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Abstract 14 

Cellular signalling generates calcium (Ca2+) ions, which are ubiquitous secondary messengers 15 

decoded by calcium-dependent protein kinases, calcineurins, calreticulin, calmodulins (CAMs) 16 

and CAM-binding proteins. Previous studies in the model plant Arabidopsis thaliana have shown 17 

the critical roles of the CAM-BINDING PROTEIN 60 (CBP60) protein family in plant growth, 18 

stress responses and immunity. Certain CBP60 factors can regulate plant immune responses, 19 

like pattern-triggered immunity, effector-triggered immunity, and synthesis of major plant 20 

immune-activating metabolites salicylic acid (SA) and N-hydroxypipecolic acid (NHP). Although 21 

homologous CBP60 sequences have been identified in the plant kingdom, their function and 22 

regulation in most species remain unclear. In this paper, we specifically characterized 11 23 

members of the CBP60 family in the agriculturally important crop tomato (Solanum 24 

lycopersicum). Protein sequence analyses revealed that three CBP60 homologs have the 25 

closest amino acid identity to Arabidopsis CBP60g and SARD1, master transcription factors 26 

involved in plant immunity. Strikingly, AlphaFold deep learning-assisted prediction of protein 27 

structures highlighted close structural similarity between these tomato and Arabidopsis CBP60 28 

homologs. Conserved domain analyses revealed that they possess CAM-binding domains and 29 

DNA-binding domains, reflecting their potential involvement in linking Ca2+ signalling and 30 

transcriptional regulation in tomato plants. In terms of their gene expression profiles under biotic 31 

(Pseudomonas syringae pv. tomato DC3000 pathogen infection) and/or abiotic stress (warming 32 

temperatures), five tomato CBP60 genes were pathogen-responsive and temperature-sensitive, 33 

reminiscent of Arabidopsis CBP60g and SARD1. Overall, we present a genome-wide 34 

identification of the CBP60 gene/protein family in tomato plants, and we provide evidence on 35 

their regulation and potential function as Ca2+-sensing transcriptional regulators. 36 

 37 

Keywords: AlphaFold, climate change, gene expression, gene regulation, salicylic acid, 38 

plant defense, plant immunity, Pseudomonas syringae, tomato, temperature, transcription factor 39 

 40 
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Introduction 41 

Calcium is required for plant growth, development, and immunity (Hepler, 2005; Tian et 42 

al., 2020). Calcium ions in plant cells serve as intracellular messengers to elicit responses to 43 

different abiotic and biotic stressors (Knight, 2000; Köster et al., 2022; Xu et al., 2022). One of 44 

the earliest plant immune responses following pathogen recognition is a rapid influx of calcium 45 

ions into the cytosol (Moeder et al., 2019; Tian et al., 2019; Hilleary et al., 2020; Thor et al., 46 

2020). Proteins such as calmodulin (CAM) bind calcium, and these calcium-binding proteins 47 

then alter their conformation and catalytic activity resulting in signal transduction (Yang and 48 

Poovaiah, 2003; DeFalco et al., 2009). CAM is a highly studied eukaryotic protein that interacts 49 

with numerous target proteins (Bouché et al., 2005; Kim et al., 2009). For example, CAM 50 

interacts with and activates certain CAM-binding transcription factors involved in immune 51 

responses, like CALMODULIN-BINDING TRANSCRIPTION ACTIVATOR 3 (CAMTA3; Du et al., 52 

2009) and CALMODULIN-BINDING PROTEIN 60-LIKE G (CBP60g; Wang et al., 2009; Zhang 53 

et al., 2010; Sun et al., 2022).  54 

CBP60g is a member of the CBP60 protein family (Reddy et al., 2002; Wang et al., 2009; 55 

Truman et al., 2013; Amani et al., 2022; Zheng et al., 2022) and serves as a key transcriptional 56 

regulator for SA biosynthetic genes ISOCHORISMATE SYNTHASE 1 (ICS1) and AVRPPHB 57 

SUSCEPTIBLE 3 (PBS3; Zhang et al., 2010; Wang et al., 2009; Sun et al., 2015; Kim et al., 58 

2022). Like CBP60g, another CBP60 protein family member SYSTEMIC ACQUIRED 59 

RESISTANCE 1 (SARD1) plays a partially redundant role in SA biosynthesis (Zhang et al., 60 

2010; Wang et al., 2011). Although SARD1 does not bind CAM (unlike CBP60g), it has been 61 

shown to be regulated by calcium sensor proteins like CALCIUM-DEPENDENT PROTEIN 62 

KINASE 5 (CPK5; Guerra et al., 2020). Apart from SA production, CBP60g and SARD1 also 63 

positively regulate systemic acquired resistance by controlling genes like AGD2-LIKE 64 

DEFENSE RESPONSE PROTEIN 1 (ALD1), SYSTEMIC ACQUIRED RESISTANCE 1 65 

(SARD4) and FLAVIN-DEPENDENT MONOOXYGENASE 1 (FMO1; Sun et al., 2018; Shields 66 

et al. 2022), which are required for biosynthesis of the systemic immunity-activating metabolite 67 

N-hydroxypipecolic acid (NHP; Chen et al., 2018; Hartmann et al., 2018; Huang et al., 2020; 68 

Zeier, 2021). 69 

CBP60g and SARD1 are two of eight homologous proteins of the CBP60 family in 70 

Arabidopsis and are strongly inducible by pathogen infection (Wang et al., 2009; Zhang et al., 71 

2010; Wang et al., 2011; Truman et al., 2013). In A. thaliana plants, other CBP60 family 72 
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members include CBP60a, which is a CAM-binding negative regulator of immunity as CBP60a 73 

mutations reduced pathogen growth (Truman et al., 2013; Lu et al., 2018). As another member 74 

of the Arabidopsis CBP60 family, CBP60b functions as a positive regulator for both cell surface 75 

and intracellular immune receptors (Huang et al., 2021; Li et al., 2021). CBP60b has also been 76 

found to bind the SARD1 promoter region, which suggests that it could regulate SARD1 77 

expression (Huang et al., 2021). CBP60c and CBP60d mutations have small significant effects 78 

on plant disease resistance, while the effects of CBP60d and CBP60e on plant immunity seem 79 

negligible (Truman et al., 2013). 80 

Importantly, the temperature-sensitivity of the SA biosynthetic pathway (Huot et al., 2017; 81 

Castroverde and Dina, 2021; Rossi et al., 2023) is due to the temperature-downregulation of 82 

CBP60g and SARD1 (Kim et al., 2022). CBP60g and SARD1 gene expression can be induced 83 

by pathogens or pathogen-associated molecular patterns (Wang et al., 2009; Zhang et al., 84 

2010; Wang et al., 2011), but induced expression is suppressed when temperatures increase 85 

(Kim et al., 2022). Remarkably, constitutive expression of CBP60g or SARD1 can restore not 86 

only SA biosynthesis at warm temperature but also other drivers of the plant immune system 87 

(Kim et al., 2022). CBP60g and SARD1 gene expression are tightly regulated, with transcription 88 

factors TGA1 and TGA4 acting as positive regulators (Sun et al., 2018) and CAMTA proteins as 89 

negative regulators (Sun et al., 2020).  90 

Because of the central importance of CBP60g and SARD1 in plant immune resilience to a 91 

warming climate, it is imperative that functional orthologs are investigated in other plant species, 92 

especially agriculturally important crops. Although a recent study reported orthologs of CBP60g 93 

and SARD1 in tobacco plants (Takagi et al., 2022), the function and regulation of CBP60 94 

proteins in other plant species have yet to be investigated. We recently identified CBP60 95 

homologs across various representative taxa in the plant kingdom (Amani et al., 2022); 96 

however, whether gene expression trends observed in Arabidopsis are conserved in other 97 

plants remain unclear. In this study, we report the identification of 11 homologous CBP60 98 

(SlCBP60) genes in tomato plants (Solanum lycopersiucm). Our analyses show that SlCBP60-99 

1, 8 and 11 are the closest sequence and structural homologs to Arabidopsis CBP60g and 100 

SARD1. In addition, we show that biotic stress (pathogen infection) and abiotic stress (elevated 101 

temperature) differentially regulate the 11 SlCBP60 genes, with observed variation in pathogen-102 

responsiveness and temperature-vulnerability. 103 

 104 



5 
 

Materials and Methods 105 

Protein sequence analyses 106 

Protein IDs of the 11 tomato (S. lycopersicum) CBP60 homologs or SlCBP60 were 107 

obtained from Gramene (https://www.gramene.org/; Tello-Ruiz et al., 2021). Amino acid 108 

sequences were then exported from the Sol Genomics Network (https://solgenomics.net/; 109 

Fernandez-Pozo et al., 2015). SlCBP60 protein sequences were analyzed for amino acid 110 

similarity/clustering using Molecular Evolutionary Genetics Analysis (MEGA) Bioinformatics 111 

(Kumar et al., 1994), where they were built into a protein sequence alignment using the 112 

MUSCLE algorithm (Edgar, 2004). A dendrogram of the 11 SlCBP60g homologs was 113 

constructed as a Neighbor-Joining Tree together with the reference A. thaliana SARD1 and 114 

CBP60g protein sequences obtained from The Arabidopsis Informatics Resource/TAIR 115 

(https://www.Arabidopsis.org/; Lamesch et al., 2012). In addition, SlCBP60 protein sequences 116 

were analyzed for putative CAM-binding domains through Pfam (http://pfam.xfam.org/null; 117 

Mistry et al., 2021) and putative DNA-binding domains through DP-Bind 118 

(http://lcg.rit.albany.edu/dp-bind/; Hwang et al., 2007). Finally, candidate SlCBP60 phosphosites 119 

were determined by comparing with confirmed AtCBP60g and AtSARD1 phosphosites compiled 120 

in the qPTMPlants website (http://qptmplants.omicsbio.info/; Xue et al., 2022).   121 

 122 

AlphaFold protein structural prediction and hierarchical clustering 123 

Protein structures of the 11 tomato SlCBP60 homologs were predicted using the 124 

ColabFold: AlphaFold2 with MMseqs2 model (https://github.com/sokrypton/ColabFold; Jumper 125 

et al., 2021; Mirdita et al., 2022). Structures were predicted by inputting their corresponding 126 

amino acid sequences to the model using the default configuration. After the protein structures 127 

were predicted through AlphaFold2, the model outputted 5 structures ranked based on the 128 

model’s confidence in each structure. For each tomato SlCBP60 protein, we examined the 129 

highest-ranked structure automatically computed by AlphaFold2. To visualize the protein 130 

structures, the resulting PDB file formats were uploaded to the RCSB PDB website 131 

(https://www.rcsb.org/3d-view; Burley et al., 2019).  132 

TM-score analyses to determine similarities between predicted protein structures were 133 

conducted through the Zhang Lab website (https://zhanggroup.org/TM-score/; Zhang and 134 

https://www.gramene.org/
https://solgenomics.net/
https://www.arabidopsis.org/
http://pfam.xfam.org/null
http://lcg.rit.albany.edu/dp-bind/
http://qptmplants.omicsbio.info/
https://github.com/sokrypton/ColabFold
https://www.rcsb.org/3d-view
https://zhanggroup.org/TM-score/
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Skolnick, 2004). All 11 protein structures were inputted in PDB format, and TM-scores were 135 

compared with the other tomato SlCBP60 proteins and with the reference Arabidopsis proteins 136 

AtCBP60g and AtSARD1. The TM-scores were analyzed by hierarchical clustering using the 137 

NG-CHM Builder tool (https://build.ngchm.net/NGCHM-web-builder/; Ryan et al., 2019). Row 138 

and column ordering were set to “hierarchical clustering.” The distance metric used was 139 

“Euclidean” and the agglomeration setting was “average linkage.” 140 

 141 

Promoter analyses and transcription factor binding predictions 142 

Upstream DNA sequences of the 11 SlCBP60 genes were obtained using PlantPAN 3.0 143 

(http://plantpan.itps.ncku.edu.tw/; Chow et al., 2019). The upstream and downstream 144 

coordinates of promoter transcription start site/5’UTR-End were set to X: 1000 and Y:100, for 145 

upstream and downstream of the gene, respectively. SlCBP60 gene promoter sequences were 146 

then analyzed for nucleotide sequence similarity/clustering using Molecular Evolutionary 147 

Genetics Analysis (MEGA) Bioinformatics (Kumar et al., 1994). Putative transcription factors 148 

that bind to the 11 SlCBP60 promoters were predicted using PlantPAN 3.0 using the Multiple 149 

Promoter Analysis tool. Unique and overlapping transcription factors were sorted using UpSetR 150 

to visualize interactions in a matrix layout (Conway et al., 2017).  151 

 152 

Plant materials and growth conditions 153 

Tomato cultivar Castlemart seeds were kindly provided by Dr. Gregg Howe from Michigan 154 

State University (Li et al., 2004). Seeds were sterilized in 10% bleach solution for 15 minutes 155 

and washed five times with autoclaved water. Seeds were then hydrated with autoclaved water 156 

at room temperature (21°-23°C) overnight to facilitate imbibition. Afterwards, seeds were 157 

allowed to germinate on sterile 9-cm filter paper for 5 days under dark conditions. Germinated 158 

seeds were planted in pots (9.7cm x9.7cm) containing autoclaved soil (3 parts Promix PGX and 159 

1 part Turface). Individual plants were initially fertilized with 100mL of MiracleGro solution (made 160 

with a ratio of 4 g of MiracleGro per 1 L of water). Tomato plants were grown at 23°C with a 12 161 

hr light (100 ±20 umol m-2 s-1) and 12 hr dark cycle and 60% relative humidity. Plants were 162 

watered regularly and fertilized weekly with nutrient water (Hoagland and Arnon, 1950). 163 

 164 

https://build.ngchm.net/NGCHM-web-builder/
http://plantpan.itps.ncku.edu.tw/
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Immune elicitation 165 

For pathogen-induced gene expression analyses, one leaf from 4-week-old plants was 166 

infiltrated using a needleless syringe with either mock (0.25mM MgCl2) or Pseudomonas 167 

syringae pv. tomato/Pst DC3000 (OD600=0.001) as previously described in detail (Huot et al., 168 

2017). Inoculated plants were incubated at either normal (23°C day/23°C night) or elevated 169 

temperature (32°C day/32°C) with 60% relative humidity and 100 ±20 umol m-2 s-1 light intensity. 170 

For systemic gene expression analyses, mature and healthy bottom leaflets of 3- to 4-week-old 171 

tomato plants were infiltrated with either mock (0.25mM MgCl2) or Pst DC3000 (OD600=0.02) 172 

based on a protocol by Holmes et al. (2019). For pathogen-associated molecular pattern 173 

(PAMP)-induced gene expression analyses, 4-week-old plants was infiltrated using a needleless 174 

syringe with either mock (water) or 1 µM flg22 peptide (Bio Basic Canada Inc.) as previously 175 

described (Kim et al., 2022). Inoculated plants were incubated at normal temperature (23°C 176 

day/23°C night) with 60% relative humidity and 100 ±20 umol m-2 s-1 light intensity. Four 177 

individual plants were used as independent biological replicates per treatment. 178 

 179 

Gene expression analyses 180 

Locally infected leaves were harvested at 24 hours after mock or pathogen treatment, 181 

while uninfected (upper) systemic leaflets were harvested at 48 hours after local treatment of 182 

lower leaflets. Gene expression levels were quantified based on a previously published protocol 183 

(Huot et al., 2017; Kim et al., 2022) with slight modifications. After tissue homogenization using 184 

the TissueLyser II (Qiagen), total RNA was extracted using the RNeasy Plant Mini Kit (Qiagen). 185 

Total RNA concentration and quality were measured using a Nanodrop (Thermo Fisher) or 186 

DeNovix Nanospec. The cDNA was synthesized using qScript cDNA super mix (Quantabio) 187 

based on manufacturers’ recommendations. Real-time quantitative polymerase chain reaction 188 

(qPCR) was performed using PowerTrack SYBR Green master mix (Life Technologies). 189 

Equivalently diluted mRNA without the qScript cDNA mix were used as negative controls. The 190 

resulting qPCR mixes were run using the Applied Biosystems QuantStudio3 platform (Life 191 

Technologies), and individual Ct values were determined for target genes and the internal 192 

control gene (SlACT2) (Dekkers et al., 2012). Gene expression values were reported as 2−ΔCt, 193 

where ΔCt is Cttarget gene–CtSlACT2. qPCR was carried out with three technical replicates for each 194 

biological sample. Preliminary RT-PCR amplification was performed by visualizing bands in 1% 195 
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agarose gels under UV transillumination. Primers used for qPCR and PCR analyses are shown 196 

in Supplementary Table 1. 197 

 198 

Results 199 

Protein sequence analyses and phylogeny of the 11 SlCBP60 homologous 200 

proteins in tomato plants 201 

Unlike CBP60 proteins in the model species A. thaliana (Reddy et al, 2002; Wang et al., 202 

2009; Zhang et al., 2010; Wang et al., 2011; Wan et al., 2012; Truman et al., 2013), CBP60 203 

proteins in S. lycopersicum (tomato) plants have remained uncharacterized. Using Gramene, 204 

we successfully identified 11 CBP60 homologous genes in tomato: Solyc01g100240 205 

(SlCBP60_1), Solyc02g079040 (SlCBP60_2), Solyc03g113920 (SlCBP60_3), Solyc03g113940 206 

(SlCBP60_4), Solyc03g113950 (SlCBP60_5), Solyc03g113960 (SlCBP60_6), Solyc03g113970 207 

(SlCBP60_7), Solyc03g119250 (SlCBP60_8), Solyc07g006830 (SlCBP60_9), Solyc10g009210 208 

(SlCBP60_10) and Solyc12g036390 (SlCBP60_11). There is one homologous CBP60 gene 209 

each for chromosomes 1, 2, 7, 10 and 12, while there are six CBP60 homologs in chromosome 210 

3 alone. The SlCBP60 protein sequences are listed in Supplementary Table 2. 211 

To shed light on potential function and diversification of the 11 tomato SlCBP60 proteins, 212 

we analyzed their primary amino acid sequence similarities. As shown in Figure 1A, 213 

phylogenetic analyses revealed two main clades of tomato SlCBP60 proteins. The first major 214 

clade had four subclades: (a) SlCBP60_8 and 11; (b) SlCBP60_2, 9 and 10; (c) SlCBP60g_1; 215 

and (d) SlCBP60g_3. The second major clade had two subclades: (a) SlCBP60g_4 and 5; and 216 

(b) SlCBP60g_6 and 7. We had built the reference CBP60 proteins (AtCBP60g and AtSARD1) 217 

from the model species A. thaliana into this protein phylogenetic analyses. Based on their amino 218 

acid identities, SlCBP60_1 is the closest homolog to Arabidopsis CBP60g, while Arabidopsis 219 

SARD1 is most directly related to SlCBP60_8 and SlCBP60_11. 220 

Having identified SlCBP60_1, 8 and 11 as the closest sequence homologs of AtCBP60g 221 

and AtSARD1, we performed functional domain analyses to confirm whether they possess the 222 

distinguishing hallmarks of CBP60 family transcription factors. As shown in Figure 1B, all three 223 

SlCBP60 paralogs have predicted CAM-binding domains, suggesting their mechanistic link to 224 

plant calcium signalling. Putative DNA-binding residues were also detected in the three proteins, 225 
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with two proximal DNA-binding domains within the CAM-binding domain. Additionally, the longer 226 

SlCBP60_1 protein also contained a third DNA-binding domain in its C-terminus. This is 227 

consistent with AtCBP60g being longer than its AtSARD1 paralog (Zhang et al., 2010; Wang et 228 

al., 2011). Finally, by examining protein phosphosites on qPTMPlants, we determined 229 

conserved phosphoserine residues in the putative tomato orthologs. In SlCBP60_1, the Ser11, 230 

Ser15 and Ser456 residues correspond to experimentally determined phosphosites in 231 

AtCBP60g (Ser8, Ser11 and Ser450; Xue et al., 2022). On the other hand, SlCBP60_8 232 

Ser11/76 and SlCBP60_11 Ser15/75 residues were consistent with the AtSARD1 phosphosites 233 

(Ser12 and Ser77; Xue et al., 2022). 234 

 235 
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 236 

Fig. 1 Sequence analyses of the tomato SlCBP60 proteins. (A) Tomato SlCBP60 sequences 237 
were obtained from Sol Genomics Network (https://solgenomics.net). A. thaliana sequences 238 

https://solgenomics.net/
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were obtained from TAIR (https://www.Arabidopsis.org/). Sequences were built into a protein 239 
sequence alignment using the MUSCLE algorithm on MEGA and a neighbour-joining tree was 240 
constructed. (B) Close tomato homologs to Arabidopsis CBP60g (SlCBP60_1) and SARD1 241 
(SlCBP60_8 and SlCBP60_11) were further analyzed for putative CAM-binding domains (using 242 
Pfam) and DNA-binding sites (using DP-Bind). Conserved phosphosites are also indicated 243 
based on experimentally identified AtCBP60g and AtSARD1 phosphoserines (using 244 
qPTMPlants). 245 

 246 

Structural similarity analyses of the tomato SlCBP60 proteins 247 

Three-dimensional protein structures are important to understand protein function. To 248 

predict structures of the 11 tomato SlCBP60 proteins, corresponding amino acid sequences 249 

were used as inputs to ColabFold, which uses AlphaFold2 with MMseqs1 model (Jumper et al., 250 

2021; Mirdita et al., 2022). The AlphaFold model outputted and ranked five structures based on 251 

the model’s confidence in each structure. The highest-ranked predicted protein structures are 252 

shown in Figure 2A and Supplementary Data 1-2.  253 

To quantitatively determine structural similarity among the proteins, TM-scores were 254 

obtained to assess topological similarity of protein structures. Pairwise TM-score analyses were 255 

performed between each SlCBP60 protein and the reference Arabidopsis AtCBP60g and 256 

AtSARD1 proteins (Figure 2B; Supplementary Table 3). TM-scores with a value of 1.0 indicate 257 

perfect identity between two structures, while scores below 0.17 indicate unrelated proteins 258 

(Zhang et al., 2004). Based on the TM-score values and the structural similarity hierarchical 259 

clustering, SlCBP60_1 bears the most similar protein folding as AtCBP60g (consistent with the 260 

sequence analyses in the previous section). Also in agreement with the Figure 1A dendrogram, 261 

SlCBP60_8 and 11 structurally cluster together with AtSARD1. It is important to note that three 262 

other tomato proteins share structural similarity with AtSARD1 in this cluster (SlCBP60_2, 3 and 263 

10). Finally, the distinct clade of distantly related SlCBP604, 5, 6 and 7 sequences (Figure 1A) 264 

also formed their own structural cluster in Figure 2B. 265 

 266 

https://www.arabidopsis.org/
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 267 

Fig. 2 Structural similarity of AlphaFold deep learning-predicted SlCBP60 protein 268 
structures in tomato. (A) Protein structures of the 11 tomato SlCBP60 homologs were 269 
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predicted using AlphaFold2 with MMseqs2 model through the ColabFold Notebook 270 
(https://github.com/sokrypton/ColabFold). The best-ranked structure for each protein was 271 
visualized using the RCSB Protein Data Bank (https://www.rcsb.org/3d-view). (B) Hierarchical 272 
clustering of 11 tomato SlCBP60 protein structures was performed. Pairwise TM-scores were 273 
determined for all SlCBP60 proteins and the reference Arabidopsis proteins AtCBP60g and 274 
AtSARD1 on the Zhang Lab website (https://zhanggroup.org/TM-score/; Zhang et al., 2004). 275 
The TM-scores were then analyzed by hierarchical clustering using the NG-CHM Builder tool 276 
(https://build.ngchm.net/NGCHM-web-builder/). 277 

 278 

Gene expression analyses of the tomato SlCBP60 genes under bacterial 279 

pathogen infection at elevated temperature 280 

Protein function can be potentially inferred based on their expression profiles. In 281 

Arabidopsis, AtCBP60g and AtSARD1 gene expression in terms of transcript levels are induced 282 

by pathogens like Pst DC3000 at normal ambient temperatures, consistent with their central 283 

regulatory roles in the plant immune system (Wang et al., 2009; Zhang et al., 2010; Wang et al., 284 

2011; Sun et al., 2015). These two master immune transcription factors are also critical for the 285 

vulnerability of plant immune responses under warm temperatures, since AtCBP60g and 286 

AtSARD1 transcript levels are suppressed at elevated temperature (Kim et al., 2022).  287 

To determine how both biotic (pathogen infection) and abiotic stresses (warm 288 

temperature) regulate tomato SlCBP60 gene expression, total RNA samples were collected 289 

from tomato leaves after mock and pathogen treatments under both normal and elevated 290 

temperatures. As shown in Figure 3, RT-qPCR analyses indicated that SlCBP60-2, 6, 8, 9 and 291 

11 genes were induced after pathogen infection, while SlCBP60-1, 3, 4, 5, 7 and 10 exhibited 292 

pathogen-unresponsive gene expression. It is important to note that we sometimes observed 293 

pathogen-induced SlCBP60_1 gene expression in some but not all samples. In terms of 294 

temperature-sensitivity, all pathogen-induced genes exhibited temperature-sensitivity, while 295 

those not regulated by pathogen infection were resilient to temperature changes. Remarkably, 296 

the phylogenetically distant clade of SlCBP60-4, 5, 6 and 7 generally had the lowest levels of 297 

gene expression. We also investigated bacterial PAMP-induced SlCBP60 gene expression but 298 

found no significant upregulation after flg22 treatment (Supplementary Figure 1). Remarkably, 299 

the PAMP flgII-28 peptide was shown to induce the Pst DC3000-responsive genes SlCBP60-1, 300 

2, 6, 8 and 11 (Supplementary Figure 2), based a previous transcriptome in the Gene 301 

Expression Atlas (Rosli et al., 2013; Papatheodorou et al., 2020). Together, these results 302 

indicate differential regulation of the tomato SlCBP60 genes under diverse immune elicitation.  303 

https://github.com/sokrypton/ColabFold
https://www.rcsb.org/3d-view
https://zhanggroup.org/TM-score/
https://build.ngchm.net/NGCHM-web-builder/
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Fig. 3 Gene expression analyses of tomato CBP60 genes after pathogen infection under 306 
normal and elevated temperatures. Leaves of three- to four-week-old tomato plants were 307 
collected 1 day after syringe-infiltration with mock solution (0.25 mM MgCl2) or Pst DC3000 308 
(OD600=0.001). Total RNA samples were extracted and used as templates for RT-qPCR with 309 
primers specific for SlCBP60_1 to SlCBP60_11. Results show the mean gene expression value 310 
(relative to SlActin2) ± standard deviation of four biological replicates (n=4) of one 311 
representative experiment. Statistical significance was determined using a one-way ANOVA 312 
with Tukey’s honestly significant difference test (p < 0.05). Treatments with statistically 313 
significant differences are indicated by different letters. The experiment was performed three to 314 
four times with reproducible results. 315 

 316 

Systemic expression of the tomato CBP60 genes after immune elicitation 317 

In Arabidopsis plants, AtCBP60g and AtSARD1 are induced systemically during systemic 318 

acquired resistance (Zhang et al., 2010). To elucidate how local immune elicitation also 319 

regulates systemic tomato SlCBP60 gene expression, gene expression profiles of the 11 320 

SlCBP60 homologs were measured systemically after local infection with Pst DC3000. Relative 321 

transcript levels were compared between mock-treated and SAR-activated tomato plants as 322 

shown in Figure 4. Evidence of positive SAR-activation in tomato plants were validated by 323 

systemic induction of the tomato SAR marker gene SlPR5 (Supplementary Figure 3; Singh et 324 

al., 2021). It is evident that none of the SlCBP60 genes exhibited statistically significant 325 

systemic induction after pathogen infection. These included genes that were induced locally 326 

after pathogen infection – SlCBP60_2, 6, 8, 9 and 11. Consistent with the results in the previous 327 

section, basal expression levels were highest for the constitutively expressed SlCBP60_3 and 9 328 

genes and were lowest for SlCBP60_4, 5, 6, 7, 8 and 11. 329 

 330 



16 
 

 331 

Fig. 4 Gene expression analyses of tomato SlCBP60 genes after systemic immune 332 
elicitation. Upper systemic leaflets of three- to four-week-old tomato plants were collected 2 333 
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days after infiltrating lower leaflets with mock solution (0.25 mM MgCl2) or Pst DC3000 334 
(OD600=0.02). Total RNA samples were extracted and used as templates for RT-qPCR with 335 
primers specific for SlCBP60_1 to SlCBP60_11. Results show the mean gene expression value 336 
(relative to SlActin2) ± standard deviation of four biological replicates (n=4) of one 337 
representative experiment. Statistical significance was determined using a pairwise t-test (p < 338 
0.05), with asterisks (*) indicating statistically significant differences and “ns” indicating non-339 
significant differences. The experiment was performed two times with reproducible results. 340 

 341 

In silico analyses of the tomato SlCBP60 promoter regions 342 

To characterize overall similarity and clustering in the tomato SlCBP60 gene promoter 343 

sequences, we performed similarity clustering of their upstream DNA sequences using MEGA. 344 

As shown in Figure 5A, the phylogenetic tree for the 11 tomato SlCBP60 gene promoter 345 

sequences resulted in two major clades. The first clade had four subclades: (a) SlCBP60_1 and 346 

6 promoters; (b) SlCBP60_2 and 3 promoters; (c) SlCBP60_8 and 10 promoters; and (d) 347 

SlCBP60_7 and 11 promoters. The second clade had 3 members: SlCBP60_4, 5 and 9 348 

promoters. It is important to note that each clade/subclade consisted of both temperature-349 

sensitive pathogen-induced genes and temperature-resilient constitutively expressed genes. 350 

Subsequently, a Multiple Promoter Analysis was performed in PlantPAN 3.0 to predict 351 

putative transcription factors that could bind the 11 SlCBP60 promoter regions (Supplementary 352 

Table 4). The predicted transcription factors were visualized with UpsetR as shown in Figure 353 

5B. From this analysis, SlCBP60_1 to 11 shared 191 common transcription factors. The second 354 

intersection size was shared between the pathogen-induced SlCBP60_2 gene and constitutively 355 

expressed SlCBP60_7 gene (52 common transcription factors). Next, all genes except the 356 

constitutively expressed SlCBP60_10 gene shared another 20 common transcription factors. 357 

The pathogen-induced SlCBP60_2 gene had 19 unique transcription factors, while it shared 358 

another 17 transcription factors uniquely with SlCBP60_7 and 11. Additionally, SlCBP60_1, 2, 5, 359 

6, 7 and 11 shared 15 unique transcription factors. Independently, the constitutively expressed 360 

SlCBP60_4 and SlCBP60_7 genes had 13 and 9 unique transcription factors, respectively. 361 

There were 13 common transcription factors for SlCBP60_1, 2, 5, 8 and 10, while SlCBP60_4, 362 

6, 7 and 11 shared 12 common transcription factors. All 11 SlCBP60 genes except SlCBP60_4 363 

commonly shared 11 common transcription factors. Finally, other SlCBP60 promoter interaction 364 

sets had less than 10 overlapping transcription factors.  365 

 366 
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 367 

Fig. 5 Sequence analyses and transcription factor binding predictions of the 11 tomato 368 
SlCBP60 gene promoter sequences. (A) SlCBP60 promoter sequences were downloaded 369 
from the PlantPAN 3.0 website (http://plantpan.itps.ncku.edu.tw/) and then analyzed for 370 
similarity/clustering using MEGA. (B) Putative transcription factors that bind to the 11 SlCBP60 371 
upstream sequences were determined using PlantPAN 3.0. Unique and overlapping 372 
transcription factors were sorted using UpSetR to visualize set interactions in a matrix layout 373 
(Conway et al., 2017). The sets are ordered by intersection size, which indicates the number of 374 
transcription factors shared between the tomato SlCBP60 gene promoter sequences. Sets with 375 
an exclusive intersection are filled with a dark circle and sets with no exclusive intersection are 376 
indicated by a light-gray circle. 377 

 378 

http://plantpan.itps.ncku.edu.tw/
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Discussion 379 

In this paper, we have successfully identified and characterized 11 CBP60 family 380 

members in tomato plants. Unlike CBP60 proteins in the model species Arabidopsis thaliana 381 

(Reddy et al., 2002; Wang et al., 2009; Truman et al., 2013; Amani et al., 2022; Zheng et al., 382 

2022), CBP60 proteins in tomato and other species have remained unexplored. First, 383 

phylogenetic and structural analyses were conducted for the 11 SlCBP60 proteins (Figures 1-2). 384 

Second, expression profiles of the 11 SlCBP60 genes were determined after local and systemic 385 

immune elicitation with the model bacterial pathogen Pst DC3000 under different temperatures 386 

(Figures 3-4). Third, putative transcription factors that bind the SlCBP60 gene promoters were 387 

predicted to potentially explain the differential regulation of these genes under biotic and abiotic 388 

stress (Figure 5).  389 

Phylogenetic analyses revealed two major clades of the 11 tomato SlCBP60 proteins. 390 

The first clade clustered with the reference Arabidopsis AtCBP60g and AtSARD1 proteins. In 391 

particular, SlCBP60_1 has the highest amino acid identity to AtCBP60g, while SlCBP60_8 and 392 

11 are closest phylogenetically to AtSARD1. High amino acid sequence conservation was 393 

observed in the middle region of the 11 SlCBP60 proteins, with most sequence differences 394 

observed in their C-terminal regions. Our sequence-guided ortholog analyses were further 395 

validated by AlphaFold-predicted protein structures and TM-score analyses for topological 396 

similarity (Zhang and Skolnick, 2004; Jumper et al., 2021; Mirdita et al., 2022). Based on TM-397 

scores, SlCBP60_1 and AtCBP60g exhibit close structural similarity, while SlCBP60_8, 398 

SlCBP60_11 and AtSARD1 belong to another cluster of structurally similar proteins. 399 

Interestingly, other SlCBP60 proteins (2, 3, 9 and 10) also share close structural similarity to 400 

AtSARD1. The fact that the MEGA-generated phylogenetic tree (Figure 1) and TM-score-based 401 

structural clustering (Figure 2) did not perfectly mirror each other suggests that similarities not 402 

evident from primary amino acid sequences alone can be revealed by tertiary structural 403 

analyses. What is evident is that the distinct sequence subclade of SlCBP60_4, 5, 6 and 7 also 404 

forms a distinct and distantly related structural cluster.  405 

Previous research in the highly studied model species A. thaliana demonstrated that the 406 

CBP60 family has a highly conserved domain in the central region (Zhang et al., 2010), which is 407 

congruent with our Pfam-predicted CAM-binding domains in all three close SlCBP60 homologs 408 

(Figure 1). AtCBP60g protein also has a confirmed CAM-binding domain located near the N-409 

terminus (Wang et al., 2009), but we were not able to determine this in silico for SlCBP60_1. 410 
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Remarkably, CAM-binding domains were predicted in SlCBP60_8 and 11 even though their 411 

closest homolog AtSARD1 cannot bind CAM (Zhang et al., 2010; Wang et al., 2011). It is 412 

important to note that a SARD1 ortholog in Nicotiana tabacum (NtSARD1) can bind CAM, 413 

indicating differential post-translational regulation of these proteins depending on the species. 414 

Furthermore, a previous study has shown a transcription activation domain in the AtCBP60g 415 

protein at residues 211-400 (Qin et al., 2018). These nicely fit within the predicted DNA-binding 416 

domains in SlCBP60_1 (residues 214-235), SlCBP60_8 (residues 223-244) and SlCBP60_11 417 

(residues 222-239). Altogether, SlCBP60_1,8 and 11 may be the functional tomato orthologs of 418 

the Arabidopsis CBP60g and SARD1 proteins, which are master transcription factors controlling 419 

SA biosynthesis and immunity. However, further genetic confirmation is needed. Finally, we 420 

found conserved serine residues in these three proteins that correspond with the experimentally 421 

determined phosphosites in AtCBP60g and AtSARD1 based on previous studies (Xue et al., 422 

2022; Sun et al., 2022). It would be interesting to explore whether these putative SlCBP60 423 

phosphosites are also phosphorylated after immune elicitation and then to identify kinases 424 

and/or phosphatases responsible for this dynamic phosphorylation. 425 

After our sequence- and structure-guided analyses of the tomato SlCBP60 proteins, we 426 

set out to determine how SlCBP60 gene expression is regulated by stress conditions. In 427 

particular, we were curious to characterize which tomato genes would exhibit the same 428 

pathogen-induced expression of the Arabidopsis AtCBP60g and AtSARD1 genes, which are 429 

vulnerable to suppression at elevated temperatures (Kim et al., 2022). Based on RT-qPCR 430 

analyses of these genes after Pst DC3000 pathogen infection at 23°C and 32°C (Figure 3), we 431 

discovered that SlCBP60-2, 6, 8, 9 and 11 show temperature-modulated pathogen-induced 432 

gene expression that reflect transcriptional trends in AtCBP60g and AtSARD1. Interestingly, the 433 

closest sequence and structural homolog of AtCBP60g in tomato (SlCBP60_1) showed 434 

temperature-resilient constitutive levels of gene expression. Constitutively expressed genes 435 

could be further classified into those with low (SlCBP60-1, 4, 5 and 7) or high basal levels 436 

(SlCBP60_3 and 10), potentially reflecting differential functional, spatial and/or temporal 437 

regulation of these genes. In addition to local pathogen induction, Arabidopsis AtCBP60g and 438 

SARD1 can be induced in uninfected distal tissues during systemic acquired resistance (Zhang 439 

et al., 2010; Shields et al., 2022). However, we did not observe systemically induced expression 440 

of any of the 11 SlCBP60 genes after local immune elicitation with the virulent bacterial 441 

pathogen Pst DC3000 (Figure 4). This could suggest differential regulation of CBP60 genes by 442 

mobile systemic immune signals between tomato and Arabidopsis plants. 443 



21 
 

Finally, to mechanistically link gene expression profiles with upstream transcriptional 444 

regulators, we analyzed promoter sequences of the 11 tomato SlCBP60 genes and then 445 

predicted their putative transcription factors. Our findings demonstrate partial correlation 446 

between promoter sequence similarity and predicted transcription factor sets. For example, 447 

SlCBP60_2 and 7 share 52 unique common transcription factors, and their promoter sequences 448 

cluster phylogenetically in a major clade. However, there were some unexpected results, such 449 

as SlCBP60_1,2,5,8 and 10 sharing 13 transcription factors, even though their promoter 450 

sequences are distributed all over separate clades or subclades. Surprisingly, little correlation is 451 

observed between immunity-elicited gene expression profiles and shared transcription factors. 452 

SlCBP60_2, 6, 8, 9 and 11 are pathogen-induced genes, but their promoter sequences are 453 

distributed across five distinct subclades, and we did not identify transcription factors that are 454 

shared exclusively among them. We also did not identify any transcription factor that are only 455 

shared among the constitutively expressed genes (SlCBP60_1, 3, 4, 5, 7 and 10). In the future, 456 

it may be necessary to investigate beyond the distal (short-distance) promoter regions. There 457 

may be non-local (distal) enhancer regions (Andersson and Sandelin, 2020) and/or three-458 

dimensional chromatin architecture (Jerkovic and Cavalli, 2021) that could account for the 459 

differential regulation of the tomato SlCBP60 gene family. In general, regulatory transcription 460 

factors not only rely on short-distance/proximal promoter regions, but they can be influenced by 461 

long-distance enhancer regions as well (Dong et al., 2017; Li et al., 2019; Yan et al., 2019).  462 

Overall, our research has highlighted the structural and regulatory diversity of the 11 463 

SlCBP60 genes and their encoded proteins in tomato plants. We have identified candidate 464 

orthologs for further functional characterization. Our genome-wide structural and gene 465 

expression analyses have started to shed light on the potential involvement of these tomato 466 

SlCBP60 proteins in linking calcium signalling (de la Torre et al., 2013) and transcriptional 467 

regulation of plant immunity (Balaji et al., 2007) in this species. 468 

 469 
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