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ABSTRACT 

In order to plan the future development of the Canadian 

Shield within a conceptual framework as suggested by the Mid-

Canada Corridor concept, both the presently developed and pot­

ential, natural resources of this area need to be evaluated for 

knowledgeable development and management. To this purpose, 

various areas of nickel sulphide deposits within the area of 

the Canadian Shield have been studied with the object of deter­

mining similar sequences of intrusive events and their spatial 

relationships. 

Within the Sudbury area, Ontario, five periods of intrusive 

activity have been recognized, each period characterized by an in­

itial intrusion of acidic composition, followed in turn by one or 

more intrusions of basic composition. Genetic relationships among 

these various intrusives have been noted by the presence of micro-

graphic intergrowths of quartz and feldspar. Increasingly, signi­

ficant concentrations of nickel sulphides are indicated as having 

been emplaced at the terminations of the three latest periods. 

Such features are suggested as being indicative of a process of 

nickel sulphide concentration and emplacement, namely magmatic 

differentiation at depth as initially hypothesized by E, Howe 

(1914) and later modified by A.M. Bateman (1917). A third con­

cept of the Sudbury irruptive is suggested as having consisted 

of an initial emplacement of micropegmatite, closely followed 

by a differentiated fraction of norite. The structural shape 

of the irruptive at depth is suggested by a diagrammatic cross 
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section, suggestive of the descriptive hypothesis of C.W. Knight 

(1917). 

Sequences of acidic to basic, intrusive events are also indicated 

in the areas of Lynn Lake, Manitoba, Moak Lake-Setting Lake, Manitoba, 

Bird River, Manitoba, Werner Lake-Gordon Lake, Ontario, Shebandowan, 

Ontario and Marbridge, Malartic, Quebec. The evidence reviewed indicates 

spatial relationships of nickel sulphide mineralization not only with 

basic intrusives but also with acidic intrusives and zones of tension 

fractures. 
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CHAPTER I 

SCOPE OF THE STUDY 

Introduction 

In terms of area, the Canadian Shield represents approxi­

mately half of the total land area of Canada, its largest physio­

graphic region, and also its least developed region. If the future 

development of this vast and somewhat inhospitable terrain is to be 

planned within a broad, conceptual framework, as suggested by the 

Mid-Canada Development Corridor concept, both the presently devel­

oped and potential resources of this area need to be fully evalua­

ted for knowledgable development and management. It would appear 

significant that Sudbury, the area's second largest city, is vir­

tually dependent on a continuing development of nickel ore deposits 

for its continued existence. After 84 years of production in the 

Sudbury area and more than 75 studies, little agreement has been 

reached as to either the mode of concentration or the emplacement 

of the nickel deposits. In 1948, A.B. Yates, a former chief 

geologist of the International Nickel Company of Canada Limited, 

considered the Sudbury deposits to be "unique in their occurrence, 

structure and genesis". 

Purpose of Study 

The writer does not consider the Sudbury deposits or any 

of the presently developed nickel ore deposits within the area of 

the Canadian Shield to be of an unique nature. It is his 
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contention that all of these deposits should share some simil­

arities of occurrence, structure and genesis which might prove 

indicative of a common process of nickel sulphide concentration 

and emplacement. An understanding of such a process of formation 

could lead to the full development of the existing resource-areas 

within the Canadian Shield, and also to a more knowledgeable 

assessment of potential resource-areas considered necessary for 

any proposed concept of planned development. 

The object of the study has been a compilation of evidence 

indicative of similar sequences of events and their spatial re­

lationships at each of the following nickel resource-areas. 

(Figure 3, page 6 ). 

Sudbury area, Ontario 

Lynn Lake area, Manitoba 

Moak Lake-Setting Lake area, Manitoba 

Bird River area, Manitoba 

Werner Lake-Gordon Lake area, Ontario 

Shebandowan area, Ontario 

Marbridge area, Malartic, Quebec 

An in-depth-study has been made of the Sudbury area due to three 

considerations, namely the voluminous amount of published evidence 

available, the many theories of structure and genesis presented, 

and the potential of assembling a complete sequence of events as 

a potential model for comparison with the other nickel resource-

areas . 

Evidence presented in this study has been gathered from 

numerous published and unpublished sources. Personal observation 

of various petrological and structural features has been limited 

to the Hardy and Strathcona mines of the Sudbury area and to the 

Birchtree mine of the Moak Lake-Setting Lake area. Similarity of 

features in these two areas has encouraged the writer to pursue 

this comparative study. 

2 



Nickel 
in% 

0.0002 
0.004 
0.016 
0.20 

Iron Oxides 
& Magnesia 

in7c 

4.4 
11.7 
16.6 
43.3 

Silica & 
Alumina 
in7o 

78.7 
73.4 
66.1 
45.9 

Hypotheses of Nickel Sulphide 

Concentration and Emplacement 

Throughout the world, samples of igneous rocks have been 

found to contain increasingly higher percentages of nickel with 

increasingly greater contents of iron-magnesium and also lower 

contents of silicon-aluminum, as indicated by Table 1. The 

Table 1 

PERCENTAGE COMPOSITION OF INTRUSIVE ROCK TYPES 

Rock Type Classification 
of Rock Types 

Granite acidic 
Diorite intermediate 
Gabbro basic 
Peridotite ultrabasic 

Source: modified from The Winning of Nickel, 1967, p. 4. 

basic problem exists that rock containing less than 0.5 per cent 

nickel cannot be economically mined and processed under present 

conditions. Consequently, nickel mineralization, found to be 

disseminated in basic and ultrabasic rocks in percentages of 

0.016 and 0.20, has had to be concentrated by some naturally 

occurring process to percentages of 0.5 to 2.0 per cent for such 

deposits to have been economically minable. To explain such 

concentrations, three hypotheses of possible nickel sulphide 

concentration have been advanced for the Sudbury area over the 

past eighty years. 

These hypotheses are summarized as follows. 

(a) magmatic differentiation in place - concentration by a 

gravitational settling out of nickel sulphides from a 

cooling and crystallizing basic magma following its in­

trusion (Bell, 1890) (Naldrett and Kullerud, 1967). 

(b) hydrothermal processes - leaching and concentration of 

sulphides from a basic body by reaction with heated sol­

utions emanating from depth or from nearby intrusive bodies 



4 
(Dickson, 1904). 

(c) magmatic differentiation at depth - gravitational segre­

gation of sulphides from a basic magma at depth with a 

subsequent ejection as a sulphide magma (Howe, 1914). 

All three hypotheses might be grouped into a single hypothesis, 

namely the occurrence of magmatic differentiation in a magma 

reservoir at depth. This hypothesis may be stated as the occurr­

ence of differentiation of a basic magma at depth into fractions 

of acidic, basic and sulphidic composition, with ejections of such 

fractions in sequence upon activation by a periodic building up of 

pressure in the magma reservoir. A somewhat similar concept was 
2 

advanced by A.M. Bateman in 1917 for the Sudbury area, and also 
3 

in 1951 in terms of general occurrence, however, the evidence 

presented within the past fifty years has not been viewed in the 

perspective of this hypothesis, nor have any of the other nickel 

resource-areas within the Canadian Shield since their discoveries. 

As shown by Figure 1, many formations of ultrabasic rocks 

containing only sparsely disseminated mineralization are known 

within the Canadian Shield. A relatively smaller number have 

been noted to contain concentrated nickel sulphides (Figure 2) 

and only a very few formations have been more fully explored and 

found to contain deposits of sufficient concentration and tonnage 

to have supported mining operations under past economic conditions 

(Figure 3) . 
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FIGURE 1. D i s t r i b u t i o n of u l t rabas ic rocks w i t h i n the 
Canadian Sh ie ld , ( m o d i f i e d a f te r Smi th , 1961) 
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FIGURE 2. D i s t r i b u t i o n of n i cke l su lphide deposi ts re la ted 
to bas ic in t rus ions w i t h i n the Canadian Shie ld. 
Cmodi f ied af ter Smi th , 1961) 
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FIGURE 3. Locat ions of past, present and prospect ive n icke l 
p roduc ing areas w i th in the Canadian Sh ie ld . 
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2 S u d b u r y , O n t a i i o 

3 M o a k L a k e - S e t t i n g L a k e , M a n i t o b a 

4 L y n n L a k e , M a n i t o b a 

5 B i r d R i v e r , M a n i t o b a 

6 W e r n e r L a k e - G o r d o n L a k e , O n t a r i o 

P r o s p e c t i v e P r o d u c i n g A r e a 

7 S h e b a n d o w a n , O n t a r i o 
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FOOTNOTES FOR CHAPTER I 

1 A.B. Yates, 1948. "Properties of the International 
Nickel Company of Canada" in Structural Geology of Canadian 
Ore Deposits, Jubilee Volume, Montreal, Canadian Institute 
of Mining and Metallurgy, p. 596, Montreal. 

2 A.M. Bateman, 1917. "Magmatic Ore Deposits, Sudbury, 
Ontario," Economic Geology, Vol. 12, no. 5, p. 418. 

3 A.M. Bateman, 1951. The Formation of Mineral Deposits, 
New York, John Wiley and Sons, p. 37. 
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CHAPTER II 

THE SUDBURY AREA 

Development of Mining 

The ore deposits of the Sudbury area have been developed 

by basically two companies, The International Nickel Company of 

Canada Limited (INCO) and Falconbridge Nickel Mines Limited 

(FALCO). In 1887 the parent company of INCO commenced prod­

uction and was joined by FALCO in 1930. The following table 

indicates the relative scale of operations of these two companies 

in the Sudbury area. 

Table 2 

SCALE OF MINING OPERATIONS IN THE SUDBURY AREA 
2 3 

Company INCO FALCO 

Number of operating mines 12 7 

Concentrating capacity in 

tons of ore per day 66,500 12,800 

Number of tons mined in 1968 24,350,000 * 3,208,000 

Total ore reserves as of 
December 31, 1968 370,970,000 * 91,638,600 

* - Figures inclusive of the Moak Lake-Setting Lake area 

A comparison of these operations with those carried on in the 

other areas of study indicates the importance of Sudbury as a 

nickel, producing area. (Table 3). 



Table 3 

COMPARATIVE SCALES OF MINING OPERATIONS IN THE OTHER NICKEL RESOURCE AREAS 

Mining 
Company 

Commencing 
Year of e 

Production 

Number of 
JBroducing 
Mines 

Concentrating 
Capacity in 
Tons per 
Day * 

Tonnage 
Mined in 
1968 

Total ure re­
serves m Ton 
as of Decembe 
31, 1968 

Lynn Lake 
Area 4 

Sherritt 

Nickel Mines Lt 

1953 

2 

4,000 

1,276,517 

12,600,000 
\ @ 0.817, nick 
& 0.40 7» coppe 

Moak Lake-
Setting Lake 
Area 

INCO 

I. 

1961 

3 

15,000 

* 

il 
: * 

Bird River 
Area 6 

Consolidated 
Canadian 

Faraday Ltd. 

1969 

1 

/ 7 0° J (concentrated at 
Werner Lake Mill) 

-

1,350,000 
@ 1.06 7. ni. 
& 0.34 7. cu. 

Werner Lake-
Gordon Lake 

Area ' 

Consolidated 
_ Canadian , 
Faraday Ltd. 

1962 

1 

1,200 
(including ore 
from Bird River Area 

207,417 

593,268 
@ 1.107. ni. 
& 0.527. cu. 

Shebandowan 
Area 8 

INCO 

(planned 
production in 
1972) 

-

2.900 

-

(unavailable) 

* - The tonnage mined and total ore reserves of the Moak-Lake-Setting Lake area are reported with the 
Sudbury area figures in Table 2. 

Note: The Marbridge, Malartic area mines were mined out in 1968. 
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Problems 

As evidenced by the voluminous amount of literature pub­

lished during the past eighty years, it is apparent that the 

Sudbury area has aroused more interest and debate than any other 

nickel resource-area in the world. An initial glance at Figure 

4 would indicate a relatively simple and close spatial relation­

ship between the numerous deposits and an oval-shaped, igneous 

formation known as the Sudbury irruptive. The history of the 

area, however, is far from simple. Evidence gathered over the 

years has suggested numerous hypotheses as explanations for such 

problems as stated below. 

(a) the sequence of intrusive events in the area 

(b) the nature of the Sudbury irruptive - whether it was em-

placed as a single intrusion or as two separate intrusions -

whether it was differentiated in place or at depth 

(c) the relative times and degrees of brecciation 

(d) the structural shape of the irruptive at depth 

(e) the genesis of the ore deposits - whether the nickel min­

eralization was concentrated by magmatic differentiation 

from the Sudbury irruptive, by differentiation in a mag­

matic reservoir at depth, or by hydrothermal processes 

An explanation for each of these problems has been advanced in 

Chapter III. 

Surface Features 

As shown by Figure 4, forty of the fifty-six nickel depos­

its are located around the periphery of the Sudbury irruptive 

with the remaining sixteen deposits located along dykes which 

appear to emanate from the irruptive in a somewhat radial 

pattern, A concentric pattern of formations is expressive of 

the irruptive as the outer three rings, and of extrusive form­

ations as the inner three rings. This concentric configuration, 

with inward dipping borders, has suggested that the irruptive 



FIGURE 4. Locat ions of n ickel mines and deposits 
re la t ive to the Sudbury i r rup t i ve . 
(modif ied from the Report of the Royal Ontario 
Nickel Commission, 1917 and from The Winning 
of Nickel, 1967 
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FIGURE 5. Suggested diagrammatic cross section of the 
Sudbury area during the p re - i r rup t i ve , extrusive period. 

FIGURE 6. Suggested d iagrammat ic cross sect ion of 
the Sudbury i r r up t i ve prior to late fau l t ing and erosion. 

FIGURE 8. Geo log ica l map of the Sudbury i r r u p t i v e 
and assoc ia ted format ions, {mod i f i ed after Speers, 
1957, Sopher, 1963 and Stevenson, 1963) 
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FIGURE 7. Diagrammatic cross sect ion of 
the Sudbury i rrupt ive. (a f ter Wi lson, 1956) 
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has a basin-shape at depth. Consequently, this inferred structure 

has become commonly referred to as the Sudbury Basin. A basin-

shape is similarily expressed as a surface feature by a relatively 

flat, drift-covered valley enclosed by a ring of rugged hills, 100 

to 200 feet in height. In surface dimensions the irruptive is 37 

miles long, 17 miles wide, and 1 to 3.6 miles broad. 

Composition of the Formations 

As exposed on the surface, the three rings of the irruptive 

are composed of an inner ring of acidic rock, termed micropeg­

matite (Walker, 1897), a narrow zone of mixed acidic and basic 

composition, and an outer ring of basic rock, termed norite 

(Walker, 1897), a gabbro containing the mineral hypersthene. The 

radial dykes, which appear to emanate from the norite-ring of the 

irruptive, were considered by Coleman (1903) to be integral but 

offset portions of the norite. Consequently he termed the dykes 

offsets. These five offsets and other narrow intrusives found 

along the margin of the irruptive are composed of quartz diorite, 

a noritic intrusive rock more basic in composition than the norite, 

and also the rock type with which the nickel sulphide ores appear 

to be spacially related. 

The inner periphery of the irruptive consists of a 200 to 

500-foot wide border strip of quartzite breccia, followed in­

ward by roughly concentric rings of volcanic tuff, a slaty variety 

of tuff, and a sandy, bedded tuff. 

Structure of Depth 

The outer contact of the irruptive has been noted to dip 

inward at angles ranging from 30 to 75 degrees (Figure 8), with 

the exceptions of the far southwestern and southeastern segments 

which vary from vertical dips to outward dips of 65 degrees. 

A palaeomagnetic study by Sopher (1963) has indicated that the 

Sudbury Basin was rotated through a total of 40 degrees by late 
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faulting, however all of the original contacts prior to fault­

ing were considered to dip inwards at angles of 30 to 90 de­

grees. Such steeply dipping, original contacts disprove 

Collin's hypothesis (1935) of the irruptive as a horizontal 

sill which was later folded, but basically leave the following 

two hypotheses of emplacement open to conjecture and further 

evidence. 

(a) intrusion of the irruptive around a down-faulted block 

(Knight, 1917). 12 

(b) intrusion of the irruptive as a funnel-shaped body 

(Wilson, 1956). 13 

The feasibility of the latter hypothetical model (Figure 7) is 

open to question as Wilson did not offer a seemingly adequate 

explanation for the vast amount of country rock which would have 

to be displaced by a funnel-shaped intrusion. Knight's hypo­

thesis of intrusion around a downfaulted block carries the 

implication that a minimum amount of country rock would have 

to be displaced in order to accomodate the volume of the 

intrusion (see Figure 6). 

History of the Sudbury Area 

The following sequence of events is proposed by the writer 

as an overall perspective of the probable origin and manner of 

emplacement of the Sudbury irruptive and its associated nickel 

deposits. Evidence gathered by the many investigators of the 

Sudbury area, is presented and re-evaluated, taking into con­

sideration modified and more extensive views of Knight's hypo­

thesis for the emplacement of the irruptive (as stated above) 

and Bateman's hypothesis of the concentration and emplacement 

of the nickel deposits (see page 4 ) . 
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Table 4 

SUMMARY OF THE HISTORY OF THE SUDBURY AREA 

- period of mountain-building 

- intrusion of a magma of basic composition into the 

mountain-core 

Pre-irruptive Period 

(la) intrusion of acidic composition, granite 

(lb) intrustion of basic composition, quartz gabbro 

(lc) intrusion of more basic composition, porphyritic olivine 

diabase 

- formation of major tension fractures, faults and brecc­

iation 

(2a & b) extrusion of volcanic breccia and tuff of an inter­

mediate composition, andesite 

Intrustion of the Irruptive 

(3a) intrustion of acidic composition, micropegmatite 

(3b) intrustion of basic composition, norite with very minor, 

disseminated mineralization 

Post-irruptive Period 

(4a) intrustion of acidic composition, granite 

(4b) intrustion of basic composition, quartz diorite 

(4c) intrusion of more basic composition, quartz diorite 

with inclusions of ultrabasic composition and dissemin­

ated mineralization 

(5a) intrusion of acidic composition, aplite 

(5b) intrusion of basic composition, trap rock 

(5c) formation of tension fractures and faults, with moderate 

brecciation, hydrothermal activity, and emplacement 

of minor amounts of basic minerals and probable moderate 

amounts of mineralization 
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(6a) intrusion of acidic composition, aplite, quartz and also 

carbonate 

(6b) minor emplacement of basic composition, the minerals of 

hornblende and biotite immediately prior to or with the 

massive sulphide mineralization 

(6c) intrusion of massive nickel sulphide mineralization 

(6d) intrusion of carbonate and late mineralization 

Pre-irruptive Period 

Roughly 1.8 to 2 billion years ago, the Sudbury area 

was uplifted, folded and faulted during a period of mountain-

building. ° The area of granite and granite gneiss, bordering 

the northern and eastern ranges of the present site of the 

irruptive (Figure 8), has been considered to have been emplaced 
1 f% 

during or prior to this period of mountain-building. 

A magma of basic composition is suggested as having welled 

up into the mountain core. With possible proportions of bathol-

itic size and miles of overlying and insulating country rock, such 

a magma would be subject to a slow rate of cooling and crystall­

ization, with a probable partial segregation of the magma into 

an upper acidic fraction, a lower basic fraction, and a still 

lower sulphidic fraction. Such a process of segregation, termed 

magmatic differentiation, envisions the heavy, basic minerals 

of iron and magnesium content as being the first to crystallize 

and sink into the liquid magma, leaving an upper, residual, 

magmatic fraction of more acidic composition. 

Events (la), (lb) and (lc) 

By a gradual building up of pressure, caused possibly 

by crystallization and accumulation of volatile gases, a minor 

portion of the partially differentiated magma was tapped off 

along faults and sheared bedding planes of the overlying country 

rock. The first intrusive event was in intrusion of grey granite, 

noted at the Hardy mine (northern range, Figure 4), as being 
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intruded in turn by quartz gabbro. South of the irruptive, 

numerous sills and dykes of the quartz gabbro are exposed and 

noted by Cooke (1946) to have been in turn intruded by dykes of 
19 porphyritic olivine diabase. A post-orogenic age for these 

three intrusives has been indicated by evidence of only minor 

shearing and brecciation, vvith a pre-irruptive age indicated by 

a cross-cutting relationship of the irruptive with the latest 
20 intrusion, the porphyritic olivine diabase. 

Event (2a and b) 

Following this first sequence of events, extreme pressure 

apparently built up in the magma reservoir. The consequence of 

such pressure bearing on the overlying country rock may be 

viewed in the perspective of Anderson's theory of cone-sheet 

development. As indicated by Figure 5, a hypothetical cross 

section, the hydrostatic pressure of the magma, by exceeding the 

lithostatic pressure of the overlying country rock, could develop 

a set of radiating tension fractures or fissures along paths of 

the greatest principal stress axes. At such time that a number of 

these fractures had been extended to the surface of the earth, 

the consequent release of pressure resulted in the expulsion of 

brecciated country rock and vent agglomerate. In turn, vast 

quantities of volcanic tuff of an andesitic composition were 

extruded and accumulated on surface to heights of thousands of 

feet. " Pulsations of pressure accompanying such violent ex­

trusions resulted in the formation of highly brecciated zones 

along tension fractures which had not been extended to the 

surface. With a gradual depletion of magma in the reservoir and 

an increasing volume of extruded tuff on the surface, it is 

suggested that a U-shaped segment of the earth's crust, largely 

outlined by intersecting tension fractures, gradually subsided 

some thousands of feet in depth. 
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Intrusion of the Irruptive, Events (3a) and (3b) 

Following the volcanic activity, pressure once again built 

up in the magma reservoir. A large proportion of the remaining 

magma was forcefully intruded around the periphery of the down-

faulted block as basically two separate intrusions closely re­

lated in time. As suggested by Figure 6, a hypothetical cross 

section of the irruptive at depth, an acidic fraction of the 

magma occupied the upper portion of the intruded area as a 

steeply dipping layer which upon consolidation formed the 

irruptive's inner ring of micropegmatite (Figure 8). A major 

portion of the intruded magma was composed of a basic fraction 

which subsequently consolidated as an underlying layer (Figure 6), 

and as the irruptive's outer ring of norite (Figure 8). A zone 

of mixed acidic and basic composition, lying between the steeply 

dipping layers of micropegmatite and norite (Figure 6), is 

considered as representative of an intermingling of the two 

fractions during intrusion and partially of further differen­

tiation of the two fractions in place following the intrusion 

(see pages 38 and 39). At depth, the norite similarily under­

went differentiation in place following the intrusion with the 

evolution of an underlying zone of ultrabasic composition as 

suggested by Figure 6. Evidence of such a differentiated zone 

has been indicated by a later intrusion composed of quartz 

diorite which apparently brecciated this zone upon intrusion 

and carried upwards in suspension such ultrabasic fragments as 

olivine gabbro, olivine, norite, pyroxenite, and dunite. " 

The average chemical compositions of the volcanic tuffs, 

micropegmatite and norite are indicated by Table 5. 

Post irruptive Period 

The post-irruptive period may be viewed as tiiare»isub-

periods, each consisting of an acidic intrusive event followed 

by one or more basic intrusive events. 



Table 5 

CHEMICAL COMPOSITIONS OF IGNEOUS FORMATIONS 

Chemical 
Composition 

Si02 

A1203 

Fe203 

FeO 

CaO 

MgO 

Na20 

K20 

H20 

Ti02 

P2°5 
S 

MnO 

C02 

Total 

T 

Acid 
Offset 
Dyke 

71.45 

12.17 

1.03 

4.18 

1.35 

0.94 

3.06 

3.49 

1.06 

0.79 

0.66 

0.08 

0.13 

-

100.39 

II 

Micro­
pegmatite 

67.83 

13.36 

1.28 

4.39 

2.04 

1.50 

3.39 

3.82 

1.21 

0.68 

0.21 

0-05 

0.07 

0.17 

100.00 

III 

Complex 

63.14 

14.65 

1.52 

5.17 

4,03 

2.85 

3.20 

2.91 

1.24 

0.74 

0.23 

0,08 

0.08 

0.16 

100.00 

IV 

Volcanic 
Tuffs 

65.9 

11.6 

1.7 

4.9 

2.7 

3.6 

3.5 

2.9 

1.8 

0.4 

0.1 

0.2 

0.3 

99.6 

V 

Norite 

55.16 

16.86 

1.94 

6.50 

7.42 

5.17 

2.87 

1.35 

1.28 

0.83 

0.25 

0.12 

0.10 

0.15 

100.00 

VI 

Quartz 
Diorite 
Offset 
Dykes 

58.55 

15.75 

2.16 

6.41 

6.15 

4.07 

2.63 

2.07 

1.06 

0.83 

0.27 

0.23 

-

0.05 

100.23 

Specific 
Gravity 2.697 2.710 2.766 2.855 2.875 

I - analysis of single dyke intruded into volcanic tuffs from 
micropegmatite (Collins, 1934, p. 175) 
II, III, and V - average of 34 analyses of micropegmatite, 
of combined analyses of micropegmatite and norite, and of 38 
analyses of norite (Collins, 1934, p. 172) 
IV - average of 5 analyses of volcanic tuffs (Burrows & 
Rickaby, 1934, pp. 10, 14, 22), (Thomson, 1957, p. 18) 
VI - averages of all available analyses of offset dykes by 1934 
(Collins, 1934, p, 172) 
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Event (4a) 

As the first intrusive event, a granitic magma was 

intruded along the southern and northern flanks of the irruptive. 

As shown by Figure 8, the largest exposed mass, known as the 

Creighton granite, lies along the southern range for a distance 

of twelve miles. To the northeast, a half-mile long body repre­

sents the Lady Violet granite, and a three-mile long body repre­

sents the Murray granite. Ginn (1958), in his study of the Sudbury 

area granites, found the Creighton and Murray granites to be 

"remarkably similar in chemical composition" and also very 

similar to the Lady Violet granite, thereby substantiating a 
25 genetic relationship (see Table 6). Granites of such age 

have been also noted by Yates (1948) to occur along the northern 

range, however, their configurations were not fully mapped. 

The age relationship between these granites and the 

irruptive has been the subject of considerable rationalization 

by some investigators in attempts to accomodate their theories 

with a pre-irruptive age for the granites. Investigations, by 

such men as Knight (1917), Phemister (1925), Burrows and Rickaby 

(1934), and Yates (1938 & 1948), have substantiated a post-

irruptive age for these granites without recourse to considerable 

rationalization. Of the three main phases of the Creighton 

granite, at least two dykes of the earliest phase, a porphyritic 

coarse-grained granite, were noted as having been intruded into the 

norite of the irruptive. Numerous to hundreds of dykes of 

the latest phase, a medium to fine-grained granite, were noted 

as being intruded into the norite between the Creighton and Crean 

Hill mines, ° The intrusive nature of the Murray granite, 

similar in texture to the youngest phase of the Creighton granite, 

can be best described by the statement of Yates (1938) that "the 

granite has unquestionably brecciated, intruded, and altered the 

norite and includes fragments of it." * Both dykes and small 

masses of granite, similar to the Murray type of granite, were 



Chemical 
Composition 

Si02 

A1203 

Fe203 

CaO 

MgO 

Na20 

K20 

+H20 

-H2O 

MnO 

Ti02 

Total 

CHEMICAL COMPOSITIONS 

Creighton 
Granite 

74.44 

11.20 

2.22 

1,35 

0.49 

2.95 

5.03 

0.45 

0.05 

0.03 

0,17 

98,38 

OF GRANITES 

Murray 
Granite 

73.78 

11.70 

2,57 

1.30 

0.25 

3.35 

5.18 

0.38 

0.05 

0.03 

0.17 

98.76 

Lady Vii 
Granite 

73.34 

10.60 

1.05 

0.35 

0.30 

4.69 

7.91 

0.06 

0.02 

-

0.05 

98.37 

Source: R.M, Ginn, 1938. A Study of the Granitic 

Rocks in the Sudbur> Area, Unpublished M.S. thesis, 

Queen's University, Kingston. 
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noted to occur within the norite at distances of over two 
30 miles from the main masses of granite south of the irruptive. 

Narrow stringers of a similar granite were also noted by Phemister 

(1925) to intrude the micropegmatite, thereby indicating both 

post-micropegmatite and post-norite ages for the granites. ̂ 1 

Event (4b) 

The basic intrusive, quartz diorite, which followed the 

intrusion of the granites, has been described as medium to 

fine-grained, less altered than the norite, and with a more 

32 

basic composition than the norite. This more basic comp­

osition has also been shown by chemical analyses of samples 

taken from 4 of the 5 offset dykes (see Table 5, page 19 ). 

Prior to, or during the intrusion, there appears to have been 

a doming up of both the irruptive and its surrounding area, 

such that the quartz diorite was injected as thin bodies around 

much of the circumference of the irruptive and also as thin off­

set dykes along apparent tension fractures which radiated out­

ward from the irruptive for distances as great as nine miles 

(Figure 8). 

Evidence which establishes both a post-irruptive and a 

post-granite age for the intrusion of the quartz diorite is 

presented as follows. 

Evidence of a Post-norite Age 

(a) At the Murray mine (Figure &, southern range), dykes of 

quartz diorite were intruded into the norite, with one six-foot 

wide dyke noted to exhibit sharp and contrasting contacts 

against the coarser grained, marginal phase of the norite. ̂ 3 

(b) Near the Levack mine (Figure A, northern range), a dyke of 

quartz diorite was noted by Collins (1934) to have been 

intruded well into the irruptive, cutting the norite, the 

hybrid zone of mixed acidic and basic composition, and also 
34 the micropegmatite. 
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Evidence of a Post-granite Age 

(a) The quartz diorite of the Copper Cliff offset is shown 

by Figure 9 to cut the eastern edge of the Creighton granite. 

Yates (1938) observed that it "is strongly chilled against the 

granite over a width of 2 or 3 inches; it also cuts a faintly 

defined gneissic structure at a small angle; £and] small tongues of 

the diorite extend out into the granite." 35 

(b) As also shown by Figure 9, dykes of Murray granite extend 

southward toward the Frood breccia zone. Dykes of this granite 

were observed on the southern side of the breccia zone with 

fragments of granite noted in the breccia but not in the lenses 

of quartz diorite. -}° 

Event (4c) 

Naldrett and Kullerud (1967), in a recent study at the 

Strathcona mine (northern range), have presented evidence that 

indicates the occurrence of two intrusions of quartz diorite 

rather than just one, however both were shown to be closely 

related in both time and space (Figure 10). The later in­

trusion differed from the earlier intrusion by having a finer 

grained texture, little quartz, an absence of micrographic 

quartz and feldspar, and also inclusions of ultrabasic com­

position. ' Such inclusions have been identified by Cowan 

(1967), and noted in order of greater ultrabasic composition 

as olivine gabbro, olivine norite, pyroxenite and dunite. J° 

Occurrences of such inclusions have also been observed by Souch, 

Podalsky et al and noted by Naldrett and Kullered (1967) 

"to occur in sulfide ore and in younger intrusions at numerous 

localities around the margin of the Nickel Irruptive." 39 

The absence of any exposed intrusions of such ultrabasic com­

position in the Sudbury area has been proposed as evidence that 

these inclusions represent fragments from a zone of ultrabasic 

rocks lying along the base of the irruptive at some unknown 

depth. A possible configuration of such a zone has been 

suggested in Figure 6. 
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FIGURE 9. Intrusive relationships of granites, quartz d ior i te and 
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Events (5a) and (5b) 

Following the intrusions of quartz diorite, small aplite 

and trap dykes were emplaced, as indicated in the sequences 

of events presented by Yates (1938) and Fairbairn and Robson 

(1942). ^ Aplite was noted to cut both the quartz diorite 

of the Copper Cliff offset and the Creighton granite, however 

reference to an apparent age relationship between the aplite 

and trap dykes was not located by the writer. ^ A later 

intrusive age for the trap rock, relative to the aplite, might 

be inferred from the observations of Cooke (1946) that these 

fine-grained uralitic diabases both cut and are cut by breccia, 

thereby indicating a close relationship with the following period 

of brecciation. ̂  Relative to the preceding intrusives, Cooke 

also noted that the trap dykes cut the quartz diorite, the 

Creighton and Murray granites, and the norite. 

Event (5c) 

Event (5c) may be considered as consisting of a number of 

occurrences closely related in time and space; namely the 

occurrences of faulting, brecciation, hydrothermal activity, and 

the emplacement of sulphide mineralization with minor basic 

minerals. 

As shown by Figure 8, a following period of extensive 

faulting cut the irruptive into segments, cut through the 

Creighton granite, and displaced the quartz diorite of both the 

Copper Cliff and Worthington offset dykes. Specific references 

to locations of cross-cutting relationships between the faults 

and the dykes of aplite and trap rock have not been located, 

however, both Yates (1938) and Fairbairn and Robson (1942) 

have listed faulting as a following event relative to these 

minor dyke-rocks. ̂  At the Falconbridge mine (southeast 

corner of the irruptive), the relationships between the fault­

ing and the following brecciation are apparent (Figure 11). 

The initial faulting altered the adjacent wall rock to a chlorite 
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schist, served as an avenue for silica-rich solutions which 

silicified the norite and greenstone, and formed later, quartz 

carbonate veins. As noted by Lochhead (1955), the following 

brecciation incorporated as fragments "well-preserved small drag 

folds, schisting, silicification, and quartz carbonate veining". 

Burrows and Rickaby (1934) observed that varying quantities of 

quartz and calcite were present at all of the ore deposits 

known in 1934, however such emplacement preceded the brecciation 

and the later intrusion of massive sulphides, as indicated by 

the relationships noted by Knight (1917) and Clarke and Potapoff 

(1959). 4 6 

The brecciation, which followed the faulting, occurred 

close to the outer contacts of the irruptive and also along 

pre-irruptive zones of brecciation as much as three miles south 

of the irruptive's southern contact (Figure 8). The following 

evidence is presented as indicative of a post-irruptive age for 

this breccia which was: 

(a) noted to be intrusive into the norite at the Levack mine 

(northern range); ^ 

(b) noted to cut and include fragments of the Creighton and 

Murray granites; ^° 

(c) noted to cut the Frood and Copper Cliff offsets of quartz 

diorite, and also the quartz diorite present at many of the mines 

located around the periphery of the irruptive; ̂ ' 

(d) noted to cut the latest intrusion of quartz diorite at the 

Strathcona mine (northern range) ; -*0 

(e) and noted by Knight (1917) and Yates (1948) to be associated 

with fault zones at numerous localities along the southern range. 

Accompanying the faulting and brecciation, hydrothermal 

solutions altered the plagiclase feldspar in the fragments to 
51 a more sodic composition, and added the secondary minerals 

52 of chlorite, epidote, biotite and quartz. A characteristic 

feature of such breccia was the presence of rounded 'eyes' or 
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porphyroblasts of quartz and feldspar. ^ Despite the relatively 

close spatial association of breccia and ore zones, this meta-

somatic alteration of the breccia was apparently not a product 

of hydrothermal solutions accompanying the intrusion of massive 

sulphide mineralization. Evidence for such an observation is 

suggested by the occurrences of metasomatically altered breccia 

found by Speers (1956) along the eastern and northern ranges to 

be barren of sulphide mineralization. There is evidence, 

however, that a significant portion of the disseminated mineral­

ization found in the various breccias may have been introduced 

along with basic minerals following the hydrothermal alteration 

of the breccia. At the Strathcona mine, Cowan (1967) observed 

that: 

" In other areas where disseminated mineralization is 
intense, the breccia matrix is darker in colour and 
contains abundant small mafic patches and crystal 
fragments ... in some locations the dark breccia 
appears to show cross-cutting relations." (!with 
the lighter-coloured brecciaj 55 

Events (6a) and (6b) 

In turn the breccia was noted to be cut by minor aplite 

dykes in the area of the Creighton granite and also at the 

Strathcona mine (northern range) . -1 

The intrusion of massive sulphide mineralization, which 

followed, apparently carried with it or was immediately pre­

ceded by minor amounts of hornblende and biotite. At the 

Creighton mine, blocks of Creighton granite were noted by 

Wandke and Hoffman (1924) to show "a black rim of hornblende 

and biotite which separates the unaltered granite from the 

encroaching sulphides". 57 Cowan (1967) also observed rims 

of hornblende and biotite around basic fragments at the Strath-

cona mine. The small basic patches and crystal fragments 

noted to occur within the late breccia at the Strathcona mine 

(as quoted above) a r e suggestive of the probability that both 
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the disseminated and massive sulphide mineralization were 

emplaced with varying amounts of hornblende and biotite. 

Event (6c) 

A study of the published reports concerning the Sudbury 

area mines indicates that the massive sulphide mineralization 

was forcefully injected along faults, fissures, and associated 

zones of shearing and brecciation in virtually any rock type. 

Dependent upon the types of host rocks and structure, the ore 

deposits are represented as combinations of massive sulphide 

zones, sulphide stringers or disseminated sulphides. All of 

the Sudbury deposits contain a characteristic assemblage of the 

sulphide minerals pyrrhotite Fe^_xS, pentlandite (Fe,Ni)S, and 
59 chalcopyrite CuFeS2-

Event (6d) 

Varying types of late mineralization have been reported 

to occur around the irruptive. Millerite, NiS, the iron-

deficient mineral of nickel, has been observed at the Vermillion 

and Strathcona mines. ° Arsenides of nickel were also noted 

at the Falconbridge, Vermillion and Frood-Stobie mines. 

At the Falconbridge mine, the massive sulphide ores have been 

intersected by numerous cross-fractures carrying the sulphide 

minerals of sphalerite, galena, marcasite, and also carbonates. ' 

Hydrothermal alteration was observed in association with the 

late mineralization at the Falconbridge and Strathcona mines. 
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CHAPTER III 

EVIDENCE RELATIVE TO PROBLEMS OF THE SUDBURY AREA 

Apparent Sequence of Events 

The preceding, descriptive history of the Sudbury area is 

summarized in Table 4 (see pages 15 and 16 ). As indicated, 

five periods of intrusive activity are recognizable, each period 

being characterized by an initial intrusion of acidic composition 

followed in turn by one or more intrusions of basic composition. 

The period of extrusive activity (2a & b) is also recognizable 

as the equivalent of an acidic to basic period. As expressed by 

Table 5 (page 19 ), the volcanic tuffs, composed of andesite, 

bear a strong similarity of chemical composition to the combined 

analyses of the micropegmatite and norite. All six periods of 

igneous activity are therefore suggested as being representative 

of relatively, continuous magmatic differentiation in a reservoir 

at depth with periodical expulsions of differentiated magma 

as indicated by Table 4. 

Evidence of Genetic Relationships 

The following evidence is presented as being indicative of 

a genetic relationship among the various intrusives, and con­

sequently indicative of a common source of differentiated magma. 

Characteristic intergrowths of potassium feldspar and quartz, 

termed micrographic intergrowth, have been noted to occur in the 

following rock types. 
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(la) - grey granite 
2 

(3a) - micropegmatite 

(3b) - norite 

(4a) - Creighton granite 

(4b) - quartz diorite 

(4c) - an absence of micrographic intergrowth was noted 

in the fine-grained, second intrusion of quartz 

diorite 

(6a) - pegmatite - noted along the eastern range to be intruded 

into brecciated rock adjacent to the irruptive and 

subsequently intruded by nickel sulphides 

All of the above rock types are coarse-grained in texture, 

consequently there is the probability that micrographic inter­

growth was not developed in the fine-grained rock types such 

as andesitic tuff (2a & b), the aplites (5a) & (6a), and the 

trap rock (5b). The remaining coarse-grained rock types of 

quartz gabbro (lb) and porphyritic olivine diabase (lc) were 

noted to respectively contain rounded masses of pegmatitic 

quartz and feldspar, and white phenocrysts. 

Nature of the Sudbury Irruptive 

Concepts of the Irruptive 

Basically the irruptive has been considered as being in­

troduced into place as either: 

(a) a single intrusion which differentiated in place into the 

component parts of micropegmatite and norite, as inter­

preted by such men as Walker (1897), Bell (1890), Coleman, 

(1903), Collins (1934), and Hawley (1962), 

(b) or as two separate intrusions, with a differentiated fraction 

of norite intruded initially and followed by a differentiated 

fraction of micropegmatite, with this interpretation proposed 

by such men as Barker (1916), Knight (1923), Phemister (1925), 

Stevenson (1963), and Naldrett and Kullerud (1967). 
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Suggested Third Concept of the Irruptive 

A third concept of the emplacement of the irruptive is 

suggested as being more feasible than either of the above con­

cepts. At depth, a magma of basic composition may be considered 

as having differentiated into a basic fraction of noritic com­

position with an overlying, residual, acidic fraction of micro-

pegmatitic composition. If a portion of such differentiated 

magma were expelled from the reservoir, the overlying micro-

pegmatitic fraction would be the first to be emplaced into the 

overlying country rock, with the noritic fraction emplaced either 

with this acidic fraction or closely following it. Prior to 

consolidation, both fractions could have undergone further 

differentiation in place. 

As may be noted, this third concept is a modification of the 

'single intrusion' and the 'two separate intrusions' concepts, 

with emplacement of the irruptive considered as either a 

relatively continuous, single intrusion or as two intrusions 

closely related in time, such fractions having been differentiated 

primarily in the magma reservoir and to a relatively minor degree 

following emplacement. 

Evidence of an Initial Emplacement of Micropegmatite 

As the 'two separate intrusions' concept envisions the 

noritic fraction as having been initially emplaced, the 

following evidence is presented as being indicative that the 

micropegmatitic fraction was initially emplaced. 

(a) As shown by Figure 8, the country rock presently exposed 

along the northern and eastern ranges of the irruptive is com­

posed of granite and granite gneiss, with quartzite exposed 

south of the irruptive's southern range. Stevenson (1963) has 

noted the micropegmatite to be intrusive into quartzite breccia 

and the overlying volcanic tuff, as well as containing inclusions 

of coarse-grained "old granite". Occasional fragments of 
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quartzite have also been noted within both the norite and the 

hybrid zone, thereby suggesting that such rock-types were also 

intrusive into the country rock but to a probable lesser degree 
10 than the intrusion of micropegmatite. 

(b) Such intrusive relationships are diagrammatically expressed 

by the suggested, hypothetical cross-section of the irruptive 

(Figure 6). An initial intrusion of norite would be improbable 

if such a configuration were to be accepted for the nature of 

the irruptive at depth. 

(c) As noted by Table 4, sequences of acidic to basic intrusions 

occurred both prior to and after the intrusion of the irruptive. 

A reversal of such an acidic to basic sequence for just the 

irruptive would appear to be quite doubtful. 

(d) Magmatic differentiation implies a gravitational segregation 

of the heavier and earliest formed crystals from the lighter 

and later formed crystals. It is consequently difficult to 

visualize a differentiated fraction of norite with an average 

specific gravity of 2.8175 as having been intruded prior to a 

differentiated fraction of micropegmatite with an average 

specific gravity of 2.708. *-*• 

(e) Collins (1934) largely discounted the possibility of sig­

nificant differentiation in place, as inferred by the 'single 

intrusion' concept, by his observation that "there is not a 

regular change in acidity and specific gravity across the 

irruptive." 12 Both the micropegmatite and norite were found 

to have characteristic chemical compositions, suggestive of 

significant differentiation prior to intrusion rather than 

following intrusion. *••* 

Evidence of Partial Differentiation in Place 

Narrow zones of varying texture and composition, noted 

along the upper and lower contacts of both the micropegmatite 

and the norite, are suggestive of a partial differentiation in 
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place following the intrusion of the irruptive. 

An upper, contact phase of the usual, coarse-grained 

micropegmatite has been recognized by Stevenson (1963) as a 

medium to fine-grained rock over a surface-distance of 500 feet. ^ 

Tongues of this rock-type, termed pepper-and-salt micropegmatite, 

were noted as intrusive into the overlying quartzite breccia 

and the volcanic tuff for distances of hundreds of feet. 

One such tongue was noted by Collins (1934) to have a specific 

gravity of 2.697 as compared with an average of 2.708 for the 

usual coarse-grained micropegmatite. *•$ 

The hybrid zone of mixed acidic and basic composition, 

exposed over a surface distance of 250 to 800 feet (Figures 6 

and 8), may be representative of an intermingling of the fractions 

of micropegmatite and norite during intrusion. As indicated by 

the work of Collins (1934), this zone is characterized by a 

composition high in Fen and Ti02> being representative of the 
1 £% heavy mineral ilmenite. i0 A gravitational differentiation of 

ilmenite from the overlying micropegmatite appears to be probable. 

A number of small concentrations of ilmenite around the border 

of the norite are also suggestive of a partial differentiation 

of ilmenite from the norite. 

An upper, pegmatitic phase of the norite has been 

recognized by Yates (1938) as underlying the hybrid zone almost 

completely around its periphery, with an exposed width of a few 

feet to several hundred feet. This phase could be considered 

as a partial differentiation of the norite in place as the result 

of an upward migration of volatile solutions with a consequent 

recrystallization of the original constituents of augite and 

hypersthene to the less basic minerals of hornblende, biotite 
I Q 

and chlorite. 

Evidence of a possible differentiation of the norite at 

depth has been indicated by inclusions of ultrabasic composition 

contained within the later intrusion of quartz diorite (4c)(see page 
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Ultrabasic inclusions have been also noted within zones of massive 
20 sulphide mineralization. Such inclusions are inferred as 

having been fractured by the intrusion of quartz diorite (4c) 

and possibly by the intrusion of massive sulphides (6c) from 

a differentiated zone believed to underlie the norite of the 

irruptive (Figure 6). If such intrusions were injected along the 

same system of tension fractures as inferred by their spacial 

relationships, a possibility also exists that ultrabasic 

inclusions might have been also fractured from this zone by the 

intrusions of granite (4a) and quartz diorite (4b), and carried 

upwards in suspension. 

Relative Times and Degrees of Brecciation 

A review of the published reports relative to the Sudbury 

area has indicated that the various degrees of brecciation: 

(a) were closely associated with major tension fractures or 

fissures, presently exposed as brecciated bands roughly parallel 

to the periphery of the irruptive or as bands radiating outwards 

from the irruptive (see Figure 8); 

(b) were of major intensity prior to and during the extrusion 

of volcanic tuff (2a & b); 

(c) were of moderate intensity prior to the intrusion of nickel 

sulphide mineralization (5c) and (6c); 

(d) and were of minor intensity in association with the outer 

margins of the forceful intrusions of micropegmatite (3a), 

norite (3b), granite (4a), quartz diorite (4b) & (4c) and 

trap rock (5b). 

A pre-irruptive age for the period of major brecciation is 

indicated at locations where the norite of the irruptive has been 

intruded across breccia zones. The nature of this breccia 

is well illustrated by the observation of Yates (1948) that the 

breccia near the Frood mine (southern range) carries fragments 

"of all sizes from microscopic to as great as 3,000 feet in 

length and 1,000 feet in width." 2 2 
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Structural Shape of the Irruptive at Depth 

The irruptive has been variously described as the surface 

expression of: 

(a) a folded, differentiated sill, (Walker, 1897) (Coleman, 1905) 

(b) an intrusion around a downfaulted block, (Knight, 1917) 

(c) a ring-dyke complex, (Phemister, 1925) 

(d) an intrusion into a pre-existing syncline, (Yates, 1948) 

(e) an intrusion as a funnel-shaped body, (Wilson, 1956) 

(f) a ring-dyke complex which converges rather than diverges 

at depth, (Thomson, 1956) 

(g) an intrusion into a collapse caldera, (Speers, 1957) 

(h) and an extrusive lopolith in an "astrobleme". (Dietz, 1962) 

The hypothetical view of the irruptive at depth as suggested by 

Figure 6 is a diagrammatic interpretation suggestive of the 

descriptive hypotheses of Knight (1917) (b), and Thomson (1956) 

(f). Thomson felt obliged to consider a pre-existing basin as 

an explanation for the inward dipping nature of the volcanic 

tuff formations, however, such a feature could also be explained 

as an accumulation of breccia adjacent to volcanic fissures, a 

gradual subsidence of a fault block, and a gradually diminishing 

fall-out of volcanic tuff toward the center of the irruptive, 

as suggested by Figures 5 and 6. A study by Wilson (1956) of 

layered intrusions suggested that 5 to 10 per cent of a basaltic 

magma could be differentiated to granitic material. 2:} 

The amount of micropegmatite shown by Figure 6 is in accord 

with such an expected range of differentiation. As also shown, 

the attitude of the norite conforms with the observation made 

by Souch, Podalsky et al and noted by Naldrett and Kullerud (1967) 

that "the dip of the primary foliation in the feldspars and 

pyroxenes is flatter than the dip of the outer contact of the 

it 2 4 intrusion . 
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Genesis of the Ore Deposits 

The numerous hypotheses proposed to explain the structure 

of the irruptive at depth have their counterpart in the number 

of hypotheses proposed as explanations for the origin of the 

Sudbury nickel ores, such as: 

(a) fissure-fillings by solutions, (Collins, 1888) 

(b) segregation of sulphides from the noritic magma as 

immiscible droplets with a later injection into 

underlying fractures, (Bell, 1890) (Walker, 1897) 

(Coleman, 1905) (Collins, 1934) (Hawley, 1962) 

and others 

(c) hydrothermal replacements of the country rock and 

intrusives, (Knight, 1917) (Phemister, 1925) (Burrows 

and Rickaby, 1934) and others 

(d) introduced in suspension with the latest intrusion of 

quartz diorite, (Naldrett and Kullerud, 1967) 

(e) differentiation at depth with a later emplacement into the 

overlying country rock and intrusives as injections of 

sulphide magma. (Howe, 1914) (Bateman, 1917) 

As suggested on page 4, all of these hypotheses might be viewed 

in the perspective of a single hypothesis, namely magmatic 

differentiation in a magma reservoir at depth. Yates (1948) 

indicated that a lengthy and complex period of igneous activity 

25 

preceded the emplacement of the ore deposits. Such in­

ferred complexity of igneous activity has been shown by Table 4 

to consist of an orderly number of periods each being characterized 

by an acidic to basic sequence of intrusions. 

The assumption may be made that nickel sulphides were 

originally contained within a magma of basic composition at 

such time as it had been emplaced into a reservoir at some 

undetermined depth below the present site of the irruptive. 

With a slow rate of cooling, the magma differentiated into 

fractions of acidic to basic composition which were periodically 
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expelled under various degrees of accumulated pressure. 

Assuming that the contained sulphides had also undergone 

gravitational differentiation during this time, a concentration 

of sulphides could be expected within the lower portion of the 

basic fraction or to lie immediately below it. At such times 

as periodic explusions of differentiated magma occurred, the 

concentrations of sulphides would be expelled with a basic 

fraction or as^closely following fraction of concentrated 

sulphide magma. As indicated by Table 4, (pages 15 and 16) 

this sequence is indicated by the events (3b), (4c), (5c) and 

(6c). Partial evidence of such concentration may be inferred 

from Table 7. 

Table 7 
Relative Concentrations of Nickel, Copper and Sulphu 

mean values in ppm 

Ni Cu b 

micropegmatite 
upper norite 
norite (northern range) 
norite (southern range) 
discontinuous marginal 
facies 3,000 2,700 18,000 

Source: Souch et al, 1966, p. 801. 

At such time as the intrusion of the norite, the nickel content 

of this portion of differentiated magma contained a sulphide 

concentration of 0.0035 to 0.007 per cent. The later intrusion 

of quartz diorite, (4c), having undergone further differentiation 

at depth, contained approximately 0.3 per cent nickel, being 0.1 

per cent higher in nickel content than the average peridotite of 

ultrabasic content (see Table 1, page 3). Evidence is not 

available, however, it is suggested that the sulphides introduced 

during event (5c) were of a greater concentration than the contained 

20 
35 
60 
75 

28 
40 
55 
50 

475 
950 
950 

1,100 
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sulphides emplaced during event 4c. At such time as event 6c, 

the sulphides had been concentrated to approximately 4 to 10 per 

cent nickel content and emplaced as massive sulphide deposits. 

By the apparent sequence of intrusions of late mineral­

ization at the Marbridge mines in the Malartic district of Quebec 

(see page 60 ), it may be inferred that the arsenides of nickel 

and the monosulphide of nickel, millerite, were emplaced in the 

Sudbury area following the intrusion of massive sulphides but 

prior to the intrusion of the sulphide minerals sphalerite, 

galena and marcasite (see page 30). 



45 

FOOTNOTES FOR CHAPTER III 

1 G.P. Mitchell and A.D. Mutch, 1957, "Hardy Mine" in Structural 
Geology of Canadian Ore Deposits, Congress Volume, vol 2, 
Montreal, Canadian Institute of Mining and Metallurgy, p. 352. 

2 A.J. Naldrett and G. Kullerud, 1967, "A Study of the 
Strathcona Mine and Its Bearing on the Origin of the Nickel-
Copper Ores of the Sudbury District, Ontario," Journal of Petrology, 
vol. 8, pt. 3, p. 519. 

J S. Stevenson, 1963, "The Upper Contact Phase of the 
Sudbury Micropegmatite," Canadian Mineralogist, vol. 7, p. 413. 

3 T.C. Phemister, 1925, "Igneous Rocks of Sudbury and their 
Relation to the Ore Deposits," Department of Mines, Ontario, 
vol. 34, pt. 8, 1926, pp. 6, 10 and 19. 

Naldrett and Kullerud, 1967, loc. cit. 

4 E. Howe, 1914, "Petrographical Notes on the Sudbury Nickel 
Deposits," Economic Geology, vol. 9, no. 6, pp. 518-19. 

5 A.G. Burrows and H.C. Rickaby, 1934, "Sudbury Nickel Field 
Restudied," Department of Mines. Ontario, vol. 43, pt. 2, 
1935, p. 27. 

A.B. Yates, 1938, "The Sudbury Intrusive," Transactions 
of the Royal Society of Canada, vol. 32, sect. 4, p. 163. 

J.C. Cowan, 1967, "Geology of the Strathcona Ore Deposit," 
Canadian Mining and Metallurgical Bulletin, vol. 1, no. 669, 
1968, p. 43. 

6 Naldrett and Kullerud, 1967, op_. cit.., p. 492. 

7 H.C. Cooke, 1946, Problems of Sudbury Geology, 
Geological Survey, Canada, bull. no. 3, p. 61. 

8 Ibid., p. 58. 

9 Stevenson, 1963, loc. cit. 

10 W.H. Collins, 1934, "Life History of the Sudbury Nickel 
Irruptive," Transactions of the Royal Society of Canada, vol. 28, 
sect. 4, pp. 150-51. 

11 Yates, 1938, op_. cit., p. 153. 

12 Collins, 1934, op_. cit., pp. 142-48. 

13 Ibid., p. 149. 



46 

14 Stevenson, 1963, op_. cit. , p. 415. 

15 Collins, 1934, op_. cit., p. 175. 

16 Collins, 1934, op_. cit.., pp. 143, 145, and 148. 

17 Yates, 1938, op_. cit., p. 157. 

18 Yates, 1938, loc. cit. 

19 Naldrett and Kullerud, 1967, op_. cit., p. 493. 

20 B.E. Souch and Members of the Geological Staff of the 
International Nickel Co. of Canada Ltd., 1966, "The Sulfide 
Ores of Sudbury: Their Particular Relation to a Distinctive 
Inclusion-Bearing Faces of the "Nickel Irruptive", Abstract, 
Economic Geology, vol. 61, pt. 1, p. 801. 

21 E.C. Speers, 1957, "The Age Relation and Origin of Common 
Sudbury Breccia," Journal of Geology, vol. 65, p. 508. 

22 A.B. Yates, 1948, "Properties of the International 
Nickel Company of Canada, in Structural Geology of Canadian 
Ore Deposits, Jubilee Volume, Montreal, Canadian Institute of 
Mining and Metallurgy, p. 612. 

23 H.D.B. Wilson, 1956, "Structure of Lopoliths," Bulletin 
of the Geological Society of America, vol. 67, pt. 1, p. 299. 

24 B.E. Souch, T. Podalsky and Geological Staff of the 
International Nickel Co. of Canada Ltd., The Sulfide 
Ores of Sudbury: Their Particular Relation to a Distinctive 
Inclusion-Bearing Facies of the Nickel Irruptive, Unpublished 
Study, in Naldrett and Kullerud, 1967, op_. cit., p. 492. 

25 Yates, 1948, op_. cit., p. 603. 

26 Naldrett and Kullerud, 1967, op_. cit., p. 494. 



47 

CHAPTER IV 

SEQUENCES OF EVENTS IN OTHER NICKEL RESOURCE-AREAS 

The areas of Lynn Lake, Moak Lake-Setting Lake, Bird River, 

Werner Lake-Gordon Lake, Shebandowan and Marbridge (Figure 3) have 

been reviewed with the object of determining the apparent sequences 

of events. Relative to the Sudbury area, comparatively little 

information has been published concerning these areas. Assuming 

that a somewhat progressive sequence of acidic to basic intrusive 

events might be indicated in a number of these areas, the origin 

of the concentrated nickel deposits might be attributed to a 

common process of magmatic differentiation at depth. The apparent 

sequences of events have been summarized in Table 8 (see page 62). 

The Lynn Lake Area 

The first evidence of igneous activity in the Lynn Lake 

area has been noted as the extrusion of minor rhyolite and 

trachyte flows, followed by major extrusions of andesitic tuff 

and breccia. * Minor periods of sedimentation intervened between 

the explusions of the andesite and continued for a following, 

lengthy period. 

Regional folding compressed the volcanic and sedimentary 

formations into a tightly folded, synclinal structure accompanied 

by an intrusion of granite roughly concordant with the east-west 

trend of the folded structure. A similar age for both the folding 

and the emplacement of the granite is evidenced by zones of 
o 

crushed granite. 
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The granite was in turn followed by the intrusion of 

plug-like bodies of basic composition. As shown by Figure 12, 

the ore deposits of the area are associated with two of these 

plugs, which have been termed the "A" plug and the "EL" plug. 

The rock-types of which these plugs are composed have been 

described by various terms, however, the phases of diorite, 

gabbro and norite have been recognized and suggested as being 

the result of differentiation in place. Interrelationships 

between these phases are not apparent in Figures 13 and 14 

due to the grouping of such rock types under the inclusive 

term of diorite. 

Compression from the west is considered to have been 

responsible for the formation of major thrust faults aligned in 

a north-south direction. Associated minor faults and tension 

fractures cut the plugs in northeast and northwest directions 

and were the apparent paths along which irregular masses of 

peridotite were intruded. Zones of brecciation were formed 

at right angles to the major north-south faults. Such 

brecciated and faulted zones were apparently pathways for hydro-

thermal solutions which altered parts of the diorite^gabbro 

and norite to amphibolite, characterized by actinolitic 
3 

hornblende. Most of the previously intruded peridotite was 

altered to serpentine and talc. Wide zones of this alteration 

were noted as both adjacent to and also distant from the ore 

zones. Consequently, such alteration was not an intimately 

associated product of ore-bearing solutions. 

In turn, minor acidic dykes of granite, pegmatite and 

feldspar porphyry were intruded. Following the acidic dykes, 

unaltered dykes of quartz hornblende diorite are believed to 

have been emplaced, however, cross-cutting relationships had 

not been confirmed at the mines by 1960. ̂  To the east of 

the Lynn Lake area, Allen (1950) reported the occurrence of basic 

dykes cutting acidic dykes, with both dykes cut in turn by 

quartz veins. 
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FIGURE 13. Geological plan of the 'A' orebody at the 12th level, 
Lynn Lake mine, (from The Winning of Nickel , 1967) 
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A period of brecciation, shearing and minor faulting 

fractured the previously intruded rock-types and provided 

avenues of access for sulphide mineralization. As observed 

by Ruttan (1955): 

The grade of the ore is directly proportional to the 
intensity of the brecciation, with the highest grade 
material originating at or near one of the faults, and 
extending toward the next fault. 7 

Within the massive sulphide deposit of the "EL" mine, rounded^ 

unmineralized inclusions were noted as being composed of diorite, 

norite, amphibolite and quartz hornblende diorite. " The rounding 

of such fragments might be viewed as the result of localized 

intensive brecciation with a tumbling of such fragments together, 

and followed by a forceful intrusion of concentrated sulphide 

mineralization. 

The Moak Lake-Setting Lake Area 

The first apparent event of igneous activity to take 

place in the Moak Lake-Setting Lake area was the extrusion of 

andesite and/or basalt. As these volcanic rocks are inter-

bedded with considerable thicknesses of sedimentary formations, 

lengthy periods of sedimentation are implied. 

As shown by Figure 15, the presently exposed configurations 

of the sedimentary and volcanic formations are indicative of a 

highly folded belt approximately eighty miles in length. 

Granite was apparently intruded during the period of folding as 

inferred by evidence of post-crystalline brecciation and shearing. 

Patterson (1963) suggested that the foliated, basic sills 

reported near Mystery Lake may have been intruded close to the 

end of this orogenic period. 

As illustrated by Figure 15, rounded to oval-shaped 

bodies of granite have been mapped northeast of the Thompson 

mine, east of the Pipe Lake mine and southwest of the Soab mines. 
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Irregular contacts of these bodies with the surrounding country 

rocks suggest that the granite was intruded following the period 

of orogeny, however, cross-cutting relationships with the later 
1 9 

intrusions of peridotite have not been established. 

Throughout the eighty-mile long belt, elongate bodies of 

ultrabasic composition have been intruded roughly parallel 

to the northeast trend of the folded country rock and in some 

locations are closely associated with extensive, regional faults. 

These formations have been recognized as being composed mainly 
13 

of peridotite with minor dunite and pyroxenite. At the 
Thompson mine, a small mass of peridotite was found to be cut 

14 by pegmatite which was in turn cut by massive nickel sulphides. 

Mineralized, quartz vein fillings were also noted at the Moak 

mine within a peridotite sill. 

The majority of the ultrabasic rocks in the area have been 
1 f\ altered to serpentine. At one of the mines in the area, the 

writer noted the peridotite adjacent to the ore zone to be 

intensively altered to a talc-like composition, with fresh-appear­

ing, rounded inclusions of peridotite present in the midst of 

massive sulphide mineralization. Such an occurrence indicates 

that the peridotite was locally altered to a talc-like comp­

osition prior to the emplacement of the massive sulphides and 

not as an intimate product of the intrusion of the sulphide 

mineralization. 

A few of the peridotite bodies, such as the Moak Lake 

sill, have been partially sheared and brecciated with zones of 

disseminated sulphides and sulphide stringers. Other deposits, 

such as the Thompson mine, occur as breccia sulphide and 

massive sulphide zones essentially concordant with the regional 

structure of the metamorphosed sedimentary and volcanic formations. 
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The Bird River Area 

The oldest rocks exposed in the area are represented by 

lava flows of andesite and basalt . As shown by Figure 16, 

these lavas flank a later formation of sedimentary rocks which 

contain interbedded volcanic tuff. A period of major folding 

and faulting compressed these formations into a synclinal 

structure with steeply dipping beds. As noted by Davies (1955), 

granite was intruded into the southern limb of the syncline, 

however, he considered the granite along the northern limb to 

be intrusive into the Bird River sill, an intrusion composed 

primarily of peridotite and gabbro. •*•' In an earlier study, 

Cooke (1921) considered this basic sill to have been intruded 
18 into the granite, Consequently, a younger or older age 

for the granite relative to the Bird River sill appears to be 

quite indecisive in this area. 

As shown by Figure 16, the Bird River sill is exposed as 

a number of segments displaced by late faults. The sill 

dips steeply to the south and is composed of a lower band of 

peridotite with overlying phases of pyroxenite and gabbro of 
19 successively less basic composition. Such a compositional 

succession is suggestive of differentiation primarily in place. 

In various locations, gabbro was noted to underlie the 

peridotite and to be also contained within it. Such bands of 

gabbro were inferred by Davies (1955) to represent a separate and 
20 later intrusion than the Bird River sill. Minor intrusions of 

felsite, quartz and carbonate followed the basic intrusions 

and were in turn fractured and mineralized by cross-cutting 
21 

sulphide stringers. Lenses of massive sulphides were 

noted primarily along contacts between the peridotite and the 

granite, and also to be intrusive into these rock-types. The 

Bird River sill was later segmented and displaced by cross-

faults with a following intrusion of large scale masses of 

granite. 
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The Werner Lake-Gordon Lake Area 

As an extension of the Bird River area, approximately 

twenty to thirty miles directly east, the Werner Lake-Gordon Lake 

area shares evidence of a similar sequence of events (Figure 17). 

The question of whether granite might have been intruded prior 

to the emplacement of the Bird River sill is answered by the 

presence of elongate intrusions of granite relatively concordant 

with the regionally folded and metamorphosed sedimentary formations. 

This granite was subsequently cut by major faults along which 

elongate plugs and lenses of peridotite and pyroxenite were 

intruded. A medium-grained amphibolite was noted by Carlson 

(1957) to enclose such plugs and lenses, with the suggested 

possibility that the amphibolite might represent a possible 

later intrusive which had been completely altered by hydrother-

mal solutions. Evidence of extensive hydrothermal activity 

was also indicated by a partial serpentinization of the peri­

dotite and pyroxenite with a possible, complete alteration of 
23 such ultrabasic rocks to hornblendite in some locations. 

All of the basic and ultrabasic rock types were noted to be 

cut by later granite-pegmatites. A period of minor faulting 

and brecciation followed the intrusion of the granitic dykes 

and provided access for sulphide mineralization to form deposits 

of massive sulphides, breccia sulphides, sulphide stringers and 
25 disseminated sulphides. 

The Shebandowan Area 

As indicated by Figure 18, extrusive activity is represented 

in the area by initial, acidic flows of rhyolite and trachyte, 

followed by basic flows of basalt, andesite, diorite and dacite 
26 with interbedded volcanic agglomerate. Following a period 

of erosion, sedimentation, folding and faulting, lens-shaped 

bodies of peridotite were emplaced parallel with the regional 

foliation. These bodies were subsequently largely altered to 
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serpentine. Bodies of gabbro were noted to occur both adjacent 

to the peridotite and also at some distance away, being indicative 
28 of a later intrusion of gabbro. The peridotite was in turn 

cut by dykes of porphyritic quartz and feldspar which were 
29 subsequently mineralized. Watson (1928) commented on the 

apparent close association of these acidic dykes with the 

known ore bodies, with the suggestion that the origin of such 

dykes might have been the granitic batholith to the north, the 
30 relative age of which was unconfirmed. It is suggested that 

part of this granite may have been emplaced prior to the in­

trusion of the peridotite with the acidic dykes occurring after 

the gabbro intrusions but prior to the emplacement of the sul­

phide mineralization. Limited drilling prior to 1928 indicated 

that massive sulphide bands cut the peridotite lenses^with 

disseminated sulphides found to be contained within a major 
31 portion of the peridotite. 

The Marbridge, Malartic Area 

Within the area of the Marbridge No. 1 and No. 2 mines 

(Figure 19), the oldest formations are composed of acidic and 

basic volcanic tuff. Sediments were apparently later deposited 

with both the sedimentary and volcanic formations being 

subsequently highly folded and intruded by irregular, elongate 

masses of peridotite and pyroxenite, considered by Buchan 

and Blowes (1968) to have been products of differentiation from 
32 a common magma. These ultrabasic intrusions were intruded 

by gabbro dykes which were in turn brecciated by narrow acidic 
33 dykes of feldspar porphyry. Dykes of hornblende syenite 

were noted to occur at both mines, however, their age relation­

ship with the other intrusive formations was not defined. A 

possibility exists that such acidic dykes may have intervened 

between the intrusions of the peridotite masses and the later 

gabbro dykes. All of the intrusive rocks, with the exception of 

the hornblende syenite dykes, were noted to be cut by sulphide 
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mineralization. The extensive alteration of the basic in­

trusives may be a partial product of hydrothermal solutions from 

depth or from the later intrusion of granites which virtually 

isolated the Marbridge area. 

At the No. 1 mine, mineralization was apparently emplaced 

as two separate phases, as interpreted by Clarke (1965). 

The initial emplacement of approximately 30 per cent dissemin­

ated sulphides was contained within a fine-grained mass of 

peridotite which was in turn sheared and forcefully injected by 

massive sulphides. The belief was expressed that the two in­

trusions of sulphides and also those of peridotite and gabbro 

were "products of the same, differentiation process." ̂ 6 

At the No, 2 mine, approximately 60 per cent of the ore 

was composed of millerite, with a content of approximately 65 

per cent nickel as compared with the usual nickel sulphide 

mineral pentlandite which contains approximately 35 per cent 

nickel. Samples of pentlandite at this mine were also noted 

to contain a greater than average content of nickel, namely 

42.6 per cent. Buchan and Blowes (1968) postulated that such 

nickel-rich sulphides were formed by an interaction between 

the pre-existing ultrabasic masses and the later, extensive 

intrusions of granites. 38 xhe suggestion might be made 

that such nickel-rich assemblages were products of different­

iation at depth with intrusion into place as a later phase than 

the usual pyrrhotite and pentlandite assemblage present at the 

No. 1 mine, but earlier than the minor intrusions containing 

sphalerite which were noted to occur at both mines. 



Table 8 
SUMMARY OF SEQUENCES OF EVENTS 

Lynn Lake Area 

minor flows of 
rhyolite and 
trachyite followed 
by major extrusions 
of andesite tuff 
and breccia 

granite 

diorite, gabbro 
and norite 

(?) granitic dykes 

peridotite 

quartz hornblende 
diorite 

granitic dykes, 
pegmatite and 
feldspar porphyry 

Moak Lake-
Setting Lake 

Area 

extrusions of 
andesite and/or 
basalt flows 

granite 

(?) basic sills 
(?) granite 

peridotite and 
minor dunite 
and pyroxenite 

(?)peridotite 

pegmatite 

dykes 

Bird River 
Area 

andesite and 
basalt flows 

period of erosion 

period of majc 

granite 

peridotite 
and gabbro 

gabbro 

felsite 

massive sulphide 

Werner Lake-
Gordon Lake 

Area 

(volcanics not 
exposed in the 
immediate area) 

granite 

peridotite and 
pyroxenite 

(?)'amphibolite1 

granite-
pegmatites 

Shebandowan 
Area 

extrusions of 
rhyolite and 
trachyite 
followed by 
basalt, andesite 
and dacite 

(?) 

peridotite 

gabbro 

porphyritic 
quartz and 
feldspar dykes 

Marbridge, 
Malartic 

Area 

extrusions of 
acidic and 
basic tuffs 

(?) 

peridotite and 
pyroxenite 

(?)hornblende 

syenite dykes 
gabbro 

(?)peridotite 
& diss, sulph. 

feldspar 
porphyry dykes 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

Summation of the Apparent Sequences of Events 

As expressed by Table 4, (see pages 15 and ¥> ), the sequence 

of intrusive events in the Sudbury area is basically grouped into 

five periods, with each period distinguished by an acidic 

intrusion followed by one or more basic intrusions. A genetic 

relationship has been shown to exist throughout the sequence 

of intrusive events by the presence of a characteristic inter­

growth of quartz and feldspar (see page36). Such periodic and 

genetic relationships are indicative of a basic magma at depth 

which underwent differentiation with periodic expulsions of 

acidic and basic fractions. With this line of reasoning, a 

new diagrammatic concept of the Sudbury irruptive has been 

suggested as an explanation for the presently exposed surface 

features expressed by the irruptive and the surrounding 

country rocks (Figure 6). The genesis of the numerous and 

productive ore deposits has been viewed as an integral part of 

magmatic differentiation at depth. With reference to Tables 4 

and 7 (pages 15,16and 43 ), the closing events of periods 

(4), (5), and (6) apparently carried increasingly significant 

amounts of sulphide mineralization. In each case the immediately 

preceding, intrusive formation was composed of a basic composition, 

having been preceded by an intrusive of acidic composition. 

Such relationships appear indicative that the nickel sulphides were 

an integral part of a basic magma at depth. During a slow process 

I 
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of differentiation by crystal-formation and gravitational settling, 

the disseminated sulphides gradually accumulated in the lower 

portion of the remaining fluid magma and consequently were 

associated in the magma reservoir with the deeper fractions 

of basic composition to a greater extent than with the upper 

fractions of acidic composition. 

The sequences; of apparent events in the Lynn Lake, Moak Lake-

Setting Lake, Bird River, Werner Lake-Gordon Lake, Shebandowan 

and Marbridge, Malartic areas also appear to be indicative of 

a process of magmatic differentiation at depth. With the 

exception of the Werner Lake-Gordon Lake area where only meta-

sediments are exposed, there is evidence in all of the areas 

that the initially extruded, volcanic lavas and pyroclastics 

were of a more acidic composition than the extrusions which followed. 

Following the volcanic activity, each area underwent a lengthy 

period of sedimentation and a period of major folding. In the 

Lynn Lake, Moak Lake-Setting Lake, Bird River, and Werner Lake-

Gordon Lake areas, the observed evidence indicates that granite 

was intruded toward the end of the period of folding. Granitic 

intrusives may also have been emplaced at such relative time 

in the Shebandowan and Marbridge, Malartic areas, however, late 

intrusions of granite have masked evidence of possible, earlier, 

granitic intrusives. Intrusions of basic and ultrabasic 

composition were in turn emplaced in all of the areas, with 

suggested degrees of partial differentiation in place of these 

intrusives in the Lynn Lake, Bird River, Werner Lake-Gordon 

Lake and Marbridge, Malartic areas. Later minor intrusions of 

peridotite were inferred possibilities in the Lynn Lake and 

Moak Lake-Setting Lake areas, with probable, later intrusions 

of gabbro in the Bird River, Werner Lake-Gordon Lake and 

Shebandowan areas, and with decidedly later intrusions of gabbro 

in the Marbridge, Malartic area. In all areas, minor dykes of 

acidic composition intervened between the afore-mentioned, major 
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basic and ultrabasic intrusions and the emplacement of massive 

nickel sulphide mineralization. 

Bearing of Study on Hypotheses of Ore Emplacement 

The hypothesis of magmatic segregation in place, which 

envisions the settling of Immiscible sulphide droplets from a 

basic mass, can not be considered as a feasible manner of 

nickel concentration if one or more intervening intrusions have 

occurred between the emplacement of a basic mass and massive 

nickel sulphides. As stated above, one or more intervening 

intrusions have been noted in each area. 

The hypothesis that nickel mineralization was emplaced by 

hydrothermal solutions may also be considered to be unfeasible. 

Despite the occurrence of hydrothermal alteration within the 

relative areas of the nickel deposits at Sudbury, Lynn Lake and 

Moak Lake-Setting Lake, there is not a close, spatial association 

of hydrothermal alteration with the massive sulphide deposits. 

This statement is borne out by the occurrences of unaltered, 

basic inclusions in the midst of massive nickel sulphides in the 

Sudbury, Lynn Lake and Moak Lake-Setting Lake areas. * 

The possibility that all of the ores in the Sudbury area 

were introduced along with intrusions of quartz diorite may also 

be considered as an unfeasible hypothesis. As noted by Table 7 

(page 43), the quartz diorite may have contained approximately 

0.3 per cent nickel upon emplacement, or part of this percentage 

might have been added during the later period of brecciation 

and mineralization. The fact that three intrusives intervened 

between the emplacement of the quartz diorite and the massive 

nickel sulphides casts considerable doubt on the hypothesis that 

the sulphides within the quartz diorite settled out and were 

subsequently re-mobilized by brecciation and hydrothermal 

solutions into apparently open fissures to form massive 

sulphide deposits. 
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From the evidence presented, the only hypothesis which can 

reasonably account for the igneous activity and the genesis 

of the concentrated nickel sulphide mineralization in all of the 

reviewed areas is the hypothesis of magmatic differentiation at 

depth as originally hypothesized by Howe (1914), ^ later modified 

by Bateman (1917) 3 and extended by the writer. 

Spatial Relationships of the Nickel Ore Deposits 

As shown by Figure 4, the ore deposits of the Sudbury 

area are spatially related to the periphery of the irruptive 

and to the offsets, Such a close relationship with the 

irruptive may be explained with reference to the hypothetical 

cross-sections (Figures 5 and 6). The initial tension fractures, 

shown in such figures, are considered by the writer to be zones: 

(a) along which the volcanic tuff was extruded (event 2a and b) 

and extensive brecciation occurred; 

(b) along which the irruptive was emplaced (events 3a & 3b); 

(c) and along which all of the later intrusions of differentiated 

magma were injected, including the three injections of sulphide 

mineralization (events 4c, 5c and 6c). 

Bands of brecciation, shown by Figure 8 to roughly parallel 

the southern contact of the irruptive, have been considered by 

Phemister (1956) and Speers (1957) to occur in tension fractures 

or fissures as indicated by an apparent lack of displacement of the 

adjacent country rocks. 4 Such brecciated zones along tension 

fractures are considered by the writer to be representative of 

the hypothesized, initial tension fractures mentioned above. 

Periodic accumulations of pressure in the magma reservoir are 

considered to have re-activated the tension fracture zones along 

the outer contact of the irruptive and released the accumulations 

of pressure by injections of differentiated magmas and sulphides 

along such zones. 

In the Lynn Lake area (Figure 12), the basic, plug-like bodies 
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are roughly aligned in a north-northeast direction, as are the 

major faults and orebodies. Such a spatial relationship of 

features implies a genetic association and the possible existence 

of zones of tension fractures or faults at depth along which 

were injected the basic, plug-like bodies, the minor acidic, 

basic and ultrabasic intrusives and the ore mineralization. 

In the Moak Lake-Setting Lake area (Figure 15), the north-

northeastward trend of the acidic and ultrabasic intrusions, 

and the orebodies suggests emplacement along tension fractures 

or fault zones. In all of the remaining areas, the ore zones 

and the lens or plug-like bodies of basic and ultrabasic 

composition exhibit linear trends suggestive of emplacement 

along common zones of tension fractures or faults. 

(Figures 16, 17, 18 and 19). 

Generalizations of Occurrence. Structure and Genesis 

With reference to the consideration of the Sudbury deposits 

as "unique in their occurrence^ structure and genesis", -* 

the following generalizations might be made concerning the seven 

areas studied. 

Occurrence 

(a) The nickel deposits occur in areas of highly folded and 

metamorphosed volcanic and sedimentary formations. Such areas 

may represent former mountain ranges which have been uplifted 

and subsequently eroded. 

(b) In all areas, the nickel deposits occur in spatial 

association primarily with basic and ultrabasic intrusions 

and to a less apparent degree with acidic intrusions. 

Structure 

(a) The various deposits appear to be spatially associated 

with zones of tension fractures which may or may not have 

become fault zones by later differential movement. All of the 

orebodies have been noted to show linear trends suggestive of 

intrusion along zones of tension fractures. 
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(b) Brecciation of rock formations adjacent to such zones 

appears to have been a common occurrence prior to emplacement 

of sulphide mineralization. 

Genesis 

(a) Each deposit is primarily composed of a characteristic 

assemblage of the sulphide minerals pyrrhotite Fe-^_XS, 

pentlandite (Fe,Ni)S, and chalcopyrite CuFeS2 . 

(b) The sequences and spatial associations of igneous formations 

in the seven areas are suggestive of the probability that the 

sulphide deposits have originated from basic magmas at depth, 

with a concentration of the contained sulphides by a common 

process of magmatic differentiation, and with periodic ejections 

of concentrated, sulphide fractions to form the various nickel 

ore deposits. 

Such generalizations may prove relevant to future exploration, 

assessment and development of potential, nickel resource-areas 

within the Canadian Shield. 

Recommendations for Future Development 

With regard to the presently developed areas, a 

recommendation might be made for further exploration of possible 

tension fracture zones which may or may not be distinguished 

by brecciation. In the Sudbury area, the southwestern extension 

of the Frood breccia zone, as shown in Figure 9, might prove 

worthy of further exploration at depth. The Laurie River fault 

zone and associated basic plugs in the Lynn Lake area (Figure 12) 

may merit further exploration. In the Moak Lake-Setting Lake 

area (Figure 15), the spatial association of granite bodies 

with known ore deposits is suggestive that additional deposits 

might be expected in the respective, surrounding areas. In the 

Bird River area (Figure 16), a narrow band of gabbroic rock, noted 

by Davies (1955) to occur along the north shore of Bernic Lake, 

might prove to be indicative of a sill-like body underlying Bernic 

Lake on the southern limb of the apparent synclinal structure. 
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FOOTNOTES FOR CHAPTER V 

1 G.D. Ruttan, 1955, "Geology of Lynn Lake," Transactions 
of the Canadian Institute of Mining and Metallurgy, vol. 58, 
pp. 194-95. 

personal observation in the Sudbury and Thompson areas. 

2 E. Howe, 1914, "Petrographical Notes on the Sudbury Nickel 
Deposits," Economic Geology, vol. 9, no. 6, pp. 521-22. 

3 A.M. Bateman, 1917, "Magmatic Ore Deposits, Sudbury, 
Ontario, " Economic Geology, vol. 12, no. 5, p. 418. 

4 T.C. Phemister, 1925, "Igneous Rocks of Sudbury and their 
Relation to the Ore Deposits," Department of Mines. Ontario, 
vol. 34, pt. 8, 1926, p. 96. 

E.C. Speers, 1957, "The Age Relation and Origin of Common 
Sudbury Breccia," Journal of Geology, vol. 65, p. 504, 

5 A.B. Yates, 1948, "Properties of the International Nickel 
Company of Canada" in Structural Geology of Canadian Ore Deposits, 
Jubilee Volume, Montreal, Canadian Institute of Mining and 
Metallurgy, p. 596. 

6 J.F. Davies, 1955, Geology and Mineral Deposits of the 
Bird Lake Area. Winnipeg, Department of Mines and Natural 
Resources, Manitoba, publ. 54-1, p. 16. 
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