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Abstract 

The 16S rRNA gene is present within all bacteria, and contains nine variable regions 
interspersed within conserved regions of the gene. While conserved regions remain 
mostly constant over time, variable regions can be used for taxonomic identification 
purposes. Current methodologies for characterizing microbial communities, such as those 
used to study the human microbiome, involve sequencing short fragments of this 
ubiquitous gene, and comparing these fragments to reference sequences in databases to 
identify the microbes present. Traditionally, whole 16S rRNA sequences with more than 
97% sequence identity (id) are assigned to a single operational taxonomic unit (OTUs); 
each OTU being a proxy for a single species. However, because of the short sequence 
lengths produced by next generation sequencing, a recent trend has been to instead 
sequence small fragments spanning one or more of the gene’s variable regions, and still 
cluster them as OTUs at 97% id.  
 
This work evaluated the effectiveness of utilizing short fragments for OTU generation at 
different id thresholds compared to the complete 16S rRNA gene. Whole gene analysis 
may be effective for measuring diversity; however, the variable region source of these 
small fragments may require higher or lower id thresholds. How precisely should the 
pieces of this ‘genomic jigsaw’ be characterized and distinguished? Two algorithms, 
UCLUST and CD-HIT-EST, were used to cluster complete 16S rRNA sequences, as well 
as fragments spanning the V1-3 and V3-5 regions due to their widespread use in human 
microbiome research. These sequences were obtained from SILVA’s Living-Tree-Project 
(LTP) database. These clusters were produced at several id thresholds to evaluate how 
closely fragment clusters would resemble those obtained using complete genes. It was 
revealed that clustering small fragments, as well as fragment position, impacts OTU 
generation. However, results have suggested more appropriate id thresholds for these 
fragments to perhaps help us better assemble this microbial jigsaw puzzle. Clustering at 
94% and 96% id for the V1-3 and V3-5 regions, respectively, generates similar results to 
whole gene clustering at 97%. 

  

 

 

 

 

 

 



	
   iii 

Acknowledgements 

I want to thank professor Gabriel Moreno-Hagelsieb (aka SuperGabo) for his help, 

patience and support during my two years in his lab. His ongoing support and guidance 

not only played a critical role in my research, it also enhanced my learning every step of 

the way and for that I’m forever grateful. I came to this field with no experience, but I 

will always appreciate his willingness to give this newbie a chance. I would also like to 

thank my committee members for their invaluable feedback: to Dr. Allison McDonald, 

you helped make me feel less nervous about public speaking, and to Dr. Tristan Long, 

you R a great professor, and made stats one of my favourite classes ever. A special thank 

you to the members of the Computational ConSequences lab, who have offered their 

support and made lab meetings something to look forward to. Of special note: Scott 

Dobson-Mitchell, thanks for the Ducks and Starbucks; and to my mom, Kathy Dobson, 

thank you for reading the whole thing, and being the best editor ever. 

 

 

 

 

 

 

 

 

 



	
   iv 

Table of Contents 

Abstract ............................................................................................................................. ii 
Acknowledgements .......................................................................................................... iii 
Table of Contents .............................................................................................................. iv 
1. Introduction ................................................................................................................ 1 

1.1. Looking at a new environment: the human microbiome ............................................. 1 
1.2. The species conundrum ................................................................................................... 3 
1.3. 16S rRNA and Operational Taxonomic Units (OTUs) ................................................ 6 
1.4. Bacterial identification using 16S rRNA V regions ...................................................... 9 
1.5. Research objectives and significance ........................................................................... 11 
1.6. Integrative nature: biology meets technology ............................................................. 13 

2. Genome Jigsaw: fragment evaluation .................................................................... 14 
2.1. Materials and methods .................................................................................................. 14 

2.1.1. Sequence data: SILVA 16S rRNA database ............................................................ 16 
2.1.2. Sequence clustering programs .................................................................................. 16 
2.1.3. CD-HIT-EST ............................................................................................................ 17 
2.1.4. UCLUST ................................................................................................................... 18 
2.1.5. Cluster analysis: ‘broken species’ and ‘contaminated clusters’ ............................... 19 
2.1.6. Statistics and graphics .............................................................................................. 20 

2.2. Results and discussion ................................................................................................... 21 
2.2.1. UCLUST fragment evaluation ................................................................................. 21 
2.2.2. CD-HIT-EST fragment evaluation ........................................................................... 24 
2.2.3. Fragment evaluation: conclusion .............................................................................. 27 

3. Genome Jigsaw: id threshold evaluation ............................................................... 29 
3.1. Materials and methods: id evaluation ......................................................................... 29 
3.2. Results and discussion ................................................................................................... 30 

3.2.1. UCLUST id threshold: evaluation ............................................................................ 30 
3.2.2. CD-HIT-EST id threshold evaluation ...................................................................... 34 
3.2.3. Identity evaluation: conclusion ................................................................................. 38 

4. Summary ................................................................................................................... 46 
References ........................................................................................................................ 47 
Appendix .......................................................................................................................... 55 
 
	
  
	
  
 



	
   1 

1. Introduction 

1.1. Looking at a new environment: the human microbiome 

A key part of genomic research includes characterizing microbial communities using 

sequencing technologies. These technologies give researchers the ability to sequence the 

genes of microbes present in different environments, providing a snapshot of the 

microbial diversity within these environments. Traditionally, microorganisms were 

isolated in pure culture and their genes sequenced to combine knowledge of physiology 

with underlying genetics (Sabree et al., 2009). While this provided new information for 

understanding these microbes, this also required studying them outside their natural 

environments. Microbes were removed from their natural surroundings, grown in 

isolation in artificial media at optimal conditions, essentially removing the context of the 

microbes (Sabree et al., 2009). This also limited study to cultivable microorganisms. 

Metagenomics involves the direct isolation and examination of DNA from an 

environment, rather than attempting to isolate a single organism in pure culture for 

further study (National Research Council, 2007). This allows researchers to study 

microbes at the population level, examining the genes and/or genomes present in an 

environment to aid in understanding the diversity of that environment. This also allows 

for the study of microorganisms that as of yet have not been cultivable (National 

Research Council, 2007).  

 Metagenomes can provide important information to numerous fields of research. 

For instance, microorganisms are responsible for many essential processes in soils, such 

as nutrient cycling, nitrogen fixation and suppressing disease in plant life (George et al., 
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2010). Metagenomics provides a means of studying the interactions of microbes and 

ecology of many diverse environments; aquatic systems, biofuel and environmental 

remediation are all fields of study that can, and have benefitted from metagenomic 

research (George et al., 2010; Li et al., 2009; National Research Council, 2007). An 

environment of particular interest today is the human microbiome. It is estimated that 

there are 10 times more bacteria than cells in the human body (Willey et al., 2011). 

Certain metabolic traits exhibited by humans are products of the activity of these 

bacterial communities, rather than the result of human evolution (Turnbaugh et al., 2007). 

Together, these bacterial communities comprise a bacterial genome that might partially 

dictate human genetic, metabolic and physiological diversity (Turnbaugh et al., 2007).  

Human microbial communities are associated with a variety of diseases, and 

relating the genotypes of microbial communities to the phenotypes expressed in human 

hosts is an emerging field with increasing importance in the management of human 

health (Kuczynski et al., 2012). For instance, Crohn’s disease (CD) is an inflammatory 

bowel disease that causes swelling and irritation of the human intestinal tract. While the 

definitive cause of CD is unknown, it is thought that CD is caused by abnormal responses 

of the immune system (Rosenfeld and Bressler, 2010). However, recent studies have 

shown that infectious bacteria may cause CD. Mycobacterium avium paratuberculosis is 

frequently associated with the inflammatory response observed in CD (Rosenfeld and 

Bressler, 2010). However, due to the difficult nature of isolating and growing M. avium 

paratuberculosis in culture, further studies need to be conducted to fully understand the 

relationship of this bacterium and CD (Rosenfeld and Bressler, 2010). To understand an 

ecosystem of bacteria, a method of determining what bacteria are present is needed. 
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Sequencing technologies may provide the long-needed bridge to span this gap, providing 

a culture-independent means of determining how many different species, and what 

species, are present in an environment. 

A recent advance in treating Clostridium difficile infections has also highlighted 

the importance of a cultivation-independent means of microbial community 

characterization. C. difficile infections are a frequent nosocomial illness (Rohlke and 

Stollman, 2012), causing diarrhea and often serious intestinal health problems, such as 

colitis (inflammation). Patients undergoing an antibiotic regime are at increased risk for 

infection, as antibiotics reduce normal intestinal flora and C. difficile can dominate in the 

intestine, resulting in illness. Recently, novel strains of antibiotic resistant C. difficile 

have been appearing, which has increased rates of infection in healthy individuals 

(Rohlke and Stollman, 2012). A new treatment method for C. difficile infections is fecal 

microbiota transplantation, which replenishes the natural flora of the protective colonic 

microbiome (Rohlke and Stollman, 2012). Essentially, samples of fecal bacterial are 

taken from a healthy individuals are transplanted to the recipient. Once reestablished via 

fecal transplantation, the protective colonic microbiome suppresses C. difficile alleviating 

symptoms and curing >90% of infected individuals (Rohlke and Stollman, 2012). 

Metagenomic analysis allows for the study of colonic microbiomes in healthy 

individuals, which can then be used instead of fecal transplantation. 

 

1.2. The species conundrum 

Sequencing technologies as a means of determining the diversity and identity of bacterial 

species on and within the body has major implications in human health management. By 
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sequencing the genes of these microbes, researchers could elucidate a link between 

bacterial genotype and human phenotype (Clayton et al., 2009; Kuczynski et al., 2012). 

However, there is no general consensus on what defines a species. The first working 

definition of  ‘species’ was Ernst Mayr’s Biological Species Concept (BSC), grouping 

organisms that can produce fertile offspring via mating (Cohan, 2002; de Queiroz, 2005). 

While popular, an obvious difficulty arises when considering bacteria; how should 

species be designated for asexual organisms?  

 Controversy arises when attempting to apply the term species to bacteria because 

one must decide what set of criteria to use to define a bacterial species. Changing these 

criteria can group organisms in vastly different ways, with the end result being an 

arbitrary collection of organisms based on cutoffs that can generate ambiguous 

boundaries (Doolittle and Zhaxybayeva, 2009). This controversy is not limited to 

prokaryotic species designation (the BSC is inapplicable to some vertebrates, 

invertebrates, fungi, etc.), and, as a result, numerous species concepts have been 

developed over time to try and ‘solve’ this species conundrum (Doolittle and 

Zhaxybayeva, 2009).  

 While some researchers believe that there is a single concept that, once found, 

will be applicable to all organisms, others believe that it must be accepted that different 

concepts will have to be used for different organisms (Mishler and Brandon, 1987). 

Theories on the genetic and/or ecological processes contributing to the rise of separate 

groups of similar organisms have been used to determine how individuals could/should 

be categorized, and as a result numerous species concepts have been suggested (Doolittle 

and Zhaxybayeva, 2009). For instance, the ecological concept (organisms adapted to the 
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same niche), phenetic concept (organisms are phenotypically similar, looking different 

from other), and phylogenetic concept (favors evolutionary relationships among 

organisms, examining factors such as a common ancestor) are just a few examples of 

alternative concepts (de Queiroz, 2005). Many bacteria today have been named for their 

human interest, for instance Neisseria meningitidis and Mycobacterium tuberculosis are 

named after diseases they cause (Gevers et al., 2005). While useful, this categorization 

logic collapses as other factors are considered; not all bacteria have a direct relationship 

with humans that can be used for categorization.  

 Part of defining ‘species’ in applicable terms to bacteria involves theorizing how 

speciation might occur in bacterial populations. How do new species arise over time? 

Perhaps evolutionary novelties provided through mutant alleles could provide the means 

of generating novel bacterial species; favored mutant alleles that use a niche’s resources 

more effectively can sweep to fixation, driving diversity (Cohan and Perry, 2007; 

Doolittle and Papke, 2006; Doolittle, 2012). However, while this suggests focusing on 

lineages to assign species and generating trees of life, bacteria frequently acquire new 

genetic material through horizontal gene transfer, which suggests the notion of a web of 

life, rather than a tree of life. A single population of bacteria could be divided into two 

subpopulations through the acquisition of a novel plasmid, which could for instance 

confer pathogenicity (Doolittle and Papke, 2006). However, certain critical genes have 

been found to exhibit low levels of horizontal gene transfer, in theory making the 

majority of variations in these genes the result of neutral substitutions (Doolittle and 

Papke, 2006), which could make differences in the gene a more accurate measure of time 

and therefore be used to distinguish species (Janda and Abbot, 2007).  
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 While advances in assaying phenotypes have aided in generating bacterial 

phenotypic clusters as a means of separating species, genomic approaches have gained an 

appeal for grouping bacteria (Cohan, 2002). Advances in molecular technology led to a 

new ‘gold standard’ in species identification, that overall genomic similarity could play a 

role in species assignment, with fine scale differentiation using phenotypic differences 

(Doolittle and Zhaxybayeva, 2009). This gold standard became the widely accepted 

phylogenetic species concept, that bacterial strains with approximately 70% or greater 

DNA–DNA hybridization would constitute a bacterial ‘species,’ since at this level there 

is a high degree of phenetic similarity (Rosselló-Mora, 2006; Stackebrandt et al., 2002; 

Stackebrandt and Goebel, 1994). However, due to cost and time constraints, 

hybridization techniques are not an effective means for identifying species in the field.  

 

1.3. 16S rRNA and Operational Taxonomic Units (OTUs) 

As an alternative to DNA–DNA hybridization, certain molecular marker genes can be 

examined. A potential molecular marker gene should be present in all bacteria being 

studied, and have a function that has not changed over time, suggesting that random 

changes in its sequence provide a more accurate measure of time and possibly evolution 

(Janda and Abbott, 2007, Ueda et al., 1999). Target amplicon studies are a DNA 

sequencing technique used to create multiple copies (amplicons) of a specific region of a 

gene (Bybee et al., 2011). From a sample of bacterial genomes, target amplicon studies 

can generate multiple amplicons of variable regions of a specific molecular marker gene. 

The degree of [evolutionary] change in these variable regions can be assessed to identify 
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and define the taxonomic relationships between the bacteria in a sample (Bybee et al., 

2011). 

 The small ribosomal subunit (16S rRNA) gene is a commonly used molecular 

marker gene in many studies, including those of the human microbiome. Found in all 

prokaryotes, the transcription of this gene produces an rRNA that makes up part of the 

ribosome. The ribosome is made up of a large and a small subunit, which together 

translate mRNA into proteins; the16S rRNA gene produces the rRNA of the small 

subunit of the ribosome. In addition to its essential function, this gene is approximately 

1500 base pairs (bp) long, making it faster and cheaper to sequence than it would cost to 

sequence the 23S rRNA gene (Mizrahi-Man et al., 2013). It also contains nine variable 

regions interspersed along the gene; these regions vary between bacteria and are used to 

separate bacteria into species (see Figure 1.1A for diagram of 16S rRNA with variable 

regions highlighted).  

 

 

Figure 1.1: The 16S rRNA gene. Conserved regions of the 16S rRNA gene are violet and 
variable regions are numbered from V1 to V9. Illustration (A) shows the whole gene with 
all nine variable regions. Illustrations (B) and (C) represent fragments spanning the V1-3 
and V3-5 regions respectively. These regions are sequenced in such studies as the Human 
Microbiome Project. 

 16S rRNA has a complex and highly conserved secondary structure that is 

preserved among bacteria, much more so than the primary sequence, due to their critical 

V1 V6 V7 V8 V9 

100 bp 

V2 V3 V4 V5 

V1 V2 V3 

V3 V4 V5 

A 

B 

C
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biological functions (Gardner et al., 2005; Mizrahi-Man et al., 2013; Smit, et al., 2007). 

Functionality of this gene is highly dependent on the secondary structure, as this dictates 

how 16S rRNA interacts with ribosomal proteins (Kitahara et al., 2012). Figure 1.2 

illustrates the general stem and loop appearance of the 16S rRNA secondary structure; 

variable regions are found in both stems and loops (helices), however it has been noted 

that changes in the primary sequence of these variable regions do not greatly change the 

overall structure of 16S rRNA (Van de Peer et al., 1996; Marchandin et al., 2003).  

 

 

Figure 1.2 illustrates the general secondary structure of 16S rRNA, with variable regions 
highlighted in purple (adapted from Van de Peer, 1996; Tortoli, 2003).  
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 Previous studies have shown that a 70% or greater DNA–DNA hybridization 

correlates with 16S rRNA gene sequence similarity (id) equal to or greater than 97% 

(Doolittle and Zhaxybayeva, 2009; Gevers et al., 2005; Janda and Abbott, 2007). This 

correlation is used to generate Operational Taxonomic Units (OTUs), 16S rRNA 

sequences grouped by a defined level of similarity, with each OTU being used as a proxy 

for a single ‘species.’ Using the term OTU obviates the controversy of using the 

“species” term. 

 For identification purposes, 16S rRNA sequences with 97% id or greater are 

assigned to the same OTU (representing a ‘species’ as defined by 97% sequence 

identity), while sequences with >95% and >85% sequence identity are assigned to the 

same genus and phylum respectively (Janda and Abbott, 2007; Schloss and Handelsman, 

2005; Stackebrandt and Goebel, 1994). 

 

1.4. Bacterial identification using 16S rRNA V regions 

High-throughput sequencing technologies describe a range of technologies that can 

sequence DNA orders of magnitude faster and more cheaply than older technologies 

(Rodríguez-Ezpeleta et al., 2011). With the advent of high-throughput, or next generation 

sequencing technologies (NGS), short DNA fragments can be quickly sequenced and 

compared to reference sequences from databases to identify the bacterium associated 

with the fragment (Janda and Abbott, 2007). However, these new technologies sequence 

shorter fragments of the gene; the Illumina MiSeq sequencer can generate a maximum 

read length of 250bp (very recently 300bp), 454 sequencing technologies can produce 

fragments averaging 400-450bp long (recent models have attempted fragments up to 
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800bp), while older technologies such as the Sanger Method can generate much larger 

sequences, upwards of 1000bp long (Gevers et al., 2012). Studies of various bacterial 

communities use these new technologies for target amplicon studies of the 16S rRNA 

gene (Chakravorty et al., 2007). While earlier studies sequenced the whole 16S rRNA 

gene, there has been a shift towards using the short sequence reads generated from new 

high-throughput sequencing technologies (Mizrahi-Man et al., 2013). There are many 

advantages to this approach, as the new technologies are faster and cheaper. However, at 

present there is a lack of consensus over the most effective variable (V) region of the 16S 

rRNA gene to sequence, with many studies opting to examine more than one region as no 

single region has been shown to optimally differentiate among bacteria (Chakravorty et 

al., 2007; Mizrahi-Man et al., 2013). Bacterial species could show diverse levels of 

variation in the nine V regions of the gene, and an important step in 16S rRNA gene 

sequencing includes deciding what region(s) to sequence, as classification bias 

(depending on the V region used) has been previously observed (Li et al., 2009; Vilo and 

Dong, 2012) 

Despite the aforementioned limitations, certain V regions of the 16S rRNA gene 

have been found to be useful in identifying a wide range of bacteria, and studies tend to 

examine more than one region in an attempt to increase the detection of sequence 

diversity (Chakravorty et al., 2007). Amplicons spanning V regions 1, 2 and 3 (denoted 

V1-3) and regions 3, 4 and 5 (denoted V3-5), are among the most commonly used in 

studies using this gene (see Figure 1.1B and 1.1C for diagram of 16S rRNA gene 

fragments spanning V1-3 and V3-5 respectively), particularly in studies of the human 

microbiome (Gevers et al., 2012; Huse et al., 2012). The V1-3 region is approximately 
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428bp long and the V3-5 region is approximately 446bp long, putting these two regions 

within the limits of NGS technologies.  

1.5. Research objectives and significance 

This project seeks to evaluate how effective 16S rRNA fragments are in representing 

diversity in comparison to whole 16S rRNA sequences, and to determine whether the 

variable region source of these small fragments may require higher or lower sequence 

similarity (id) thresholds for accurate (comparable to whole-gene sequence) 

measurements. Figure 1.3 provides an objectives flowchart. 

 Whole 16S rRNA gene analysis clustered at 97% id have been used for measuring 

diversity (Stackebrandt and Goebel, 1994). However, sequence fragments spanning one 

or more variable regions, such as V1-3 and V3-5, may require different thresholds to 

produce OTUs comparable to those produced with whole gene sequences, and new 

values may need to be suggested. In doing so, suggested thresholds should produce OTU 

clusters closer to what whole-gene clusters would provide. This would also allow for 

studies examining the same bacterial communities with different variable regions to have 

comparable results. Chapter 2 gives an overview of how whole-gene sequences versus 

gene-fragment sequences impact OTU generation. Chapter 3 will focus on suggesting 

new id thresholds for gene-fragment sequences (spanning V1-3 and V3-5).  
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Figure 1.3: Flowchart summarizing how objectives will be achieved; A. depicts initial 
whole-gene clustering at 97% id; B. depicts clustering gene-fragments spanning variable 
regions one through 3 (V1-3) and three through five (V3-5); C. depicts graphically 
determining alternative id thresholds (x and y) for the V1-3 and V3-5 regions 
respectively through comparison to whole-gene clustering at 97% id; D. depicts 
comparing the results of A., B. and C. to understand how gene-fragment region and id 
threshold affects OTU generation and composition. 

A. Cluster whole 16S genes at 97% id 
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1.6. Integrative nature: biology meets technology 

Computational biology integrates biology and computer science (computational analyses) 

to study biological data sets. These data sets include the vast number of DNA sequences 

generated from high-throughput sequencing technologies. Computational methods are 

used to examine data generated by molecular analyses and identify patterns.  

 For instance, computational methods aid in ascertaining the taxonomic 

relationships between large sequencing datasets of bacterial genomes from sample sites 

of the human microbiome. While computational methods require molecular data to 

analyze, molecular methods, such as genome sequencing, can in turn be influenced by the 

findings of computational analyses. For example, determining whether short sequence 

fragments are of an adequate length to identify bacterial species could potentially alter 

how molecular methods are used to examine sample sites. This illustrates how 

computational and molecular methods are complementary.  

 While bioinformatics can be considered multidisciplinary, the wide variety of 

settings in which it can be used, such as studying human biological systems, also 

demonstrates its integrative nature. High-throughput sequencing technologies can be used 

to examine the microbial ecology of soil and marine environments, and computational 

methods are being used to examine the relationships among and between the genomic 

data generated by these studies (Gilbert and Dupont, 2011). Computational studies can 

examine multiple bacterial species and/or genera across a diverse range of environments. 
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2. Genome Jigsaw: fragment evaluation 

Current methodology for characterizing bacterial communities involves sequencing short 

fragments of the ubiquitous 16S rRNA gene, and comparing these fragments to reference 

sequences in databases to identify the bacteria present (Bybee et al., 2011; Janda and 

Abbott, 2007).  However, while whole 16S rRNA gene analysis may be effective for 

measuring diversity, a leap was made to use the same clustering 97% id threshold to 

group whole 16S rRNA gene sequences and gene fragments. This chapter will focus on 

an evaluation of how well 16S rRNA fragments represent diversity in comparison to 

whole 16S rRNA sequences when clustered at the same identity threshold.  Since whole-

gene 16S rRNA sequences clustered at 97% id has historically been considered the 

‘standard,’ then gene-fragments spanning the widely used V1-3 and V3-5 regions should 

produce similar results. The null hypothesis is that the gene-fragments will produce 

clustering results that do not deviate significantly from results produced from whole-gene 

sequences.  

 

2.1. Materials and methods 

The methodology for this study is outlined in Figure 2.1. Bacterial sequences to be 

clustered were taken from the SILVA Living-Tree Project comprehensive ribosomal 

database. Whole gene sequences were used, as well as gene-fragments created by 

trimming whole gene sequences to span the V1-3 and V3-5 regions. The V1-3 region was 

identified as the region between 69 – 497 nucleotides in the aligned 16S rRNA 

sequences, while the V3-5 as the region between 433 – 879 nucleotides as suggested by 
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Vilo and Dong, 2012 and Chakravorty et al., 2007. For each gene region (whole-gene, 

V1-3 and V3-5), a PYTHON program was written to cluster sequences into OTUs using 

clustering algorithms UCLUST and CD-HIT-EST at 97% id. These clustering results 

were analyzed (with a PYTHON program) by determining the number of ‘broken 

species’ and ‘contaminated clusters’ generated by each gene region. Results were 

analyzed and visualized using the program R to illustrate the differences in OTU 

generation (i.e. the number of clusters produced) by each gene region (and by clustering 

algorithm). I will now elaborate on each step of the methodology. 

 
 
Figure 2.1: Flowchart of methodology followed for chapter 2. Full-length (or near full 
length) bacterial 16S rRNA gene sequences were taken from the SILVA LTP database. 
These sequences were analyzed for three gene regions: spanning the whole-gene, and 
then trimmed to span the V1-3 and V3-5 regions. A PYTHON program was used to 
cluster each gene region using clustering algorithms UCLUST and CD-HIT-EST (with % 
id specified). A second PYTHON program analyzed numerous aspects of the OTUs 
generated by each gene region. Finally, statistics were produced using the statistical 
computing program R. 
 

SILVA LTP Sequences 

Whole gene seqs. V1-3 amplicon seqs. V3-5 amplicon seqs. 

PYTHON program 
(clustering) 

UCLUST CD-HIT-EST 

PYTHON program 
(analysis) 

Statistics & graphics 
(R, etc.) 
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2.1.1. Sequence data: SILVA 16S rRNA database 

In this study, the SILVA ‘All-Species Living Tree’ (LTP) project database of 16S rRNA 

datasets was used for clustering and OTU generation. Specifically, the LTP_release_108 

was used. This release was available at <http://www.arb-

silva.de/no_cache/download/archive/living_tree/>. The LTP was created with the goal of 

creating a reference dataset of 16S rRNA sequences spanning all sequenced type strains 

of classified bacteria (Quast et al., 2013). Therefore, the LTP only contains cultivated 

sequences of bacteria, and can provide a comparison between sequence clustering at a 

user designated identity level (i.e. 97% id) and the actual ‘known’ species of the 

sequence. SILVA uses the term species to refer to bacteria named according to the 

Bacteriological Code and appearing in the validation and/or notification lists of the 

International Journal of Systematic and Evolutionary Microbiology (IJSEM). For the 

remainder of this document, species will be italicized and will refer to how SILVA 

utilizes the term. The LTP contains approximately 9700 16S rRNA sequences, all at least 

1200 bp long. This length ensures that all sequences in the database cover the V1-3 

region and V3-5 region, and can be trimmed to cover these regions for further clustering.  

 

2.1.2. Sequence clustering programs 

PYTHON is a programming language that is known for being easy to learn and use, as 

well as for being multi-platform; it can be used with many operating systems (Bassi, 

2007). PYTHON was used to write programs that utilize two clustering algorithms to sort 

bacterial sequences, in additional to other programs that helped perform OTU analysis. 

Many clustering programs exist which allow users to group gene sequences at user-
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defined sequence similarity (id) thresholds to generate OTUs. Two prominent and widely 

used program suites are CD-HIT and USEARCH, which provide sequence-clustering 

algorithms, CD-HIT-EST and UCLUST. These two algorithms were used to cluster 

whole-gene and gene-fragment sequences at 97% id. 

2.1.3. CD-HIT-EST 

Originally a protein clustering program (CD-HIT), CD-HIT-EST is a variant of the 

original CD-HIT algorithm and uses a greedy incremental algorithm to cluster RNA and 

DNA sequences (Li et al., 2001). Sequences are first ordered by decreasing length, with 

the longest sequence becoming the representative sequence of the first cluster. Each 

subsequent sequence is then compared to this representative using a short word filtering 

system. Short word filtering reduces the number of pairwise alignments that must be 

made between two sequences, which greatly speeds up the process of sequence 

comparison (Li et al., 2006). At varying levels of sequence identity, both sequences 

should have at least a certain amount of dinucleotides, trinucleotides, etc., in common. 

CD-HIT-EST uses these common nucleotides, ‘short words,’ to compare sequences. A 

sequence will become a new cluster representative if it does not have enough words in 

common with a previous cluster representative. Short word size varies depending on the 

level of sequence identity at which a user is clustering. CD-HIT-EST calculates sequence 

identity as the number of identical nucleotides in the alignment divided by the length of 

the shorter sequence. Sequence gaps are not counted as differences (Li et al., 2006).  

 A drawback of greedy incremental sorting is that sequences are sorted into the 

first cluster that meets the set requirements, not necessarily the best match (a cluster with 

a higher percent sequence similarity). However, a greedy clustering algorithm has been 
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shown to provide good results with vastly improved clustering speeds (Li et al., 2012). 

Additionally, CD-HIT provides a recommended procedure for iterated runs to reduce 

errors that can be caused by one-step greedy clustering. A basic CD-HIT-EST command 

would be: 

cd-hit-est –i filein –o fileout –c 0.97 –n 8  

 Where: –i is used to indicate the input file name, –o to indicate the output file 

name, –c to indicate the sequence identity threshold (here at 97%) and –n is used to 

indicate the word size.   

2.1.4. UCLUST 

UCLUST comes with two variants, cluster_fast and cluster_smallmem. The 

former works in a similar fashion to CD-HIT-EST, utilizing a greedy algorithm to sort 

sequences by length and a short word filtering system to cluster them (Edgar, 2010). The 

cluster_smallmem variant does not sort the sequences; sequences are clustered 

based on the order of the input file. UCLUST has the option of addressing the possible 

drawback of greedy algorithms by providing the option of constructing consensus 

sequences for each cluster using the –consout command, which allows the user to use 

the dominant/most abundant sequence as the cluster representative (Edgar, 2010). This 

would aid in ensuring sequences with the greatest sequence similarity end up in the OTU 

(not just one above the given threshold). UCLUST defines sequence identity as the 

number of identities (an alignment column with identical nucleotides) divided by the 

number of columns (Edgar, 2010). Internal sequence gaps are included in column counts, 

which differs from the identity definition provided by CD-HIT-EST. A basic UCLUST 

command would be: 
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usearch7 –cluster_smallmem filein.txt –id 0.97 –uc 

clusterfile.uc –centroids centroidfile.fasta  

 Where: –id is used to indicate the sequence identity threshold (here at 97%), –

uc requests the production of a cluster output file, and –centroids produces a 

representatives fasta file. 

2.1.5. Cluster analysis: ‘broken species’ and ‘contaminated clusters’ 

PYTHON was used to write a script to examine the differences between OTUs generated 

using whole 16S rRNA genes and those using gene-fragments spanning V1-3 and V3-5. 

Variables that were examined included: how many total OTUs were generated, how these 

OTUs differ depending on the gene region used for clustering, and the number of ‘broken 

species’ and ‘contaminated clusters’ produced.  

 Figure 2.2 illustrates the broken species concept; broken species counts show how 

many bacterial species (defined and provided by the SILVA LTP database) have been 

placed into two or more different OTUs – therefore ‘breaking’ the species into different 

groups.  Figure 2.3 illustrates the contaminated clusters concept; counts of contaminated 

clusters show how many OTUs contain two or more different species. OTUs generated at 

97% id should in theory contain only one species; therefore, this value indicates the 

effectiveness of the gene region (either whole, V1-3 or V3-5) at accurately separating 

different species into different OTUs. 
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Figure 2.2: An analogy to explain the broken species concept; OTUs can be considered 
‘boxes,’ with each housing one species. Before clustering (2.2A), it’s expected that the 
goose would go into one box (OTU), and the two ducks would go into the other, since 
they are from the same species. However, a species can be ‘broken’ (2.2B) if, after 
clustering, not all the organisms from the same species end up in the same box.  

Figure 2.3: A continuation of the goose and duck box analogy, a box (OTU) should 
contain only one species (2.3A). However, a box can be ‘contaminated’ by containing 
more than one species (2.3B). 
 

2.1.6. Statistics and graphics 

Statistics were produced using the statistical computing program R. Chi-square tests were 

used to detect statistically significant (p < 0.05) deviances in broken species and 

contaminated cluster counts between whole-gene clustering and gene-fragment clustering 

(Fowler et al., 1998). Graphs were produced using R’s ggplot2 libraries (R Core Team, 

2014; Wickham, 2009). 

(A)$Before$OTU$genera0on $ $ $ $$$$$$$$$$$(B)$A1er$OTU$genera0on$$
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Duck off 
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2.2. Results and discussion 

Results for each clustering algorithm will be presented separately, starting with UCLUST 

and then CD-HIT-EST. This will be followed by an evaluation of using gene fragments 

when clustering 16S rRNA gene sequences. 

2.2.1. UCLUST fragment evaluation 

Figure 2.4 provides an overview of the number of OTUs generated by whole-gene and 

gene-fragment (V1-3 and V3-5) clustering at 97% id. Clustering whole 16S rRNA 

sequences at this id threshold generated 5427 OTUs in total. Of these, 3767 (~69%) were 

‘singleton’ OTUs, containing a single sequence, with the remaining 1660 OTUs (~31%) 

containing two or more sequences. 

 
 
Figure 2.4: Illustration of how whole-gene sequences and gene-fragment sequences 
spanning V1-3 and V3-5 were clustered into OTUs by UCLUST at 97% id. ‘Total’ 
represents a count of the total OTUs (clusters) produced, ‘Singletons’ represents a count 
of OTUs contained a single sequence, and ‘>1 Sequence’ represents a count of OTUs 
containing more than 1 sequence.   
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 At 97% id, the V1-3 region generated 5929 OTUs in total, and the V3-5 region at 

97% id generated 3911 OTUs in total (refer to Table A.1 in Appendix for Singleton and 

>1 Sequence values). To further understand and compare these differences in OTU 

generation, the number of broken species and contaminated clusters were calculated. As 

Figure 2.5A shows, whole gene and gene fragment sequences (spanning V1-3 and V3-5) 

generated similar counts of broken species; approximately 80% of all species remained 

whole and ‘unbroken’ in a single cluster. (See Tables A.2 and A.3 for broken species 

counts and percentages respectively). There was no significant deviance in broken 

species counts between whole-gene sequences and the V1-3 region, and between whole-

gene sequences and the V3-5 region (V1-3: X2 = 0.563, df = 14, p > 0.05, V3-5: X2 = 

1.2381, df = 14, p > 0.05).  

 As Figure 2.5B illustrates, an examination of the number of contaminated clusters 

produced by whole-gene clustering found that approximately 70% of OTUs contained a 

single species. Gene fragment sequences spanning V1-3 created slightly fewer 

contaminated clusters, with approximately 73% of OTUs containing a single species. The 

gene fragment spanning V3-5 produced the greatest contamination; over 54% of OTUs 

generated by this region were contaminated. (See Tables A.4 and A.5 for contaminated 

OTU counts and percentages respectively). A chi-square test found a significant 

difference in the number of contaminated clusters produced by the gene fragment 

sequences spanning the V1-3 region in comparison to the expected amounts produced by 

the whole gene sequences (X2 = 27.0241, df = 9, p = 0.001386). This was also found for 

the V3-5 region (X2 = 177.887, df = 9, p < 2.2e-16). 
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Figure 2.5: Using the different gene regions, all species were clustered (6246 in total) at 
97% id by UCLUST; (2.5A) shows the percentage of species that were clustered into a 
single OTU. The first set of bars represents the percentage of total species that were not 
broken into different OTUs (~80% for all three gene regions), the second set of bars 
represents the percentage broken into two clusters, and so on. (2.5B) shows what 
percentage of the total OTUs generated by each gene region that are contaminated 
(containing more than one species). The first set of bars represent OTUs that are not 
contaminated, containing only one species. The second set of bars represents the percent 
of OTUs generated that contained two different species, and so on.     
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2.2.2. CD-HIT-EST fragment evaluation 

The V1-3 region generated the most OTUs, followed by whole-gene sequences and then 

the V3-5 region. Clustering the V1-3 region (Figure 2.6) produced 7519 OTUs (6391 

singletons, 1128 OTUs with >1 sequence). Clustering whole 16S rRNA sequences at 

97% id generated 4978 OTUs in total (Figure 2.6). Clustering the V3-5 region (Figure 

2.6) at 97% id produced 5932 total OTUs (refer to Table A.6 for Singleton and >1 

Sequence counts). 

 

 
 
Figure 2.6: Illustration of how whole-gene sequences and gene-fragment sequences 
spanning V1-3 and V3-5 were clustered into OTUs by CD-HIT-EST at 97% id. ‘Total’ 
represents a count of the total OTUs (clusters) produced, ‘Singletons’ represents a count 
of OTUs contained a single sequence, and ‘>1 Sequence’ represents a count of OTUs 
containing more than 1 sequence.   
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similar amounts of broken species; approximately 80% of all species remained whole and 

‘unbroken’ in a single cluster (refer to Tables A.7 and A.8 for broken species count and 

percentages). These results are also similar to those produced by UCLUST. There was no 

significant difference in broken species between whole gene sequences and the V1-3 and 

V3-5 regions (V1-3: X2 = 1.0634, df = 14, p > 0.05, V3-5: X2 = 1.1276, df = 14, p > 

0.05). 

  For the number of contaminated clusters, it was found that approximately 71% of 

OTUs (3528 out of 4978) generated by clustering whole-gene sequences contained a 

single species. As Figure 2.7B illustrates, the gene fragment sequences spanning V1-3 

created fewer contaminated clusters, with approximately 85% of OTUs generated by this 

gene region containing a single species (6428 OTUs out of 7519). Refer to Tables A.9 

and A.10 for more contaminated clusters values and percentages. The gene fragment 

spanning V3-5 produced the greatest contamination, with approximately 53% of OTUs 

(4507 out of 5932) containing a single species. A chi square test found that there was a 

significant difference in the number of contaminated clusters produced by the gene 

fragment sequences spanning the V1-3 region in comparison to the expected amounts 

produced by the whole gene sequences (X2 = 470.2228, df = 9, p < 2.2e-16). This was 

also found for the V3-5 region (X2 = 49.7968, df = 9, p = 1.176e-07). 
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Figure 2.7: Using the different gene regions, all species were clustered (6246 in total) at 
97% id by CD-HIT-EST; (2.7A) shows the percentage of species that were either 
clustered into a single OTU, ‘broken’ into two OTUs, and so on. The first set of bars 
represents the percentage of total species that were not broken into different OTUs 
(~80% for all three gene regions), the second set of bars represents the percentage broken 
into two OTUs, and so on. (2.7B) shows what percentage of the total OTUs generated by 
each gene region that are contaminated (containing more than one species). The first set 
of bars represent OTUs that are not contaminated, containing only one species. The 
second set of bars represents the percent of OTUs generated that contained two different 
species, and so on.     
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2.2.3. Fragment evaluation: conclusion 

Clustering small fragments, as well as fragment position (i.e. fragments spanning V1-3 or 

V3-5), impacts OTU generation. Except for the V3-5 region clustered by UCLUST, all 

clustering of gene-fragments resulted in more OTUs being generated than whole-gene 

clusters (see Figures 2.5A and 2.7A). As reported in section 2.2.1 and 2.2.2, there was no 

significant difference in how many broken species were produced by the gene-fragments 

versus whole-gene sequences; all gene regions had a similar pattern, with approximately 

80% of species remaining unbroken, approximately 10-11% being broken into two 

clusters, and the remaining 10% being broken into three or more clusters. However, 

significant difference was seen in the number of contaminated clusters produced for all 

three gene regions when using either UCLUST or CD-HIT-EST. This rejects the null 

hypothesis, and an examination of the contaminated clusters produced by the gene-

fragments suggests the impact of this difference. Following the same pattern seen with 

the total OTUs produced (Figure 2.6), only the V3-5 region, when clustered by UCLUST, 

had a greater percent of generated OTUs be contaminated by two or more species than 

whole-gene clustering (see Tables A.6 and A.10 for contaminated cluster percentages). 

 Interestingly, the V1-3 region showed the lowest incidence of contaminated 

clusters; when clustered with UCLUST, approximately 73% were not contaminated 

(whole-gene using UCLUST was ~70%), and when clustered with CD-HIT-EST, 85% 

were not contaminated (whole-gene using CD-HIT-EST was ~71%). Based on these 

results, it would appear that these fragments are not only as effective as the whole-gene 

region in measuring diversity; they may be more effective. As previously mentioned, 

shorter gene-fragments are faster and cheaper to sequence; these findings support the use 
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of gene-fragments in 16S rRNA clustering, which has important implications in genomic 

research. 

 However, as whole-gene clustering at 97% id has traditionally been used and 

found to be effective in measuring diversity in microbial environments, finding id 

thresholds for these gene-fragments that generate OTUs with similar results to whole-

gene clustering would be valuable. Chapter 3 covers a determination and examination of 

alternative id thresholds for these regions. If found to be equivalent in their OTU 

production, this would mean that different studies utilizing different gene-fragments 

when analyzing the same environment could be compared if using the id threshold 

appropriate for said gene-fragment despite the difference in gene region use. 
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3. Genome Jigsaw: id threshold evaluation 

As mentioned previously, it has been assumed that short fragments of the 16S rRNA gene 

can be clustered at 97% id to produce similar results to whole-gene sequences. As 

discussed in chapter 2, short gene regions might require a new threshold to generate 

results that are more representative of those obtained from whole-gene clustering. This 

chapter will focus on an evaluation of alternative id thresholds so that 16S rRNA 

fragments could be more representative of whole 16S rRNA sequence clustering. The 

null hypothesis is that the gene-fragments will produce clustering results at their new 

respective id thresholds that do not deviate significantly from results produced form 

whole-gene sequences at 97% id. I will now elaborate on the methodology.  

 

3.1. Materials and methods: id evaluation 

The methodology for this chapter is outlined in Figure 3.1. The same sequence database 

as outlined in section 2.1.1 was used, as were the same clustering algorithms described in 

section 2.1.2. However, instead of just clustering at 97% id, all three gene regions were 

clustered over a range of id thresholds starting at 85% id to form a baseline, and then 

spanning 90-99%, at 1% increments. The total number of OTUs generated at each of 

these % id increments were then plotted to graphically propose new id thresholds for 

these two variable regions that could be equivalent to whole-gene clustering at 97% id. A 

graph of this concept can be seen in Figure 1.3C. Once new id thresholds were 

determined for both gene-fragments (for both clustering algorithms), the same steps as 

outlined in sections 2.1.3 and 2.1.4 were followed.  
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Figure 3.1: Flowchart of methodology followed for chapter 3. The same sequences and 
gene-fragments used in chapter 2 were used again, and clustered at varied % id 
thresholds. The total OTUs generated from each % id was plotted, and new id thresholds 
were determined from this plot. Numerous aspects of the OTUs generated by these new 
id thresholds were examined for each gene-fragment; total OTUs produced, broken 
species counts, contaminated cluster counts, etc. Finally, statistics and graphs were 
produced using R.  
 
 
3.2. Results and discussion 

Results for each clustering algorithm will be presented separately starting with UCLUST 

and then CD-HIT-EST. This will be followed by an evaluation of using the proposed 

alternative id thresholds when clustering 16S rRNA gene sequences. 

3.2.1. UCLUST id threshold: evaluation 

Figure 3.2 is a plot of the total OTUs produced by whole-gene and gene-fragments 

(spanning V1-3 and V3-5) clustered across a range of id thresholds. From this plot, it 
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appears that clustering gene-fragments spanning the V1-3 region at 96.5%, and gene-

fragments spanning the V3-5 region at 98.5% produce similar amounts of OTUs; 5362 

and 5438 total OTUs for the V1-3 and V3-5 regions respectively versus 5427 OTUs for 

whole-genes at 97% id (values listed in Table A.1).  

 

 
Figure 3.2: Plot of total OTUs generated by UCLUST using whole-gene sequences, V1-3 
sequences and V3-5 sequences across a range of % id values. Solid red lines have been 
used to highlight where the V1-3 and V3-5 curves line up with the whole-gene curve at 
97% id. Dashed red lines (matching the dashed lines used for each V region curve), show 
what % id on the x-axis appears to produce results similar to whole-gene clustering at 
97% id.  
 
 An analysis of the broken species was conducted comparing whole-gene 

sequences clustered at 97% id versus the gene-fragments clustered at their new respective 

thresholds (V1-3 at 96.5%, V3-5 at 98.5%). As Figure 3.3A shows, results were similar 

to those found in section 2.2.1, with all three gene regions showing a similar trend in how 
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species were broken; approximately 80% of species were not broken; 11% were broken 

into two different OTUs; and the remaining 10% of species were broken into three or 

more different OTUs (values listed in Table A.2, percentages in Table A.3). There was no 

significant deviance in broken species between whole gene sequences and the V1-3 and 

V3-5 regions (V1-3: X2 = 0.563, df = 14, p > 0.05; V3-5: X2 = 1.2381, df = 14, p > 0.05). 

 Figure 3.3B illustrates how the gene-fragments, at their new respective id 

thresholds, contaminated clusters in comparison to whole-gene sequences clustered at 

97% id. Interestingly, in contrast to the results in section 2.2.1 (UCLUST fragment 

evaluation), the V3-5 region produced the fewest contaminated clusters, followed by the 

V1-3 region (refer to Table A.9 for contaminated cluster counts). A chi square test found 

that there was no significant deviance in the number of contaminated clusters produced 

by the gene fragment sequences spanning the V1-3 region in comparison to the expected 

amounts produced by the whole gene sequences (X2 = 10.1254, df = 9, p = 0.3404). This 

was also found for the V3-5 region (X2 = 5.4364, df = 9, p = 0.7947).  

 Additionally, an examination of the differences between the OTUs generated by 

these variable regions at new id thresholds and whole-gene sequences at 97% id was 

carried out. The V1-3 region generated 5929 OTUs when clustered at 97% id by 

UCLUST. Approximately 60% of these OTUs (3566) were found to be identical (i.e. 

containing the same collection of sequences within each OTU) to OTUs generated by 

whole-gene sequences, and approximately 40% (2363 OTUs) were unique. When the V1-

3 region was clustered at 96.5% id, 5362 OTUs were generated, and approximately 62% 

of these were identical to those produced by whole-gene sequences clustered at 97%. 
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Figure 3.3: Whole-gene sequences and gene-fragments spanning V1-3 and V3-5 were 
clustered using UCLUST at 97%, 96.5% and 98.3% id respectively. (3.3A) shows the 
percentage of total species (6246) that were either clustered into a single OTU, ‘broken’ 
into two OTUs, and so on. The first set of bars represents the percentage of total species 
that were not broken into different OTUs (~80% for all three gene regions), the second 
set of bars represents the percentage broken into two clusters, and so on. (3.2B) Shows 
what percentage of the total OTUs generated by each gene region are contaminated 
(containing more than one species). The first set of bars represent OTUs that are not 
contaminated, containing only one species. The second set of bars represents the percent 
of OTUs generated that contained two different species, and so on.      
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The V3-5 region generated 5428 OTUs when clustered at 97% id, with approximately 

61% (2410 OTUs) being identical to whole-gene sequence generated OTUs at 97% id. 

When the V3-5 region was clustered at 98.3% id, 5438 OTUs were generated, and 

approximately 61% of these were identical to those produced by whole-gene sequences 

clustered at 97%.  

 These results indicate that the new id thresholds used produce clustering results 

that provide a similar snapshot of diversity, and could be used as a proxy for 97% id. 

However, these values are very close to the original 97% id value, and the new V3-5 

region id value is higher than 97%, making this less practical than 97%. Additionally, the 

percent of OTUs in common (between the variable regions at new id thresholds and 

whole-gene sequences at 97% id) remained fairly constant. These new id values did not 

increase the effectiveness of gene-fragments generating OTUs that are equivalent to 

whole-gene generated OTUs. Therefore, when using UCLUST, the most appropriate 

action to take when clustering V1-3 and V3-5 regions would be to continue using the 

traditional 97% id threshold.  

3.2.2. CD-HIT-EST id threshold evaluation 

Similar to Figure 3.2, Figure 3.4 is a plot of the total OTUs produced by whole-gene and 

gene-fragments clustered across a range of id thresholds, now using CD-HIT-EST. From 

this plot, it appeared that clustering gene-fragments spanning the V1-3 region at 94%, 

and gene-fragments spanning the V3-5 region at 96% produced similar amounts of 

OTUs; 4894 and 4938 total OTUs for the V1-3 and V3-5 regions respectively versus 

4978 OTUs for whole-genes at 97% id (values listed in Table A.4). 
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Figure 3.4: Plot of total OTUs generated by CD-HIT-EST using whole-gene sequences, 
V1-3 sequences and V3-5 sequences across a range of % id values. Solid red lines have 
been used to highlight where the V1-3 and V3-5 curves line up with the whole-gene 
curve at 97% id. Dashed red lines (matching the dashed lines used for each V region 
curve), show what % id on the x-axis appears to produce results similar to whole-gene 
clustering at 97% id.  
 
 An analysis of the broken species was conducted comparing whole-gene 

sequences clustered at 97% id versus the gene-fragments clustered at their new respective 

thresholds (V1-3 at 94%, V3-5 at 96%). As Figure 3.5A shows, results were similar to 

those found in section 2.2.2 (CD-HIT-EST fragment evaluation). All three gene regions 

showed a similar trend in how species were broken; approximately 80% of species were 

not broken, 11% were broken into two different OTUs, and the remaining 10% of species 

were broken into three or more different OTUs (Tables A.7 and A.8 list broken species 

values and percentages). There was no significant deviance in broken species between 
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whole gene sequences and the V1-3 and V3-5 regions (V1-3: X2 = 1.0634, df = 14, p > 

0.05; V3-5: X2 = 1.1276, df = 14, p > 0.05). 

 Figure 3.5B illustrates how the gene-fragments, at their new respective id 

thresholds, contaminated clusters in comparison to whole-gene sequences clustered at 

97% id. The number of uncontaminated clusters generated by all three gene regions were 

within 1% of each other at approximately 70%; 70% of OTUs contained a single species 

(refer to Tables A.9 and A.10 for contaminated cluster counts and percentages). A chi 

square test found that there was no significant deviance in the number of contaminated 

clusters produced by the V1-3 or V3-5 gene regions at their new id thresholds in 

comparison to numbers produced by the whole gene sequences at 97% id (V1-3: X2 = 

0.0953, df = 9, p > 0.05; V3-5: X2 = 0.1551, df = 9, p > 0.05).  

 As was done in section 3.2.1 (UCLUST id evaluation), the differences between 

the OTUs generated by V1-3 and V3-5 at new id thresholds and whole-gene sequences at 

97% id was examined. The V1-3 region generated 7519 OTUs when clustered at 97% id 

by CD-HIT-EST. Approximately 47% of these OTUs (3498) were found to be identical 

to OTUs generated by whole-gene sequences clustered at 97%. When the V1-3 region 

was clustered at 94% id, 4894 OTUs were generated, and approximately 55% of these 

were identical to those produced by whole-gene sequences clustered at 97%. The V3-5 

region generated 5428 OTUs when clustered at 97% id, with approximately 51% (3040 

OTUs) being identical to whole-gene sequence generated OTUs at 97% id. When the V3-

5 region was clustered at 96% id, 4938 OTUs were generated, and approximately 52% 

(2554) of these were identical to those produced by whole-gene sequences clustered at 

97%.  
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Figure 3.5: Whole-gene sequences and gene-fragments spanning V1-3 and V3-5 were 
clustered using CD-HIT-EST at 97%, 94% and 96% id respectively. (3.3A) Shows the 
percentage of total species (6246) that were either clustered into a single OTU, ‘broken’ 
into two OTUs, and so on. The first set of bars represents the percentage of total species 
that were not broken into different OTUs (~80% for all three gene regions), the second 
set of bars represents the percentage broken into two clusters, and so on. (3.5B) Shows 
what percentage of the total OTUs generated by each gene region are contaminated 
(containing more than one species). The first set of bars represent OTUs that are not 
contaminated, containing only one species. The second set of bars represents the percent 
of OTUs generated that contained two different species, and so on.      
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 These results indicate that using alternative id thresholds when clustering with 

CD-HIT-EST can be effective at replicating the diversity measured by whole-gene 

sequences at 97% id; there was no significant difference in the number of broken species 

or contaminated OTUs between whole-gene sequences clustered at 97% id and the V1-3 

and V3-5 regions clustered at 94% and 96% respectively. Additionally, these new id 

thresholds for V1-3 and V3-5 aided in generating OTUs that were more coherent with 

those generated by whole-gene clustering at 97% id. Of note is V1-3 region; from 

clustering at 97% id to 94% id, the number on OTUs in common with whole-gene 

clustering rose 8%. This suggests that, when clustering V1-3 gene-fragments with CD-

HIT-EST, 94% id is a more effective threshold to obtain accurate results.  

 

3.2.3. Identity evaluation: conclusion 

This study has shown that alternative id (identity) thresholds can be used to generate 

OTUs that adequately represent what whole-gene clustering at 97% id would provide. 

CD-HIT-EST lowered this traditional id threshold by 3% and 1% for the V1-3 and V3-5 

regions respectively, while UCLUST lowered this threshold by 0.5% for the V1-3 region, 

and required the threshold for the V3-5 region to be raised to 98.3% (for this region to 

adequately represent whole-gene clustering at 97% id). Lower thresholds allow clustering 

algorithms to function faster (less sequence comparisons required). Therefore the 3% id 

decrease from 97 to 94 for the V1-3 region (when using CD-HIT-EST) is of special note.  

 These two clustering algorithms use different definitions of id when clustering, 

which accounts for the variation in alternative id threshold values between the two. It has 

been noted that clustering algorithm suites often generate varied numbers of OTUs (as 
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well as variation in the content of these OTUs), and the results of this study support these 

findings (Huse et al., 2010; Bonder et al., 2012). Therefore, in addition to providing 

alternative id thresholds to aid in making studies examining different variable regions of 

the 16S rRNA gene comparable, this study could perhaps also aid in making the results of 

different clustering algorithms comparable as well.  

 Both clustering algorithms varied in the total OTUs generated. As it was known 

that 6246 different species were in the database being clustered, one would expect that 

the number of OTUs generated by these clustering algorithms would be close to this 

number. Contrast this expectation with the reality; CD-HIT-EST generated 4978 OTUs 

and UCLUST generated 5427 OTUs when clustering whole 16S rRNA genes at 97% id. 

An analysis of this finding indicates that both algorithms underestimated diversity. 

However, this finding actually highlights one of the major limitations of 16S rRNA 

cluster analysis; that similar species can have 16S rRNA sequences with >97% sequence 

identity, and be clustered into the same OTU. A prominent example of this is the Shigella 

spp./E. coli problem; while historically these two species have been considered separate, 

both belong to the family Enterobacteriaceae and biochemically there can be difficulty 

separating the two (Fukushima et al., 2002). Additionally, Shigella spp. are considered 

human pathogens, and certain stains of E. coli cause Shigella-like symptoms (e.g. 

diarrhea, etc.), making differentiation even more difficult. On the basis of DNA 

homology, many researchers consider them to be a single species (Brenner, 1984), and 

16S rRNA clustering analysis places both in the same OTU at 97% id. Indeed, in this 

study, regardless of gene region or id threshold used, it was found that at least one strain 

of E. coli and Shigella were grouped in the same OTU. This example highlights again the 
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grey area that exists in grouping microbes at the species level; traditional taxonomist 

categories such as morphology or behavioral traits cannot be easily applied to microbes, 

but molecular methods (such as 16S rRNA analyses) do not always have the resolution to 

distinguish very similar species/strains (Fraser et al., 2009).  

 However, despite this lack of resolution for some species, the 16S rRNA gene still 

provides an accurate and rapid measure of diversity in microbial populations, and 

additional molecular analyses used in conjunction with 16S rRNA clustering may provide 

this needed resolution. For instance, studies have shown that the gyrB gene, which 

encodes the subunit B protein of DNA gyrase (relieves torsional strain caused by helicase 

during DNA replication), can show sharper separations between similar species such as 

Shigella and E. coli, and species within the Bacillus subtilis group (Fukushima et al., 

2002; Wang et al., 2007). An interesting addition to this study would be to examine 16S 

rRNA clustering at alternative id thresholds in conjunction with gyrB gene clustering as a 

means of minimizing similar species grouping together.  

 A key objective of the Human Microbiome Project (HMP) is to determine what 

bacterial species are considered standard constituents of the normal microbial 

composition of healthy humans (Kuczynski et al., 2012). Using these data, further 

research can be done to examine how perturbing this standard composition can influence 

human health. Traditional diagnosis of disease followed the paradigm of ‘one pathogen 

for one disease.’ However, the diversity of communities among different sample body 

regions (the gut, oral cavity, genital and skin) varies immensely; even between 

consecutive samples from the same region because bacterial populations within an 

individual change over time for a variety of reasons, such as diet, health or age 
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(Turnbaugh et al., 2007). The HMP has indicated that rather than identifying a single 

pathogen, observing how the microbiomes of individual body sites change during the 

course of an illness may be more important for health care. The ability to have species 

level differentiation in the medical setting may not be as critical as previously thought; 

relating a patient’s complex medical history and symptoms with 16S rRNA analyses 

could collectively contribute to more effective diagnosis and treatment. 330 families of 

bacteria are represented in the 9700 sequences examined in this study. Interestingly, it 

was found that contaminated OTUs tended to contain species that had been broken into 

numerous OTUs; species that were broken into five or more OTUs were much more 

likely to be found in OTUs with other species. For example, Shigella was broken into 

five OTUs, and all five OTUs contained at least one sequence from another species; none 

of the Shigella sequences remained isolated. Species that had been broken into two, three 

and four OTUs rarely had other species in their cluster. Families had an average of 18 

sequences in the LTP database, representing on average six species. The three families 

that had the highest incidence of broken species were Enterobacteriaceae (221 

sequences), Pseudomonadaceae (138 sequences), and Enterococcaceae (50 sequences).  

However, this may partly be due to the greater selection of species within the database for 

these families; since more species were represented for these families, there were more 

chances for a species to be broken. As Table A.11 shows, the phylum Proteobacteria (to 

which Enterobacteriaceae and Pseudomonadaceae belong) and the phylum Firmicutes & 

Tenericutes (to which Enterococcaceae belongs) both had the greatest representation in 

the LTP database. Approximately 60% of the sequences and species in the database 

belong to these two phyla. Approximately 27% of the species that were broken belong to 
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Proteobacteria, and another 28% to Firmicutes & Tenericutes (see Table A.11). This is 

not surprising, as these two phyla are the most diverse and abundant on Earth (Kormas, 

2011). However, it shows that the LTP database has a bias towards containing more 

abundant species. 

 Interestingly, the genus Pseudomonas (family Pseudomonadaceae) has undergone 

numerous taxonomic revisions in the past, as historically the genus was a ‘catch-all’ with 

a broad (and vague) phenotypic definition (Özen and Ussery, 2012). Recently the genus 

has become smaller due to a more refined definition, which led to numerous bacteria 

being moved to other genera (Özen and Ussery, 2012). However, according to Dworkin 

and Stanley, between species similarities of Pseudomonas ranges from 93 – 99.9% 

(2006). Additionally, it has been suggested that some genera, such as Azotobacter, may 

actually be Pseudomonas (Dworkin and Stanley, 2006; Özen and Ussery, 2012). The 

families Streptococcaceae (84 sequences), Pasteurellaceae (67 sequences) and 

Vibrionaceae (116 sequences) appeared to have the highest incidence of contaminated 

(mixed) OTUs. These finding are in accordance with previously published results, for 

instance the low variability of genera such as Streptococcus (family Streptococcaceae) 

would explain this high incidence of contaminated OTUs (Lal et al., 2011). 

Streptococcaceae belongs to the phylum Firmicutes & Tenericutes, and Pasteurellaceae 

and Vibrionaceae both belong to the phylum Proteobacteria. As mentioned previously, 

these two phyla have the greatest representation in the LTP database, and as shown in 

Table A.11, approximately 36% of contaminated (mixed) OTUs were generated by 

species from the phylum Proteobacteria. Approximately 28% of mixed OTUs were 

generated by species of the phylum Firmicutes & Tenericutes.  
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 Of note is that many of these bacterial families have significance in the health 

setting: for instance the Enterobacteriaceae family, while encompassing many harmless 

symbionts, also contains numerous potential pathogens such as Salmonella, E. coli and 

Shigella (Gupta et al., 2011). Not only does this family have numerous broken species, it 

also generated many contaminated OTUs, which could have negative implications in 

utilizing 16S rRNA analysis in medical settings. However, as discussed earlier, 16S 

rRNA analyses can be used in conjunction with other diagnostic tools, such as an 

evaluation of patient symptoms and history. 

 Another limitation of 16S rRNA clustering is the selection of the variable 

region(s) to examine. A span of variable regions is commonly used for clustering (i.e. 

fragments spanning the V1-3 and V3-5 regions as seen in human microbiome research, 

and as done in this study), but gene fragments spanning a single variable region can also 

be used. No single variable region can differentiate between all bacteria, and certain 

regions provide a greater advantage to detecting specific bacteria (Vilo and Dong, 2012). 

For instance, the V1 region has been found to best differentiate between Staphylococcus 

aureus strains, and the V2 and V3 regions have been found to have great differentiating 

capability for most bacteria to the genus level, except for bacteria closely related to 

enterobacteriaceae (Chakravorty et al., 2007). As mentioned previously, in this study E. 

coli and Shigella spp. were always found mixed among one or more OTUs, illustrating 

this finding for the V2 and V3 regions.  

 Previous studies have shown that clustering the same dataset using different V 

regions can generate varied results, indicating the limitations of any single 16S rRNA 

gene fragment in simulating whole-gene clustering (Chakravorty et al., 2007; Mizrahi-
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Man et al., 2013; Schloss, 2009). Genetic diversity decreases in general along the length 

of the 16S rRNA gene, which would influence the genetic diversity observed depending 

on the variable region(s) examined (Schloss, 2009). However, this highlights the need for 

examining how gene fragments have been, and are currently, used in place of whole gene 

sequences and suggesting new workflows when utilizing these fragments. For instance, 

fewer sequence differences are needed at a 0.03% OTU threshold when considering 

shorter reads (Schloss, 2009). In combination with sequencing and alignment artifacts, 

this can lower the confidence in these OTUs (Schloss, 2009). Of note, however, is that 

the majority of studies cluster sequences at the traditional 97% id. This is a symptom of a 

larger problem, namely that microbial community assessment should change when 

considering whole genes versus gene fragments. For instance, it has been suggested that 

analyses of mock communities with biological samples aides in the selection of variable 

regions for study, which could greatly reduce errors in OTU generation (Kozlch, 2013). 

This study provides evidence that alternative id thresholds can be used to provide 

adequate representation of whole-gene clustering at 97% id, and this could allow 

different studies to compare results when examining the same environment using 

different variable regions of the 16S rRNA gene. A possible result of this would be that 

different V regions could be used to aid in identifying more species while possibly 

minimizing the wide variation in number of OTUs generated (and the variation in 

sequences within them).  

  Recommendations for further study would include examining different V 

regions; the ultimate goal of a study of this nature would be to provide a set of alternate 

id threshold guidelines for all nine variable regions when clustering. Another important 
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addition to this study would be to cluster a set of environmental sequences; this would 

provide a data set more representative of true sequencing results, rather than the highly 

curated and annotated dataset used in this study (not a true representation of the average 

genomic study).  
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4. Summary 

This study examined if clustering16S rRNA gene-fragments at 97% id provides results 

comparable to whole-gene clustering as well as whether new id thresholds could and 

should be used in place of 97% id; higher or lower id thresholds may be required for 

gene-fragments to produce clusters that are more representative of whole-gene clustering. 

It was found that indeed, 16S rRNA gene-fragments can produce clusters comparable to 

whole 16S rRNA genes. Two clustering algorithms were used: UCLUST and CD-HIT-

EST. While alternative id thresholds were proposed for clustering the V1-3 and V3-5 

regions using UCLUST, these values are very close to the standard 97%, and these new 

thresholds were no more effective than 97% in aiding these gene-fragments to represent 

the OTUs generated by whole-gene sequences. 

 In contrast, two possible alternative id thresholds have been suggested for the V1-

3 and V3-5 region of the 16S rRNA gene; results indicate that the V1-3 region clustered 

at 94% id by CD-HIT-EST not only produced OTUs representative of whole-gene 

clustering but that more OTUs at this new threshold were identical to OTUs generated by 

whole-gene sequences at 97% id than OTUs generated by the V1-3 region at 97% 

(currently considered a standard). Additionally, the V3-5 regions clustered at 96% 

appeared effective in representing the OTUs generated by whole-gene sequences.  
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Appendix 

Table A.1: Number of clusters generated after clustering three gene regions using 
UCLUST at various id levels. Alternative id threshold values are highlighted in red. 

Gene region Clustering id Total Singletons >1 Sequence 

Whole gene 97 5427 3767 1660 

V1-3 97 5929 4277 1652 

V3-5 97 3911 2312 1599 

V1-3 96.5 5362 3730 1632 

V3-5 98.3 5438 3806 1632 
 
Table A.2: Counts of broken species produced after clustering three gene regions using 
UCLUST. Alternative id threshold values are highlighted in red. 

# OTUs species 
'broken' into 

Whole gene 
(97% id) 

V1-3 
(97% id) 

V3-5 
(97% id) 

V1-3 
(96.5% id) 

V3-5 
(98.3% id) 

1 5015 5012 5026 5018 5018 

2 683 689 676 684 685 

3 216 210 211 211 211 

4 106 109 108 110 105 

5 68 66 69 64 69 

6 33 33 29 35 33 

7 25 27 28 24 26 

8 25 25 23 25 24 

9 14 13 15 13 14 

10 11 12 11 12 11 

11 7 7 7 7 7 

12 5 4 5 5 4 

13 4 5 3 3 5 

14 4 4 6 6 4 

15 30 30 29 29 30 

>5 158 160 156 159 158 

Total Clusters = 5427 5929 5362 3911 5438 
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Table A.3: Percent of total species that were ‘broken’ (based on Table A.3). Alternative 
id threshold values are highlighted in red. 
# OTUs species 

'broken' into 
Whole gene 

(97% id) 
V1-3 

(97% id) 
V3-5 

(97% id) 
V1-3 

(96.5% id) 
V3-5 

(98.3% id) 

1 80.29 80.24 80.47 80.34 80.47 

2 10.93 11.03 10.82 10.95 10.82 

3 3.46 3.36 3.38 3.38 3.38 

4 1.70 1.75 1.73 1.76 1.73 

5 1.09 1.06 1.10 1.02 1.10 

6 0.53 0.53 0.46 0.56 0.46 

7 0.40 0.43 0.45 0.38 0.45 

8 0.40 0.40 0.37 0.40 0.37 

9 0.22 0.21 0.24 0.21 0.24 

10 0.18 0.19 0.18 0.19 0.18 

11 0.11 0.11 0.11 0.11 0.11 

12 0.08 0.06 0.08 0.08 0.08 

13 0.06 0.08 0.05 0.05 0.05 

14 0.06 0.06 0.10 0.10 0.10 

15+ 0.48 0.48 0.46 0.46 0.46 

>5 2.53 2.56 2.50 2.55 2.50 
 
 
 
Table A.4: Counts of clusters containing a given amount of different species after 
clustering three gene regions using UCLUST. Alternative id threshold values are 
highlighted in red. 

# Species/Cluster 
Whole gene 

(97% id) 
V1-3 

(97% id) 
V3-5 

(97% id) 
V1-3 

(96.5% id) 
V3-5 

(98.3% id) 

1 3796 4312 2337 3765 3841 
2 855 880 655 824 841 
3 345 351 319 314 325 
4 156 164 168 160 153 

5 78 78 116 84 76 
6 55 39 76 67 58 
7 38 33 44 32 39 
8 31 13 37 24 27 

9 8 14 24 20 18 
10+ 65 45 135 72 60 
>5 197 144 316 215 202 

Total Clusters = 5427 5929 3911 5362 5438 
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Table A.5: Percent of total clusters generated containing a given amount of different 
species (based on Table A.5). Alternative id threshold values are highlighted in red. 

# Species/Cluster 
Whole gene 

(97% id) 
V1-3 

(97% id) 
V3-5 

(97% id) 
V1-3 

(96.5% id) 
V3-5 

(98.3% id) 

1 69.95 72.73 59.75 70.22 70.63 
2 15.75 14.84 16.75 15.37 15.47 
3 6.36 5.92 8.16 5.86 5.98 
4 2.87 2.77 4.30 2.98 2.81 

5 1.44 1.32 2.97 1.57 1.40 
6 1.01 0.66 1.94 1.25 1.07 
7 0.70 0.56 1.13 0.60 0.72 
8 0.57 0.22 0.95 0.45 0.50 

9 0.15 0.24 0.61 0.37 0.33 
10+ 1.20 0.76 3.45 1.34 1.10 
>5 3.63 2.43 8.08 4.01 3.71 

 
 
 
 
Table A.6: Number of clusters generated after clustering three gene regions using CD-
HIT-EST at various id levels. Alternative id threshold values are highlighted in red. 

Gene Fragment Clustering id Total Singletons >1 Sequence 

Whole gene 97 4978 3499 1497 

V1-3 97 7519 6391 1128 

V3-5 97 5932 4479 1143 

V1-3 94 4894 3433 1461 

V3-5 96 4938 3440 1498 
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Table A.7: Counts of broken species produced after clustering three gene regions using 
CD-HIT-EST. Alternative id threshold values are highlighted in red. 

# OTUs species 
'broken' into 

Whole gene 
(97% id) 

V1-3 
(97% id) 

V3-5 
(97% id) 

V1-3     
(94% id) 

V3-5     
(96% id) 

1 5024 4990 4997 5004 4999 

2 683 698 694 694 697 
3 210 221 219 216 214 
4 105 106 105 108 105 
5 65 69 70 66 71 

6 36 35 33 32 32 
7 24 26 27 26 28 
8 24 25 25 25 24 
9 14 14 14 14 15 

10 11 12 12 11 11 
11 7 7 7 7 7 
12 5 4 4 5 4 
13 4 4 4 3 6 

14 4 5 5 7 3 
15 30 30 30 28 30 
>5 159 162 161 158 160 

Total Clusters = 4978 7519 4894 5932 4938 
 
Table A.8: Percent of total species that were ‘broken’ (based on Table A.7). Alternative 
id threshold values are highlighted in red. 

# OTUs species 
‘broken’ into 

Whole gene 
(97% id) 

V1-3 
(97% id) 

V3-5 
(97% id) 

V1-3     
(94% id) 

V3-5     
(96% id) 

1 80.44 79.89 80.00 80.12 80.04 

2 10.93 11.18 11.11 11.11 11.16 

3 3.36 3.54 3.51 3.46 3.43 

4 1.68 1.70 1.68 1.73 1.68 

5 1.04 1.10 1.12 1.06 1.14 

6 0.58 0.56 0.53 0.51 0.51 

7 0.38 0.42 0.43 0.42 0.45 

8 0.38 0.40 0.40 0.40 0.38 

9 0.22 0.22 0.22 0.22 0.24 

10 0.18 0.19 0.19 0.18 0.18 

11 0.11 0.11 0.11 0.11 0.11 

12 0.08 0.06 0.06 0.08 0.06 

13 0.06 0.06 0.06 0.05 0.10 

14 0.06 0.08 0.08 0.11 0.05 

15+ 0.48 0.48 0.48 0.45 0.48 

>5 2.55 2.59 2.58 2.53 2.56 
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Table A.9: Counts of clusters containing a given amount of different species after 
clustering three gene regions using CD-HIT-EST. Alternative id threshold values are 
highlighted in red. 

# Species/Cluster 
Whole gene 

(97% id) 
V1-3 

(97% id) 
V3-5 

(97% id) 
V1-3     

(94% id) 
V3-5     

(96% id) 

1 3528 6428 4507 3461 3465 

2 729 703 787 704 708 

3 289 167 275 279 263 

4 146 112 119 149 164 

5 75 39 66 70 90 

6 48 18 51 42 61 

7 36 16 33 37 39 

8 26 8 25 39 31 

9 16 8 16 21 20 

10+ 85 20 53 92 97 

>5 211 70 178 231 248 

Total Clusters = 4978 7519 5932 4894 4938 
 
 
Table A.10: Percent of total clusters generated containing a given amount of different 
species (based on Table A.9). Alternative id threshold values are highlighted in red. 

# Species/Cluster 
Whole gene 

(97% id) 
V1-3 

(97% id) 
V3-5 

(97% id) 
V1-3     

(94% id) 
V3-5     

(96% id) 

1 70.87 85.49 75.98 70.72 70.17 

2 14.64 9.35 13.27 14.38 14.34 

3 5.81 2.22 4.64 5.70 5.33 

4 2.93 1.49 2.01 3.04 3.32 

5 1.51 0.52 1.11 1.43 1.82 

6 0.96 0.24 0.86 0.86 1.24 

7 0.72 0.21 0.56 0.76 0.79 

8 0.52 0.11 0.42 0.80 0.63 

9 0.32 0.11 0.27 0.43 0.41 

10+ 1.71 0.27 0.89 1.88 1.96 

>5 4.24 0.93 3.00 4.72 5.02 
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Table A.11: Proportion of the total sequences and species represented by the different 
phyla of bacteria form the SILVA LTP database, as well as the proportion of broken 
species and mixed (contaminated) OTUs generated by the different phyla.  
 

Phylum Sequences Species Broken 
species 

Mixed OTUs 

Proteobacteria 0.3729 0.3519 0.2714 0.3559 

Spirochaetes 0.0089 0.0054 0.0040 0.0034 

Fusobacteria 0.0039 0.0022 0.0024 0.0021 

Deferribacteres 0.0010 0.0006 0.0032 0.0028 

Chrysiogenetes 0.0004 0.0003 0.0008 0.0007 

Acidobacteria 0.0020 0.0008 0.0016 0.0014 

Bacteroidetes 0.0956 0.0922 0.1825 0.1490 

Chlorobi 0.0012 0.0018 0.0000 0.0000 

Verrucomicrobia 0.0012 0.0019 0.0008 0.0007 

Lentisphaerae 0.0002 0.0003 0.0000 0.0000 

Chlamydiae 0.0013 0.0014 0.0008 0.0007 

Planctomycetes 0.0015 0.0010 0.0016 0.0014 

Fibrobacteres 0.0003 0.0002 0.0000 0.0000 

Deinococcus-Thermus 0.0077 0.0090 0.0056 0.0048 

Nitrospira 0.0008 0.0005 0.0008 0.0007 

Actinobacteria 0.2673 0.2192 0.2354 0.1890 

Chloroflexi 0.0024 0.0029 0.0016 0.0014 

Firmicutes & Tenericutes 0.2214 0.2659 0.2762 0.2772 

Aquificae 0.0030 0.0032 0.0040 0.0034 

Thermodesulfobacteria 0.0008 0.0010 0.0008 0.0007 

Synergistetes 0.0020 0.0027 0.0032 0.0028 

Thermotogae 0.0040 0.0037 0.0032 0.0021 
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