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Abstract 
 

 Myelination is the key feature of evolution in the nervous system of vertebrates. 

Myelin is the protrusion of glial cells. More specifically, "oligodendrocytes" in the 

central nervous system (CNS), and "Schwann" cells in the peripheral nervous system 

(PNS) form myelin membranes. Myelin remarkably, enhances the propagation of nerve 

impulses. However, myelin restricts the access of extracellular metabolites to the axons. 

A pathology called "demyelination" is associated with myelin.  The myelin sheath is not 

only an insulator, but it is itself metabolically active. In this study it is hypothesized that 

the ratio of NAD(P)+/NAD(P)H and the glycolytic pathway of the myelin sheath is 

maintained via trans-plasma membrane electron transport system (t-PMET). 

 The t-PMET contains various membrane associated oxidoreductases by which 

cells oxidize intracellular electron donors at the expense of the extracellular acceptors. In 

this research two members of the t-PMET system, cytochrome b5 reductase (CB5R) and 

NAD(P)H: quinone oxidoreductase (NQO1), were identified through enzymatic assays 

and immunodetection analysis. 

 The CB5R was detected in the myelin membrane via Western blotting as two 

bands, one at 35kDa and the other at 33kDa, potentially representing the myristoylated 

and non-myristoylated forms, respectively. The enzymatic activity was measured as an 

NADH: cytochrome c reductase activity and it was inhibited by the sulfhydryl agent p-

hydroxymercuribenzoic acid.  

 The NQO1, an important antioxidant enzyme of t-PMET, was investigated in the 

myelin membrane through immunodetection and kinetic analysis. Western blot analysis 
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revealed a truncated form at ~13kDa in the myelin sheath. Furthermore, the associated 

activities of menadione-mediated cytochrome c reductase, water soluble tetrazolium 1 

(WST-1) reductase and DCPIP reductase activity were found insensitive to the potent 

NQO1 inhibitor, dicoumarol.  

 Another facet of this research demonstrated the activity and enzyme expression 

level in the spontaneously demyelinating ND4 mouse model. The activity of CB5R was 

temporal; it increased with age, but fluctuated at earlier stages of life. Higher activity of 

NADH: cytochrome c reductase, and a higher rate of superoxide production were 

measured in the diseased myelin. The level of NQO1 also fluctuated over time. The 

fluctuation in the expression level may suggest its role in myelinogenesis, aging and disease. 

CB5R and NQO1, both, play important roles in decreasing oxidative stress by Coenzyme 

Q reduction, detoxification of quinones and xenobiotics, and through one and two 

electron reduction reactions.  

 Overall, this study reveals several putative components of t-PMET in the myelin 

membrane and provides a comprehensive insight into the activity of oxidoreductases 

catalyzing one and two electron transfer reduction reactions and their expression level in 

health and disease. The healthy and diseased myelin comparison will aid in deciphering 

the role of the identified proteins in the myelin energetics and the pathologies related to 

these enzymes.  
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Chapter 1 
Introduction 
 

 The major focus of this thesis is the investigation of a trans-plasma membrane 

electron transport system (t-PMET) in the myelin membrane. An introduction to t-PMET 

alongside its vital components and their functions is described in this chapter. Different 

theories regarding myelin energetics are also presented. A hypothesis regarding myelin 

energetics is established which states that the t-PMET is assisting myelin membrane in 

maintaining the pyridine nucleotides pool. Lastly, the organization of this dissertation is 

given.  

1.1 The Central Nervous System 

 Cells need energy to sustain life which they obtain from food.  Mainly, the 

oxidation of food takes place in mitochondria, but starts in cytoplasm.  Every cell type 

has different energy requirements according to its structure and function [1]. Cells, in 

particular skeletal muscles and neurons, need more energy than other cell types because 

of muscle movement and propagation of nerve impulses.  

 The nervous system is predisposed for all biological processes happening in the 

body and their communication with other body parts. The nervous system is divided into 

two distinct parts, the central nervous system (CNS) and the peripheral nervous system 

(PNS). The CNS, comprised of the brain and spinal cord, is believed to be the centre of 
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all biological processing. Alternatively, the PNS incorporates nerves in the body and 

plays a key role in reacting to stimulus transmitted by CNS [2]. 

 Neurons are specialized cells in the nervous system that are capable of integrating 

thousands of inputs into a single output, known as the action potential [3]. The neuronal 

functional features such as the propagation of action potential and transportation of 

enzymes, make them energetically expensive. For instance, the mammalian brain is 2% 

of the total body weight but consumes 20% of the energy produced by the body [3]. To 

reduce this energy requirement, the brain is divided into two parts; grey matter which 

utilizes 1-1.6 µmol/g/min glucose, and white matter which utilizes 0.3-0.4 µmol/g/min 

glucose [4]. The difference in the energy requirements can be explained on two levels. 

Firstly, the neurons in grey matter have a high glucose requirement due to synapse 

formation. Secondly, neurons in the white matter are ensheathed with a specialized lipid-

rich structure called "myelin" which encapsulates the neurons and conserves the energy 

[5, 6]. Zalc et al. defined the myelin and its function altogether in a very concise manner: 

“Myelin is hypothesized to enable a large body size by maintaining timely 

communication between distant parts and to enhance precision in event 

timing by reducing the absolute temporal variability in communication 

between two points.  These advantages are derived from the enhanced speed 

of nerve impulse conduction that myelinated fibre enjoys relative to 

unmyelinated ones of the same diameter"  [7]. 
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1.2 Myelin-Structure and Function: 

 Myelin is formed from the extended protrusions of the oligodendrocyte cells 

(OLs) in CNS, and the Schwann cells (SCs) in the PNS. OLs can myelinate multiple 

axons and form approximately 40 or more distinct layers of myelin membrane. OLs and 

SCs wrap their cytoplasmic extensions or processes around the axon to form concentric 

layers of wrapped plasma membrane (see Fig 1.1) [8]. 

 Myelin can be different in composition and function, depending whether it 

originated from OLs and SCs. However, all myelin sheaths have a high lipid to protein 

ratio. Myelin is composed of 70-80% lipid and almost 15-30% protein by dry weight. The 

lipid content ratio is in the order of 2:2:1:1 of cholesterol, phospholipid, galactolipid, and 

plasmalogens [7].  

 

Fig1.1: The wrapping of the oligodendrocytes around axon. OLs cytoplasm is 
compacted to form a dense structure. In the CNS, one oligodendrocyte can myelinate more than 
one axon. Adapted from reference [7]. 
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1.2.1: Major Proteins in the Myelin Membrane: 
 

 The major protein in myelin is proteolipid protein (PLP) which is approximately 

30-45% of the total protein mass. The PLP is involved in septin and sirtuins shuttling as 

well as in transportation, strengthening and maintenance of myelin membrane [9]. It is 

believed that PLP mutation is responsible for several neurological disorders, as a result of 

the decreased axonal transportation [9]. The second most abundant protein is myelin 

basic protein (MBP) which comprises of almost 15-25% of the total protein content. The 

major role of MBP is to provide compaction to myelin sheath. The third most abundant 

protein is 2´, 3´-cyclic nucleotide 3´-phosphodiesterase (CNP) that represents 5-15% of 

the total protein content present in the myelin. The CNP is involved in RNA binding to 

tubulin. The remaining 5-15% portion comprises of oligodendrocyte glycoprotein (MOG) 

and myelin associated glycoprotein (MAG), and more than 1200 different kinds of 

proteins [10, 11]. 

1.2.2: Advantages and Disadvantages of Myelin:  
 

 Communication is an issue due to large body size of gnathostomes where 

millisecond precision is required. The evolution of myelin membrane solved this 

problem. Some noticeable advantages of the myelin membrane are listed below: 

• The evolution of myelin reduces the energy requirement for neuronal 

communication and boosts the speed of impulse propagation. Non-myelinated 

axons use considerably more energy per unit length of neuron than myelinated 

ones [12].  
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• Myelin gives the integrity to neurons and long term survival of neuron is made 

possible by myelin membrane [12].  

• Myelin physically protects the CNS from autoimmune attack. It provides the 

protection against CD8+and CD4+ activated T-cells [13].  

 However, a nearly completely insulated axon could be a double-edge-sword, as it 

restricts the access of extracellular metabolites to the axon [12]. Furthermore, the energy 

required in making myelin is greater than the energy conserved by myelin [12]. The 

following key questions are the most important aspects in myelinated neuron energetics 

and are the focus of research for last few decades:  

• Why and how  OLs and SCs cells make myelin? 

• How do neuronal cells meet their energy requirements in the presence of myelin? 

1.3: CNS Energetic Theories 
 

 Several theories are put forth to established the mechanism of interaction among 

neurons, OLs, astrocytes, and flow of metabolites into and out of the myelin sheath. 

1.3.1: Neuron-Oligodendrocyte-Astrocyte (NOA) Interaction Theory 
 

 According to NOA theory, glucose from blood capillary is taken up by neurons, 

astrocytes, and oligodendrocytes (see Fig 1.2) [4]. This glucose is immediately 

metabolized into pyruvate through glycolysis. Pyruvate is converted into lactate, and this 

lactate can be absorbed by the cells with lower lactate concentration. Then the lactate is 

metabolized into alanine or acetyl CoA which can enter into the TCA cycle [14]. 

Aspartate is converted into N-acetyl aspartate (NAA) in the neurons. Acetyl CoA is 
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necessary for this conversion. This NAA is transported into the oligodendrocytes where it 

is converted back into aspartate and acetate. It is believed that acetate is extensively used 

in myelin lipid synthesis [4]. According to this theory, the shuttling of metabolites 

between the astrocytes, neurons, and oligodendrocytes is essential. 

 

Fig 1.2: Schematic overview of NOA theory. The metabolic interaction between neuron-
oligodendrocyte-astrocyte (NOA). Adapted from reference [4]. 

 

1.3.2:  Nave Hypothetical Model  
 

 Klaus Nave and colleagues proposed a structural model to elaborate the transfer 

of glucose and its further processing in encapsulated neurons [15]. The hypothetical 

architecture is depicted in Fig 1.3. 

 It is believed that OLs and astrocytes are coupled together and assist neurons for 

energy production. Glucose is transported through glucose transporter protein 1 (GLUT 

1) into the OLs and through connexin protein from astrocytes. Initially the glucose 
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undergoes oxidation in mature OLs, and the end glycolytic product, pyruvate, is 

converted into lactate.  

 

Fig 1.3: The hypothetical energy production model of myelinated axons by Nave. In 
this model, glucose is transported through glucose transporter protein (GLUT 1). From OLs, the 
end product of glycolysis, lactate, is transported to the underlaying axon. Myelin sheath itself is 
also capable of maintaining glycolytic activity. Lactate produced from both the OLs and myelin 
membrane, enters into the axoplasm through MCT 2 where it enters into the TCA cycle for more 
ATP production. Adapted from reference [15].   
 
  
 The lactate is essentially shuttled across the myelin membrane by a transporter 

protein called monocarboxy transporter 1 (MCT-1). Through another transporter isoform 

MCT-2, it enters into the axoplasm. The lactate is used as an initial metabolite for TCA 

cycle. In axoplasm, the lactate is converted back to pyruvate which is utilized in the 

mitochondria for ATP production [15, 16]. According to this theory, glucose is utilized in 

the myelin sheath (OLs processes) where it undergoes the oxidation and the end product 

of glycolysis, pyruvate or lactate, is transported to the axon.   

1.4: Proposed Alternative Model 
  

 For elucidation of myelinated-neurons energetics, an alternative model with a 
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myelin perspective is presented in the current research project. This model is not 

mutually exclusive to the Nave model, but hypothesizes another compensatory 

mechanism within myelin membrane.  

 It is hypothesized that to satisfy the energy requirement of myelin and to perform 

housekeeping functions, some compensatory mechanism such as trans-plasma membrane 

electron transport system (t-PMET) is assisting myelin membrane. Many components of 

mammalian t-PMET are now been identified. These are apparently ubiquitous and almost 

the same. The availability of a variety of substrates and inhibitors of t-PMET has made it 

possible to characterize and identify the structure of t-PMET in different cell types. 

Scientists have explored t-PMET in several cell types, but none have investigated its 

presence in myelin membrane. 

Therefore, in this current research, it is hypothesised that  

• The myelin membrane supports t-PMET through unidentified enzymes. 

• The minimal structure of t-PMET consists of oxidoreductase enzymes, an internal 

electron donor and an external acceptor (see Fig 1.4).   

 

Fig 1.4: Possible redox activities in myelin t-PMET. The external acceptor (oxygen) is 
reduced by the t-PMET enzyme and reducing equivalents are derived from the NAD(P)H. 

O2 O2
●- Substrateox Productred 

QH2 Q Plasma 
membrane 

NAD(P)H NAD(P)H NAD(P)+ NAD(P)+ 
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1.5: Trans-plasma Membrane Electron Transport System (t-

PMET) 

              Trans-plasma membrane electron transport (t-PMET), also called as plasma 

membrane redox system (PMRS), was discovered in 1960, and emerged as an important 

system for cells [17]. The t-PMET utilizes almost 10% of the total oxygen consumption 

in the cells [10], and functions in almost every organism including yeast, plants, algae 

and animals [17]. In this system, the extracellular oxidants are reduced by t-PMET 

components at the expense of intracellular reducing agents. Some of the important 

functions associated with t-PMET are cell growth and death, proton pumping, ion 

channel activity, and antibody modification.  

1.5.1 Types and Components of t-PMET: 
 

              The trans-plasma membrane electron transport system reduces the extracellular 

oxidants by two ways. One way is without enzymatic involvement and is referred to as 

shuttle based electron transfer. Second method is even more complex and is mediated 

through enzymes. The current focus of research is on the enzyme-dependent system. A 

proposed structure of various identified enzymes in a t-PMET system is shown in Fig 1.5. 
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Fig1.5: Key components of t-PMET. Intracellular electrons provided by NADH or ascorbate, 
flow outward to reduce extracellular acceptors (oxygen, ascorbate free radical (AFR), ferric or 
cupric ions). Several enzymes contribute to t-PMET. Some of them are: voltage dependent 
anionic channel (VDAC), duodenal cytochrome b (Dcyt b), NAD(P)H oxidase (NOX)  are trans-
membrane proteins, while disulfide thiol exchanger (ENOX) are terminal donor of electron to 
oxygen and present at the outer surface of the membrane.  Some important proteins such as 
cytochrome b5 reductase (CB5R), NAD(P)H quinone oxidoreductase 1 (NQO1) are important 
quinone reductases and present at the inner surface of plasma membrane. Co-enzyme Q (CoQ) is 
an important antioxidant and acts as an intermediate electron carrier. Adapted from reference 
[17]. 
 

1.5.1. A: Electron Donors 
 

 Intracellular reducing equivalents are derived either from NADH (reduced form 

of nicotinamide adenine dinucleotide) or NADPH (reduced form of nicotinamide 

dinucleotide phosphate). NADH is produced during catabolic processes such as 

glycolysis, whereas NADPH is produced as a by-product in the pentose phosphate 

pathway and is involved in the biosynthesis of fatty acids and cholesterol.  The ratio of 

NADH/NAD+ or NADPH/NADP+ is very important for the cells to perform different 

biological functions as they directly affect the pH of the cell as well as redox state. In 

steady state conditions, proton influx and efflux is maintained and no significant change 
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in membrane potential is observed. But the accumulation of H+ in cytosol results in 

hyperpolarization and membrane is depolarised when H+ is pumped out into the 

extracellular space. This H+ is derived from the pool of NADH or NADPH [13]. 

Ascorbate (Asc) and flavonoids (vitamin E, quercertin) are intracellular substrates other 

than NADH and NADPH. Their functions are also to protect the membrane from 

extracellular stressors.  Ascorbate promotes the t-PMET by two ways:  A) By acting as an 

electron donor in enzyme-mediated electron transport system, B) and acting as an 

electron donor in non-enzymatic shuttle based transfer, where Asc directly acts as a 

reducing agent and is oxidized to dehydroascorbate (DHA). This DHA is pumped across 

the membrane where it is again converted to reduced form [18]. 

1.5.1.B: Electron Acceptors 
 

 The most important extracellular electron acceptor is oxygen. When it is fully 

reduced, oxygen is converted to water, and when partially reduced, it can form reactive 

oxygen species (ROS), such as superoxide radical (O2
.-) or hydrogen peroxide (H2O2). 

Superoxide radicals play a dual function, it not only act as a signal transducer but also 

protects the cell. Other extracellular putative acceptors are ascorbate free radical (AFR), 

ferric and copper ions [17]. 

1.5.1 C: Intermediate Electron Carriers 
 

   The most important intermediate electron carrier is co-enzyme Q (CoQ), also 

known as ubiquinone.  It is present between the lipid bilayer and links the inner surface 

of the cell to the outer environment. CoQ can be transformed to ubisemiquinone and 

ubiquinol (reduced quinone) by one and two electron reduction events, respectively. 

Some other intermediate electron carriers are flavins and vitamin E.  
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1.5.1.D: Oxidoreductases in t-PMET: 
 

 Enzymes are the important machinary in electron transfer. There are several 

different kinds of enzymes with different localization in the plasma membrane.  Some of 

them  are located at the outer surface like external NADH dependent oxidases (ENOX), 

some are trans-membrane proteins such as NADH dependent oxidase (NOX), duodenal 

cytochrome b (Dcytb), voltage dependent anionic channel (VDAC) and some are 

localized on the inner surface of the plasma membrane like cytochrome b5 reductase 

(CB5R) and  NAD(P)H: quinone oxidoreductase 1 (NQO1).  

 The CB5R is present in plasma membrane, mitochondria and endoplasmic 

reticulum. It is a monomeric flavin protein and the prosthetic group, flavin adenine 

dinucleotide (FAD), is non-covalently bound. There are two known isoforms of this 

enzyme; a membrane-bound and soluble form, with molecular weights of 35 and 32 kDa, 

respectively. The major functions of CB5R involve fatty acid elongation, desaturation, 

cholesterol synthesis and it also reduces the AFR back to Asc [19]. NQO1 is another 

inner surface homodimeric flavo-protein with a molecular weight of ~30kDa for each 

subunit. The enzyme is involved in cellular defence, stabilization of p53 gene and chemo-

protection [20]. 

 External NADH dependent oxidase (ENOX) is cell surface protein considered to 

be the terminal electron donor to molecular oxygen. Three members of this family have 

been reported: ENOX 1, ENOX 2 and ENOX3. They control the cell growth by disulfide-

thiol interchange activity [20]. 

 Among trans-membrane proteins, NOX play a vital role in producing superoxide. 

On the basis of structure, NOX are classified into three groups: a) NOX 1-4   b) NOX 5 
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and   c) DUOX 1-2. NOX 2 is well characterized in the t-PMET.  NOX 1-4 are found in 

epithelial, muscle cells, kidney lungs and spleen cells. They perform various functions 

such as defence by invading the microbes through production of superoxide and ther are 

considered to be the regulator of calcium in cells. DUOX 1-2 is mainly found in thyroid 

gland [21]. Duodenal cytochrome b (Dcytb) is novel protein that is induced in response to 

hypoxia and iron deficiency. Dcytb protein with a molecular weight of 33kDa plays a 

crucial role in iron metabolism [22]. 

 Voltage dependent anion channel (VDAC) is another integral membrane protein 

with a molecular weight of ~30-35kDa. The channel's major function involves the 

trafficking of metabolites between extracellular space and cytoplasm. Another vital 

function of the channel is the release of apoptogenic proteins [23]. 

1.5.2: Functions of t-PMET: 
 

 Beside some general functions such as the trafficking of molecules, various 

physiological roles are also associated with t-PMET. The plasma membrane has a 

complex signalling system for regulating cellular metabolism and performing other vital 

functions for the cells such as maintaining homeostasis, pH control, proton pumping and 

antibody control. 

 Proton movement is one of the important functions of t-PMET. Proton movement 

is carried out by the Na+/H+ anti-porter, which facilitates the movememt of the ions across 

the membrane. Due to ion exchange through plasma membrane, the internal and external 

pH gradient changes, which regulates cell volume sensing and apoptotic signaling [24]. 

 Enzymes such as NOX2, NOX5 and DUOX are involved in sperm maturation and 

fertilization. Furthermore, since mitochondrial function is often defective in 
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spermatozoas, upregulation of t-PMET maintains the ratio of NAD+/NADH [23]. The 

DUOX enzyme generates the hydrogen peroxide that not only helps the spermatozoa in 

defence against xenobiotics but also helps the cells in developing a cross-linking of 

envelope proteins, thus provides a physiological structure to avoid polyspermy [25] .  

 Another critical function of t-PMET is the maintenance of redox homeostasis. 

Alteration of membrane redox potential leads to dramatic change in platelets function in 

uremic patients. The deoxygenated erythrocytes, show decreased levels of NADPH and 

glutathione reductase (GSH), and therefore showing the depletion of membrane thiol pool 

and an increased oxidative stress.  In this condition, t-PMET uses Asc as an electron 

donor. A single hemodialysis event in uremic patients triggers two responses:  (1) 

removal of toxic compounds, and (2) regulates t-PMET efficiently [26].  

 Loss or overstimulation of t-PMET leads to different pathologies. Apoptosis is a 

process involved in cellular homeostasis and tissue development. The process must be 

tightly regulated, since defective apoptotic progression has been implicated in several 

diseases. For instance, excessive apoptosis causes hypotrophy, whereas an insufficient 

amount results in uncontrolled cell proliferation, such as cancer. Inhibition of t-PMET 

causes ROS generation, which in turn leads to a pro-oxidant environment at the plasma 

membrane and promotes apoptosis [24, 27] . The potential involvement of t-PMET in cell 

death is further suggested by the finding that NAD+/NADH and CoQ/CoQH2 ratios are 

important modulators of neutral sphingomyelinase, which catalyzes the generation of 

ceramide pathway from sphingomyelin, and allow the clustering of death receptors and 

transmission of an efficient death signal into the cells [28]. 

 Normal tissues derive most of their energy by metabolizing glucose to carbon 
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dioxide and water through mitochondrial oxidative phosphorylation. Conversely, cancer 

cells convert glucose to lactate irrespective of oxygen presence or absence. This 

phenomenon, described by Warburg in the early 1900s (known as the ‘‘Warburg effect’’), 

emphasizes that cancer cells rely less on mitochondrial activity than the normal cells. The 

role of t-PMET in cancer biology relies on the observation  that the metabolic changes 

described above may perturb key redox couples, including the NAD(P)H/NAD(P)+ and 

CoQH2/CoQ ratios, which play a crucial role in supporting cell survival, function, and 

growth of fast proliferating cells. Cancer cells usually exhibit elevated level of t-PMET 

[29]. It has been suggested that ENOX2 levels may be associated with the ability of 

tumour cells to acquire an aggressive phenotype [30]. Some NOX isoforms have been 

associated in early stages of carcinogenesis which implies the role of t-PMET in cancer 

cells. Most anti-cancerous drugs target the t-PMET inhibition.  

 The t-PMET system has a role in cardiovascular diseases, including hypertension, 

atherosclerosis, and vascular complications of diabetes. Hypertensive patients show 

increased NOX-dependent superoxide production in vascular smooth muscle cells [31]. 

When ubiquinone-dependent electron transport is disrupted, t-PMET becomes a source of 

ROS, triggering oxidative stress and apoptosis. This phenomenon has been proposed to 

be one of the factors responsible for the onset of age-related pathologies. Therefore,  t-

PMET system exerts a protective role by maintaining optimal levels of plasma 

antioxidants [28].  

 Experimental evidence suggests that some superoxide generating NOX isoforms 

may be involved in the clinical progression pathogenesis, as well as in several 

neurodegenerative disorders. For instance, in the brain of Alzheimer's patients, membrane 
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localization of p47phox (a NOX subunit) is increased, and at the same time, amyloid-β 

peptides can enhance NOX activity. Consistently, knockdown of p22phox inhibits 

amyloid-β peptide-induced neuronal apoptosis [32].   

1.6 Thesis Organization 
 

 Due to complex anatomy of myelinated neurons, their energetics are difficult to 

explain.  Several theories have been put forth hitherto. In this research, a theory of t-

PMET association with myelin membrane is presented, and components of t-PMET were 

identified in myelin membrane. This thesis is divided into two parts. First part (chapter 1-

4) explores putative components of t-PMET in myelin membrane. Second part (chapter 

5) compares identified components between healthy and diseased myelin.  

Chapter 2: Chapter 2 of this thesis deals with objectives and rationale. Methodology to 

achieve these objectives is also described in this chapter.  

Chapter 3: CB5R is an enzyme present in plasma membrane electron transport system. In 

this chapter, CB5R existence in myelin membrane is investigated.  

Chapter 4: NAD(P)H: Quinone oxidoreductase 1 (NQO1) is another t-PMET enzyme 

involved in defense against stress. This chapter deals with the investigation of NQO1 in 

myelin membrane.  

Chapter 5: A neurodegenerative disorder, multiple sclerosis, is introduced. A comparison 

of previously identified enzymes activities is done with diseased myelin model. 

Chapter 6: This chapter summarisies the dissertation with conclusions and also reveals 

some future research directions.    
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Chapter 2  
Objectives, Approaches and 
General Methodologies 
 

 This chapter describes the objectives and general methodologies of the current 

research work. Different approaches for studying t-PMET such as the measurement of 

reduction of artificial acceptors and superoxide production are described. The 

immunodetection of proteins and enzyme kinetics are other important aspects discussed 

in this chapter. Lastly, the impact and significance of current research work is elucidated.   

2.1 Objectives 
 

 The t-PMET system allows the reduction of extracellular oxidants at the expense 

of intracellular reducing equivalents. In this way, cells not only respond to change in the 

redox microenvironment but also gain the ability to regulate their important house-

keeping functions such as cell metabolism, proton pumping, ion channel activities, cell 

growth and death [33]. The purpose of this research is to characterize the proteins and 

enzymes that may be involved in t-PMET within the myelin membrane. A plethora of 

research has been done on t-PMET system of endothelial, phagocytotic and erythrocytic 

cells. However, researchers have not investigated the existence of t-PMET in myelin 

membrane. Detailed studies of t-PMET are important as its existence not only plays a 

key role in metabolism but it also has implication in various pathologies including 

neurodegenerative disorders [17]. 
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The main objectives of this study are: 

i. To determine the enzyme redox activities in myelin membrane. 

ii. To establish the distribution and localization of each redox enzyme in different 

myelin membrane microdomains. 

iii. To compare healthy myelin with "diseased" myelin in terms of 

  a)  oxidoreductase activities, 

  b)  enzyme protein expression level, and 

  c)  production of superoxide. 

2.2 Methods of Studying t-PMET 
 

 The study of a complex biological system is divided frequently into three stages. 

First is the overall tissue structure determination (general structure of t-PMET is 

depicted in Fig 1.5). Second, the individual components must be identified, which is 

the paramount area of discussion in this research. The third stage is the determination 

of juxtaposition of these components, and elucidation of their structural and functional 

role with each other [34, 35]. Several methods are employed to study t-PMET [29, 34-

36]. Some of these methods are listed below; 

i. Measurement of reduction of an artificial or exogenous electron 

acceptor 

ii. Measurement of disappearance of an electron donor 

iii. Measurement of oxygen consumption 

iv. Measurement of superoxide production 
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v. Measurement of ubiquinone reduction 

 In this research project, components of t-PMET were characterized or identified 

through measuring the reduction of the artificial acceptors, disappearance of an 

electron donor, and superoxide production. These approaches are described below.  

2.3 General Approaches to Measure Redox Activities 
 

 The t-PMET system includes oxidoreductase enzymes. These oxidoreductase 

enzymes catalyze redox reactions; the transfer of electrons from one molecule to another 

molecule. An objective of this research was to determine the redox activities in myelin 

membrane which was accomplished through monitoring of electron transfer from 

electron donor to electron acceptor. The general activity can be measured with NADH or 

NADPH as an electron donor and an electron acceptor such as cytochrome c or 

tetrazolium salt.   

 NADH + substrate (ox)   Enzyme     NAD+ +  product (red)        (2.1) 

 The expression 2.1 illustrates the oxidoreductase reaction in which NADH in 

reduced form donates two electrons (as a hydride) and reduces the oxidized substrate 

(electron acceptor), produces the oxidized form of the electron donor, NAD+ and the 

product.  The electron transfer can be monitored spectrophotometrically at a specific 

wavelength following the oxidation of NADH or the reduction of the substrate. When 

NADH is monitored, a decrease in absorbance at 340nm is measured. As NADH 

donates electrons, the concentration of NAD+ (oxidized form) increases, while 
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concentration of NADH (reduced form) decreases. The electron donor NADH has an 

characteristic absorption spectrum and a  maximum absorption at 340nm.  

 Many oxidoreductase-catalyzed reactions are monitored with an artificial electron 

acceptor (substrate). The selection of artificial electron acceptor is crucial. There should 

be following characteristics in artificial acceptor [16]: 

• Artificial acceptor must have strong chromophore in oxidized or reduced form, 

such as 2, 6-dichlorophenol indophenol (DCPIP).  

• Artificial acceptor should carry large multiple negative charge; for example, 

ferricyanide. 

• Artificial acceptor or endogeneous substrate must have high molecular weight, 

such as toluidine blue O or cytochrome c.  

 Due to high molecular weight and multiple negative charge, these substrate are 

impermeable to the membrane. To investigate the enzyme activities in myelin, a system 

was developed in which a sample of myelin membranes was reconstituted in a buffer (to 

maintain the pH of the system, usually Tris buffer), with a suitable substrate such as 

cytochrome c or dichlorophenolindophenol (DCPIP) (as final electron acceptor) and 

NAD(P)H (as the electron donor).  

2.4 General Approach to Measure Superoxide Production 
 

 NAD(P)H oxidase or NOX, which is characterized as a superoxide generating 

enzyme,  is another class of t-PMET enzymes. Superoxide plays a vital role in cellular 

defense, signal transduction, angiogenesis, blood pressure regulation, and biosynthesis 
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processes [37]. These enzymes use NAD(P)H as an internal electron donor and reduce 

the external oxygen by an one electron reduction into superoxide. The superoxide is 

spontaneously or enzymatically dismutased by superoxide dismutase (SOD) to hydrogen 

peroxide and oxygen. Hydrogen peroxide also acts as a messenger molecule [17]. Several 

methods are employed to detect superoxide production in cells. Some of them are: 

i. Detection of superoxide through lucigenin-derived chemiluminescence 

ii. Detection of superoxide through cytochrome c reduction 

iii. Detection of superoxide through WST-1 (water soluble tetrazolium generation 1) 

reduction  

 In this research, any measurable quantity of superoxide was detected by WST-1. 

Tetrazolium was reduced to formazan by superoxide which indicates the occurrence of a 

redox reaction and presence of superoxide radical. Expression 2.2 illustrates the non-

enzymatic reaction. The formazan production can be detected at 438nm with an 

extinction co-efficient of 37mM-1 cm-1. 

O2
-. + WST-1    O2 + Formazan                    (2.2) 

2.4.1 Enzyme Kinetics   
 

 There are several advantages of enzyme assays including their low cost, reliability 

and simple procedure. Besides these advantages, the most important advantage is the 

ability to investigate or study the kinetics and inhibition study of the enzyme. 

 Enzyme kinetic study is the branch of science that deals with reactions that are 

catalyzed by enzymes. This analysis provides useful parameters related to rate of 

reaction. When enzyme (E) binds to a substrate (S), it forms an enzyme-substrate 
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complex (ES). After sometime, this ES is regenerated to enzyme (E) and substrate is 

changed into product (P). This enzyme catalytic mechanism is described in equation 

below: 

                   

 In kinetic analysis the enzyme rate is measured for a series of concentrations of 

the substrate, as shown in Fig 2.1 

 

Fig 2.1: A typical Michaelis-Menten kinetics representation. Vmax represents the 
enzyme maximum velocity while KM reprsents the substrate concentration at which 
reaction attains its half maximum velocity. Taken from reference [38]. 

 

  The mathematical modulation of Michaelis Menten model is described by the 

equation 2.4, and is used to study the asymptotic reaction. This equation graphically 

represents a hyperbola which is defined by two asymptotic parameters Vmax and KM. 

𝑉 = 𝑉𝑚𝑎𝑥[𝑆]
𝐾𝑀+[𝑆]

                                                              (2.4) 

where 

k2 

k-1 

k1 
E+S ES E+P (2.3) 
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             Vmax  =   Maximum velocity of the reaction 

               [S]  =  Substrate concentration 

               KM  =  Michaelis constant or 1/2 Vmax 

 The Vmax represents the maximal enzyme reaction velocity, when the enzyme is 

fully saturated with the substrate, and KM reflects the affinity of enzyme-substrate 

interaction which is the substrate concentration to attain half maximum velocity.  

 The significance of Michaelis-Menten kinetics is that it provides the useful 

information about the rate of reaction, mechanism, and the enzyme nature. If the kinetic 

plot of an enzyme is similar to Fig 2.1, then the enzyme involves the single substrate. If 

plot is different from Fig 2.1, such as sigmoidal, then the enzyme may involve two 

substrates and may have ping-pong mechanism or could be allosteric in nature. Thus, 

Michaelis Menten equation describes chemical as well as some physical aspects of the 

enzyme.  

 The enzyme activity for oxidoreductases can be calculated following reduction of 

acceptor or oxidation of donor. According to Beer's law as concentration of substrate 

(chromophore in substrate) increases absorbance also increases. The general equation is  

                                                                A = εlc                 (2.5) 

 To monitor the enzyme activity, the change in absorbance of substrate over time 

is plotted. Enzyme activity can be calculated from the slope of the plot and the Beer's law 

relationship.  

Activity = Slope x 60sec/min x 1/ ε (M-1 cm-1) x l(cm) x volume (L) x 106 µmol/mol 



 

24 
 

where   l = path length 

           ε = extinction coefficient 

          slope = ∆Abs/min 

2.5 General Methodologies  

 Some common methodologies and techniques that were utilized throughout the 

research project are discussed below. 

2.5.1 Isolation of Myelin 
 

 Isolation of myelin from mouse brain was completed by the sucrose gradient 

method [39]. The brains tissues were homogenized with a Douncer homogenizer on ice in 

10.5% (w/v) sucrose prepared in TNE (25mM Tris buffer, pH 7.4, 150mM sodium 

chloride and 5mM EDTA (ethylene diamine tetraacetic acid). The brain homogenate was 

layered on top of 2mL 30% (w/v) sucrose solution. The mixture was centrifuged using 

MLS-50 swinging bucket rotor at 35,000 rpm for one hour in the Optima Max 

ultracentrifuge (Beckman Coulter). The white myelin layer was carefully removed at the 

30% (w/v) sucrose solution interface. After centrifugation myelin was diluted by ice- 

chilled milli Q water in a 1:1 ratio. To pellet the myelin membranes, an additional 

centrifugation at 35,000 rpm was performed for 30 minutes. The isolated myelin vesicles 

were osmotically shocked by addition of ice-chilled milli Q water and incubated on ice 

for 10 minutes, and followed by the subsequent centrifugation for 20 minutes at 22,300 

rpm. The procedure of sucrose gradient separation and osmotic shock was repeated for 

better separation. Myelin pellets were resuspended in ~500µl of myelin storage buffer 
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[(500µl 2X TBS, 40 µl PIC (protease inhibitor cocktail), 20µl 100mM Na3VO4, 20µl 

100mM phenylmethane sulfonylfluoride (PMSF), 20µl Phos STOP (phosphatase 

inhibitor cocktail), 400µl water)]. After isolation, the concentration of myelin samples 

was determined using microplate procedure of bicinchoninic acid (BCA) protein assay 

(Pierce). All samples were read at 562 nm.  

2.5.1(A) Myelin Detergent  Fractionation 
 

 The myelin membrane consists of several microdomains but two microdomains, 

the radial component and lipid rafts, have been previously described [40]. Lipid rafts are 

region of plasma membrane rich in cholesterol and glycosphingolipids [40]. The 

membrane phase in which cholesterol and sphingolipids are rich and tightly packed is 

called the liquid ordered phase (L0). This compactness creates thick, less fluid and a more 

ordered membrane structure. The proteins that are involved in signaling are mostly 

partitioned into lipid raft region [40]. The radial component is the structure within the 

compact myelin where closely associated cytoplasmic bilayer leaflets alternate with 

closely associated exofacial bilayer leaflets and radiates as a bicycle wheel spoke [41]. 

Radial component mostly consists of tight junctions between membrane layers, whereas 

the lipid rafts are a linear region within a membrane.  

 From most cells, lipid rafts can be isolated as detergent resistant membranes 

(DRMs). A detergent fractionation method can be used to separate the lipid raft 

microdomain from radial component in myelin. Hydrophobic proteins are difficult to 

separate and identify, as they are often present in cholesterol-rich microdomains (lipid 

rafts) of the membrane. Thus the procedure requires detergent for their purification. 

Detergents are chemical compounds that have both hydrophobic and hydrophilic 
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structure. The tails of detergent are essentially hydrophobic and the heads are 

hydrophilic. There are three types of such detergents: ionic, non-ionic, and zwitterionic.  

 Zwitterionic detergents such as CHAPS, (3-[(3-cholamidopropyl) 

dimethylammonio]- 2-hydroxy-1 propanesulfonate), which have head groups with 

both kind of charges can be used. The mechanism of action of these detergents is to 

disrupt the lipid-lipid and lipid-protein interactions. Due to disruptive ability of these 

detergents, they are considered even more efficient than non-ionic detergents. 

CHAPS, at 1.5% (w/v), has been used efficiently to isolate the lipid raft components 

from myelin membranes [42].  

 Being milder than ionic detergents, some non-ionic detergents are also 

utilized in protein extraction from myelin membranes [43]. Uncharged hydrophilic 

heads are the characteristic feature of non-ionic detergents such as triton X-100 (TX-

100) and Tween-20. TX-100 has been used to separate the radial component of 

myelin sheath [44]. Sodium dodecyl sulfate (SDS), an anionic detergent, was not 

used in fractionation procedure due to its denaturing ability. 

 The overall procedure of detergent fractionation with myelin membrane is 

illustrated in Fig 2.2. Myelin (500µg) was added to 500µl of 2X Tris buffer saline (TBS; 

50mM Tris/HCl pH 7.5, 280mM NaCl, 4mM EDTA) and 150µl of 1.5% (w/v) CHAPS 

detergent, with the final volume adjusted to 1000µl with water [40]. Sample mixtures 

were gently vortexed and subjected to 30 minute incubation on ice. Centrifugation at 

5000xg for 10 minutes was done at 4ºC. Supernatant was removed and called the S1 

fraction. Pellets were resuspended in 1mL of 3% (w/v) TX-100 solution and labeled as 
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P1. A gentle shaking was required to dissolve the pellet. Incubation of the pellet solution 

at room temperature was done for 30 minutes. The 2% (w/v) TX-100 was added and 

centrifugation was completed at 14000xg at room temperature for 15 minutes. This 

supernatant was labeled as S2 and the pellet was dissolved in 1mL of 3% (w/v) TX-100 

solution and labeled as P2.  If a specific protein is present in S1, it may be localized in 

the lipid raft microdomain, whereas if it is present in P1 and/or P2 fraction, it may be 

localized in radial component of the myelin membrane. 

 

Fig 2.2: Schematic of the myelin detergent fractionation procedure. CHAPS is 
used to fractionate and isolate the lipid raft components from the myelin membrane, 
whereas TX-100 is utilized to fractionate the radial component.  
 
 

2.5.1(B) Myelin Delipidation 
 

 To remove excessive lipid content for efficient electrophoresis of protein, myelin 

can be subjected to partial delipidation. Delipidation was achieved by treating the myelin 

with ether and ethanol in a 2:1 ratio. The myelin membranes (250-1000µg) were thawed 

on ice. The final volume was brought to 200µl by adding milli Q water. To the diluted 

myelin, 500µl of ether:ethanol (2:1 ratio) was added for lipid removal. Incubation of the 

myelin (500 µg protein)

1.5% CHAPS, 4°C

supernatant pellet

supernatant pellet

2% TX100, RT

5000xg

14000xg

S1

S2

P1
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mixture was completed on ice for 10 minutes. Subsequently, centrifugation at 10,000xg 

for 10 minutes was completed at 4°C. The supernatant fraction containing the lipids was 

discarded. Pellets were partially air-dried, and then were dissolved in resuspension buffer 

(10mM Tris-HCl, pH 8.0 and 1% SDS). 

2.5.1 (C) Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis and Western 
Blotting 
 

 Once the myelin fractions were separated, 64µl of each fraction was added to 

16µl of 5x sample loading buffer (0.5M Tris/HCl, pH 6.8, glycerol, 10% w/v SDS, 0.5% 

(w/v) bromophenol blue). Samples with loading buffer were boiled for 5 minutes which 

was used immediately or stored at -20°C after cooling for later usage. 

 The 12% and 14% resolving gels with 4% stacking gels (1mm, 8 x 7.3cm: Mini-

Protean, BioRad) were used for Western blot analysis. The 10X running buffer or 

electrode buffer (25mM Tris/HCl, pH 8.3, 192mM glycine, 0.1% SDS) was diluted into 

1:10 and ~500mL was utilized to run SDS-PAGE. Protein samples, either delipidated 

myelin or detergent fraction, in the loading buffer were loaded along with protein MW 

standards.  Electric current was applied. For the first 20 minutes the applied voltage was 

70V to facilitate the stacking of the proteins. After 20 minutes, the voltage was changed 

from 70V to 120V for an additional 80-90 minutes. After 90 minutes or when the dye 

front was out of the gel, the gel was disassembled and washed with transfer buffer 

(25mM Tris-HCl, 192mM glycine, pH 8.3, 20% methanol) for 5 minutes. Protein 

transfer onto the nitrocellulose membrane was accomplished by arranging the gel and 

membrane in the following order; fiber pad, 2 pieces of filter paper, gel, nitrocellulose 

membrane, 2 pieces of filter paper and at the very end fiber pad. Approximately 400-500 
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mL of ice-cold transfer buffer was required to fill the tank along with an ice pack. 

Current was set at 200mA for 2 hrs. After 2 hrs, the cassette was disassembled and 

nitrocellulose membrane was subjected to further western blot analysis after drying. The 

transfer of protein markers are indication of sucessful protein transfer. 

 For Western blot analysis, the membrane was blocked with 5% (w/v) milk 

solution (2.0g skim milk powder in 40 mL 1XTTBS) for 2.5-3 hrs. All antibodies and 

milk solutions were made in 1XTTBS solution by diluting 10XTTBS (247mM Tris, pH 

7.6, 0.026M KCl, 0.137M NaCl, 0.5% (w/v) Tween-20) solution in 1:10. Two washings 

of one and five minutes with 1X TTBS were followed the blocking step. Subsequently, 

the membrane was incubated with primary antibody (concentration as provided by 

antibody supplier) for 1-4 hrs or more. After incubating with primary antibody, the 

membrane was washed once with 20mL 1XTTBS solution and for three more times each 

for 5 minutes. The membrane was incubated with a secondary antibody for 30-45 

minutes (concentration as provided by antibody supplier). Secondary antibody incubation 

was followed by washing the membrane three times with 20mL 1XTTBS solution for 5 

minutes. For imaging, the membrane was incubated with Super Signal West Femto 

reagent (Pierce) for 5 minutes as outlined by the manufacturer. Imaging was acquired 

immediately by a VersaDoc 4000 (Bio-Rad Ltd) system.  

2.5.1 (D) Immunohistochemistry 
 

 Fluorescence microscopy images of myelin membrane proteins were acquired 

with a CCD camera (binning mode) attached to a 300 Nikon epifluorescent microscope. 

The oil immersion 100X objective was used in this study. Myelin samples were diluted 
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into 1:1000 by volume and applied to the glass slide. The 10µl of diluted sample was 

incubated with 40µl primary antibody at room temperature for 1hr. The dilution of 

primary antibody was provided by the supplier and was prepared in PBS buffer (5mM 

sodium phosphate, 137mM NaCl and 27mM KCl, pH 7.0). After incubation with the 

primary antibody, samples were washed three times with PBS buffer and subsequently, 

incubated with fluorescently tag secondary antibody for 30 minutes at room temperature. 

The secondary antibodies were also prepared in PBS (secondary antibody dilution as 

provided by the supplier). After washing with PBS, image was taken by 300 Nikon 

epifluorescent microscope.  

2.6 Research Significance 
 

 Myelin, a multilayered sheath, not only provides integrity and insulation to the 

neurons but it is also metabolically active. It is still controversial that to meet its energy 

requirements, myelin must either be self-sufficient (utilizing the t-PMET system) or 

dependent on distal mitochondria. Over recent years, the theories of oligodendrocyte, 

astrocyte, neuron and myelin interaction for myelin energetics have emerged [4, 12, 15]. 

In the current research, the theory of t-PMET association with myelin membrane for its 

energy requirement is presented for the first time. This research project investigated the 

association of t-PMET with myelin membrane. The identified component's activity and 

expression level were measured in the demyelinated system. The role of t-PMET in 

health and disease will further assist in deciphering the functions of these identified 

enzymes and their role in demyelination.   
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Chapter 3  
Investigation of Cytochrome b5 
Reductase in the Myelin Membrane 

 
 The central theme of this chapter is to investigate the presence of cytochrome b5 

reductase (CB5R) in myelin membrane through its associated activity of NADH: 

cytochrome c reductase. The kinetic parameters Vmax and KM were determined to 

describe the reductase activity. Furthermore, para-hydroxymercuribenzoic acid (pHMB), 

a potent inhibitor of CB5R was used. Western blot analysis and immunohistochemistry 

were performed to confirm the presence of CB5R in myelin membrane. Lastly, detergent 

fractions of myelin were assayed for comparing the enzyme activity and localization in 

the membrane microdomains. 

3.1 Introduction 
 

 Cytochrome b5 reductase (CB5R), is an NADH-dependent, FAD-containing 

integral membrane protein [45]. The CB5R catalyzes two coupled, single electron 

reductions of substrates such as Cb5 or CoQ. A pair of electrons, as hydride ion,  from 

NADH are transferred to the flavin ring of FAD, and then from the reduced form of FAD 

these electrons are transferred one at a time to two molecules of Cb5. Overall, the 

electrons are transferred from the two electron carrier (NADH) to the one electron carrier 

(Cb5). The FAD can cycle from the fully reduced form of FADH- to the semiquinone and 

then back to the fully oxidized form FAD. The catalytic mechanism is shown in Fig 3.1. 



 

32 
 

 

Fig 3.1: Catalytic cycle of FAD in CB5R. The two electrons are transferred via  hydride 
transfer from NADH to the fully oxidized form of FAD to give the reduced form. One electron 
from FADH- is transferred to the substrate (Cb5) or single electron acceptor to yield the neutral 
blue semiquinone which is deprotonated to the anionic red semiquinone. A second electron is 
transferred to another single electron acceptor. Figure taken from reference [46].  

 

  In humans, CB5R is encoded by four genes CB5R1, CB5R2, CB5R3 and 

CB5R4. The isoform, CB5R3 has ubiquitous expression and is present in mitochondria, 

nucleus, endoplasmic reticulum and plasma membrane. The CB5R3 is encoded by the 

gene present on chromosome number 22 and this gene is 32 kb in length (with 9 exons 

and 8 introns) [47]. Two isoforms of CB5R are known. One isoform is membrane-bound 

with a molecular weight of ~35kDa, while second isoform is soluble with a molecular 

weight of ~33kDa. The soluble form is mostly found in the erythrocytes [48]. The 

difference in two forms lies in their N-termini. In membrane-bound form, the N-terminus 

is myristoylated and hydrophobic. This hydrophobicity of the chain facilitates the enzyme 

insertion into the membranes. The soluble form is produced by the alternate splicing of 

membrane-bound form [48, 49].  
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 The X-ray crystallographic studies have resolved the enzyme fold and structure. 

Overall, the enzyme consists of two functional lobes (Fig 3.2A). The prosthetic group, 

FAD, binding site is present on N-terminus lobe. This FAD binding domain (Lys33- 

His144, in the human sequence) consists of six antiparallel β-strands [36]. The NADH 

binding site lies in the C-terminus lobe (Gly171- Phe300) and has an αβα motif. The N-

terminus and C-terminus lobes of enzyme is linked by a small peptide, which is a short 

random coil of 25 amino acids [36]. This short random coil acts as a hinge and is thought 

to facilitate the efficient transfer of electron from NADH to FAD by holding their binding 

sites in close proximity to one another (Fig 3.2B) [50]. 

 
 

Fig 3.2: Overall  structure of human CB5R.  Panel (A): FAD binding domain is in blue, 
while NADH binding domain is in red. The linker domain is in green.  Adopted from reference 
[46]. Panel (B): Interface of NADH and FAD domains. Adapted from reference [53]. 
 

 The distance between the FAD binding domain and NADH binding domain is 

~11Å [36]. How is efficient electron transfer facilitated? A highly conserved flavin-

binding sequence is present in FAD domain. This region contains the residues Arg63, 

Tyr65 and Thr66 in porcine liver. The amino acid residue Thr66 is thought to be 

responsible for electron transfer from FAD ring and destabilizes the FAD molecule. The 

NAD+ molecule is confined in the cavity between NADH- and FAD-domains and 

A B 

http://www.google.ca/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&docid=W8Y632vkuyCw3M&tbnid=B4ut-NY2KbtU_M:&ved=0CAUQjRw&url=http://journals.iucr.org/d/issues/2004/11/00/ad5018/ad5018fig1.html&ei=e8W5U5y9IoXv8AGD1oBQ&psig=AFQjCNGhpaVJYCWA8YoaE5zDQzPVhYeWWA&ust=1404769946894986
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interacts with the surrounding atoms in the enzyme. The NAD+ is distorted and acquires 

an "L-shaped" conformation [46]. The adenine ring stacks itself parallel to the aromatic 

ring of Phe223 in the groove. This groove is created by Phe223, Pro247, Pro249 and 

Met250. To superimpose the NADH binding domain over FAD domain, almost a 30-40° 

twist is required for proper orientation of two binding domains. This orientation is usually 

acquired by the water-mediated lateral movement of FAD binding domain.  

 One of the most important functions of CB5R in plasma membrane is to reduce 

the CoQ. This reduced pool of CoQ prevents lipid peroxidation and protects the cell from 

oxidative stress [51, 52]. CB5R is also involves in fatty acid chain elongation and 

desaturation. Cholesterol synthesis is another well described function of CB5R [53]. 

CB5R can regenerate some antioxidant molecules such as ascorbate (Asc) and α-

tocopherol [54]. The major function of the soluble form of enzyme in erythrocytes is to 

reduce methemoglobin back to hemoglobin as shown in the Fig 3.3 [55]. 

 

 

 

 

Fig 3.3: Reduction of hemoglobin by non-myristolated CB5R form. Methemoglobin is 
reduced to hemoglobin by soluble form of CB5R while the NADH is utilized as an electron donor 
source. CB5R is also known as methemoglobin reductase.  

 

 The metabolic disease associated with the deficiency of CB5R is called 

methemoglobinemia. There are two types of this deficiency. Type I involves the 

deficiency of soluble form of CB5R in red blood cells. In this type of disease, a well-

Met-Hb 

(Fe+++) 
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tolerated cyanosis with mild symptoms of headache, fatigue and shortness of breath is 

observed [56]. Type II is even more severe than type I,  and in type II, deficiency of both 

forms is observed in red blood cells as well as in leukocytes. The patients with type II 

deficiency have severe neurological disorders due to inefficient desaturation of fatty acids 

[56].  

3.2  Materials and Methods 
 

 The methods and materials used for the experimentation with their manufacturer 

are listed below: 

 Myelin (see section 2.5.1), cytochrome c (Sigma 7752), para- 

hydroxymercuribenzoic acid (pHMB) (Sigma 55540), TX-100 (Sigma t-9284), Tris (Bio-

basic 77-86-1), β-NADH (Sigma N6005), KCN (Sigma 60178), CHAPS (Sigma  C-

5070), SDS (Sigma  L-4390), ethanol (BDH B10324-78), ether (EMD Ex-194-6), 

potassium chloride  (KCl; Sigma 4504), sodium chloride (NaCl; Sigma C-3014), Tween-

20 (Bio-Rad 161-0781), Dual Colour Precision Plus protein standards (Bio-Rad 161-

0374), goat anti-CB5R antibody (Pierce PA5-19196), rabbit anti-goat IgG-HRP 

secondary antibody (Sigma A-5420), Super Signal West Femto reagents (Thermo 

scientific 34094), ammonium persulphate (MP biomedicals 802829), 

tetramethylethylenediamine (TEMED) (Bio-Rad 161-0800). 

3.2.1 Western Blot Analysis and Immunohistochemistry 
 

 For the SDS-PAGE separation, a 14% resolving gel with 4% stacking gel was 

prepared for the investigation of CB5R in brain homogenate, S1 fraction and delipidated 
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myelin sample. Myelin fractionation and delipidation was achieved by following the 

protocol described in section 2.5.1(A & B) in detail. Gels were loaded with final volume 

of 16µl of delipidated myelin, 20µl of S1 detergent fraction, along with the 5X sample 

loading buffer and 10µl of 1:10 dilution brain homogenate, 20µl of 1:50 dilution brain 

homogenate. Gel was loaded with 5µl of 1:10 dilution of Dual Colour Precision Plus 

protein standard. The complete conditions of SDS-PAGE and Western blotting are 

outlined in section 2.5.1 (B). For Western blots, membranes were blocked with 5% (w/v) 

milk solution for 3 hrs. Subsequently, the membrane was incubated with 3mL of primary 

antibody (goat anti-CB5R at a 1:500 dilution) in 1XTTBS solution for 5hrs. After 

washing, membrane was incubated with secondary antibody (anti-goat IgG-HRP) for 30 

minutes at a 1:80,000 dilution.  

 Immunofluorescence was done according to the procedure described in section 

2.5.1(D). Myelin was diluted in a 1:1000 applied to the slide. The 10µl of diluted myelin 

sample was incubated with primary (goat-anti-CB5R) antibody for 1 hrs at room 

temperature. The primary antibody was prepared in the dilution of 1:200.  After washing 

3 times with PBS solution membrane was incubated with secondary fluorescent antibody 

Dylight 549 in 1:500 dilution for 30 minutes at room temperature. After washing, images 

were taken from Nikon epifluorescence microscope.  

3.2.2 NADH Dependent Cytochrome c Reductase Assay 
 

 The rate of change of cytochrome c reduction by CB5R was monitored 

spectrophotometrically by using 96-well microplate format [57]. A total volume of 200µl 

was used for each well and reaction is initiated by the addition of electron donor NADH. 

Sample blanks, containing no enzyme, were run in the same manner.   
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 The activity was determined essentially as described by Navas and co-workers 

[57]. The reaction mixture contained 50mM Tris/HCl buffer pH 7.6 with 0.5% (w/v) TX-

100, 10-30µg protein (myelin),  substrate cytochrome c from 50-600µM and 250µM 

NADH. Enzyme activity was determined by monitoring the enzyme-dependent increase 

in absorbance at 550nm for 5 minutes at the intervals of 20-40 seconds at 37°C. For 

inhibition studies, different concentrations up to 10µM of pHMB were used. The 20mM 

stock solution of pHMB was prepared by dissolving 0.036g pHMB into 5mL milliQ. The 

activity was expressed as ∆Abs/min or micromoles of cytochrome c reduced per minute 

using an extinction coefficient of 29.5mM-1 cm-1. 

3.2.3 Methodology of Detergent Fraction Assay 
 

 For detergent fractionation, the myelin was treated as the procedure described in 

section 2.5(A). The overall procedure of the detergent fraction assay was similar as 

described in section 3.2.2 with only exception that 1.5% (w/v) CHAPS supernatant and 

pellet (S1, P1) were assayed with supernatant and pellet of 2% (w/v) TX-100 (S2, P2). 

The assay mixture contained 50mM Tris/HCl buffer pH 7.6 with 0.5% (w/v) TX-100, 

50µl of each detergent fraction, 100µM of cytochrome c and 250µM NADH.  For 

controls, 20µg of myelin was used instead of detergent fractions. Total volume in well 

was made up to 200µl by addition of water. The activity was measured as described 

above. The enzyme activity in myelin was compared with the activities in different 

detergent fractions (S1, S2, P1 and P2).  
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3.2.4 Kinetic and Statistical Analysis 
 

 For kinetic analysis, online curve and surface fitting resources from zunzun.com 

(least square fit model) were used to estimate the Vmax and KM parameters of CB5R with 

cytochrome c substrate. Statistical analysis was performed using Microsoft Excel 2010.  

T-tests were used for all analysis including the myelin dose response, substrate dose 

response and on inhibition test. Statistical significance was established at p≤0.05 at 95% 

confidence level. 

3.3 Results and Discussion 
 

 Borgese et al. determined the sub-cellular localization of CB5R using 

radioimmunoblotting analysis in rat liver, and found that CB5R is present in smooth 

microsomes, Golgi bodies, lysosomes, the plasma membrane and the outer membrane of 

mitochondria [58]. In this current study, Western blot analysis and 

immunohistochemistry identified the CB5R in the myelin membrane (see Fig 3.4). In Fig 

3.4A, immunohistology of CB5R confirmed the enzyme localization in myelin 

membrane. To further investigate the distribution within the membrane, Western blot 

analysis was performed on the detergent fractions (Fig 3.4B).  CB5R was present in the 

S1 fraction, whole myelin, and in brain homogenates (see Fig 3.4B). The blot also 

showed that CB5R is expressed in two isoforms; one with a molecular weight of ~35kDa 

which may represent the form bound to membrane while the other isoform with 

molecular weight of ~33kDa which may represent the form lacking myristoylated region. 

 The myristoylation confers hydrophobicity to the protein and facilitates the 

insertion of the protein into the membrane. The form lacking the myristoylated moiety 
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still may be associated with the myelin membrane, and thus be a tightly bound peripheral 

membrane protein either through various protein-protein or lipid-protein interactions.  

Another possibility is that the non-myristoylated form was produced as a degraded 

product of CB5R membrane bound form. The non-myristoylated form as a peripheral 

membrane protein might be an additional system for reduction of CoQ pool to avoid lipid 

peroxidation and ascorbate regeneration. Previous studies demonstrated that both the 

non-myristolyated (soluble) and myristolyated form (membrane-bound), were detected in 

cultured neurons, whereas the membrane-bound form was only detected in synaptic 

plasma membrane vesicles [59]. 

 The detection of CB5R in the S1 fraction indicates that the enzyme may be 

localized in the lipid raft microdomain. Further separation of this fraction on a sucrose 

buoyant density gradient would confirm this [41]. Samhan et al. found evidence that 

CB5R is present in lipid rafts and is associated with caveolin-rich regions of plasma 

membrane of neuronal cells [60]. Caveolin is the most abundant protein in the caveolae 

microdomain and controls the cholesterol trafficking. 

 



 

40 
 

 

 

Fig 3.4: Immunodetection of CB5R in the myelin membrane. Panel (A): 
Immunofluorescent  image of CB5R in myelin membrane. Diluted myelin (1:1000) was 
incubated with cytochrome b5 primary antibody in 1:200 dilution for one hour and after washing 
subsequently incubated with secondary antibody anti-goat DyLight  549  in a 1:500 dilution for 
30 minutes.  Image was taken with 100X oil immersion lens and with Nikon 300 epifluorescent 
microscope. Panel (B): Western blot for cytochrome b5 reductase. A 14% resolving gel with 
4% stacking gel was prepared for the examination of CB5R in brain homogenate (BH), S1 
fraction and delipidated myelin sample (DP). Proteins were transferred to nitrocellulose 
membrane at 200mA for 2 hrs. Membrane was blocked with milk solution and then subsequently 
incubated with primary and secondary antibodies. For enhanced chemiluminescence, ECL 
substrate was used and immediately after that image was taken with the 4000 VersaDoc imaging 
system. 
 
 
  

A 
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3.2 Measurement of Cytochrome b5 Reductase Activity in Myelin 
Membrane 
 

 The endogenous substrates of CB5R enzyme are cytochrome b5 (Cb5) and CoQ. 

Recombinant Cb5 is available commercially but it is cost prohibited. High levels of  Cb5 

are found in liver cells but its extraction from liver is difficult [57]. In cells, the reduction 

of Cb5 is essential, as it is a key player in cholesterol synthesis [61]. For experimental 

purposes, an analog of Cb5, cytochrome c, is extensively used. The CB5R activity is 

determined spectrophotometrically as the NADH-dependent reduction of cytochrome c 

and also quantified with the inhibitor pHMB [62]. The measurement of cytochrome c 

reduction was taken at 550nm as it is the wavelength at which cytochrome c (reduced 

form) shows maximum absorption. The enzyme activity was determined by following the 

reduction of cytochrome c with the electron donor, NADH.  Hence, by measuring the rate 

of reduction of cytochrome c, the CB5R activity can be estimated. Following reaction is 

catalyzed by CB5R. Moreover, the standard electrode potential E´° (235mV) of 

cytochrome c (Fe3+/ Fe2+) oxidized form is fairly large (positive value) and thus the 

ferrous form readily  to accepts an electron [63].  

 

                        

 The enzymatic activity of CB5R in myelin membrane was measured by the 

associated activity of cytochrome c reductase. A typical rate of reaction of cytochrome c 

reduction with the myelin membrane is illustrated in Fig 3.5. The slope (change in 

absorbance/min) and enzyme activity were calculated as described in section 2.4.1. All 

slopes were corrected for the background (negative control without enzyme). 

  NADH + H+ + 2 cyto c (Fe3+)   NAD+ + 2 cyto c (Fe2+)          (3.1) 
  Reductase 
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Fig 3.5: A typical graph depicting cytochrome c reductase activity. Rate of change of 
cytochrome c reduction was determined by plotting the absorbance versus time. Same 
procedure was used for blanks as well. Sample contains myelin, water, buffer, cytochrome c 
and NADH. The blank (negative control) contains no myelin.  
 

3.5.1 Enzyme Assay with Myelin Detergent Fractions 
 

 

 
 

Fig 3.6: Comparison of myelin detergent fractions for NADH:cytochrome c reductase 
activity. The activity of enzyme in non-treated myelin is taken as the control. The rate of 
each fraction (50µl) and myelin (20µg) was assayed in the presence of 100µM of cyto c 
and 250µM NADH at 37°C over 5 minutes (see methods for complete details). All error 
bars are ±SE. 
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 The enzyme activity in whole myelin sample was compared to the different 

myelin detergent fractions (see Fig 3.6). On an equi-volume basis, the highest activity 

was observed in the S1 fraction (2.44 x 10-4 µM/min) and the lowest activity was in the 

P2 fraction (1.37 x 10-7 µM/min) and thus, most of the CB5R associated activity is 

distributed into the CHAPS supernatant fraction. This also supports the findings of 

Western blot. The enzyme activities in detergent fractions, other than S1, can be seen. 

These activities might be due to the presence of other reductases, oxidases or 

dehydrogenases. 

 

Fig 3.7: NADH: cytochrome c reductase activity as a function of amount of myelin. 50mM 
Tris-HCl buffer pH 7.6 with 0.5% (w/v) TX-100, was assayed with 5, 10, 20µg myelin, 100µM 
cytochrome c and 250µM NADH. Measurement was taken spectrophotometrically at 550nm at 
37°C. Results are produced in duplicate and corrected for background. The error bars are ± SE 
(standard error).  

  Further characterization of NADH: cytochrome c reductase activity was 

completed with whole myelin. Fig 3.7 illustrates that the enzyme activity is directly 

proportional to the amount of protein added. Thus the NADH: cytochrome c reductase 

activity is a function of myelin concentration. Dose response of myelin also shows that 

enzyme(s) is in active form.  
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 Enzyme activity at various substrate concentrations is very important in 

determining enzyme steady-state kinetics model. An evaluation of the dose response of 

the substrate, cytochrome c, was done to generate the kinetic curve (see Fig 3.8).  

 

3.8: NADH: cytochrome c reductase activity as a function of amount of substrate. Panel (A) 
Enzyme activity in myelin. 50mM Tris/HCl buffer pH 7.6 with 0.5% (w/v) TX-100, was 
assayed with 20µg myelin, 50, 100, 250, 500 and 600µM cytochrome c and 250µM NADH. 
Measurements were taken spectrophotometrically at 550nm at 37°C. Results are produced in 
duplicate and corrected for background. The error bars are ± SE (standard error).  The t-test 
results indicate no statistical significance (*p=0.35) of more than 95% confidence interval in 
increase in enzyme activity between 500 and 600µM of cytochrome c concentration. Panel (B) 
Data fitted with kinetic software (zunzun.com) to determine apparent KM and Vmax.. The solid line 
shows the data, whereas dashed line depicts the 95% CI. 

* A 
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 Substrate dose response curve showed that enzyme follows a hyperbolic curve 

representing the typical Michaelis Menten model. At 600µM, the enzyme is saturated 

with substrate and reaches at its maximum rate Vmax and reaction follows the zero order 

kinetics and becomes independent of amount of substrate added. The kinetic parameters, 

Vmax and KM were estimated as 6.59 x 10-5 µM/min and 151 µM, respectively. 

 Enzyme inhibitors are important in studying metabolic reactions and 

pharmacological modeling. Some physiological inhibitors as well as artificial inhibitors 

are well known and are used in drugs. Typically in kinetic studies of an enzyme, the 

assays are validated when a potent inhibitor reduces the specific enzymatic activity. The 

myelin samples were exposed to progressive increasing concentration of pHMB (see Fig 

3.9), which is a well-known competitive reversible inhibitor of CB5R enzyme [57]. 

  

Fig 3. 9: Structure of pHMB. Para-(hydroxymercuribenzoate (pHMB) also known as 4-
(hydroxymercurio)benzoate forms mercury-sulfur covalent bond with thiol group of cysteine 
residues. 

 

 Organic mercurial compounds such as pHMB and para-chloromercuribenzene 

sulfonate (pCMBS) reacts with cysteine sulfhydryl groups. The pHMB is relatively 

hydrophobic in nature and can partition into the membrane, reacting with more "buried" 

sulfhydryl groups. In contrast, pCMBS can react only with "exposed" sulfhydryl groups.  

http://www.sigmaaldrich.com/catalog/product/sigma/55540?lang=en&region=
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 A myelin sample without inhibitor was used as the control and considered as 

having 100% oxidoreductase activity (see Fig 3.10). The cytochrome c reductase activity 

was significantly decreased by increasing concentration of the inhibitor, pHMB.  At 

10µM of pHMB the enzyme activity was over 90% inhibited. In addition, 50% inhibition 

(IC50) of enzyme activity was achieved by 1µM pHMB. Enzyme activity assay of 

cytochrome c reductase and pHMB-mediated inhibition is another confirmation of 

presence of CB5R enzyme in myelin membrane. In human CB5R, four cysteine residues 

(Cys203, Cys273, Cys283 and Cys297) are present. Among four residues, two residues, 

Cys273 and Cys283 are located near the NADH binding domain. The Cys273 plays a 

vital role in the electron transfer and also aids in maintaining the native conformation of 

the protein [64]. 

 

Fig 3.10: Inhibition of cytochrome c reductase activity by pHMB. 
Measurements were taken at 550nm at 37°C. Results are produced in triplicates 
and corrected for background. The 20µg myelin was assayed with 100µM 
cytochrome c and 250µM NADH. The error bars are ± SE. The t-test results 
indicate a statistical significance of more than 95% between 0 and 0.1µM  
(*p=0.01) and between 5 and 10µM pHMB (**p= 0.04).   
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 Since it was established that CB5R is present in myelin membrane, it is now 

necessary to differentiate the detected activity from mitochondria to ensure that activity is 

at the level of plasma membrane. To achieve this purpose, potassium cyanide (KCN) was 

used. Cyanide is a potent inhibitor of cellular respiration, acting on 

mitochondrial cytochrome c oxidase (complex IV), by blocking the electron transfer, 

inhibits the oxidative phosphorylation. A previous study showed that 1.0mM of KCN 

inhibits 70% activity of cytochrome c oxidase in mitochondria [65]. Effect of KCN 

inhibition on CB5R is depicted in Fig 3.11.  The cytochrome c reductase activity in the 

myelin membrane is insensitive to the inhibitor KCN. In addition, the insensitivity to 

KCN shows that cytochrome c reductase activity is at the level of plasma membrane and 

there is no mitochondrial contribution or contamination. 

 

 

Fig 3.11: Attempted inhibition of cytochrome c reductase activity by KCN. The activity  
of 10µg myelin was assayed with 50mM Tris buffer, 100µM cytochrome c and various 
concentrations (0, 0.1, 0.5, 2.0 mM) of KCN. Reduction of activity is monitored for 5 
minutes at the interval of 20 second at 550nm. Reactants were allowed to react at 37 °C. 
Results were produced in triplicate and corrected for non-enzymatic activity. The error bars 
are ± SE. The t-test results indicate a statistical significance of more than 95% confidence. 
The value of t-test  is *p = 0.438. 

http://en.wikipedia.org/wiki/Cyanide
http://en.wikipedia.org/wiki/Cellular_respiration
http://en.wikipedia.org/wiki/Cytochrome_c_oxidase
http://en.wikipedia.org/wiki/Oxidative_phosphorylation
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3.6 Conclusions 
 

 In this study, for the first time, the presence of t-PMET enzyme, CB5R, was 

detected in myelin membrane. CB5R is present in functional enzymatic form and may be 

localized to the lipid raft domain.  The CB5R activity was measured with an assay 

utilizing the NADH-dependent cytochrome c reduction. The substrate dose-response 

curve revealed that enzyme follows the Michaelis Menten model and their kinetic 

parameters Vmax and KM were estimated as 6.59 x 10-5 µM/min and 151µM, respectively. 

The enzyme activity was 90% inhibited with 10µM pHMB. Furthermore, both the 

myristoylated and non-myristoylated enzyme are associated with the myelin membrane. 

The function(s) of the isoforms of CB5R in myelin remains to be elucidated. The 

confirmed presence of CB5R in myelin membrane supports the hypothesis that t-PMET 

is assisting myelin membrane.  
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CHAPTER 4   
Investigation of NAD(P)H: Quinone 
Oxidoreductase 1 (NQO1) in the 
Myelin Membrane 
  

 In the following chapter, a study was conducted to investigate the presence of 

NQO1 enzyme and its associated activities in the myelin membrane using various 

substrates such as menadione, dichlorophenol indophenol (DCPIP) and phenazinium 

methyl sulfate (PMS). To examine enzyme specificity, various inhibitors such as DPI, 

pHMB and the potent inhibitor of NQO1, dicoumarol, were used. The NQO1 presence 

was also verified with immunohistochemistry and Western blotting.  

4.1 Introduction 

 NAD(P)H: quinone oxidoreductase 1 or NQO1, previously known as DT-

diaphorase and quinone reductase, is a flavo-homodimeric protein and it catalyzes the 

two electron reduction of various quinones and quinone imines. Each subunit has a 

predicted molecular weight of 30kDa. In humans, the NQO1 gene is located on the 16th 

chromosome and is ~20 kb in length [66, 67]. NQO1 can utilize, NADH or NADPH, 

both as an electron donor. In erythrocytes, NQO1 has electron donor preference for 

NADPH [68, 69]. The localization of NQO1 within the cell is dependent on the cell type 

and the function of this enzyme in this particular cell [70]. Ross et al. described the 

enzyme’s presence in the nucleus; however, under oxidative stress, through an unknown 
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mechanism, the enzyme can be translocated to the plasma membrane [70]. Other 

researchers described the NQO1 as a cytosolic protein but the presence in the nucleus, 

mitochondria and plasma membrane has been confirmed [17]. 

 

Fig 4.1: Structure of the human NQO1 enzyme. The two different lobes are represented by the 
two different colours. The FAD binding domain is at the interface of the dimers. Figure taken 
from reference [71]. 
 

 This homo-dimeric flavoprotein has its catalytic site at the dimer interface. Each 

monomer subunit consists of 273 amino acid residues and its own prosthetic group, FAD 

[72]. Each monomer contains two domains; a catalytic N-terminus domain which is 

larger and comprised of 1-220 amino acid residues, and the small C-terminus domain 

from residues 221-273 (Fig 4.1) [72].  The one side of the catalytic pocket is formed by 

FAD-binding domain while other side of the wall is formed by the residues of the larger 

domain [68, 73]. The amino acid residues Tyr155 and His161, (in the human sequence) 

are present in the active site (Fig 4.2). The NQO1 enzyme is capable of metabolizing a 

wide range of substrates. Due to this ability of the enzyme, the binding site of substrate 

can accommodate a large variety of ring containing compounds and the enzyme shows an 

induced-fit model [72].  
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 NQO1 catalyzes the two-electron transfer from NAD(P)H to FAD and  then from 

FADH2 to a quinone (for example, CoQ) by a ping-pong mechanism [72]. The 

nicotinamide ring of NAD(P)H stacks parallel to the FAD isoalloxazine ring and 

facilitates the efficient transfer of electrons. The donor, NADH, in the form of NAD+ is 

released after transferring electrons. Then the quinone binds to the enzyme, and it 

becomes reduced and released. Dicoumarol is a potent competitive inhibitor of NQO1 

enzyme. Dicoumarol interacts with FAD, and prevents NAD(P)H binding [71]. The 

schematic of the catalytic mechanism is shown in Fig 4.2. In the enzyme, the NADPH 

binding site and quinone binding site are overlapping. 

 

Fig 4.2: A proposed catalytic mechanism of human NQO1. NADH donates its electron 
to the FAD prosthetic group. The electrons from FADH2 are transferred to the substrate CoQ. In 
the active site, Tyr and His acts as a proton/acceptor.  Figure from reference [17]. 
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 One of the major functions of NQO1 in the plasma membrane is cellular defence, 

by reducing the pool of CoQ. CoQ is also an endogenous physiological substrate of 

NQO1 and  the other endogenous substrates are unknown [74]. NQO1 reduces the CoQ 

by a two electron reduction, thus avoiding the formation of the semiquinone and 

subsequently, O2
-and H2O2 formation [75]. In addition, NQO1 also demonstrates 

superoxide scavenging activity [76]. Another important function of the enzyme in the 

plasma membrane as well as in other localizations is the detoxification of xenobiotics 

[68, 77]. Moreover, enzyme is involved in stabilizing the p53 gene product [78]. The 

functions of NQO1 are summarized in Fig 4.3. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 4.3: Schematic of functions of NQO 1 enzyme. Important functions of 
NQO1 enzymes are modulation of electron donor ratios, protection from proteaosomal 
attack and reduction of CoQ. Some functions are tissue specific.  
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4.2 Materials and Methods  

 The reagents and materials used for the experimentation with their supplier and 

product number are listed below: 

 Myelin from mouse brains (see section 2.5.1), Tris (Bio-Basic 77-86-1), 

menadione (2- methyl-1, 4-naphthoquinone; Sigma M5625), DCPIP (2, 4-dichlorophenol 

indophenol; Sigma 33125), dicoumarol (3, 3’-methylene-bis (4-hydroxycoumarin); 

Sigma M-1390), DPI (diphenyleneiodonium chloride; Santa Cruz sc-202584), pHMB 

(Sigma 55540), dimethyl sulphoxide (DMSO) (Fisher Scientific Co. BPB231), 

cytochrome c (Sigma 7752), rotenone (Sigma R8875), KCN (Sigma 60178), 

chloramphenicol (Sigma C0378), rabbit anti-NQO1 antibody; Pierce), mouse anti-rabbit 

IgG-HRP secondary antibody (Sigma A0545), super-signal West Femto reagent (Thermo 

Scientific). 

4.2.1 Enzyme Activity Assays 
 

 The NQO1 activity was measured by three related activities; menadione-mediated 

cytochrome c reductase activity, PMS-mediated WST-1 reductase and DCPIP reductase 

activity. In all of these activities, NADH or NADPH is utilized as an electron donor. The 

general procedure of enzyme assay was the same as described in section 2.3. All three 

procedures for measuring enzyme activities are described below: 

(A) Menadione-Mediated Cytochrome c Reductase Activity 
 

 Myelin protein (20-40µg) was assayed with 10µM menadione, 70µM cytochrome 

c and 250µM NADH, in final concentration. The buffer was 50mM Tris/HCl, pH 7.6 

with 0.1% TX-100. Total volume in the well was 200µl and adjusted with the milli Q 



 

54 
 

water. The various concentrations of inhibitors dicoumarol (0, 50, 100, 500µM) and DPI 

(0, 10, 50, 100µM) were used. Measurements were taken at 550nm, at 37°C and 

monitored for 5 minutes at the kinetic interval of 20 seconds. The extinction coefficient 

of reduced cytochrome c at 550nm was taken as 29.5mM-1cm-1 [79]. 

(B) PMS-Mediated WST-1 Reductase Activity 
 

 Water soluble tetrazolium generation 1 (WST-1) is another diagnostic tool used to 

measure the NQO1 activity [80]. An intermediate electron carrier, PMS, is also used in 

conjunction with WST-1. The activity was measured as reduction of WST-1 increase in 

absorbance at 37°C for 15 minutes at an interval of 30 seconds. The extinction coefficient 

of the reduced formazan at 438nm was taken as 37 mM-1cm-1 [80].  

 The assay mixture consists of 100mM potassium phosphate, 2mM EGTA buffer 

(pH 7.0), 200µM of NADH, 20µM PMS and 10µg myelin. To initiate the reaction 

300µM of WST-1 was added to the mixture. To determine the specificity of the activity, 

various concentrations of dicoumarol (0, 10, 20, 50 and 100µM) were used.  

(C) DCPIP Reductase Activity 
 

 The same method as described previously was used to measure the DCPIP 

reductase activity [81]. The myelin (20-40µg) was assayed with increasing concentrations 

(0-600µM) of DCPIP. NQO1 activity was measured with or without the addition of FAD. 

To measure the activity with FAD, 5µM of FAD was used. The following inhibitors were 

tested: dicoumarol (0, 10, 25, 50, 75, 100, 250, 500µM) prepared in DMSO or in 0.1N 

NaOH, DPI (0, 10, 100, 500µM) 30mM stock solution in DMSO, pHMB (0, 1, 5, 10, 50, 

100µM) 20mM stock solution in water, KCN (0, 3, 5, 10, 50µM) 10mM solution in 
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water, chloramphenicol (0, 50, 100, 200, 400, 500µM) 10mM in DMSO, rotenone (0, 20, 

50, 100, 500µM) 10mM solution in DMSO and DMSO (w/v) (0, 2.5, 5, 7.5, 10, 17.5%) 

were used. The structures of these inhibitors are drawn in Table 4.1. The buffer contained 

25mM Tris/HCl, pH 7.4, 0.01% (w/v) Tween-20 and 0.07% (w/v) BSA in final 

concentration. To initiate the reaction, 200µM of NADH was added. Activity was 

measured as a decrease in absorbance at 600nm, at 37°C and monitored for 5 minutes at 

20-40 seconds interval.  The extinction coefficient of oxidized form of DCPIP at 600nm 

was taken as 21.0 mM-1 cm-1 [81].  

4.2.2 Measurement of Reductase Activity in Detergent  Fractions  
 

 For detergent fractionation, myelin was treated as the procedure described in 

section 2.5.1(A).  The menadione-mediated cytochrome c reductase assay was conducted 

with the 1.5% (w/v) CHAPS supernatant (S1) and pellet (P1) and the 2% (w/v) TX-100 

supernatant (S2) and pellet (P2). The assay mixture contained 50mM Tris/HCl buffer (pH 

7.6 with 0.5% TX-100), 50µl of each detergent fraction, 100µM of cytochrome c and 

250µM of NADH.  For the positive control, 20µg of myelin was used instead of 

detergent fractions. The total volume in the well was made up to 200µl by addition of 

water. The enzyme activity in myelin was compared with the activities in different 

detergent fractions (S1, S2, P1 and P2).  

4.2.3 Western Blot Analysis and Immunohistology 
 

 For the SDS-PAGE separation, a 14% resolving gel with 4% stacking gel was 

prepared for the investigation of NQO1 in the brain homogenate and detergent fraction 



 

56 
 

samples (S1, S2, P1 and P2). The procedure of SDS-PAGE and Western blotting was 

followed as outlined in section 2.5.1(C). Gels were loaded with final volume of 20 µl of 

TABLE 4.1: Chemical structures of used inhibitors. Inhibitors analogue to NAD(P)H 
are shown with their chemical structure. 

INHIBITOR CHEMICAL STRUCTURE 

Dicoumarol 

 

Diphenyleneiodonium 

 

Chloramphenicol 

 

Rotenone 

 

Dimethyl sulphoxide 

 
 

each detergent fraction, along with the 5X sample loading buffer and 10µl of 1:10 

dilution brain homogenate, 20µl of 1:50 dilution brain homogenate. Gels were loaded 

http://www.sigmaaldrich.com/catalog/product/sigma/d2926?lang=en&region=
http://www.sigmaaldrich.com/catalog/product/sigma/c0378?lang=en&region=
http://www.sigmaaldrich.com/catalog/product/sigma/d2650?lang=en&region=
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with 5µl of 1:10 dilution of Dual Colour Precision Plus protein standard (Bio-Rad). For 

the Western blot, the membrane was incubated with 3mL of primary rabbit anti-NQO1 

antibody for 5hrs. The dilution of antibody was 1:1000. After washing, the membrane 

was incubated with a secondary antibody, anti-rabbit IgG-HRP, for 30 minutes at a 

1:80,000 dilution. After washing three times with 1XTTBS, the membrane was incubated 

with 3mL of super signal west femto solution for 5 minutes and image was taken 

immediately.  

 To confirm the NQO1 presence in the myelin membrane, immunohistochemistry 

was also performed. To achieve this, myelin was diluted to a 1:1000 ratio. The diluted of 

myelin (10µl)  is incubated with 40µl of NQO1 primary antibody (Pierce PA5-19624) in 

a 1:200 dilution and 40µl of primary antibody of myelin basic protein (MBP) (Millipore 

LV 1583525) in a 1:200 dilution for 1 hour at room temperature [19]. Subsequently, 

myelin is incubated with secondary anti-rabbit IgG antibody Dylight 549 (Thermo 

Scientific 35557) and anti-rat IgG Dylight 488 (Millipore MAB386). The dilution of each 

secondary antibody was 1:500. The image was taken with the Nikon fluorescent 

microscope with 100x oil immersion lens.  

4.2.4 Kinetic and Statistical Analysis 
 

 For kinetic analysis, online curve and surface fitting resources from zunzun.com 

(least-square model) were used to estimate the Vmax and KM parameters of NQO1. 

Statistical analysis was performed using Microsoft Excel 2010.  The t-test was used for 

all analysis including myelin dose response, substrate dose response and on inhibition 

test. Statistical significance was established at p≤0.05 for a 95% confidence level.  
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4.3 Results and Discussion 
 

 NQO1 is present in a variety of cells and tissues and its localization in the cell 

depends on the cell's function. Jaiswal et al. described the NQO1 activity in almost all 

cell types [82]. Although NQO1 is mainly a cytosolic protein, but it is also present in 

other cell fractions. In humans, NQO1 is present abundantly in epithelial and endothelial 

cells but overexpressed in lung, colon and breast cancer [83].  Hyun et al. found the 

NQO1 in plasma membrane of neuroblastoma cells [84]. NQO1 has been detected in 

astrocytes and myelin-laden macrophages within MS lesions. In addition, NQO1 was 

found in a subset of OLs at the borders of active plaques [85]. The NQO2 and mNQO are 

the two major isoforms of NQO. NQO2 is 43 amino acids shorter than NQO1. The 

nucleotide sequence from exon 3-6 is highly conserved between NQO1 and NQO2 [87]. 

Contrary to NQO1, which is expressed in almost all cell types, NQO2 is expressed in 

heart, lungs, brain, liver and skeletal muscles. NQO2 can use DCPIP as a substrate but 

uses NADH as an electron donor poorly [87]. The preferential electron donor of NQO2 is 

dihydronicotinamide riboside (NRH) and the enzyme functions mainly as a 

nitroreductase [87]. Microsomal NQO (mNQO), another isoform of NQO, which is 

highly insensitive to dicoumarol is identified in liver microsomes and its molecular 

weight found to be ~18kDa [88].  

4.3.1 Immuno Detection of NQO1 in the Myelin Membrane 
  

 To confirm the presence of NQO1 in the myelin membrane Western blot and 

immunohistochemistry were performed. Fig 4.4 A & B represents the results of Western 

blot and immunoflourescent image, respectively. The Western blot and 
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immunohistochemistry confirmed that the enzyme is present in the myelin membrane. 

Furthermore, Western blot revealed the truncated form of the NQO1 in the myelin 

membrane as demonstrated by the band at ~13kDa (see Fig 4.4A).  

 

 

Fig 4.4: Immuno detection of NQO1. Panel (A): NQO 1 Western blot: Blot was made with 14 
% resolving and 4 % stacking gel. Blot shows brain homogenate and detergent fractions (S1, S2, 
P1, P2) samples. Image was taken with 4000 VersaDoc. Panel (B): Immunoflourescent image 
of NQO1: Nikon Fluorescent microscope (100X oil immersion lens) is used to detect NQO1. 
Green colour shows the NQO1 while the blue colour shows the myelin basic protein (MBP). 

A 

B 
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 In addition, the Western blot confirmed that the enzyme is present in the S1 

detergent fraction at ~13kDa as well as at ~27kDa (a vary faint band can be seen). In the 

brain homogenate, a very prominent band at ~13kDa can be seen along with two other, 

relatively light, bands at 27 and 30kDa, respectively. The NQO1 full length is represented  

by the band at 30kDa. Immunofluorescent image also confirmed the presence of NQO1 

in the myelin membrane. Moreover, the image reveals that NQO1 and MBP are not co-

localized (Fig 4.4 B).   

 Gasdaska et al. discovered a novel alternatively splice form of NQO1 mRNA (Fig 

4.5) in normal and tumour colon cells [89]. The new isoform lacks the exon 4 

(corresponding to mRNA residues 102-139), which corresponds to the quinone binding 

domain. This non-functional form is 114 base pairs smaller than NQO1 full length (20 

kb) form, and is subjected to the further degradation. In rat NQO1, different residues 

regulate different functions. Likewise, Tyr128 is significant for dicoumarol binding and 

Lys76, Phe116, Glu117 and Asp163 for NADPH binding [89].  The reason for the non-

functional form could be the absence of these above mentioned amino acid residues.  

 

 
Fig 4.5: Structure of NQO1 mRNA and position of spliced exon 4. Fig taken from 
reference [89].  
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 Jaiswal et al. discovered the two isoforms of NQO, NQO1 and NQO2, in rat liver 

cells in addition to microsomal NQO (mNQO). Moreover, they found that rat mNQO has 

a molecular weight of ~18kDa. In addition, mNQO was found along with the full length, 

~29kDa, cytosolic rat NQO1. Interestingly, mNQO showed the approximately three to 

four times more affinity for electron donor NADH over NADPH. The estimated 

molecular weight of the truncated form that we found in mouse myelin membranes was 

~13kDa, whereas the molecular weight of rat mNQO is ~18kDa.  

 In Fig 4.4A, the brain homogenate (1:10 dilution) and S1 fraction have a band at 

~27-28kDa which may represents NQO1, or NQO2. Mouse NQO1 and NQO2 have a 

49% sequence homology and the antibody used in the experiment was polyclonal [90]. 

Thus, there is a possibility that NQO1 antibody binds to the NQO2 which has a molecular 

weight of ~26kDa. As mentioned earlier, NQO1 has two domains, one is the compact N-

terminus (1-220 amino acid residues), and the other C-terminus (221-273) is less 

compact. Previous studies showed that the NQO1 carboxy-terminus is cleaved off due to 

the proteolytic attack in the absence of NAD(P)H or FAD [90]. Another possibility is that 

~ 27kDa band is generated due to the degradation of NQO1 in absence of electron donor 

or prosthetic group.  

4.3.2 NQO1 Associated Activities in the Myelin Membrane 
  

 In this research study, NQO1 activity was measured through three associated 

activities; menadione-mediated cytochrome c reductase activity, PMS-mediated WST-1 

reductase activity and lastly, DCPIP reductase activity. The potent inhibitor, dicoumarol, 

should affect all three activities. 
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4.3.2 (A):  Menadione -Mediated Cytochrome c Reductase Activity 
 

 Quinones belong to the Vitamin k3 class, and are used as intermediate electron 

carriers for various reactions. Menadione-mediated cytochrome c reduction by NQO1 is 

monitored as increase in absorbance at 550nm [79]. 

 The NQO1 cannot reduce the cytochrome c directly, thus a mediator, menadione, 

is required. The electron flow from NADH via menadione will reduce the cytochrome c 

(oxidized form). As a consequence, the concentration of cytochrome c (reduced form) 

will gradually increase with correspondence to its absorbance. Thus, NQO1 will catalyze 

the two electron reduction of menadione to menadiol with NADH as the electron donor 

(expression 4.1). Then non-enzymatically, menadiol will reduce cytochrome c 

(expression 4.2).  

                  

  NADH + MD (menadione)    NAD++MDH2     (Menadiol) (4.1) 

          MDH2  + 2cyt c (Fe3+)                      MD +  2cyto c (Fe2+)                      (4.2) 

 A typical rate of menadione-mediated cytochrome c reduction with myelin is 

illustrated in Fig 4.6. The initial reaction rate was determined by plotting the absorbance 

against time for sample and negative control(blanks). All reaction rates were corrected 

for the non-enzymatic reduction of cytochrome c and menadione. 

NQO1 
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Enzyme Assay with Myelin Detergent Fractions  
  

 To determine the enzyme localization in the myelin membrane and its 

microdomain, a strategy was developed to compare the menadione-mediated cytochrome 

c reductase activity of enzyme in different myelin detergent fractions. To obtain myelin 

fractions, 500µg of myelin was treated as described in section 2.5.1(A). An enzyme 

activity assay as described above was performed with detergent fractions of CHAPS 

extract S1 and P1 (the supernatant and pellet, respectively) and TX-100 extract S2 and 

P2, (supernatant and pellet). 

 By comparing the activities of myelin detergent fractions (S1, S2, P1 and P2) on 

equi-volume basis with the activity of whole myelin, it can be concluded that most of the 

reductase activity is distributed into the S1 fraction (Fig 4.7). The activity in S1 fraction 

 

 
 

Fig 4.6: Typical reaction rate of menadione-mediated cytochrome c 
reduction by myelin. The sample contains myelin whereas, the negative 
control contains no myelin and represents the non-enzymatic reduction.    
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Fig 4.7: Comparison of myelin detergent fractions for menadione-mediated cytochrome c 
reductase activity. The reaction rate of each fraction (50µl) and myelin (20µg) was assayed in 
the presence of 70µM cytochrome c, 10µM menadione and 250µM of NADH at 37°C over 5 
minutes.  All results were produced in triplicate and corrected for non-enzymatic activity. The 
error bars are ±SE.  

 

 

is higher than control myelin sample may be due to the enzyme semi-purification. 

Furthermore, Western blot analysis result (Fig 4.4A) also confirmed the enzyme presence 

in S1 fraction. NQO1 and the reductase activity are either in the membrane region, 

completely solubilized by CHAPS, or in detergent resistant membranes representing lipid 

rafts. The activities in other fractions (S2, P1, and P2) might be due to the presence of 

other oxidoreductases.  

 Further characterization of the menadione-mediated cytochrome c reductase 

activity was completed with whole myelin.  Fig 4.8 illustrates the result of enzyme dose- 

response analysis. Fig 4.8 depicts that rate of absorbance per unit time is proportional to 

the amount of protein added. In short, there is a direct relationship in reduced cyto c 
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Fig. 4.8: Cytochrome c reduction via menadione activity as a function of amount of myelin. 
Assay contained 50mM buffer with 20, 30, or 40µg of myelin protein and 70µM cyto c, 10µM 
menadione and 200µM NADH. Measurement was taken spectrophotometrically at 550nm at 
37°C. Results are produced in duplicate and corrected for background. The error bars are ±SE 
(standard error).  
 

concentration and enzyme activity. Furthermore, it can be assumed that cytochrome c 

reduced form is produced by the activity of menadione-mediated cytochrome c reductase 

activity, which may be due NQO1 presence in myelin membrane. 

 Several inhibitors, such as rotenone, DPI and capasicin, are typically used to 

inhibit the activities of oxidoreductases and flavoproteins. Dicoumarol, a competitive 

inhibitor, is widely used to inhibit the activity of NQO1 [90]. Dicoumarol inhibits the 

activity of Vitamin K dependent reductases and has an anti-coagulant property by 

decreasing the prothrombin level in Vitamin-K dependent proteins [91]. NQO1 is very 

sensitive to dicoumarol and typically, 10nM to 10µM is required to inhibit the activity in 

different species including humans [91].  
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Fig 4.9: Attempted inhibition of menadione-mediated cytochrome c reductase 
activity by inhibitors: (A): Dose response of dicoumarol: Asaay mixture consists of 50mM 
Tris buffer, 20µg myelin in (1:3) dilution, 10µM menadione, 70µM cytochrome c, 0, 50, 100, 
500µM dicoumarol and finally 200µM NADH. Panel (B):  Dose response of DPI: 50mM Tris 
buffer, 20µg myelin, 10µM menadione and 70µM cytochrome c, 200µM of NADH and 0, 10, 50, 
100µM DPI. The statistical analysis showed the p values as *p= 0.028 and **p= 0.051.  For both 
panels, (A) & (B), Measurement was taken spectrophotometrically at 550nm at 37°C. Electron 
transfer was monitored for 5 minutes at the interval of 20 sec.  Results were produced in triplicate 
and corrected for non- enzymatic activity. The error bars are ± SE (standard error). 
 

 Result of dicoumarol-dependent inhibition is shown in the Fig 4. 9 (A). It is 

evident from the results that 35% activity of cytochrome c reductase was inhibited  with 

50µM dicoumarol but the cytochrome c reductase activity was  increased at higher 

concentration (500µM) of dicoumarol (Fig 4.9A). The increase in activity might be due to 

dicoumarol in the buffer. Only a modest degree of inhibition (35%) was observed at 

50µM dicoumarol. Typically, NQO1 is fully inhibited with nanomolar concentrations of 

dicoumarol. It may be concluded that oxidoreductase activity is not only due to the NQO1 

but other enzymatic activities are also contributing.   

 DPI is another inhibitor of flavoproteins such as NADPH oxidases. It is also a 

potent inhibitor of nitric oxide synthase (NOS) in macrophages and endothelial cells. 

Typically, 20-25µM of DPI is required to inhibit 80% of NOS activity in endothelial 

B A 
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cells. The results of DPI-dependent inhibition of menadione-mediated cytochrome c 

reductase in myelin is shown in Fig 4.9(B). The activity is partially inhibited (~20%), by 

50µM DPI. Besides NQO1, there are several other flavoproteins that are present in the 

myelin membrane such as CB5R.  As mentioned earlier, a recent study shows that CB5R 

and neuronal NOS (nNOS) are associated with the caveolin protein in microdomains [92, 

93]. If various flavoproteins are closely associated the inhibition of one may affect the 

activity of another. 

4.3.2 (B):  PMS-Mediated WST-1 Reductase Activity  
 

 As menadione reductase activity is not inhibited by dicoumarol, another substrate, 

water soluble tetrazolium generation 1 (WST-1) was used along with the electron carrier 

1-methoxy-5-methyl phenazinium methyl sulfate (PMS). Water soluble tetrazolium 

generation 1 (WST-1) reduction is another tool that was used to investigate and measure 

the NQO1 activity in myelin membrane [80]. The WST-1 carries multiple sulfonate 

groups that confer the overall negative charge to WST-1 and prevent its transport across 

the membrane [80, 94]. The reduced WST-1 (formazan) shows maximum absorption at 

438nm. The NADH-dependent reduction of PMS is catalyzed by NQO1 then the reduced 

PMS is recycled with the tetrazolium to the formazan (see Fig 4.10).  

 The effect of dicoumarol on PMS-mediated WST-1 reduction was determined in 

the myelin (see Fig 4.11). No inhibition was observed for dicoumarol concentrations up 

to the 100µM, thus again indicating NQO1 may not be the enzyme responsible for this 

catalysis.  
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Fig 4.10: Modified mechanism of reduction of WST-1 by intermediate electron carrier 
PMS. The intermediate electron carrier itself oxidises. Modified from reference [94]. 

 

 
Fig 4.11: Attempted inhibition of WST-1 reductase  activity by dicoumarol. Myelin 
(10µg)  was assayed with 300µM WST and various concentrations (0, 10, 20, 50, 100µM) of 
dicoumarol. NADH (250µM) was used as an electron donor. Results were produced in 
triplicate and corrected for non-enzymatic activity. The temperature was kept at 37°C and 
measurements were taken at 438nm. 

4.3.2 (C):  DCPIP Reductase Activity 
 

 The activities of cytochrome c reduction via menadione and WST-1 reductase 

were not inhibited by dicoumarol. To further investigate the putative NQO1 activity, the 

substrate was changed to DCPIP. Although,  DCPIP is a substrate for various enzymes, it 

NQO1 
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is an excellent substrate with NAD(P)H for measuring NQO1 activity [95]. The standard 

reduction potential is as follows: 

 DCPIP (ox) + 2e-                                 DCPIP (red)                    220mV 

and   

     Ubiquinone + 2H + + 2e-                              H2O + ubiquinol               45mV 

Due to the greater standard potential, E´°, DCPIP is a better electron acceptor than 

ubiquinone or menadione [63].  

 Lee et al. determined the NQO1 activity as the NADH-dependent reduction of 

DCPIP [81]. As DCPIP is reduced by enzyme, the concentration of oxidized form 

increased at 600nm [81]. The enzyme catalyzed reaction is shown for DCPIP reduction 

with NADH as the hydride donor.  

 

 Oxidized form of DCPIP                                                            Reduced form of DCPIP 

 

 

 The transfer of electrons or reduction of substrate from electron donor (NADH) to 

terminal acceptor (DCPIP or CoQ) is catalyzed by two electron transfers in a two step 

reaction; first from NAD(P)H to FAD and then to the substrate (DCPIP or COQ). A 

typical rate of reaction of DCPIP reductase is illustrated in Fig 4.13. The decrease in 

absorbance over time  in the sample can be seen due to the reduction of DCPIP.  

 

Fig 4.12: Reduction of DCPIP by NQO1. The DCPIP oxidized form is reduced by 
NQO1 via hydride transfer.  

NQO1 

   H+ +  2e- 

 NADH NAD+ 
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Fig 4.13: Typical reaction rate of NADH-dependent reduction of DCPIP in the myelin. The 
sample contains myelin, whereas, the negative control contains no myelin and represents the non-
enzymatic reduction.  
 
 Further characterization of the DCPIP reductase activity was completed with the 

whole myelin. The activity of enzyme was measured in three regimes; dose response of 

enzyme, substrate dose response, and inhibitor(s) dose response. For the steady-state 

kinetics, the activity was determined with various concentrations of substrate and enzyme 

(see Fig 4.14 and 4.15).  The result of myelin-dose response showed that there is a direct 

relation between absorbance and amount of protein, thus protein is present in active state.  

 

 
 
Fig. 4.14: DCPIP reductase activity as a function of amount of myelin. DCPIP (50µM) was assayed 
with various amounts of myelin (10, 20, 30, 40µg). To initiate the reaction, 250µM NADH was added. 
Measurement was taken spectrophotometrically at 600nm at 37°C. Results are produced in duplicate 
and corrected for background. The error bars are ±SE (standard error).  



 

71 
 

 
 

 

 

Fig 4.15: NAD(P)H: DCPIP reductase activity as a function of DCPIP substrate: Panel (A): 
Substrate dependent dose response curve generated on the basis of various substrate 
concentrations 20, 50, 100, 200, 300, 400 and 500µM with 10µg protein, 25mM Tris buffer and 
2.5mM NADH. Electron transfer was monitored at 37°C at 600nm for 5 minutes at the interval of 
20 seconds. All results are produced in duplicate and corrected for background. The error bars are 
±SE. t-test results indicate an statistical significance of more than 95% (**p=0.039) confidence in 
decrease in enzyme activity between 400µM and 500µM substrate concentration.  Panel B): Data 
fitted with kinetic software (zunzun.com) to determine apparent KMand Vmax. . The curve was 
generated by fitting the 2D Hills equation. Solid line represents the data while dashed line 
represents the 95% confidence of interval. 
 

A 

B 
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  The curve of the DCPIP substrate dependent enzyme activity is sigmoidal. A 

sigmoidal curve suggests that the enzyme is allosteric in nature. The substrate inhibition 

can be seen at the highest concentration of DCPIP. This finding is in strong agreement 

with a study by Gustafson et al. which showed the inhibition of purified NQO1 activity 

with DCPIP substrate at 300µM [96]. The substrate-based inhibition is considered as 

physiological phenomenon not a pathological phenomenon. This phenomenon is 

demonstrated by almost 20% of the enzymes, out of which, 90% were allosteric enzymes 

[97]. Allosteric enzymes have two binding sites, one catalytic binding site, and another  

non-catalytic or allosteric binding site. In the non-catalytic site the second substrate binds 

and acts as an allostetric inhibitor by changing the conformation of the enzyme. As a 

consequence of this conformational change the enzyme can no longer bind to the substrate 

[97]. The mechanism is shown in Fig 4.16.  

 

 

 

 

Fig 4.16 Mechanism of substrate-based inhibition of allosteric enzyme. Two molecules 
of substrate bind to the enzyme at a time at high concentration and inhibits enzyme activity. K1, 
k2, KN and k3 are the dissociation constants.  
 

  Furthermore, the DCPIP reductase activity is due to the enzyme that can use more 

than one substrate and have ping-pong mechanism. The enzyme that is using the DCPIP 

substrate does not follow the Michaelis Menten model. Using kinetic software, the kinetic 

parameters, Vmax and K0.5 were determined as 7.83 x10-5 µM/min and 251 µM, 

respectively.  Cytosolic NQO1 is NADPH dependent protein but it can use both the 
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electron donors; NADH and NADPH, with same Vmax value, but the KM for NADH is 

twice as that of NADPH [69, 77]. The dose response of electron donor NADH/ NADPH 

was determined in Fig 4.17. The estimated values of Vmax and KM for NADPH were 

determined as 6.86 x 10-5 µM/ min and 210 µM, respectively. In addition, the Vmax and KM 

values for NADH were estimated 6.54 x 10-5µM/ min and 54.7µM, respectively. The KM 

value of NADPH is almost more than thrice as that of NADH, which shows that enzyme 

that is using DCPIP has NADH preference, contrary to NQO1, which has NADPH 

preference in several cells types.  

 

 

 
 

Fig 4.17: NADH: DCPIP reductase activity as a function of electron donor concentration. 
Both assays used the 25mM Tris buffer, 10µg myelin, 100µM DCPIP, various concentrations 
of NADH (0, 100, 200, 400, 500 and 600µM) and various concentrations of NADPH (0, 100, 
200, 400, 500 and 600 µM). Measurement was taken at 600nm at 37°C. Results were produced 
in triplicate and corrected for non-enzymatic activity. The error bars are ±SE. t-test results 
indicate a statistical significance of more than 95%, with *p = 0.172 for NADH and **p = 
0.312 for NADPH, respectively, between 500µM and 600µM electron donor concentration.  
 
 
 

 

 Jaiswal et al. illustrated that mNQO utilizes NADH as an electron donor with 

three times greater affinity than NADPH [88]. In our findings, KM value of NADPH is 
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more than three times greater than the NADH (Fig 4.17) and thus, the enzyme shows the 

same greater affinity for NADH as with the mNQO. On the basis of KM value, 

insensitivity to dicoumarol and molecular size, it can be speculated that DCPIP reductase 

activity might be due to mNQO but not due to NQO1.  

 Specifically, the enzyme assays are validated when a potent inhibitor abolishes 

the activity. The myelin samples were exposed to progressive increasing concentration of 

dicoumarol. To determine the inhibitory effect of dicoumarol, enzymes in the myelin 

were subjected to increasing concentration of dicoumarol (dissolved in DMSO or in 0.1N 

NaOH). Results are shown in Fig 4.18 (A & B), respectively. As FAD is an important 

component of electron transfer system in NQO1. To inhibit the activity of DCPIP, 

enzyme assay was supplemented with FAD and dicoumarol (Fig 4.18C). Although the 

FAD group is tightly associated with flavoenzymes, the supplementation was completed 

in case some loss occurred with the isolation or treatment of the myelin.  

 A myelin sample without inhibitor was used as a control and considered as having 

100% oxidoreductase activity (in this case, NADH: DCPIP reductase). Dicoumarol in 

both solvents, DMSO and NaOH, did not show inhibitory effect on DCPIP reductase 

activity (Fig 4.18 A & B). Moreover, addition of FAD with dicoumarol showed that 

DCPIP reductase activity is also insensitive to its addition.  

 All NQO1 enzymes catalyze the two electron reduction reactions. Dicoumarol 

binds to the each catalytic site and the interaction is facilitated by FAD. Like the NADH, 

the plane of dicoumarol stacks parallel to the isoalloxazine ring of FAD at a distance of 

4Å [71]. The coumarin ring of dicoumarol makes a hydrogen bond with His161. The 

schematic of NQO1 interaction is shown in Fig 4.19 [71]. 
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Fig 4.18: Attempted inhibition of DCPIP reductase activity by dicoumarol. The reaction 
rate of 10µg myelin was assayed with 50mM Tris/HCl buffer, in the presence of 50µM DCPIP 
substrate, 200µM NADH and various concentrations of inhibitors. Activity was measured at 
600nm and at 37°C. Results were corrected for non-enzymatic activity and produced in 
duplicate Panel (A) Reductase activitywith dicoumarol in DMSO with 0, 10, 25, 50, 75, 100, 
250, 500µM. Panel (B) dicoumarol in 0.1N NaOH with 0, 10, 20, 30, 50µM. Panel (C) 5µM 
FAD with 0, 20, 50µM dicoumarol. The error bars are ±SE.  

 

C 

A 
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Fig 4.19: Schematic of dicoumarol binding with human NQO1 active site. Figure taken 
from reference [71]. 

 

 Using dicoumarol as an inhibitor has two disadvantages: first is the lack of 

specificity and second is its competitive mechanism of inhibition [98]. The concentration 

of dicoumarol required to inhibit the DT-diaphorase activity varies with quinone acceptor, 

which may lead to false conclusions of either involvement or estimation of NQO1 [99]. 

The mechanism-based inhibitor, ES936, is a better inhibitor of NQO1 rather than 

dicoumarol. It is non-competitive inhibitor and only 100nM can inhibits  more than 95% 

NQO1 activity in 30 minutes [98]. 
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 As DCPIP reductase activity is not inhibited by dicoumarol, it can be concluded 

that it is not the NQO1 that is catalyzing the reaction. Then what enzyme(s) are 

responsible for the DCPIP reductase activity? The DCPIP reductase activity was 

examined through various oxidoreductase inhibitors due to utilization of DCPIP substrate 

by several other enzymes. The inhibitory effects of DPI, pHMB, choloramphenicol, 

rotenone, KCN and DMSO were determined (Fig 4.20 A-F). 

 High concentrations of DPI (500µM) did not inhibit the activity of DCPIP 

reductase in myelin (Fig 4.20 A). Studies have shown that DPI does not inhibit the 

activities of various quinone reductases, including NQO1 and some other flavoproteins 

[100]. Thus, it is not surprising if DPI does not inhibit the DCPIP reductase activity.  

Another explanation could be that the enzyme that is using the DCPIP is not a 

flavoenzyme. DCPIP reductase activity was 50% inhibited by pHMB at 50µM (see Fig 

4.20 B). Since pHMB is not a known inhibitor of NQO1-associated DCPIP reductase 

activity it can be concluded that activity is associated with an enzymes, carrying a 

cysteine residues or sulfhydryl group.   

 In order to preclude any associated mitochondrial activity, an inhibitor KCN, was 

used. Potassium cyanide is a potent inhibitor of cellular respiration, and ultimately blocks 

the oxidative phosphorylation. The DCPIP reductase activity showed the 50% inhibition 

with 10µM KCN (Fig 4.20 C). Although is an potent inhibitor of cytochrome c oxidase 

(complex IV of the mitochondrial electron transport chain), KCN is also a general 

inhibitor of several heme  proteins, metallo enzymes, malic enzyme, creatine 

phosphokinase and Cu, Zn superoxide dismutase [101, 102]. There is a possibility that 
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activity of one of those enzymes is inhibited by KCN and can utilize DCPIP as a 

substrate.  

 Chloramphenicol did not inhibit the DCPIP reductase activity (Fig 4.20D). 

Chloramphenicol prevents protein chain elongation by inhibiting the peptidyl 

transferase activity [103]. It specifically binds to the 50S ribosomal subunit, preventing 

peptide bond formation. Usually it is used as an antibiotic and 10-20µM of 

chloramphenicol inhibits 85% activity of the peptidyl transferase [103]. The result 

confirmed that DCPIP is not utilized by an enzyme involved in protein synthesis.  

 As well, DCPIP reductase activity was not inhibited by rotenone (Fig 4.20 E). 

Rotenone is a specific inhibitor of mitochondrial complex I. It inhibits the electron 

transfer from iron-sulfur center to ubiquinone and eventually inhibits the ATP synthesis. 

Almost 10pM of rotenone inhibits 50% of the complex I activity [104], unlike our 

finding, where 500µM of rotenone did not inhibit the activity. It can be concluded that 

the activity what we find is distinct from mitochondrial complex I activity. 

 Lastly, about 80% of the DCPIP reductase activity is inhibited by 17.5% (v/v) 

DMSO (Fig 4.20 F). DMSO is a polar organic solvent and widely used in biology as a 

differentiation inducer, and it also apprehends the growth of cells at G1 and M phase 

[105]. DMSO enhances the permeability of the membranes by forming a pore, loosening 

the structure or by collapsing the lipid bilayer in cholesterol-rich domain [106]. 

Moreover, in DMSO-dependent assays, its volume is typically kept as low as 0.1-5 % 

(v/v) [106] and in our experiment, we use 2.5-17% DMSO. Most likely the inhibition by 

DMSO is due to protein denaturation. 

 

http://en.wikipedia.org/wiki/Protein_synthesis
http://en.wikipedia.org/wiki/Peptidyl_transferase
http://en.wikipedia.org/wiki/Peptidyl_transferase
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Fig 4.20: Attempted inhibition of DCPIP reductase activity with different inhibitors:  The 
reaction rate of 10µg myelin was assayed with 50mM Tris/HCl buffer, in the presence of 50µM 
DCPIP substrate, 200µM NADH and various concentrations of inhibitors. Panel (A): With DPI 
at 0, 10, 100, 500µM.  Panel (B): with 0, 1, 5, 10, 50, 100µM of pHMB. Panel (C): With KCN 
at 0, 3, 5, 10, 50µM. Panel (D): With chloramphenicol at 0, 50, 100, 200, 400, 500µM. Panel 
(E): With rotenone at 0, 20, 50, 100, 500µM. Panel (F): With DMSO at 2.5, 5.0, 7.5, 10.0, 
17.5% (v/v). Activity was measured at 600nm and at 37 °C. Results were corrected for non-
enzymatic activity and produced in duplicate.  The error bars are ±SE and 95% CI was 
established. The p values in Panel (F) are as follows: *p= 0.088, **p = 0.0806. 
 
 

 Fiore et al. described this denaturation activity as NADH-dependent DCPIP 

reductase activity [105]. In addition, DMSO was considered as a potent inhibitor of 

cyclin-dependent kinases (CDKs). T h e  CDKs are a family of protein kinases that play 

A B 

C D 

E F 

http://en.wikipedia.org/wiki/Protein
http://en.wikipedia.org/wiki/Protein
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a role in cell cycle regulation. The CDKs are also involved in regulating and transcription 

of mRNA and are also involved in neuronal cells differentiation [105]. 

 Zurbriggen et al. discovered DCPIP reductase activity in the plasma membrane of 

mouse neuroblastoma cell line NB41A3 [107]. The activity was not inhibited by 

dicoumarol, antimycin or rotenone, but the activity was inhibited by treating the cells 

with DMSO [107]. Furthermore, the same group concluded that DCPIP reductase activity 

is due to the unnamed enzyme which is similar to glyceraldehyde 3-phosphate 

dehydrogenase (GAP). There might be a possibility that activity is solely due to isozyme 

of GAP or could be a combination of two or more enzymes. 

 Several inhibitors were used to inhibit the NQO1 associated DCPIP reductase 

activity, some of them (KCN, pHMB and DMSO) partially inhibited the activity and 

some of them did not inhibit the activity (dicoumrol, rotenone, chloramphenicol). But our 

major focus was the dicoumarol-dependent inhibition of  DCPIP reductase activity, 

which was not achieved due to the non-functionality of the enzyme. There could be a 

possibility that a novel isoform of NQO1, which is resistant to dicoumarol, is present.    

4.4 Conclusions 
  

 In this study, the putative NQO1 presence in myelin membrane was investigated. 

Western blotting and immunohistochemistry of NQO1 detected the enzyme in myelin 

membrane. Furthermore, current study showed that NQO1 is present in a truncated form 

which may not been responsible for the observed dicoumarol-insensitive DCPIP 

reductase activity. Studies showed that NQO1 expression is tissue specific, ubiquitious, 

tightly controlled by a gene and highly inducible. Previous studies showed that if NQO1 

http://en.wikipedia.org/wiki/Cell_cycle
http://en.wikipedia.org/wiki/Transcription_(genetics)
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is overexpressed, the cell becomes death resistant; this occurs in cancer cells. Several 

xenobiotics, aging and oxidative stress can modulate its expression. Furthermore, if 

enzyme is not required, it undergoes the posttranslational modification and degraded by 

proteosomal attack.  

The equivalence of the three possible methods for measuring NQO1 activity; 

NADH-dependent cytochrome c reduction via menadione, DCPIP reduction and WST-1 

reduction into formazan was assessed in myelin samples. The activity of NQO1 was 

quantified by the use of the potent inhibitor dicoumarol. Several other inhibitors 

including DPI, pHMB, and rotonone were used in an attemplt to inhibit the activity. DPI 

reduced the 20% activity of menadione-mediated cytochrome c reductase [93, 108]. With 

the DCPIP reductase assay, DPI did not inhibit any of the activity. Menadione-mediated 

cytochrome c reductase activity was almost 35% inhibited by 50µM dicoumarol; 

however, the DCPIP reductase activity was insensitive to dicoumarol. Overall, the level 

of dicoumarol inhibition is far away from literature values for NQO1, where picomoles of 

dicoumarol completely inhibit the activity. It can be concluded that DCPIP reductase 

activity may be due to the other oxidoreductases and dehydrogenases which are residing 

in the myelin membrane. These enzymes can use the substrate DCPIP but they were 

partially or fully insensitive to dicoumarol. Secondly, there is a possibility that any other 

novel isoform of NQO1, resistant to dicoumarol is present in myelin such as mNQO. The 

electron donor of NQO2 is NRH (dihydronicotinamide riboside) but it can utilize NADH 

and NADPH, very poorly. Wu et al. estimated the K0.5 value of NQO2 in liver cell culture 

as 252µM when it was using DCPIP as a substrate [109]. This value is very close to our 

estimated value of K0.5  which is 251µM, whereas with NRH electron donor and DCPIP 
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substrate the KM value of NQO2 is 30µM [109]. Furthermore, NQO2 is almost 

insensitive to dicoumarol [109].  It can be speculated that DCPIP reductase activity may 

be due to NQO2.  

Purification and protein sequencing can give the insight into the truncated isoform 

present in the myelin membrane. For future NQO1 investigations ES936 inhibitor should 

be used instead of dicoumarol. 
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Chapter 5 
Comparison of Oxidoreductases in 
Healthy and Diseased Myelin 

 
 In this chapter, the previously investigated enzymes, CB5R and NQO1 are 

examined in a demyelinating mouse model. The demyelination process is associated with 

a pathology called multiple sclerosis (MS), and most commonly diagnosed in young 

adults. The ND4 spontaneously demyelinating mouse model with age-matched controls 

was used in this study. Furthermore, the level of superoxide production was also 

investigated in healthy and diseased mouse myelin.  

5.1 Introduction 
 

          Multiple sclerosis (MS), also known as 

disseminated sclerosis or encephalomyelitis 

disseminata, is considered to be an inflammatory 

disease in which the insulating sheath, the myelin 

membrane, in the brain and/or the spinal cord is 

damaged. This process is called demyelination 

[110]. Due to the damage of the myelin sheath and 

the disruption of macromolecules, plaques in 

white matter can be seen (see Fig 5.1) 

 

Fig 5.1: MRI image of MS brain. 
The white areas are lesions or 
plaques. Fig adapted from reference 
[111]. 

 The symptoms of MS correlate with the affected region. Contrary to the PNS, 
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in the CNS the repair mechanism of myelin is complex and limited since one 

oligodendrocyte cell is myelinating more than one axons.  

 The actual cause of MS is unknown but it is believed that MS is a combination of 

several genetic, infectious and environmental factors [111]. Some common signs and 

symptoms among MS patients include a loss of sensitivity or changes in sensation such 

as tingling, pins and needles or numbness, muscle weakness, very weak reflexes, muscle 

spasms, or difficulty in moving; difficulties with coordination and balance (ataxia); 

problems with speech or swallowing, visual problems such as; blurry vision or 

peripheral vision loss,  (snystagmus, optic neuritis or double vision), and fatigue [111]. 

On the basis of symptoms, MS can be categorized into four classes [112]. The 

first class is the relapse-remitting MS (RRMS) in which the signs and symptoms are 

characterized by random appearance of symptoms that can lasts from hours to months 

but patient recovers over a period of time. This is the most common type of MS and 

almost 80% patients show these sign and symptoms in the beginning. RRMS is 

further divided into two subtypes: 1- Benign MS: In this subclass the recovery is 

almost complete and only limited progression in disability even after 20 years is 

observed. 2- Clinically isolated syndrome: In this subclass, the patients have an attack 

which is suggestive of promising demyelination, but the symptoms are insufficient 

[110]. The second class is the primary progressing MS (PPMS) in which the 

improvement in disability is very minor. This class is more equally distributed in men 

and women. Otherwise, in all other classes women are more prone to disease. The 

third class is the secondary progressive MS (SPMS). In this type there is no defined 

time between the periods of symptoms. The disability worsens with the each episode 

http://en.wikipedia.org/wiki/Hypoesthesia
http://en.wikipedia.org/wiki/Paresthesia
http://en.wikipedia.org/wiki/Clonus
http://en.wikipedia.org/wiki/Clonus
http://en.wikipedia.org/wiki/Muscle_spasms
http://en.wikipedia.org/wiki/Muscle_spasms
http://en.wikipedia.org/wiki/Ataxia
http://en.wikipedia.org/wiki/Ataxia
http://en.wikipedia.org/wiki/Dysphagia
http://en.wikipedia.org/wiki/Optic_neuritis
http://en.wikipedia.org/wiki/Diplopia
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of attack. Lastly, progressive relapsing MS (PRMS) is the class of MS in which 

patients have progressive neurological decline from the onset of the disease. This 

class may result in complete disability [110].   

 Although, the mechanism of action of MS is unknown it is believed that body's own 

immune system, T-cells, attacks the myelin membrane and destroys it. In normal 

circumstances, the blood brain barrier (BBB) is impermeable to these cells, but in diseased 

condition, the BBB becomes permeable and T-cells destroy the myelin sheath (see Fig 5.2 

A & B).  Recently, Wu, et al. discovered that kallikrein (KLKB), a serine protease and 

modulator of the T-cell antigenic determinant, is robustly upregulated in the 

demyelinating brain [113]. 

 

 

Fig 5.2: Basic structure of neurons with myelin sheath in health and disease. (A) Healthy 
myelinated neuron. (B) Demyelination  due to the attack of T-cells. Fig taken from reference 
[110]. 

 

5.1.1 Model of Demyelination 
  

As the MS disease is considered multifactoral, comprehensive animal model or 

models are required for its study. The available demyelinating models include viral-

induced demyelinating models, immune-mediated demyelinated models, and 

A B 
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genetically-induced demyelinated models. Artificial chemical-induced demyelination 

can be induced by the exposure to cuprizone, a copper chelator. In this research project, 

a transgenic mouse model, ND4 mice, was used. In ND4 mouse model, PLP is down 

regulated due to an over-expression of a deletion mutant of PLP (DM-20) [114]. There 

are almost 70 copies of the transgene encoding for the DM-20 protein in ND4 mouse 

[114]. The ND4 mouse is clinically healthy at 3 months of age and has minimal 

inflammatory signs. Around 3 months of age, without the injection of a myelin-specific 

antigen such as myelin basic protein, ND4 mice spontaneously undergo demyelination 

[114]. It is therefore, one of the genetically modified animal models for the study of 

demyelinating disease and offers intrinsic manifestations of MS symptoms without any 

external injections. In the ND4 model, demyelination is asymptomatic at 3 months of age. 

Typically, by 8-10 months mice showed tremors and unsteady gait and have 17% myelin 

as compared to a normal mouse [114]. Moreover, the disrupted myelin can be seen at 8 

months of age and myelin debris can be seen in astrocytes [114].  

5.2 Material and Methods 
 

 For CB5R and NQO1 investigations, the materials and methodology is the same 

as described in section 3.2 and 4.2, respectively.  

5.2.1 Measurement of Superoxide Detection 
 

 Increased superoxide production is the hallmark of increased oxidative stress. 

Superoxide detection was carried out using a WST-1 reduction assay, in diseased and 

healthy myelin of the same age. The superoxide reduces WST-1 into formazan (equation 

5.1).  
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           O2
.-  +  WST-1                        Formazan  +     O2                    (5.1) 

 The assay mixture contained 100mM potassium phosphate, 2mM EGTA buffer 

(pH 7.0), various concentrations (20, 30, 40µg) of healthy and diseased myelin, 50µM 

NADH, and to initiate the electron flow, 300µM WST-1 was added. The total volume per 

sample was brought up to 200µl with the addition of phosphate buffer. The reduction of 

WST-1 into formazan was monitored at 37°C for 15 minutes at kinetic interval of 30 

seconds. The increase in absorbance at 438nm was monitored with an extinction 

coefficient of 37.0 mM-1cm-1 for formazan. 

5.3 Results and Discussion  
 

5.3.1 Investigation of Cytochrome b5 Reductase Activities in Diseased 
and Healthy Myelin 
 

 CB5R is an enzyme that has been found in myelin membrane (see chapter 3).  To 

investigate the CB5R activities in diseased myelin, two age groups of ND4 mouse model 

were used. The 7.7 month old mice represent the age group before physical symptoms of 

demyelination are apparent. whereas the 11.3 month ND4 mice have significant 

symptoms of demyelination. The cytochrome c reductase activity was measured in both 

age groups of diseased and healthy mouse myelin (see Fig 5.3). The kinetic parameters, 

KM and Vmax, were not determined as the enzyme activities did not reach saturation  

(plateau curve). Fig 5.3 A & B represent dose response of myelin in both age groups, 

which illustrates that the reduction reaction is directly proportional to the amount of 

protein added. Overall, healthy myelin showed a greater activity as compared to diseased 

myelin on an the basis of equal amount of protein.  
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Fig 5.3: Age-matched comparison of cytochrome c reductase activity in healthy and 
diseased myelin. Panel A and B represents activity as function of myelin protein with 100µM 
cytochrome c for the two age groups. Panel C and D represents the activity as a function of 
cytochrome c with 10µg for both ages. The reaction was initiated with 250µM NADH. All assays 
were performed at 37°C in a total volume of 200µl per well. Measurement was taken at 550nm. 
All error bars represent ±SE. 
 

 Interestingly, all of these activities are lower when were compared with the 

activity of CB5R found in chapter 3, where the age of the mice were approximately 2 

month and the enzyme activity of 20µg of myelin with 100µM of cytochrome c was 

0.28µmol/min. When examining reductase activity in healthy mouse myelin, at 2, 7.7, 

and 11.3 months of age, the findings suggests that CB5R activity fluctuates over the 

lifespan. However, in healthy myelin from 7.7 to 11.3 months, the activity greatly 

increases (p= 0.001). This same statistically significant trend is seen in the diseased 

myelin, from 7.7 to 11.3 months (p= 0.032). 

A B 

C D 
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Table 5.1: Comparison of cytochrome c reductase activity with 20µg myelin and 
100µM cytochrome c in healthy and diseased samples. Enzyme activity from healthy 
and diseased myelin were calculated from the reaction rates in figure 5.3 A and B using 
the extinction coefficient of 29.5mM-1cm-1for the reduced cytochrome c at 550nm. 

     Mice Age  
      (Months) 

Diseased myelin activity 
       (µmol/min) 

 Healthy myelin activity 
       (µmol/min) 

P values 

7.7 0.132± (3.252E-06) 0.165±SD (2.333E-05) p=0.324 
11.3 0.180±SD (9.899E-06) 0.205±SD (9.192E-06) p=0.016 

P values p = 0.032 p= 0.001  
 

 Another comparison was made between healthy and diseased myelin, this time 

with 10µg myelin and 500µM cytochrome c is utilized (see table 5.2). In comparing the 

Table 5.2: Comparison of cytochrome c reductase activity with 10µg myelin and 
500µM cytochrome c in healthy and diseased samples. Enzyme activity from healthy 
and diseased myelin were calculated from the reaction rates in figure 5.3 C and D using 
the extinction co-efficient of 29.5mM-1cm-1 for the reduced cytochrome c at 550nm. 

Mice Age 
(Months) 

Diseased myelin activity 
(µmol/min) 

Healthy myelin activity 
(µmol/min) 

p- values 
(D vs H) 

7.7 0.425±SD (7.990E-06) 0.232±SD (7.778E-05) p=0.010 
11.3 0.456±SD (5.656E-06) 0.687±SD (3.535E-06) p=0.008 

p-value (age 
comparison) p = 0.024 p = 0.001  

 

 enzyme activities with 500µM cytochrome c between the 7.7 and 11.3 months old 

healthy mice, the activities were statistically greater in the myelin of the older mice 

(p=0.001). When comparing activities between diseased and healthy myelin at the same 

age, the younger mouse diseased myelin showed the greatest activity (p=0.01 and p= 

0.008, respectively). However, the older mice, healthy mouse showed the greatest 

activity. Interestingly, when these activities were compared with the activity of CB5R 

found in chapter 3, where the age of the mice were approximately 2 months, the enzyme 

activity of 10µg of myelin with 500µM of cytochrome c was 0.673µmol/min. However, 
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again in the healthy myelin from 7.7 to 11.3 months there is greater activity (p= 0.001). 

In diseased myelin there is increase in activity in older mice (p= 0.024).  

 Lastly, the pHMB-dependent inhibition of the enzyme activity demonstrated that 

at 7.7 months of age the disease myelin cytochrome c reductase activity is more 

susceptible to pHMB inhibition (see Fig 5.4). However, in the 11.3 months age group, the 

pHMB inhibitory effect is almost the same in diseased and healthy myelin, as shown 

statistically. In chapter 3, the 1µM of pHMB inhibited the 50% enzyme activity in myelin 

from ~2 months old mice. This decreased effect of pHMB inhibition with age may be 

related to an increased level of protein expression.  

  Several reactive oxygen species (ROS), such as superoxide radical (O2
-.) and 

hydrogen peroxide (H2O2), play a crucial role in cell signaling [115, 116]. These species 

performed very vital functions for cells as phagocytosis, hormone synthesis and apoptosis 

[117]. Various pathological conditions are associated with the increased oxidative stress 

[115]. Oxidative stress is a condition in which level of ROS such as superoxide radical, 

hydrogen peroxide and peroxynitrite are elevated. These elevated ROS can damage the 

protein and lipids. Oxidative stress increases over a significant time period, and thus it is 

an age-related phenomenon.  In the aging process, ROS damage the mitochondrial DNA 

(mDNA) and results in impaired mitochondrial function energy production and the 

subsequent reliance on glycolysis. This results in the hyper-reactivity of t-PMET [118].  
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Fig 5.4: The pHMB-mediated inhibition as a function of cytochrome c reductase activity. 
The reaction was initiated with 250µM NADH, 10µg myelin, and 100µM of cytochrome c in the 
presence or absence of 1µM pHMB. Measurement was taken at 550nm at 37°C. All error bars are 
±SE. The t-test values, *p=0.083 and **p=0.294 are established at 95% CI. 
 

 In various cells NOX is responsible for producing superoxide [17]. In this study 

the superoxide production was carried out in healthy and diseased myelin of the same age 

to investigate the levels with the disease progression. To detect any measureable quantity 

of superoxide, oxidation of WST-1 into formazan was followed at 438nm. This reaction 

was   NADH-dependent (see equation below). 

               NADH + 2O2                          Enzyme           NAD+ + 2O2
.- 

 Fig 5.5 shows that superoxide production has a direct relation with the amount of 

protein.  The diseased myelin, as we hypothesized, showed the greater superoxide 

production as compared to healthy myelin. Furthermore, both groups of protein showed a 

plateau curve which may be due to the insufficient substrate. In all cells, generally, 

superoxide dismutase (SOD) enzyme is responsible for dismutating the superoxide (O2
.-) 

into H2O2 and O2. But, at a threshold level of ROS, the SOD activity decreases and as a 

consequence superoxide damages the macromolecules.  
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Fig 5.5: Comparison of superoxide production rates in healthy and diseased myelin: Various 
concentrations of 5.34 months old mouse myelin (20, 30, 40µg) were assayed with 300µM of 
WST-1. To initiate the reaction 250µM of NADH was added. In each well, volume of reaction 
mixture was made up to 200µl by adding 100mM potassium  phosphate buffer with  2mM EGTA 
buffer, pH 7.0. Measurements were taken at 438nm at 37°C. Results were produced in duplicates 
and corrected for non-enzymatic activity. The error bars are ±SE. 
 

 Due to limited availability of related published literature it was not possible to 

compare the activities of CB5R with different model systems.  As mentioned earlier 

recent research published in March 2014 showed that CB5R and NOS are associated 

through the caveolin protein in lipid cholesterol-raft region [92]. Furthermore, CB5R 

itself is involved in superoxide production and superoxide production increases with age 

[115]. 

  Previous studies discovered that CB5R also regulates the release of nitric oxide 

[108, 119, 120]. In light of previous and current study scenarios it can be postulated that 

modulation in  CB5R  activity may trigger the uncontrolled NO. production and release. 

The NO. is the first known endogenous inhibitor of superoxide dismutase (SOD) and 

competes for the availability of superoxide radical (O2
.-) to form peroxynitrite (OONO-) 
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[121]. The OONO- is a very toxic species, and has the ability to damage the BBB [122]. 

The schematic of the CB5R-dependent BBB dysfunction is illustrated in Fig 5.6.  

 

 

 

 

 

 

 

 

Fig 5.6: Schematic of hypothesis of CB5R-induced BBB damage. In healthy cells CB5R 
controls the release of nitric oxide and also a producer of superoxide radical. In diseased state 
with the disruption of CB5R function, nitric oxide release is uncontrolled and superoxide 
production may increase. It is hypothesized that the uncontrolled nitric oxide and superoxide 
forms the peroxynitrite specie which is very harmful to the cells. Studies shows that peroxynitrite 
can damage the blood brain barrier.  

 
 In neuronal cells the "L-shaped" calcium channels are present in close proximity to 

CB5R within the lipid raft region [19]. These calcium channels are also found in 

oligodendrocytes [123]. The calcium channels are also called sodium-calcium exchanger. 

This exchanger is an antiporter membrane protein that removes calcium from the cells. It 

removes a single calcium ion in exchange for the three sodium ions [124]. It can be 

proposed that both of the isoforms of CB5R may regulate calcium homeostasis and influx of 

Ca2+ into the cells by their association with Ca2+ channels. Previous studies also show that 

calcium toxicity as one of the major cause of axonal degeneration [125].  In axonal 

inflammation Na+ channels redistribution affects the Na+/Ca++ exchange and increases the 

OONO- 

CB5R normal                     
activity 

Controlling NO. Producing O2
.- 

Higher Activity     
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.- 
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calcium influx into the cells [125].  The high calcium level initiates the calcium-dependent 

proteolytic degradation. Furthermore, excessive Ca++ entry releases the glutamate and this 

glutamate and Ca++ harm the axon and cause degeneration. The schematic of the procedure 

is shown in Fig 5.7. 

 

Fig 5.7:  Schematic of calcium induced toxicity and axonal degeneration. Two pathways for 
axonal injury are shown. First pathway shown in red color, deals with the mitochondrial dysfunction. 
Second pathway shown in blue, deals with the consequence of demyelination and calcium toxicity. 
Oxidative stress redistributes the channel organization in the myelin membrane and as a consequence 
energy depletes and excessive calcium enters the cells. This increase in calcium triggers the 
glutamate release which is harmful to the cells. Fig adapted from reference [12].  

5.3.2 Investigation of NQO1 in Healthy and Diseased Myelin  
 

5.3.2.1 Immuno-Detection of NQO1 in Diseased  and Healthy Myelin 
 
 
 NQO1 has been previously identified in the myelin membrane (see chapter 4), 

but mainly in a truncated, non-functional form. Although various associated reductase 
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activities were present, none were inhibited by dicoumarol, a NQO1 specific inhibitor.  

 

Fig 5.8: Western blot  of NQO1 in diseased and healthy myelin. A 14% resolving gel 
along with 4% stacking gel was prepared to examine the NQO1 expression level in diseased and 
healthy myelin of different ages. A volume of 16µl of delipidated myelin (disease and healthy of 
both age groups) (in final volume) with 5x sample loading buffer was loaded.  Dual Colour 
Precision Plus protein standard (5µl)  in 1:10 dilution was also loaded with sample. The protein 
on the gel were electrotransferred to a nitrocellulose membrane, which was incubated with 
primary NQO1 antibody in a 1:1000 dilution for 4 hrs. Subsequently after washing, membrane 
was incubated with secondary antibody anti-rabbit IgG in a 1:80,000 dilution for 30 minutes. 
Image was taken with 4000 VersaDoc. Letter "D" represents diseased myelin, whereas "H" 
represents healthy myelin.  
 

 Western blot analysis of NQO1 in diseased and healthy myelin was performed 

between two age groups. In diseased myelin of both ages, NQO1 was detected at 

~30kDa, whereas in the middle-aged healthy myelin (7.7 months) a truncated form was 

detected, as previously observed in the young mice (~2 months) (see Fig 4.4 A).  

Contrary to 7.7 months old healthy myelin, in 11.3 months old healthy mouse myelin, 

only the full-length NQO1 was detectable. This might be due to the age of the mouse. 
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The healthy mouse of 11.3 months has completed almost 65% of its life span and the 

presence of full length NQO1 in myelin membrane may be related to the higher 

oxidative stress levels found with aging. Aging is a biological process in which the free 

radicals produced by metabolic processes damage the macromolecules of the cells. They 

also damage the mitochondria and as a consequence the ratio of pyridine nucleotides, 

NADH/NAD+ is disrupted [126]. To maintain the ratio of NADH/NAD+, t-PMET is 

activated in an aged brain [118] (see further discussion in chapter 6). 

 Previous studies are in agreement with current results. They show that NQO1 

accumulates in the aged brain, and in addition the age-related elevated level of NQO1 

might be cellular protection mechanism [127]. Another theory postulates that as NQO1 is 

involved in lipid metabolism [128] there is a possibility that it is involved in 

myelinogenesis, and after birth its level gradually falls and it became inactive [86].  

 The NQO1 is highly inducible enzyme [82]. Generally, it is believed that the 

expression of NQO1 is under the control of a promoter, called antioxidant response 

element (ARE) [129, 130]. This factor is the adaptive mechanism of cell against 

oxidative stress [131]. The ARE-related genes are involved in several functions of the 

cell as a response to external stimulus such as glutathione regulation, catalase expression, 

proteosomal degradation and redox status [132]. The Nrf2 is the key signaling protein, 

that post-translationally regulates the ARE pathway. Under normal circumstances in 

cytosol the Nrf2 is conjugated with kelch-like ECH-associated protein 1 (Keap1). Keap 1 

protein initiates the ubiquitinal degradation of Nrf2. Nrf2 dissociates from Keap1 by two 

ways: 1- directly by phosphorylation, 2- indirectly by  signal induction due to 

endogenous or exogenous factors. After dissociation, Nrf2 binds to the promotor ARE 
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sequence in the nucleus and activates the transcription of antioxidant elements such as 

NQO1 and glutathione reductase ( see Fig 5.9) [84]. In addition, Hyun et al. describes 

that two transcriptional factors, Nrf2, NF-ƘB and HSP70 have elevated levels in a 

system with high oxidative stress [84].  

 

 The Ross group identified the NQO1 localization in the nucleus of several colon 

and lung  cancer cells  using 3D-confocal microscopy [70]. The translocation of NQO1 

proteins into the nucleus occurred through a nuclear pore complex [133]. The function of 

the nuclear NQO1 is to protect the DNA from damage and its repair through activation 

of  Sirtuins 1 (SIRT1) and poly ADP-ribose polymerase (PARP) enzymes [61]. Further, 

 

Fig 5.9: Mechanism of activation of ARE pathway. The antioxidant responsive element 
(ARE) is a regulatory element of genes encoding phase II detoxification enzymes and antioxidant 
proteins, such as NQO1 and glutathione S-transferases. Interestingly, it has been reported that 
Nrf2 regulates a wide array of ARE-driven genes in various cell types. The DNA binding 
sequence of Nrf2 and ARE sequence are very similar, and many studies demonstrated that Nrf2 
binds to the ARE sites leading to up-regulation of downstream genes. The function of Nrf2 and 
its downstream target genes suggests that the Nrf2-ARE pathway is important in the cellular 
antioxidant defense system. Fig adapted from reference [84].  

Nrf2  

http://www.google.ca/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&docid=LSuW5_VECzFEuM&tbnid=TlhTZAbVsX2rlM:&ved=0CAUQjRw&url=http://www.nature.com/nchembio/journal/v6/n6/full/nchembio.367.html&ei=-KXSU4CyFMyPyATMkoLwCQ&psig=AFQjCNFx1DPX6pSoEUwjdxEulI7TqXTZ9g&ust=1406399638955016
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David et al. describes the NQO1 presence in mitotic spindle as well as in centrosomes in 

human pancreatic cancer cell [133]. Using the double-labeling immunostaining and 

specific antibodies against NQO1 they discovered that NQO1 is attached to alpha-

tubulin in the mitotic spindle fiber [133]. 

5.3.2.2 Measurement of DCPIP Reductase Activity in Healthy and Diseased Myelin 
 

 To further characterize the NQO1, the DCPIP reductase activity was compared in 

diseased and healthy myelin in 7.7 months old mice (see Fig 5. 10). In both diseased and 

healthy myelin the activity increased with the concentration of DCPIP substrate. The 

DCPIP reductase activity was partially inhibited by dicoumarol in both groups. However, 

the statistical analysis indicated that there is almost the same level of inhibition in both 

groups. This partial inhibition (~40-45%) in older and diseased myelin is in contrast to 

the lack of inhibition of the DCPIP reductase activity in myelin from young mice (see 

chapter 4). 

  

Fig 5.10: Comparison of DCPIP reductase activity in healthy and diseased myelin. 
Panel (A): Reductase activity as a function of DCPIP substrate concentration. Myelin 
(20µg) was assayed with various concentrations (10, 25, 100, 500µM) of DCPIP. The value of 
*p= 0.356. Panel (B): Inhibition of reductase activity with dicoumarol. The activity was 
measured with 20µg of protein and 50µM DCPIP in the presence of 50µM dicoumarol. The age 
of the mouse was 7.7 months. The t-test value of *p=0.255 established at 95% CI. To initiate the 
reaction 200µM of NADH was added and the final volume per well was 200µl.  The 
measurement was taken at 600nm at 37°C for 5 minutes. All error bars are ±SE.  

A B 
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5.5  Conclusions 
 

 A preliminary study that compared the redox activities in age-matched healthy 

and diseased myelin was conducted. On the basis of current research findings it can be 

concluded that CB5R activity increases overall with age. As well, in healthy myelin the 

activity of CB5R was enhanced relative to age-matched diseased myelin. CB5R may be 

responsible for superoxide production, and high levels of oxidative stress occur in aging 

and in disease processes. It is hypothesized that superoxide spontaneously reacts with 

nitric oxide to form the reactive peroxynitrite ion that confers the permeability to BBB.  

Moreover, it could be one of the factors in etiology of MS.  

The NQO1 was detected in the full length form at 30kDa by Western blot analysis 

in the diseased myelin from 7.7 and 11.3 months old mice. Only in the older healthy 

myelin (11.3 months) the full length form was detected; in the middle-aged myelin (7.7 

months) a truncated form (~13 kDa) of the enzyme was found. Diseased state and age, 

correlate with the presence of full length NQO1. Moreover, the expression of NQO1 is 

under the control of the ARE factor, and can be induced by pathology and aging.  
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Chapter 6     
Summary, Conclusions and Future 
Directions 

 
 This dissertation has utilized various kinetic assays and immunodetection 

techniques to identify the oxidoreductases in the CNS myelin. The conclusions based on 

the research work performed are drawn in this chapter. The identified proteins are 

compared on the basis of activities, structure and function. Moreover, a number of future 

avenues that can be explored to enhance present research are highlighted.  

6.1 Summary and Conclusions 
  

 A study on the characterization of t-PMET in the myelin membrane was 

conducted. On the basis of current research,  specific activities of all oxidoreductase are 

calculated in Table 6.1 

Table 6.1: Specific activities of oxidoreductases with various substrates. 

             Oxidoreductase activity          Specific activity (nmol/min/mg) 

NADH: cytochrome c reductase activity                    3.401 

NADH: DCPIP reductase activity                    0.891 

NADPH: DCPIP reductase activity                    0.208 

NADH: menadione reductase activity (with 

cytochrome c) 

                   0.871 

NADH: PMS reductase activity (with WST-1)                    0.633 

NADH-dependent WST-1 reduction                   0.499 
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 The specific activity of  NADH: cytochrome c reductase (3.401nmol/min/mg) is 

greater in all above calculated oxidoreductase activities.  The enzymes activities of  NADH: 

DCPIP reductase and NADH: menadione reductase, 0.891 and 0.871 nm/min/mg 

respectively, are almost the same. In addition, NADH is the preferred electron donor for the 

enzyme which uses DCPIP as a substrate. Furthermore, NADPH: DCPIP reductase activity 

is lowest (0.208nm/min/mg) of all measured oxidoreductase activities.  

 Current study discovered that CB5R, a member of t-PMET system, is expressed 

in the mouse myelin membrane. The activity of CB5R was measured through cytochrome 

c reductase and was inhibited by pHMB, a specific inhibitor of CB5R. Furthermore, the 

CB5R has estimated Vmax and KM values as 6.58 x 10-5 µM/min and 151µM, 

respectively. The sulfhydryl agent pHMB, inhibited almost ~90% activity at a 

concentration of 10µM. Differential detergent fractionation of myelin suggests that the 

CB5R may be localized in the lipid raft microdomains of myelin membrane. 

Furthermore, two bands detected by Western blotting may indicate the myristoylated and 

non-myristoylated forms of the protein.  

  The CB5R activity was also investigated in a diseased myelin model and 

compared to control healthy mouse myelin. The results illustrate the variation in activity 

over the normal growth period. In the healthy control, the 2 months old mouse myelin 

showed greater activity than the 7.7 months old mouse myelin; however, the greatest 

activity was in the 11.3 month old. Overall, the activity of CB5R increased with the age 

in both the myelinated (healthy) and demyelinated (diseased) state. Some recent studies 

found that the crucial roles affiliated to CB5R are superoxide production, controlling of 
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NO. levels and the formation of peroxynitrite [134] . Furthermore, from previous studies 

it can be speculated that calcium toxicity is related to CB5R [12]. 

 CB5R performs important cellular functions such as CoQ reduction, cholesterol 

synthesis, and fatty acid chain elongation. It is assumed that CB5R may perform similar 

functions in the myelin sheath. The major function of the oxidoreductases and 

specifically, CB5R, is to regenerate the NAD+ and replenish the pool of pyridine 

nucleotides, NAD+/NADH.  

 Immunodetection of NQO1 confirmed its presence in myelin membrane. Differential 

detergent fractionation of myelin and Western blot analysis indicates that NQO1 may be 

localized in the lipid raft microdomain of myelin membrane. In addition, Western blot 

analysis confirmed that NQO1 is present in truncated form. This truncated form could be 

mNQO-like form or degraded product of  NQO1. The other protein band appeared with 

molecular weight ~27kDa could be the NQO2 or a novel NQO1 isoform. In diseased myelin, 

due to high oxidative stress, the NQO1 expression level was elevated and band appeared at 

30kDa (full length) instead of ~13kDa.  The fluctuation in the expression level may suggest 

its role in myelinogenesis, aging, and disease. Thus, it can be concluded that NQO1 

associated activity is present in the myelin membrane but at a different level depending on 

cell function and physiological demands.  Furthermore, the NQO1 gene is under the control 

of ARE promoter, which activates due to the effect of xenobiotics, oxidants, heavy metals 

and ionizing radiation. 

 Activity of NQO1 was measured through three associated activities: menadione-

mediated cytochrome c reductase, PMS-mediated WST-1 reductase activity and DCPIP 

reductase activity. Kinetic analysis of the DCPIP reductase activity illustrated that the 
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enzyme is allosteric in nature. In addition, it is insensitive to dicoumarol, a potent inhibitor of 

NQO1,  but due to several disadvantages of dicoumarol,  such as lack of specificity, 

dicoumarol should be replaced by ES936 in future. The ES936 is  more specific and 

mechanism-based inhibitor of NQO1. The DCPIP reductase activity was inhibited by 

DMSO, which has been previously used as G1 and M phase inhibitor in cell cultures. With 

lipid bilayers,  DMSO can form pores and denature the protein when these proteins are 

present in cholesterol-rich domains [106]. As well  enzymatic activity can be  inhibited by 

DMSO due to unfolding and denaturation of protein. The reductase measured activities could 

be due to dehydrogenases or may be due to cyclin-dependent protein kinases or GAP.   

Moreover, in diseased myelin, DCPIP reductase activity was enhanced as compared to the 

healthy myelin of the same age, which shows its involvement in disease implication.   

 The pyridine nucleotide synthesis or ratio reduces due to the alteration of 

intracellular status. The reduced synthesis of pyridine nucleotide is compensated by 

reduced metabolism of glucose and fatty acids. The t-PMET may be responsible for 

maintaining NAD+/NADH ratios in the myelin membrane. Therefore, in the cells where 

mitochondria is dysfunctional, t-PMET is elevated [61]. One of the functions of 

plasmalemellar CB5R enzyme is to produce the NAD+ (a primary marker of intracellular 

status). As NADH-dependent enzyme, lactate dehydrogenase (LDH), is responsible for 

converting the pyruvate into lactate, along with lactate it also regenerates the NAD+.  In 

myelin membrane, LDH is present, but by the 120th day of birth in mouse, its activity is 

less than 8% [135].  Thus, t-PMET can regenerate NAD+. This NAD+ is utilized by other 

enzymes including sirtuin1 (SIRT 1) and sirtuin2 (SIRT 2) [136].  Sirtuins, which are 

localized in the plasma membrane and also found in myelin membrane, are NAD+ 
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dependent deacetylases [136].  Sirtuins expression in the myelin membrane is PLP and 

DM-20 dependent [61, 136]. Both SIRT1 and SIRT2 proteins perform vital cell functions 

such as cell cycle regulation, differentiation, chromatin stabilization, deacetylation, and 

PLP-dependent neuroprotection [136]. The most important role of SIRT2 is the 

deacetylation of MAG, an integral membrane protein found on the myelin layer closes to 

the axon. MAG protein inhibits the regeneration of neurons in the CNS [137, 138]. The 

level of NAD+/NADH is responsible for sirtuins activation and deactivation. During 

aging NAD+/NADH ratios are altered, and thus the activity of sirtuin is modulated. In 

plasma membrane, NAD+  which is utilized by sirtuins, is regenerated by CB5R, NQO1, 

and other oxidoreductases (see Fig 6.1).  

  NQO1 is involved in several important functions such as chemo protection, 

protection of p53 gene and reduction of CoQ. The reduction of CoQ by NQO1 without 

forming the semiquinone is very crucial for cell survival. CoQ is very important as it 

electronically links the inner environment of the cell to the external environment of the cell. 

Within lipid bilayer of the plasma membrane and the myelin membranes, CoQ scavenges 

 

 

 

 

Fig 6.1: Regulatory mechanism of sirt1 by CB5R and other oxidoreductases in plasma 
membrane. SIRT1 maintains the respiration, deacetylation and cytosolic NAD+/NADH 
ratios. 

SIRT1/SIRT2 Enzyme 

Oxidoreductase  
CB5R and/or NQO1 

NAD+ NADH 
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superoxide radical with or without α-tocopherol by breaking the free radical chain reaction 

[28]. Reduced CoQ is also responsible for avoiding the apoptosis initiated by ceramide 

signaling. The ratio of CoQ/CoQH2 is the modulator of sphingomyelinase [139]. 

Sphingomyelin, a very common and important phospholipid, is present in plasma 

membrane. This lipid is activated by an enzyme sphingomyelinase and has the ability to 

induce the apoptosis by initiating the ceramide signaling. CoQH2 inhibits the activation 

of spingomyelinase and protect the cell from unnecessary apoptotic signaling. The 

oxidized form of CoQ can accumulate the ceramide molecules which may lead to form 

ceramide-enriched platform. This platform can further initiate the death receptors to 

cluster in the membrane and can transmit an efficient death signal. The Fas receptors are 

also called death receptors, and are present on the surface of cells that leads to 

programmed cell death (apoptosis). It is one of two apoptosis pathways, the other being 

the mitochondrial pathway. Death receptor ligands characteristically initiate signaling via 

receptor oligomerization, which in turn results in the recruitment of specialized adaptor 

proteins and activation of caspase cascades [140, 141].The mechanism is shown in the 

Fig 6.2.  

 In short, the major function of both identified enzymes is to maintain the 

NAD+/NADH ratios and to reduce the CoQ in myelin membrane. CB5R accomplish this 

task by one electron reductions while NQO1 reduces the CoQ by two electrons reduction  

and avoides the formation of ROS. The two electron reduction  reaction in plasma 

membrane is also performed by GSH and NQO2 [142]. These two proteins perform almost 

the same function; it would be interesting to differentiate them on the basis of their 

similarities and differences (see Table 6.2). 

http://en.wikipedia.org/wiki/Tumor_necrosis_factor_receptor
http://en.wikipedia.org/wiki/Apoptosis
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Fig 6.2: Archetecture of ceramide signaling generated by NQO1/CoQ.The alteration of 
CoQ/CoQH2 ratios can trigger the apoptosis. Once sphingomyelinase activated it can induce the 
death signal. Fig adapted from reference [139]. 
 

Table 6.2: Similarities and differences between CB5R and NQO1. The comparison is 
done on the basis of structure, function, and catalytic mode. 
 
Based On              Similarities          Differences 
Sub-cellular 
localization 

Both proteins have 
multiple locations in the 
cell.  

• CB5R is present in endoplasmic 
reticulum, Golgi bodies, mitochondria 
and plasma membrane. 

• NQO1 is present in cytosol, plasma 
membrane and nucleus.  

Structure Both proteins have two 
lobes and αβα motifs.  

• In CB5R both lobes are connected by a 
short hinge but it is monomeric 
protein.  

• NQO1 is homodimeric protein. 
Prosthetic 
group 

Both protein utilizes FAD 
as a prosthetic group. 

• There is only one FAD group in 
CB5R. 

• Whereas in NQO1, there is one FAD 
per monomer.  

Catalytic 
mode of 
action 

Both reduce CoQ. • CB5R catalysis the one electron 
reduction 

• NQO1 catalysis the two electron 
reduction  

Enzyme 
nature  

Both are oxidoreductases.  • CB5R exhibits the typical "lock and 
key" model of enzyme, hence follows 
the Michaelis Menten curve.  

• NQO1 exhibits the "induced fit" model 
and allosteric in nature.  



 

107 
 

 In conclusion, taken together, the hypothesis of current research that "t-PMET 

assisting the myelin membrane" is supported as two components of t-PMET, CB5R and 

NQO1, were found in the myelin membrane, and another component, VDAC, was 

previously studied in our lab. The major function of both the identified proteins, CB5R and 

NQO1, is the regeneration of NAD+ with the CoQ reduction by one and two electrons, 

respectively. Fig 6.3 illustrates the presence and function of CB5R and NQO1 in t-PMET.  

 

 

Fig 6.3: CB5R and NQO1 in t-PMET. CB5R catalysis one electron reduction while 
NQO1 catalysis two electron reduction of CoQ. Figure modified from reference [51]. 
 

 In light of current research findings and previous studies, it can be concluded that the 

role of both identified proteins in disease state are interlinked. The overall scenario of both 

proteins in oxidative stress is depicted in Fig 6.4. 
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Fig 6.4: Role of NQO1 and CB5R in demyelination. Besides NOX, CB5R is another 
source of superoxide production and it also controls the release of NO. When function of CB5R 
is disrupted regardless of the cause, NO release becomes uncontrolled and it can form the 
peroxynitrite species,  studies shows that it has the ability to damage the BBB, the barrier 
becomes permeable to T-cells, which destroys the myelin sheath. Alternatively, SOD and NQO1 
try to dismutase and scavenge the superoxide respectively. But at threshold level oxidative stress 
is so high that NQO1 and SOD cannot accommodate it and result is the diseased condition or 
demyelination. 

6.2 Future Directions 
 

 On the basis of this work, we have identified the following aspects that presented 

a good avenue for future investigation. 

6.2.1 Bioanalytic Separation of Oxidoreductase Activities and the 
Proteomic Identification 
 

 Enzyme activity assay and western blot analysis confirm the presence of 

cytochrome b5 reductase and NQO1 in myelin membrane. It would be beneficial to 

separate and purify the enzyme responsible for these activities. For this purpose, a dye-

affinity chromatography technique can be employed. Affinity chromatography is a 

method of separating biochemical mixtures based on a highly specific interaction such as 

NO. 
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that between antigen and antibody, enzyme and substrate, or receptor and ligand. Affinity 

chromatography can be used to purify and concentrate a substance [143].  

 Blue-sepharose affinity chromatography can be used for enrichment of 

oxidoreductases from the myelin membrane. Blue-sepharose affinity chromatography 

uses cibacron blue as the ligand linked to a cellulose-meshwork, such as sepharose.  

Cibacron blue is a polycyclic dye resembling the structure of NADH. It is thought that 

resemblance with NADH allows cytochrome b5 reductase and NQO1 to bind with 

cibacron blue. Since the blue chromophore contains both amino and sulfonate groups, the 

so called “non-specific” ion-exchange effects would also be expected [144].  

 Some other future directions related directly or indirectly to current research are 

as follows: 

• Proteomic analysis of all oxidoreductases in the myelin membrane  

• Protein sequencing in diseased and healthy myelin should be done to detect any 

mutation in the enzyme.  

• Instead of dicoumarol, inhibitor ES936 should be used for future NQO1 

investigations.  

• MS is a disease which is prevalent in the countries where the albedo coefficient of 

UV rays is very high. The effect of UV light on myelin membrane could reveal 

some interesting facts.  

• Role of CB5R in calcium and peroxynitrite toxicity should be unmask.  
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