 - The Relationship between Vocal Variability and Sensorimotor Learning

Scheerer, N.E., & Jones, J.A. (In Prep). The relationship between vocal variability and 

sensorimotor learning.

Jones and Keough (2008) demonstrated that trained singers produced smaller 

compensatory responses, but larger after-effects following repeated exposure to predictable 

changes in their auditory feedback, relative to non-singers. In a follow-up study, Keough and 

Jones (2009) found that when exposed to predictable changes in their auditory feedback, 

singers started subsequent utterances at a similar F0 as the previous trial, suggesting they were 

updating their sensorimotor representations, while non-singers appeared to ‘search’ for the 

target F0. Together, these results suggest that superior vocal control influences the plasticity of 

one’s sensorimotor representations. Furthermore it suggests that although vocally stable 

individuals may be less susceptible to deviant auditory feedback, the deviant feedback is still 
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used to modify their sensorimotor representations. The aim of this experiment was to identify 

whether non-singers who demonstrate superior speech motor control would also demonstrate 

increased plasticity of their sensorimotor representations, relative to more variable non-singers. 

To investigate this research question we had non-singers produce vocalizations as part 

of a FAF adaptation paradigm. It was expected that individuals who demonstrated increased 

vocal variability would also produce larger compensatory responses, but smaller after-effects. 

On the other hand, it was expected that individuals who demonstrated relatively less vocal 

variability would produce smaller compensatory responses, but larger after effects. If the 

expected pattern of results are obtained, it will suggest that vocal stability results in increased 

weighting of the feedforward control system.

Abstract

Speech motor control is regulated by auditory feedback driven closed-loop control, and 

sensorimotor representation driven open-loop control. However, the factors that dictate the 

relative weighting of these two control systems are unclear. This study aimed to investigate the 

relationship between vocal variability and the relative weighting of feedback versus feedforward 

control. In this study, participants produced vocalizations while they heard their vocal pitch 

persistently shifted downward a semi-tone. Participants’ vocal pitch was measured across each 

vocalization, to index the extent to which ongoing vocalizations were modified by deviant 

auditory feedback. The size of participants’ compensatory responses to the pitch manipulation 

correlated with the variability of participants’ habitual fundamental frequency (F0), with more 

variable participants producing larger compensatory responses. This suggests that increased 

vocal variability leads to increased weighting of the feedback control system. Participants’ vocal 

pitch was also measured at the beginning of each vocalization, before auditory feedback was 

available, to assess the extent to which the deviant auditory feedback modified subsequent 

�109



speech motor commands. Changes in vocal pitch at vocalization onset were observed in 

response to the feedback manipulation. These changes were also found to persist once the 

manipulation was removed, and these after-effects demonstrate that sensorimotor learning 

occurred. Importantly, the size of these after-effects correlated with the variability of participants’ 

habitual F0, with less variable participants producing larger after-effects. This suggests that 

decreased vocal variability leads to increased feedforward control. Together the results of this 

study suggest that vocal variability can predict the weighting of feedback versus feedforward 

control.

Introduction

Speech production is a highly complex motor behaviour that involves the precise 

coordination of a complex network of muscles and articulators. In order to produce fluent 

speech, speakers rely on sensory feedback, such as auditory feedback, to monitor and correct 

for speech production errors (Burnett et al., 1997, 1998; Liu et al., 2011; Scheerer & Jones, 

2012; Scheerer et al., 2013a,b, 2014). The importance of auditory feedback for the acquisition 

and maintenance of fluent speech becomes evident when observing children who are born deaf 

and fail to acquire fluent speech (Oller & Eilers, 1988), and adults who are deafened 

postlingually and experience a progressive decline in the quality of their speech (Cowie & 

Douglas-Cowie, 1992), respectively. However, since individuals can also maintain fluent speech 

when auditory feedback is masked or unavailable (Lane & Tranel, 1971), for instance when 

speaking in a noisy room, speech fluency must not be regulated solely by auditory feedback. 

Neurocomputational models of speech motor control, such as the directions into 

velocities of articulators (DIVA; Guenther, 2006; Tourville et al., 2008; Civier et al., 2010) and 

state-feedback control (SFC; Hickok et al., 2011) models, as well as experimental evidence 

(Jones & Munhall, 2005; Jones & Keough, 2008; Hawco & Jones, 2009; Keough & Jones, 2009, 
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2011; Scheerer & Jones, 2012, 2014; Chen et al., 2013), suggest that fluent speech production 

relies on the combined effort of a feedback and a feedforward control system. The feedback 

control system relies on sensory feedback, such as auditory and somatosensory feedback. In 

contrast, the feedforward control system relies on sensorimotor representations, which encode 

the relationship between the motor commands responsible for producing speech, and the 

sensory consequences of these motor commands (Guenther, 2006; Civier et al., 2010). Early in 

speech acquisition, the feedback control system is important for exploring auditory space, and 

learning associations between motor commands and their auditory consequences (Bailly, 1997; 

Callan et al., 2000; Jones & Munhall, 2000, 2002; Guenther, 2006; Civier et al., 2010). However, 

since feedback control operates in a closed-loop manner, relying solely on feedback control is 

implausible, as the delays associated with the processing of sensory information would result in 

disfluent speech (Houde et al., 2002; Guenther, 2006; Civier et al., 2010; Perkell, 2012). For this 

reason, speech motor control also relies on feedforward control. Since the feedforward control 

system operates in an open-loop manner, speech is executed by virtue of stored motor 

commands, which prevents the delays associated with the processing of peripheral sensory 

feedback. This being said, strict reliance on feedforward control is also unfeasible, as sensory 

information is important for maintaining the precision and accuracy of the mapping of the 

sensorimotor representations that drive feedforward control (Civier et al., 2010). While it is clear 

that both feedback and feedforward control contribute to fluent speech production, the factors 

that dictate the relative weighting of these systems remain unclear. 

The importance of auditory feedback for speech motor control is often investigated using 

the frequency-altered feedback (FAF) paradigm. As part of this paradigm, researchers 

synthetically alter the fundamental frequency (F0; or pitch) of participants’ vocalizations and 

instantaneously present the altered auditory feedback to the participants through headphones 

(Elman, 1981; Burnett et al., 1997). When exposed to this FAF, participants tend to compensate 
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by shifting the F0 of their voice in the opposite direction of the manipulation. This compensatory 

response is often only a fraction of the size of the manipulation (Burnett et al., 1997, 1998; Liu et 

al., 2011; Korzyukov et al., 2012b; Scheerer et al., 2013a,b), which highlights the fact that 

auditory feedback is not the sole input to the speech motor control system. Importantly, by 

measuring responses to FAF, it becomes possible to isolate the factors that dictate the relative 

contribution of auditory feedback for speech motor control. 

One factor that has been suggested to influence the contribution of auditory feedback for 

speech motor control is vocal variability. Scheerer and Jones (2013b) exposed children and 

adults aged 4-30 years old to brief FAF perturbations. The results of this study indicated that 

vocal variability, rather than age, predicted the size of the compensatory responses to the FAF 

perturbations. Similarly, Scheerer and Jones (2012) found that within a group of young adults, 

vocal variability also predicted the size of the compensatory responses elicited by mid-utterance 

FAF manipulations. Together, these results suggest that individuals who produce highly variable 

speech tend to rely more heavily on their auditory feedback. This increased reliance on auditory 

feedback ensures speech is produced fluently, and also provides information to calibrate one’s 

sensorimotor representations. However, this increased reliance on feedback control also 

increases one’s susceptibility to FAF manipulations and results in larger compensatory vocal 

responses. On the other hand, individuals with more stable vocal productions, likely have 

sensorimotor representations that are better at predicting the sensory consequences of their 

associated motor movements. When sensorimotor representations are precisely predicting the 

sensory consequences of upcoming movements, the information provided by auditory feedback 

becomes redundant. For this reason, individuals with increased vocal stability increase the 

weighting of their feedforward control system, which makes them less susceptible to FAF 

manipulations, and results in smaller compensatory vocal responses (Scheerer & Jones, 2012). 
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One factor that has been suggested to influence vocal stability is vocal training. Jones 

and Keough (2008) exposed trained singers and non-singers to predictable changes in their 

auditory feedback. The results of this study indicated that the non-singers were faster to 

compensate, and produced larger responses, to changes in their auditory feedback. On the 

other hand, singers responded more gradually to changes in their auditory feedback, but the 

compensatory response persisted after the FAF manipulation was removed, an effect that was 

not observed in the non-singers. Based on the results of this study, it was suggested that 

relative to singers, non-singers have an increased reliance on auditory feedback for regulating 

their speech motor control. On the other hand, as a result of extensive training, singers rely less 

on auditory feedback and more on their precisely tuned feedforward system. Interestingly, 

although singers produced smaller compensatory responses, the larger after-effects witnessed 

for singers, once their auditory feedback was returned to normal, suggest that an increased 

reliance on feedforward control is also related to increased sensorimotor learning. In other 

words, although the singers were not producing large compensatory responses to the FAF, it 

appears as though they were using information from the deviant auditory feedback to update the 

mapping of their sensorimotor representations. As a result of this remapping, their vocal 

productions were different than those produced prior to the exposure to the predictable FAF, 

even when the FAF manipulation was removed. Based on the results of this study, it appears 

that vocal proficiency, achieved through extensive vocal training, may increase the weighting of 

the feedforward control system. 

Previous studies have demonstrated that increased vocal variability leads to larger 

compensatory responses to FAF (Scheerer & Jones, 2012; Scheerer et al., 2013b), which 

suggests that increased vocal variability results in increased weighting of the feedback control 

system. On the other hand, trained singers who have more precise speech motor commands 

have been shown to produce smaller compensatory responses to FAF, and have faster rates of 

�113



sensorimotor learning (Jones & Keough, 2008), which suggests that vocal proficiency results in 

increased weighting of the feedforward control system. However, it is currently unclear if this 

finding can be observed in individuals who have not received formal vocal training. For this 

reason, we sought to determine whether vocal variability predicts the degree of sensorimotor 

learning that occurs when individuals are exposed to predictable FAF. In order to investigate this 

research question, we exposed non-singers to predictable changes in their auditory feedback 

and evaluated their compensatory responses, as well as any after-effects, or persistence of the 

compensatory response once the FAF manipulation was removed. Based on the results of 

previous studies, we predicted that individuals who have a high degree of vocal variability would 

produce large compensatory responses to the FAF, but these responses would not persist when 

the FAF manipulation was removed. On the other hand, we predicted that individuals who 

produce more stable vocal productions would produce smaller compensatory responses to the 

FAF, but these smaller responses would persist for a period of time after the FAF manipulation 

was removed. If, as expected, compensatory responses and after-effects vary as a function of 

vocal variability, these results would suggest that the weighting of the feedback and feedforward 

control systems is influenced by vocal variability. 

Methods

i. Participants

Forty-eight participants between the ages of 17 and 30 years (M = 20.20, SD = 2.57; 28 

females) participated in this study. All participants were Canadian-English speakers who did not 

speak a tonal language, and had no formal vocal training. Participants received course credit, or 

financial compensation for participating in this study. All procedures were approved by the 

Wilfrid Laurier Research Ethics Board and were in accordance with the World Medical 

Association 2013 Declaration of Helsinki. 
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ii. Procedure

Participants were seated in front of a computer monitor that displayed a Microsoft 

Powerpoint presentation composed of blank slides that were solid green and solid red in colour. 

Each time the display was red, participants were presented with a note (G3 for men, G4 for 

women) for 2000 ms. Following the presentation of the note, participant were told that the 

screen would turn green for 3000 ms, and this was their cue to start vocalizing an /a/ sound. 

Participants were instructed to vocalize at a loud, but comfortable amplitude. Also, participants 

were instructed to use the note as a reference to help them vocalize at a consistent pitch 

throughout the experiment, thus consistency was emphasized over accuracy. Participants 

produced 140 vocalizations in total, and these vocalizations were played back to the participants 

in real time via headphones. Participants were also told that during the experiment their auditory 

feedback might be altered, but they should ignore any alterations and continue producing their 

vocalizations at a consistent pitch.

The experiment consisted of one block of 140 trials, and lasted approximately 20 

minutes. The block was divided into three phases: the pre-shift phase (trials 1-20), the shifted 

phase (trials 21-120) and the post-shift phase (trials 121-140). During the shifted phase, the 

pitch of the participants’ auditory feedback was shifted downwards 100 cents (1 semitone) for 

the entire utterance. During the pre-shift and post-shift phases, participants’ auditory feedback 

was unaltered.  

iii. Apparatus

Participants were seated in a double-walled sound attenuated booth (Industrial Acoustics 

Company, Model 1601-01) and fitted with a headset-microphone (Sennheiser HMD 280-13 Pro, 

Sennheiser Electronics, Germany). Both the visual stimuli as well as the notes were presented 
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using Microsoft Powerpoint. The two notes were generated by combining three sine wave tones 

to create a harmonic tone using the program Praat (Boersma, 2001). The two target notes G3 

(196 Hz) and G4 (392 Hz) were selected as they are typically within the vocal range of healthy 

men and women, respectively (Fitch & Holbrook, 1970; Moore et al., 2007). During the 

experiment vocalizations were sent to a mixer (Mackie Oynx 1640, Loud Technologies, 

Woodinville, WA), followed by a digital signal processor (VoiceOne, T.C. Hellicon, Victoria, BC), 

which altered the pitch of the participant’s voice. This process introduced an approximately 10 

second delay to the feedback signal, which was then presented back to the participant as 

auditory feedback. The onset and offset of the pitch alteration was controlled manually by the 

experimenter between the experimental phases. Both the altered and the unaltered voice 

signals were digitally recorded (TASCAM HD-P2, Montebello, CA) at a sampling rate of 44.1 

kHz for later analysis. 

iv. Data Analysis

The digital recording of the vocalizations was segmented into separate utterances and 

F0 values were calculated for each utterance using the SWIPE algorithm (Camacho & Harris, 

2008). F0 values were normalized to the participants habitual F0, by converting Hertz values to 

cents using the following formula:

Cents = 100 (12 log2 F/B)

In this formula, F is the F0 value in Hertz and B is the participant’s habitual F0. 

Participants’ habitual F0 values were estimated by calculating the average median 1500 of the 

participants’ vocalizations from trial 11-20, the last 10 trials of the pre-shift phase. Cents values 

were calculated for the first 1500 ms of each vocalization. 
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For each vocalization the median F0 of the first 80 ms (the ‘median 80’ value) and 

median F0 of the first 1500 ms (the ‘median 1500’ value) were calculated. Since neural 

processing delays prevent the auditory feedback resulting from a vocal motor command from 

being processed for at least 100 ms (Burnett et al., 1997, 1998; Hawco & Jones, 2009; Keough 

& Jones, 2009, 2013), the median 80 value provides an index of the F0 at which the vocalization 

was initiated, before auditory feedback was available. On the other hand, median 1500 values 

provide an index of the F0 of the vocalization once auditory feedback becomes available. In 

addition, in order to index the normal amount of variability in each participant’s habitual F0, the 

standard deviation of the median 1500 of trials 11-20, each of the last 10 trials of the pre-shift 

phase, was calculated and then averaged over the 10 trials. 

v. Statistical Analysis

Four groups of experimental trials were used for statistical analysis: baseline (trials 

11-20), shift-start (trials 21-30), shift-end (trials 111-120), and post-shift (trials 121 and 122). The 

size of each participant’s compensatory response at the end of the shift-phase was calculated 

by subtracting the average of the baseline trials from the average of the shift-end trials, for both 

median 80 and median 1500. In addition, to assess whether the compensatory behaviour 

persisted after the participant’s auditory feedback was returned to normal, an after-effect value 

was calculated by subtracting the average of the baseline trials from the average of the post-

shift trials, for both median 80 and median 1500.   

A repeated measures analysis of variance (RM-ANOVA) was performed to assess the 

influence of the 4 trial groups (baseline, shift-start, shift-end, and post-shift) on median 80 and 

median 1500 values. In instances where the sphericity assumption was violated, the 

Greenhouse-Geisser correction was applied (Greenhouse & Geisser, 1959). However, for ease 

of interpretation original degrees of freedom are reported. Pairwise comparisons were 
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conducted to examine potential differences in the size of responses across the 4 trial groups. 

Pearson correlations were also calculated to investigate the relationship between habitual vocal 

variability and both the size of the compensatory responses and the after-effects.    

Results

i. Median 80

The RM-ANOVA conducted to investigate the effect of trial group (baseline, shift-start, 

shift-end, and post-shift) on median 80 values, revealed a main effect of trial group, F3, 141 = 

6.919, P < .001 (see Figure 14). Pairwise comparisons indicated that median 80 values were 

significantly smaller in the baseline group, relative to the shift-start (P < .001), shift-end (P = 

.001), and the post-shift (P = .002) groups.

Correlational analyses were conducted using median 80 compensatory response and 

after-effect values, in order to determine whether habitual vocal variability was related to the 

size of a participant’s compensatory response, and the size of their after-effects. The correlation 

between vocal variability and compensatory responses was not significant, r48 = -.044, P = .767. 

However, the correlation between vocal variability and after-effects was significant, r48 = -.291, P 

= .045 (see Figure 15).

ii. Median 1500

The RM-ANOVA conducted to investigate the effect of trial group (baseline, shift-start, 

shift-end, and post-shift) on median 1500 values, revealed a main effect of trial group, F3, 141 = 

33.639, P < .001 (see Figure 14). Pairwise comparisons indicated that median 1500 values 

were significantly smaller in the baseline group, relative to the shift-start (P < .001), shift-end (P 

< .001), and the post-shift (P = .038) groups. Median values were also significantly smaller in 
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the shift-start group, relative to the shift-end group (P = .008), and in the post-shift group, 

relative to the shift-start (P = .002) and shift-end (P < .001) groups. 

Correlational analyses were conducted using median 1500 compensatory response and 

after-effect values, in order to determine whether habitual vocal variability was related to the 

size of a participant’s compensatory response, and the size of their after-effects. The correlation 

between vocal variability and compensatory responses was significant, r48 = .338, P = .019. 

However, the correlation between vocal variability and after-effects was not significant, r48 = 

.230, P = .117 (see Figure 15).   

Figure 14: Median 80 (top) and Median 1500 (bottom) Values

An average of the participants’ median fundamental frequencies during the first 80 ms (a) and 

1500 ms (b) of each utterance, for trials 1-140. Each data point represents an average of 10 

trials across all participants. Error bars indicate the standard error of the mean. During trials 

1-20 (pre-shift phase) and 121-140 (post-shift trials), participants auditory feedback was 

unaltered. During trials 21-120 (the shifted phase), the pitch of participants’ auditory feedback 

was shifted downward 100 cents (one semitone). 
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Figure 15: Vocal Variability Correlated with Median 1500 Compensation (Left) and Median 80 

After-Effects (Right)

(a) Participant’s baseline standard deviation is plotted against their compensation magnitude, 

calculated as the difference between the shift-end phase and the baseline phase. (b) 

Participants baseline standard deviation is plotted against the size of their after-effects, 

calculated as the difference between the test-phase and the baseline phase. 

Discussion

The aim of the current study was to investigate whether vocal variability could predict the 

degree of sensorimotor learning that occurs when participants are exposed to FAF. During this 

study participants produced vocalizations while exposed to predictable changes in their auditory 
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feedback. Sensorimotor learning was assessed by evaluating the F0 values for the early portion 

of participants’ vocalizations. Since auditory feedback is delayed by cortical processing, the F0 

at the beginning of participants’ vocalizations can be used to index feedforward control, or the 

extent to which deviant auditory feedback was used for the planning of subsequent speech 

motor commands (Keough & Jones, 2009, 2011, 2013; Hawco et al., 2009). On the other hand, 

by looking at participants’ F0 across each vocalization, it was possible to index the extent to 

which the deviant auditory feedback modulated the ongoing vocalization. 

As expected, median 80 values increased after persistent exposure to the FAF, 

suggesting that sensorimotor learning occurred. More specifically, median 80 values were larger 

in the shift-start, shift-end, and post-shift phases, relative to the baseline phase. The fact that 

the median 80 values changed when the FAF manipulation was introduced, demonstrates that 

the way in which speech motor commands were executed by the feedforward controller 

changed as a result of exposure to FAF. Furthermore, the fact that median 80 values in the post-

shift phase were larger than those recorded in the baseline phase, suggests that the effects of 

sensorimotor learning persisted even when the FAF manipulation was removed. Importantly, the 

variability of participants’ habitual F0 correlated significantly with the size of the after-effects. 

That is, participants who had a higher degree of vocal variability displayed smaller after-effects, 

relative to participants who had a more stable habitual F0. Together, these results suggest that 

persistent exposure to FAF drove sensorimotor learning, but this effect was more evident in 

individuals who possessed a higher degree of vocal stability. 

The fact that individuals with a more stable habitual F0 demonstrated more sensorimotor 

learning is very similar to the findings of Jones and Keough (2008) who found that trained 

singers showed more sensorimotor learning than non-singers when exposed to a persistent FAF 

manipulation. Together these results suggest that vocal stability, which may be intrinsic to the 

speaker, or may be achieved through extensive vocal training, results in an increased weighting 
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of the feedforward control system. As a result of this increased weighting of the feedforward 

control system, information from auditory feedback is more readily used to update the mapping 

of one’s sensorimotor representations. As a result of this remapping, responses to the FAF 

persist, even after the FAF manipulation is removed.  

While it is clear that vocal variability modulated the weighting of the feedforward control 

system, by calculating the size of participants’ compensatory responses using their F0 across 

the vocalization, it was possible to investigate the influence of vocal variability on the weighting 

of the feedback control system. As anticipated, median 1500 values increased following the 

initiation of the FAF manipulation, demonstrating that the FAF elicited compensatory responses. 

These compensatory responses were larger during the shift-end phase, relative to the shift-start 

phase, suggesting that the size of the compensatory response increased over the duration of 

the exposure to the FAF. Interestingly, the F0 of participants’ vocalizations during the test phase 

was larger than their F0 during the baseline phase, but smaller than their F0 during the shift-

start and shift-end phases. This finding suggests that when participants’ auditory feedback was 

returned to normal their F0 decreased, however, there were still residual effects from the 

previous exposure to the FAF. This result demonstrates the interaction between the feedback 

and feedforward controllers. Remapping of the sensory-motor representations as a result of 

exposure to the FAF caused the feedforward controller to produce a vocalization at a higher F0, 

however, once the no-longer-deviant auditory feedback was processed, the feedback controller 

reduced the F0 of the vocalization. In addition to the significant experimental phase effects, the 

variability of participants’ habitual F0 correlated significantly with the size of their compensatory 

responses. This finding is consistent with previous FAF studies that have shown that 

participants who have a higher degree of vocal variability produce larger compensatory 

responses to FAF perturbations (Scheerer & Jones, 2013b) and FAF mid-utterance shifts 

(Scheerer & Jones, 2012). Together, these studies suggest that vocal variability results in 
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increased weighting of the feedback control system for monitoring and maintaining speech 

motor commands. 

Speech motor control involves the combined effort of a feedback and a feedforward 

control system. Computational models (Guenther, 2006; Tourville et al., 2008; Civier et al., 2010, 

Hickok et al., 2011) and experimental evidence (Jones & Munhall, 2005; Jones & Keough, 2008; 

Hawco & Jones, 2009; Keough & Jones, 2009, 2011; Scheerer & Jones, 2012, 2014; Chen et 

al., 2013) suggest that throughout development speech motor control transitions from a 

feedback dominant control system, to feedforward dominant control system. However, the 

factors that dictate the relative weighting of these control systems are unclear. The results of 

this study suggest that vocal variability influences the relative weighting of feedback and 

feedforward control. When individuals are highly variable, they increase the weighting of their 

feedback control system in order to monitor and maintain the fluency of their speech. On the 

other hand, when individuals have more stable speech motor control, they increase the 

weighting of their feedforward control system, as the information provided by auditory feedback 

is less imperative for the production of fluent speech. 

Study 6: The Predictability of Frequency-Altered Auditory Feedback Changes the 

Weighting of Feedback and Feedforward Input for Speech Motor Control.

Published as:

Scheerer, N.E., & Jones, J.A. (2014). The predictability of frequency-altered auditory feedback 

changes the weighting of feedback and feedforward input for speech motor control. 

European Journal of Neuroscience, 40(12), 3793-3806. 

�123



Sensory feedback plays a crucial role in the regulation and planning of our movements, 

and allows us to produce fluid movements despite our constantly changing environment (Bays & 

Wolpert, 2006). As sensory feedback plays a crucial role in the regulation of voluntary 

movements, an understanding of how the information from sensory feedback is used to modify 

ongoing and future movements is paramount to the understanding of these sensorimotor 

interactions. Previous studies have demonstrated that vocal and ERP responses to FAF are 

modulated both by the prediction created by one’s sensorimotor representations (Houde et al., 

2002; Heinks-Maldonado et al., 2005, 2006; Scheerer et al., 2013a) and by the predictability of 

experimentally induced manipulations of the direction (Korzyukov et al., 2012) and latency 

(Burnett, McCurdy, & Bright, 2008; Chen et al., 2012a) of feedback perturbations. Together, 

these studies suggest that being able to predict the properties of upcoming auditory feedback 

results in a decreased reliance on feedback control, and smaller responses. However, it is 

currently unknown whether being able to predict the magnitude of experimentally induced 

feedback errors influences both behavioural and neural responses to these errors. In this 

experiment individuals produced vocalizations while being exposed to blocks of FAF 

perturbations that were either predictable in magnitude (consistently either 50 or 100 cents) or 

unpredictable in magnitude (50 and 100 cent perturbations varying randomly within each 

vocalization). If, as expected, vocal and neural responses differ as a function of stimulus 

predictability, these results would suggest that the weighting of the feedback and feedforward 

speech motor control systems is influenced by the predictability of the magnitude of auditory 

feedback errors.

Abstract 

Speech production requires the combined effort of a feedback control system driven by 

sensory feedback, and a feedforward control system driven by internal models. However, the 
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factors that dictate the relative weighting of these feedback and feedforward control systems are 

unclear. In this event-related potential (ERP) study, participants produced vocalizations while 

being exposed to blocks of frequency-altered feedback (FAF) perturbations that were either 

predictable in magnitude (consistently either 50 or 100 cents) or unpredictable in magnitude (50 

and 100 cent perturbations varying randomly within each vocalization). Vocal and P1–N1–P2 

ERP responses revealed decreases in the magnitude and trial-to-trial variability of vocal 

responses, smaller N1 amplitudes, and shorter vocal, P1 and N1 response latencies following 

predictable FAF perturbation magnitudes. In addition, vocal response magnitudes correlated 

with N1 amplitudes, vocal response latencies, and P2 latencies. This pattern of results suggests 

that after repeated exposure to predictable FAF perturbations, the contribution of the 

feedforward control system increases. Examination of the presentation order of the FAF 

perturbations revealed smaller compensatory responses, smaller P1 and P2 amplitudes, and 

shorter N1 latencies when the block of predictable 100-cent perturbations occurred prior to the 

block of predictable 50-cent perturbations. These results suggest that exposure to large 

perturbations modulates responses to subsequent perturbations of equal or smaller size. 

Similarly, exposure to a 100-cent perturbation prior to a 50-cent perturbation within a 

vocalization decreased the magnitude of vocal and N1 responses, but increased P1 and P2 

latencies. Thus, exposure to a single perturbation can affect responses to subsequent 

perturbations.

Introduction

In everyday life we face the challenge of having to function in dynamic and unpredictable 

surroundings. Despite this challenge, with the aid of sensory feedback we are able to regulate 

and successfully plan the execution of our movements, leading to fluid interactions within our 

environment (Bays & Wolpert, 2006). As sensory feedback plays a crucial role in the regulation 
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of voluntary movements, an understanding of how the information from sensory feedback is 

used to modify ongoing and future movements is paramount to the understanding of these 

sensorimotor interactions. Specifically, in the study of speech motor control, it is important to 

understand how auditory feedback is used to regulate future and ongoing speech motor 

commands in order to maintain fluent speech.

Early in speech development, infants rely heavily on auditory feedback to explore the 

relationship between articulator movements and the resultant sounds (Bailly, 1997; Callan et al., 

2000; Jones & Munhall, 2000, 2002; Guenther, 2006; Civier et al., 2010). As development 

progresses, associations between the environment, musculature, and motor commands, as well 

as the sensory consequences of the motor commands required to perform speech-related 

movements are learned, establishing sensorimotor representations (Civier et al., 2010). These 

sensorimotor representations support the speech motor control system by predicting the 

outcome of speech-related movements and providing internal feedback to the planning and 

control subsystems (Miall & Wolpert, 1996; Kawato, 1999; Jones & Munhall, 2000, 2002, 2005; 

Jones & Keough, 2008). This internal feedback helps the motor control system to plan and 

regulate future movements, without relying on peripheral sensory feedback, which is generally 

not available for at least 80 ms after the speech movements are performed (Beal et al., 2011). In 

order to accommodate the growth of the articulators, vocal folds, and musculature, as well as 

changes in lung capacity, these sensorimotor representations must remain plastic throughout 

development (Guenther, 2006). However, empirical evidence suggests that as development 

progresses individuals rely less on auditory feedback, and more on sensorimotor 

representations (Liu et al., 2010a; Scheerer et al., 2013b).

Accordingly, computational models of speech motor control (e.g. the directions into 

velocities of the articulators model; Guenther, 2006; Tourville et al., 2008; Civier et al., 2010) 

and experimental evidence (e.g. Jones & Munhall, 2005; Jones & Keough, 2008; Hawco & 
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Jones, 2009; Keough & Jones, 2009, 2011; Scheerer & Jones, 2012) suggest that fluent speech 

production relies on the combination of a feedback control system, driven by sensory feedback, 

and a feedforward control system, driven by sensorimotor representations. The feedforward 

control system is necessary for maintaining fluent speech, as strict reliance on the feedback 

control system would induce disfluencies during speech production (Houde et al., 2002; 

Guenther, 2006; Civier et al., 2010; Perkell, 2012). On the other hand, the feedback control 

system is crucial for detecting and correcting speech production errors, and for providing 

feedback to update the mapping of the sensorimotor representations (Civier et al., 2010). 

However, it is currently unclear what factors dictate the relative weighting of feedback and 

feedforward input for speech motor control.

The importance of auditory feedback for speech motor control is often investigated with 

the frequency-altered feedback (FAF) paradigm. Typical FAF experiments involve manipulating 

the fundamental frequency (F0) of an individual’s vocalization, and instantaneously presenting 

the altered auditory feedback back to the individual through headphones (Elman, 1981; Burnett 

et al., 1997). FAF is perceived by speakers as an error in their vocal pitch production, thus upon 

exposure to FAF, speakers tend to compensate, or shift their vocal pitch in the opposite direction 

of the manipulation. However, this compensatory response is often only a fraction of the size of 

the manipulation. For example, brief 100–500 ms auditory feedback perturbations that are 100 

cents (one semitone) in magnitude have consistently been shown to elicit responses that are < 

50 cents in magnitude (Burnett et al., 1997, 1998; Liu et al., 2011; Korzyukov et al., 2012b; 

Scheerer et al., 2013a,b), with responses as small as 8 cents having been reported (Scheerer et 

al., 2013a). As the compensatory responses are often only a fraction of the size of the 

manipulation, it has been suggested that these compensatory responses play a role in 

stabilizing voice F0 around a desired target (Hain et al., 2000; Natke et al., 2003; Hawco & 

Jones, 2009). These partial compensatory responses also highlight the fact that auditory 
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feedback is not the sole input to the speech motor control system; somatosensory input also 

facilitates fluent speech motor control (Tremblay, Shiller, & Ostry, 2003; Lametti, Nasir, & Ostry, 

2012). Importantly, by measuring compensatory responses to FAF, it is possible to index the 

relative contribution of information from auditory feedback to ongoing speech production.

One factor that has been shown to influence the size of compensatory responses to FAF, 

and has been implicated in the weighting of feedback relative to feedforward input, is vocal 

variability (Scheerer & Jones, 2012; Scheerer et al., 2013b). Scheerer & Jones (2012) 

investigated the relationship between vocal variability and compensatory responses to FAF. 

Scheerer and Jones (2012) found that individuals with more variable vocal pitch, produced 

larger compensatory responses to FAF. These results suggested that less consistent vocal 

output led to an increased reliance on feedback input for monitoring and maintaining speech 

motor control. As a result of this increased reliance on auditory feedback, these individuals 

became more susceptible to deviant auditory feedback. On the other hand, the results also 

suggested that individuals with more consistent vocal output were less susceptible to deviant 

auditory feedback. For this reason, the authors concluded that vocal consistency (typically 

achieved as individuals develop, or through intense vocal training) contributes to the internal 

model’s ability to reliably predict the sensory consequences of upcoming motor movements. 

When individuals reliably predict the sensory consequences of their motor movements, the 

weighting of their feedforward control system is increased. For this reason, individuals with 

increased vocal consistency are less susceptible to deviant auditory feedback, resulting in 

smaller vocal responses when auditory feedback is altered.

As the ability to predict future events increases as events become more frequent and 

consistent, it is reasonable to expect that varying any aspect of the sensory or motor system in 

a predictable manner may result in increased weighting of feedforward input, and habituated 

responses to deviant auditory feedback. For example, in a study by Burnett and colleagues 
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(2008), the effects of temporal and direction predictability on vocal F0 responses was 

investigated. During this experiment, participants performed a button press to elicit a FAF 

perturbation as they vocalized a vowel sound. This button press resulted in either a FAF 

perturbation that occurred immediately, and was thus temporally predictable, or a FAF 

perturbation that occurred after a random delay. In addition, the FAF perturbation was either 

always upwards, or varied randomly between upwards and downwards, depending on the 

condition. Direction predictability was not found to influence vocal responses, however, 

increased temporal predictability resulted in faster vocal responses. These results indicate that 

predictable changes to some aspects of auditory feedback may result in modified vocal 

responses, suggesting that learning has occurred. However, the extent to which the 

predictability of FAF perturbation magnitudes can guide learning in dynamic environments, and 

thus alter responses to brief perturbations of auditory feedback, is currently unclear.

The influence of learning on the speech motor control system is often evaluated by 

monitoring auditory–cortical processing using electroencephalography (EEG) or 

magnetoencephalography responses. In previous studies, it has been shown that the N1 event 

related potential (ERP), and its magnetic equivalent the M1, are maximally attenuated during 

the perception of one’s own unaltered speech, relative to FAF (Heinks-Maldonado et al., 2005, 

2006), alien speech (Heinks-Maldonado et al., 2005, 2006), and the playback of self-produced 

speech (Houde et al., 2002; Beal et al., 2011). In addition, single-cell recordings in the auditory 

cortex of neurosurgery patients (Greenlee et al., 2011; Chang et al., 2013) and marmoset 

monkeys (Eliades & Wang, 2005, 2008) have revealed suppressed neural activity during self-

produced speech, relative to the playback of self-produced speech. It has been suggested that 

this neural modulation observed in humans and marmoset monkeys reflects suppression in the 

auditory cortex during the perception of one’s own unaltered speech, as a result of a match 

between perceived and predicted sensory feedback. On the other hand, increases in activation 
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when sensory feedback is incongruent with the predicted feedback is thought to reflect a 

violation of the prediction created by the sensorimotor representation (Heinks-Maldonado et al., 

2006; Beal et al., 2011). In line with this notion, Sitek et al. (2013) found that, relative to 

instances where the variability of vocalizations were high from trial to trial, stable vocalizations 

resulted in suppressed N1 amplitudes. These studies suggest that when auditory feedback is 

predictable, fewer neural resources are dedicated to processing auditory feedback, reducing the 

size of the N1 component. On the other hand, when auditory feedback is novel or unpredictable, 

more neural resources are dedicated to the processing of auditory feedback.

Similarly to the N1 component, previous FAF studies have shown that the amplitude of 

the P2 ERP component increases linearly with increasing feedback perturbation magnitudes 

(Behroozmand et al., 2009; Scheerer et al., 2013a). As the size of the P2 response varies with 

the size of the feedback manipulation, it has been suggested that the P2 component indexes 

the size of the mismatch between the perceived and predicted auditory feedback (Scheerer et 

al., 2013a). Together, these results suggest that the N1 and P2 neural responses are modulated 

by the prediction created by the sensorimotor representation. Furthermore, these results 

suggest that any predictable aspects of auditory feedback may have the potential to habituate 

ERP responses, meaning that auditory learning may be assessed by monitoring changes in 

these ERP responses.

Korzyukov et al. (2012b) exposed participants to blocks of FAF perturbations that were 

either predictable in direction or varied randomly in direction. They found that predictable 

perturbations led to a reduction of the amplitude of the N1 ERP component, relative to the 

unpredictable perturbations. Similarly, Chen et al. (2012a) found that varying the temporal 

predictability of FAF perturbations modified ERP responses. The results of their study indicated 

that temporally predictable auditory feedback perturbations led to suppressed P2 ERP 

responses, relative to temporally unpredictable auditory feedback perturbations. Together, these 
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results suggest that foreknowledge of the properties of an upcoming auditory perturbation 

results in smaller ERP responses to that perturbation, relative to unexpected auditory 

perturbations.

Previous studies have demonstrated that vocal and ERP responses to FAF are 

modulated both by the prediction created by the sensorimotor representation (Houde et al., 

2002; Heinks-Maldonado et al., 2005, 2006; Scheerer et al., 2013a) and by the predictability of 

experimentally induced manipulations of the direction (Korzyukov et al., 2012b) and the latency 

(Burnett et al., 2008; Chen et al., 2012a) of feedback perturbations. Together, these studies 

suggest that being able to predict the properties of upcoming auditory feedback results in 

decreased reliance on feedback control, and smaller responses. However, it is currently 

unknown whether being able to predict the magnitude of experimentally induced feedback 

errors influences both behavioural and neural responses to these errors. For this reason, in this 

experiment, participants produced vocalizations while being exposed to blocks of FAF 

perturbations that were either predictable in magnitude (consistently either 50 or 100 cents) or 

unpredictable in magnitude (50 and 100 cent perturbations varying randomly within each 

vocalization). As both behavioural and neural responses to FAF have shown signs of habituation 

following the presentation of repetitive predictable stimuli, we expected that when the magnitude 

of the feedback perturbations was predictable, vocal and ERP responses would be smaller, as 

the predictable nature of the stimuli would result in increased weighting of the feedforward 

control system. On the other hand, when feedback perturbation magnitudes varied randomly, 

the unpredictable nature of the sensory feedback would drive an increase in the weighting of the 

feedback control system, allowing for rapid correction of auditory feedback errors. Accordingly, 

we expected that predictable feedback perturbation magnitudes would elicit smaller vocal and 

ERP responses than randomly varying feedback perturbation magnitudes, reflecting habituation 

as a result of the repetitive and predictable nature of the stimuli. If, as expected, vocal and 

�131



neural responses differed as a function of stimulus predictability, these results would suggest 

that the weighting of the feedback and feedforward speech motor control systems is influenced 

by the predictability of the magnitude of auditory feedback errors.

Methods

i. Participants

Thirty-six participants between the ages of 18 and 25 years [mean, 19.33 years; SD, 

1.85 years; 27 females and nine males] participated in this study. Participants were right-handed 

native Canadian English speakers, and did not speak a tonal language. Prior to testing, 

participants’ hearing was assessed with a diagnostic audiometer (Midimate 602; Madsen 

Electronics, Minneapolis, MN, USA) to ensure hearing thresholds of ≤20 dB HL at 250, 500, 

1000, 2000, 4000 and 8000 Hz. Participants also completed a music experience questionnaire, 

and two participants reported having received formal vocal training. Participants gave informed 

consent and received course credit or financial compensation for their participation. All 

procedures used in this study were approved by the Wilfrid Laurier University Research Ethics 

Board, and were in accordance with the World Medical Association 2013 Declaration of Helsinki.

ii. Procedure

Participants vocalized the vowel sound /a/, 120 times over four blocks, while being 

exposed to unaltered feedback and FAF. Participants were cued to start vocalizing by a green 

box on a computer screen, while a red box indicated that they should stop vocalizing. Each 

experimental block contained 30 trials, in which the participants’ auditory feedback was 

perturbed either 50 or 100 cents downwards, four times per vocalization, or left unaltered. Each 

perturbation had a fixed duration of 200 ms and occurred with an inter-stimulus interval of 700–

900 ms, resulting in vocalizations that were ~5 s in length. The four experimental blocks were 
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divided into two conditions: the predictable condition, in which perturbation magnitudes were 

consistently either 50 or 100 cents within each vocalization, and the unpredictable condition, in 

which perturbation magnitudes were different combinations of 50 and 100 cents within each 

vocalization (see Figure 16). The 50-cent predictable block contained 25 trials in which the 

participant’s voice was perturbed 50 cents downwards four times per vocalization, and five trials 

in which the participant’s voice was left unaltered, but sampled four times per vocalization. This 

resulted in 100 50-cent predictable trials, and 20 unaltered predictable trials. Similarly, the 100-

cent predictable block contained 25 trials in which the participant’s voice was perturbed 100 

cents downwards four times per vocalization, and five trials in which the participant’s voice was 

left unaltered, but sampled four times per vocalization. This resulted in 100 100-cent predictable 

trials, and 20 unaltered predictable trials. The two unpredictable blocks each contained 24 trials 

in which the participant’s voice was perturbed 50 and 100 cents downwards, in different 

combinations, resulting in a total of four perturbations per vocalization, while the other six 

vocalizations were left unaltered. A latin-square was used to determine all possible 

combinations of four 50-cent or 100-cent perturbations for the unpredictable condition. This 

resulted in 16 different combinations of 50- and 100-cent perturbations. Each combination of 50- 

and 100-cent perturbations occurred three times per experimental session, and was 

pseudorandomly presented throughout the two unpredictable experimental blocks. This resulted 

in 96 50-cent unpredictable trials, 96 100-cent unpredictable trials, and 48 unaltered 

unpredictable trials, split between the two blocks of unpredictable trials. FAF and unaltered trials 

were pseudorandomly presented within each block. The block order for all participants was as 

follows: unpredictable, predictable, unpredictable, and predictable. However, the presentation 

order of the predictable blocks was counterbalanced across participants.
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Figure 16: Schematic of the experimental design. Participants were exposed to three different 

FAF manipulations. During the predictable 50- and 100-cent conditions, participants were 

exposed to four 200-ms auditory feedback perturbations within each vocalization that were 

predictable in magnitude, either 50 cents downwards (top), or 100 cents downwards (middle). 

During the unpredictable condition, participants were exposed to four 200-ms auditory feedback 

perturbations within each vocalization that were one of 16 combinations of 50- and 100-cent 

perturbations.
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iii. Apparatus

Participants wore a HydroCel GSN 64 1.0 electrode cap (Electrical Geodesics, Eugene, 

OR, USA), Etymotic ER-3 insert headphones (Etymotic Research, Elk Grove Village, IL, USA), 

and a headset microphone (Countryman Isomax E6 Omnidirectional Microphone), and were 

tested in an electrically shielded booth (Raymond EMC, Ottawa, ON, Canada). The onset and 

offset of each pitch perturbation was controlled by MAX/MSP 4 (Cycling ‘74, San Francisco, CA, 

USA). Voice signals were sent to a mixer (Mackie Onyx 1220; Loud Technologies, Woodinville, 

WA, USA), followed by a digital signal processor (VoiceOne; T.C. Helicon, Victoria, BC, 

Canada), which altered the fundamental frequency of the voice signal. The altered voice signal 

was then presented back to the participant through headphones as FAF. The unaltered voice 

signal was digitally recorded (HD-P2; TASCAM, Montebello, CA, USA) at a sampling rate of 

44.1 kHz for later analysis.

iv. Behavioural Recording and Analysis

The unaltered voice signal was segmented into separate vocalizations, and F0 values 

were calculated for each vocalization with the SWIPE algorithm (Camacho & Harris, 2008). 

Each vocalization was then segmented on the basis of the onset of the four perturbations. F0 

values for each of the four perturbed segments were normalized to the baseline period, which 

was the portion of the segment 200 ms prior to the onset of the perturbation, by converting hertz 

values to cents with the formula:

 

Cents = 100 (12 log2 F/B)

 where F is the F0 value in hertz, and B is the mean frequency of the baseline period.
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Cent values were calculated for the 200 ms prior to the perturbation (the baseline period) 

and the 1000 ms after the perturbation. An averaged F0 trace was constructed for each 

perturbation magnitude, that is, 0 (unaltered), 50, and 100 cents, in each condition 

(unpredictable and predictable) for each participant. Additional F0 traces were also constructed 

for the unpredictable perturbation condition to determine whether the magnitude of the 

preceding perturbation modulated the size of the response to the subsequent perturbation. This 

resulted in four conditions: 50 cents preceded by 50 cents, 50 cents preceded by 100 cents, 100 

cents preceded by 50 cents, and 100 cents preceded by 100 cents.

Vocal responses were quantified by examining the response magnitude and latency. The 

magnitude of the compensatory response was determined by finding the point at which the 

participant’s averaged F0 trace deviated maximally from the baseline mean, and the latency 

was calculated as the time at which this maximal deviation occurred. In addition, to index the 

variability in response magnitudes, the SD of the response magnitude was calculated for each 

experimental condition.

v. ERP Recording and Analysis

EEG signals were recorded from 64 scalp electrodes and referenced online to the vertex 

(Cz) electrode. Data were bandpass-filtered (1–30 Hz) and digitized (12-bit precision) at 1000 

Hz. Electrode impedances were maintained below 50 kΩ throughout the duration of the 

experiment (Ferree et al., 2001). After data acquisition, EEG voltage values were re-referenced 

to the average voltage across all electrode sites. The data were then epoched into segments 

from 100 ms before the perturbation onset to 500 ms after the perturbation onset. Data were 

analyzed offline for movement artifacts, and any segment with voltage values exceeding 55 μV 

of the moving average over an 80-ms span were rejected. In addition, a visual inspection of all 

data was completed to ensure that artifacts were being adequately detected. Eight subjects 
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were eliminated from further analyses, as they had <50% of their trials retained across all 

perturbation magnitudes. Across all other participants, on average, 84–92% of trials were 

retained for each perturbation magnitude.

Nine electrodes were included in the analysis: FC1, FCz, FC2, C1, Cz, C2, CP1, Pz, and 

CP2. These electrodes were then grouped into three electrode sites: left (CP1, C1, and FC1), 

medial (FCz, Cz, and Pz), and right (FC2, C2, and CP2). These electrodes were chosen on the 

basis of visual inspection of the regions showing the most robust P1–N1–P2 components, as 

well as previous research suggesting that fronto-medial and centro-frontal regions are optimal 

for recording P1– N1–P2 responses to FAF (Behroozmand et al., 2009; Chen et al., 2012a; 

Korzyukov et al., 2012a; Scheerer et al., 2013a,b).

For each participant, averaged waveforms were created for the unaltered and the FAF 

conditions for each electrode. Grand-averaged waveforms were created for all conditions by 

averaging the data from all participants for each electrode, and this was followed by baseline 

correction. For all average files for each participant, the peak amplitude and the latency of the 

peak amplitude were calculated for the ERP components of the P1–N1–P2 complex. On the 

basis of visual inspection of the latency of the most prominent ERP peaks, these components 

were extracted at time windows from 50 to 100 ms, from 100 to 200 ms, and from 200 to 300 

ms, respectively.

vi. Statistical analyses

Preliminary statistical analyses were conducted to investigate the behavioural and ERP 

responses in the 0-cent (unaltered) conditions. Responses were not found to vary as a function 

of experimental condition (unpredictable vs. predictable), so all control responses were 

collapsed into a single category.
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In order to investigate the effect of the predictability of the perturbation magnitude within 

a vocalization, five experimental categories were examined: 0 cents (unaltered), 50 cents 

(unpredictable), 50 cents (predictable), 100 cents (unpredictable), and 100 cents (predictable). 

In addition, to investigate whether the magnitude of the preceding perturbation modulated the 

size of the response to the subsequent perturbation, four experimental categories were 

examined: 50-cent perturbations preceded by a 50-cent perturbation, 50-cent perturbations 

preceded by a 100-cent perturbation, 100-cent perturbations preceded by a 50-cent 

perturbation, and 100-cent perturbations preceded by a 100-cent perturbation.

To examine the influence of the predictability of the magnitude of perturbations within a 

vocalization, SPSS (v. 19.0) was used to conduct a 5 (experimental condition) x 2 (block order) 

repeated-measures ANOVA (RM-ANOVA) on vocal response magnitudes and the variability of 

vocal response magnitudes. A 5 (experimental condition) x 3 (electrode site) x 2 (block order) 

RM-ANOVA was conducted on the amplitudes of the P1–N1–P2 complex. A 4 (experimental 

condition) x 2 (block order) RM-ANOVA was also conducted on the latencies of the vocal 

responses, and a 4 (experimental condition) x 3 (electrode site) x 2 (block order) RM-ANOVA 

was conducted on the latencies of the P1–N1–P2 ERP components. The unaltered (0-cent) 

condition was not analyzed with regards to ERP and vocal latencies, as stimuli were not 

presented during the unaltered trials, thus data were randomly sampled with no true reference, 

rendering latency information meaningless.

Similarly, to assess whether responses to 50- and 100-cent perturbations were 

modulated by the magnitude of the preceding perturbation, a 4 (experimental category) x 2 

(block order) RM-ANOVA was conducted on the amplitude of the vocal response magnitudes. A 

4 (experimental category) x 3 (electrode site) x 2 (block order) RM-ANOVA was conducted on 

P1–N1–P2 ERP amplitudes and latencies.
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Correlational analyses were also performed on both the data from the perturbation 

magnitude predictability manipulation and the data from the preceding perturbation magnitude 

manipulation, in order to investigate the relationship between the behavioural and ERP 

responses.

For all RM-ANOVAs, post hoc least significant difference tests were conducted to 

examine differences in the recorded responses as a function of the experimental condition. The 

Greenhouse–Geisser (Greenhouse & Geisser, 1959) correction was used in instances where 

Mauchley’s assumption of sphericity was violated. However, original degrees of freedom are 

reported for ease of interpretation.

Results

i. Vocal Responses

Perturbation Magnitude Predictability Effects 

The RM-ANOVA conducted to investigate the effect of varying the predictability of 

perturbation magnitudes within a vocalization on vocal response magnitude showed a 

significant main effect of experimental condition, F4,104 = 13.036, P < 0.001 (see Figure 17). 

There was also a main effect of block order, F1,26 = 13.113, P = 0.001, because, overall, 

participants had larger vocal responses when the 50-cent predictable block occurred prior to the 

100-cent predictable block. However, the interaction between experimental condition and block 

order was non-significant, F4,104 = 1.618, P > 0.05. Pairwise comparisons indicated that all FAF 

conditions elicited significantly larger vocal responses than the unaltered condition (P < 0.05). In 

addition, the 50-cent predictable condition elicited significantly smaller vocal responses than all 

other FAF conditions (P < 0.05), and the 50-cent unpredictable condition elicited smaller vocal 

responses than the 100-cent unpredictable condition (P < 0.05), but not the 100-cent 
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predictable condition (P > 0.05). Finally, the 100-cent unpredictable condition elicited 

significantly larger vocal responses than all other conditions (P < 0.01).

A RM-ANOVA was also conducted to investigate the effect of varying the predictability of 

perturbation magnitudes within a vocalization, as well as block order, on the variability of 

response magnitudes. A main effect of experimental block, F4,104 = 6.426, P < 0.001, was found 

(see Figure 18); however, the effect of block order, F1,26 = 1.931, P > 0.05, and the interaction 

between experimental block and block order were non-significant, F4,104 = 1.636, P > 0.05. 

Pairwise comparisons indicated that the magnitudes of the vocal responses in the 100-cent 

unpredictable block were more variable than in all other experimental blocks (P < 0.05), and that 

the magnitudes of the vocal responses in the 50-cent unpredictable block were also more 

variable than in the 100-cent predictable block (P < 0.05).

The RM-ANOVA investigating the influence of experimental condition on vocal response 

latencies showed a main effect of experimental condition, F3,78 = 2.987, P < 0.05. However, the 

main effect of block order, F1,26 = 3.245, P > 0.05, and the interaction between experimental 

condition and block order failed to reach significance, F3,78 = 0.585, P > 0.05. Pairwise 

comparisons indicated that response latencies were significantly shorter following predictable 

50-cent perturbations relative to those following 100-cent perturbations in both conditions (P < 

0.05).
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Figure 17: Averaged vocal response magnitudes in cents for all participants as a function of 

perturbation category (0, unaltered; 50NR, 50-cent predictable perturbations; 50R, 50-cent 

unpredictable perturbations; 100NR, 100-cent predictable perturbations; and 100R, 100-cent 

unpredictable perturbations) and block order (50 NR first, the block of 50-cent predictable 

perturbations prior to the block of 100-cent perturbations; and 100 NR first, 100-cent predictable 

perturbations prior to the block of 50-cent predictable perturbations).
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Figure 18: Averaged response magnitude variability in cents for all participants as a function of 

perturbation category (50NR, 50-cent predictable perturbations; 50R, 50-cent unpredictable 

perturbations; 100NR, 100-cent predictable perturbations; and 100R, 100-cent unpredictable 

perturbations).
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Preceding Perturbation Magnitude Effects. 

An RM-ANOVA investigating whether vocal response magnitudes were modulated by 

the size of the preceding perturbation showed a main effect of preceding perturbation 

magnitude, F3,78 = 13.524, P < 0.001 (see Figure 19) and a main effect of block order, F1,26 = 

8.992, P < 0.01. However, the interaction between preceding perturbation magnitude and block 

order was non-significant F3,78 = 0.869, P > 0.05. Pairwise comparisons indicated that 100-cent 

perturbations always elicited larger vocal responses than 50-cent perturbations, regardless of 

the size of the previous perturbation (P < 0.05). In addition, 50-cent perturbations following 50-

cent perturbations elicited larger responses than 50-cent perturbations following 100-cent 

perturbations (P < 0.05), and 100-cent perturbations following 50-cent perturbations elicited 

larger responses than 100-cent perturbations following 100-cent perturbations, although this 

result was only marginally significant (P = 0.078). Consistent with the perturbation magnitude 

predictability effects, pairwise comparisons indicated that the block order effect was driven by 

larger vocal responses overall when the 50-cent predictable block occurred prior to the 100-cent 

predictable block.
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Figure 19: Averaged vocal response magnitudes in cents for all participants as a function of 

within-vocalization perturbation exposure (50 after 50, 50-cent unpredictable perturbations 

following 50-cent unpredictable perturbations; 50 after 100, 50-cent unpredictable perturbations 

following 100-cent unpredictable perturbations; 100 after 50, 100-cent unpredictable 

perturbations following 50-cent unpredictable perturbations; and 100 after 100, 100-cent 

unpredictable perturbations following 100-cent unpredictable perturbations) and block order (50 

NR first, the block of 50-cent predictable perturbations prior to the block of 100-cent 

perturbations; and 100 NR first, 100-cent predictable perturbations prior to the block of 50-cent 

predictable perturbations).
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ii. ERP Results

P1 Amplitudes and Latencies

Perturbation Magnitude Predictability Effects 

A three-way RM-ANOVA was conducted to investigate the influence of experimental 

condition, electrode site, and block order on P1 amplitudes. The main effects of experimental 

condition, F4,104 = 0.684, P > 0.05, electrode site, F2,52 = 0.683, P > 0.05, and block order, F1,26 = 

0.020, P > 0.05, all failed to reach significance. The interaction between experimental condition 

and block order was significant, F4,104 = 3.556, P < 0.01; however, all other interactions failed to 

reach significance (P > 0.05). Follow-up one-way RM-ANOVAs were conducted to investigate 

the influence of experimental condition on P1 amplitudes for each block order separately. 

Experimental condition significantly modulated P1 amplitudes when the 50-cent predictable 

block occurred prior to the 100-cent predictable block, F4,52 = 2.733, P < 0.05, but not when the 

100-cent predictable block occurred prior to the 50-cent predictable block, F4,52 = 1.330, P > 

0.05. Furthermore, pairwise comparisons indicated that for the 50-cent predictable first block 

order, the 100-cent unpredictable perturbations resulted in larger P1 amplitudes than the 0- and 

50-cent predictable perturbations, and that the 100-cent predictable perturbations resulted in 

larger P1 amplitudes than the 50-cent predictable perturbations (P < 0.05; see Figure 20).

The three-way RM-ANOVA investigating the influence of experimental condition, 

electrode site and block order on P1 latency showed a main effect of experimental condition, 

F3,78 = 5.239, P < 0.01. However, all other main effects and interactions failed to reach 

significance (P > 0.05). Pairwise comparisons investigating latency differences across the 

experimental conditions indicated that the 50-cent unpredictable perturbations resulted in later 

P1s than the other FAF conditions (P < 0.05).
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Figure 20: ERP waveforms averaged across all participants and all electrodes [left (CP1, C1, 

and FC1), medial (FCz, Cz, and Pz), and right (FC2, C2, and CP2)]. Separate lines represent 

each of the five perturbation categories (unaltered, 50-cent predictable perturbations, 50-cent 
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unpredictable perturbations, 100-cent predictable perturbations, and 100-cent unpredictable 

perturbations). (A) ERP responses when the block of 50-cent predictable perturbations was 

presented prior to the block of 100-cent perturbations. (B) ERP responses when the block of 

100-cent predictable perturbations was presented prior to the block of 50-cent predictable 

perturbations. (C) The topographical scalp distribution of ERPs in all five experimental 

conditions, collapsed across the two block orders. The top row (P1) represents cortical activity 

between 50 and 100 ms, the middle row (N1) represents cortical activity between 100 and 200 

ms and the bottom row (P2) represents cortical activity between 200 and 300 ms following the 

feedback perturbation.

Preceding Perturbation Magnitude Effects 

A three-way RM-ANOVA investigating the influence of the magnitude of the preceding 

perturbation, electrode site, and block order on P1 amplitudes following a subsequent 

perturbation failed to show any main effects or interactions (P > 0.05).

A three-way RM-ANOVA investigating the influence of the magnitude of the preceding 

perturbation, electrode site, and block order on the latency of the P1 peak following a 

subsequent perturbation showed a main effect of preceding perturbation magnitude, F3,78 = 

4.573, P < 0.01. All other main effects and interactions failed to reach significance (P > 0.05). 

Pairwise comparisons investigating latency differences across the preceding magnitude 

conditions indicated that 100-cent perturbations after 100-cent perturbations elicited faster 

responses than all other preceding magnitude conditions (P < 0.05).
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N1 Amplitudes and Latencies

Perturbation Magnitude Predictability Effects 

A three-way RM-ANOVA was conducted to investigate the influence of experimental 

condition, electrode site and block order on N1 amplitudes. Significant main effects of 

experimental condition, F4,104 = 6.313, P = 0.001, and electrode site, F2,52 = 2.063, P < 0.05, 

were found (see Figure 20). However, the main effect of block order and all interactions failed to 

reach significance (P > 0.05). Pairwise comparisons indicated that all FAF conditions elicited 

significantly larger N1 amplitudes (absolute value) than the unaltered condition. In addition, the 

100-cent unpredictable condition elicited significantly larger N1 amplitudes (absolute value) than 

all other conditions (P < 0.05). With regard to electrode site, smaller N1 amplitudes were 

recorded from right lateralized electrode sites relative to central and left electrode sites (P < 

0.05).

The three-way RM-ANOVA investigating the influence of experimental condition, 

electrode site and block order on N1 latency revealed main effects of experimental condition, 

F3,78 = 4.698, P < 0.01 (see Figure 20), and block order, F1,26 = 8.690, P = 0.01. However, the 

main effect of electrode site and all interactions failed to reach significance (P > 0.05). Pairwise 

comparisons indicated that N1 latencies were shorter following 50-cent random perturbations 

relative to all other perturbations (P < 0.05). Post hoc comparisons investigating block order 

indicated that participants who were exposed to the 50-cent predictable condition prior to the 

100-cent predictable condition had later N1 latencies in all experimental conditions relative to 

participants who were exposed to the 100-cent predictable condition first.

Preceding perturbation magnitude effects. 

A three-way RM-ANOVA investigating the influence of the magnitude of the preceding 

perturbation, electrode site and block order on N1 amplitudes following a subsequent 
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perturbation showed main effects of preceding perturbation magnitude, F3,78 = 3.136, P < 0.05 

(see Figure 21), and electrode site, F2,52 = 3.737, P < 0.05. However, all other main effects and 

interactions failed to reach significance (P > 0.05). Pairwise comparisons indicated that 100-

cent perturbations after 50-cent perturbations elicited larger responses than 50-cent 

perturbations, regardless of the magnitude of the preceding perturbation (P < 0.05). Additionally, 

central electrode sites elicited larger N1 amplitudes than right lateralized sites (P = 0.01).

A three-way RM-ANOVA investigating the influence of the magnitude of the preceding 

perturbation, electrode site and block order on the latency of the N1 peak following a 

subsequent perturbation showed a main effect of block order, F1,26 = 5.219, P < 0.05. However, 

all other main effects and interactions failed to reach significance (P > 0.05). Pairwise 

comparisons investigating latency differences across the preceding magnitude conditions 

indicated that overall latencies were longer when the 50-cent predictable condition occurred first 

(P < 0.05).
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Figure 21: ERP waveforms averaged across all participants and all electrodes [left (CP1, C1, 

and FC1), medial (FCz, Cz, and Pz), and right (FC2, C2, and CP2)]. Separate lines represent 

each of the four possible within-vocalization perturbation presentation orders (50 after 50, 50-

cent unpredictable perturbations following 50-cent unpredictable perturbations; 50 after 100, 50-

cent unpredictable perturbations following 100-cent unpredictable perturbations; 100 after 50, 

100-cent unpredictable perturbations following 50-cent unpredictable perturbations; and 100 
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after 100, 100-cent unpredictable perturbations following 100-cent unpredictable perturbations). 

(A) ERP responses when the block of 50-cent predictable perturbations was presented prior to 

the block of 100-cent perturbations. (B) ERP responses when the block of 100-cent predictable 

perturbations was presented prior to the block of 50-cent predictable perturbations. (C) The 

topographical scalp distribution of ERPs in all four experimental conditions, collapsed across the 

two block orders. The top row (P1) represents cortical activity between 50 and 100 ms, the 

middle row (N1) represents cortical activity between 100 and 200 ms and the bottom row (P2) 

represents cortical activity between 200 and 300 ms following the feedback perturbation.

P2 Amplitude and Latencies

Perturbation Magnitude Predictability Effects

A three-way RM-ANOVA was conducted to investigate the influence of experimental 

condition, electrode site, and block order on P2 amplitudes. The interaction between 

experimental condition and block order was significant, F4,104 = 3.745, P < 0.05 (see Figure 20). 

However, all other main effects and interactions failed to reach significance (P > 0.05). Follow-

up one-way RM-ANOVAs were conducted to investigate the influence of experimental condition 

on P2 amplitudes for each block order separately. Experimental condition significantly 

modulated P2 amplitudes when the 50-cent predictable block order occurred prior to the 100-

cent predictable block, F4,52 = 3.640, P < 0.05, but not when the 100-cent predictable block 

occurred prior to the 50-cent predictable block, F4,52 = 0.515, P > 0.05. Furthermore, pairwise 

comparisons indicated that both predictable and unpredictable perturbations elicited larger P2 

amplitudes than the unaltered condition, and that predictable 100-cent perturbations also 

elicited larger P2 amplitudes than both predictable and unpredictable 50-cent perturbations.

The three-way RM-ANOVA investigating the influence of experimental condition, 

electrode site, and block order on P2 latency showed a main effect of electrode site, F2,52 = 
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7.760, P = 0.004. However, all other main effects and interactions failed to reach significance (P 

> 0.05). Pairwise comparison indicated that P2 responses were later at the right electrode sites 

relative to the central and left sites (P < 0.01).

Preceding perturbation magnitude effects. 

A three-way RM-ANOVA investigating the influence of the magnitude of the preceding 

perturbation, electrode site and block order on P2 amplitudes following the subsequent 

perturbation failed to show any main effects or interactions (P > 0.05).

A three-way RM-ANOVA investigating the influence of the magnitude of the preceding 

perturbation, electrode site, and block order on the latency of the P2 peak following the 

subsequent perturbation found main effects of preceding perturbation magnitude, F3,78 = 3.769, 

P < 0.05, and electrode site, F2,52 = 7.286, P < 0.01. However, the main effect of block order and 

all interactions failed to reach significance (P > 0.05). Pairwise comparisons investigating 

latency differences across the preceding perturbation magnitude conditions indicated that 100-

cent perturbations after 100-cent perturbations elicited faster responses than all other preceding 

perturbation magnitude conditions (P < 0.05). In addition, P2 responses were later at the right 

lateralized electrodes than at the central and left sites (P < 0.05).

iii. Correlational Analyses

Correlational analyses were conducted in order to determine whether P1, N1 or P2 

amplitude and latency modulation was related to changes in vocal response magnitudes and 

latencies. The results indicated that, across the perturbation magnitude predictability conditions, 

vocal response magnitudes and N1 amplitudes, r = 0.166, P(two-tailed) < 0.05, n = 140, and vocal 

response latencies and P2 latencies, r = 0.213, P(two-tailed) < 0.05, n = 112, correlated 

significantly. However, all other correlations failed to reach significance (P > 0.05).
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Discussion

In this study, speakers were exposed to FAF perturbations that were either predictable in 

magnitude or unpredictable in magnitude. Behavioural and neurological responses to these FAF 

perturbations were examined in order to investigate whether being able to predict the magnitude 

of brief (temporally unpredictable) FAF perturbations altered responses to these perceived 

speech production errors.

Overall, the behavioural results indicated that vocal responses to the FAF perturbations 

were influenced by the perturbation magnitude predictability manipulation, as unpredictable 100-

cent perturbations elicited larger vocal responses than all other perturbations. In addition, 

unpredictable 50-cent perturbations elicited larger vocal responses than predictable 50-cent 

perturbations. Although this is the first study to directly investigate how manipulating the 

predictability of FAF perturbation magnitudes within a vocalization influences compensatory 

responses to these perturbations, previous studies have suggested that the magnitude of the 

compensatory response to FAF is related to the prediction created by a sensorimotor 

representation (Heinks-Maldonado et al., 2005, 2006; Beal et al., 2011; Korzyukov et al., 2012b; 

Scheerer et al., 2013a). Our results indicate that, similarly to the modulation by the prediction 

created by the sensorimotor representation, compensatory responses to FAF can be modulated 

by experimentally induced predictability. We hypothesize that when the magnitude of FAF 

perturbations is predictable, the perturbations are more readily distinguished from self-produced 

variability. Following repeated exposure to predictable FAF perturbations, the weighting of 

feedforward input is increased, as the information provided by auditory feedback becomes 

unreliable. As a result of the increased weighting of the feedforward input, individuals are less 

susceptible to deviant auditory feedback, as auditory perturbations are regarded as externally 

induced noise, rather than violations of the prediction created by the internal model. For this 

reason, compensatory responses to predictable FAF perturbations are smaller. Conversely, 
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when FAF perturbation magnitudes are unpredictable, the unpredictable nature of these 

perturbations makes the deviant auditory feedback resemble normal variability in the voice, and 

it becomes difficult to distinguish self-produced variability from the experimentally induced 

perturbations. This increased vocal variability, experimentally induced or otherwise, leads to 

increased weighting of the feedback input. As a result, deviant auditory feedback is processed 

as a violation of the prediction created by the internal model, and compensatory responses are 

initiated in an attempt to minimize the deviation between the perceived auditory feedback and 

the auditory feedback predicted by the internal model. For this reason, compensatory responses 

to unpredictable FAF perturbations are larger. Accordingly, the results of this study indicate that 

both the predictable 50- and 100-cent perturbations elicited smaller vocal responses than the 

unpredictable 100-cent perturbations, and that the predictable 50-cent perturbations also 

resulted in smaller vocal response magnitudes than the unpredictable 50-cent perturbations. 

These results suggest that presenting brief predictable perturbations of auditory feedback may 

result in increased weighting of feedforward input, relative to unpredictable perturbations of 

auditory feedback, and smaller vocal responses.

In addition to modulating vocal response magnitudes, vocal response magnitude 

variability, or the size of compensatory responses from trial to trial, were also found to differ as a 

function of predictability. The variability of the magnitude of the compensatory responses elicited 

by unpredictable 100-cent perturbations was much larger than for all other perturbations. 

Similarly, the variability of vocal response magnitudes elicited by unpredictable 50-cent 

perturbations was larger than the variability of response magnitudes elicited by predictable 100-

cent perturbations. Studies investigating reaching behaviours in variable environments have 

suggested that after exposure to perturbations of unpredictable magnitudes, future sensory 

predictions are based on a moving average of the magnitude of the perturbations experienced 

over the previous few reaches (Thoroughman & Shadmehr, 2000; Scheidt & Dingwell, 2001; 
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Takahashi & Scheidt, 2001). In the case of the unpredictable perturbation magnitudes in this 

study, utilizing information from the previous few perturbations would have resulted in highly 

variable sensory predictions, as the pattern of previously experienced perturbations was 

constantly changing. As a result of these dynamic sensory predictions, the difference between 

the predicted and perceived auditory feedback was constantly changing, resulting in variable 

trial-to-trial compensatory response magnitudes following perturbations that varied randomly in 

magnitude. On the other hand, when individuals were exposed to predictable FAF perturbations, 

increased weighting of the feedforward system would have reduced the influence of the FAF 

perturbations on vocal response magnitudes. Furthermore, as the predictable FAF perturbations 

were not regarded as self-produced, future sensory predictions would not have been influenced 

by the predictable FAF perturbations. As a result, smaller variability in trial-to-trial compensatory 

response magnitudes occurred in the predictable perturbation magnitude conditions.

Vocal response latency was also found to differ as a function of predictability in this 

study. Vocal responses were faster following predictable 50-cent perturbations relative to 100-

cent perturbations, regardless of their predictability. The fact that responses were faster 

following 50-cent predictable perturbations compared to 100-cent unpredictable perturbations is 

consistent with the results of Burnett et al. (2008), who found that temporal predictability 

resulted in faster vocal responses. However, if increased predictability does in fact result in 

faster vocal responses, it is unclear why the 100-cent predictable perturbations did not also 

result in faster vocal responses relative to the unpredictable perturbations.

In addition to modulating behavioural responses, predictability was found to influence 

neural responses indexed by the P1–N1–P2 ERP components. It has previously been shown 

that these ERP components are sensitive to FAF manipulations (Heinks-Maldonado et al., 2005; 

Behroozmand et al., 2009; Scheerer et al., 2013a,b). However, as each component represents 

a different stage of auditory processing, P1–N1–P2 responses to auditory feedback 
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manipulations are not uniform. Accordingly, the results of this study indicate that the patterns of 

ERP responses following predictable and unpredictable FAF perturbations were not uniform.

The P1 ERP component plays a role in detecting early changes in auditory feedback 

(Chait, Simon, & Poeppel, 2004; Nakagawa, Otsuru, Inui, & Kakigi, 2014). Accordingly, 

Scheerer et al. (2013a) found that P1 amplitudes were elicited in an all-or-nothing manner by 

FAF perturbations. For this reason, they suggested that the P1 ERP component is sensitive to 

deviant auditory feedback, but not the specific properties of the deviant auditory feedback. In 

this study, P1 amplitudes were not found to differ as a function of FAF perturbation magnitude 

predictability, however, this is not surprising in light of previous research. On the other hand, P1 

latencies were influenced by the predictability of the perturbation magnitudes. P1 latencies were 

longest following unpredictable 50-cent perturbations, suggesting that unpredictable FAF 

perturbation magnitudes may result in later neural responses than predictable FAF perturbation 

magnitudes. However, as longer latencies were only observed for unpredictable 50-cent 

perturbations, and not unpredictable 100-cent perturbations, further investigation is required to 

elucidate the relationship between FAF magnitude predictability and P1 latencies.

Modulation of the N1 ERP component by FAF perturbation magnitude predictability was 

observed in this study. N1 amplitudes were largest following unpredictable 100-cent FAF 

perturbations. These findings are congruent with the results reported by Korzyukov et al. 

(2012b), who observed larger N1 amplitudes in conditions where participants were unable to 

predict the direction of FAF perturbations, relative to conditions where the direction of the FAF 

perturbations was predictable. Together, these results suggest that both the predictability of the 

magnitude, and the direction, of FAF perturbations can modulate N1 responses.

Previous research has indicated that the auditory N1 response can be modulated by the 

efference copy issued by the motor system (Houde et al., 2002; Heinks-Maldonado et al., 2005; 

Beal et al., 2011), neural adaptation (Jaaskelainen et al., 2004; Jaaskelainen, Ahveninen, 
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Belliveau, Raij, & Sams, 2007), habituation (Butler, 1968), and refractory period effects (Budd, 

Barry, Gordon, & Rennie, 1998; Brattico, Tervaniemi, & Picton, 2003; Coch, Skendzel, & Neville, 

2005), among other things. These studies have suggested that the amplitude of the N1 

component reflects the amount of neural resources allocated to processing a stimulus (Brattico 

et al., 2003; Jaaskelainen et al., 2004, 2007; Sitek et al., 2013). Without an auditory-only 

listening condition, the precise mechanism driving the reduction in N1 amplitudes following 

predictable FAF perturbations in this study is unclear. However, as the N1 responses recorded 

in this study were elicited by auditory perturbations occurring within ongoing vocalizations, 

auditory–motor interactions are quite plausible. Congruent with this notion, a correlation 

between N1 amplitudes and vocal response magnitudes was found. We suggest that when the 

magnitude of the FAF perturbations was unpredictable, the FAF perturbations were not readily 

distinguished from normal variability in the voice. As a result, large N1 responses were elicited, 

reflecting increased neural resources being allocated to the processing of auditory feedback. 

This increased allocation of neural resources to the processing of auditory feedback resulted in 

increased feedback input for ongoing speech motor control, and larger compensatory 

responses. On the other hand, when the magnitude of the FAF perturbations was predictable, 

the perturbations were easily identified as externally induced. As a result, small N1 responses 

were elicited, reflecting a decrease in the neural resources being allocated to the processing of 

auditory feedback. This also resulted in increased weighting of feedforward input, which 

reduced the impact of the deviant auditory feedback, and resulted in smaller compensatory 

responses.

In addition to being modulated by experimental condition, N1 amplitudes were found to 

vary as a function of electrode site. N1 amplitudes were larger at the left and central recording 

sites than at the right recording sites. This result is not surprising, as previous studies have 
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reported that N1 responses to FAF are maximal at central sites relative to all other recording 

sites (Behroozmand et al., 2009; Scheerer et al., 2013a).

In addition to N1 amplitude modulation, N1 latencies were also influenced by FAF 

perturbation magnitude predictability. N1 latencies were the longest following unpredictable 50-

cent perturbations. The lengthy N1 responses following unpredictable 50-cent perturbations 

mirror the P1 latency results found in this study. Although, to our knowledge, the effect of 

predictability on neural response timing has not been previously reported, Burnett et al. (2008) 

reported faster vocal responses to temporally predictable stimuli. We suggest that when FAF 

perturbation magnitudes were unpredictable, additional processing was required in order to 

calculate the mismatch between the perceived auditory feedback and the prediction created by 

the sensorimotor representation, resulting in later responses. On the other hand, when FAF 

perturbation magnitudes were predictable, the FAF perturbations were deemed to be externally 

induced. As externally induced FAF perturbations are not compared with the prediction created 

by the sensorimotor representation, less processing was required, which resulted in faster 

responses. Accordingly, these results suggest that the predictable nature of FAF perturbations 

decreases neural processing time, resulting in shorter P1 and N1 response latencies.

Although the main effect of experimental condition was not significant for P2 latencies, 

P2 latencies were found to correlate with vocal response latencies. Previous studies have 

reported an association between P2 amplitudes and vocal responses to FAF, suggesting that 

the P2 component may reflect the computation of the mismatch between perceived and 

expected feedback, which dictates the size of the compensatory vocal responses to FAF 

(Scheerer et al., 2013a). On the basis of these results, it is not surprising that P2 latencies and 

vocal latencies correlate, as it would be expected that later processing of the mismatch between 

perceived and expected auditory feedback would also result in later compensatory vocal 

responses. P2 latencies were also found to vary as a function of electrode site in this study. P2 
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latencies were later at the right recording sites relative to the central and left recording sites. 

This result is consistent with previous studies that have reported later P2 latencies at right 

lateralized electrode sites compared to medial (Scheerer et al., 2013a) and left (Scheerer et al., 

2013b) lateralized sites.

Decreases in the magnitude and trial-to-trial variability of vocal responses, smaller N1 

amplitudes and shorter vocal, P1 and N1 response latencies following predictable FAF 

perturbation magnitudes support the notion that experimentally induced predictability can 

modulate responses to FAF. Furthermore, correlations between vocal response magnitudes and 

N1 amplitudes, and between vocal response latencies and P2 latencies, suggest that the P1–

N1–P2 ERP complex may reflect changes in auditory processing that are related to speech 

motor control. As previously discussed, we suggest that increasing the predictability of the 

magnitude of FAF perturbations makes these perturbations easier to distinguish from internally 

induced vocal variability. After repeated exposure to these predictable FAF perturbations, the 

weighting of the feedforward system increases. As a result of the increased weighting of the 

feedforward control system, deviant auditory feedback is less salient, resulting in smaller 

responses, both behaviourally and neurologically. Modifying the weighting of the feedback and 

feedforward control systems in different contexts is physiologically advantageous. Increasing 

the weighting of the feedback system is advantageous in situations where the information from 

auditory feedback is reliable and can be used to update the mapping of sensorimotor 

representations. For example, throughout development, auditory feedback is required to 

maintain the mapping of the sensorimotor representations as growth-related changes to the 

articulators, vocal folds, musculature, and lung capacity occur (Bailly, 1997; Callan et al., 2000; 

Jones & Munhall, 2000, 2002; Guenther, 2006; Civier et al., 2010). Even in adulthood, increased 

weighting of the feedback control system can help to rapidly update the mapping of the 

sensorimotor representations following the acquisition of dental appliances, or as aging-related 
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changes to the articulators, vocal folds, musculatures and lung capacity occur (Jones & 

Munhall, 2003; Perkell, 2012). On the other hand, increased weighting of the feedforward 

system can also be physiologically advantageous. As development halts, the mapping of the 

sensorimotor representations should remain relatively stable. For this reason, the additional 

information provided by auditory feedback becomes redundant. Increasing the weighting of the 

feedforward control system not only increases the fluidity of speech, but also reduces 

susceptibility to externally generated noise, and frees attentional resources for the processing of 

potentially important stimuli, rather than predictable auditory errors (Heinks-Maldonado et al., 

2005; Wang et al., 2014).

Although the primary aim of this study was to investigate the influence of being able to 

predict FAF perturbation magnitudes on vocal and neural responses to these perturbations, 

relative to unpredictable FAF perturbation magnitudes, the experimental design also permitted 

the investigation of order effects. More specifically, by presenting blocks of predictable and 

unpredictable FAF perturbation magnitudes, the effects of being exposed to consistent and 

variable stimulus magnitudes on vocal and neural responses to subsequent FAF perturbations 

could be investigated. In addition, within the unpredictable FAF perturbation magnitude blocks, 

perturbation magnitudes were varied within each utterance. This manipulation made it possible 

to investigate the influence of exposure to smaller (50-cent) vs. larger (100-cent) perturbations 

on subsequent perturbations.

The results of these investigations indicated that vocal response magnitudes varied as a 

function of the block presentation order. When the block of predictable 100-cent perturbations 

occurred prior to the block of predictable 50-cent perturbations, overall vocal response 

magnitudes were smaller. We suggest that repeated exposure to predictable 100-cent 

perturbations increased the weighting of the feedforward system, resulting in smaller 

compensatory responses to these perturbations. As perturbations of up to 100 cents in 
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magnitude became expected, weighting of the feedforward system increased, decreasing the 

saliency of perturbations of 100 cents and smaller. As a result, exposure to 50-cent 

perturbations following predictable exposure to 100-cent perturbations resulted in smaller vocal 

response magnitudes, as the 50-cent perturbations were less salient. On the other hand, when 

the block of predictable 50-cent perturbations occurred prior to the block of predictable 100-cent 

perturbations, overall vocal response magnitudes were larger. As previously discussed, we 

suggest that repeated exposure to predictable 50-cent perturbations increased the weighting of 

the feedforward system, resulting in smaller compensatory responses to these perturbations. In 

this case, perturbations of up to 50 cents in magnitude became expected, decreasing the 

saliency of perturbations of 50 cents and smaller. However, with exposure to 100-cent 

perturbations following predictable exposure to 50-cent perturbations, larger compensatory 

responses were elicited, as the 100-cent perturbations were more salient. Together, these block 

order effects suggest that exposure to 50-cent perturbations prior to 100-cent perturbations 

increases the saliency of the 100-cent perturbations, whereas exposure to 100-cent 

perturbations prior to 50-cent perturbations only reduces the saliency of 50-cent perturbations.

As the presentation order of 50- and 100-cent perturbations modulated vocal responses 

across blocks, we also investigated the influence of the presentation order of 50- and 100-cent 

perturbations within single vocalizations in the unpredictable FAF perturbation magnitude 

blocks. Similarly to the previously reported block effects, vocal response magnitudes were found 

to vary as a function of the magnitude of the preceding perturbation. Larger compensatory 

responses were recorded to 50- and 100-cent perturbations that occurred following a 50 cent 

perturbation than to those following a 100-cent perturbation. This result provides further support 

for the notion that exposure to large perturbations reduces the saliency of subsequent 

perturbations of equal or smaller size, whereas exposure to smaller perturbations does not 

reduce the saliency of subsequent perturbations that are larger in size. More importantly, these 
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results suggest that exposure to a single perturbation can affect responses to subsequent 

perturbations.

Although P1 amplitudes were not modulated by FAF perturbation magnitude 

predictability in this study, they were modulated by the interaction between experimental 

condition and block order. More specifically, when the block of predictable 50-cent perturbations 

occurred prior to the block of predictable 100-cent perturbations, P1 amplitudes were larger for 

100-cent perturbations. On the other hand, when the block of predictable 100-cent perturbations 

occurred prior to the block of predictable 50-cent perturbations, P1 amplitudes did not differ 

across the experimental conditions. As previous studies have suggested that the P1 component 

is not sensitive to the magnitude of feedback errors, it is currently unclear why these differences 

were observed in this study (Scheerer et al., 2013a).

The influence of the magnitude of the preceding perturbation on the subsequent 

perturbation was also analyzed with regard to P1 latencies. The results indicated that P1 

responses to 100-cent perturbations occurring after 100-cent perturbations were the fastest 

overall. Previous studies have suggested that larger amplitude perturbations result in faster 

neural responses, which is consistent with 100-cent perturbations following 100-cent 

perturbations resulting in faster responses overall (Liu et al., 2011; Scheerer et al., 2013a,b).

Investigation of the influence of block order on N1 amplitudes revealed no significant 

findings, however, N1 latencies were modulated by the block presentation order. N1 latencies 

were later overall when participants were exposed to the block of predictable 50-cent 

perturbations prior to the block of predictable 100-cent perturbations. These latency effects 

mirror the block order effects observed for vocal response magnitudes. As previously discussed, 

repeated exposure to predictable 100-cent perturbations, prior to predictable exposure to 50-

cent perturbations, resulted in smaller vocal responses overall. We suggest that this is because 

predictable exposure to the 100-cent perturbations increased the weighting of the feedforward 
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system, and also rendered feedback errors of 100 cents and smaller less salient. On the other 

hand, when exposure to the predictable 50-cent perturbations occurred first, increased 

weighting of the feedforward system also occurred, however, in this situation only the 50-cent 

perturbations became less salient. For this reason, we suggest that when the block of 50-cent 

predictable perturbations occurred prior to the block of 100-cent predictable perturbations, more 

processing was required, resulting in later responses than when the block of 100-cent 

predictable perturbations occurred prior to the block of 50-cent predictable perturbations. 

Interestingly, the same effect was observed within vocalizations in the blocks of unpredictable 

perturbation magnitudes. The fact that the block order effect was still significant when only the 

unpredictable perturbation magnitude blocks were analyzed suggests that the effect was not 

solely driven by the predictable perturbation blocks, rather, the effects of the predictable blocks 

carried over to the unpredictable blocks.

Although N1 amplitudes were not influenced by the block presentation order, within 

vocalizations in the blocks of unpredictable perturbation magnitudes, N1 amplitudes were 

influenced by the magnitude of the previously experienced perturbation. Within the blocks of 

unpredictable perturbation magnitudes, 100-cent feedback perturbations following 50-cent 

feedback perturbations elicited larger responses than 50-cent perturbations, regardless of the 

size of the feedback perturbation that they followed. The fact that 100-cent perturbations elicited 

larger N1 responses than 50-cent perturbations is not surprising, given the previously discussed 

N1 amplitude results and previous research (Liu et al., 2011; Scheerer et al., 2013a). However, 

the fact that 100-cent perturbations following 50-cent perturbations, but not 100-cent 

perturbations following 100-cent perturbations elicited larger N1 amplitudes than 50-cent 

perturbations, further supports the notion that exposure to large perturbations reduces the 

saliency of subsequent perturbations of equal or smaller size, resulting in smaller responses. In 

addition to modulation by the size of the previous perturbation magnitude, N1 amplitudes were 
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also larger at central recording sites, relative to right recording sites. This result is congruent 

with the N1 laterality effects previously discussed.

Much like the results obtained for P1 amplitudes, P2 amplitudes were modulated by the 

block presentation order. When the block of predictable 50-cent perturbations was presented 

prior to the block of predictable 100-cent perturbations, P2 amplitudes elicited by 100-cent 

perturbations were larger overall. In addition, when the block of predictable 50-cent 

perturbations was presented prior to the block of predictable 100-cent perturbations, predictable 

100-cent perturbations elicited larger P2 responses than both 50-cent conditions, as well as the 

unaltered condition. The unpredictable 100-cent perturbations also elicited larger P2 responses 

than the unaltered condition. However, when the block of 100-cent predictable perturbations 

occurred prior to the block of 50-cent predictable perturbations, there were no P2 differences 

across the experimental conditions. Previous studies have shown that P2 amplitudes increase 

in a linear fashion as the magnitude of feedback errors increases (Behroozmand et al., 2009; 

Scheerer et al., 2013a). For this reason, it has been suggested that P2 amplitudes reflect the 

size of the mismatch between perceived and predicted auditory feedback. As previously 

discussed, when the block of predictable 50-cent perturbations was presented prior to the block 

of predictable 100-cent perturbations, subsequent 100-cent perturbations were perceived as 

substantial deviations from the prediction created by the internal model, resulting in relatively 

large P2 amplitudes. On the other hand, when the block of predictable 100-cent perturbations 

occurred prior to the block of predictable 50-cent perturbations, the predictable nature of the 

100-cent perturbations resulted in increased weighting of the feedforward system, and 

attenuated responses to deviant auditory feedback. As a result, subsequent exposure to both 

50- and 100-cent perturbations resulted in smaller P2 amplitudes, as the perturbations were 

processed as externally induced errors, rather than as violations of the expectation created by 

the internal model.
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In addition to P2 amplitude effects, investigation of the influence of the preceding 

perturbation magnitudes in the blocks of unpredictable perturbations revealed that P2 

responses to 100-cent perturbations occurring after 100-cent perturbations were the fastest 

overall. This result mirrors the findings for P1 latency, and is congruent with previous findings 

that larger magnitude feedback perturbations result in faster neural responses (Liu et al., 2011; 

Scheerer et al., 2013a,b). In addition, similarly to the laterality effects previously discussed, P2 

latencies were found to be later at right recording sites, relative to left and central recording 

sites.

Although the primary goal of this study was to investigate the effects of predictable FAF 

perturbation magnitudes on vocal and neural responses to FAF, the experimental design also 

permitted the investigation of FAF perturbation magnitude order effects. Smaller compensatory 

responses, smaller P1 and P2 amplitudes, and shorter N1 latencies when the block of 

predictable 100-cent perturbations occurred prior to the predictable block of 50-cent 

perturbations suggest that exposure to large perturbations may habituate responses to 

subsequent perturbations of equal or smaller size, resulting in smaller and faster responses. 

This exposure effect was also evident within vocalizations in the blocks of unpredictable 

perturbation magnitudes, where compensatory responses and N1 latencies were longer when 

the block of predictable 100-cent perturbations occurred prior to the predictable block of 50-cent 

perturbations. In addition to replicating the block order effects, these within-vocalization effects 

also demonstrate that exposure to a single perturbation can affect responses to subsequent 

perturbations.

Despite the fact that in everyday life we function in dynamic and unpredictable 

environments, with the aid of sensory feedback, we are able to maintain fluent speech. The aim 

of the current study was to investigate whether predictable sensory feedback, specifically 

auditory feedback, is processed differently than unpredictable auditory feedback at both a 
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behavioural and a neural level. We found that exposing participants to predictable auditory 

feedback errors resulted in faster, smaller, and less variable behavioural and neural responses 

than exposing them to unpredictable auditory feedback errors. Without a listening-only 

condition, we are unable to isolate the specific contribution of the motor system to the pattern of 

ERP responses reported in this study. However, the parity between the vocal and ERP 

responses in this study supports the notion that experimentally induced predictability can 

modulate the relative contribution of auditory feedback to ongoing speech motor control. 

Increasing the weighting of feedback input in situations where it is providing reliable information 

can allow for rapid error correction, and, by providing information for updating the sensorimotor 

representations, can increase the accuracy of subsequent vocal productions. On the other 

hand, increasing the weighting of feedforward input in situations where auditory feedback is 

unreliable or redundant can minimize unnecessary vocal adjustments, and can free attentional 

resources for the processing of potentially important stimuli, respectively (Heinks-Maldonado et 

al., 2005; Wang et al., 2014).

General Discussion 

Neurocomputational models of speech motor control (Guenther, 1994, 1995, 2006; 

Guenther et al., 1998, 2006; Tourville et al., 2011; Hickok et al., 2011; Guenther & Vladusich, 

2012; Hickok, 2012; Houde & Chang, 2015) and experimental evidence (Jones & Munhall, 

2005; Jones & Keough, 2008; Hawco & Jones, 2009; Keough & Jones, 2009, 2011; Scheerer & 

Jones, 2012) both support the notion that fluent speech production relies on the combined 

efforts of a feedback and a feedforward control system. Children born deaf often fail to acquire 

fluent speech (Smith, 1975; Svirsky et al., 2004), yet once speech is acquired adults who lose 

their hearing are able to maintain relatively fluent speech (Cowie et al., 1982; Goehl & Kaufman, 

1984; Cowie & Douglas-Cowie, 1992). For this reason, it appears that the relative contribution of 
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feedback and feedforward control change throughout the lifespan. The aim of this thesis was to 

examine the role of auditory feedback for speech motor control throughout development, as well 

as the factors that may influence the role of auditory feedback for speech motor control in 

adulthood.

Significant Findings 

i. Study 1

The first study presented in this thesis examined the role of auditory feedback for speech 

motor control in toddlers. Despite behavioural, clinical, and neurophysiological evidence 

demonstrating that auditory feedback aids in the acquisition and lifelong maintenance of the 

sensorimotor mechanisms that support fluent speech production in both humans and songbirds 

(Guenther, 1994, Perkell et al., 1997, Doupe & Kuhl, 1999, Callan et al., 2000, Sakata & 

Brainard, 2008, Civier et al., 2010; Kelly & Sober, 2014), a study by MacDonald and colleagues 

(2012) reported that when exposed to altered auditory feedback regarding their formant 

frequencies, toddlers did not modify their vocal output to compensate for the deviant auditory 

feedback. Based on these results the authors of that study suggested that the speech motor 

control system of toddlers may “suppress” the influence of auditory feedback, especially when 

speech is not being produced in a social context (MacDonald et al., 2012). While this 

explanation is certainly plausible, as social reinforcement has been shown to influence the rate 

of speech acquisition (Benoit et al., 1996; Kuhl & Metzoff, 1996, 1997; Locke & Snow, 1997; 

Goldstein et al., 2003; Kuhl, 2004), it is hard to imagine how toddlers can acquire the 

sensorimotor associations required for feedforward control of speech without auditory feedback. 

For this reason, we exposed toddlers to brief perturbations of the F0 of their auditory feedback. 

The toddlers compensated for these perturbations by changing the F0 of their vocalization in the 

opposite direction of the perturbation, producing significantly different responses to upwards and 
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downwards perturbations. The results of this study provide empirical support for the notion that 

toddlers use auditory feedback to regulate their speech motor commands.   

In addition to demonstrating that toddlers use auditory feedback to regulate their speech 

motor commands, the results of this study also suggest that vocal variability may decrease with 

age. In order to allow for a meaningful comparison with the results of MacDonald and 

colleagues (2012), the toddlers tested in this study were divided into two age groups: younger 

toddlers who were between 24 and 35 months, and older toddlers who were between 40 and 46 

months. While both groups of toddlers were found to produce similar sized compensatory 

responses, the older toddlers were found to be less variable than the younger toddlers. Based 

on these results we suggest that a decrease in vocal variability may reflect a gradual maturation 

of the speech motor control system with development, and thus may potentially serve as an 

index of speech proficiency. 

Lastly, the fact that toddlers produced compensatory responses to changes to the F0 of 

their vocalizations, but not manipulations of the formant frequencies of their vocalizations 

(MacDonald et al., 2012), suggests that the postural and phonemic settings of speech may be 

controlled independently. This result is in accordance with a previous study that demonstrated 

that formant frequency, a property of auditory feedback related to phonemic control, is less 

sensitive to the loss of auditory feedback, relative to F0, a property related to postural control 

(Perkell et al., 1997). Since toddlers appear to be able to modify their auditory feedback in 

response to changes in F0, but not formant frequencies, these results also suggest that the 

ability to regulate F0 may develop prior to the ability to regulate formant frequencies. We 

propose that toddler’s increased proficiency at regulating the postural properties of speech, 

specifically F0, may be the result of exposure to IDS. Early in development, caregivers use IDS 

to communicate with prelinguistic children (Fernald, 1993, Saint-Georges et al., 2013). Since 

this IDS provides an effective way to convey affect and intentions with these prelinguistic 
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children (Saint-Georges et al., 2013), we believe IDS may increase the salience of prosodic 

features of speech, such as F0. As a result of this increase salience, toddlers may prioritize the 

monitoring and correcting of prosodic changes in their speech over non-prosodic features of the 

speech signal, such as formant frequencies.      

In conclusion, the results of this first study not only provide empirical support for the 

notion that toddlers use auditory feedback for the regulation of their speech motor commands, 

but these results also suggest that vocal variability may serve as an index of speech proficiency, 

and that the control of postural aspects of the speech signal, such as F0, may develop prior to 

control of the phonemic aspects, such as formant frequencies. Since risk factors for many 

speech disorders often appear early in childhood (Schneider et al., 2010), it is important to 

understand the normal development of the speech motor control system. Thus understanding 

the normal development of auditory feedback control of speech may have future applications in 

the diagnosis of disorders with known disturbances in vocal control, such as autism spectrum 

disorders, which are lacking viable diagnostic markers (Filipek et al., 2000; Russo, Larson, & 

Kraus, 2008).  

ii. Study 2

The first study presented in this thesis provides support for the notion that auditory 

feedback is important during the development of speech motor control. However, it failed to 

provide information regarding the time course of the development of auditory feedback control 

of speech motor control. For this reason, the second study presented in this thesis examined 

the time course of auditory feedback control of speech using both behavioural and EEG 

measures. Behaviourally, vocal responses to FAF were modulated as a function of age, as both 

response latency and vocal variability decreased with age. There was also a correlation 

between vocal variability and vocal response magnitude, further highlighting the relationship 
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between speech motor control and responses to FAF. Neurological changes in response to the 

FAF were also observed, as the amplitude and latency of the P1-N1-P2 ERP components were 

found to vary as a function of age. Changes to the P1 and P2 components were consistent with 

previous AEP research, and did not correlate with the behavioural measures, suggesting the 

modulation of these components reflects age related changes in auditory processing. On the 

other hand, N1 amplitude was found to correlate with vocal variability, suggesting the changes 

in N1 amplitudes across age groups was not purely the result of developmental changes in 

auditory processing. 

Based on the results of previous studies (Liu et al., 2010a), it was expected that the 

magnitude of the vocal responses to FAF would decrease with age, reflecting increased speech 

motor control, and a transition from feedback to feedforward speech motor control. However, 

this was not the case. Vocal variability, rather than vocal response magnitudes, was found to 

decrease with age. In addition, vocal variability was found to predict both vocal response 

magnitudes and N1 amplitudes. So although vocal variability was also found to decrease with 

age, the results of this study suggest that vocal variability, rather than age, is best for predicting 

responses to FAF. 

In addition to vocal variability, vocal response latencies were also found to decrease with 

age. Changes in response latencies have been suggested to reflect neurophysiological 

maturation (Rojas et al., 1998; Kotecha et al., 2009). Specifically, latencies changes are thought 

to reflect changes in synaptic density and efficacy in the auditory cortex (Eggermont, 1989). For 

this reason, the modulation of the vocal response latencies as a function of age found in this 

study suggests that vocal response latency may be useful for indexing the maturation of the 

speech motor control system.  

One of the more interesting findings of this study is that vocal variability predicted N1 

amplitudes. Previous studies have suggested that the N1 component is sensitive to whether 
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auditory feedback is deviant, but still considered self-produced, or deviant, but large enough to 

be classified as externally produced (Scheerer et al., 2013a). Based on the current findings, we 

suggest that the N1 component is also modulated by the proficiency of speech motor control. As 

previously discussed, increased stability of one’s sensorimotor representations drives a 

transition from feedback to feedforward control (Schmidt & Lee, 2005; Civier et al., 2010). We 

suggest that individuals who are more variable, and thus rely more on feedback control, are 

likely to accept a wider range of deviant auditory feedback as internally produced. On the other 

hand, individuals who are less variable, and thus rely more on feedforward control, are likely to 

accept a smaller range of deviant auditory feedback as internally produced as they have more 

robust sensorimotor representations. As a result, individuals who are more variable will be more 

likely to accept a feedback deviation as internally produced, relative to individuals who are less 

variable. As a result, the same sized feedback perturbation may elicit only a small N1 response 

in individuals who are highly variable, but a large response in individuals who are less variable. 

This relationship between N1 amplitude and vocal variability highlights the complex interaction 

between vocal and neurological responses to FAF. 

In conclusion, the results of the second study demonstrate age-related differences in 

both behavioural and neurological responses to FAF. These results indicate that the auditory 

feedback system undergoes robust changes with age and physiological development. Although 

many of the results appear to be attributable to developmentally related changes in auditory 

processing, the relationship between vocal variability and N1 amplitudes suggest that a complex 

interaction between vocal and neural responses to FAF exists. Furthermore, the fact that vocal 

variability, rather than age, predicts the magnitude of vocal responses to FAF suggests that the 

maturation of the speech motor control system is not strictly dependent on age. 
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iii. Study 3

The first two studies reported in this thesis investigated children’s responses to brief FAF 

perturbations. While examining responses to FAF perturbations can provide valuable 

information about the way in which the feedback component of the speech motor control system 

operates, these responses provide little information about feedforward control. For this reason, 

study 3 utilized the FAF adaptation paradigm to investigate children and adults responses to 

predictable changes in their auditory feedback. During this study participants produced 

vocalizations while they heard the pitch of their auditory feedback predictably or unpredictably 

shifted. Participants’ vocal pitch was measured at the beginning of each vocalization, before 

auditory feedback was available, which allowed the extent to which the deviant auditory 

feedback modified subsequent speech motor commands to be assessed. Sensorimotor learning 

was observed for both the children and the adults, as all participants were found to increase 

their vocal pitch following trials where they were exposed to the predictable FAF manipulation, 

but not when they were exposed to the unpredictable FAF manipulation. When a speaker’s F0 

values change at the beginning of their vocalizations following exposure to a predictable FAF 

manipulation, these changes indicate that the way in which the speaker’s speech motor 

commands were executed changed as a result of exposure to the deviant auditory feedback. In 

other words, these results suggest that the speaker used their auditory feedback for motor 

planning. Participants’ vocal pitch was also measured across each vocalization, to index the 

extent to which deviant auditory feedback was used to modify ongoing vocalizations. Both 

children and adults were found to increase their vocal pitch following predictable and 

unpredictable changes to their auditory feedback, however, adults were found to produce larger 

compensatory responses. Lastly, consistent with study 1 and 2, vocal variability was found to 

decrease with age, as adults were less variable than children. 
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The fact that adults were found to produce larger compensatory responses in this study 

was unexpected. However, although previous studies have shown that children and adults 

produce similar sized responses to FAF, these studies utilized brief FAF perturbations (Liu et al., 

2013; Scheerer et al., 2013b). These perturbation studies modified the speaker’s auditory 

feedback mid-utterance, while the current study modified the speaker’s auditory feedback at 

vocalization onset. A study by Hawco and Jones (2009) demonstrated that responses to 

feedback manipulations at vocalization onset and those induced mid-utterance are different. 

They stated that manipulations at voice onset produce larger responses because auditory 

feedback at voice onset is compared to the expectation dictated by the speaker’s sensorimotor 

representation (Hawco & Jones, 2009). On the other hand, manipulations that occur mid-

utterance produce smaller responses because mid-utterance auditory feedback is compared to 

the F0 of the vocalization just prior to the manipulation in attempt to stabilize the vocalization 

(Hawco & Jones, 2009). Based on these findings we suggest that the current results reflect the 

fact that adults are more proficient at comparing incoming auditory feedback with the feedback 

predicted by their sensorimotor representations, as a result of possessing more precisely 

mapped sensorimotor representations. 

In conclusion, the results of study 3 demonstrate that both children and adults can 

rapidly integrate information derived from their auditory feedback to modify subsequent speech 

motor commands. Based on these results it appears as though once speech is acquired, 

speakers are proficient at using sensory information to modify the planning of future motor 

commands. Although this result was not predicted, since auditory feedback has been suggested 

to function as an adaptive signal that guides the movements of the articulators during 

development (Callan et al., 2000), it would make sense that the ability to use auditory feedback 

for sensorimotor learning would develop at a young age. The results of this study also provide 

support for the notion that adults have more finely tuned sensorimotor representations, which 
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makes it easier for adult speakers to resolve the discrepancy between deviant auditory 

feedback and the feedback predicted by their sensorimotor representation. 

iv. Study 4

A relationship between vocal variability and responses to FAF was highlighted in each of 

the first three studies presented in this thesis. The fourth study presented in this thesis 

specifically investigated the relationship between vocal accuracy, vocal variability, and 

compensatory responses to FAF. The results of this study indicated that vocal variability, but not 

vocal accuracy, predicted the size of compensatory responses to FAF. We believe this is an 

important finding, as it suggests that individuals with poor vocal control, demonstrated by 

increased vocal variability, respond differently to FAF. Moreover, this result suggests that these 

individuals with poor vocal control rely more on auditory feedback to ensure that production 

errors are detected and corrected for. As a result of this increased reliance on auditory 

feedback, individuals with poor vocal control are more susceptible to deviant auditory feedback. 

On the other hand, individuals with better vocal control, reflected by less vocal variability, rely 

less on auditory feedback and more on their well tuned sensorimotor representations. As a 

result of this increased reliance on sensorimotor representations, or feedforward control, it is 

easier for these individuals to ignore deviant auditory feedback. 

In conclusion, the results of study 4 indicate that vocal variability may be a useful index 

for predicting the size of compensatory responses to FAF. Since the size of a speaker’s 

compensatory response may be an indication of their reliance on feedback control, vocal 

variability may also provide an index of a speaker’s reliance on auditory feedback for speech 

motor control. 
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v. Study 5

The results of the fourth study reported in this thesis indicated that vocal variability may 

be a good indication of a speaker’s reliance on auditory feedback for speech motor control. In 

order to validate this finding, we investigated the relationship between vocal variability and 

responses to FAF using an adaptation paradigm. Previous research has suggested that 

individuals who rely more on feedforward control produce smaller compensatory responses, but 

show larger after-effects when exposed to persistent changes to the pitch of their auditory 

feedback (Jones & Keough, 2008). On the other hand, individuals who rely more on feedback 

control produce larger compensatory responses and smaller after-effects when exposed to 

persistent changes to the pitch of their auditory feedback (Jones & Keough, 2008). If vocal 

variability can in fact be used to index a speaker’s reliance on auditory feedback, we expected 

that highly variable speakers would produce larger compensatory responses and small after-

effects, while less variable speakers would produce smaller compensatory responses and large 

after-effects when participating in this FAF adaptation study. The results of this study indicated 

that speakers who were more variable did in fact produce larger compensatory responses to the 

FAF, providing support for the notion that increased vocal variability is related to an increased 

reliance on auditory feedback. In addition, as expected individuals who were less variable also 

produced larger after-effects when their auditory feedback was returned to baseline following 

persistent exposure to the FAF. This result suggests that speakers who are less variable rely 

more on feedforward control during speech production. 

Together, the results of study 4 and study 5 provide a strong argument for the notion that 

vocal variability can be used to index a speaker’s reliance on auditory feedback for speech 

motor control. Based on the results of these studies, we can conclude that vocal variability is 

one of the factors that dictates the relative weighting of feedback and feedforward control.  
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vi. Study 6

The first five studies presented in this thesis all identified a relationship between vocal 

variability and the use of auditory feedback for speech motor control. Overall, it appears as 

though speakers who demonstrate less vocal variability have a decreased reliance on auditory 

feedback for fluent speech production. Based on these results we have suggested that vocal 

consistency, whether achieved throughout development or as a result of intense vocal training, 

results in more stable sensorimotor representations that are better at predicting the sensory 

consequences of upcoming motor movements. As the ability to predict future events increases 

as events become more frequent and consistent, we believe it is reasonable to expect that 

varying any aspect of the sensory or motor system in a predictable manner should increase the 

weighting of feedforward control, and habituate responses to deviant auditory feedback. To test 

this theory, in study 6, we exposed speakers to FAF perturbations that were either predictable or 

unpredictable in magnitude, and measured the speaker’s vocal and ERP responses to these 

perturbations. The results revealed decreases in the magnitude and trial-to-trial variability of 

vocal responses, smaller N1 amplitudes, and shorter vocal, P1 and N1 response latencies 

following predictable FAF perturbation magnitudes. As expected, this pattern of results suggests 

that after repeated exposure to predictable FAF perturbations, the contribution of the feedback 

control system decreases.

Previous research has demonstrated that the magnitude of the compensatory response 

to FAF is related to the prediction created by a sensorimotor representation (Heinks-Maldonado 

et al., 2005, 2006; Beal et al., 2011; Korzyukov et al., 2012b; Scheerer et al., 2013a). The 

results of the current study suggest that similarly to the modulation by the prediction created by 

the sensorimotor representation, compensatory responses to FAF can be modulated by 

experimentally induced predictability. Based on the pattern of results observed, we suggest that 

when FAF perturbations are predictable, these perturbations are more readily distinguished from 
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self-produced variability. Following repeated exposure to predictable FAF perturbations, it is 

clear that the information provided by auditory feedback is unreliable, and thus the weighting of 

feedforward input is increased. When the weighting of the feedforward input is increased, 

auditory feedback is less salient, thus speaker’s are less susceptible to the deviant auditory 

feedback. Since auditory perturbations are now regarded as externally induced noise, rather 

than violations of the prediction created by the sensorimotor representation, compensatory 

responses to predictable FAF perturbations are smaller. In addition, fewer neural resources are 

dedicated to processing the deviant auditory feedback, resulting in smaller ERP amplitudes. 

Conversely, when FAF perturbation magnitudes are unpredictable, the deviant auditory 

feedback resembles normal variability in the voice, and it becomes difficult to distinguish self-

produced variability from the experimentally induced perturbations. Much like the increased 

variability reported in the first 5 studies, the experimentally induced variability in this study 

resulted in increased weighting of the feedback control system. Consequently, deviant auditory 

feedback was processed as a violation of the prediction created by the sensorimotor 

representation, and a compensatory responses was initiated in an attempt to minimize the 

deviation between the perceived auditory feedback and the auditory feedback predicted by the 

sensorimotor representation. As a result of the increased weighting of the feedback system, 

vocal and ERP responses to these unpredictable perturbations were larger. 

Interestingly, in addition to the predictability effects, strong block order and stimulus 

presentation order effects were also found. Specifically, smaller compensatory responses, 

smaller P1 and P2 amplitudes, and shorter N1 latencies were found when the block of 

predictable 100-cent perturbations occurred prior to the block of predictable 50-cent 

perturbations. These results suggest that exposure to large perturbations habituates responses 

to subsequent perturbations of equal or smaller size. Similarly, exposure to a 100-cent 

perturbation prior to a 50-cent perturbation within a vocalization decreased the magnitude of 
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vocal and N1 responses, but increased P1 and P2 latencies. Thus, exposure to a single 

perturbation can affect responses to subsequent perturbations.

In conclusion, the results of study 6 indicate that being able to predict the size of an error 

in one’s auditory feedback modulates both the vocal and ERP responses to the error. 

Furthermore, the results of this study suggest that experimentally induced predictability and 

variability can be used to induce increases in feedforward and feedback control, respectively.  

Major Themes

i. Vocal Variability 

Across all 6 studies reported in this thesis, a robust relationship between vocal variability 

and responses to FAF was identified. Based on these findings it appears as though vocal 

variability, whether naturally occurring or experimentally induced, can serve as an indication of 

the relative importance of auditory feedback control during speech production. Interestingly, a 

similar pattern of results has also been observed in songbirds. Kelly and Sober (2014) 

demonstrated that the size of songbirds’ compensatory responses to changes in their auditory 

feedback were best predicted by the animals’ baseline pitch distributions. When the songbirds’ 

baseline pitch distributions overlapped with the experienced auditory feedback errors, larger 

compensatory responses were observed. Based on these results, Kelly and Sober (2014) 

suggested that when baseline pitch variability is high, the probability that a feedback 

manipulation will fall within the normal distributions of produced pitches increases, making it 

more plausible that a compensatory response will be elicited. This explanation is consistent with 

our suggestion that individuals who are more variable are more likely to accept deviant auditory 

feedback as self-produced, thus resulting in the production of a compensatory response. 

Together with the results reported in this thesis, these findings further support the notion that 

increased variability promotes the use of auditory feedback for speech motor control.
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Both the results reported in this thesis, and those reported by Kelly and Sober (2014) 

suggest that individuals who are more variable produce larger compensatory responses to 

deviant auditory feedback. However, it is important to note that with the exception of study 6, 

these studies describe variability as a global trait, making comparisons across speakers who 

differ in their degree of variability; these studies are not indicative of how a single instance of 

increased variability may influence speech motor control. Since study 6 examined within-subject 

differences in processing predictable and unpredictable feedback perturbations, it was possible 

to derive some information about how a variable (unpredictable) vocalization is processed 

relative to a predictable vocalization. The results of study 6 demonstrated that increased 

variability resulted in increased vocal responses, trial-to-trial variability, and increased N1 

amplitudes. Based on these results, we concluded that larger N1 and vocal responses were 

indicative of a mechanism that detects and corrects for mismatches between the perceived 

auditory feedback and the prediction created by the sensorimotor representation, respectively. 

However, there is research to suggest that mid-utterance perturbations are processed differently 

than perturbations that occur at voice onset (Hawco & Jones, 2009). Hawco and Jones suggest 

that at utterance onset auditory feedback is compared to the feedback predicted by the 

sensorimotor representation in order to ensure the intended F0 is produced. On the other hand, 

after utterance onset auditory feedback is compared to the F0 of the auditory feedback received 

prior to the manipulation, in attempt to stabilize the F0 of the vocalization (Hawco and Jones, 

2009). Based on these findings, it is possible that the responses recorded in study 6 reflect a 

comparison between the perceived auditory feedback and the previously experienced feedback, 

rather than the feedback predicted by the sensorimotor representation. That being said, since 

the unpredictable feedback manipulation in study 6 also increased trial-to-trial variability, it is 

possible that a more general increase in variability across the vocalizations resulted in the larger 

vocal and N1 responses, rather than deviations from the prediction created by the sensorimotor 
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representation. This alternate explanation comes in light of recent findings from the speech 

induced suppression literature. 

Although there appears to be a clear link between vocal variability and the way in which 

deviant auditory feedback is processed, there is some debate with regards to the type of 

variability that drives these changes in auditory feedback processing. Two recent studies 

investigated the relationship between vocal variability and speech induced suppression of the 

N1 ERP component (Niziolek et al., 2013; Sitek et al., 2013). Niziolek and colleagues (2013) 

reported that speech induced suppression was greater, or N1 amplitudes were smaller, when 

vowel productions were closer to the speaker’s median production of that vowel. For this 

reason, Niziolek and colleagues (2013) concluded that “sensory predictions” are actually 

sensory goals that predict the desired outcome of the motor plan, rather than the outcome of the 

ongoing motor commands. Thus, productions that deviate farther from this sensory goal result in 

less suppression by the motor system. On the other hand, Sitek and colleagues investigated the 

relationship between pairwise variability and speech induced suppression of the N1 ERP 

component. Sitek and colleagues (2013) reported that it was the trial-to-trial change in formant 

frequency that predicted the degree of N1 suppression, with less change from trial-to-trial 

resulting in more suppression, rather than the absolute deviation from the median of all 

utterances. Sitek and colleagues attribute the differences across these studies to the fact that 

Niziolek and colleagues had speakers produce 3 different vowels, while in their own study 

speakers were repeating the same vowel. It was argued that since producing a different vowel 

across each utterance does not afford a situation under which the current vocalization can be 

compared with the previous production, a different control strategy might be utilized (Sitek et al., 

2013). More specifically, similar to the explanation provided by Hawco and Jones (2009) it was 

suggested that when the vowel was varied from trial-to-trial, the current production was 

compared to a stored representation of that vowel. However, when the vowel was held constant 
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across vocalizations, formants were tracked relative to the most recently produced vocalization 

(Sitek et al., 2013). In light of these findings, it is clear that more research is required to fully 

understand the relationship between vocal variability and the processing of auditory feedback, 

particularly on a trial-to-trial basis. That being said, regardless of whether incoming auditory 

feedback is being compared with a prediction created by a sensorimotor representation, or 

previously experienced auditory feedback, the results reported in studies 1 through 5 provide 

ample evidence to support the notion that individuals who are more variable rely more on their 

feedback control system. 

ii. Individuals Differences 

Across the 6 studies reported in this thesis, a large number of individual differences in 

both vocal and ERP responses to FAF were reported. For example, in many of the studies 

reported in this thesis, as well as in previously conducted studies (Hain et al., 2000; Bauer & 

Larson, 2003; Liu et al., 2010a; Korzyukov et al., 2012b; Behroozmand et al., 2013; Patel et al., 

2014), speakers’ data were excluded from the analyses as their vocal responses followed the 

direction of the manipulation rather than opposing it. Also, from a purely observational 

standpoint, data derived from individual participants was often qualitatively different from the 

averaged waveform. In order to truly understand, and be able to predict how the speech motor 

control system will function in a given circumstance, it is important to understand why these 

large individual differences exist (Purcell & Munhall, 2006a). To date, efforts to understand the 

influence of somatosensory feedback, singing experience, tonal language speaking experience, 

and attentional load on responses to FAF, have furthered our understanding of feedback control 

of speech. 
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Somatosensory Feedback Control of Speech

Throughout this thesis when discussing the role of the feedback control system in 

speech production, the discussion has focused primarily on auditory feedback. While it is 

difficult to acquire fluent speech without auditory feedback (Oller & Eilers, 1988; Hickok et al., 

2011), the fact that deaf speakers can produce intelligible speech suggests that auditory 

feedback is not the sole input into the feedback control system (Lane & Wozniak-Webster, 1991; 

Tremblay et al., 2003; Nasir and Ostry, 2008). From the moment a child begins making speech 

like sounds, the auditory feedback they receive is correlated with the movements responsible for 

producing the sounds (Gracco & Löfqvist, 1994; Lametti et al., 2012). For this reason, it is likely 

that somatosensory feedback also plays a role in monitoring the accuracy of speech production 

(Tremblay et al., 2003; Lametti et al., 2012). This notion is supported by previous research that 

has shown that speakers compensate for perturbations to their lips and jaw (Abbs & Gracco, 

1984; Gracco & Abbs, 1985) as well as their larynx (Lofqvist & Gracco, 1991; Munhall, Lofqvist 

& Kelso, 1994). In addition, speakers have been shown to adapt to jaw movements in the 

absence of changes to their auditory feedback, suggesting that somatosensory information is 

also closely regulated during speech production (Tremblay et al., 2003). With this in mind, could 

it be an increased use of somatosensory feedback, relative to auditory feedback, that accounts 

for the individual differences in responses to FAF? 

Lametti and colleagues (2012) investigated the relative influence of auditory and 

somatosensory feedback during speech production. To do this, auditory and somatosensory 

feedback were simultaneously altered as speakers vocalized. The results of this study revealed 

an inverse relationship between reliance on auditory and somatosensory feedback. Specifically, 

speakers who adapted to the somatosensory perturbation showed a smaller response to the 

auditory perturbation, relative to speakers who failed to adapt to the somatosensory 

�182



perturbation, and vice versa (Lametti et al., 2012). Based on these results, the authors 

suggested that there is a ‘sensory preference,’ with speakers having a preferred type of sensory 

feedback. While this sensory preference could certainly account for some of the individual 

differences observed in response to FAF, further research is required to determine just how 

much of the variance in individuals responses to FAF can be accounted for by this sensory 

preference. 

Singing Experience 

Speaking and singing, while similar in many respects, differ in many ways. For example, 

regulating vocal pitch it important for both singing and speaking (Zatorre, Belin, & Penhune, 

2002; Zarate & Zatorre, 2008). However, when speaking vocal pitch is regulated in order to 

achieve the function goal of transferring information (Burnett et al., 1997; Perkell, 2012). On the 

other hand, when singing the regulation of pitch, or the production of specific pitch targets, is the 

functional goal (Liu, Jiang, Wang, Xu, & Patel, 2015). For this reason, singing requires more 

precise control over the speech motor control system (Zarate et al., 2008; Zarate, 2013). In 

accordance with this notion, trained singers have been shown to have superior speech motor 

control (Zarate et al., 2008; Zarate, 2013). For example, previous research has shown that 

singers are better at ignoring deviant auditory feedback (Zarate et al., 2008). Differences in 

neural activity have also been observed when singers and non-singers are asked to ignore 

deviant auditory feedback (Zarate et al., 2008). Based on these results we now know that vocal 

experience not only improves voluntary speech motor control, but also changes the functional 

network involved in processing auditory feedback (Zarate et al., 2008). For this reason, singing 

experience represents another individual difference that may contribute to the differences in 

responses observed across individuals participating in FAF studies. 
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Tonal Language Experience 

Similar to singing experience, the ability to speak a tonal language may also contribute 

to individual differences in the processing of FAF. In English, fundamental frequency is used to 

control postural settings of speech (Jones & Munhall, 2002), such as those concerning stress or 

sentence structure (Giuliano, Pfordresher, Stanley, Narayana, & Wicha, 2011). However, in tonal 

languages, such as Mandarin, Cantonese, Thai, and Vietnamese, words take on different lexical 

meanings depending on the fundamental frequency in which they are enunciated (Jones & 

Munhall, 2002; Deutsch, Henthorn, & Dolson, 2004). Thus unlike English speakers, in order to 

convey the intended meaning of a word, tonal language speakers have an explicit pitch target 

they must produce (Jones & Munhall, 2002). Previous research has demonstrated that 

Mandarin speakers were faster and more accurate at detecting small pitch changes relative to 

non-tonal language speakers (Giuliano et al., 2011). In another study, Mandarin speakers were 

found to produce smaller compensatory responses to FAF relative to non-tonal language 

speakers (Ning, Loucks, & Shih, 2015). Together, these results suggest that tonal language 

speakers not only have better pitch discrimination abilities (Giuliano et al., 2011; Ning et al., 

2015), but tonal language speakers also have better vocal control, making them less 

susceptible to deviant auditory feedback (Ning et al., 2015).   

Attentional Load 

The last factor that may have contributed to individual differences in the studies reported 

in this thesis is attentional load. A discussion of attentional load is particularly relevant to the 

results of the studies reported in this thesis, as many of the studies utilized speakers of different 

age groups, and attentional resources have been shown to vary with age (Kok, 2000). 

Moreover, attention deficits are becoming more prevalent in the general population, with a 2010 
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United States consensus reporting the prevalence of attention deficit/ hyperactivity disorder at 

~10% (Bloom, Cohen, & Freeman, 2010).

Since attention is a limited resource it must be divided amongst all incoming sensory 

inputs (Wickens, 2002). If the processing demands imposed by the sensory inputs exhaust the 

available attentional resources, then performance on ongoing tasks may suffer (Wickens, 2002). 

In everyday life, as well as in the laboratory setting, speakers process auditory feedback while 

simultaneously processing input from other modalities (Tumber et al., 2014). For this reason, it 

is important to understand how divided attention may influence the processing of auditory 

feedback. To date, the results of studies investigating the influence of attention on responses to 

FAF have been mixed. Alsius and colleagues (2013) reported that dividing a speaker’s attention 

did not modulate responses to FAF. Similarly, an ERP study investigating responses to FAF 

under divided attention also revealed no change in the size of speaker’s compensatory 

responses under divided attention, however, they did find that P2 responses decreased when 

attention was divided (Hu et al., 2015). Contrary to these findings, Tumber and colleagues 

(2014) reported that speakers produced smaller compensatory responses to FAF perturbations 

under divided attention. Similarly, Scheerer and colleagues (2015) reported smaller 

compensatory responses and less sensorimotor adaptation when speaker’s attention was 

divided while participating in a FAF adaptation task. The disparity amongst the studies 

conducted to date leaves the role of attention during the processing of auditory feedback 

unclear. However, since in some cases attention has been shown to modulate responses to 

FAF, attentional load must be taken into account when considering potential sources of 

individual differences in FAF responses. 

Previous efforts to understand the influence of somatosensory feedback, singing 

experience, tonal language speaking experience, and attentional load on responses to FAF, 
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have furthered our understanding of feedback control of speech. From these studies it is clear 

that experience controlling fundamental frequency in different contexts and with different 

functional objectives can have long term effects on how auditory feedback regarding one’s 

fundamental frequency is processed. Based on these studies efforts have been made to control 

for singing experience, tonal language experience, and attentional load across participants. 

Despite these controls, individual differences persist. Based on the results of the studies 

reported in this thesis it appears as though vocal variability is an additional factor that must be 

controlled for when designing FAF studies, however, future research is required to fully 

understand the individual differences in responses observed following exposure to FAF.   

Future Directions

i. Development of Formant vs. Fundamental Frequency Control

The results of study 1, together with the results of MacDonald and colleagues (2012), 

suggest that the control of formant frequencies and fundamental frequency may develop at 

different rates. However, direct comparison of formant and fundamental frequency control 

throughout development would help to validate this suggestion. If in fact children are faster to 

develop fundamental frequency control, then it is also possible that children are also better at 

perceiving perceptual differences in fundamental frequency, relative to formant frequency. 

Future research on these differences may help to highlight developmental differences in speech 

processing that may in turn facilitate techniques for communicating with young infants, and for 

promoting speech and language acquisition.  

ii. Vocal Training

The results of study 6 suggest that exposing speakers to brief perturbations to the pitch 

of their auditory feedback can induce changes in the weighting of their feedback and 
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feedforward control systems. If this brief exposure to auditory feedback perturbations can 

already change the relative input from each of these control systems, then more extensive 

exposure to predictable auditory feedback may have potential utility for vocal training. For 

example, implementing a training program that focuses on decreasing a speaker’s vocal 

variability, and thus making their auditory feedback more predictable, may promote the use of 

feedforward control. Since singers often perform in environments with extraneous ambient 

noise, this increased weighting of feedforward control would help to ensure that the singer is not 

affected by the extraneous background noise.    

iii. Speech Motor Control in Individuals with Autism Spectrum Disorders (ASDs)

Autism Spectrum Disorder (ASD) is a heterogeneous disorder, which has led to difficulty 

clearly classifying manifestations of this disorder. However, biological and physiological 

deviations can be readily uncovered by investigating each core symptom of ASD separately. 

One of the more commonly reported symptoms of ASD is speech irregularity, including 

difficulties with speech motor control (Russo et al., 2008). 

Based on the results of study 3, we now have an idea of how the P1, N1, and P2 ERPs 

are modulated by FAF in typically developing children and adults. However, these neural 

responses to FAF have yet to be documented in children and adults with ASD. Although there is 

a lack of research investigating neural responses to FAF, more generalized auditory cortical 

responses to auditory stimuli have been studied in individuals with ASD. These studies suggest 

that P1, N1, and P2 amplitudes are smaller in individuals with ASD relative to typically 

developing individuals (Novick et al., 1980). While these studies highlight auditory processing 

differences in individuals with ASD relative to typically developing individuals, a specific 

investigation of auditory cortical responses to FAF would help to identify potential neural 

dysfunctions related to speech motor control in individuals with ASD.
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Language development is significantly disrupted in adults with ASD, yet the underlying 

cause of this disruption is currently unknown (Russo et al., 2008). Determining whether adults 

with ASD deviate from typically developing adults in the development of speech motor control 

may help uncover functional abnormalities underlying these language and speech disturbances.

iv. Persistent Developmental Stuttering 

Persistent developmental stuttering is characterized by disturbances in the coordination 

and movements of the respiratory, phonatory, and articulatory systems (Max et al., 2004; Beal et 

al., 2010). Delayed, frequency altered, and masked auditory feedback have been shown to 

influence stuttering severity (Van Riper, 1982; Howell, El-Yaniv, & Powell, 1987; Kalinowski, 

Armson, Stuart, & Gracco, 1993; Kalinowski, Armson, Stuart, & Gracco, 1996; Stuart, 

Kalinowski, Armson, Stenstrom, & Jones, 1996; Stager, Denman, & Ludlow, 1997; Natke, 

Grosser, & Kalveram, 2001; Stuart & Kalinowski, 2004). However, the mechanisms by which 

these auditory feedback manipulations affect speech motor control in individuals who stutter are 

currently unclear (Loucks, Chon, & Han, 2012). 

Neurocomputational models of speech production posit that the speech disfluencies 

demonstrated by individuals who stutter are the result of an over reliance on auditory feedback 

during speech production (Max et al., 2004; Civier et al., 2010). However, it has also been 

suggested that individuals who stutter have difficulty extracting information from their auditory 

feedback to modifying their ongoing speech motor commands, as well as to plan future speech 

motor commands (Max et al., 2004; Cai et al., 2012). By exposing individuals who stutter and 

healthy controls to FAF, it may be possible to identify whether individuals who stutter do in fact 

rely too much on auditory feedback, or whether they are unable to utilize their auditory feedback 

for sensorimotor planning. 
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As demonstrated throughout this thesis, individuals who have an increased reliance on 

auditory feedback tend to produce larger compensatory responses to FAF. Thus, if individuals 

who stutter do in fact rely too much on auditory feedback, we would expect that they would 

produce larger responses to FAF perturbations. On the other hand, if individuals who stutter are 

unable to extract meaningful information from their auditory feedback for sensorimotor planning, 

we would expect that these individuals would show slower rates of sensorimotor adaptation 

when exposed to persistent changes to their auditory feedback. Thus comparing responses to 

FAF across individuals who stutter and healthy controls may reveal differences in the way in 

which speech motor control is regulated by auditory feedback in these populations. Identifying 

potential differences in the way in which individuals who stutter and fluent speakers process 

auditory feedback is the first step in developing more effective techniques for alleviating 

stuttering severity. 

Conclusion

The aim of this thesis was to examine changes in the role of auditory feedback for 

speech motor control throughout development, as well as factors that may influence the role of 

auditory feedback for speech motor control in adulthood. The first study in this thesis 

demonstrated that toddlers use auditory feedback to regulate their speech motor commands, 

supporting the long held notion that auditory feedback is important during the acquisition of 

speech. While mapping out the developmental trajectory of vocal and ERP responses to FAF, 

the second study also demonstrated that vocal variability, rather than age, is best for predicting 

responses to FAF. Importantly, this suggests that maturation of the speech motor control system 

is not strictly dependent on age. The third study in this thesis demonstrated that children and 

adults show similar rates of sensorimotor adaptation, suggesting that once speech is acquired, 

speakers are proficient at using sensory information to modify the planning of future motor 
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commands. However, since adults produced larger compensatory responses, these results also 

suggested that adults are more proficient at comparing incoming auditory feedback with the 

feedback predicted by their sensorimotor representations, as a result of possessing more 

precisely mapped sensorimotor representations. The results of studies four and five 

demonstrated that vocal variability can be used to predict the size of compensatory responses 

and sensorimotor adaptation to changes in one’s auditory feedback, respectively. Furthermore, 

these studies demonstrated that increased variability was related to increased auditory 

feedback control of speech. Finally, the sixth study in this thesis demonstrated that 

experimentally induced predictability and variability can be used to induce increases in 

feedforward and feedback control, respectively. In conclusion, the results of this thesis 

demonstrate that age and vocal variability, both naturally occurring and experimentally induced, 

are important determinants of the role of auditory feedback in speech motor control. 
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