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1 Introduction

1.1 Motivation and Outline

Ever since the internet became publicly available it has allowed users to interact

with each other across virtual networks. In particular, development allows individ-

uals to post, trade and discuss ideas to the point where a virtual presence, or even

an avatar, can feel like a necessity. As of today these interactions happen almost

anywhere. Some examples are people’s email addresses, Facebook pages, LinkedIn

profiles, Twitter accounts, etc. Although there exists many more examples of such

virtual places they all have the same effect as their real world equivalent: communi-

ties. Even in virtual spaces, we as humans have tendencies to form connections to

other people or their avatars. Although that trait alone is not unexpected, virtual

networks open the doors to so many sciences as every piece of information is written

down and recorded at some point. We see this in the large studies that take place

today, that use information such as polling data, the recommended circles of buyers

or friends, or simply workplace correspondences[22]. The huge amount of data that

flows through online communities is often referred to as big data and has been the

highlight of many recent studies. Particularly in this boom of information growth a

vast field of research has emerged and has seen significant attention with this data

now available. To be able to identify the circles of users that more frequently in-

teract with each other enables us to understand how influence, knowledge, and even

happiness, flow through a social network. Finding these groups has been known as

Community Detection in Social Network Analysis. It provides an approach to a real

world problem with immediate application. This has never been more needed, espe-

cially with more and more of society being incorporated into a virtual world where

high amounts of data is being recorded. The purpose of this thesis is to provide a
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Community Detection algorithm particularly for finding these communities within

online social networks.

For the remainder of Chapter 1 we discuss the necessary basic mathematical con-

cepts needed for reviewing the methods currently used in Community Detection.

Chapter 2 covers the findings and recent research in Social Network Analysis that

are relevant to finding online communities. Chapter 3 details the specific community

detection tool that we will use in our own model. In Chapter 4 we present our own

model using many of tools of community detection but also introducing some of our

own findings. Chapter 5 shows how the implementation of our method maintains a

necessary lower computation time. Chapter 6 compares our result to the commonly

used algorithms and details our overall performance. In Chapter 7 we review our

method, findings, what contributions were made to this field of research and what

foreseeable improvements can be immediately applied.

1.2 Mathematical Background

This section provides the necessary basic mathematical background and the vari-

ous notation used in prior methods of community detection and that we incorporate

into our own method. We cover the basics of graph theory as it provides a necessary

mathematical representation of the network, a small amount of linear algebra that

plays a large part of our algorithm, and an introduction to run-time complexity.

1.2.1 Graph Theory

A graph G = (V,E) consists of a non-empty set of points V of points called

vertices and set of unordered pairs of vertices E called edges. A graph is sometimes

called an undirected graph. For an edge, e = (u, v) ∈ E, the vertices u and v are
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called the ends of e. For each edge of a graph it can be said that the edge connects

the vertices or the vertices are adjacent to each other. An edge is a loop if it connects

a vertex to itself, e = (v, v). An edge that has the same ends as another edge is

called a multiple edge. A graph with no multiple edges or loops is called simple.

Undirected graphs can be represented as a point for each vertex of a the graph and

as a line between points for each edge, not necessarily straight.

A directed graph G = (V,E) is a graph where the edges E are ordered pairs of

vertices. Then an edge e = (u, v) ∈ E indicates an edge from u to v where u is the

tail of the edge and v is the head of the edge. A way to represent directed graphs as

a point for each vertex and an arrow for each edge that starts at the tail and points

to the head.

A path in a graph (or directed graph) is an alternating sequence of vertices and

edges, v0, e1, v1, e2, v2, . . . , ep, vp where vi are distinct vertices and ei indicates that

vi−1 is adjacent to vi. A directed path is path where edge, ei, indicate an edge

from vi−1 to vi exist. A graph is connected if there exists a path between every two

vertices. A graph that is not connected is disconnected.

The complement of graph G is a graph H where H has the same vertex set as

G and the vertices of H are only adjacent if they were not adjacent in G.

In this thesis we adopt the notation that orders our set of vertices V = {1, 2, . . . |V |}.

Then a vertex vi refers to the vertex at the ith element of V . We denote e = (vi, vj)

as ij where in an undirected graph vertices vi and vj are adjacent to each other, and

in directed graph there exists an edge from vi to vj. Thorough out this paper we refer

to many undirected graphs and will often represent them as in Figure 1.

A subgraph, H = (V ′, E ′), of a graph, G = (V,E), is graph with vertices that

are a subset of G, V ′ ⊆ V and edges that are a subset of the edges of G, E ′ ⊆ E.

An induced or full subgraph, H = (V ′, H ′), of graph G = (V,E) has a vertex set
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(a) Graph A (b) Graph B

Figure 1: Two simple undirected graphs.

that is strictly a subset of the vertex set of G, V ′ ⊂ V , and every edge of E ′ meeting

with the vertex set V ′ in H. A connected component of a graph is subgraph that

is connected.

The order of a graph is the number of vertices, |V |, within a graph, often known

as n. The size of a graph is the number edges, |E|, within the graph, often known

as m. The degree of vertex, v, is the number of edges connecting to, or adjacent

to v noted as deg(v) or d(v). In this work we adapt the notation of the degree of

vi as ki to align our work with previous community detection works and many of

the definitions in Chapter 3. Similarly for directed graphs, we say a vertex has an

outgoing degree, kouti , and incoming degree, kini , indicating the number of edges

coming from a vertex and coming into vertex respectively. A weighted graph has a

weighting function w(ij) on the edges ij where w(ij) ∈ R. In a weighted graph the

strength of a vertex, si, is defined to be the sum of weights of adjacent edges. The

size of a weighted graph is the sum of weights of all edges W . Note that by the First
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Fundamental Theorem of Graph Theory the following hold true,

∑
i

ki = 2m, where G is an undirected graph,

∑
i

kini =
∑
i

kouti = m, where G is a directed graph,

∑
i

si = 2W, where G is a weighted graph.

(1.1)

Graphs are often represented by their adjacency matrices. The adjacency ma-

trix of a graph, A(G) or A, is an n × n matrix where Aij = 1 if there exists an

edge from vi to vj and 0 otherwise. Similarly the weighted adjacency matrix W (G)

contains the strengths of the edges Wij = sij from vi to vj. The degree sequence of

graph, dG, is a monotonic nonincreasing sequence of the vertex degrees. The graph

A from Figure 1 has the following adjacency matrix and degree sequence,

A(G) =



0 1 0 0 0 0

1 0 1 1 0 0

0 1 0 0 0 0

0 1 0 0 1 1

0 0 0 1 0 0

0 0 0 1 0 0


and dG = (3, 3, 1, 1, 1, 1) (1.2)
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While Graph B from Figure 1 has the following adjacency matrix and degree sequence,

A(G) =



0 1 0 1 1

1 0 1 0 1

0 1 0 1 1

1 0 1 0 1

1 1 1 1 0


and dG = (4, 3, 3, 3, 3) (1.3)

A Cut Edge of a graph is an edge of a graph that when removed causes the

graph to become disconnected. A set of edges that when removed causes the graph

to become disconnected is known as cut set.

Figure 2: A graph with where 3 edges make a cut set

Lastly, there are many types of graphs relevant to this area of research and well

studied in the past. A graph is a clique if every vertex is connected to every other

vertex. Figure 2 has two subgraphs that are cliques with 5 vertices. These are called

5-cliques. A q-clan refers to a subset of vertices that are all reachable from to each

other within q edges. Large q-clans often indicate a highly dense group of vertices

and are commonly used in social network analysis [26].
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1.2.2 Linear Algebra

Often in mathematics data is represented in an n×n matrix, such as the adjacency

matrix of a graph. A matrix, A, is a diagonal matrix if for Aij = 0 if i 6= j.

A matrix, A, is symmetric if Aij = Aji for all ij. The adjacency matrix of an

undirected graph is symmetric. If A is composed of real values and is symmetric then

A has a decomposition A = QΛQT , where the columns of Q are the known as the

eigenvectors and Λ is an diagonal matrix where Λii is corresponding eigenvalue. This

decomposition is known as the eigendecomposition.

1.3 Complexity Class

A large determining factor for which algorithms to use on a network is their

efficiency. Often in computer science the analysis of an algorithm is determined by

how it will run with an arbitrary large size input. For this purpose we introduce

Big O Notation. Big O notation is the comparison the growth of an algorithm, f(n),

to another function g(n) as a way of determining whether functions are equivalent.

We say f(n) = O(g(n)) if for some n0 and all n ≥ n0 then there exist C ∈ R such

that |f(n)| ≤ C|g(n)|. For example if we consider f(n) = 4n2 − n + 7 then as n get

arbitrarily large it is clear that the largest term is the n2. Then where g(n) = n2 then

for any C > 4 there will be corresponding n0 where f(n) ≤ Cg(n) is always true.

Similarly we define Ω where f(n) = Ω(g(n)) if for some n0 and all n ≥ n0, there exists

C such that |f(n)| ≥ C|g(n)|. Then following our example, for any C < 4 there exists

a corresponding n0 such that |f(n)| > C|g(n)|. If a function, f(n), is both O(g(n))

and Ω(g(n)) then we say f(n) = Θ(g(n)). We use Θ notation to indicate what the

efficiency or running time of function is. In our example, our function f(n) = Θ(n2).

This becomes key in our algorithm for finding social networks since with large data,
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although a function with run time n3 may produce a more accurate result, such an

algorithm would be infeasible to consider when n is large and an n2 algorithm is

available.
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2 Social Network Analysis and Online Communi-

ties

2.1 Introduction

The origins of Social Networks Analysis is ambiguous, however it has been preva-

lent field of research since Social Networks Analysis received specific attention in

the 1930’s [26]. During the 1930’s researchers devised the concept of a sociogram,

a graphical network representation in order to further understand communities [26].

Later in the 1960’s, researcher began to first apply mathematical concepts to these

networks and develop today’s social network analysis [26]. In this chapter we review

these concepts of social networks and introduce specific considerations when develop-

ing methods of community detection within social networks with particular relevance

towards online communities.

2.2 Properties of a Social Network

Social Network Analysis is the specific field of sociology and anthropology where

network theory is applied to social networks. Network theory uses graphs as rep-

resentation of real world systems [26]. Then for social network analysis a graph is

constructed by creating a vertex for each individual, commonly referred to as an ac-

tor. The possible relations and interactions between the actors are represented by

edges between the vertices of the respective actors. For social media networks it is

not uncommon to expand these definitions such that content items, such as blog posts

or comments belonging to an actor, are included as vertices and additional edges are

included to represent various relationships. For the purpose of this thesis we will

only consider the simple graph scenario where the network is G = (V,E), in which
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V represents actors and E represents a level of social interactions between the two

actors. This provides a basic structure that can be built upon in further works as

needed.

These social networks are known to share a number of characteristics common to

real networks, such as the small world effect and power law distributions [10]. Of these

characteristics, some real networks are known to exhibit the concept of community

structure within the network. Community structure refers to the fact that the actors

of a network belong to groups that have high levels of interaction within their own

groups and comparably fewer interactions with other groups. That is, networks may

be partitioned into groups of vertices that contain more edges between vertices of

the same group than with vertices of other groups. There are various concepts for

how community structure appears in complex networks, such as n-cliques and n-clans

[22]. Examples of this property are easily visible within social network such as social

interactions that occur on Facebook between friends, or a person’s email and their

correspondence with others.

The concept of community structure has various properties, depending on the

complex network it is embedded in. The community structure within a social net-

work will often contain many of the following properties: hierarchical, overlapping,

and elements of the multi-tier structure. To detect communities it is necessary to con-

sider how these properties manifest within social networks as well as the drawbacks

they present on community detection algorithms. To do this we detail each of the

properties below. A network is hierarchical when communities of smaller sizes can be

grouped together to represent larger communities resulting in communities on vary-

ing scales of sizes. In social network this is a well-known attribute and can be easily

seen as any formal organization of a social system [27, 31]. Uncovering hierarchical

networks is problematic as it becomes difficult to return meaningful partitions that
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correctly identify the communities. Some of the pitfalls of a detecting communities

in a hierarchical network include separating a community into smaller communities

that should be considered as one or, grouping communities together when they should

be separate. A network is overlapping when actors can be considered members of

multiple communities. Social networks comprised of social interactions are rarely

ever completely composed of disjoint communities, especially as social networks are

considered to be small-world networks thus the average path length between any two

actors is small, known often to be log(the number of actors). Often actors can rep-

resent roles that bridge any number of communities, thus belonging partially to all

of them. Unique and special consideration is needed in order to uncover overlapping

networks as, unlike many other complex networks, they can not always be discretely

partitioned. A multitiered network may have communities of various sizes. This

presents a significant disadvantage as many earlier algorithms for detecting commu-

nities rely on the a priori information of the sizes of the clusters as well as what

mesoscopic level they exist on.

The properties of social networks also impose necessary considerations for com-

munity detection. It is often the case that the information of how many communities

there are within a complex network can easily reduce the difficulty of discerning the

communities within the network; however for real social networks this a priori infor-

mation is often unavailable as they may be composed of any number of communities.

Algorithms that find communities of varying sizes as well as any number of commu-

nities often require a unique approach to succeed without having a priori knowledge.

Social networks are also often known to be dynamic and often changing as time

of goes on. That is, new actors appear and new relations occur, while other actors

will disappear and older relations may fade away from the network. Communities

that appear in a dynamic community structure change in size and potentially merge
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together, while other will fade, spilt, or disappear.

2.3 Social Brain Hypothesis and Community Size

The Social Brain Hypothesis presented by R.I.M. Dunbar in 1993 is a notable

theory we use to clarify some of the properties of community structure presented in

the prior section. The Social Brain Hypothesis theorized that the brain size of the

neocortex of nonhuman primates covaries to the size of the group that they organized

themselves into [4]. Further studies built upon the Social Brain Hypothesis indicated

hunter-gatherer societies have a similar relation, that given the size of a human’s

neocortex, communities that form contain up to 147.8 individuals. This number is

usually rounded to 150 and known as Dunbar’s number. The 95% confidence interval

for this number is 100.2-231.1. Dunbar’s number has received significant attention

by researchers seeking to provide an accurate estimate of real world communities of

humans beyond hunter-gatherer societies. Furthermore the work of W. -X. Zhou,

D.Sornette, R. A. Hill and R.I.M. Dunbar provides a organization of hierarchal struc-

ture that occur within human communities [31]. The authors found from their studies

that communities scale, on average, from smallest, S1, to largest, S6, as S1 = 4.6,

S2 = 14.3, S3 = 42.6, S4 = 132.5, S5 = 566.6 and S6 = 1728 [31]. The authors provide

range bands for each of these average community size. The smaller community, found

to be between 3-5 individuals, represents people from whom one would seek personal

advice or turn to in times of emotional and financial stress [31]. The second smallest

community, that ranges from 12-20 individuals, is referred often as the ‘sympathy

group’ or ‘support clique’. These are individuals who are close to a person and that

may be contacted at least once a month [6, 13]. The third group, ranging from 30-50

individuals, are bands that are often represented in hunter-gatherer societies. These

14



individuals are the most likely to change over time but are always drawn from the

150 individuals a person knowns [4]. Larger groups that are over 500 people can be

thought of as tribes or identity communities that are not necessary dense in social

interactions, but in which all the actors belong to a common identity [31, 24].

Since the development of online communities enables any person to connect to

hundreds, if not thousands of others, one can ask whether the social brain hypothesis

is still accurate in suggesting communities are limited to at most 150 individuals,

especially when it is possible for anyone to have over 500 friends on Facebook. This

question is addressed by R.I.M. Dunbar, who illustrates that communication between

social network sites do not in fact increase the capacity to have more friends [5]. The

ease of communication allows for the representation of the 500 plus common identity-

based communities to become visible, but these acquaintances do not actually increase

the number of friends anyone is capable of having. In fact it comes to light that

social networks mostly allow for any person to remain in contact with friends that

are geographically separated and simply allow the person to maintain these relations

[5]. This can be seen as noise, or interference, that an online social network may

possess, and we consider this unique problem in a later section. Lastly, the social

brain hypothesis has been validated already within social network of Twitter where

authors B. Gonçalves, N. Perra, A. Vespignani provided a model that exemplifies

Dunbar’s number within the a online community [11]. This study was one of the

first to bring Dunbar’s number to online communities and big data. From these

results we build our own model on the premise that Dunbar’s number influences

what communities we expect to find in our data.
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2.4 Noise and Edge weighting

A particular issue for any dataset drawn from real world data is the level of

noise that appears. For social network analysis, noise can be seen not only from

the various forms of data sampling of interactions but also from actors within the

network themselves. As indicated earlier, it is normal within social networks for

actors to claim more friends than they actual have, or for inconsistencies to appear in

the relationships between online social networks and the real communities outside of

the network [5, 9]. Many methods and procedures have been developed to eliminate

noise within a network and to more clearly show community structure [28]. The most

applicable and widely used means to eliminate noise in social networks is to consider

applying a weighting function to a network such that each edge is given a weight

that best represents the various types of relationships and interactions. [9, 29, 3].

That is, for each pair of users, consider the interactions and evaluate the strength of

their relation. One of the first large developments for understanding the relationship

between actors of a network comes from M. Granovetter’s ideas of the Strength of

Weak Ties [12]. In which Granovetter proposed that flow communication between

networks, especially the flow between weak ties, could be incredibly beneficial. In

the case of Social Network Analysis and Community Detection, we expect that the

internal strength of communications will be stronger within a community rather than

between communities. Without evaluating the strength of a relationship, a social

network would not be able to distinguish between varying relationships and would

result in noise as not all relationships are equal. This leads to degradation in the

overall performance, and in the finding of communities, as data may become too

dense or contain arbitrary thresholding [29]. To evaluate these relationships a recent

study done by E. Gilbert and K. Karahalios conducted a comprehensive model of
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network interactions on subset of users of Facebook [9]. This resulted in an algorithm

that is based on learning how a large set of actors interact with one another and

then using this knowledge, to properly evaluate relationships strength, which, in

turn, can be used to weight the edges within a social network. The results generated

were compared to a survey each user completed that indicated the strengths of their

own relationship with friends they had on Facebook. This comparison indicated the

algorithm proved successful. To further develop the understanding of relationships,

methods of Opinion Mining and Sentiment Analysis can be used to understand the

text between actors and their opinion of one another which can be added to any

model [21]. For these reasons we provide details in future chapters of how to adapt

our model of weighted symmetric networks.

In dynamic social networks the strength of relationship over time is the driving

force for change in a network. As edges become weaker, the communities in the

network may split; conversely, as relationships becomes stronger, communities may

become larger and merge together. This change in the network represents the decay

of relationships and the loss of friends, as well as the making of new friends and

forming relationships with others. This trend supports the prior section of the social

brain hypothesis by indicating that as a person makes new friends, the strength of

the ties to the older friends may decrease, and since they can only support a certain

number of friends overall, they must replace older friends.
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3 Graph clustering and Modularity of Social Net-

works

3.1 Introduction

The problem of clustering groups in a graph has been a very popular problem

in recent years. Clustering groups has many real world applications resulting in the

interest of many interdisciplinary fields of research. Detecting communities through

community structure is used to find naturally forming groups of actors, represented by

vertices, that have more interactions, represented by edges, inside the group that they

belong to than with the rest of the network. These groups of vertices are commonly

referred to as clusters, c. In the context of social network analysis we also refer to

these clusters as communities.

A partition, P of a graph, G, is set of clusters where each vertex is assigned

to one cluster. A covering, C, is set of clusters where each vertex belongs to at

minimum one cluster but may belong to multiple. Many of the definitions will be

presented for discovering and evaluating partitions and then later are expanded for

coverings.

For successful detection of viable partitions it is necessary that the graph, and thus

the network, must be sparse. That is, if the size of the network is n and the number

of relations in the network, m, then n � m, where � indicates that the number of

edges is significantly smaller than the number of vertices. In community detection

we expect that as our communities we use grow in size that m ∈ O(n), otherwise

more applicable methods would be in the field of research of data clustering[7]. Real

networks are known to be sparse and and social networks are expected to be sparse.

Since recent research in community structure has been extensive we will only be
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reviewing necessary concepts and algorithms relating to the development of our model

of detection: see [7] for an relatively recent extensive review of community detection

and [23] for explicit community detection for social media. In this section we will

be review the necessary ideas to provide a foundation for the understanding of how

algorithms are developed for Graph Clustering.

3.2 Community Evaluation: Modularity

Although communities can appear and be thought of as cliques and clans, for on-

line networks, these structures are difficult to find and there is no current polynomial-

time algorithm. Although many algorithms exist to roughly find these structures, they

often can be too restrictive on defining what a social network’s community structure

is [23]. Weak communities and Strong communities terms were introduce to relax

some of these constraints. A community is said to weak if it has overall more inter-

nal interactions than external. A community is said to be strong if every actor of

a community has more internal interactions than external. Many quality functions

have been proposed to determine whether a partition of a network is an accurate

representation of communities. Of these quality functions, density, conductance, and

modularity are popular definitions and provide an easy introduction to this material

as each have unique, but relatively simple, ways of defining communities that is not

restricted to particular graph structures. We further illustrate which has the most

applicable properties for finding communities in online social networks. For these

definition, let G = (V,E), denote a graph, G, with vertex set, V , where |V | = n,

and edge-set, E, where |E| = m. Let A(G), or A, donate the adjacency matrix of G,

where Aij is 1 if there is an edge, ij, between vertices vi and vj and 0 otherwise. Let

P be a partition composed of clusters c1, ..., c|P |. For partitions we define a vertex,
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vi’s, corresponding cluster as ci.

We say an edge is an internal edge, also known as a intra-cluster edge, of a partition

if both ends of the edge belong to the same cluster. An edge of a covering is an internal

edge with respect to a cluster if both ends partial belong to that cluster. An edge

is an external edge, also known as inter-cluster edge, of a partition if the ends of the

edge belong to different clusters. An edge of covering is external with respect to a

cluster c if one end does not belong to c.

The measurement of density for any cluster of vertices is expressed as external

density and internal density. Internal density is the comparison of the total number

of internal edges of the partition to the total possible number of internal cluster edges.

We then define the number of internal edges as

# of intra-cluster edges =
n∑

i,j=1

Aijδ(ci, cj) (3.1)

where δ(ci, cj) is the Dirac delta function

δ(ci, cj) =

 1 if ci = cj for vertices vi and vj

0 otherwise
(3.2)

Then density of internal edges for a cluster c is expressed as

δint(ci) =
# of inter-cluster edges of c

|c|(|c| − 1)/2
. (3.3)

The parameter δint(ci) measures the ratio of the number of edges inside of a clustering

ci to the number of possible edges of ci which is nc(nc − 1)/2 [7]. We then measure
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the external edges as

# of external edges =
n∑

i,j=1

Aijδ(ci, cj) (3.4)

where δ(ci, cj) = 1−δ(ci, cj). Then similarly external density of cluster, ci, is measured

as

δext(c) =
# of external edges of ci

(n− |c|)|c|
(3.5)

The parameter δext(ci) measures the ratio of the number of external edges to the

maximum number of possible external edges c can have [7]. Density is a simplis-

tic method to determine community structure. We now investigate more intensive

measurements.

For a given graph, the conductance, or the normalized metric cut, is the measure-

ment of splitting a graph with the smallest cut-set. To avoid simply cutting off a

single vertex with only a few edges to the rest of the network conductance is mea-

sured favouring equally sized communities. Conductance is then a measurement of

two subgraphs S and and the vertex induced subgraph S = V − S. Conductance is

then expressed as,

φ(S) =

∑
i∈S,j /∈S Aij

min (|A(S)|, |A(S|))
(3.6)

where the |A(S)| =
∑

i∈S
∑

j∈V Aij [16]. The value of conductance, φ, is the ratio

between the number of edges between the subset S and S compared to the minimum

of the size of either S or S including the edges between each other. Conductance can

be used for community detection for splitting a network into two clusters, favouring

clusters of equal sizes.

Modularity is a relatively recent measurement founded by M. Girvan and M.E

Newman that has seen a lot of attention for its intuitive design and its accurate
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results [7]. Modularity relies on a graph with similar properties to the original graph

but with absolutely no community structure [7]. This graph is often referred to

as the null model, and modularity is the measurement of the difference between a

partition of the original graph and the same partition on this null model. The most

commonly used null model is a random graph with the same degree sequence as the

original graph, also known as the configuration model [7]. To formulate the null model

consider each edge of the original graph, ij, to be split in two; that two stubs of the

edges are created, one stub connected to vi, and one to vj. A vertex vi has ki stubs.

Then to remap an edge from vi to vj, where vi and vj may not have been adjacent

before, consider randomly selecting both a stub from vi, which has probability ki
2m

,

and randomly selecting a stub from vj, which has probability
kj
2m

. It follows that the

probability of remapping any edge is
kikj
4m2 . Modularity is the difference of the ratio

of the internal edges in a partition to the total number subtracted by the expected

value of edges in the null model, which is defined as,

Q =
1

2m

n∑
i,j=1

(
Aij −

kikj
2m

)
δ(ci, cj) (3.7)

Note that the first term of equation (3.7) bounds Q between 1 and −1. To see this

we show the following proof:

Proof. When the partition has no edges the proof is trivial as Aij =
kikj
2m

= 0 for all

i, j ∈ V . If there exists an edge in the partition then for some i, j ∈ V , kikj > 0 and

Aij = 1 Then for Q < 1

1

2m

n∑
i,j=1

(
Aij −

kikj
2m

)
δ(ci, cj) <

1

2m

n∑
i,j=1

(Aijδ(ci, cj)) ≤
1

2m

n∑
i,j=1

Aij =
2m

2m
= 1
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Then for Q > −1

Q =
1

2m

n∑
i,j=1

(
Aij −

kikj
2m

)
δ(ci, cj) >

n∑
i,j=1

(
−kikj

4m2
δ(ci, cj)

)
≥ −

n∑
i,j=1

kikj
4m2

= −4m2

4m2
= −1

Thus Q is bounded by 1 and -1.

A positive modularity defines a good partition, as the clusters of the partition

have a high number of internal edges where the expected number of edges between

vertices is low. We notice that if we consider the whole graph as one cluster, then

δ(ci, cj) = 1 for all i, j ∈ V and

Q =
n∑

i,j=1

Aij −
n∑

i,j=1

kikj
2m

= 2m−

n∑
i

ki
n∑
j

kj

2m
= 2m− (2m)(2m)

2m
= 0 (3.8)

Then if any partition of the network results in a modularity value less than 0, gener-

ally, the network is a dense community, and no split can increase the modularity.

Of these objective functions both conductance and modularity have seen a large

amount of attention for developing algorithms. Both have seen the most success

at finding communities, but modularity has seen particular success for social net-

works [16]. Thus in this thesis we expand upon the current modularity objective

function. This choice is made as algorithms using conductance often make use of a

priori knowledge such as the number of communities and the size of communities.

Particularly, conductance favours the partition of clusters of equal size and focuses

on determining a minimal cut while modularity provides a measurement for which

partitions find module elements of a community and in many cases favours splits of

various sizes. This approach better aligns with the difficulties of finding community

structure outlined in Chapter 2.
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3.3 Properties of Modularity

Since modularity is particularly popular there has been much research to further

understand properties of this measurement. We now review the adaptations of mod-

ularity for directed or weighted and overlapping networks, the spectral decomposition

of modularity, and the well-known resolution limit of modularity.

3.3.1 Adaptations of modularity

Social networks are not always represented as simple unweighted undirected graphs.

As in Chapter 2, there are many different interpretation of data for a network [22].

Although we investigate simple unweighted undirected graphs for the purposes of this

thesis, here we provide the details and extensions for weighted and directed networks

[7].

For directed networks, an equation analogous to (3.7) can be derived as follows.

For all vertices, vi, the edges meeting vi are broken into outgoing stubs, the number

of these is the out degree, kouti of vertex vi, and incoming stubs, the number of

these is the degree, kini of vertex vi. The null model is created by considering the

probability randomly of creating an edge from a vertex, vi, to another vertex vj. This

is the product of the probability, ki
m

, of selecting an outgoing stub of vi from all other

outgoing stubs and the probability,
kj
m

, of selecting an incoming stub of vj from all

other incoming stubs. Then the probability of creating an edge from vi to vj is
kouti kinj
m2 .

For directed networks the modularity is defined as

Q =
1

m

n∑
i,j=1

(
Aij −

kouti kinj
m

)
δ(ci, cj). (3.9)

Equation (3.9) is the difference of the of ratio the of internal directed edges compared

to all the edges of the graph subtracted by the expected values of directed edges for
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in appearing in the random graph.

For weighted networks we construct a null model that incorporates the total

weights of the edges meeting a vertex. Instead of the degree of vertices affecting

our equations it is now the the total strength, si, of edges adjacent to a vertex, vi.

As before, then the expected weight between two vertices, vi and vj, is
sisj
4W 2 where

W is the the total weight within the network. We then conclude that for a weighted

adjacency matrix with entries Wij, modularity can be represented as

Q =
1

2W

n∑
i,j=1

(
Wij −

sisj
2W

)
δ(ci, cj) (3.10)

Equation (3.10) is the difference of the ratio of internal weights to all weights sub-

tracted by the expected strength between the vertices in the random graph. Without

weighting a network noise will be introduced to the network as not all social ties are

the same strength [12, 29, 21]. It follows from equation (3.9) and equation (3.10) it

that the modularity for a weighted directed graph can be constructed by the directed

incoming strengths, sini , and outgoing strengths, souti . Then, following the same rea-

soning provided for both prior equations, modularity is defined for directed weighted

graphs as follows,

Q =
1

2W

n∑
i,j=1

(
Wij −

sini s
out
j

2W

)
δ(ci, cj) (3.11)

With a thorough understanding of weighted and directed modularity, an extension

for overlapping communities can be constructed. Recall that overlapping communi-

ties are represented as a covering. We now follow the work of V. Nicosia, G. Mangioni,

V. Carcgiolo and M. Malgeri to show this extension [20]. For overlapping communities

it is necessary to introduce a membership vector for each vertex. Let [αi,1, αi,2 . . . αi,|C|]

be the membership vector for a vertex vi, where αi,c expresses the belonging value
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of vertex vi has to a community c. In a partition αvi,c = 1 if and only if vi ∈ c.

However for overlapping communities this constraint is relaxed and the αvi,c value

changes to indicate how much a vertex belongs to a community. It follows that αi,c

has the following intuitive properties, with respect to all the clusters c of partition P ,

0 ≤ αvi,c ≤ 1 ∀vi ∈ V, ∀c ∈ P (3.12)

and that
|C|∑
c=1

αvi,c = 1 (3.13)

This means that a vertex vector can never have total belonging value more than it

has in the case of finding a partition.

With each vertex having a belonging coefficient to a cluster c, we now consider

the belonging of an edge between them to a cluster c. Let ` be the edge between

vertices vi and vj. Denote the belonging value of ` to a cluster c by βl,c. Then a

edge’s belonging to a cluster βl,c is dependent on the adjacent vertices of the edge

and their belonging values to c. V. Nicosia et al. define this as [20],

βl,c = F(αvi,c, αvj ,c) (3.14)

where F is some function bounded between 0 and 1 and dependent on αvi,c and αvj ,c.

V.Nicosia et al. found in their experiments the following two dimensional logistic

function gave the best results for overlapping communities [20],

F(αi,c, αj,c) =
1(

1 + e−f(αi,c)
) (

1 + e−f(αj,c)
) (3.15)
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where f(αi,c) is a linear scaling function,

f(x) = 2px− p, p ∈ R (3.16)

where x is the membership of a vertex and in our experiments we apply larger value

of p for larger communities then scale it down to a minimum of 9. These values of p

maintain distinct clusters that do not completely overlap each other.

To integrate these variables into the modularity measurement, consider equation

(3.9) rewritten as sum of clusters,

Q =
1

m

|C|∑
c=1

|c|∑
i,j=1

(
δ(ci, cj)Aij − δ(ci, cj)

kouti kinj
m

)
. (3.17)

Then by relaxing δ(ci, cj) to variables rij,c and sij,c, where for partitioning rij,c =

sij,c = δ(ci, cj, c), we can consider the modularity gain of edges that belong to multiple

clusters. Let us consider r`,c as the contribution to modularity given by of the edge,

`, joining vertices vi and vj that belongs in some way to cluster c. Then r`,c is called

the belonging value of the internal edges of the clusters of our partition. To illustrate

this consider equation (3.17) rewritten now with overlapping edges internal edges,

Q =
1

m

|C|∑
c=1

|c|∑
i,j=1

(
rij,cAij − sij,c

kouti kinj
m

)
. (3.18)

Note that sij,c will be defined below. Equation (3.18) illustrates now how the gain

of modularity is based on the values of rij,c. However, in a partition the gain is

simply dependent on the membership of its vertices (either 1 or 0), and it is under

that intuition that the authors defined rij,c as dependent on the membership of the
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adjacent vertices; that is to say,

rij,c = β`,c = F(αi,c, αj,c). (3.19)

The formulation of sij,c is more complicated. From equation (3.18) the value

sij,c represents the overlapping nature of the null model used to compare against

the partition. The difficulty comes in that the null model must preserve the total

contribution to any cluster, c. The configuration model for the case of clusters that

do not overlap involves placing an edge between vertex vi and any other vertex without

any consideration of the vertices adjacent to vi. That is, the cluster that vi is a part

of has no relation to the probability to that vi has an edge to any other vertex. This

ensures that the null model maintains the degree sequence but contains no community

structure. For the similar case of overlapping communities, the belonging, αi,c, of

vertex vi to cluster c of does not depend on the belonging, αj,c, of any vertex vj to

cluster c. The expected belonging coefficient of any possible edge ij starting from a

cluster c is the average of all possible edge belonging coefficients starting from c. This

is formulated as,

βoutij,c =

∑n
j=1F(αi,c, αj,c)

n
. (3.20)

Similarly the expected value of an incoming edge belonging coefficient for a cluster c

is the average edges belongings coefficients to c, which is defined as

βinij,c =

∑n
i=1F(αi,c, αj,c)

n
. (3.21)

Then our null model becomes

sij,c
kouti kinj
m

=
kouti βoutij,ck

in
j β

in
ij,c

m
(3.22)
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We can then substitute the coefficient rijc and sijc of equation (3.17) as the belong-

ing coefficients of internal edges and the expected belonging of any directed edge in

and out of a cluster to construct a measurement of overlapping modularity. V.Nicosia

et al. [20] define this as,

Q =
1

m

|C|∑
c=1

|c|∑
i,j=1

(
βij,cAij −

kouti βoutij,ck
in
j β

in
ij,c

m

)
(3.23)

3.3.2 Spectral Decomposition

The spectral decomposition of modularity was presented by M.E.J Newman in

2006 [19]. This method was shown to be more intuitive for finding social network

communities than other spectral methods such as applying the Laplacian matrix

[18]. In fact, regular spectral methods excel at optimizing conductance and finding

optimal splits of a network into two subgraphs with a minimum number of cut edges,

known as the well-established field of graph partitioning [22, 19]. However this is

not always ideal for a social network that has more than two various communities

and communities that vary in size [19]. For this reason we will use the spectral

decomposition of modularity. To introduce how to optimize modularity with the

eigenvectors of matrices we follow the same steps presented by M.E.J Newman. For

spectral analysis we initially consider the modularity of a simple network or graph as

in equation (3.7). Note that, however, δ(ci, cj) may be represented as value 1
2
(sisj+1)

where si ·sj are 1 if i and j belong to the same group or −1 if they belong to different

groups (not to be confused with strength indicators from equation (3.10)).

1

4m

n∑
i,j=1

(
Aij −

kikj
2m

(sisj + 1)

)
=

1

4m

n∑
i,j

(
Aij −

kikj
2m

(sisj)

)
(3.24)
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where (3.24) is reduced by following the property presented in equation (3.8). This

result can be rewritten in the following matrix form,

Q =
1

4m
sTBs. (3.25)

where B is the symmetric matrix and

Bij = Aij −
kikj
2m

(3.26)

B is known as the modularity matrix. We then consider s as a linear combination of

the the normalized eigenvectors vi of the modularity matrix. Then s can be expressed

as

s =
n∑
i

aivi (3.27)

where ai =
∑n

i=1 vTi si Then equation (3.25) becomes

Q =
n∑
i=1

(
aiv

T
i

)
B

n∑
j=1

(ajvj) =
n∑

i,j=1

(aiajλjδ(vi,vj)) =
n∑
i=1

(
a2iλi

)
(3.28)

where λi is the eigenvalue corresponding to the eigenvector vi. Equation (3.28) makes

use of the fact that vTj vj = δ(vi,vj). Then if we assume that the eigenvalues have

been ordered such that λ1 > λ2 · · · > λn, the largest modularity split would come

from choosing s to be as parallel to the first eigenvector v1
i as possible. That is, by

constraints of the construction, the most parallel choice is

si =

 +1 if v1
i > 0

−1 if v1
i < 0

(3.29)
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This solution for s of equation 3.29 is an approximate optimal split for considering the

network along one vector. However real communities often have more than just two

communities. This procedure is illustrated by M. E. J. Newman but follows closely

what has been shown for the case of the Laplacian and other spectral methods, shown

by C. J. Alpert S. -Z. Yao [19, 1]. Let S be an n × |P | index matrix such that each

column represents a community. Then the values of S are defined to be

Sij =

 1 if vertex vi belongs to community cj

0 otherwise
(3.30)

The columns of S must be mutually orthogonal in the construction of the spectral

space. Then in a manner similar to (3.28) the δ function can be replaced as,

δ(ci, cj) =

|P |∑
c=1

Si,cSjc (3.31)

The modularity of a partition of a network is

Q =
1

2m

n∑
i,j=1

|P |∑
c=1

BijSicSjc =
1

2m
tr(STBS). (3.32)

This equation can then be rewritten using the eigenvalues, λi, and eigenvectors, a,

where we removed the unit eigenvector vi, of the modularity matrix as

Q =
n∑
i=1

|P |∑
c=1

(sicai)
2λi, (3.33)
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where the 1
2m

is suppressed as it does not change the position of an optimal partition.

Similar to ordinary spectral partitioning [1], vertex vectors are introduced as,

[ri] =
√

(λi − α)ai (3.34)

where i = 1 . . . n and α < λn to ensure that all [ri]j remain real. We can then redefine

modularity from equation (3.33) in terms of vertex vectors as

Q = nα +
n∑
i=1

|P |∑
c=1

(sikai)
2(λi − α)

= nα +
n∑

i,j=1

|P |∑
c=1

([ri]jsic)
2

= nα +

|P |∑
c=1

n∑
j=1

|c|∑
i=1

([ri]j)
2

= nα +

|P |∑
c=1

|Rk|2,

(3.35)

where Rk is known as a community vector and is the sum of all vertex vectors of a

community. Many algorithms are built from this representation of modularity as it

provides a dimensional space equal to the number consisting of the eigenvectors with

vertex vectors that represent modularity splits. Often if the network has |P | distinct

communities of roughly equal size they will be represented in the first |P | − 1 vectors

[7].

3.3.3 Resolution of Modularity

In this section we review the the well-known resolution limit of modularity. Al-

though modularity has proved successful in community detection, it does have a

resolution limit, which will inaccurately identify communities [7]. To show what the
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resolution limit is and how it affects the measurement of modularity, we the follow

the proof given by S. Fortunato and M. Barthélemy [8]. First consider equation (3.7)

as the sum of contribution of each cluster but rewritten as

Q =
k∑
c

[
lc
m
−
(
dc
2m

)2
]
, (3.36)

where k is the number of clusters, lc is the number of internal edges in a cluster c, and

dc is the total degree of the vertices included in c. Then if the first term of equation

(3.36) is larger than the second, there are more edges in the cluster, c, than expected.

Thus a cluster c is a modular cluster if

lc
m
−
(
dc
2m

)2

> 0. (3.37)

Let the outgoing edges of the cluster, the inter-cluster edges, loutc , be represented as a

fraction of the total number of edges of a cluster, i.e loutc = adc where a ≥ 0. Equation

(3.37) then becomes

lc
m
−
(

(a+ 2)lc
2m

)2

> 0 (3.38)

which rearranges to

lc <
4m

(a+ 2)2
(3.39)

If a = 0, then the cluster of s is disconnected from the network and is a separate

component of the network. Consider a > 0. Then equation (3.40) becomes an

upper limit for how many internal edges can be included in a module cluster. For

0 < a < 2, ls is has an upper bound in (m/4,m). A sufficient condition for a cluster
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to be conditions for a community is then

lc <
m

4
and a < 2 (3.40)

This presents a problem as the lc is now dependent on the size of the network. The

authors then construct a network that illustrates this problem and proves how the

maximum modularity measurement can group very distinct groups together. Consider

a network with a pair of clusters, M1 and M2, where both hold to the condition

presented in equation (3.40), and call the remaining network M0. Let M1 have l1

edges with lout1 edges to M0. Similarly let M2 have l2 edges with lout2 edges to M0.

Lastly, let M1 and M2 be lint. It follows that non-negative a1, b1, a2, b2, exist such

that, lint = a1l1 = a2l2, b1l1 = lout1 , and b2l2 = lout2 . Since both M1 and M2 are

module clusters by design then a1 + a2 ≤ 2, b1 + b2 ≤ 2 and l1, l2 <
L
4
. Then consider

two separate partitions, A and B of this network, where A has verticesM1 andM2 as

separate clusters and B has verticesM1 andM2 in the same cluster. The modularity

of each partition, QA and QB, is given as follows, where Q0 is the modularity ofM0,

QA = Q0 +
l1
m
−
[

(a1 + b1 + 2)l1
2m

]2
+
l2
m
−
[

(a2 + b2 + 2)l2
2m

]2
(3.41)

QB = Q0 +
l1 + l2 + a1l1

m
−
[

(a1 + b1 + 2)l1 + (a2 + b2 + 2)l2
2m

]2
(3.42)

As both M1 and M2 are modular clusters by construction it is expected that

QA > QB or that ∆Q = QB − QA < 0. ∆Q can be expressed in terms of equation

34



(3.41) and (3.42) as

∆Q =
a1l1
m
− (a1 + b1 + 2)(a2 + b2 + 2)l1l2

4m2
(3.43)

Notice that if a1 = a2 = 0, then equation (3.43) always holds true. Otherwise equation

(3.43) can be solved for values of l2 (without loss of generality) such that ∆Q < 0 as

follows,

l2 >
2ma1

(a1 + b1 + 2)(a2 + b2 + 2)
. (3.44)

Equation (3.44) shows that l2 is dependent on m as well as the various coefficients. S.

Fortunato and M. Barthélemy show for which cases the inequality of equation (3.44)

does not always hold [8]. For simplicity let l1 = l2 = l. Consider now the extreme

case that M1 and M2 are joined to the other components of the network with a

single edge; that is, a1 = a2 = b1 = b2 = 1/l. Equation (3.44) now becomes.

l >
2L(1/l)

(2/l + 2)(2/l + 2)
(3.45)

which is equivalent to

l >

√
L

2
(3.46)

for larger enough values. Then for any l <
√

L
2

modularity will incorrectly merge two

very distinct communities together. S. Fortunato and M. Barthélemy expand on this

for cases where l1 6= l2 but the result is similar [8]. This resolution limit has been seen

in real networks and is a situation that must be addressed by any modularity-based

community detection.
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4 Overlapping and Hierarchical Spectral Method

4.1 Introduction

With the prior sections covering some of the aspects of how community detection

works and some of the methods used, we provide additional functionality to these

existing methods to tailor them toward community detection in social networks. We

present our spectral method which is particularly suited to finding communities that

are overlapping, as well as find finding multi-tiered communities of varying sizes, while

overcoming some of the obstacles presented by the resolution limit of modularity.

Our method first looks at the gain in modularity by adding vertices together into

the same clusters of a partition. The particular patterns of the spectral space allow us

to determine estimates of communities and vertices that are highly related to these

communities. It then becomes possible to determine the number of internal edges

to a predicted group without it being fully defined. We construct a membership

matrix on the indicated number internal edges. We then determine how to reduce

the amount of overlap between our communities and then recursively partition them

until all communities can no longer be broken up.

4.2 Spectral Belonging

To begin, recall that we consider the community G, with vertices v and edges e

where A(G) is the corresponding adjacency matrix. Let B(G) be the corresponding

modularity matrix for a graph G. We then construct the spectral decomposition as

detailed in the spectral decomposition section. We follow a subset of the spectral

decomposition shown in section (3.3.2) but we only consider the two first eigenval-

ues. We use only this limited information as it provides the most optimum splits
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for modularity but maintains an overall run time efficiency that is on par with other

algorithms. Let λ1 and λ2 be the corresponding maximum eigenvalues with eigenvec-

tors a1 and a2 respectively. Note that if λ2 < 0 then only λ1 is necessary. If both

eigenvalues are less than zero, then equation (3.28) would never be positive indicating

no modular splits. The spectral decomposition is constructed where each vertex vi

has a corresponding vertex vector, ri. We re-adjust equation (3.35) to

Q =
n∑
i=1

|P |∑
c=1

(sicai)
2(λi)

=
n∑
i=1

|P |∑
c=1

(
2∑
j=1

([ri]jsic) +
n∑
j=3

(sicai,j)
2(λi)

) (4.1)

We remove the α as we expect at least the first two eigenvalues to be positive. Equa-

tion (4.1) has separated the term we are maximizing in this method,
∑|c|

i=1

∑2
j=1([ri]jsic),

from the other as the greatest contribution to modularity comes from the first two

eigenvalues. Then we define the gain from a community c from the two lead eigen-

values as,

Qk = |Rc| =
2∑
j=1

|c|∑
i=1

[ri]
2
j . (4.2)
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This is easily reducible to the sum of dot products of the spectral space as follows,

Qk = |Rc| =
2∑
j=1

[ |c|∑
i=1

ri,j

]2

=

[√
λ1

|c|∑
i=1

ai,1

]2
+

[√
λ2

|c|∑
i=1

ai,2

]2

=
√
λ1

|c|∑
i=1

ai,1 ·
√
λ1

|c|∑
j=1

aj,1 +
√
λ2

|c|∑
i=1

ai,2 ·
√
λ2

|c|∑
j=1

aj,2

=

|c|∑
i,j=1

(
√
λ1ai,1 ·

√
λ1aj,1) + (

√
λ2ai,2 ·

√
λ2aj,2)

=

|c|∑
i,j=1

(ri · rj)

(4.3)

It follows that the gain of adding a vertex, v, with vertex vector, rv, to a community

vector Rc is defined as follows

Qc+v − (Qc +Qv) =

|c+v|∑
i,j=1

ri · rj −
( |c|∑
i,j=1

ri · rj + rv · rv
)

= 2

|c|∑
i=1

rv · ri = 2rv ·
( |c|∑

i=1

ri

) (4.4)

Using both equations (4.3), (4.4) we are able to determine how much a vector

belongs to any predefined community.

4.3 Community Estimation

To begin finding communities in a network we further investigate the patterns

found in the spectral decomposition of the network. It has been illustrated that

a modularity spectral dimension that the data that indicates a community must be
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further than 90 degrees apart from data that indicate another community or otherwise

it would be more beneficial to join them as one and the communities would not be

different.[25, 19]. Then given the constraint that communities must appear 90 degrees

apart it follows that the number of communities that can appear in a p-dimensional

space is p+1. Then for our algorithm, as we only inspect the first two eigenvectors of

any modularity matrix we can expect up to three representations of communities to

appear in the spectral decomposition. Equation (4.3) indicates that a group of vertices

is a community if there is large sum of dot products between the vertices vectors. Thus

there we expect to see up to three groups that together form a relatively high sum

of dot products. Although there are many algorithms for detecting large groups of

vertex together, such as the ‘MELO’ algorithm presented by C. J. Alpert S. -Z. Yao

[1], we present our own variant as it captures information about the vertex vectors

that is necessary for developing overlapping communities.

The key aspect of our vertex vector partition algorithm is we that consider the

immediate community surrounding any vertex vector. As stated before, we expect the

communities to exist in the spectral decomposition, there is expected to be groups

of vertices that result in a high modularity. We define the potential neighbouring

community of a vertex vector, ri, as the sum of positive modularity of including 4ri

and any other vertex vector rj subtracted by a partition where they are in different

communities.

potential community of v =
n∑

i,j=1

(Qi+j − (Qi +Qj))

=
n∑

i,j=1

(ri · rj − (ri · ri + rj · rj))

=
n∑

i,j=1

2ri · rj where ri · rj > 0

(4.5)
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For the indication of a potential community we only consider vertices that give a

positive value be included with ri, as we only investigate a nearby community. Thus

the potential neighbouring communities of a vertex vector, ri, exist up to 90 degrees

from the vertex vector ri. However, for the estimate to be accurate, it is also necessary

to consider that there exist additional communities that other vertices belong to, that

exist at least 90 degrees away. If we introduce another community vector, ri0 , then

any vector, rj, in the small angle of the two vertex vectors has a positive gain to both

communities. Thus adding it to the local community of ri implies that modularity

is lost from not adding to ri0 which creates the following inequality from measuring

local communities

(Qi+j − (Qi +Qj))− (Qi0+j − (Qi0 +Qj)) = 2(ri · rj − ri0 · rj) (4.6)

We then define a vertex vector’s strictly local community as if there were two equally-

sized communities directly 90 degrees away from the vertex vector. We expect the

actual neighbouring communities to be of roughly the same size in magnitude as all

three summed together are equal to 0. Then the total modularity gain to adding

a vertex vector to community centred at ri must consider that the vertex vector is

removed from the other possible community that is less than 90 degrees away. The

strictly local community of a vertex, ri, is then sum of the positive differences of

adding any vertex to the local community minus adding it to the peripheral adjacent
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communities

local(ri) = 2
∑
j

(ri · rj − ri0 · rj)

= 2
∑
j

|rj|(|ri| cos θij − |r0| cos θi0j)

= 2
∑
j

|rj||ri|(cos θij − cos(
π

2
− θij))

(4.7)

Equation (4.7) provides what can be considered as the minimal measurement for a

community forming around a vertex vector. It does not require any priori knowledge

about the network and is not based on any partition of the vertices, which makes it an

ideal approach for social networks. Once each vertex vector is given a measurement,

if the vertex has the largest local community within a 90 degree arc centred on itself

then we can estimate that there is a community surrounding it. We refer to these

vertex vectors as predictor vectors. We denote predictor vectors as r̃c. Generally three

predictor vectors are found through measuring all the local communities. However,

if the second eigenvector indicates a significantly smaller community, then there may

only be two, since vectors adjacent to large predictor vector will have a large local

community but may be within 90 degrees of a small predictor vector. Thus our

geometric constraint prevents finding the smaller predictor vector. In the rare case

of a very noisy network, then there may only be one vector found.

Once predictor vectors are found, we can form predictor communities around the

predictor vectors. A predictor community consists of all vertex vectors that give a

positive contribution corresponding to local community of the respective predictor

vector, denoted as

R̃j =
∑
i

ri, for θi,j <
π

4
(4.8)

Predictor communities provide an outline, or silhouette, of what communities the
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lead eigenvectors correspond to.

We then begin determining every vertex vector’s belonging to each of the predictor

communities. An intuitive measurement is the modularity gained, defined by equa-

tion (4.4), of adding a vertex vector to as to a predictor community. However this

presents a number of problems. Communities exist on many scales but in modularity

optimization if they are too small in comparison to the rest of the network there

is no gain in separating these communities. Not all communities are represented in

the first two leading eigenvectors. If one could compute the first |p| − 1 eigenvectors

where |p| is the number of communities then an ideal partition would be the choice

of |p| − 1 independent mutually orthogonal columns of the spectral decomposition.

Thus in 2 dimensional spectral decomposition there are many vertex vectors that

contribute very little to modularity as they refer to communities represented in the

positive eigenvectors that have not been calculated. Vertex vectors that have rela-

tively small gain to be added a community we say have small spectral participation,

as they provide small amounts of modularity to our found predictor communities and

may correspond to different communities.

Then an accurate method for estimating the communities in the spectral space

would be to consider assigning each vertex vector to the predictor community or to

an additional group of vertices that still have unknown membership. Vertex vectors

that clearly belong to a predictor community have a high value by equation (4.4).

However this is not the case for all vertex vectors that belong to that community. If

we consider adding a vertex, v, to community, c, then the change of modularity, given
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by equation (3.36) is,

Qc+v − (Qc +Qv) =

(
lc + kintv

m
−
(
dc + kv

2m

)2
)

−

((
lc
m
−
(
dc
2m

)2
)

+

(
−
(
kv
2m

)2
))

Qc+v − (Qc +Qv) =
kintv

m
− dckv

2m2

(4.9)

where kv is the degree of v and kintv is the number of edges between v and the vertices

of c. Then if we consider kintv as fraction of kv that is kintv = akv where 0 ≤ a ≤ 1

equation (4.9) becomes

Qc+v − (Qc +Qv) =
kv
m

(
a− dc

2m

)
(4.10)

Then equation (4.10) shows how modularity gain is partially dependent on kv and

the fraction of internal edges a. Then we can expect our predictor vertices be highly

connected to vertices to in their relative community. However, a vertex with a small

degree but with a large proportion of the edges meeting it going to the community

have smaller gain. Then vertices of smaller degree are also grouped with other vertices

that have a low spectral participation. This is reflected in the spectral decomposition,

with a low value in equation (4.4). Then it follows from both equation (4.10) and

equation (4.4) that

2rv · (R̃c) ∝
kv
m

(
av −

dc
2m

)
(4.11)

Then to get around the difficulty of distinguishing vertices with a lower spectral

participation but a large number of edges into the community from vertices that have

a low spectral degree but do not belong to the predictor community, we consider

that our predicator vertex vector, vp, belongs entirely to the the respective predictor
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community formed around it. By considering the ratio of vertex vectors to that of a

nearby predictor vertex vector. If we consider a ratio of the modularity gained from

adding the predictor vector to the community it belongs to that of another vertex

vector vh we see the follow estimated relative gain

2 rh · R̃c

2 rp · R̃c

∝
kh
m

(
ah − dc

2m

)
kp
m

(
ap − dc

2m

)
2 kp rh · R̃c

2 kh rp · R̃c

∝
ah − dc

2m

ap − dc
2m

,

(4.12)

The right hand side term of equation (4.12) is a ratio of the internal edges of vh

to that of our predictor vector, vp for the respective predictor community without

actually knowing what vertices belong to the community. This is the heart of our

algorithm as it we can estimate the the ratio of internal edges a vertex may have to a

community without knowing the community itself. Vertices with a small number of

internal edges can be determined if they belong to a predictor community as we see

if a vertex has an equivalent or better ratio of internal edges as that of the predictor

vertex, which we assume fully belongs to the predictor community. We then construct

a belonging matrix to show this information as

βi,j =
kjR̃j · ri
kiR̃j · rj

(4.13)

Although βi,j provides the measurement from equation (4.12) it often possible

that
∑

j βi,j > 1 as these equations are only approximations and network data will

often contain outliers. We normalize and include the potential set unknown vertices

44



in the following membership matrix to produce,

Mi,j =
βi,j

max(
∑

k βi,k, 1)

Mi,|c|+1 = 1−
∑
j

Mi,j.
(4.14)

The measurement found in equation (4.14) is then the heart of our algorithm as

it provides a method to divide a network into three three modular groups and a set

of vertices that only weakly correspond to any of the three groups.

4.4 Recursive Partitions

For the first pass we find the Membership Matrix from the prior section and assign

vertex vectors. The exception is a network with only negative eigenvectors because

then there is no modular split. We then reconstruct adjacency matrices for each of the

subgraphs by applying an edge-weighting function for overlapping modularity such

as equation (3.14). We expect the modularity of the new subgraph to have greater

modularity compared to the prior iteration of communities. However, the group of

unknown vertices is comprised of what we consider to be smaller communities that are

unrelated to the current partition. It is no surprise that the modularity value of this

subset of the partition will often be negative. Therefore we must continually apply

our community estimation algorithm to the group of unknown vertices, until either

all vertices have been assigned to a group or until a positive modularity is reached.

As the community of unknown vertices tends to favour vertices that provide lit-

tle modularity gain and a large number of vertices that do not correspond to the

community indicated by the eigenvector, we can expect the communities within the

resolution community to appear in the unknown community. However, to limit the
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number of vertices that do not correlate strongly to vertices of those that are unaf-

filiated with the communities, we remove vertices that have less than one full edge

contained within the unknown group. That is to say, for a vertex vector, ri, to belong

to the unknown group then
∑

j F(αvi,|c|+1, αvj ,|c|+1) ≥ 1 otherwise it can not be cer-

tain it belongs to any group that may exist in unknown group. Rather than consider

a potential vertex vi that at best it is on the peripheral of, to be in the unknown

group, we move ri into a known community by rebalancing the membership matrix.

We do this rebalancing proportional to the known memberships, as expressed as the

following equation,

Mi,j ←Mi,j +
Mi,j ×Mi,|c|+1∑

kMi,|c|

Mi,|c|+1 ← 0

(4.15)

Equation (4.15) removes the membership in the unknown group but also ensure that

the total membership is still 1.

After this step we must do a similar de-noising procedure for the communities

that were found. Often the communities may absorb smaller communities, gaining

partial membership of the vertices, while these smaller communities have partial

memberships in the unknown groups of vertices or other found communities. If we

consider the possible minimal contribution a vertex vector, ri, may have while still

belonging to a community, found or unknown, is Mi,j = 1/3. It follows that the

minimal edge, in the first pass, contribution is F(1/3, 1/3). Then we construct a

threshold value of what vertices can still belong to a cluster as having at least one

edge of minimal internal edge weight such as

vi ∈ Gc if and only if F(αi,c,αj,c) ≥ F(1/3, 1/3) for some j ∈ V . (4.16)
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For each vertex removed this way, the membership matrix must be rebalanced but

only after all vertices that do not meet the requirement of (4.16) have been removed.

Then using equation (4.15) we can rebalance the membership matrix for the vertex

vector removed. For further recursive steps the threshold value varies for each vertex

vectors it depends on the membership value assigned in the prior recursive step.

To apply a recursive step the total membership of each vertex is limited by the by

their membership value of the prior community, αi,p, they were found in instead of

1. Otherwise the constraint (3.13) of overlapping communities would not be applied

properly, that is
∑

c αi,c = 1. We adjust our threshold of a minimal edge to be

F(1/3, αi,p/3).

For each recursive step the new modularity is calculated and compared to that

of the prior cluster’s modularity. When we start our current modularity is 0 as all

the graph is considered to be in one cluster. Then as we produce more clusters

we expect to see an increase in modularity to a level where there are no positive

eigenvalues or where communities are being split apart. The first condition means

that a highly dense community has been found with no modular splits. However the

later condition, which is far more likely to occur, is when the sum of modularity of

the new clusters in less than that of when they are only a single cluster. The vertices

of the unknown group, however, have little or nothing to do with groups found in the

spectral space this does not imply that they modular. It is far more likely to expect

small unrelated communities to have grouped together in the unknown group. Thus

before any comparison can be done the unknown group must be recursed again to be

sure that there are not many unrelated clusters within. That is, for each group of the

unknown vertices, we must recursively check new partitions until the modularity of

the unknown group adheres to our conditions of either there is no longer a increasing

modularity or there are no positive eigenvalues.
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4.5 Main Algorithm

To recap, our method uses the following steps.

1. Find the spectral decomposition corresponding to the first two eigenvectors with

vertex vectors [ri]p =
√
λjaip, where aip is the element of the eigenvector matrix.

2. For each vertex vector find the the local community

local(ri) =
∑

j |ri||rj|(cos(θij)− cos(π
2
− θij)), where θij is the angle between ri

and rj.

3. If a local community of a vertex vector, ri is the largest within 90 degrees of the

vertex vector then it is a predictor vertex vector. The sum of the vertex vectors

within 45 degrees of the predictor vertex vector makes up the corresponding

predictor community, R̃i. Let |c| be the number of predictor vertex vector

found.

4. An n×|c| belonging matrix, β, is constructed where βi,j =
kjri·R̃j

kirj ·R̃j
for j ≤ k, and

where ki and kj are the degrees for vertex vi and that of corresponding vertex

vector, vj.

5. Then the n×(|c|+ 1) membership matrix is set as Mi,j =
βi,j

max(
∑

c βi,c,1)
for j ≤ |c|

and Mi,|c|+1 = 1−
∑

jMi,j.

6. For each F(αi,c,αj,c) < F(1/3, αi,c/3) for all vj ∈ V then vi is removed from

Rc. For some edge belong function F and vertex, vi belonging values αi,c for a

cluster c.

7. If there has been any re-assigning of vertices start from step 6 again.

48



8. If the sum of modularity of the cluster as defined in equation (3.23) is higher

than the previous partition, repeat the steps 1 through 7, until there is a negative

modularity change or no feasible split.

Using this recursive method we find good results that are on par with other spec-

tral algorithms. This is further explained in the results of chapter 6.

4.6 Run-Time Analysis

In this section we cover the running time used by our algorithm and how to

maintains the standards of other spectral algorithms. We outline each step of section

4.5 to analyze its time efficiency.

Step 1 follows from the same spectral decomposition used in the past by M. E. J.

Newman [19]. By finding the eigenvalues and eigenvectors using the Lanczos method

it is necessary to multiple the modularity matrix B by a trial vector x. This takes

significant time as the modularity matrix is dense and would require O(n2) time,

rather than O(n + m) time for a sparse matrix. While O(n2) is not a terrible time

efficiency, the Lanczos method would typically require n iterations to converge, thus

resulting in a runtime of O(n3). However M. E. J. Newman shows that we can

represent the modularity matrix as sparse matrix if we consider the multiplication of

trail vectors as follows [19],

Bx = A(G)x− kTx

2m
k. (4.17)

If the lead eigenvalues, λn, are negative then an additional term of −λnI can be added

to calculate the largest two vectors. To retrieve all the eigenvectors using Lanczos

would require O(n3) time, however, there exists variants of the Lanczos method to

retrieve the first few using only O(n2) time [19]. Using this reasoning we have built

49



our own method to run only in O(n2) and have built the remaining steps to run in

O(n2) time as well.

Steps 2 and 3 require checking all vertex vectors against all other vertex vectors.

That is to say, for each n we do some constant time operations, such multiplying or

adding, for of the each other n vertices. These steps have O(n2) time efficiency. The

construction of the belonging and and membership matrices only require O(n) time

to calculate.

We determine the running time of our smoothing function where vertices are

removed and the membership matrices are rebalanced. As a vertex is removed from

a community or the unknown group its membership is shifted elsewhere, increasing

its membership to a known community. In the next iteration we check if the vertex

is now valid under equation 4.16 for all communities. Then each vertex is added to

a community they are strong with, whether it be a known community or the set of

unknown vertices. Each of these vertices now has a strength to community higher

than the threshold and will not be moved again. We repeat the check for any new

vertices. Then every vertex only has one chance to move. The worst case scenario

is if we only move one vertex per iteration making for n iterations. Thus then our

balancing method is O(n2) time.

Then as all steps are performed in O(n2) time our algorithm runs on par with

others in existence.
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5 Benchmarks Graphs and Results

In this section we provide our findings, and discuss how our algorithm compares

with the methods that are currently in use. We use well-known benchmark graphs

that have been tested with other methods and consider which are the most practical.

5.1 Example Graphs

In this first section we present our method’s findings through some well-known

example graphs. We will also introduce a small graph that directly captures the

strength of method. We look at using the normalized mutual information to compare

our algorithm with others, however, as overlapping normalized mutual information

has faced some criticism, we reduce our overlapping method by replacing the check

in the recursive step, 7, in the overview such that all final memberships are 1.

5.1.1 Zachary’s Karate Club

For an introduction we began with the well-known Zachary’s Karate Club social

network. Zachary’s Karate Club is a widely used benchmarked graph that first appear

in 1977 as social network representing different groups (by W.W. Zachary [30]). This

graph has 34 vertices and 150 edges and is shown in Figure 5. The Newman-Girvan

Algorithm for Zachary’s Karate Club social network found the maximal modularity

with a modularity score of 0.4198 and partition and the graph into 4 separate com-

munities. Our algorithm produces 5 separate communities with the same very similar

structure and modularity score of 0.4147. Although this number is a little lower it’s

important to note that for a difference of 0.051 we enable our algorithm to contain

overlapping communities.

Figure 4 shows the spectral decomposition of the network, which is what to be
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Figure 3: Zachary’s Karate Club

Figure 4: The standard modularity spec-
tral decomposition of Zachary’s Karate
Club

expect from a smaller network. The three clusters are not initially clear from this

figure as there is a larger outlier and many of the points cluster around the origin of

the spectral decomposition. We apply our algorithm to the data to try to clarify the

clusters within this spectral decomposition.

In Figure 5 we present the first pass of our algorithm. The predictor vertices are

indicated as the light green lines emanating from the origin while the colour of the

vertex vectors indicate the membership assigned to the vertex vector corresponding
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Figure 5: The spectral
decomposition with the
three leading predictor
vertices and marked as
light green (colour ver-
sion) as lines from the
origin. Vertices are
marked with colours in-
dicating their member-
ship value to predictor
communities.

to each predictor community, which is either red blue or green. After this step we

apply our membership rebalancing before making another partition.

Then our final partition of the Zachary’s Karate Graph compared with known

partition of maximum modularity is shown in Figure 6 where the overlapping vertices

have been darkened for visibility between the colours.
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(a) Our final partition. (b) Partition maximum modularity

Figure 6: The comparison of our method’s final partition to that of the maximum
modularity partition. Our method achieves a overlapping cover of modularity of
0.4147 while the maximum modularity is 0.4198 found using partitioning.

5.1.2 SNAP Facebook

In this section we introduce a graph from the Social Network Analysis Platform

at Stanford University. J. McAuley and J. Leskovec used a number of ego-networks

and social networks to validate their own method for detection circles of friends [15].

In particular, they use a graph of 10 users ego-networks collected from Facebook

surveys and anonymized. A user’s ego network consists of all circles the user is a

part of and the users inside those circles. J. McAuley and J. Leskovec illustrated that

those related to a user should appear in social circles, such as family, fellow students,

and friends [15]. In their study they also collected data about the circles that would

further help their model identify the different circles. We use only the network data

provided to illustrate how the method works on large data sets. The FaceBook Snap

network has 4039 vertices and 88234 edges. On our first pass the data show the

following graphs.

The Facebook Snap graph illustrates how a group of unknown vertices form in

the center of the spectral decomposition. In the example the number of vertices
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(a) Spectral decomposition and ver-
tex vectors. (b) Initial Membership of vertices

Figure 7: The first iteration of the SNAP Facebook graph.

that correspond to the group of unknown vertices is over 3000, three quarters of the

vertices in the graph. This of course makes a lot of sense considering that the Facebook

SNAP graph was found using 10 ego-networks and there should be some significantly

separated clusters. Thus when there are only three vectors to represent the data, a

large amount of the data does not significantly contribute to the modularity of these

predicted communities. A strength of our algorithm is that it does not try to associate

vertices into clusters they have no similarities with.

5.1.3 Spectral Example Graph

Now we introduce a graph that really captures the strength of our adaptive mem-

bership matrix. Consider the following graph composed of 3 cliques of 20 vertices all

connected to a clique of 5 vertices. One vertex for each clique of 20 is connected to

the clique by a single edge. The spectral decomposition of this graph is somewhat

misleading in the information it provides. The spectral decomposition shown Figure

9 in is dominated by the large cliques. Thee vertex vector of the degree 1 vertices and

the vertices of the 5-clique joined to the 20-clique have nearly the same spectral space

making it quite difficult to distinguish them. This is mostly because they bring the
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Figure 8: A graph 3 cliques of order 20, and one central clique of order 5

Figure 9: The spectral decomposition of Figure 9

same number of internal edges to each of the predictor communities. However, with

our modification to membership matrix by introducing the fraction edges in equation

(4.13) we are to distinguish the differences between these two vertex vectors. This is

evident in Figure 10 as we show the initial membership matrix applied to the graph.

This shows the improvement of our algorithm over other spectral algorithms most

of which will generate a partition from the bisecting line originating at the origin

point of the spectral space [25, 19]. In those cases the algorithms do some similar
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Figure 10: The initial membership matrix of Figure 8

smoothing by moving the membership of vertices back and forth via Kernighan-Lin

iterations, but this still does not guarantee that the vertices will be passed on together

into the same cluster.

5.2 Benchmark Graphs

In the previous section we considered how our algorithm works on specific graphs;

however specific graphs provide only a glimpse of an algorithm’s functionality for

finding communities. To compare community detection algorithms there have been

many developments in generating graphs that have known communities that interact.

Then to measure an algorithm’s success the groups identified by the algorithm are

compared against the known true communities. To do this we use Normalized Mutual

Information. Let A and B be partitions of the same graph. Then a confusion matrix,

N is of size |A| × |B| and Nij corresponds to the number vertices in community Ai

that appear in Bj. Then the similarity of partitions based on information theory is

I(A,B) =
−2
∑|A|

i=1

∑|B|
j=1 log(Nijn/NiNj)∑|A|

i=1Ni log(Ni/n) +
∑|B|

j=1Nj log(Nj/N)
, (5.1)
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where Ni is the sum over row i, Nj is the sum over column j and n is the number

of vertices. We use these measurements to discern how similar B is to A. In the

case of algorithm comparisons we investigate that how close our partition B is to

ground truth partition A, in the following two benchmarks. This measurement is

only available for partitions of communities and not overlapping covers, so we adjust

our algorithm to return partitions.

5.2.1 Planted l-Partition

A significantly popular group of benchmark graphs are those generated by a

planted l-partition [7]. In the planted l-partition we consider a graph of n vertices

where n = g · l vertices in l groups with g vertices each. Each vertex is given an

average degree of k where k = pin(g−1)+poutg(l−1), and pin is the probability of an

internal edge and pout the probability of an external edge. Then if pin > pout we ex-

pect to see more internal edges. Newman and Girvan introduced a particular planted

l-partition graph that has been widely used to identify communities. This particular

planted l-partition graph has is l = 4, g = 32 and k = 16. The number of expected

internal edges and external edges are zin and zout where zin = pin(g − 1) = 15pin and

zout = pout(g − 1)l = 96pout. Let zout = 16 − zin. Then we can expect communities

to appear until zout > 8 as then there are more external edges then internal edges

(indicating less than weak communities). We then compare our results on these test

cases with those found in a comparative test done by L. Danon, A, Diaz-Guilera, J.

Duch, A Arena [2]. That is, we see what the normalized mutual information are when

zout = 6, 7, 8.

By correlating our result to those found in L. Danon et al. our results fall a little

below the the models presented. We address this issue by examining the spectral

decomposition of these graphs as, shown in Figure 11. Although it exhibits three
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External Edges Modularity Normalized Mutual Information

Zout = 6 0.2783 0.5854

Zout = 7 0.2585 0.5308

Zout = 8 0.2027 0.3547

directions that communities cluster, since each is equally connected to the fourth

community it produces noise on the peripheral of each community. Normally we are

able to filter this behaviour with our belonging ratio equation (4.12) but all vertices

have the same expected number of edges meeting them so this results in the loss of

one of our algorithm’s strongest features.

(a) Spectral space zout = 6 (b) Spectral space zout = 7 (c) Spectral space zout = 8

Figure 11: Realizations of spectral space of the specific l-partition graphs

5.2.2 Benchmarking: LFR Graphs

Although the planted l-partition benchmark provides a easy measurement for de-

tecting communities, the communities that do exist are on the borderline of becoming

less than weak communities. In social structures it has been seen that there are power

law distributions in both the size of the communities involved and the degrees of ver-

tices. Authors A. Lancichinetti, S.Fortunato, and F. Radicchi introduce a similar

model to the l-partition but had the communities vary on these power law distribu-

tions. Vertices are given a degree from a power law distribution, of α, between kmin

and kmax and the size of communities are determined from a power law distribution,
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of β, between smin and smax. The algorithm considers the the ratio of internal to

external edges as the parameter µ where µ > 0.5 would no longer guarantee a weak

community. We compared our results to some of those found in the comparative

analysis done by A. Lancihinetti and S. Fortunato in 2009 [14]. We consider the same

four parameters for realizations of the LFR mode, where we have 1000 vertices, each

with an expected degree of 20 and forming communities sizes either between 10 and

50 or 20 to 100 and the mixing parameter 0.3 and 0.5.

Size of communities and µ = 0.3 Modularity Normalized Mutual Information

Small and µ = 0.3 0.5442 0.8968

Large and µ = 0.3 0.5570 0.8304

Small and µ = 0.5 0.3305 0.5567

Large and µ = 0.5 0.3308 0.5403

Our results for this graph are significantly stronger as the community entities now

vary significantly. Vertex vectors that exist on the periphery can now be segregated

by our belonging ratio equation (4.12). We see that our algorithm is stable for this

possible scenario. Our algorithm does not outperform all others in every type of

realization, but it remains consistent in finding communities.

6 Conclusions

In this work we have provided a new method whose goal is to be more specific

for finding social online communities. In this section we address the strengths that

our algorithm has and the contributions made to this field of research. We also

review some of the weaknesses and the difficulties in building algorithms for social

communities. Last we discuss some necessary further improvements and give a sense

of where this algorithm can be developed.
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6.1 Strengths and Contributions

The greatest strength of our algorithm is our belonging gain ratio equation (4.12)

which provides a unique measurement that ties the spectral space and the original

space together. With this strength we can easily distinguish between two vertex

vectors that both contribute the same number of internal edges but have different

external edges. We are able to do this with very little information by only relying on

the communities indicated by the leading eigenvalues.

Our algorithm provides a direct measurement for overlapping communities. Pre-

vious spectral algorithms have not made use of the ability to see the modularity gain

that a vertex vector has to communities represented in the space.

This method is the the first to make use of the information given in the spectral

space for overlapping communities and gives consideration to vertices that are not

related to the the larger communities represented in the spectral space. Section 6.1.3

is an example of how our method directly favours communities that can be lost from

partitions that originate from the origin of the spectral space. Our algorithm protects

communities with low modularity values from being separated into larger communi-

ties. This also benefits the resolution limit of modularity, as communities that are

identified as being in the unknown group will be individually investigated without

the influence of larger communities which would cause an increase in modularity if

they were joined together.

6.2 Weaknesses and Difficulties

Our method does have some weaknesses especially toward the particular l-partition

of Section 6.2. Our algorithm often performs poorly on graphs that do not represent

communities, although they present interesting mathematical graphs, our algorithm
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expects communities to have varying individuals and relationships. Our algorithm

can still be susceptible to the resolution limit but often the smaller graphs are pro-

tected by being placed in group of unknown vertices with other smaller communities.

This often results in many smaller communities that together produce a negative

modularity and result in being separated. However, our findings in the large LFR

graphs indicate that those graphs would have to be very large.

Although our algorithm is designed to come from a strong sociology background,

such as consider communities that have hierarchal overlapping and occur in various

sizes, there still exists large a divide between the fields of mathematics and sociology.

Often mathematical models rely upon the statistical properties of networks such as

the power law distributions of degrees and community sizes while overlooking many

social network consideration. Mathematical models of real networks rarely consider

noise as a possible side effect and even then those that do do not always contain

significant validation. The finding of E. Gilbert showed that noise does exist and

weightings of edges must be a consideration, and this information is not yet available

in benchmark testing [9]. Without weighting edges, interactions in socail network

that do not represent or contradict community structure appear as strong as regular

interactions and can lead to misleading findings [17]. Such example networks are

still needed. While sociology considers many excellent ego-based communities, the

question of the how community structure forms and how social aspect of network form

has not been yet a research question. Often studies consider the types of communities

that exist but not the graphical representations such as the difference between bond

based communities and identity based communities [24].

Lastly due to the limitation of our master’s thesis we have not develop our algo-

rithm as much as we would like to. There are still many validations our method needs

such as the comparative analysis in A. Lancihinetti and S. Fortunato for µ > 0.5 as
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in [14], or using normalized mutual information in the recursive smoothing for better

results, especially for overlapping communities. There are still many comparisons to

existing algorithms to be made and differences in result need to be justified.

6.3 Further Research

To continue this area of research there many more improvements and tests that can

be considered for this algorithm. As before, using normalized mutual information as

the part of smoothing the partition will definitely enable a more thorough overlapping

algorithm. Similarly partitions can be made more the fashion of a greedy algorithm by

considering partitions into using large number of eigenvectors. As our algorithm uses

only vector comparisons we can then expand our algorithm as we consider the most

beneficial spectral space, provided the runtime does not exceed our goal of O(n2).
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