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Abstract 

Constructed wetlands (CWs) are complex treatment environments, requiring an 

integrative research approach to improve our understanding of them. The goal of this 

thesis was to establish an understanding of the functional and structural characteristics of 

microbial communities within bench-, field- and industrial-scale environmental treatment 

systems. The impact of pathogenic and/or antibiotic contaminants on these communities 

based on their functional and structural profiles using community-level physiological 

profiling (CLPP) and denaturing-gradient gel electrophoresis (DGGE), respectively, was 

investigated. Under normal operation, bench-, field- and industrial-scale treatment 

systems were able to produce similarly behaving structural and functional profiles. 

Increased retention time was consistently associated with communities with low 

functional capacity and diverse structural properties when compared to areas that initially 

received pre-treated or untreated wastewater. This indicates that smaller-scale treatment 

systems may be able to provide similar environments to those in larger-scale treatment 

systems. However, the normal community profile was not maintained during antibiotic 

treatment. Based on the metrics used, functional fingerprints displayed metabolic 

increases after acute addition of antibiotic, which was then followed by a return to pre­

exposure profiles. Conversely, structural fingerprints displayed no acute response, but 

instead alluded to delayed changes in the proportional abundance of different 

populations. In addition, the profile was reversed following exposure to untreated 

industrial wastewater, whereby an increased functional capacity and lowered structural 

properties were observed. These findings illustrate the dynamic and complex nature of 

microbial communities in response to selected environmental contaminants. 
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1. Introduction 

1.1. Overview 

Proper removal of contaminants is a crucial aspect of wastewater treatment. Following 

the growing global desire for biological 'green' technology, constructed wetlands (CWs) 

have become attractive and more common treatment options, largely due to the low costs 

associated with operation and maintenance (Kadlec, 1996), the increase in public green 

space (Knight, 1997) and the opportunity for use in rural or developing areas (Kivaisi, 

2001). As a result, the complex ecology housed within wetlands is employed for its bio-

remediative capacity despite only scarce understanding of the environmental impact 

(Kivaisi, 2001). The natural state of receiving CW microbial communities, the potential 

and probable fates of coliform-type/pathogenic organisms and the overall community 

changes as a result of exposure have scarcely been investigated (Ottova et al., 1997; Tarn, 

1998; Khatiwada & Polprasert, 1999; Vacca et al., 2005; Vymazal, 2005a; b). The impact 

of influent exposure on the biological communities within these systems, the 

sustainability of CW efficiency and the possible impact of CW effluent on the 

surrounding environments therefore remain unanswered and concerning questions. 

Few studies have investigated the bacterial communities that are responsible for 

CW function, and even fewer using multiple characterization techniques (Kivaisi, 2001; 

Wagner et al., 2002; Scholz & Lee, 2005; Gutknecht et al., 2006; Malik et al, 2008). As 

microbiologists, and biologists in general, turn to the pursuit of a more integrative, 

holistic understanding of life, the use of multiple techniques, measuring a number of 

characteristics simultaneously becomes a necessary endeavor in understanding complex 

microscopic communities. Additionally, research on CWs has typically been localized to 
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field-mesocosms or pilot-scale systems (e.g., Ibekwe et al, 2003) or bench-top systems 

(e.g., Hench et al, 2003; Weber et al, 2008), and to date has rarely been done on 

industrial-scale systems (e.g., Ghermandi et al, 2007; Calheiros et al, 2009). 

This thesis aims to integrate multiple community characterization techniques, as 

well as data obtained from multiple scales, in an effort to obtain a greater understanding 

of the microbial performance and state of CW systems and their response to normal 

treatment and perturbation. Integration of genetic and metabolic metrics on CWs of 

various scales will additionally provide novel information regarding the ability of bench-

and field-scale mesocosms to approximate the depth of the microbial diversity found in 

industrial-scale systems. 

1.2. Research Need 

Most studies that have been completed on pathogens associated with CWs have focused 

mainly on coliform reduction efficiencies, or the importance, and un-importance, of 

widely used macrophytes (Ottova et al, 1997; Soto et al, 1999; Tanner, 2001; Hench et 

al., 2003). Commonly reported through culture-based methods are high coliform removal 

efficiencies from water treated by CWs, with a large range of 60 to 99.999% removal 

(Archer, 2004; Vacca et al, 2005; Wand et al, 2007; Garcia et al, 2008; Morgan et al, 

2008). However natural wetlands and, similarily, CWs have been observed to maintain a 

background fecal coliform content of 102 to 103 colony forming units (CFUs) per 100 mL 

(Kadlec et al, 2000). This may allude to the possibility of a maximum total coliform 

removal achievable through the mechanisms (e.g., microbial competition, predation, UV 

exposure, etc.)available in CW systems (Ghermandi et al, 2007). These observations 

clearly indicate the power of CWs to reduce coliform loads, but may also indicate that 
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certain coliforms, along with any environmentally competitive pathogens they are 

typically associated with, may be able to find survive and persist within the receiving 

wetland communities. It is imperative that further understanding of these systems be 

gained, as both the processes and processors involved in bioremediation of both 

biological and chemical contaminants remains largely unknown despite the increased use 

of CWs (Kadlec & Knight, 1996; DeJournett et al, 2007). Without investigation into the 

microbial ecology of CWs and the function of bacterial populations in relation to 

pathogen removal, it will remain difficult to reliably assess ecological or human health 

impacts that could emerge from extended exploitation of complex biological, or 'green', 

technology. 

Research on constructed wetlands is commonly focused on chemical removal 

(Kadlec, 1999; Chen et al, 2006), and rarely on the pathogens and receiving biological 

communities within the systems (Vacca et al, 2005). Additionally, to date no single 

study has considered a general comparison of the bacterial communities in an established 

industrial-scale treatment system, a field-scale CW mesocosm, and a bench-scale CW 

mesocosm. Lack of available comparisons between these scales with regard to biological 

contaminant removal and community structure and function continues to make it difficult 

to assess the ability of mesocosms to approximate large, field-scale, fully functioning 

CWs with regard to capacity and sustainability (e.g., Logan et al, 2005). 

The rarity of collaboration between biologists investigating microbial 

communities and engineers responsible for the design and operation of CW systems may 

also be responsible for the scarcity of microbiological research regarding CWs. 

Additionally, the focus on these smaller treatment systems has likely arisen through the 
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relative difficulty in doing research on such large, complex systems, compared to easily 

accessible pilot- or bench-systems that can be carefully controlled and are protected from 

environmental events (i.e., rainfall, snow, etc.). Current social trends toward sustainable 

environmental practices, along with ever increasing waste-water treatment demands will 

undoubtedly continue to focus more attention on renewable and cost-effective treatment 

strategies; placing growing importance on the optimal and sustainable function of CWs. 

Resultantly, the microbial characteristics, the possibility of these systems to act as 

reservoirs for human pathogens and what role, if any, pathogens play within the ecology 

of these systems will require elucidation. 

1.3. Research Objectives and Approach 

The overall goal of this research is to profile the structural and functional characteristics 

of predominant microbial communities in CWs at multiple system scales in order to 

better understand the similarities or differences that may exist in the microbial 

communities of differing sizes. The working hypothesis for this investigation is that 

pathogen or contaminant presence will impart a discernable impact on the metabolic (i.e., 

functional) and genetic (i.e., structural) profiles of the receiving CW microbial 

communities. Additionally, it is hypothesized that the observed genetic and functional 

diversity will differ with system scale. The general approaches taken to examine this 

hypothesis include: 

> The use of functional and structural microbial community-monitoring techniques 

in investigations of bench-, field-, and industrial-scale CW or alternative 

wastewater treatment systems under normal, undisturbed conditions. This was 
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done in an attempt to better understand the ability of controlled studies to predict 

microbial communities found in functioning large-scale environmental sites. 

> The use of functional and structural microbial community-monitoring techniques 

in investigation of bench-, field-, and industrial-scale CW or alternative 

wastewater treatment systems under perturbed conditions. This was done in an 

attempt to better understand the ability of microbial communities in controlled 

environments to respond in comparison to field-scale sites through these 

monitoring techniques. 

The results of this research will contribute to further the understanding of the 

complex bacterial community structure and its response to the presence of a deleterious 

contaminant or pathogen presence within CWs of varying sizes. This information may be 

used to help optimize CW systems beyond mechanical augmentation, improve CW 

treatment efficiency, and identify indicators for preservation of the health and 

sustainability of CWs. This research also aims to provide a methodological foundation 

for improved functional and structural microbial community assessment of CWs and their 

outputs to receiving water bodies. 
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2. Background 

2.1. What is a Constructed Treatment Wetland? Why Do We Need Them? 

Alternative environmental treatment systems are complex environments exhibiting a 

variety of characteristics possessed by both terrestrial and aquatic ecosystems. Wetlands, 

by definition, are composed of a large variety of habitats with common hydro-geological 

properties resulting in a consistently wet, or even submersed, soil bed with flora that is 

distinct from the dryer surrounding areas (Lewis, 1995). Normally termed artificial, in the 

1980's and earlier, or constructed wetlands (CWs) more recently, these treatment systems 

are similar to man-made (i.e., created) or natural wetlands, but are created for the sole 

purpose of wastewater treatment (Hammer, 1992). To create a CW, available land can be 

augmented with modern primary treatment devices (e.g., sedimentation/flocculation 

tanks) and engineered through modifications in soil composition, macrophyte abundance 

or diversity, as well as land grading to create a more functional treatment environment 

through modified hydrology resulting in increased retention time (Kadlec & Knight, 

1996; Scholz & Lee, 2005). In the most basic sense, however, a CW can be created by 

maintaining a discharge of wastewater onto any suitable land (Cooper & Boon, 1987), 

although the repercussions of this manner of construction may be environmentally 

detrimental. CWs may also be based in natural wetlands, with some land modifications to 

maintain a consistent hydrological regime with controlled retention times. However, 

these haphazard CW construction practices have largely disappeared in both Canada and 

the United Sates following the North American Waterfowl Management Plan of 1986; 

which resulted in the North American Wetlands Conservation and Emergency Wetlands 

Resources Acts of the same year (Environment Canada, n.d.). 
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Although classification of natural wetlands is often based on macrophyte type and 

abundance (Lewis, 1995), this is not commonly done with CWs. Instead, CWs tend to be 

classified based on the direction of water flow and the presence of surface water, 

categorized as either surface flow, horizontal sub-surface flow or vertical flow. Most 

industrial-scale CWs currently in operation contain properties of all three types, as each 

type imparts unique benefits and limitations (Vymazal, 2005a). It should be noted that the 

industrial-scale system investigated in the current investigation is a constructed treatment 

lagoon, and not technically a CW. Lagoons differ quite visibly from sub-surface flow 

CWs, but may be similar in appearance to surface flow CWs. The emergent vegetation 

found in surface flow CWs and the lack of UV radiation in the subsurface flow CWs are 

key differences. However, the consistently wet or submerged soil and standard vegetation 

was present in all three scales of treatment system. 

Because wetlands are solar-powered systems, they operate with much lower cost 

and maintenance requirements than modern wastewater treatment plants (Lewis, 1995; 

Kadlec & Knight, 1996). Additionally, wetlands can be used to treat a much wider 

variety of contaminant sources (Gopal, 1999; Scholz & Lee, 2005), which makes them an 

important option for sustainable source water replenishment strategies. CWs also provide 

a benefit over wastewater treatment plants by serving as aesthetically pleasing natural 

recreational areas or wildlife conservation areas that can be frequented by the general 

population (Knight, 1997). Remediated wastes can serve as a source of nutrients or 

fertilizer for the surrounding vegetation and eliminate the need for commercial fertilizers 

to maintain plant growth (Knight, 1997; Kivaisi, 2001). It is important to note that the use 

of untreated or poorly treated wastewater as the CW influent may provide a potential 
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route of exposure for transmissible water-borne pathogens if the treatment environment is 

accessible by the general public (Krishnan & Smith, 1987). The potential for this type of 

human health impact is one of many reasons further understanding of the microbial 

ecology of CWs is needed (Vymazal, 2005); especially considering the limited 

knowledge regarding the prevalence and virulence of bacterial pathogens (Brettar & 

Hofle, 2008). 

From data that is available it is clear that pathogens are being reduced during 

treatment (Archer, 2004; Ghermandi et al, 2007; Wand et al, 2007; Garcia et al, 2008; 

Morgan et al, 2008; Calheiros et al, 2009). However, it is unclear if this is a permanent 

disinfection or merely an artifact of some non-lethal physical removal (e.g., 

sedimentation; Karim et al, 2004). The ability of pathogens to enter a viable-but-not-

culturable (VNBC) state when under environmental stress (Signoretto & Canepari, 2008) 

is also concerning. As these systems continue to be used to treat effluent containing 

pathogenic microorganisms that may be novel or display resistance to multiple antibiotics 

(Chaturvedi et al, 2008), the fate of pathogens in CWs becomes a prevalent human 

health concern. 

2.2. Microbial Communities in Constructed Wetlands 

The biotransformations achieved using wetlands have long been exploited as a method to 

improve water quality, especially when treating wastewater containing a high degree of 

biological and/or chemical contaminants (Gopal, 1999). One of the driving forces of 

these transformative ecosystems is the microbial community, a dynamic and mysterious 

assemblage of microorganisms which includes bacteria, viruses, protozoa, fungi, algae 

and any other microscopic organisms (Atlas & Bartha, 1998). Although viruses, 
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protozoa, fungi or other microscopic organisms were not excluded from the analysis 

conducted here-in, the use of the term 'microbial community' primarily refers to an 

amalgamation of various bacterial populations. The use of 16S rDNA primers in the 

molecular methods employed, however, specifically targeted the prokaryotic organisms. 

Every microbial community is influenced heavily by the various physico-

chemical, also known as 'bottom-up' (McQueen et al, 1986; McQueen et al, 1989), 

factors of its environment, such as the availability of organic carbon and other nutrients, 

water activity and turbidity, O2 availability, oxidation-reduction potentials, temperature 

and pH (Kadlec, 1999; Mitsch & Gosselink, 2000; Scholz & Lee, 2005). The impact of 

these physicochemical factors is accentuated in CWs, which provide diverse 

environments in which all of these factors are highly variable both over time and spatially 

(Lewis 1995), changing drastically within even a single square micrometer. From a 

microbiological perspective, these physico-chemical factors, in combination with 

dynamic hydrological and climatic factors, impart each wetland community with unique 

structural composition (i.e., who lives there?) and functional abilities (i.e., what do they 

do?) that dictates the biogeochemical cycling and remediation of contaminants within the 

CW (Lewis, 1995; Kadlec, 1999). Each of these factors can vary greatly throughout the 

microenvironments of the wetland, providing complex boundaries or barriers to multiple 

populations (Colwell & Leadbetter, 2007); populations that may be vast in size, with 

upwards of an estimated 10 total members per gram of soil or 10 per milliliter of water 

(Atlas & Bartha, 1998), and are most often only defined by the sum of their biochemical 

abilities and restrictions or their phylogenetic qualities or genetic similarities (Head et al., 

1998). 
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2.3. Microbial Community Characterization 

The complexity of the ever-changing CW environment and its mysterious microbial 

inhabitants does not readily lend itself to investigation. Some experts estimate that the 

microbial community in a single gram of soil may contain up to 1000 distinct bacterial 

species (Rossello-Mora & Amann, 2001) and a single milliliter of water up to 50 distinct 

bacterial species (Eiler & Bertilsson, 2004). The total global microbial diversity within 

soils and sediments can support an estimated 10,000 taxonomically-unique species 

(Torsvik et al, 2002), while aquatic environments have been estimated at approximately 

160 taxonomically-unique species (Ritz et al, 1997). When considering the countless 

possible interactions among these species, or with other, non-prokaryotic organisms, 

attempting to understand the ecology of these systems becomes a truly difficult 

endeavour. Because of this diversity and the resulting ecological complexity, researchers 

often describe a microbial community in terms of measurable characteristics (i.e., genetic 

structure or carbon metabolism), commonly referred to as a 'characterization'. Many 

different community characterization techniques have been used on various 

environmental samples to generate information regarding properties of a given 

community at a given time, usually termed a 'fingerprint' or 'profile'. These techniques 

are generally considered to be either biochemical-based and culture-dependent or 

molecular-based and culture independent (Kirk et al, 2004). These are reviewed in the 

following subsections. 

Regardless of the techniques used, however, microbial community 

characterization requires reliable and accurate detection, quantification and identification 

of environmental microorganisms. This is a difficult task which often requires a 
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combination of time consuming culture-dependent (i.e., functional, physiological or 

metabolic) and culture-independent (i.e., structural, metabolic or genetic) methods 

(Brettar & Hofle, 2008). Comprehensive characterizations can also become expensive in 

terms of reagents, machinery and qualified personnel requiring extensive collaboration to 

collect funding, conduct research and properly interpret results (Scholz & Lee, 2005; 

Brettar & Hofle, 2008). 

Despite the difficulties in creating an accurate description of the microbial 

populations within CWs, a better understanding of the biological forces driving treatment 

and remediation in this environment remains a crucial facet in working toward efficient 

and sustainable water treatment strategies (Kadlec & Knight, 1996; Hahn, 2006). 

Technological advances in recent years have helped to improve molecular biological 

techniques in order to better assess the chemical and biological complexity of samples 

from CWs, providing a sensitive and more reliable method for investigation of the 

structural and functional black box that is a wetland microbial community (Forney et al, 

2004). 

2.3.1. Culture-Dependent Techniques 

2.3.1.1. Classical Culture Methods 

Traditional culture-based methods are founded on the assumption that certain living cells 

are able to grow and replicate on supplied biochemical substrates in specific physico-

chemical environments. Due to their cost effectiveness, the lower level of expertise 

needed, and the large range of media available, culture methods remain among the most 

popular when measuring fecal contamination and the presence of pathogens (Gilbride et 

al., 2006; Morgan et al, 2008). Evidence suggests culture-based methods may be unable 
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to detect viable pathogenic bacteria in environmental samples, especially if cultivation of 

those bacteria is particularly laborious (Alexandrio et al., 2007) or if these organisms 

have entered a viable-but-not-culturable (VNBC) state (Signoretto & Canepari, 2008). 

For this reason, molecular methods are thought to provide improved assessment of 

pathogenic environmental organism (Straub & Chandler). However, when dealing with 

complex sample environments, it is not always possible to use molecular techniques 

because of either the presence of inhibitory compounds which can be difficult or 

damaging to remove, or an inability to collect quality genetic material (Malik et al., 

2008). The separation of certain microbial groups with specific metabolic or 

physiological functions, independent of genetic lineage, may also be of interest and this is 

not discernable through molecular techniques (Forney et al., 2004). For these reasons, 

culture-based methods remain an important set of tools for microbiological examination. 

The major limitation of culture methods is that viability cannot be persistently 

equated with culturability, as culturable organisms are thought to comprise only a small 

fraction (< 1%-15%) of the total viable microbial population in environmental samples 

(Oliver, 2005). The medium used to culture bacteria provides a defined set of growth 

conditions, which may not be sufficient for the growth of fastidious or highly specialized 

organisms and significantly underestimate diversity in samples (Oliver, 2005). 

Interference by background microbiota, difficulty in discriminating between pathogenic 

and non-pathogenic strains, long cultivation steps, and expensive serological 

confirmatory tests are further limitations of culture-based methods (Rompre et al., 2002). 
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2.3.1.2. Community-Level Physiological Profiles (CLPP) 

Creation of a CLPP is done through the use of BIOLOG™ ECOplates™ (by Biolog Inc.), 

which supply 31 different types of carbon sources and measure the ability or rate of a 

given microbial community to metabolize them. This method allows for a relatively 

quick and cost-effective analysis of the metabolic capacity, or the carbon source 

utilization pattern (CSUPs), of the microbial community under consideration. There is 

little need for isolation, enrichment, amplification, or processing of the sample outside of 

dilution, centrifugation and re-suspension (Calbrix et al, 2005). Since CLPP requires 

comparatively less labour than many other characterization methods, it can be used 

intensively to provide detailed information with regard to temporal and spatial variation 

(Garland, 1997). BIOLOG™ ECOplate™-generated metabolic profiles are used to 

compute diversity indices or are subjected to multiple types of statistical analysis, which 

allows for information gained to be compared to other measurements with relative ease 

(Zak et al, 1994; Weber et al, 2007). 

BIOLOG™ ECOplates™ contain 96 wells, three blank along with 31 carbon 

sources in triplicate (Weber & Legge, 2010). CSUPs are given by the differential 

metabolism of these carbon sources and expressed in terms of richness (i.e., the number 

of responsive wells), evenness (i.e., the variation in response among wells) and diversity 

(i.e., the pattern of richness and evenness among wells). Calculated estimates of diversity, 

referred to as diversity indices, can be generated through various equations (Brower & 

Zar, 1984), although the Shannon index (H'\ Shannon, 1948) is among the most, if not 

the most commonly reported index generated from CSUPs in literature. Because of the 

dominance of H' in the literature, as well as the relationship of the operational definitions 
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of richness and evenness generated from the CLPP method and other diversity indices 

(which usually refer to species and not substrates), H' is the only index calculated in this 

study. The maximum value for BIOLOG™ ECOplate™ generated Shannon's H' is 3.434 

(i.e., the natural logarithm of 31; the total number of substrates) and occurs when all 

wells are metabolized equally; although values between 1, considered to be low diversity, 

and 3, considered high diversity (Weber & Legge, 2010). 

The major limitation of CLPP is that it is not able to provide a reliable picture of 

the community structure. This limitation arises because it is unknown whether or not 

carbon utilization is due to a single species or is a result of cooperation among microbes. 

Similarly, it is unclear whether a lack of metabolism represents the result of competition 

between microbes or signifies the absence of organisms that can utilize the given 

substrate (Garland, 1997). However, Garland (1997) asserts that this limitation may be a 

benefit in disguise, as the community profile gained through other methods does not 

describe the interactions between its members. Another disadvantage of CLPP is the 

amount of time required for profile development. Even though inoculation of the plates 

can take seconds or minutes, two to seven days may be required for proper development 

of the reactions in the BIOLOG™ wells (Garland, 1997). The need for incubation over 

this time period imposes culture-based constraints as communities react to the 

environment within each well, which may cause death or over growth; altering the 

unamended state of the community. Furthermore, proper inoculation of BIOLOG™ 

ECOplates™ requires understanding of sample properties (i.e., background carbon 

presence, cell density or pH) which may not always be known prior to sample to 

collection, or may change during the course of a study. This may result in differential 
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processing of samples from the same location taken on different days or novel processing 

that the researcher was not prepared for. Nevertheless, CLPP has become a prevalent 

technique for microbial community characterization of CWs and continues to be applied 

to a range of different CWs treating a diversity of contaminants (Weber et al, 2008; 

Zhang et al, 2010). 

2.3.2. Culture-Independent Techniques 

2.3.2.1. Polymerase chain reaction (PCR) 

PCR is a technique used to reproduce millions of copies of a desired DNA sequence with 

a high degree of reliability. The amplified DNA product can then be used to detect and 

enumerate organisms through the use of labeled primers, or provide phylogenetic 

information through sequencing and comparison to genetic databases (Malik et al, 2008). 

The most common target used to gather species-level information about bacterial 

communities is 16S rRNA genes (Gilbride et al, 2006; Sanz & Kochling, 2007; Malik et 

al, 2008). 16S rRNA genes are highly conserved in bacteria and can be used as effective 

chronometers (i.e., measures of taxonomic divergence) for the inference of phylogenetic 

relationships, as differences in the ribosomal structures these genes code for are 

understood to have early delineation in the lineage of a given prokaryotic taxa (Woese, 

1987; Muyzer & Ramsing, 1996). 

Limitations of PCR include requirement of a high level of technical expertise to 

optimize PCR reactions and troubleshoot any problems that may be encountered. PCR 

amplification efficiency is highly dependent on the quality of the DNA provided and is 

severely hampered by the presence of inhibitory substances such as organic acids or clay 

particles (Sanz & Kochling, 2007), which are common in constructed wetland samples. 
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Differential amplification of target genes can introduce biases into PCR-based diversity 

assessments, as common sequences may hide uncommon ones (Sanz & Kochling, 2007; 

Malik et al, 2008). Sequences with lower G+C content also separate more efficiently 

during the PCR denaturation phase and may therefore preferentially amplify during the 

extension phase (Wintzingerode et al, 1997). These biases should always be kept in mind 

when using PCR to generate a community profile. 

2.3.2.2. Denaturing gradient gel electrophoresis (DGGE) 

DGGE is used to separate previously amplified 16S rRNA gene fragments of the same 

length (commonly 200-500 bp) with variable base pair composition. As the amplified 

16S rRNA moves through a charged polyacrylamide gel and is slowly denatured over a 

urea/formamide gradient a section of it 'melts' (i.e., the double stranded DNA becomes 

single stranded) and stops moving due to the presence of a denaturant-resistant GC-clamp 

included on the primer that holds the now single-stranded section of DNA together 

(forming an immobile 'T' shape; Sanz & Kochling, 2007; Malik et al, 2008). The 

different chemical properties of the composite nucleic acids determine the mobility, or 

'melting point', of each gene fragment, making it possible for DGGE to separate 

amplified products that differ by a single base pair; creating a 'genetic fingerprint' 

(Muyzer et al, 1993). The distance travelled in the DGGE gel by any given segment of 

DNA is considered to be largely a function of its G+C (i.e., guanine and cytosine) content 

(Muyzer & Ramsing, 1996; Muyzer & Smalla, 1998); with low G+C content bands 

stopping early, and high G+C travelling further in the gel. 

Following DGGE separation of PCR products, each band can be excised from the 

gel, purified, and sequenced to produce a phylogenetic tree or create fluorescent primers. 
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However, this can become incredibly time-consuming and expensive. A more cost 

effective approach to DGGE fingerprint analysis is to create qualitative and quantitative 

data sets based on band intensity and distance moved (i.e., banding patterns) and 

analyzed these using gel analysis software and statistical packages (Tourlomousis et al. 

2010). Diversity indices can also be generated in a manner similar to that done for CLPP, 

although DGGE-based indices are expressed in terms of richness (i.e. the number of 

bands in a lane), evenness (i.e. the variation in intensity among bands) and diversity (i.e. 

the pattern of richness and evenness within a lane). Using these modified operational 

definitions the same diversity-determining equations can be employed (Brower & Zar, 

1984). Although the H' (Shannon, 1948) again dominates the literature, the use of other 

indices, like Hulbert's probability of an interspecies event (PIE; Hurlbert, 1971) may be 

more appropriate than H' considering the taxonomic nature of DGGE data. PIE is 

originally described as the probability of two randomly observed individuals in a given 

environment or area belonging to different species (Hurlbert, 1971), while H' originally 

referred to the uncertainty of predicting the next letter in a message or communication 

(Spellerberg & Fedor, 2003). Ibekwe et al. (2007) calculated H' (Shannon & Weaver, 

1963, as cited by Ibekwe et al, 2007) with no real rationale for the choice to use H' made 

clear. Both H', due its repeated appearance in literature and previous use in DGGE, and 

PIE, due to the close relationship between the interpretation of DGGE data and the 

original definition of the equation, are calculated in this study. 

DGGE is the method of choice when the desired information does not have to be 

as thorough as that gained from 16S rRNA clone libraries, but is still precise and 

extensive enough to determine the dominant members of microbial communities (Sanz & 
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Kochling, 2007). The chief advantage of DGGE is that it enables rapid monitoring of 

spatial and temporal changes within microbial community structure, providing a 

molecular fingerprint with regard to the dominant microbial species. It also comes with 

relatively low cost for a high degree of information compared to other profiling methods, 

such as restriction enzyme-based fingerprints (Malik et al., 2008). 

Limitations of DGGE include co-migration of different sequences, heteroduplex 

formation, or the presence of single-stranded sequences, which may confound banding 

patterns or increase background fluorescence. To overcome these types of problems that 

can be difficult to diagnose, bands from DGGE gels are commonly referred to as 

operational taxonomic units (OTUs; Sneath, 2005) as opposed to distinct species, 

although the latter can still be found in literature. 

As the nucleic acids extracted from the samples require amplification using PCR, 

due to both the relatively low abundance of DNA in environmental samples and the need 

for the addition of a denaturant-resistant GC-clamp, the same limitations and biases 

associated with PCR are also prevalent with DGGE (Muyzer et al, 1993). This may lead 

to the exclusion of a rare community member that may still play vital ecological roles 

despite their low number. For this reason DGGE should be interpreted only as a measure 

of those community members which are dominant, not a complete inclusive community 

measure (Fromin et al. 2002). 

Another prevalent consideration is that DGGE uses only genetic material; making 

it incapable of distinguishing viability and unable to provide information regarding the 

metabolic function of the community beyond inference based on previously described or 

inferred phylogenetic relationships or sequence analysis. Considering the capacity for 
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transformation of free DNA, the possible use and transfer of plasmids and the potential 

for ambiguity in prokaryote phylogentic relationships (Woose, 1987; Rossello-Mora & 

Amann, 2001; Cohan, 2002; Doolittle & Papke, 2006; Doolittle & Zhaxybayeva, 2009), 

even the most extensive DGGE-based investigation leaves a number of important 

questions unanswered. Despite these limitations, the possible application of DGGE 

separated products and the rapid production of genetic diversity indices created from 

banding patterns makes this a powerful fingerprinting tool to detect structural changes in 

bacterial communities; one that continues to garner significant attention for use on CWs 

and microbial communities in general (Jin & Kelley, 2007; Moura et al, 2009; Liu et al, 

2010; Maeda et al, 2010) and has an incredible potential when used in combination with 

other microbiological techniques that may, in part, address one of the previously stated 

limitations. 

2.4. The Role of Integrative Biology in Microbial Community Characterization of 

Constructed Wetlands and Pathogen Monitoring 

CWs provide preferential conditions for pathogen removal, as the diverse habitats 

encountered in them allow physical (e.g., UV exposure, desiccation), chemical (e.g., pH, 

osmotic pressure) and biological (e.g., predation) factors to be exploited simultaneously 

(Greenway, 2005). However, it is currently unclear what the fate, behaviour or impact the 

exposure of pathogenic microorganisms or potentially deleterious contaminants (e.g., 

antimicrobials, acid-mine drainage, pharmaceuticals, etc.) may have on the receiving 

indigenous microbial community. It also remains unclear whether unwanted 

contaminants are removed due to sustainable mechanisms, or if removal imparts 
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detrimental changes in the microbial community structure or its level of metabolic 

function. 

Wake (2008) states that "questions and problems that benefit most from an 

integrative approach... cut across traditional disciplinary boundaries". It should be clear 

that applied research on CWs will not only benefit from integrative approaches, but 

requires them. To move toward a better understanding of CW microbial ecology, an 

integrative approach consisting of collaboration between engineers, biologists and 

chemists is necessary; due mainly to the complexity and multidisciplinary nature of CW 

design, operation and monitoring. Legal professionals may also be involved, as industrial 

CWs operate on private property and any published results may attract unwanted 

attention from regulatory authorities or the general public. Further collaboration with 

medical professionals is also required if human pathogens are under investigation. 

Interdisciplinary collaboration can be considered by some to be one of the 

primary principles of integrative biology; in addition to the application of multiple 

analytical techniques, analysis of multiple levels of biological organization, and use of 

hierarchical research strategies (Wake, 2003; Wake, 2008). The importance of each of 

these integrative principles in generating applicable understanding of biological systems 

is not lost on investigators concerning the diverse communities in CWs. With these tenets 

in mind, there is no doubt the integrative biologist will have an incredibly important role 

in building an understanding of CWs. 
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2.5. Recent Advances in Understanding the Microbial Communities of Constructed 

Wetlands 

As CWs become evermore prevalent as tertiary wastewater treatment methods (Gopal, 

1999; Scholz & Lee, 2005), there continues to be more focus placed on understanding of 

these systems and the life within them. Microbial community characterization in CWs 

has received a fair amount of attention in the literature following the turn of the century 

(Vymazal, J. 2005a; Spiegelman et al, 2009), however, there is still much that remains 

unknown. Some of the recent advances in understanding the properties of CWs, as well 

as remaining gaps in this understanding, are presented using four recent and important 

studies as examples. 

Hench et al. (2003) investigated the fate of coliforms and pathogens in 

mesocosms designed to approximate CWs. Using standard culture-based methods, Hench 

et al. (2003) observed a significant reduction of between two and four orders of 

magnitude of fecal coliforms, and at least one order of magnitude removal for the various 

pathogens investigated. Werker et al. (2007) attempted to further investigate the fate and 

behaviour of selected pathogens in CW mesocosms using culture-based methods and an 

inoculum of labeled (i.e., nalidixic acid-resistant) Escherichia coli. Werker et al. (2007) 

observed similar removal efficiencies as Hench et al. (2003), but reported that the 

removal rate slowed significantly, eventually leveling off, as the influent load decreased 

to around 104 CFUs/lOOmL. This finding raises questions about the generally accepted 1st 

order dynamics of pathogen removal (Vymazal, 2005b), as well as a redefinition of the 

proposed removal mechanisms (Khatiwada & Polprasert, 1999) to include grazing. 

Additionally, Hench et al., (2003) also observed that removal efficiency decreased by an 
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order of magnitude over the second year of study, which also raises concerns about the 

sustainability of effective pathogen removal in CWs. 

Werker et al. (2007) and Hench et al. (2003) not only provided insights into the 

potential ability of CWs to remove pathogens, but also raised important questions 

regarding the sustainability and optimization of CWs as effective treatment systems. 

However, the impacts the pathogens have on the receiving community were not assessed 

in either of these studies. 

In a third study, Weber et al. (2008) assessed the impact of acid mine drainage on 

the receiving microbial community of multiple planted and unplanted bench-scale 

systems using BIOLOG™ ECOplates™. Through principal component analysis of the 

metabolic fingerprints (i.e., CSUPs), Weber et al. (2008) were able to assess the 

robustness and the degree of change shown by the interstitial CW microbial community. 

The metabolic fingerprint of the CW system was shown to be significantly affected after 

exposure to the acid-mine effluent, though the communities in the planted mesocosms 

showed greater stability (Weber et al, 2008). These results clearly showed an impact on 

the metabolic profile of the receiving community, but it remains unclear whether this was 

accompanied by a significant structural change. In other words, was the metabolic change 

observed caused by the rise and fall of different populations within the community as a 

result of influent exposure, or alternatively, the result of the same organisms using 

different metabolic pathways? 

Ibekwe (2003) investigated a pilot-scale CW system using molecular methods 

(PCR-DGGE) to characterize both the universal bacterial community and the ammonia-

oxidizing population from a pilot-scale system used to treat dairy wastewater. Ibekwe et 
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al. (2003) were able to observe a high-degree of diversity in Nitrosospira spp. and 

Nitrosomonas spp., which was consistent with a significant removal of ammonia; a 

known ability of these taxonomic groups. Though this study focused only on one 

specific, functional group within the wetland community, it was able to provide useful 

information regarding the structural link to the community's function. 

Each of these four studies used a different characterization method to investigate 

the bacterial community from a unique perspective. Additionally, all four studies were 

done in bench- or field-scale systems. It is unclear to what degree these smaller-sized 

models are able to simulate large, industrial-scale treatment systems. 

In an attempt to provide information relating to the important and unanswered 

questions regarding CW microbial communities, this study will consider all three scales 

to investigate potential relationships between them in any of the metrics employed. 

Combining community profiling methods (i.e., DGGE & CLPP) will also allow the 

current study to achieve a more complete understanding of the characteristics or changes 

of community structure and function that may be associated with pathogen or 

antimicrobial presence and removal. 
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3. Study Sites, Experimental Plan and Associated Methodology 

3.1. Site Descriptions and Sampling Protocols 

3.1.1. Bench-scale Constructed Wetland Mesocosm 

The bench-scale constructed wetland (CW) mesocosm site was located at the University 

of Waterloo and operated under the supervision of Dr. Kela Weber. All details regarding 

the bench-scale mesocosm site description were provided by Dr. Kela Weber (personal 

communication, September 27th, 2010). The experimental setup consisted of four 

mesocosms planted with common reeds (Phragmites australis) and seeded with an 

activated sludge inoculum from a local municipal wastewater treatment plant. The 

mesocosms were designed in the same manner as those used previously (Weber and 

Legge, 2010; Weber et al. 2010). The construction of each mesocosm was completed 

using schedule 80 (wall thickness of 1.5 cm) polyvinylchloride (PVC) columns (90 cm by 

25 cm diameter) filled to approximately 80 cm with pea gravel (average equivalent 

spherical diameter of 2 cm, 80% limestone) and operated to 70 cm with water, which at 

starting was a void volume of approximately 12 L for all mesocosms. Water was 

circulated with a 1/200 HP, 3200 rpm, March series-1 (1A-MD 1/2) centrifugal pump 

(March Manufacturing Inc., Glenview, IL). The water inlet was situated 5 cm below the 

water level, and the water outlet was situated 5 cm from the bottom of the PVC column 

(see Figure 3.1.). 
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Figure 3.1. Schematic (left) and photograph (right) of bench-scale CW mesocosm . In the schematic, water 
is fed into the mesocosm (A) and allowed to percolate through the pea gravel bed to be collected at the 
bottom (B) and is re-circulated via a small centrifugal pump (C). An atmosphere exposed port serves as an 
injection and sampling (D) point. Drainage ports are located near the top to prevent overfilling (E), and 
near the bottom (F) for mesocosm drainage. 

Bacterial community seeding of the mesocosm was done by adding fresh 

limestone gravel alternating with 160 mL of inoculum at depths of 10 cm, 40 cm and 65 

cm. P. australis were collected from a local marsh, cultured in pots with peat moss and 

transferred to the mesocosms, along with a small amount of peat moss, into the top 

section. Three small P. australis plants approximately 30 cm high were used initially to 

plant each mesocosm and initial root depth was approximately 20 cm in all four cases. 

The mesocosms were maintained under laboratory conditions with a relative humidity of 

* Schematic information and photograph provided by Dr. Kela Weber, used with permission. 



Microbial Community 26 

40-60% and temperature between 24-28°C. All mesocosms were exposed to artificial 

illumination of 14,000 lm with a 15:9 hr photoperiod and plants were sprayed daily with 

tap water during the photoperiod to avoid drying. 

The mesocosms were operated in a constant recycle mode where water was 

circulated at approximately 2.4 L/min, resulting in an average cyclic hydraulic retention 

time of approximately 4-5 min. Each week the mesocosms were filled with the simulated 

wastewater and operated under constant recycle for the remainder week, at which point 

the mesocosms were completely drained before being refilled with new simulated 

wastewater for the following week's operation. Simulated wastewater solution was based 

on the descriptions of solutions used by Kargi and Karapinar (1995), Droste (1996) and 

Wang et al. (2008) and consisted of 1 g/L molasses, 0.049 g/L urea, 0.0185 g/L 

NH4H2PO4, yielding a glucose concentration of 0.588 g/L from the molasses, a carbon-

oxygen demand (COD) of approximately 500 mg/L and a COD:N:P ratio of 

approximately 100:5:1. To encourage P. australis survival, a nutrient solution according 

to Hoagland and Arnon (1938) was also added to the simulated wastewater. The nutrient 

solution was mixed in regular tap water and fed to the wetlands to result in calculated 

interstitial concentrations of 28.75 mg/L NH4H2P04; 151.5 mg/L KNO3; 236 mg/L 

Ca(N03)24H20; 123.25 mg/L MgS04-7H20; 9.175 mg/L FeNaEDTA; 0.715 mg/L 

H3BO3; 0.4525 mg/L MnCl2-4H20; 0.055 mg/L ZnS04-7H20; 0.0125 mg/L CuS04 and 

0.005 mg/L (NH4)6Mo70244H20. 

All four mesocosms were given an initial one week running period after which 

two of the four systems were exposed to ciprofloxacin at a concentration of 2 ug/mL for a 

5 day period; a concentration that should have a clear effect on environmental organisms 
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(Thauvin-Eliopoulos & Eliopoulos, 2003). After this 5 day period the interstitial 

ciprofloxacin was removed by draining the mesocosms. The mesocosms not exposed to 

ciprofloxacin were considered control duplicates and are identified here-in as control or 

'No Cipro', while the corresponding duplicate mesocosms that received ciprofloxacin are 

labelled 'Cipro'. Both control and 'No Cipro' are used interchangeably, as 'No Cipro' 

mesocosms a control for the ciprofloxacin perturbation, but also a model of the natural 

development of these types of systems. 

Samples for use in DNA extraction were collected in duplicate from the drainage 

outlet (see 'F' in Figure 3.1) in 50 mL pre-sterilized, DNA/RNA-free disposable conical-

bottom screw-cap centrifuge tubes (Axygen, Fischer Scientific, Whitby, ON) and 

transported in a cooler filled with ice from University of Waterloo to Wilfrid Laurier 

University - Waterloo campus. Samples were collected on Nov. 16th, 23rd, 30th (2009); 

Jan. 4th and 18th (2010). Samples were processed within 3 hours of collection and the 

protocols performed are presented in the following section. Samples taken on Nov. 23rd 

(i.e., the same day as the ciprofloxacin addition) were collected immediately prior to 

addition of the antibiotic. 

3.1.2. Field-scale Constructed Wetland 

The field-scale CW investigated is located on the property of the Haliburton Fish 

Hatchery in Haliburton, ON., and was constructed in 2008 as a subsurface flow cold 

climate treatment wetland receiving fish-farm waste. The CW is bisected and planted 

with common cattails (Typha latifolia.; planted 2008) and wild rice (Zizania palustris; 

planted 2008) that died and was replaced with lake sedge {Carex lacustris; planted 2009) 

to create two parallel flow paths through the CW. Septic effluent enters the wetland at a 
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rate of approximately 2500 L/day through a single pump which passes wastewater into 

both sides of the wetland. Once through the wetland, the treated water enters a combined 

chamber, and is pumped into a phosphorous filter comprised of iron slag. From here, 

phosphorous filter effluent flows into a holding pond (see Figure 3.2). 

Hydraulic retention time for the waste effluent is approximately 38 hrs in the 

wetland (Dr. Gord Balch, personal communication, Dec. 1st, 2010) and 13 hrs in the iron-

slag phosphorous filter (Laura Sansford, personal communication, Dec. 2nd, 2010). 

Samples were collected in 500 mL sterilized glass bottles and shipped from Haliburton, 

ON to Wilfrid Laurier University on ice via Fedex to arrive the following day by noon. A 

total of six samples were collected on each sampling date; specifically Feb. 8th, 22nd, 24th; 

Mar. 1st, 10th, and Apr. 12th (2010). Sample locations are identified in the schematic 

presented in Figure 3.2. and are here-in referred to as 'Septic', taken from the influent to 

the septic pump; 'Cattail' and 'Sedge/Rice', taken from the first access port on the cattail 

and sedge planted sides, respectively; 'Final Pump/Combined', taken from the combined 

Figure 3.2. Schematic (left) and photograph (right) of the field-scale CW*. Wastewater flow is indicated by 
the blue arrows. Sample locations are denoted by red stars with blue outline. 

* Schematic information provided by Dr. Gord Balch (Fleming College). Photo taken by Michael R. Mitzel. 
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pump chamber at the end of the CW; 'Slag Filter', taken from the effluent of the iron slag 

phosphorous filter, and 'Pond', taken from the receiving water body (i.e., holding pond). 

A mass of 12.5 g of oxytetracycline was added as a slurry each morning, for a 

total of five additions beginning Feb. 22nd until Feb. 26th (2010), at the exit of the septic 

tank in an attempt to create a nominal concentration of 5 mg/L based on the average flow 

of 2500 L/day mentioned earlier. This exposure was done to represent the effect of an 

antibiotic contaminant slug, in accordance with a collaborative research plan under Dr. 

Brent Wootton (Principal investigator, Ontario Ministry of the Environment, 2010). 

3.1.3. Industrial-scale Treatment Lagoon 

The industrial-scale treatment lagoon site was constructed in 1992 and operates from 

spring until winter (i.e., April through December) of every year. This treatment lagoon 

system was built for the purpose of treating pre-treated effluent from a poultry 

slaughterhouse kill-floor located in southern Ontario that processes approximately 

300,000 birds per week. The treatment lagoon system consists of three lagoons, in series, 

which receives wastewater at a load of approximately 400-500 litres per min for 8 hours 

per day. During normal operation of the lagoon treatment system, pre-treatment of the 

kill floor effluent is done using ferric chloride as a flocculent inside a large flocculator 

within the processing plant. The effluent is subsequently screened and the resulting clear 

and colourless post-flocculated effluent is pumped out of the processing plant and into 

the first lagoon. The post-flocculated effluent is aerated as it enters the first lagoon 

though an inlet pipe located at the centre of the bottom of the lagoon, positioned to pass 

influent directly through the aerator. Water from the first lagoon flows passively through 

an underground passageway constructed with concrete and steel into the second lagoon; 
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entering below the water line at the side nearest the first lagoon. From the second lagoon, 

water again flows passively through a similar underground concrete-steel passageway 

and into the third lagoon. Storm water from the property is collected and added to the 

lagoon system through channels that empty into the second passageway. The site also 

contains two over-flow lagoons that are used in parallel with the third lagoon, which 

receive effluent from a bypass junction in the second concrete-steel passageway if 

necessary. At the conclusion of the operation period the water held in the third lagoon, as 

well as any of the over-flow lagoons, is pumped into a concrete finishing house where it 

is held until it is discharged into a nearby stream. Sample locations are denoted by the red 

stars with blue outline in Figure 3.3 and are here-in referred to as 'PostFloc', taken from 

the exit port of the flocculator; 'Lagoon 1', taken from the littoral zone of the first 

lagoon; '1 to 2', taken from the first underground concrete-steel passageway accessed 

through a service entryway; 'Lagoon 2', taken from the littoral zone of the second 

lagoon, directly between the entry port from the first lagoon and the exit to the third; '2 to 

3', taken from the second underground concrete-steel passageway accessed through a 

service entryway; 'Lagoon 3', taken from the littoral zone of the third lagoon opposite the 

entry port from the second lagoon. 

Water samples were taken on June 24th; Sept. 21st; Nov. 17th (2009); July 5th and 

Sept. 28th (2010). Samples were collected in duplicate using sterile 250 mL (Nalgene, 

Fischer Scientific, Whitby, ON) bottles and transported in a cooler on ice by car from the 

poultry processing plant to Wilfrid Laurier University - Waterloo Campus. 
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Figure 3.3. Photograph of the industrial-scale treatment lagoon. Wastewater flow is indicated by the solid 
blue lines with direction of flow indicated by the blue arrows. Overflow paths are denoted by the dashed 
blue lines. Sample locations are denoted by red stars with blue outline. The surrounding area has been 
edited to preserve anonymity of the site location by request. 

Important site-related notes include the addition of an unknown amount of a 

commercial wastewater digestion product, ACTIVE 8™ (Naschem Inc., Mississauga, 

ON), by plant operators between the 'PostFloc' and 'Lagoon 1' samples, which began 

sometime between the June 24th and Sept. 21st (2009) samples. Additionally, the morning 

of the day prior to sample collection on Sept. 21st (2009), the flocculator was bypassed 

due to a clog in pipes, resulting in untreated kill floor effluent being pumped into the first 

lagoon. For this reason, the 'PostFloc' sample was unavailable on this day. To attempt to 

counteract any negative effect, plant workers added 12,500 kg of ferric chloride to the 
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third lagoon. Also, approximately six or seven days prior to collection of the sample on 

Sept. 28th (2010), another clog in the pipes leading up to the flocculator caused an 

unknown amount of untreated kill floor effluent spill into the rainwater collection tank 

and enter directly into the third lagoon. This continued for three days, until the flocculator 

pipes could be cleared. Addition of ferric chloride similar to that done on Sept. 21st 

(2009) was done the day prior to collection of the Sept. 28th (2010) samples, to counteract 

the addition of untreated effluent to the third lagoon. These notes will be reiterated during 

discussion of the related results. 

3.2. Laboratory Methods 

Culture methods 

Enumeration of heterotrophic plate count (HPC) was carried out on the field- and 

industrial-scale samples within 8 hours of sample arrival. HPCs for the field-scale 

samples were done on all samples collected using R2A agar (BD Difco, Fisher Scientific, 

Whitby, ON) after creation of a dilution series from 10° to 106 using 9 mL dilution blanks 

containing sodium-free dilution buffer (APHA, 1998) of which 100 uX from each 

dilution was spread, in duplicate, onto R2A plates. HPCs from the industrial-scale were 

done in the same manner as the field-scale, however, LB agar (BD Difco) and l/5th LB 

was also used, alongside R2A, to provide a range of richness in the growth media. Due to 

logistical concerns (i.e., incubator space), the lack of change in HPCs and the intensive 

labour required investigation of the HPCs were not continued beyond June 24th. HPCs 

were counted after 5 to 7 days of incubation at 25°C in accordance with the standard 

method (APHA, 1998). 
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E. coli was enumerated for all three scales within 8 hours of sample collection using 47 

mm 0.45 [xm cellulose-mixed-ester filters (Millipore, Fisher Scientific, Whitby, ON) 

placed on mFC basal-medium (BD Difco) with 1% 5-bromo-4-chloro-3-indolyl-P-D-

glucuronide (BCIG; Inverness Medical Inc., Ottawa, ON) and incubated for 24-48 hrs at 

44.5°C in a water incubator in accordance with the standard method (APHA, 1998). 10 

u,L, 100 [AL, 1 mL, 10 mL of each sample was filtered and colonies displaying blue 

colouration were considered to be E. coli. 100 \aL of E. coli (ATCC® 25922™, Inverness 

Medical Inc.) and Enterococcus faecalis (ATCC® 49532™, Inverness Medical Inc.) 

were also filtered for use as positive and negative controls regarding media presentation, 

respectively. Spread-plates and filters containing between 25 and 300 colonies were 

considered countable. In the absence of any countable plate for a given sample, an 

estimate was created using the pattern of growth displayed on all plates or filters for the 

corresponding sample. Enumeration of faecal coliforms (FCs) were also undertaken for 

the industrial-scale site, using the same filtration procedure done for the E. coli with the 

filters placed on mFC agar with 1% Rosolic acid (BioShop Inc., Burlington, ON) and 

incubated for 24-48 hrs at 44.5°C in a water incubator in accordance with the standard 

method (APHA, 1998). Blue colonies were considered to be FCs. 

Isolation of Salmonella enterica was also carried out for the field- and industrial-

scale samples following a procedure previously assessed for reliability (Bartram, 2007). 

10 mL of sample was added to lx buffered peptone water (BPW; BD Difco) and 

incubated at 37°C and 120 rpm overnight. 1 mL of the resulting culture was added, in 

duplicate, to freshly made 9 mL tetrathonite broth containing 2% iodine solution (TB; BD 

Difco) and incubated at 37 °C and 160 rpm overnight. 1 mL of E. coli (ATCC #25922, 
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Inverness Medical Inc.) grown in nutrient broth (NB; BD Difco) overnight was also 

added to 9 mL of TB as a negative control for this broth, while 1 mL of S. enterica ser. 

typhimurium (ATCC® 13311™, Inverness Medical Inc.) grown similarly was carried 

through the entire extraction procedure as a positive control for the entire isolation 

procedure. 100 u.L of TB was added to the centre of a plate containing approximately 20 

mL of modified semi-solid Rappaport-Vassiliadis media (MSRV; BD Difco), in 

duplicate, and incubated at 42°C overnight to select for motility. 100 uL of Pseudomonas 

aeruginosa (Ward's Natural Science, Rochester, NY) grown in NB overnight was also 

added to the centre of an MSRV plate as a negative control for this media, while the 

isolation control provided the positive control. Using sterile toothpicks, 3 separate streaks 

from the outer edge of the MSRV plates were taken and streaked onto MacConkey's agar 

(MAC; BD Difco) and incubated at 37 °C overnight. A fresh colony of E. coli (ATCC® 

25922™, Inverness Medical Inc.) was also streaked onto a MAC plate from each batch 

made as a positive control, while the isolation control acted as the negative control for 

this media. Two selected colonies appearing clear and colourless on MAC were 

transferred to a new MAC plate and streaked for purity. Each of the resulting 12 per site, 

or fewer, prospective S. enterica isolates was then streaked onto lysogeny broth agar (LB; 

BioShop) plates for storage. 

Once the prospective S. enterica isolate was grown on LB, a single colony was 

used to stab and streak a triple sugar iron (TSI; BD Difco) agar slant and double stab a 

lysine iron agar (LIA; BD Difco) slant. Both TSI and LIA slants were incubated for 24-

48 hrs at 37°C and assessed for expected presentation (see Appendix B, Table B.l. for 

description of the expected biochemical presentation). Klebsiella pneumonia (ATCC® 
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700603™, Inverness Medical Inc.) and Providencia rettgeri (ATCC® 9250™, Inverness 

Medical Inc.) were used as controls for LIA, and P. aeruginosa (Ward's Natural Science) 

and E. coli (ATCC #25922, Inverness Medical Inc.) were used as controls for TSI. The S. 

enterica ser. typhimurium (ATCC® 13311™, Inverness Medical Inc.) used as the 

extraction control served as a control for both TSI and LIA. A full loop, or whatever 

remained, of this same isolate from LB used to inoculate the TSI and LIA slants was also 

used to inoculate 2 mL of filter sterilized urea broth, which was subsequently incubated 

for 24-48 hrs at 37°C. K. pneumonia (ATCC® 700603™, Inverness Medical Inc.) and S. 

enterica ser. typhimurium (ATCC® 13311™, Inverness Medical Inc.) were used as 

positive and negative controls, respectively, for urea broth. 

Colony PCRfor Confirmation ofS. enterica 

All S. enterica isolates that produced characteristic presentation on TSI, LIA and urea 

broth (see Appendix B, Table B.I.), along with some selected isolates that did not, were 

used in colony PCR to confirm the culture-based findings. Template DNA was produced 

by suspending an individual colony in 100 \iL of 10 mM Tris-HCl (pH 8.0; Sigma-

Aldrich, Oakville, ON) in a 1.7 mL sterile microcentrifuge tube with a hole poked 

aseptically in the lid using a sterile 22 gauge needle prior to suspension of culture. The 

resulting cell suspension was boiled at 95°C for 5 min and centrifuged at 13,200 g for 5 

min. PCR was performed with 5 uL of the supernatant using the primers sal-F (5'-

CGTTTCCTGCGGTACTGTTAATT-3') and sal-R (5'-

AGACGGCTGGTACTGATCGATAA-3') from Lee et al. (2006) and obtained from 

Sigma-Aldrich. PCR mastermix, based on Lofstrom et al. (2004), for this genus-specific 

primer set was prepared such that each 25 u.L reaction contained lx Go-Taq™ Flexi 
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(Promega, Fisher Scientific, Whitby, ON) Green PCR Buffer, 0.5 u.M of each primer, 1.5 

\iM MgCl, 1.5U Go-Taq™ Flexi (Promega), 200 u.M dNTP (Promega) and 11.1 [xL of 

MiUi-Q water. PCR was performed using a BioRad™ I-cycler iQ PCR machine (Bio-Rad 

Laboratories, Richmond, CA) under conditions consisting of an initial denaturation step 

of 94°C for 5 min, followed by 35 cycles of 94°C for 20 sec and 65°C for 1 min, followed 

by a 7 min, 72°C extension step. PCR concluded with a 4°C hold until storage at -10°C. S. 

enterica ser. typhimurium (ATCC® 13311™, Inverness Medical Inc.) and E. coli 

(ATCC® 25922™; Inverness Medical Inc.) were used as the positive and negative 

controls, respectively. A PCR blank containing 3 [xL of the same Milli-Q water used in 

creation of the mastermix was also included. 

Colony PCR reaction success was measured by loading lOfxL PCR product into 

2% agarose gel in lx TAE buffer. Gels were run for 60 min at 100V, stained with 

ethidium bromide solution for 15 min and visualized using BioRad™ GelDock™ XR 

(Bio-Rad Laboratories) with amber filter to confirm the presence of an intense 82 bp 

band. As these primers were adapted from a real-time protocol, only the intensity of the 

expected band denotes either a positive of negative reaction (see Appendix A, Figure A.2. 

for an example gel). 

CLPP 

CLPP for the field-scale site was done within 8 hours of sample arrival using Biolog™ 

ECOplates™ (Biolog Inc., Hayward, CA), inoculated following considerations presented 

in Garland (1997), Garland et al. (2007), Calbrix et al. (2005), Weber et al, (2007) and 

Weber and Legge (2010). Prior to inoculation, samples were spectrophotometrically 

analyzed at a wavelength of 420 nm as a means to assess background carbon levels 
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(Weber & Legge, 2010). If the value was greater than 0.2, the sample was diluted one 

order of magnitude and analyzed again. Dilution to fulfill this guideline was required for 

all of the septic tank samples and the Feb. 22nd iron-slag phosphorous filter sample. 

Original or diluted samples were also spectrophotometrically analyzed at 590 nm to 

ensure no extreme differences in the absorbance of the inoculated load, as this is the 

wavelength used to measure plate development. No major differences (i.e., greater that 

0.1 OD) were found between any samples at this wavelength. Biolog™ ECOplates™ 

were inoculated with 150 u.L of sample per well, with care taken not to cross contaminate 

any wells; incubated at 22°C in the dark; analyzed using a SpectaMax 190 (Molecular 

Devices, Sunnyvale, CA) spectrophotometer and data collected using SoftMax Pro ver. 

3.1.2 (Molecular Devices) every 24 hr. 

CLPP for the industrial-scale site was done within 8 hours of sample collection 

using Biolog™ ECOplates™, inoculated following considerations presented in Garland 

(1997), Garland et al. (2007), Calbrix et al. (2005), Weber et al, (2007) and Weber and 

Legge (2010). Due to differences in pH between the sample locations, ranging from 3.6 

in the 'PostFloc' to 9.8 in 'Lagoon 3', a cell wash was performed prior to inoculation of 

the Biolog™ ECOplates™. The cell wash was completed by adding 20 mL of sample to 

a 50 mL sterile centrifuge tube and centrifuged at 500x g for 10 min. The supernatant was 

transferred to sterile centrifuge tube and spun at 15,000x g for 20 min. The resulting 

supernatant was decanted; the pellet re-suspended in 10 mL of sterile 0.85% NaCl; the 

solution centrifuged again at 15,000x g for 20 min, and the supernatant decanted again. 

The washed pellet was re-suspended in 5 mL of 0.85% NaCl and 1 mL 

spectophotometrically analyzed at 600 nm. Using the resulting OD, a portion of the 
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remaining 4 mL of cell solution was added to a total volume of 16 mL to create an 

inoculating solution with 0.01 OD600, or the maximum OD600 possible using the entire 

remaining 4 mL of cell suspension. Biolog™ ECOplates™ were inoculated, incubated, 

analyzed and data collected and exported following the same procedure described for the 

field-scale CW. 

DNA Extraction 

10 mL of the duplicate sampled bench-scale interstitial water or the original seeded 

sludge was filtered onto a 22 mm 0.22 [im polycarbonate filter (Millipore), soaked in un­

buffered PCR-grade Milli-Q (Millipore) water, within 3 hours of sampling. Each filter 

was placed into a PowerSoil (Mo Bio Laboratories Inc., Solana Beech, CA) bead tube 

using sterile forceps, ensuring the surface containing the filtrand was facing the middle of 

the tube and accessible to the tube contents. DNA was extracted following the protocol 

supplied by the manufacturer. 

100 mL of interstitial water from the field-scale CW was filtered onto a sterile 47 

mm 0.22 ^m polycarbonate filter (Millipore), soaked in unbuffered PCR-grade Milli-Q 

(Millipore) water, within 3 hours of sample arrival. Each filter was carefully folded over 

itself to conceal the side containing the filtrand and placed into a PowerSoil (Mo Bio 

Laboratories Inc.) bead tube using sterile forceps. The filter was then cut into small 

pieces using a new, sterile No. 11 blade (Feather, Fischer Scientific, Whitby, ON) on a 

sterilize No. 3 handled scalpel for approximately 5 minutes in the bead tube. DNA was 

subsequently extracted following the protocol supplied by the manufacturer. 

For industrial-scale samples collected in 2009 and 2010, 1 mL of sample was 

centrifuged at 13,200 x g for 5 min in sterile 1.7 disposable centrifuge tubes, the 
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supernatant decanted and another 1 mL of sample added, centrifuged and decanted. This 

was repeated until 10 mL of sample had been pelleted and done once for each duplicate 

sample. The resulting pellet was re-suspended in a PowerSoil™ (MoBio Laboratories 

Inc.) bead tube solution and DNA was extracted following a modification of the 

procedure for wet soil samples supplied by the manufacturer and theory presented in 

Sambrook and Russel (2001). 

Additionally, 10 mL of the industrial-scale samples collected in 2010 were 

filtered onto a 47 mm 0.22 |xm polycarbonate (Millipore) soaked in unbuffered PCR-

grade Milli-Q (Millipore) water. Filter-cutting and subsequent DNA extraction was 

performed in the same manner and the field-scale samples within 8 hours of sample 

collection. 

PCR for DGGE 

For all of the samples collected from the three scales, PCR was performed using 5 u.L of 

template DNA with the primers 357f (5'-CCTACGGGAGGCAGCAG-3') with a GC-

clamp (5'- CGCCCGCCGCGCCCCGCG CCCGTCCCGCCGCCCCCGCCCG-3') 

added to the 5' end, and 518r (5'-ATTACCGCGGCTGCTGG-3'), modeled after Ogino 

et al (2001) and obtained from Sigma-Aldrich. Due to the difference in amount of 

sample filtered, 10 [xL the template from the field-scale site was diluted in 90 u.L of 10 

mM Tris-HCl (pH 8.0; Sigma-Aldrich) prior to addition to the PCR reactions. 

The primer set used is considered a universal set and targets the hyper-variable 

V3 region of bacterial 16S rDNA (Muyzer et al, 1993). PCR mastermix for this 

universal primer set was prepared such that each 50 \iL reaction contained lx Go-Taq™ 

Flexi (Promega) Green PCR Buffer, 0.5 u.M of each primer, 1.5 [xM MgCl, 1.5U Go-
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Taq™ Flexi (Promega), 200 [iM dNTP (Promega) and 21.3 jiL of Milli-Q (Millipore) 

water. PCR was performed using a BioRad™ I-cycler iQ PCR machine (Bio-Rad 

Laboratories). Touch-down PCR conditions were based on those described in Muyzer et 

al. (1993) and consisted of an initial denaturation step of 94°C for 5 min, followed by 20 

cycles of 94°C, 65°C and 72°C for 1 min each, in which the annealing temperature of 

65°C was decreased by 1°C every 2 cycles to a temperature of 56°C on the 20th cycle. Ten 

additional cycles of 94°C, 55°C and 72°C for 1 min each followed. PCR concluded with a 

7 min, 72°C extension step and was held at 4°C until storage at -10°C. PCR reaction 

success was measured by loading 10 [xL PCR product into 1.5% agarose gel in lx TAE 

buffer. Gels were run for 60 min at 100 V, stained with ethidium bromide solution for 15 

min and visualized using BioRad™ GelDock™ XR (Bio-Rad Laboratories) with amber 

filter to confirm the presence of only a 233 base-pair band in sample wells and absence of 

any bands in the blank, which consisted of the 5 \iL of the same Milli-Q water used in 

creation of the mastermix instead of template DNA. 

DGGE Conditions 

For all of the samples collected from the three scales, DGGE was performed following 

the methods and rationale presented by Green et al. (2009) with slight modification. 8% 

(wt/vol) acrylamide gels containing a linear denaturant gradient ranging from 40 to 65%, 

with 100% denaturant defined as a solution of 7M urea and 40% formamide. Gels were 

run for 17 hrs at 70 V (1190 Vhr) using a CBS Scientific™ DGGE-2401 machine (CBS 

Scientific Inc., Del Mar, CA) set to a constant temperature of 60°C. 15 fxL of sample PCR 

product was added to each lane, allowing free lanes for the DGGE ladder. 
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DGGE Ladder Creation 

DGGE ladder was created using 8 cloned sequences from various environmental samples 

known to move distinctly and consistently through the DGGE gel. These cloned and 

purified sequences were obtained from Dr. Josh Neufeld (University of Waterloo) and 

amplified individually using the 357f-gc and 518r primer set and PCR reaction conditions 

described in the PCR for DGGE subsection (see pgs. 23 & 24), modified to include 3 uX 

of template instead of 5 fxL. The remaining 2 u.L volume was replaced by increasing 

Milli-Q water to 23.3 u.L. The ten PCR reactions were pooled post-PCR to create 500 u,L 

of DGGE ladder and this was used in all DGGE gels, which was diluted by adding 500 

\iL 10 mM Tris-HCl (pH 8.0; Sigma-Aldrich). 10 u.L of the ladder was added to a central 

lane and both outside lanes. 

DGGE Image Acquisition 

Gels were stained with lx SYBR Gold solution (10,000x stock diluted in lx TAE; 

Invitrogen, Burlington, ON) for approximately 1 hr. Gels were then placed in a BioRad™ 

Gel Doc™ XR (Bio-Rad Laboratories) and flooded with deionized water before being 

photographed with BioRad™ SYBR Gold filter (Bio-Rad Laboratories). The resulting 

image was captured using Quantity One® software (Bio-Rad Laboratories), ensuring the 

gel was exposed for less than the time required to produce saturated pixels. The image 

was then exported to an 8-bit .tif file, excluding overlays, and saved at the scan resolution 

(2879 dpi) and size of 1360 x 1024. See Appendix A, Figure A.l. for an example DGGE 

gel. 
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3.3. Data Analysis 

HPC and E. coli Analysis 

HPCs and E. coli enumeration were converted based on dilution factor, expressed as CFU 

per mL and averaged across all countable plates for each sample location at each 

sampling event. HPCs were enumerated at both 5 and 7 days of incubation, but only the 

count from the 7th day was used in analysis. E. coli was enumerated at 20, 24 and 48 hrs 

of incubation, but only the 24 hr count was used as numbers did not change at 48 hrs. 

S. enterica Analysis 

Due to inclusion of two enrichment steps in the isolation protocol, S. enterica isolation is 

considered to be qualitative only. Also, only lactose negative isolates were considered as 

being prospective. Prospective isolates were considered those that displayed typical or 

near-typical presentation (i.e., lacking one or two of the expected biochemical 

characteristics) on LIA and TSI. Prospective isolates were confirmed as positive or 

negative based on the results from colony PCR. Isolation results were coded as positive if 

one or more positive S. enterica isolate was found in a given sample location on a given 

event, or negative if none were found. 

CLPP Analysis 

The metric for use in analysis of the field-scale CW Biolog™ ECOplates™ was chosen 

to be a time point of 48 hours after incubation and the metric for use in analysis of the 

industrial-scale Biolog™ ECOplates™ was chosen to be a time point of 72 hours after 

incubation, following rationale presented in Weber and Legge (2009). As BIOLOG™ 

ECOplate™ contains each well type in triplicate, the average of the three blank wells was 

used in the correction of each well. Matrices of the raw and blank-corrected data were 
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constructed with each of the carbon sources treated as a variable, the sample location 

treated as an object and absorbance of a particular well used as values in matrix 

construction. Negative well responses were coded as zeros during data treatment 

according to Weber et al. (2007). The blank-corrected matrix using the average of the 

triplicates was transformed using a Ln+1 and Taylor power-law transformation to check 

if either enhanced normality, measured through skewness and kurtosis of the variables, or 

homoscedasticity, assessed through the variance ratio (Legendre & Legendre, 1998; 

Weber & Legge, 2010) of the data. A qualitative matrix was also created, coding the 

number of wells with a blank-corrected absorbance greater than 0.25 OD59o as a 1, and 

the corrected absorbance less than 0.25 OD590 as a zero. Each qualitative vector was 

summed and used as a measure of substrate richness, which was also used in calculation 

of the CLPP-based diversity indices. 

First described by Zak et al. (1994), the carbon source utilization patterns 

(CSUPs) provided by BIOLOG™ ECOplates™ can be used to calculate a number of 

metrics and have been found to provide reliable data for multivariate analysis, the 

Shannon's H' (Shannon, 1948) and the result considered a measure of the diversity of 

carbon-based substrate utilization for a given community. H' from a CSUP can be 

calculated as: 

H'CLPP = -IlPMPi) (eq. 1) 

Where: 
H'CLPP - substrate diversity 

pt - ratio of the activity of a particular substrate to the sum of activity of all substrates 
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One Dimensional Community Functional Divergence 

A one dimensional community functional divergence measure was calculated according 

to Weber and Legge (2009) using the triplicate-averaged blank-corrected CLPP data. The 

Euclidean distance measure was used in this study as a measure of dissimilarity of the 

CSUPs gathered for any one location at a time point, in comparison to the original day 0 

CSUP for that location. For the field-scale CW data the last sample prior to antibiotic 

exposure, collected Feb. 22nd, was used as the day 0 from which divergence was 

calculated. Additionally, the Euclidian distance from each previous time point was also 

calculated as a measure of the amount of total change over time. Euclidean distance can 

be calculated in n dimensions, however, in this case the Biolog™ ECOplates™ provide 

an n= 31 (i.e., 31 different carbon sources). 

Given the two points: 

P = (pltp2,...,pH)& Q = ( ? P t f 2 . - , O 

Where (for the field-scale CW): 
P= functional profile at day 0, 8, 15, or 49 
Q= functional profile at day 8, 15, 29, 49, or 73 from start-up 

The Euclidean distance was calculated as: 

<J(Pi - 4 i ) 2 +(P2 -li)1 +••• + (/>„ -Inf (eq- 2) 

One dimensional community functional divergence measure was also calculated 

for the industrial-scale lagoon and the Sept 21st, 2009 sample was used as the day 0 from 

which divergence was calculated. As there was no available post-flocculation sample 

available on this day, substrate divergence was not calculated for this location. 
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DGGE Analysis 

DGGE images were loaded into GelComparll (Applied Maths, Austin, TX) software 

following the manufactures instructions. Bands were detected using the automated band 

detection algorithm provided in the program, set to the minimum cut-off that detected 

only the expected bands in the ladder-containing lanes. The resulting band detection 

output was examined using the original image to ensure only bands clearly visible to the 

unaided eye in the original picture were selected and that bands were not placed in areas 

which contained peaks due to dust or other image inconsistencies. Bands that appeared to 

the unaided eye but were over looked by the band search algorithm were excluded to 

ensure consistency regarding the treatment of background intensity. Densitometric peaks 

for each banding pattern in each lane were exported into text files conferring both band 

movement (i.e., number of pixels from the top of the gel; Rf) and relative band intensities 

(i.e., intensity of each band compared to total intensity of each lane, for each separate 

lane). This output was transferred to Microsoft® Office Excel™ 2007 for anchor 

normalization and matrix construction. 

Sample band movement was anchored to the first and eighth ladder bands, (i.e., 

the bands with the largest and smallest Rf valves within each 40-65% gel), following 

theory presented in Tourlomousis et al. (2010). Although the ladder was made with 10 

bands, only eight were expected, as the 9th and 10th bands denatured between 65 and 70% 

denaturant. Gels where 9 or more standard bands appeared were excluded from analysis. 

In all cases the ladder was run on the furthest left lane, the centre lane, and the furthest 

right lane, with movement anchoring completed separately for the right side and left side 

of the gel. This ensured that for sample bands on the left side of the gel the average 
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movement of both the centre ladder and the left-most ladder positions were used to set 

the 1 to 1000 movement scale. This process was similarly repeated for the right side of 

the gel using the right-most and center lanes. Some sample fragments were found to lie 

outside the ladder movement range, both below and above the ladder on the gel, so a 

correction factor of 1500 was added to all movement values to prevent any negative 

integers in the data set. This resulted in all final movement values lying between 0 and. 

2500. Each band was then classified into different movement groupings in blocks of 50 

(i.e., 1-50, 51-100, 101-150 etc.) giving a total of 50 groupings. Each of the 50 groupings 

was then treated as a variable, with the sample site treated as an object and, for what will 

be referred to herein as 'quantitative' , relative band intensities used as values in matrix 

construction. A qualitative matrix was also created, coding the presence of each band as a 

1, and the absence as a zero. Each qualitative vector was summed and used as a measure 

of genetic richness, or the number of operational taxonomic units (OTUs), which was 

also used in calculation of the diversity indices to be described. 

The quantitative matrix was transformed using a Ln+1 and Taylor power-law 

transformation to check if either enhanced the normality, measured through skewness and 

kurtosis of the variables, or homoscedasticity, assessed through the variance ratio 

(Legendre & Legendre, 1998; Weber & Legge, 2010). 

Diversity indices were also calculated using the relative band intensity as a 

measure of sequence proportion in the original sample (Ibekwe et ai, 2007). Both the 

Shannon index of diversity (H'; Shannon, 1948) and probability of interspecific 

encounters (PIE; Hurlbert, 1971) were calculated. 
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H' can be calculated as: 

H'DGGE=-'LPIWPI) (eq.3) 

Where: 
H'DGGE - genetic diversity 

pt - ratio of the intensity of a particular band to the sum of bands in a given lane 

PIE can be calculated as: 

PIE DGGE = 

Where: 
PIEDGGB = probability of two repeated samples producing different species 

P' = ratio of the intensity of a particular band to the sum of bands in a given lane 

^ = genetic richness (i.e., number of identifiable bands in sample lane) 

Rank-abundance Plots 

Rank-abundance plots were created using the average of the duplicate relative band 

intensities plotted in order of decreasing intensity for each of the Rf movement group 

(i.e., group of 50 pixels) at each time point. Graphs for each system location or 

mesocosm treatment type are seperated to assist visualization of changes in the 

community profile. 

Averaged Banding Pattern 

A plot of the averaged banding pattern from the DGGE profiles was created in order to 

visualize both the changes in relative abundances of the observed OTUs, while 

conserving the information regarding the Rf movement group (i.e., G+C content) of the 

OTUs. 

One Dimensional Community Genetic Divergence 

A one dimensional community genetic divergence measure was also calculated for all 

three scale according to Collins et al. (2000) and Weber and Legge (2009), modified to 

i-2>, (eq. 4) 
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replace 'substrate' divergence with 'species' divergence. The Euclidean distance was 

calculated using the untransformed quantitative data set, for a given mesocosm, to 

determine the dissimilarity of each time point to the original day 0, as a measure of 

overall divergence. Euclidean distance can be calculated in n dimensions, and for the 

DGGE-derived data the groups of band Rf values provided an n= 50. Euclidean distance 

was calculated using Equation 2. 

For the bench-scale mesocosms, the sample take on Nov. 16th was considered the 

day 0 from which divergence was calculated. For the field-scale CW, the last sample 

prior to antibiotic exposure, taken on Feb. 22nd, 2010, was used as the day 0 from which 

divergence was calculated. Divergence calculated between the Feb. 8th and 22nd samples 

was used as a measure of undisturbed genetic divergence. For the industrial-scale lagoon, 

the June 24th, 2009 sample was used as the day 0 from which divergence was calculated. 

Additionally, the Euclidian distance from each previous time point from each 

investigated treatment system was also calculated (i.e., if the bench-scale, Nov. 16th from 

Nov. 23rd, Nov. 23rd from Nov. 30th, etc.) as a measure of the amount of total change over 

time. For all sites the first sample used was that considered to be day 0 in the previous 

calculation of functional divergence. 

Multivariate Statistical Techniques 

Principal component analysis (PCA) for the bench-scale mesocosms was completed with 

the Taylor-transformed averages (b= 1.3363) from the DGGE data set using Statistica 8.1 

(Statsoft, Tulsa, OK). Field-scale CW PCA was completed using the quantitative Taylor-

transformed, blank-corrected (b= 1.104) CLPP means and Taylor-transformed (b= 1.396) 

DGGE data set. PCA for the industrial-scale lagoon was completed for Taylor 
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transformed (b= 0.9606), blank-corrected CLPP and Ln+1 transformed DGGE data sets. 

PCs were extracted from the covariance matrix of the data with any zero vector spaces 

excluded. Only visualization around the first 3 PCs for each analysis are presented in the 

plots shown. For general background of the interpretation and a description of 

characteristics of the PCA performed see James and McCulloch (1990), Legendre and 

Legendre (1998), and Jung and Marron (2009). 

Tree cluster analysis using untransformed CLPP and DGGE means from all three 

sites was also done with the aid of Statistica 8.1 (Statsoft, Tulsa, OK), with linkage 

distances calculated by the unweighted pair-group method (UPGMA) using Euclidian 

distances (Jolliffe, 2002). 

Data Presentation 

The bacterial enumerations and CLPP-derived indices calculated in this study are 

represented as time course data in the form of line-graphs. The DGGE-derived indices 

calculated in this study are represented as time course data in the form of bar-graphs and 

line graphs, depending on which gave clearer visualization of trend behaviour. For the 

bench-scale CW site, the average of the mesocosms exposed to ciprofloxacin and those 

not exposed to ciprofloxacin are shown in the different plots for each metric calculated. 

Error bars for the bench-scale are included in the time course plots and denote two 

standard deviations (one on either side of the data point). For the field- and industrial-

scale sites time course data is separated into spatially-based objects based on the location 

within the wetland that the sample was taken. Error bars expressing standard deviation in 

the field- and industrial-scale DGGE-derived plots was not possible due to the low 
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number of observations (i.e., 2). Error bars expressing standard deviation in the field-

and industrial-scale CLPP-derived plots were left out to ease visualization. 
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4. Bench-scale Constructed Wetland Mesocosm Results and 

Discussion 

In order to address part of the overall goal of this research, to profile the structural and 

functional characteristics of predominant microbial communities in CWs at multiple 

system scales, genetic structure in the bench-scale CWs was monitored using DGGE. The 

functional profiles of these CWs were assessed by Dr. Kela Weber and are not included 

in this document. The impact of an antibiotic contaminant (i.e., ciprofloxacin) was also 

investigated to better understand the response of bench-scale CWs microbial 

communities to perturbation. 

4.1. Structural Fingerprinting 

DGGE fingerprinting was completed on all samples taken, resulting in a total n= 42; 5 

time points by 4 constructed wetland (CW) mesocosms plus the sludge inoculum, 

sampled in duplicate. Figure 4.1 displays the trends of the genetic richness, defined as the 

number of bands above background observed in DGGE gels. Bands are commonly 

referred to as operational taxonomic units (OTUs; Sneath, 2005). The use of the term 

OTU maintains that DGGE bands may not be indicative of a specific taxon, but instead 

groups possessing similarity within some characteristic. In this case that characteristic is 

the melting point of V3 region 16s rDNA; a melting point which differs with sequence 

identity and the region that confers phylogenetic information (Woese, 1987). For the 

purpose of this discussion, a band will be considered a unique OTU, thereby denoting a 

wider variety within the community with increasing band number. 

From the samples collected prior to addition of the ciprofloxacin, there did not 

appear to be a difference in the number of detectable OTUs between the four mesocosms, 



Microbial Community 52 

although all four appeared to have an increased number of OTUs from the initial sludge 

inoculum. This indicates that there may have been genetic contribution to the mesocosm 

community from the Phragmites australis associated bacteria, or any bacteria that may 

have been associated with construction materials. The 'Cipro' samples taken immediately 

following ciprofloxacin removal showed little difference from the control condition. The 

lack of differences following acute antibiotic exposure was surprising, as susceptible 

organisms should have been affected based on the concentration used (Thauvin-

Eliopoulos & Eliopoulos, 2003). However, the 'Cipro' CW contained on average 7 OTUs 

more than the 'No Cipro' mesocosms on Jan. 4th. Additionally, samples taken on Jan. 18th 

continued to display more detectable OTUs in the 'Cipro' mesocosms than the 'No 

Cipro' mesocosms. 

41 -i 

16-Nov 23-Nov 30-Nov 

Date Sampled 

4-Jan 18-Jan 

D Cipro 

a No Cipro 

Figure 4.1. DGGE-based community richness (# of bands) from the bench-scale CW. Error bars indicate 1 
standard deviation on either side of the mean. The grey box is added to assist visualization ciprofloxacin 
exposure. The sludge inoculum is denoted by the solid black bar. 
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The apparent lack of immediate effect of the antibiotic on Nov. 30th and the 

increase in OTUs on Jan. 4th may have several possible explanations. The primary 

mechanism of ciprofloxacin removal is thought to be photodegradation (Cardoza et ai, 

2005), which would have been entirely absent due to the construction design of the CW 

mesocosms. If not photodegraded, ciprofloxacin is known to bind preferentially to fine 

organic matter and it is unknown if the antibiotic remains active despite sorption (Belden 

et ai, 2007). Additionally, ciprofloxacin has an expected half-life in the environment 

nearly 3 times that of its half-life in humans (i.e., 12 hrs vs. 4 hrs), and has been observed 

to persist for 16 hrs, the entire length of the study, at nearly the entirety of the amount 

added in dark water systems (Belden et al, 2007). Therefore, one possible reason for the 

lack of decrease in OTUs observed immediately following antibiotic removal and the 

subsequent increase one month later may be due to an increased detachment from the 

gravel-root substrate by community members, resulting in higher representation in the 

sampled interstitial water. The compensatory effect on richness estimates of the 

increased detachment from the CW mesocosm matrix into the sampled interstitial water 

may have therefore hidden the antibiotic-related loss of susceptible OTUs following 

acute exposure on Nov. 30l . Sampling of the attached biomass may be able to clarify the 

observed effects; however this would result in sacrifice of the mesocosm and a cessation 

of further monitoring. 

Similarly, by Jan. 4th, any residual antibiotic should have become further bound or 

degraded by the CW. Continued detachment from areas still containing ciprofloxacin that 

may have remained active due to the lack of light available to the systems may be 

involved. Attempts to survive and colonize the nutrient-rich interstitial water by the 
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remaining organisms may be responsible for the observed increase in OTUs above that of 

the 'No Cipro' condition. Populations that would have otherwise remained un-sampled, 

as part of the CW mesocosm matrix, or at levels below detection would now be present in 

the interstitial water of the 'Cipro' condition. The convergence of the OTUs estimates 

visualized in the final sample may have been indicative of the microbial community in 

the 'Cipro' condition beginning to colonize the previously unfavourable gravel-root 

matrix; while the now established, attached populations in the control condition have 

begun to shed older members into the interstitial water. This convergence may also be 

due to the extinction of populations that were unable to colonize the antibiotic-laden 

matrix and also unable to survive while suspended due to increased competition present 

in the 'Cipro' interstitial water. 

To further explore the behaviour of the bench-scale CW mesocosm, two diversity 

indices were calculated; the Shannon index of diversity {H'\ Shannon, 1948) and the 

probability of interspecific encounters (PIE; Hurlbert, 1971). Both of these are 

represented graphically in Figure 4.2. Diversity calculated from a genetic fingerprinting 

method can be interpreted as a measure that considers both the number of distinct OTUs 

and the relative proportion with which they are observed; where communities with a 

greater number of more, evenly represented phylogenetic groups are consider more 

diverse than those with fewer, less evenly represented groups. 

Like the estimates for the number of OTUs, there was an apparent difference in 

genetic diversity between the initial sludge inoculum and the mesocosms prior to 

antibiotic exposure for both indices. Additionally, there was no apparent difference with 

regard to either genetic diversity estimate for the samples taken immediately following 
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removal of the antibiotic, or even after one month following. The observed genetic 

diversity may be due, in part, to the same detachment mechanisms suggested previously, 

which would have maintained an increased proportion of the CW microbial community 

in the interstitial water despite the presumed loss of susceptible organisms from the 

matrix. However, the lack of differences in genetic diversity was also a result of the 

decreasing diversity trend in the 'No Cipro' mesocosms observed over the first 49 days of 

development. Although the microbial community in the control mesocosms would not 

have been subjected to antibiotic stress, the competition present may have caused an 

accentuated lag-like phase, as the various populations would have been struggling to 

colonize niches within the 'No Cipro' CW matrix; resulting in increased biosynthesis of 

cellular products to assist adhesion, and depressed investment given to replication 

(Brading etal, 1995; White, 2003). 

The only observable difference between the two conditions using genetic diversity 

indices was found between the PIE values for Jan. 18th, indicating that there may have 

been a notably more genetically diverse community present in the control CW 

mesocosms by the end of the investigation period. This trend toward more variety in the 

number and relative proportion of OTUs on Jan. 18l was also seen through H', although 

not as pronounced using that index. Intuitively, this difference can easily be attributed to 

the antibiotic-related loss of susceptible organisms. However, when considered along 

with the lack of differences in genetic richness estimates, the response of the CW 

community to the ciprofloxacin contaminant becomes more complex. 

The 'Cipro' mesocosms displayed a decreasing trend in genetic diversity 

estimates despite increases in number of observed OTUs; while the undisturbed 
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Figure 4.2. DGGE-based community diversity from the bench-scale CW. A) Shannon index (//'); B) 
Hurlbert index (PIE). Error bars indicate 1 standard deviation on either side of the mean The grey box is 
added to assist visualization of exposure to ciprofloxacin. . The sludge inoculum is denoted by the solid 
black bar. 
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mesocosms displayed both decreasing diversity in the representation and number of 

phylogenetic groups over the first two months. Colonization of the CW gravel-root 

matrix in the 'No Cipro' control condition would largely favour the organisms which are 

biofilm pioneers, have increased surface hydrophobicity, require close-association to a 

biofilm or produce pili, capsules, slime-glycolipoprotien or other adherents that allow 

attachment to the substrates present in the mesocosms (Brading et al, 1995). These types 

of microorganisms, which would not necessarily be adapted to suspended conditions in 

the open water and would quickly disappear from the sampled interstitial fraction in 

favour of a more suitable niche; leaving the organisms preferring suspension (i.e., 

organisms that are motile or do not produce adherents that will allow adhesion to 

mesocosm substrates) to dominate the sampled community, thereby resulting in lower 

number and relative proportion of OTUs in the genetic fingerprint. The attached 

community may have remained below detection in the interstitial water until the biofilms 

became aged; as the rate of bacterial shedding in a developing biofilm is less than that in 

mature biofilms (Brading et al, 1995). Therefore, the increasing trend in both number of 

observed phylogenetic groups and the relative similarity of their representation seen in 

the final interstitial sample, taken after two months of development, may be a result of 

increasing biofilm shedding in the control CW mesocosms. Continued sampling would be 

required to confirm this explanation. 

Conversely, in the 'Cipro' mesocosms, guilds belonging to the early biofilm 

colonizers would have been allowed to inhabit niches during the first week of 

undisturbed development. However, upon ciprofloxacin addition, some microorganisms 

(i.e., those not yet deeply rooted in the week old biofilm) may have been forced into 
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resuspension to avoid the antibiotic, while others would undergo an increased stress-

response to deal with it or, if neither was possible, cell death. Any of these responses 

could result in perturbation to the normal progression of development in the community. 

As mentioned earlier, the combination of the negative antibiotic-related cell death and 

compensatory detachment-related gain of both the amount and types of previously 

attached organisms is likely the reason why little acute response to antibiotic exposure 

was observed in the genetic fingerprints. The continued decline in diversity, along with 

the rise and fall of richness estimates, may be indicative of a re-colonization of the 

'Cipro' CW matrix once the antibiotic was degraded or no longer present, or by 

prevailing microorganisms or tolerant survivors continuing on with previously delayed 

CW community development following cessation of the perturbation. Continued 

investigation of the microbial community in this system may elucidate whether this 

antibiotic-based perturbation during development is being overcome by the surviving 

community. 

It should be noted that P. australis growth continually deteriorated following 

antibiotic exposure, eventually undergoing chlorosis and eventual death by day 100 from 

start-up (Dr. Kela Weber, personal conversation, September 27th, 2010). Additionally, 

CW porosity was found to be much less in the 'No Cipro' condition until plant death; at 

which point 'Cipro' porosity began to decrease substantially (Dr. Kela Weber, personal 

communication, September 27th, 2010). The initial decrease in porosity shown by the 'No 

Cipro' CWs provides evidence for the natural development of a biofilm matrix via 

increased attachment. 
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The use of richness and diversity estimates for phylogenetic community structure, 

although easily testable and comparable, provide a complex picture of the community 

changes and can be subjected to multiple interpretations depending on the approach used 

to analyze them. An example of this subjectivity is provided within this chapter, as PIE 

produced a large visual difference on Jan. 18th beyond that of the error bars, while H' did 

illustrated only a minor difference. In order to clarify this discrepancy, as well as provide 

a more detailed illustration of the changes within community structure that resulted from 

both exposure to ciprofloxacin and the natural genetic development of a bench-scale CW, 

rank-abundance plots were created (see Figure 4.3). Relative band intensity of the OTUs 

was used to describe abundance. 

Based on the rank-abundance curves in Figure 4.3, there did not appear to be any 

major differences with regard to the overall population structure detected in the four 

mesocosms prior to ciprofloxacin exposure. The original sludge inoculum displayed a 

relatively even dominant population structure, with 8 OTUs contributing to greater than 

5% of the relative-abundance. The evenness of the population appeared to decline 

continually over the first week of mesocosm development. Like in the previous metrics, 

there did not appear to be a discernable impact of acute antibiotic exposure. There did, 

however, appear to an impact visible one month after removal of the contaminant as the 

'Cipro' depicted much less evenness in comparison to the 'No Cipro' mesocosms. Jan 

18th, maintained the decrease in evenness, and displayed the clear appearance of a single, 

very dominant OTU, seen by the change in the size of the 1st ranked OTU between the 

'Cipro' and 'No Cipro' conditions on the final day. The most dominant OTU in the 

'Cipro' mesocosms was also nearly twice the size of the most dominant OUT in the 
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Figure 4.3. DGGE-based rank-abundance curves for the bench-scale CW. A) The 'No Cipro' condition and 
B) The 'Cipro' condition. Ciprofloxacin was administered between the Nov. 23rd and 30th samples. 
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control. There also appeared to be a slight decrease in the size of the 4th through 8th 

ranked OTUs, as there appears to be a much sharper decline in the rank-abundance curve 

of the 'Cipro' mesocosm compared to the 'No Cipro' in the final two samples collected. 

This indicates that there was an clear effect of ciprofloxacin exposure on the evenness of 

the microbial community structure. 

Additional information regarding the microbial community structure may also be 

contained in the G+C content possessed by the groups that appeared to change in Figure 

4.3. To visualize this difference, Figure 4.4 depicts the averaged relative abundances 

from the genetic profile, maintaining the movement of these locations in the DGGE gel. 

The combination of OTUs with similar G+C content in ribosomal DNA into the same 

groups accounts for some of the error associated with band movement in DGGE gels and 

accounts for the fact that groups with similar G+C content have been considered to be 

phylogenetically similar (Wayne et al. 1987). 

Based on the averaged banding pattern plots, the sludge used for inoculation of the CWs 

appears dominated by two large peaks, each comprising over 15% of the lane intensity, 

and three or four moderate peaks which were all between 5 to 10% of the lane intensity 

each. After the first week of development all four mesocosms developed similarly. The 

immediate appearance of a novel and abundant OTU near the 15th movement group, as 

well as novel bands with higher G+C content after a day suggests a large influence of 

bacterial populations not associated with the sludge inoculum on the initial community 

composition of the bench-scale CW. By the end of the first week, on Nov. 23rd, the 

disappearance of the previously novel high C+G bands, along with the appearance of new 

low G+C bands, suggests a waxing and waning of different populations above and below 
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Figure 4.4. DGGE-based averaged banding pattern for the bench-scale CW. A) The 'No Cipro' condition 
and B) The 'Cipro' condition. Ciprofloxacin was administered between the Nov. 23rd and 30th samples. 
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detection thresholds among the moderately common OTUs during initial development of 

the mesocosm; indicating that phylogenetically distinguishable groups play distinct roles 

in development of the CW mesocosm and that the representation of these groups in the 

interstitial water varies temporally; a well documented phenomenon in other types of 

biofilms (Brading etai, 1995). 

Immediately following ciprofloxacin exposure on Nov. 30th, both experimental 

conditions appeared very similar, with the dominant OTUs remaining within similar 

movement groups. There is, however, a slight difference at this point regarding the visual 

evenness between the two conditions, as the 'No Cipro' CWs displayed a minimal but 

widespread increase in abundance of all the observed OTUs. Both conditions, however, 

still portrayed a community dominated by the two phylogenetic groups with moderate 

C+G content, located around the 20th and 22nd movement groups. It should be noted that 

these OTUs were dominant even in the original sludge sample, indicating that the sludge 

inoculum was able to provide considerable contribution to the CW mesocosms despite 

the differences in observed OTUs seen in Figure 4.1. 

By Jan. 4th, the reappearance of low and high G+C OTUs in both CW conditions 

can be observed. The 'No Cipro' condition displayed a noticeable decrease in relative 

intensity of one of the two dominant OTUs at this point, coupled with an increase in the 

intensity of bands near the 30th movement group. The Jan. 18th sample produced two 

visually different communities, supported by the difference in PEE values and rank 

abundance plots presented above. Although the 'No Cipro' and 'Cipro' conditions 

displayed a community with moderately abundant OTUs and the most prominent OTU in 

similar Rf groups, the relative intensity of this OTU in the 'Cipro' condition was nearly 
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double that of the same OTU in the control condition. Additionally, the 'No Cipro' CW 

displayed a very even population as ten OTUs contributed between greater than 5% of the 

relative community abundance and six contributed more than 3%; in contrast to the six 

and three contributing similar proportions, respectively, from the 'Cipro' CW. It is 

evident from the average banding patterns that there are differently structured 

communities with regard to the size of the non-dominant OTUs found within the two 

treatment groups. 

The differences in PIE values and appearance of the rank-abundance curves and 

averaged banding patter plots displayed emerging differences in the final community 

structures between the two experimental conditions with regard to community evenness. 

However, it is also interesting to look at the amount of this change, the rate at which the 

community change is occurring and how the rate changes over time. In an attempt to 

produce a simple metric for comparison that would easily address changes in sample 

variation genetic divergence curves were calculated in Figure 4.5. The curves represent 

the total amount of divergence in a single dimension (i.e., the Euclidian distance) 

between each sample; based largely on Collins et al. (2000), Weber and Legge (2009) 

and through personal communication with Dr. Kela Weber (various dates, 2008-2010). 

The amount of structural community divergence from the initial community was 

monitored by measuring change between each sample and the first sample taken on Nov. 

16th (see Figure 4.5.A), similarly to Weber and Legge (2009) but using DGGE data 

instead of CLPP. Additionally, the genetic divergence between each sample and the 

sample taken immediately previous (see Figure 4.5.B) was calculated. The slope of the 
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Figure 4.5. Genetic divergence based on Euclidian distances of untransformed DGGE profiles from the 
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line in Figure 4.5.B would be indicative of the rate of structural or genetic change of the 

community over that time period. 

Figure 4.5.A displayed a very similar divergence from the initial microbial 

community for both treatments, prior to and immediately following the antibiotic. 

However, by the final sample on Jan. 18th the 'Cipro' CWs displayed a continued 

divergence from the initial community, while the control condition appeared to maintain 

consistent amount of genetic divergence from the initial sample regardless of what OTU 

group the changes were occurring in (see Figure 4.5). This finding may indicate that the 

perturbed community is less stable with respect to variation within community structure 

during steady state function, compared to the un-impacted community structure. Figure 

4.5.B showed no apparent differences in the amount or rate of divergence between the 

two mesocosm conditions over time. However, there did appear to be a decrease in the 

amount of structural community divergence noticed between Nov. 23rd and 30th noticed 

in both conditions. This observation from the 'Cipro' condition can be potentially 

explained as the acute community response to the antibiotic; however an acute effect was 

not visualized in any of the preceding figures. Furthermore, a similar decrease in 

divergence was observed in the 'No Cipro' mesocosm. 

It may instead be the case that, between the first and second weeks after start-up, 

the microbial community had reached a stage in which further development became 

partially dependent on a slowly growing population or guild. This decreased divergence 

may also be due to continued matrix-adhered biofilm development, leaving a relatively 

unaltered suspended community to dominate the sample taken. Regardless of the reason 

for this delayed divergence, when considering both amended and unamended mesocosms, 
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it seems that this stage of community development is able to proceed despite the presence 

of a deleterious chemical. 

Interestingly, a trend of increasing structural divergence was also displayed by 

both communities following the large decrease in divergence between the 8th and 15th 

days from start-up, with a slightly decreased magnitude in the 'Cipro' CWs. These _ 

findings may indicate that only the resistant populations present in the start-up 

community may have been able to colonize the CW matrix in the presence of antibiotic, 

undergoing similar successive cycles and the 'No Cipro' community regardless of the 

presence of antibiotic. However, due to the increased selectively of the antibiotic-laden 

CW environment, the resulting attached populations may be fewer and consequently 

show a reduced amount of divergence within the suspended community. 

By the Jan. 4th sampling event, 49 days from start-up, the control condition had 

displayed an increased rate of divergence from both the previous sampling period, as well 

as the 'Cipro' CW on the same day. The difference in divergence rate observed on Jan. 

4th may be indicative of the influence of the undisturbed and increasing developed 

matrix-adhered community on the suspended community. The depressed magnitude of 

the curve between 15 and 49 days in the 'Cipro' CWs may further indicate the long-term 

effects of the antibiotic exposure on the plasticity of the CW community; resulting in a 

less plastic community due to antibiotic exposure. Whatever the exact effect of the 

antibiotic on the community, it is clear from Figure 4.5 that this effect is not immediate 

and has pressed the development of the receiving community in a direction unlike that 

displayed in the control CW. These trends may indicate that antibiotic exposure may have 

long-term effects on the ability of a community to produce natural structural variation. It 
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is unclear whether or not this decreased capacity for change should be concerning, or if 

this has repercussions regarding the sustainability of microbial communities within CWs. 

Like the clarification of structural change provided by the rank-abundance plots, 

principal component analysis (PCA) and tree cluster analysis may be able to shed light on 

the current pictures of the relative similarities, or dissimilarities between the two 

experimental conditions, while taking into account the dimensionality of the collected 

data. PCA is a powerful exploratory (i.e., functions without an a priori hypothesis) tool 

that can provide information regarding the dissimilarity of a large number of cases using 

their behaviour over a number of variables, or dimensions (Legandre & Legandre, 1998). 

PCA was done (see Figure 4.5) using band Rf groups as variables and relative band 

intensity as the quantitative measure. 

From Appendix A, Figure A.5 it can be observed that PCA alluded to the earlier 

finding that the CW communities were considerably dissimilar to the initial sludge 

inoculum, as well as the high degree of similarity between the two conditions on day 1 

and on day 8, reaffirming the negligible difference between the CWs prior to 

ciprofloxacin exposure. Furthermore, there is continued similarity between the two 

conditions on day 15, further confirming the lack of acute effect on the microbial 

community structure displayed in the previous analyses. The 'Cipro' and control 

conditions at 49 days were still highly similar, displaying no obviously greater 

dissimilarity to each other than the two conditions on the days prior. However by Jan. 

18th, 73 days from start-up, the two experimental conditions displayed a large degree of 

dissimilarity, further confirming the previously used metrics. 
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Like PCA, tree cluster analysis also displays the relative dissimilarity of data set. 

However, where PCA can hide dissimilarity based on the PCs used to set the 

plot axes (e.g., the difference between the closeness of 'Cip_15' and 'NoCip_15' in 

Figure 4.5. A and B), tree cluster analysis is thought to be an indicator of the true distance 

of similarity or dissimilarity, unrelated to the dimensionality of or perspective taken to 

view the data (Legendre & Legendre, 1998). Because there may be better directions than 

the dominant PCs to see similarities or clusters within a given data set, the use of a 

clustering technique along with PCA is suggested (Jolliffe, 2002). Tree cluster analysis 

using Euclidian distances as a distance measure is presented in Figure 4.6. 

Tree cluster analysis further confirmed the dissimilarity of the sludge inoculum 

from the rest of the CW system. A high degree of similarity between the day 1 samples 

was also observed. The samples taken from the control mesocosm before and after the 

antibiotic exposure are very similar, and considerably dissimilar from the day 1 samples. 

The 'Cipro' exposed mesocosms remained generally similar to each other and the 

controls, although they displayed slightly increased dissimilarity in comparison. 

By Jan. 4th, the 49 day of operation, increased dissimilarity from the Nov. 

samples was observed, although there remained very a similar linkage distance between 

the two conditions as the observed prior to ciprofloxacin addition. The final sample taken 

from the control condition illustrated continued temporal dissimilarity, although 

remaining still linked to the original start-up community. Conversely, the 'Cipro' CWs 

retained high similarity to the previous sample. This provides further evidence of a less 

malleable community within the ciprofloxacin exposed CWs, indicated by a decrease in 

natural genetic variation. 
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Figure 4.6. DGGE-based tree cluster analysis using the untransformed means from the bench-scale CW. 
Linkage distance was calculated using UPGMA of Euclidian distances. 'S ' refers to the sludge inoculum, 
while 'Cip' and 'NoCip' are the ciprofloxacin-exposed and unexposed mesocosms, respectively. The 
number following indicates the number of days from start-up. Ciprofloxacin was administered between day 
8 and 15 from startup. 

Both PC and cluster analysis were able to produce additional visualization of the 

increasing dissimilarity within the 'No Cipro' mesocosm. Importantly, this is the same 

visual difference that was noticed most effectively in the plot of PEE (see Figure 4.2) and 

the averaged banding pattern (see Figure 4.4.), indicating that these data reduction 

technique were able to identify the same visual trends observed, despite a low number of 

samples, in the earlier less mathematically-intensive plots. 

Differences between the two experimental conditions and the changes that 

occurred during development were clearly recognized through exploratory multivariate 

statistical analysis, genetic divergence and changes in observed number and relative 

<n 

o 

abundance of OTUs over time. Changes observed through the chosen metrics have 
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indicated a delayed effect of antibiotic perturbation on the structure of the microbial 

community. 

4.2. Conclusions from Bench-scale Characterization 

Based on the results previously discussed, the following conclusions from the bench-

scale CWs can be made: 

> The effect of ciprofloxacin exposure appeared delayed in the genetic fingerprints. 

The lack of acute response may be the result of using an indirect measure (i.e., the 

interstitial water) for the complex interactions involving detachment of non-

resistant, adhered populations within the treated condition and continued 

colonization of the un-sampled matrix in the unexposed mesocosms. 

> Ciprofloxacin exposure did not appear to considerably affect the number of OTUs 

in the interstitial water that were abundant enough for detection with PCR. 

> Rank abundance and average banding pattern plots indicated a pattern of structural 

change within the experimental group unlike the structural change in the control 

condition a month after ciprofloxacin exposure. PCA and tree clustering analysis 

also allowed visualization the differential relative contributions of OTUs to the 

community structure. 

> Multivariate statistical analysis indicated dissimilarity of the interstitial water 

community structure between the 'Cipro' and 'No Cipro' CWs by 73 days from 

start-up. 

> PIE was able to differentiate structural diversity between the two mesocosm types 

on the final day of sampling. This indicates that PIE may be a more appropriate 

diversity metric than H' when using techniques providing OTU-based data. 
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5. Field-scale Treatment Wetland Results and Discussion 

In order to address part of the overall goal of this study, which was to profile the 

structural and functional characteristics of predominant microbial communities in CWs at 

multiple system scales, a field-scale CW was monitored using CLPP and DGGE, along 

with some culture-based methods. Additionally, the impact of an antibiotic contaminant 

(i.e., oxytetracycline) was investigated to better understand the ability of a field-scale CW 

microbial community to respond to perturbation. 

5.1. Escherichia coli, Salmonella enterica and Heterotrophic Plate Count Monitoring 

Escherichia coli was found only twice in all of the samples and none of the prospective 

or non-typical isolates were determined to be Salmonella enterica on either Feb. 8l or 

22n . E. coli enumeration and S. enterica isolation results are therefore not included in 

this document but can be found in Ontario Ministry of the Environment, (2010). 

The Septic location showed consistantly higher HPCs than all of the other 

samples, at all days with the exception of the final sample taken on Apr. 12th, 2010 (see 

Figure 5.1). The Septic location, although not exposed to oxytetracycline (OTC), 

displayed a slight half-log increase during exposure. The increase observed in the 

'Septic' may be due to the absence of vacuuming the day prior, as tanks are vacuumed 

only on Monday, Wednesday and Friday. The Feb. 24th sample was taken on a 

Wednesday morning before vacuuming occurred (Allison Snow, personal 

communication, Mar. 9th, 2010). 

The 'Cattail', 'Sedge/Rice' and 'Final Pump/ Combined' are all depicted using 

solid lines in Figure 5.1, as well as all subsequent time-course figures. This is because 

these locations are all within the field-scale CW planted soil area, whereas the other 
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Figure 5.1. Graphical representation of heterotrophic plate counts from R2A plates after 7 days of 
incubation at 22°C. The grey box is added to assist visualization of the daily addition of oxytetracycline 
immediately following the collection of sample on Feb. 22nd, lasting until Feb. 26th. 

locations monitored are not. Interestingly, following addition of OTC, the 'Cattail' and 

'Sedge/Rice' sides showed distinctly different response patterns. The 'Cattail' displayed 

an observable decrease in HPCs, while the 'Sedge/Rice' displayed an increase. These 

results may indicate that there is a macrophyte-based difference in the amount of 

culturable, heterotrophic communities that are able to survive within this wetland system. 

It may also be indicative of the variable ability of the receiving communities to handle 

OTC-related stress while maintaining the competitiveness of those environments, which 

would ultimately act to remove the poorer competitors. 

It appears that, upon acute exposure to OTC, the 'Cattail' community provided an 

environment which was able to maintain its competitiveness despite the presence of a 

deleterious chemical. Conversely, the 'Sedge/Rice' environment seemed to provide a less 
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competitive community with respect to HPC removal during OTC exposure. There was 

also an increase in the number of HPCs in the 'Final Pump/Combined' location during 

antibiotic exposure; increases that were surprisingly similar to the trend observed in the 

'Septic' sample. There does not appear to be an acute effect of OTC on the HPCs in the 

'Slag Filter', although a very slight decrease was observed. 

OTC, a tetracycline-class antibiotic, is almost exclusively decomposed through 

photodegradation, although there is evidence of removal through hydrolysis and 

inactivation through binding to metal-ions or heating (Xuan et al, 2010). OTC is also 

known to persist for an extended period of time in sediment (Lunestad & Gokosyr, 1990), 

but adsorbs poorly to soil with low organic content (Jones et al, 2005), but moderately 

well (i.e., on average 25%) to soils with moderate to high organic content (Rabolle & 

Spliid, 2000). Due to the fact that the field-scale system is a subsurface flow CW 

operating during the winter with relatively spotty vegetation (see Figure 3.2), minimal 

removal of OTC can be expected prior to it entering the 'Pond' location. The majority of 

OTC would not be expected to become lodged within the wetland; instead it likely 

washed through until reaching the sediment of the 'Pond' location. Accordingly, there 

was a very slight increase in the 'Pond' HPCs during antibiotic exposure, followed by a 

three order of magnitude decrease by the sample following cessation of OTC addition. 

This observation may be due to build-up of antibiotic runoff in that endpoint location and 

may furthermore indicate extended environmental persistence of OTC through subsurface 

CWs. 

Extensive monitoring of site characteristics was completed by various researchers 

on the this field-scale CW prior to, during and following the microbial community 
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sampling done here-in; including temperature, conductivity, flow rate, enumeration of the 

OTC within the system and a variety of other measurements effects and can be obtained 

from the Ontario Ministry of the Environment (2010). Ambient temperature was found to 

increase steadily over the sampling period, oscillating daily between minus -5 and -10°C 

during the Feb. 8th to Mar. 10th period, and increasing from -5 to 10°C between Mar. 10th 

and Apr. 12th (Ontario Ministry of the Environment, 2010). This steadily increasing 

temperature, and associated increase in free energy, may be responsible for the increasing 

trend of HPCs between Mar. 10th and Apr. 12th in the 'Cattail' and 'Slag Filter'; as on 

Apr. 12l these increased by an order of magnitude or more from both of their pre-OTC 

exposure samples. 

Additionally, work done to enumerate the concentration of oxytetracycline in the 

field-scale as part of this collaborative project found that only the 'Cattail', 'Sedge/Rice' 

and, intermittently, the 'Combined', 'Slag Filter' and 'Pond' locations studied were 

exposed to the antibiotic at concentrations greater than l\ig/L (100 ppb; Ontario Ministry 

of the Environment, 2010). At some points, the 'Cattail' and 'Sedge/Rice' locations were 

exposed to nearly 200 mg/L (i.e., 200 ppm; Ontario Ministry of the Environment, 2010), 

well above the intended concentration of 5 mg/L (i.e., 5 ppm) and even further above 

what is considered an environmentally deleterious amount of 1 mg/L (i.e., 1 ppm; 

Kummerer, 2008). The actual amount of antibiotic entering the 'Pond' location may have 

been much larger than the amount detected considering the dilution that would have 

occurred (Ontario Ministry of the Environment, 2010), and the fact that antibiotic 

quantification was not completed after 120 hours following the first addition on Feb. 
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•,nd 22 . The decrease in the HPC from the 'Pond' location following OTC addition alludes 

to a possible impact of the OTC on the indigenous heterotrophic microbial community. 

5.2. Functional Fingerprinting 

CLPP was preformed on all 6 sample locations (see Figure 3.2) on 5 sampling dates, in 

triplicate, resulting in the generation of n= 90 carbon source utilization patterns (CSUPs). 

CLPP was not completed for the first sample collected on Feb. 8th. The average blank-

corrected colour development of all 93 Biolog™ ECOplate™ wells containing carbon 

sources (i.e., average well colour development; AWCD) was calculated for each location 

and presented in Figure 5.2. AWCD can be considered an overall estimate of the relative 

rate of community carbon metabolism (Garland et al, 2007). 

• Sedge/Rice 

•h Final Pump/ 
Combined 

o o o o o o o o o o o o o o o o o o o o o o o o o o 

Date Sampled 

Figure 5.2. Average well colour development (AWCD) from field-scale CLPP after 48 hours of incubation 
at 22°C. The grey box is added to assist visualization of the daily addition of oxytetracychne immediately 
following the collection of sample on Feb. 22nd, lasting until Feb. 26th. 
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Of all the locations, the 'Pond' had the consistently lowest average rate of carbon 

metabolism. Carbon is not generally considered a limiting factor in the environment 

(Atlas & Bartha, 1998) and especially not within wetlands, which are generally 

considered to be carbon sinks (Lewis, 1995). Therefore, organisms efficient at 

sequestering carbon are not likely to have any competitive advantage compared to 

organisms that would be able to sequester biologically limiting essential elements (e.g., 

nitrogen, phosphorous, sulphur, etc.). 

Generally, all locations downstream of the OTC addition (i.e., not the 'Septic') 

showed an increase in the rate of carbon metabolism during antibiotic exposure on Feb. 

24th. This may indicate the presence of an acute effect of OTC that resulted in an 

increased capacity for carbon metabolism. It is likely that this increase in carbon 

metabolism is related to increased general physiological stress-response in the 

microorganisms (White, 2003). This increase in general carbon metabolism may also be 

due to selection of organisms that are OTC-resistant, able to metabolize carbon with 

increased rate and were under ecological stress from organisms now removed that had 

previously limited their ability to display this in the Biolog™ ECOplate™ wells. The 

subsequent decrease on Mar. 1st, the first sample following exposure, lends more 

likelihood to the stress-response related increase in the rate of carbon metabolism. 

Carbon metabolism should have remained elevated if the change was a result of the 

removal of susceptible and competitively or functionally dominant members. The 'Pond' 

location did not show a decrease in the Mar. 1st sample, likely due to the continued 

presence through leaching from the CW or persistence of the antibiotic (see Section 5.1). 
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The 'Cattail' location displayed a noticeable 50% decrease in carbon metabolism 

between the Feb. 22nd and Apr. 12th. This may allude to a long-term functional effect of 

the OTC treatment, as it is possible that the observed decreased capacity for carbon 

metabolism is a result of a loss of cooperative community relationships. It should be 

noted that, as mentioned in Section 3.1.2, the 'Septic' (on every event) and 'Slag Filter' 

(on Feb. 22nd) required dilution by an order of magnitude due to methodological 

concerns. The results displayed for these points should be interpreted with this in mind. 

Richness, defined as the number of utilized carbon sources, is plotted over time in 

Figure 5.3. Changes in the number of carbon sources that a community can use should 

provide further clues regarding the type of effect OTC had on the functional 

characteristics of the community. The ability of a CW system to metabolize multiple 

different types of carbon sources is important for its applied functionality, as influent to 

these treatment systems may not always be entirely known, but require remediation 

nonetheless. 

All samples exposed to OTC used more carbon sources upon addition of the 

antibiotic, followed by a return to near-normal usage following cessation of OTC 

administration; indicating an acute functional impact of the antibiotic perturbation. The 

'Pond' location, however, displayed its highest number of carbon sources metabolized 

following OTC addition, which may be further evidence of the collection and persistence 

of OTC in this location. A total of 60 grams of OTC would have been added to the CW 

prior to this date and, based on the mechanisms of OTC breakdown and inactivation 

presented in Xuan et al. (2010), it is very likely that a large proportion of the OTC added 

would have made it to the 'Pond' location unabated. The drop observed in the other 
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Figure 5.3. Substrate richness from field-scale CLPP after 48 hours of incubation at 22°C. The grey box is 
added to assist visualization of the daily addition of oxytetracycline immediately following the collection of 
sample on Feb. 22nd, lasting until Feb. 26th. 

OTC-exposed locations was observed on March 10th, indicating that the OTC-derived 

stress was overcome or removed by this date. 

The 'Slag Filter' displayed a noticeable increase in the number of carbon sources 

used between the Feb. 22nd and Apr. 12th samples, indicating a possible long-term effect 

of the antibiotic on this location. It may also be due to the dilution, done on Feb. 22nd and 

not on Apr. 12th. This increase may partially be attributed to increased temperatures 

observed between Mar. 10th and Apr. 12th, resulting in the increased metabolism of 

mesophilic populations and subsequently contributing to the modification of the ability to 

use previously unusable carbon on Apr. 12th. The 'Cattail', 'Sedge/Rice' and 'Final 

Pump/ Combined' locations, however, displayed a decreasing trend in the number of 

usable carbon sources over this same period despite increasing temperatures, although 

this change was only noticeably different from the Feb. 22nd samples for the 'Cattail' 
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location. Continued sampling would be required to determine if this decreased 

functionality continued or was overcome before concluding whether or not it may be 

long-term effect of antibiotic exposure or a seasonal effect. 

It may be that the changes in carbon metabolism observed in the inter-CW sites 

are also due to the temperature influence, as the newly-awaking, previously-dormant 

mesophilic populations within the planted CW area may be causing increased 

competitive pressure and making carbon-metabolism a less of a priority for continued 

survival. It is clear, however, that there was an acute, likely physiological, effect of the 

OTC exposure on the functional richness of the field-scale CW community as the 

temperature recorded during this time period did not change in a considerable manner 

(Ontario Ministry of the Environment, 2010). 

Temporal changes in H' (Shannon, 1948) as illustrated in Figure 5.4, provide 

further evidence of an acute effect of OTC exposure. Diversity generated from CLPP, an 

estimate of capacity and ability to utilize the supplied carbon sources, has been suggested 

as metric that provides an idea of the overall community response or function (Weber & 

Legge, 2008). Prior to OTC addition the ability and capacity for carbon metabolism, like 

general carbon metabolism and the number of carbon sources utilized, appeared to 

decrease with increasing retention time. This finding further indicates that carbon source 

utilization may not be an environmentally competitive trait within a prolonged treatment 

environment. Trends in CSUP H' also followed much of the same trends observed in the 

richness and AWCD figures. H' displayed an immediate increase following OTC 

exposure in all non-'Septic' locations, most of which returned to near-normal in the 

sample on Mar. 1st. The 'Pond' location exhibited an attenuated increase in H' from 
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Figure 5.4. Substrate diversity (Shannon H') calculated from CLPP after 48 hours of incubation at 22°C. 
The grey box is added to assist visualization of the daily addition of oxytetracycline immediately following 
the collection of sample on Feb. 22nd, lasting until Feb. 26*. 

the pre-OTC sample. The trend observed between Mar. 10th and Apr. 12th was similar to 

the trends for the same period in the previous figures. 

Functional divergence, or the one-dimensional difference between two CLPP-

derived functional fingerprints, is displayed in Figure 5.5. The one dimensional 

difference between each functional profile and the functional profile of the sample taken 

immediately before the OTC addition (i.e., Feb. 22nd) is depicted in Figure 5.5.A. This is 

considered to be a good, simple measure for comparing the pattern of change of a 

microbial community in response to a perturbation (Weber and Legge, 2009). All of the 

OTC-exposed locations sampled displayed a minor amount of change from Feb. 22nd 

during and immediately following the exposure period. Following this, however, there 

was very little change from Feb. 22nd observed. Only the 'Slag Filter' continued to 
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display functional change from the pre-OTC sample after Mar. 10th. This lack of 

functional divergence may be indicative of a long-term effect of OTC on the variability 

of community function, although it is unclear what the undisturbed amount of functional 

change was prior to OTC addition or during this seasonal period. 

The one dimensional difference in carbon utilization between each previous 

sample's functional profile (i.e., Feb. 22nd from Feb. 24th, Feb. 24th from Mar. 1st, etc.) is 

presented in Figure 5.5.B. The rate at which change in the functional profile is occurring 

is given by the slope of Figure 5.5.B 'Cattail' and 'Sedge/Rice' locations displayed both 

the highest amounts of observed change from the pre-exposure sample, as well as the 

largest rates of change. The former was observed during antibiotic exposure on Feb. 24th, 

while the latter was seen following on Mar. 1st. These observations may be further 

evidence of a stress-response related increase in metabolism as the organisms attempt to 

deal physiologically with the OTC threat. The 'Pond' location, interestingly exhibited a 

prolonged divergence rate, which may be further evidence of the build-up of OTC in this 

location. All of the locations appeared to settle into a consistent rate of functional 

divergence following the acute OTC response and subsequent recovery, demonstrated by 

the relatively flat slope. Although there is a clear, acute, impact of OTC on the rate of 

functional divergence from the results presented in Figure 5.5, there does not appear to be 

evidence of a long term effect of OTC exposure on the rate of functional change in the 

field-scale CW. 

Principal component analysis (PCA) is presented in Figure 5.6 and was done the 

supplied carbon sources as variables and the ability to utilize that carbon as the 

quantitative measure. It appears that the 'Septic' samples were very similar throughout 
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the investigation, providing evidence that the fish-supplied waste effluent is highly 

similar in functional profile over time. However, only the 'Pond' samples taken following 

OTC addition are highly similar to the 'Septic'; and this similarity increased over time. 

This may allude to the persistence of the community primarily responsible for the 

functional properties of the 'Septic' sample through the CW as a result of OTC addition. 

It is unclear whether this functional similarity is due to the acute effect of the antibiotic; 

which may have let a fraction of the 'Septic' through unabated during the exposure 

period and it has persisted and is beginning to integrate into the 'Pond' community; or, if 

there long-term and continual leaching of 'Septic' waste through the CW which is now 

taking over the functional profile of the 'Pond' community. The Cattail', 'Sedge/Rice', 

'Final Pump/Combined' and 'Slag Filter' locations also appeared to share a considerable 

amount of carbon-based functional similarity. Of note, the 'Cattail' and 'Sedge/Rice' on 

Apr. 12th appear to be distinct from each other and the other samples. This may indicate a 

long-term effect of the OTC exposure and/or a continuing seasonal ecological shift. 

Monitoring over multiple seasons would be required to elucidate which of these factors 

were likely most responsible. 

Tree cluster analysis is presented in Figure 5.7. Like PC A, a large degree of 

functional similarity within the 'Pond' and 'Septic' locations is visible. Of note, the 

'Pond' and 'Septic' carbon utilization was highly similar on Feb. 24th, although 

maintained a consistent dissimilarity from then until April 12th, which may indicate that 

is was an acute lapse in function that caused the addition of the functional 'Septic' 

community responsible for carbon metabolism to the 'Pond'; not a persistent, long-term 

decrease in functional removal as a result of OTC exposure. 
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,nd The distance between the 'Cattail' and 'Sedge/Rice' locations on Feb. 22 

compared to Feb. 24th suggest an acute impact of the antibiotic that has resulted in more 

similar carbon metabolism in these areas. The 'Cattail' and Sedge/Rice' were highly 

similar on Mar. 10th, which may indicate these locations were still in a stage of functional 

recovery following OTC exposure by this date. The increasing dissimilarity of the 

'Cattail' and 'Sedge/Rice' by Apr. 12th suggests that the functional stress caused by the 

antibiotic and possibly also the recovery from exposure, were overcome by the end of the 

monitoring period, but that the pattern of carbon metabolism had changed from pre­

exposure. This may also be due to mesophilic populations in these locations beginning to 

add their metabolic functionality to functional fingerprint of the community. 
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Figure 5.7. CLPP-based tree cluster analysis using the untransformed blank-corrected means from the 
field-scale CW. Linkage distance was calculated using UPGMA of Euclidian distances. Oxytetracycline 
was added daily immediately following the collection of sample on Feb. 22nd, lasting until Feb. 26th. 
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The persistent functional dissimilarity of almost every site from its respective pre-

OTC site (i.e., loss of spatial dissimilarity), in combination with a large degree of 

similarity due to temporal factors (i.e., gain of temporal similarity), indicates that in 

response to OTC (i.e., a contaminant) the state of carbon metabolism for these 

communities may be the result of a standardized, general physiological stress-response. 

5.3. Structural Fingerprinting 

DGGE fingerprinting was completed on all samples taken, with PCR run on the duplicate 

template dilutions, resulting in a total n= 64. Genetic richness, defined as the number of 

bands above background observed in DGGE gels or operational taxonomic units (OTUs; 

Sneath, 2005; see Section 4.1. for discussion of this term's application within this thesis) 

was calculated and the time-course trends for this metric presented in Figure 5.8. 

22-Feb 24-Feb 1-Mar 
Date Sampled 

L 
I 

* III 

7 V = I 
VV=I 
VV=I 

y.K=t 
10-Mar 12-Apr 

Figure 5.8. DGGE-based community richness (# of bands) from the field-scale CW. The grey line is added 
to assist visualization of addition of the oxytetracycline spike immediately following the collection of 
sample on Feb. 22nd, lasting until Feb. 26th. 
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There was generally only a small amount of change in the number of OTUs as a 

result of acute OTC exposure visible in Figure 5.8. The number of observed OTUs 

increased slightly in the 'Sedge/Rice' and 'Pond' locations and decreased slightly in the 

'Cattail', 'Final Pump/Combined' and 'Slag Filter', although none of the observations 

during exposure differed noticeably from those taken prior to OTC addition. There is, 

however, clear and steep increases in the number of OTUs observed on Mar. 1st or Mar. 

10th in most of locations. The 'Slag Filter' exhibited a 7 OTU increase on Mar. 1st 

compared to Feb. 22nd, followed by a 7 OTU decrease on Mar. 10th. The 'Cattail' and 

'Final Pump/Combined' showed recovery of the slight Feb. 24th decrease in OTUs on 

Mar. 1st; with the Cattail displaying 4 more OTUs and the 'Final Pump/Combined' 

showing 1 OTU fewer than before OTC addition. This may indicate the acute antibiotic-

related decrease of certain populations and subsequent recovery. 

The 'Cattail' and 'Final Pump/Combined', as well as the 'Sedge/Rice', continued 

to display an increase in the number of observed OTUs on Mar. 10th; the point at which 

the largest number of OTUs for each of these three locations were observed. The 'Slag 

Filter' had already decreased back to the pre-OTC number of OTUs by Mar. 10th. This 

strongly suggests a delayed effect of OTC on the structural fingerprint of the 

communities, as the locations that were exposed to the highest concentration of OTC 

displayed the most delayed spikes in the number of OTUs observed; despite being the 

first exposed to the antibiotic. By Apr. 12th, the number of detectable OTUs present in all 

of the samples had decreased back to around the pre-OTC mark; although the 'Slag 

Filter' showed a slight increase. These changes in structural or genetic richness are 

juxtaposed to the changes in functional or substrate richness presented earlier (see Figure 
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5.3), which displayed little change after the antibiotic, but generally large increases 

during the exposure period. 

To further explore the behaviour of the field-scale CWs, the Shannon index of 

diversity (//'; Shannon, 1948) and the probability of interspecific encounters (PIE; 

Hurlbert, 1971) were calculated, and can be seen in Figure 5.9. Diversity calculated from 

a genetic fingerprinting method can be interpreted as measure of both the number of 

distinct OTUs and the relative proportion with which they occur. H' is displayed in 

Figure 5.9.A. The only obvious acute change in the presence and abundance of the 

distinct phylogenetic groups in response to OTC exposure can be seen in the 'Slag Filter' 

location, which displayed a very low //'-based diversity during the exposure period. 

However, this decrease was also observed in the first sample taken on Feb. 8th, which 

may indicate large variability in the genetic diversity of this location. 

A distinct spike in the 'Cattail', 'Sedge/Rice' and 'Slag Filter' H' was also 

observed on Mar. 1st. Interestingly, a decrease in the H' in the 'Cattail' and 'Sedge/Rice' 

on Mar. 10th was also observed, despite increased numbers of OTUs. This decreased 

genetic diversity in spite of the increasing number of observed OTUs was also seen in the 

PIE estimate for those locations on the same day (see Figure 5.9.B). PIE values displayed 

a slight increase in genetic diversity during and immediately following OTC exposure in 

the 'Cattail', 'Sedge/Rice' and 'Slag Filter' locations, similar to the//'-derived trends. 

Also, a drop in the 'Cattail' and 'Sedge/Rice' genetic diversity was observed on Mar. 10th 

and the diversity displayed continued decrease on Apr. 12* . The 'Final Pump/Combined' 

location displayed little to no change in genetic diversity over the monitoring period, 

along with the 'Pond'. 
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8 Feb 22 Feb 24 Feb 1 Mar 

Date Sampled 

10 Mar 12 Apr 

Figure 5.9. DGGE-based indices of community diversity from the field-scale CW A) Shannon index (FT), 
B) Hurlbert index (PIE) The grey box is added to assist visualization of addition of the oxytetracycline 
spike immediately following the collection of sample on Feb 22nd, lasting until Feb 26th 
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The 'Final Pump/Combined' location displayed consistently high levels of genetic 

diversity in Figure 5.9 and a lack of response to the OTC, even though it had displayed a 

flux in the number of OTUs in Figure 5.10. Interestingly, water from this location is 

thought to be composed of the combined 'Cattail' and 'Sedge/Rice' flow-through; both of 

which displayed possible impacts of exposure. This suggests that there may be a distinct 

community residing prior to or within the 'Final Pump/Combined' location. It is also 

interesting that the genetic diversity indices displayed little, if any, change in the 'Pond' 

location, considering this location was intended to be the end point for the OTC. Further 

monitoring may be needed to observe the genetic changes in this location considering the 

apparent delay in the genetic responses in other the other field-scale locations. 

Rank-abundance plots are displayed in Figure 5.10. The relative band intensity of 

the OTU movement (Rf) groups was used as the ranking value. Plots were included only 

for the 'Cattail' (Figure 5.10.A), 'Sedge/Rice' (Figure 5.10.B), 'Final Pump/Combined 

(Figure 5.10.C) and 'Slag Filter' (Figure 5.10.D) locations. The rank-abundance plots for 

the remaining two locations can be found in Appendix A, Figure A.6. Based on the 

appearance of 'Cattail' and 'Sedge/Rice' rank-abundance plots in Figure 5.10.A and B, it 

appears that the community structure in these locations underwent a change towards less 

even structure following exposure to OTC; culminating in both communities being 

dominated by a single OTU by Mar. 10th. The 'Final Pump/Combined' location (see 

Figure 5.10.C) showed little to no change in community structure over the OTC exposure 

and subsequent monitoring period, in contrast to the other of locations, further indicating 

that there may be a unique community in this area, separate from the communities 

inundating it from the 'Carta!' and 'Sedge/Rice' locations. 
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Figure 5.10. DGGE-based rank-abundance curves for selected locations in the field-scale CW. Addition of 
the oxytetracycline spike immediately following the collection of sample on Feb. 22" , lasting until Feb. 
26th. A) The'CattaiF location, B) The 'Sedge/Rice' location, C) The 'Final Pump/Combined' location and 
D) The 'Slag Filter' location. 
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The 'Slag Filter' location appeared to produce a similar pattern of change 

regarding the genetic community structure as did the 'Cattail' and 'Sedge/Rice' locations 

(see Figure 5.10.D); although there appeared to some maintenance of increased 

community evenness in the 'Slag Filter' compared to the 'Cattail' and 'Sedge/Rice' 

locations. 

Important information may also be contained in not just changes in the ranked 

abundance of the relative population representation, but also in the G+C content 

possessed by the groups. To visualize this difference Figure 5.11. portrays the averaged 

relative abundances from the genetic profile, maintaining the movement of these 

locations in the DGGE gel. Plots were included only for the 'Cattail' (Figure 5.1 LA), 

'Sedge/Rice' (Figure 5.11.B), 'Final Pump/Combined (Figure 5.11.C) and 'Slag Filter' 

(Figure 5.1 l.D) as the remaining locations showed little to no visible changes over the 

sampling period. The 'Cattail' and 'Sedge/Rice' locations are largely dominated by 3 

dominant OTUs with moderate G+C content. Following the addition of OTC, there 

appears to be a drop in the relative abundance of the 2 moderately dominant OTUs with 

slightly more and less G+C content, respectively, than the most dominant OTU. In 

samples following exposure, these 2 OTUs continued to decrease from their pre-exposure 

representation, replaced by the appearance of a number of scarce OTUs with much higher 

and much lower G+C content. 

Persistence of the major OTU with moderate G+C content and comprising nearly 

70% of the community representation remained throughout, and was noticeably increased 

in the Apr. 12th sample in both the 'Cattail' and 'Sedge/Rice' locations. The appearance 

of novel and scarce OTUs on Mar. 10th lends weight to the possible explanation of 
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Figure 5.11. DGGE-based averaged banding pattern for selected locations in the field-scale CW. Addition 
of the oxytetracycline spike immediately following the collection of sample on Feb. 22nd, lasting until Feb. 
26th. A) The'CattaiF location, B) The 'Sedge/Rice' location, C) The 'Final Pump/Combined' location and 
D) The 'Slag Filter' location. 
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decreased mesophilic dormancy for the changes in the functional fingerprints with the 

warmer temperatures from Mar. 10th to Apr. 12th. The changes in the 'Slag Filter' 

community structure also appeared to mirror those in the 'Cattail' and 'Sedge/Rice' 

locations, as all three locations had visually very similar appearance on Apr. 12th. These 

three locations also displayed a considerably different banding pattern on Apr. 12th than 

prior to OTC addition, providing clear evidence of a possible long-term effect of the OTC 

administration. The 'Final Pump/Combined' location displayed a unique community 

structure, confirming the indication from the genetic diversity curves (see Figure 5.9) that 

there may be a distinct community residing prior to or within the 'Final Pump/Combined' 

location despite the contributions.from the earlier areas of the CW. 

To quantify these visible population changes, the genetic divergence was 

calculated and is presented in Figure 5.11. Genetic divergence is a very simple one 

dimensional metric used to assess the amount of change between two communities. The 

divergence between the Feb. 8th and 22nd samples, not available in Figure 5.11, are 

displayed in Table 5.1. The values in Table 5.1 can be interpreted as an estimate of prior, 

undisturbed divergence. However as only 2 samples were taken prior to exposure, 

Table 5.1. Genetic divergence 
between Feb. 8* and Feb. 22nd. 

Location 

Septic 

Cattail 

Sedge/Rice 

Final Pump/ 
Combined 
Slag Filter 

Pond 

Divergence 

0.106 

0.425 

0.170 

0.324 

0.391 

0.167 

resulting in only a single pre-OTC divergence value, 

caution should be used in assuming that these numbers 

truly and fully describe the expected or average 

undisturbed divergence. 

The 'Cattail', 'Sedge/Rice' and 'Slag Filter' 

locations showed the most genetic divergence, both 

during OTC exposure and afterward; although the rate 
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of divergence in these locations declined steeply from Mar. 10 to Apr. 12£ (see Figure 

5.1 l.B). The pre-OTC genetic variation (see Table 5.1) was greatest in the 'Cattail', 

indicating a moderate degree of variation. The 'Slag Filter' experienced a similarly 

moderate divergence prior to OTC addition. Although the 'Slag Filter' appeared to return 

a near pre-OTC divergence rate following exposure, the 'Cattail' continued to drop to 

below half the rate of pre-OTC divergence on Apr. 12th. The 'Sedge/Rice' location 

displayed a low pre-OTC divergence, which was increased to a rate nearly 6 times higher 

during OTC exposure and remained relatively high by compared to pre-OTC divergence 

until the Apr. 12th sample. This may be an indicator of both a possible short- term and 

long-term effect of OTC administration on the genetic variability of these two sites, one 

that has resulted in an increased divergence following acute exposure and a decreased 

genetic variability in the long-term. 

This could be potentially detrimental to the function and sustainability of CW 

systems, as communities with decreased genetic variability and resultantly less plasticity 

may be less likely to overcome further deleterious events. The 'Pond' and 'Septic' 

samples showed very limited divergence from the initial sample, as well as a low natural 

divergence between Feb. 81 and 22nd. These two locations also displayed a very similar 

rate of genetic change over the entire investigation period (see Figure 5.1 l.B), providing 

further evidence toward the increased persistence of the 'Septic' effluent through the CW 

following OTC treatment, as the total genetic variability within this site appears as if it 

may be linked. If this is the case it may indicate that the CW is ineffective in removing a 

portion of the community indigenous to the waste effluent, and that this community is 

subsequently finding a niche in the 'Pond'. 
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Figure 5.12. Genetic divergence based on Euclidian distances of untransformed DGGE profiles from the 
field-scale CW. A) Divergence from the Feb. 22nd sample, for each sample at each location and B) 
Divergence from the previous sample. 
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Investigation of the genetic fingerprints using PCA and tree cluster analysis 

should be able to distinguish if this amount of change is occurring in similar areas of the 

structural fingerprint, or if the similarity in the amount of structural divergence is due to 

changes in dissimilar areas. PCA is presented in Appendix A, Figure A.7. Evident from 

both plots is a high degree of spatial similarity in the genetic profiles, as all the sampled 

locations seem to be clustered near themselves. Additionally, the Feb. 22nd and Feb. 24th 

samples are all located in generally different areas in both Figures A.7.A and B. This may 

indicate that each of the locations sampled in this CW contain distinct microbial 

communities prior to addition of the antibiotic, and maintained these distinctions 

following acute OTC exposure. 

By the Mar. 10th samples however, the 'Cattail' and 'Sedge/Rice' locations have 

appeared to lose much of the distance between them on the plots, indicating a possible 

convergence toward genetically-similar communities following OTC addition. This was 

also seen on Apr. 12th, which further indicates a delayed effect of the antibiotic on the 

community structure, and may also allude to long-term effects regarding the community 

structures in these two locations. The 'Cattail' and 'Sedge/Rice' locations also displayed 

a considerable dissimilarity from all the other locations sampled following OTC 

exposure, which may be a result of the much larger concentration of the antibiotic present 

in these locations. The 'Final Pump/Combined' location displayed a unique community 

structure, landing between the 'Slag Filter' and the 'Cattail' and 'Sedge/Rice' locations, 

confirming the indication from the rank-abundance and genetic diversity curves that there 

may be a distinct community residing prior to or within location despite the contributions 

from the earlier areas of the CW. 
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Tree cluster analysis is depicted in Figure 5.13. Based on these results there is further 

evidence for the existence of spatially distinct community structures within this CW 

system, as the 'Cattail' and 'Sedge/Rice' samples show the largest amount of 

dissimilarity from the other samples taken. There is also considerable dissimilarity visible 

between 'Cattail' and 'Sedge/Rice' samples, although this is really only visible prior to 

OTC addition. This dissimilarity is almost completely lost by Apr. 12th, as these locations 

displayed convergence to a considerable genetic similarity on this date. This is likely the 

long-term effect of both the acute OTC loss and the fallout of modified ecological 

relationships, which may have caused the communities on Apr. 12th in these locations to 

be comprised of only members, likely similar considering the amount of OTC used, 

which were resistant or unaffected. 
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Figure 5.13. DGGE-based tree cluster analysis using the untransformed means from the field-scale CW. 
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Additionally, the similarity of the 'Final Pump/Combined' and 'Slag Filter' 

locations through the investigation period indicate that the communities coming from the 

'Final Pump/Combined' may largely comprise the community present in the 'Slag Filter', 

although these two locations also share a large degree of structural similarity with the 

'Septic'. Spatial genetic dissimilarity appears prominent in the 'Pond' location, as there is 

little change with time. The 'Pond' also appears closely related to the 'Slag Filter'; which 

may indicate that a fraction of the community is able to persist through the CW and also 

able to survive in the 'Pond'. 

Both PC and cluster analysis were able to produce additional visualization of the 

spatial dissimilarity within the various locations of the field-scale CW. Changes observed 

through the functional fingerprinting and associated metrics have indicated an acute 

effect of OTC exposure, while changes observed through the structural fingerprinting 

metrics have made it clear that there is some effect of antibiotic perturbation on the 

microbial community, though this effect appeared either depressed or delayed. 

Due to the stringent monitoring of the field-scale system during the week of 

antibiotic exposure, it is very likely the trends observed during this time are largely due to 

the antibiotic itself. However, trends following antibiotic exposure are more difficult to 

attribute to the OTC alone, due to the possible and pertinent influence of environmental 

factors like increasing temperature and other factors that may not have been assessed. 
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5.4. Conclusions from Field-scale Characterization 

Based on the results previously discussed, the following conclusions from the field-scale 

CW can be made: 

> An acute effect of OTC exposure was observed in the functional fingerprints of 

CW locations, in which nearly all metrics used to analyze the changes or patterns 

in carbon metabolism showed clear increases during the exposure period. A 

subsequent drop in function was observed following exposure, indicating a 

possible recovery period. 

> There was no clear evidence of a long-term effect of OTC exposure on the 

observed functional fingerprint of the locations studied. However, continual 

decline in the number of carbon sources utilized and the diversity of this 

utilization tended to decrease from Mar. 1st through to Apr. 12th, despite 

increasing temperatures. Continued monitoring is suggested before concluding 

whether or not a long-term effect of OTC exposure was observed. 

> There was no clear evidence of an acute structural impact of OTC exposure, 

although there were slight changes observed during the exposure period. The best 

indication of a possible acute effect of OTC was visualized in the rate of genetic 

divergence; through which a moderate increase in sample-to-sample structural 

community change was observed during the exposure period. 

> A delayed and possibly long-term structural effect of the OTC exposure was 

clearly observed in the field-scale CW following OTC administration was 

completed. It appeared that structural communities changes tended to occur 

during the recovery stage. Rank-abundance plots displayed a clear change in 
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community structure and PDE-based genetic diversity estimates showed a decrease 

in community diversity in the planted soil areas of the CW one week following 

cessation of OTC exposure. 

> The functional behaviour of the 'Pond' location suggests that the ability of this 

field-scale CW to remove OTC was marginal, and that the majority of OTC was 

able to persist into this location. 

> The difference in H' trends compared to those from the PIE genetic diversity 

indices suggests that PIE may be a more appropriate diversity metric than H' 

when considering techniques providing genetic or OTU-related data. 
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6. Industrial-scale Treatment Lagoon Characterization 

In order to address part of the overall goal of this study, which was to profile the 

structural and functional characteristics of predominant microbial communities in CWs at 

multiple system scales, an industrial-scale treatment lagoon was monitored using CLPP 

and DGGE, along with culture-based methods to monitor pathogens present. Other 

associated site characteristics monitored are presented in Appendix B, Table B.2 and 

include pH, ambient and water temperature and dissolved oxygen. 

Although lagoons and wetlands differ in a number of important characteristics 

(see Section 2.1), there are also a number of very similar characteristics (i.e., wet, 

submersed soil, vegetation distinct from surrounding areas, use for treatment of 

wastewater) that make the microbial communities present within these treatment 

environments suitable for comparison to each other. 

6.1. Escherichia coli, Salmonella enterica and Heterotrophic Plate Count Monitoring 

HPCs were only completed on June 24th (2009) as part of the preliminary investigation of 

the site. Results from these HPCs are presented in Table 6.1. Three different 

heterotrophic growth media types 
Table 6.1. HPCs (CFUs/mL) from the industrial-scale 
treatment lagoon on June 24th, 2009 using LB, NB, and 
R2A after 7 days of incubation at 25°C. 
Location 

PostFloc 

Lagoon 1 

1 ^ 2 

Lagoon 2 

2 ^ 3 

Lagoon 3 

R2A 

2.1 x 106 

4.0 x 105 

1.1 x 105 

8.8 x 104 

6.2 x 105 

3.1 x 104 

l/5th LB 

1.9 x 106 

7.1 x 105 

2.2 x 105 

6.6 x 104 

2.8 x 105 

5.5 x 104 

LB 

1.4 xlO6 

6.2 x 105 

3.4 x 105 

3.9 x 104 

4.7 x 105 

2.9 x 104 

were used to assess whether or not 

HPC were dependent on different 

types of concentrations of nutrients 

supplied. All media types promoted 

the growth of similar sized 

heterotrophic communities, 

indicating little difference, if any, in 
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the fastidiousness of this group of microorganisms within the lagoon system. Septic 

HPCs were at least an order of magnitude greater than any other site, and very little 

difference, if any was noticed between HPCs within the lagoon system. HPCs were 

decreased two fold by the third lagoon. Faecal coliforms (FCs) and Escherichia coli 

enumerations, as well as Salmonella enterica isolation, were completed to provide a 

measure of wetland function with regard to biological contaminant removal. S. enterica 

presence and absence is presented in Table 6.2. FC and E. coli counts are displayed 

graphically in Figure 6.1. 

'Lagoon 2' was the only location that displayed consistent, decreasing trends with 

respect to pathogen removal. It was also the only location where S. enterica was not ever 

detected. Pathogens were decreased by 99.9% from 'Lagoon 1' to 'Lagoon 3' on Sept. 

21st, Nov. 17th (2009) and July 5th (2010). The June 24th, 2009 sample displayed a 99% 

removal of E. coli. None of these samples dates were positive for S. enterica in the final 

lagoon. It appears from this that the unknown amount of untreated kill floor effluent 

leaking into 'Lagoon 3' on Sept. 28th, 2010, as this location experienced both increased 

FCs and E. coli, but also the emergence of S. enterica in the third lagoon; providing 

Table 6.2. S. enterica presence and absence in the industrial-scale treatment lagoon based on culture 
isolation and PCR confirmation. '+' signs indicate the presence of PCR confirmed S. enterica in a sample, 
while '-' signs indicate it's absence. 

Location 

PostFloc 

Lagoon 1 

l - » 2 

Lagoon 2 

2 ^ 3 

Lagoon 3 

24-Jun-09 

+ 

-

+ 

-

+ 

-

21-Sep-09 

N/A 

+ 

+ 

-

-

-

17-Nov-09 

+ 

-

+ 

-

+ 

-

5-Jul-10 

+ 

+ 

+ 

-

-

-

28-Sep-10 

+ 

+ 

+ 

-

+ 

+ 
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Figure 6.1. Graphical representation of FCs and E. coli enumerated in the industrial-scale treatment 
lagoon. A) Faecal coliform and B) E. coli enumeration on mFC + 1 % Rosolic acid and mFC + 1 % BCIG, 
respectively. Counts were completed between 24 and 48 hours of incubation in a water bath @ 44.5°C. 
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evidence to confirm the concerns of Krishnan & Smith, (1987) regarding the use of 

untreated wastewater in alternative environmental treatment systems. As mentioned in 

Section 3.1.3, the raw-effluent contamination event continued for an estimated three days 

until the flocculator pipes could be cleared. 

Another important site note is the impact of ferric chloride done on Sept. 21st 

(2009) samples, added to counteract the addition of untreated effluent to the first lagoon. 

The fact that there was little to no change as a result of this untreated wastewater 

contamination may indicate that the ferric chloride treatment was an effective measure of 

decontamination. 

6.2. Functional Fingerprinting 

CLPP was preformed on all 6 sample locations (see Figure 3.1.3) on 4 sampling dates in 

triplicate, excluding the Sept. 21st (2009) 'PostFloc' sample. This resulted in the 

generation of n= 69 carbon source utilization pattern (CSUPs) for this industrial-scale 

site. The first sample taken on Jun. 24th (2009) was not used in creation of CSUPs. The 

average blank-corrected average well colour development (AWCD) of the 93 Biolog™ 

ECOplate™ wells containing carbon sources was calculated for each location and 

presented in Figure 6.2. AWCD can be considered an overall estimate of the relative rate 

of community carbon metabolism (Garland et al, 2007). The general rate of carbon 

metabolism portrayed by each lagoon community stayed considerably consistent over the 

monitoring period; displaying a slight general increase in metabolism in the hot, middle 

of summer (July 5th) and decrease in the colder late fall (Nov. 17th). Notably, the rate of 

carbon metabolism for the third lagoon was considerably increased from the fall to 

summer, over which the remaining samples displayed a slight increase as well. 
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Figure 6.2. Average well colour development (AWCD) from the industrial-scale treatment lagoon CLPP 
after 72 hours of incubation at 22°C. 

This may indicate that the rate of carbon metabolism is largely influenced by temperature 

or season. 

Substrate richness, presented in Figure 6.3, is a measure of the number of carbon 

sources utilized by the community. Although most of the locations displayed a similar 

trends to those seen in the average amount of carbon metabolism (see Figure 6.2), the 

third lagoon showed a trend of decreasing carbon utilization with increasing temperature; 

displaying a decrease in the number of carbon sources utilized from Sept. 21st (2009) 

until its lowest point on July 5th (2010). This discrepancy between the increased rate of 

carbon metabolism and the decrease in total number of usable carbon sources in the third 

lagoon may be due to the influence of microbial populations that supply varying degrees 

of environmental competition depending on the ambient temperature or season in 

question. 
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Figure 6.3. Substrate richness calculated from the industrial-scale treatment lagoon CLPP after 72 hours of 
incubation at 22°C 

It may be the case that as the temperature increases (see Appendix B, Table B.2), 

mesophilic organisms supply more competition for environmental niches or required 

elements. As competition for scarce or limiting nutrients increases, the ability of a 

population or community member to use a certain carbon source would become 

dependent on its ability to sequester the required, environmentally limiting elements (i.e., 

phosphorous, nitrogen, etc). Those organisms able to obtain these limiting factors would 

be able to metabolize their preferred carbon source with relative efficiency; resulting in 

the increase rate of carbon utilization. 

Conversely, those microorganisms that would not be able to obtain the same 

limiting factors in the face of increasing competition would not be able to metabolize 

their preferred carbon source, or any carbon source at all for that matter; resulting in a 

decrease in the number of usable carbon sources. The lack of seasonally-attributed 
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change observed in the other lagoon locations may be a result of the continued supply of 

waste effluent, which may contain enough biologically-usable limiting elements to 

maintain the carbon metabolizing populations regardless of the amount of competition 

present from other microorganisms. 

Changes in H' (Shannon, 1948) over the monitoring period are presented in 

Figure 6.4. Diversity generated from CLPP, an estimate of capacity and ability to utilize 

the supplied carbon sources, has been suggested as a metric that provides an insight into 

the overall community response or function (Weber & Legge, 2008). Based on these 

trends, it appears that the seasonal effects in the number of carbon sources utilized and 

the overall rate of carbon metabolism seem to effectively cancel each other out with 

respect to diversity estimates; as H' takes into account both the number of carbon sources 

utilized and the pattern of their usage. There, however, appears to be a major change in 
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Figure 6.4. Substrate diversity (Shannon H') calculated from the industrial-scale treatment lagoon CLPP 
after 72 hours of incubation at 22°C 
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the pattern of diversity regarding carbon metabolism coinciding with the two 

contamination events. 

The addition of ferric chloride to the third lagoon on Sept 21st (2009) seems to 

have visually decreased the diversity of carbon metabolism; despite the observation that 

nearly all of the supplied carbon sources were utilized (i.e., 30 of 31; see Figure 6.3) and 

the rate of carbon metabolism was slightly increased on this same day (see Figure 6.2). 

The first lagoon on this day, which received the untreated wastewater, showed a carbon 

utilization diversity near the maximum observable (i.e., 3.434; see Section 2.3.1.2). A 

diversity value very near this maximum was also observed in 'Lagoon 3' after it received 

th 

untreated waste on Sept. 28 (2010). This provides further evidence that these alternative 

treatment systems may be primarily effective remediating waste effluent when receiving 

pre-treated wastewater. 

Figure 6.5 displays the functional divergence observed from the first sample taken 

on Sept. 21st (see Figure 6.5.A) and the divergence from the previous sample (see Figure 

6.5.B). Genetic divergence is a one dimensional metric considered to be a good, simple 

measure for comparing the pattern of change of a microbial community; especially in 

response to a perturbation (Weber and Legge, 2009). Unfortunately, due to the 

unexpected nature of the perturbations in the form of untreated wastewater, there is no 

sample to use as reference prior to the perturbation. As such, the curves depicted in 

Figure 6.5.A should be interpreted as the amount of functional change following recovery 

from a perturbation. All of the locations displayed a consistent amount of functional 

divergence from the Sept. 21st (2009) sample on both Nov. 17th (2009) and July 5th 

(2010). It is unclear if this lack of functional divergence from Sept. 21st (2009), despite 
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Figure 6.5. Functional divergence based on Euclidian distances of untransformed CLPP profiles from the 
industrial-scale treatment lagoon A) Divergence from the sample taken on Sept 21st and B) Divergence 
from the previous sample The PostFloc location was not included in this calculation 
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changes in temperature (see Appendix B, Table B.2) and other observed changes in 

metrics used to assess the functional profile, should be expected; or is resulting from a 

long-term effect of ferric chloride addition and untreated waste contamination. 

Figure 6.5.B displayed very similar trends in sample to sample divergence, 

indicating that during normal operation there is a consistent rate of functional divergence, 

or variation in carbon metabolism. Following the contamination event on Sept. 28th 

(2010), however, there appears to be a considerable drop in the rate of functional 

divergence in 'Lagoon 3' ; indicating a loss of variability in the functional profile. This 

loss of functional variability seems to indicate that the community responsible for carbon 

metabolism in the third lagoon may have suffered substantial duress following the 

addition of untreated wastewater. Further monitoring is required to elucidate the 

resiliency of the 'Lagoon 3' and if it is able to overcome this decrease in functional 

variability. 

Principal component analysis (PCA) is presented in Figure 6.6 and treated the 

supplied carbon sources as variables along with the ability to utilize that carbon as the 

quantitative measures. It appears from both Figure 6.6.A and B that, in 2009, the third 

lagoon contained a community functionally distinct from the earlier lagoons, as well as 

the 'PostFloc', 'Lagoon 2' and 'Lagoon 3' generally displayed considerable temporal 

variation, which may be due to changes in temperature or other seasonal characteristics 

not monitored. Both 'Lagoon 1' and the 'PostFoc' samples were relatively invariable 

despite seasonal changes, and generally shared a large degree of similarity despite the 

addition of a commercial wastewater treatment agent (Active8, see Section 3.1.3) 

between them. 



Microbial Community 113 

A 2.0 

1.5 

in 

B 

1.0 • 

0.5 • 

0 0 -

-0.5 

-1.0 

1.0 

• • 

. 

Lag3 SeptIO 

Laa1 S e D t 1 0 a g 1 l ^ ^ 0 9 , ^ 1to25?fe« ^ 
" - - " P o ^ l ^ ^ ^ p p T D ^ t M 

1to2_July10 

Lag3_Nov09 

• 

_July1 0 
jgq Lag2_Sept09 

Lag2_Nov09 

2to3 Nov09 
2to3_Sept09 

2to3 Julv10 
Lag2_July10 

• 

Lag3_Sept09 

• 

-1 0 -0.5 0.0 0.5 

Factor 1: 34.77% 

1.0 

0.5 

5? o o 

§ 0.0 

-0.5 

Lag1 _Sept10 
1to2_Sept10 

PostFloc_Sept10 

2to3_3ept09 

Lag2_Sept09 

Lag2_S<fla*tFloc_No\f09 
i 
i 

• - t 

2to3_JurdQ 

Lag3_Nov09 

2tc«o3e£t*fl09 

Lag3j.July10 
Lag2_July10 

1to2_N(jv09 
Lag1 _l"Jov09 

2to3_Nov09 

Lag2_Wov09 

-1.0 -0.5 1.0 

1.5 

-p^#diBpm—--i 
Lag3_Sept( i9 

1.5 0.0 0.5 

Factor 1:34.77% 

Figure 6.6. PCA using the covariance matrix from Taylor-transformed blank-corrected means from the 
industrial-scale treatment lagoon CLPP. A) Plot of cases on the 1 x 2 factor plane and B) Plot of cases on 
the 1 x 3 factor plane. 



Microbial Community 114 

Following the contamination of 'Lagoon 3' on Sept. 28th (2010), this location 

became functionally very similar to the 'PostFloc' and 'Lagoon 1'; indicating that the 

untreated wastewater community responsible for carbon metabolism was able to persist 

in this location. As the July 5th (2010) community representation in 'Lagoon 3' appeared 

to share a high degree of functional similarity with the 'PostFloc' and first lagoon, there 

may also be an impact of the ferric chloride decontamination from the previous Sept. 

which may also be responsible for changes seen in the functional profile of the third 

lagoon. 

This decontamination event may have left the surviving community in the third 

lagoon weakened and unable to compete with the 'PostFloc' or 'Lagoon 1' community 

that continued to influence it from Sept., until the end of operation in mid-Dec, when the 

apparent temperature-influenced number of carbon sources utilized would have been at 

its lowest. This may have left the mesophilic communities responsible for carbon 

metabolism in the third lagoon less metabolically fit due to both the decontaminant- and 

temperature-related stress; opening the door for any of the metabolically well equipped 

'PostFloc' populations to compete for niches; resultantly changing the functional profile 

to one closer to that of the 'PostFloc'. 

Tree cluster analysis is presented in Figure 6.7. Like PC A, a large degree of 

functional similarity within the 'PostFloc' and 'Lagoon 1' locations is visible. Of note, 

the 'PostFloc', 'Lagoon 1' and '1 to 2' locations were generally very similar to each other 

over the monitoring period, indicating the likely persistence of the environmentally 
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Figure 6.7. CLPP-based tree cluster analysis using the untransformed blank-corrected means from the 
industrial-scale treatment lagoon. Linkage distance was calculated using UPGMA of Euclidian distances 

competitive functional community present in the 'PostFloc'. The 'Lagoon 2' samples 

appeared distinct with considerable dissimilarity in functional profile when compared to 

the earlier locations. This may indicate the presence of a functionally and spatially 

distinct community in this location that is subject to considerable seasonal variation. 

When comparing across the year of sampling, the linkage distance of the samples 

taken from 'Lagoon 3' in 2009 indicates that this community was likely distinct and 

variable under normal functioning. The samples taken in 2010 show a considerable 

similarity to 'PostFloc' and 'Lagoon 1' locations; which is interesting, as these samples 

did not show any apparent similarity to the second lagoon, despite the fact that 'Lagoon 

3' receives a sizable load from 'Lagoon 2'. This is further complicated by the fact that 

there was a noted dissimilarity between 'PostFloc' and 'Lagoon 1' locations in 2009. 
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6.3. DGGE Results and Discussion 

DGGE was originally completed on all samples taken, including the 2010 samples using 

both the centrifuge ('spin') method and filter method. To compare the two methods, 

samples from both DNA extraction methods processed on the July 5th and Sept. 28th dates 

were subjected to preliminary DGGE. The resulting gels were analyzed for the number of 

bands visible and this is displayed in Figure 6.8. Both DNA extraction methods displayed 

similarly shaped trend lines, but the filter extraction method resulted in consistently more 

numerous bands than the spin method. The 'Lagoon 3' location on Sept. 28' displayed 

the largest difference between extraction protocols, with a difference of 14 bands. Due to 

the over-estimation of richness produced by the filtering method prior to DNA extraction 

— • — S e p t 28-Spin 

— • — J u l y 5 - Spin 

— O- - Sept 28- Filter 

— D- - July 5 - Filter 

2 to 3 Lagoon 3 Post Floe Lagoon 1 1 to 2 Lagoon 2 

Location 

Figure 6.8. Comparison of richness from centrifugation ('spin') and filtration ('filter') of sampled lagoon 
water prior to DNA extraction. 
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produced by the filtering method prior to DNA extraction, along with the fact that only 

the centrifuge method was completed on the 2009 samples, only DGGE on the samples 

extracted using the centrifuge method was included for analysis in this document. This 

resulted in the inclusion of a total n= 58 genetic fingerprints for analysis in this section; 

given by the 6 locations monitored at 5 time points performed in duplicate and excluding 

the unavailable Sept. 21st, 2009 'PostFloc' sample. 

Genetic richness, defined as the number of bands above background observed in 

DGGE gels or operational taxonomic units (OTUs; Sneath, 2005) was calculated and the 

time-course trends for this metric is displayed in Figure 6.9. In the initial samples taken 

on June 24th (2009), the third lagoon displayed the largest number of observed OTUs, 

Jun-09 Sep-09 Nov-09 Jul-10 Sep-10 

Date Sampled 

Figure 6.9. DGGE-based community richness (# of bands) from the industrial-scale treatment lagoon. 
PCR-DGGE was done using the DNA extracted from the 10 mL centrifuged pellet. 
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which subsequently showed a decline following ferric chloride addition on Sept. 21st, 

2009. 

On that same day, the first and second lagoons showed slight increases in the 

OTUs present, indicating both an acute effect of disinfection and a slight effect from the 

addition of raw wastewater. OTUs returned to almost completely identical amounts on 

Nov. 17th (2009) compared to June 24th (2009). This return may indicate that the number 

of OTUs within each location was not affected beyond an acute effect by the ferric 

chloride and initial wastewater contamination event. The samples taken on July 5th (2010) 

showed, again, nearly an identical number of OTUs in their respective sites, with slight 

increases visible. However, following the second contamination event the number of 

OTUs decreased drastically, with a drop of an average 14 OTUs, while all of the other 

locations displayed an increase in the number of observed OTUs. 

To further explore the behaviour of the industrial-scale treatment lagoons, H' 

(Shannon, 1948) and PIE (Hurlbert, 1971) were calculated and are displayed in Figure 

6.10. Both H' and PIE provide a simultaneous indicator of the number of OTUs present, 

and the proportion with which they occur. Both metrics showed decreases in the 

structural diversity of the community following the 2009 and 2010 contamination events. 

Both indices also depicted an apparent recovery of diversity back to June 24th levels into 

the Nov. 17th and July 5' samples. There was no apparent change in structural diversity 

between the late fall and summer samples, which is surprising considering the differences 

in temperature between Nov. and July. 
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Figure 6.10. DGGE-based indices of community diversity from the industrial-scale treatment lagoon. A) 
Shannon index (H') and B) Hurlbert index (PIE). 
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Rank-abundance plots were created for the three different lagoons and can be seen 

in Figure 6.11. Plots for the two flow-through locations were not included as these were 

not noticeably different from the rank-abundance plots for the lagoon providing the flow-

through. The first lagoon (see Figure 6.1 LA) appeared to maintain a very similar genetic 

profile throughout the monitoring of the system, although this was not conserved on the 

final monitoring day (Sept. 28th, 2010). Both 'Lagoon 1' and 'Lagoon 3' (see Figure 

6.1 l.C) displayed similar shifts in the rank-abundance curve toward communities largely 

dominated by a single OTU on the final day of monitoring; coinciding with a 

contamination event in which raw, untreated waste effluent was added to both the 1st and 

3rd lagoons. There was also a visible shift in rank-abundance curves in all three lagoons 

following the contamination event on Sept. 21st, 2010. This may indicate that the addition 

of untreated waste water to the treatment system any step in retention causes a change in 

the relative genetic structure of the community. It is unclear whether this structural 

change is related to long term changes in community function, although it should be 

noted that the only time S. enterica was detected in the 3rd lagoon was following the 

contamination event on Sept. 28th, 2010; indicating that this change may be detrimental to 

the function of the treatment system. 'Lagoon 2', the only location consistently devoid of 

S. enterica, showed little to no change in the community structure over the monitoring 

period, with the exception of Sept. 21st, 2010 sampling date. The lack of 5. enterica 

despite a community profile dominated by a single OTU may be due to the addition of 

the ferric chloride decontaminant prior to sampling. 

To visualize this difference Figure 6.12.illustrates the averaged banding pattern 

for each of the three lagoons, and were created using the averaged relative abundances 
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Figure 6.11. DGGE-based rank-abundance curves for the lagoon locations in the industrial-scale treatment 
lagoon. A) 'Lagoon 1', B) 'Lagoon 2' and C) 'Lagoon 3' . 
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from the genetic profile while maintaining the movement of these locations in the DGGE 

gel. 

In Figure 6.12, there appears to be only minor changes in 'Lagoon 2' and 

'Lagoon 3' visible between the Nov. 17th and July 5th sample despite the seasonal 

changes. 'Lagoon 3' appeared dominated by a number of moderate G+C OTUs, all 

contributing to relatively equal proportions of the community. However, following the 

Sept. 21st (2009) contamination event, a prominent OTU that was only present in minor 

representation previously increased substantially, contributing less than 5% of the 

community to representing over 40%. As the temperature decreased, the appearance of 

high G+C OTUs were visible, and the previously dominant phylogenetic groups appeared 

decreased to normal levels. July 5th produced little change in the population structure 

beyond the appearance of a novel low G+C OTU and the shuffling of community 

structure representation amongst those previously observed. This may indicate that the 

ferric chloride disinfection may have affected the ability of this community to undergo 

normal, seasonal successions. 

The genetic structure on Sept. 28th (2010), however, showed the presence of only 

one excessively dominant phylogenetic group; accounting for nearly 80% of the total 

community. This community structure was similar to that of 'Lagoon 2' following the 

first contamination event, as well as the first lagoon on following the second 

contamination event; with both these locations displaying a community dominated by a 

single OTU accounting for over 50% of the total community representation with 

moderate G+C content. This may indicate that, following the addition of untreated 
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wastewater, the structural profile of the undisturbed community dynamics are modified in 

such a way that only OTUs with moderate G+C content are able to flourish. 

Genetic divergence is illustrated in Figure 6.13. Figure 6.13.A, shows the total 

amount of divergence in a given community structure from the initial sample taken on 

June 24th, while Figure 6.13.B displays the sample to sample change in community 

structure. On Sept. 21st 'Lagoon 2' displayed the largest amount of change from its 

respective sample on June 24th, while 'Lagoon 3' displayed the least. This was followed 

by increased structural change in the third lagoon and decreased structural change in the 

second lagoon on Nov. 17th. Upon sampling on July 5th, the second lagoon maintained a 

consistent divergence from the initial sample, while both the first and third lagoon 

displayed somewhat of a reversion back to the structure observed on the initial sampling 

day one year earlier. This may indicate the presence of seasonal changes in the microbial 

community, as the June 2009 and July 2010 samples may be considered to represent the 

same season. Considerable structural change was observed in the first lagoon in the final 

sample, while 'Lagoon 3' continued to display very moderate structural divergence from 

June 24th, as did 'Lagoon 2'. 

The sample to-sample divergence presented in Figure 6.13.B shows very similar 

trends to those observed in Figure 6.13.A. The flatter slope between Nov. 17th (2009) and 

July 5th (2010) in Figure 6.13.B compared to Figure 6.13.A may indicate that seasonally 

dependent populations, abundant in summer and not the late fall, were responsible for 

approximately half of the structural change observed. The increased rate of change in the 

third lagoon in Nov. 17th and July 5th compared to both September samples may indicate 

that decreases in the rate of structural change of a community may provide evidence 



Microbial Community 125 

0 80 -i 

0.70 

0.60 

0.50 

0.40 

a 0.30 

- 0.20 - - - / / - • 

0.10 

0.00 

2 
Date Sampled 

0.90 i 

0.80 

•S. 0.70 

0 60 

0 50 

0 40 

0.30 

S 0 2 0 -

0 10 

0.00 

Date Sampled 

Figure 6.13. Genetic divergence based on Euclidian distances of untransformed DGGE profiles from the 
industrial-scale treatment lagoon. A) Divergence from the sample taken on June 24st and B) Divergence 
from the previous sample. 
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regarding the deleterious events, as both of these decreases coincided with raw waste 

contamination or chemical decontamination events. 

It is clear from Figure 6.13 that both the genetic or structural divergence change 

from June 24th and the rate of structural change was highly variable over the over the 

monitoring period. Additionally, despite some small differences in rate or amount of 

change between locations, there was generally similar amount and rate of structural 

divergence on the Nov. 17th and July 5th sampling dates. However, due to the variable 

amount of genetic divergence observed and the similarity of the two divergence curves it 

is important to understand if this divergence is occurring in similar or dissimilar areas of 

the structural profile. Principal component analysis (PCA) or tree cluster analysis may be 

able to shed light on the current pictures of the behaviour of the community structures in 

these lagoons. 

PCA plots are illustrated in Appendix A, Figure A. 8. Unlike the functional 

fingerprints, PCA based on the structural fingerprints indicates that the 'PostFloc' and 

'Lagoon 1' communities are considerably distinct. Both the second and third lagoons 

appear to be somewhat structurally similar to the each other, although are more 

temporally variable than the 'PostFloc' or 'Lagoon 1' communities. Of note, samples 

taken in June and September of 2009 appear to be located in distinct areas of both PCA 

plots, while both samples taken in 2010, as well as the Nov. 2009 sample appear to be 

converging on the area of the PCA plot containing the 'PostFloc' samples. This may 

indicate that, even after the ferric chloride decontamination event, some of the 

community from the 'PostFloc' was able to persist within the third lagoon. 
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Tree cluster analysis is presented in Figure 6.14. From this it is clear that the 

'PostFloc' contained a relatively distinct community structure. Although the Sept. 28th 

'Lagoon 3' sample appeared to be highly similar with in community structure to the 

'PostFloc' based on the PCA plots, the third lagoon displayed a considerable degree of 

structural dissimilarity to the 'PostFloc' based on tree clustering. Additionally, the Sept. 

28th (2010) samples showed considerable similarity to every other location. All of the 

samples taken from 'Lagoon 2' displayed moderate dissimilarity to the 'Septic' and 

'Lagoon 1' locations. 
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Figure 6.14. DGGE-based tree cluster analysis using the untransformed means from the industrial-scale 
treatment lagoon Linkage distance was calculated using UPGMA of Euclidian distances. 
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6.4. Conclusions from Industrial-scale Treatment Lagoon Characterization 

Based on the results previously discussed, the following conclusions from the industrial-

scale treatment lagoon can be made: 

> Pathogen monitoring indicated the persistence of S. enterica in the third lagoon 

following contamination with untreated wastewater, providing evidence to 

confirm the concerns of Krishnan & Smith, (1987) regarding the use of untreated 

wastewater in alternative environmental treatment systems. 

> Structural fingerprinting provided clear visualization of an acute effect of ferric 

chloride decontamination, as well as the raw wastewater contamination event in 

'Lagoon 3'. This was very clearly visualized through both rank-abundance plots, 

averaged banding pattern plots and the use of diversity indices. The structural 

fingerprint was not able to provide clear evidence regarding seasonal changes 

between the late fall (Nov. 2009) and early summer (July 2010) in the microbial 

communities, although this may be a result of the stress placed on the community 

by the addition of ferric chloride and untreated wastewater during the monitoring 

period. 

> Functional fingerprinting was not able to show much evidence of the first 

contamination event on the microbial community in the second or third lagoon. It 

was, however, able to produce clear evidence of the second event through 

multivariate statistical analysis and changes in functional diversity. The functional 

fingerprint was also able to provide information regarding changes in the capacity 

and ability for carbon metabolism between fall and summer samples. 
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> This industrial lagoon treatment system displayed very good (sometimes 99.99%) 

removal of the E.coli and faecal coliforms, as well as consistent and complete 

removal of S. enterica. However, this was not maintained following two 

contamination events. This reiterates the need for understanding the capacity and 

community dynamics within environmental or alternative wastewater treatment 

systems, as well as proper management and usage of these systems. 
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7. General Discussion 

7.1. Discussion of Community Characterizations with Respect to System Scale 

Under Normal Operation 

The first overall goal of this thesis was to investigate functional and structural 

characteristics of microbial communities within bench-, field-, and industrial-scale 

constructed wetlands (CWs) or alternative wastewater treatment systems under normal, 

undisturbed condition in the hope of gaining a better understanding of the ability of 

controlled studies to predict microbial communities found in functioning field-scale 

environmental sites. The following two subsections will discuss how this goal was 

accomplished. 

7.1.1. Commonalities from the Functional Fingerprints and Other Culture-based 

Methods 

The ability of a CW to produce an environment harsh enough to provide sufficient 

selection against populations of environmentally unfit or less-fit microorganisms is the 

major reason why these systems are able to remove unwanted microorganisms. The 

majority of unwanted microorganisms in wastewater are the result of faecal 

contamination, either human or animal (Kadlec & Knight, 1996). Most human pathogens 

of concern in wastewater treatment, therefore, are also important members of human or 

animal gastrointestinal tracts (i.e., members of the Enterobacteriaceae); as they possess an 

ability to rapidly break down a diverse number of carbon sources, proteins and lipids 

which are the usual sources of energy for higher order eukaryotes. 

The external environment is, however, a very different place than a 

gastrointestinal tract to survive in; the temperature can change drastically; chemically-
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bound energy and required elements are not supplied at regular intervals; there are no 

homeostatic mechanisms maintaining pH; among other differences. Although CWs, and 

wetlands in general, are considered carbon sinks (Lewis, 1995) and there is a 

considerable amount of usable energy stored within them, the fact that unwanted 

pathogenic microorganisms need to compete for other required elements is of prime 

importance. Because of this competition, organisms that have evolved within a human or 

animal host may not be equipped to sequester the biologically-important elements like 

nitrogen, phosphorous or magnesium which are often limiting in many environments. 

Organisms with a supply of free, useable CW carbon, but without the ability to compete 

for the building blocks of DNA, proteins and membranes will quickly realize the true 

severity of the famous quote "everything is everywhere... the environment selects" (Baas 

Becking, 1934, p. 15; translated by De Wit & Bouvier, 2006; as cited by O'Malley, 

2008). This fundamental principle of microbial ecology was clearly observed during the 

normal functioning of the treatment system communities investigated. 

Heterotrophic plate counts (HPCs) from field- and industrial-scale systems 

indicated that these system scales were able to support similarly sized heterotrophic 

populations (approx. 104, see Figure 5.1 and Table 6.1), and that both displayed the 

ability to decrease the size of these heterotrophic communities from their respective 

supplied waste effluents by at least two orders of magnitude. Results from the functional 

fingerprints of the field- and industrial-scale systems indicated that both systems 

provided competition against carbon metabolism; as both the Nov. 17th (2009) and July 

5th (2010) samples from the industrial-scale treatment lagoon and the Feb. 22nd samples 

from the field-scale CW displayed a pattern of decreasing carbon metabolism following 
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increased retention time of the 'to-be-treated' effluent. Additionally, the monitoring of 

enteric pathogens in the industrial-scale site showed an incredible capacity for removal of 

the unwanted contaminants under normal functioning. These findings indicate that, under 

normal operation, both the field-scale and industrial-scale treatment systems were able to 

provide sufficient selective pressure against the survival of unwanted microorganisms. 

This indicates that smaller-scale treatment systems may be able to provide similar 

functional environments to those in larger-scale treatment systems. 

7.1.2. Commonalities from the Structural Fingerprints 

From the results of the three separate structural investigations it appears that the 

bench-scale CWs were able to produce a community with a similar number of observed 

OTUs and similar genetic diversity as the industrial-scale treatment system. However, 

these estimates from the bench-scale CW consistently overestimated what was observed 

in the field-scale CW, although the differences in operating temperature may be 

responsible for this discrepancy. Genetic divergence showed an opposite trend between 

the three scales, as the bench-scale CW underestimated the amount of structural 

community change when compared to the field-scale CW; while overestimating the 

amount of genetic variation in the industrial-scale system. Rank-abundance plots from 

these three varying scales, however, produced similar pictures for all of the locations 

under normal functioning. Even more importantly the shift toward a community 

dominated by a single OTU was observed in all three scales following a perturbation. 

Multivariate statistical analyses performed on the structural fingerprints of the 

microbial communities in the field- and industrial-scale treatment system also indicated 

that each system was able to maintain spatially distinct communities which maintained a 
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reasonable degree of similarity despite temporal or seasonal factors. Unfortunately, the 

bench-scale system was not monitored following the same time periods as the other two 

larger systems. Because of this, factors that may become apparent following prolonged 

development of the bench-scale CW may influence the ability of this model system to 

approximate larger scale systems operating for long-term periods that are outside the 

scope of this study. One important factor is microbial dispersal. Smaller-scale systems 

provide less area for dispersal, which may result in altered population dynamics as 

populations reach the carrying capacity of the system more rapidly. Because of the 

frequency of emptying and refilling the bench-scale CW column, carrying capacity 

effects may have been avoided during start-up, but may become prevalent following 

extended operation. 

However, based on the observations here-in, it seems that the bench-scale CW is a 

viable indicator for the genetic or structural characteristics of larger systems. It may be 

appropriate following the trends in the chosen metrics, that bench-scale CWs be 

subjected to similar temperature shifts observed in the systems they are modeled after. 

7.2. Constructed Wetland Community Dynamics in Response to an Antibiotic 

Stressor or Deleterious Perturbation 

The characteristics of CW communities in response to deleterious contaminants appear 

complex, and dependent on the nature of the contaminant. This was illustrated by 

increases in community function after acute exposure of an antibiotic, followed by 

recovery. During recovery, communities displayed a clear structural response, shown 

through both changes in the patterns in relative abundance of contributing populations 
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and divergence from the rate of this structural change observed under normal operating 

conditions. 

The acute change in community function may be due to an increase in 

physiological stress-response mechanisms. Stress-response mechanisms are known to 

respond to various types of stressors through quorum-secretion, modification in cellular 

charge, increased enzyme production and general metabolism, sporulation and activation 

of a number of reparative or defensive pathways, among others (White, 2003). Some of 

these responses may serve to increase the capacity of carbon metabolism. In the same 

instance, increased stress-response may produce altered enzyme kinetics or cellular 

function; increasing the presence of chemically reduced molecules (i.e., metabolized 

substrates or waste products); subsequently lowering pH and increasing the amount of 

absorbance by the tetrazolium dye pH indicator; whether or not the reduction observed is 

from the supplied carbon sources. Of note, the functional fingerprinting performed on the 

bench-scale system produced the same acute response and subsequent recovery as 

observed in the field-scale system (Dr. Kela Weber, personal communication, Sept. 27th, 

2010). 

The delayed change in structural community fingerprint may be a result stemming 

from the modification in functional behaviour. Microbial populations within the CWs 

could be removed immediately or, if able to survive, have reproductive growth 

compromised by increased metabolic devotion to stress-response; while resistant 

organisms that may be normally poorer competitors would be allowed to flourish over the 

exposure period; filling in newly available niches left by susceptible organisms that may 
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have otherwise outcompeted the resistant organisms and consequently dominating the 

community. 

These results indicate that the use of multiple metrics for community analysis is 

able to provide a comprehensive picture of the structural changes that occur within a 

developing CW community. 

7.3. Integrative Nature of this Study 

A mentioned in Section 2.4, the integrative biologist will have an incredibly important 

role in building an understanding of CWs. Integration should be evident throughout this 

document, visible first and foremost in the use of multiple techniques that measure 

different hierarchies of biological organization, through both evolutionary (i.e., genetic or 

structural) and physiological (i.e., metabolic or functional) changes. Additionally, not 

only were CWs monitored in their natural states to add to basic knowledge of these 

systems, but also in response to a deleterious stressor; which may help build a body of 

applied knowledge of CWs. Furthermore, the conclusions from a comparison of lab-

based research mesocosms to currently applied industrial systems have supplied novel, 

integrative information regarding varying scales of environmental systems not previously 

investigated. 

In addition, this work was done as part of a number of different collaborations, 

specifically mentioned in the bench- and field-scale CW systems. This novel information 

may ultimately assist with the future detection of weakened communities within 

environmental treatment systems and allow preventative behaviour to be taken prior to 

contamination events like those discussed in this thesis. To be truly and thoroughly 

integrative in the short period of time provided to complete a masters program is not 
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possible. However, building the skills, relationships and thought-processes required to 

create and accomplish an integrative research project is and was achieved over the course 

of this graduate research. As a result, although there is much more to learn regarding the 

integrative nature of CWs especially with regard to the sustainability and capacity of 

these systems, the steps taken in this study to emphasize the importance of integrative 

research in the field of alternative wastewater treatment are likely more valuable than the 

research conducted over the program duration. 

7.4. Overall Conclusions and Recommendations 

Based on the results from all three community characterizations the following overall 

conclusions and recommendations are summarized: 

> Of primary importance from this study is the requirement of using these 

alternative treatment systems to remediate pre-treated wastewater. 

> Under normal operation, bench-, field- and industrial-scale treatment systems 

were able to produce structural profiles that were comparable over a number of 

metrics. Functional profiles from field- and industrial-scale systems displayed 

relatively similar trends across the chosen metrics. This indicates that smaller-

scale treatment systems may be able to provide similar environments to those in 

larger-scale treatment systems. 

> Continued monitoring of all system scales is required to determine if the trends or 

similarities observed herein are able to be reproduced in systems with differing 

properties or treating different waste. It is also important to understand the 

seasonal dynamics of the community, as communities may be more susceptible to 

perturbation during times of increased natural variation or biological succession. 
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> Further research is required into the applied functionality of bench-scale systems 

with regard to their capacity for pathogen removal; as the systems are easier to 

overload and manipulate to get an idea of capacity per unit size. 

> Increased retention time resulted in communities with consistently low 

performance in terms of functional capacity and consistently high performance on 

structural metrics and observed variability compared to areas initially receiving 

the wastewater for treatment. This indirect relationship was not maintained during 

antibiotic treatment and was reversed following exposure to untreated wastewater. 

> These findings indicate the importance of continued application of both functional 

and structural profiling when monitoring microbial community characteristics 

within alternative treatment systems. 
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Appendix A = Supplementary Figures 

* .* 
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Figure A.l. Example DGGE from the bench-scale CW. Ladders are in lanes 1, 7 and 15. All remaining 
lanes are loaded with sample. 
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Figure A.2. Example of an agarose gel containing S. enterica colony PCR products. Lanes (from left to 
right) contain: 100 bp ladder, 6 'PostFloc' isolates, 3 'Lagoon 3' isolates, E. coli (negative control), empty 
lane, S. enterica (positive control), PCR blank, S. enterica (positive control from extraction protocol), 
empty lane, 6 '1 to 2' isolates, and 6 '2 to 3' isolates. 
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Figmre A.3. Example DGGE from the field-scale CW Ladders are in lanes 1, 7 and 16, and Lane 14 
contains the blank DNA extraction None of the bands visualized in this lane were above background All 
remaining lanes are loaded with sample 



Microbial Community 156 
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Figure A.4. Example DGGE image from the industrial-scale treatment lagoons. Ladders are in lanes 1, 8 
and 14. Lane 7 contains the PCR-blank, of which only one of the bands visible in that lane was found to be 
above background, even though PCR-product check was negative. All remaining lanes are loaded with 
sample. 
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Figure A.5. PCA using the covariance matrix from Taylor-transformed means from bench-scale CW 
DGGE. A) Plot of cases on the 1 x 2 factor plane and B) Plot of cases on the 1 x 3 factor plane. 
Ciprofloxacin was administered between day 8 and 15 from start-up. 
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Figure A.6. DGGE-based rank-abundance curves for selected locations in the field-scale CW. Addition of 
the oxytetracycline spike immediately following the collection of sample on Feb. 22" , lasting until Feb. 
26th. A) The 'Septic' location, B) The 'Pond' location. 
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Figure A.7. PCA using the covanance matrix from Taylor-transformed means from the field-scale CW 
DGGE. A) Plot of cases on the 1 x 2 factor plane and B) Plot of cases on the 1 x 3 factor plane. 
Oxytetracychne was added daily immediately following the collection of sample on Feb. 22nd, lasting until 
Feb. 26th. 
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Appendix B -Supplementary Tables 

Table B.l. Characteristic S. enterica presentation on media used for biochemical confirmation. 
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Slant 

Butt 

Gas 

Triple Sugar Iron 

(TSI) 

Red; negative for 

lactose utilization 

Yellow & Black; 

positive for dextrose 

utilization, H2S 

production visible 

Produced 

Media Type 

Lysine Iron Agar 

Purple; positive for 

lysine decarboxylase 

Purple & Black; 

negative for lysine 

deaminase, H2S 

production visible 

Absent 

Urea Broth 

Yellow; 
negative for 

urease 

* Not all results may be visible or displayed by a positive isolate (APHA, 1998). Gas production may be 
very weak, and acid produced by dextrose fermentation may hide H2S production. Insufficient inoculating 
load in LIA may result in very weak or absent H2S production. 
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Table B.2. pH, temperature and dissolved oxygen from the industrial-scale treatment lagoons. 

Location Date 

Lagoon 1 June 24th, '09 

Sept. 21st, '09 

Nov 17th, '09 

July 5 th,'10 

Sept. 28 th,'10 

Lagoon 2 June 24th, '09 

Sept. 21st, '09 

Nov 17th, '09 

July 5 th,'10 

Sept. 28 th,'10 

Lagoon 3 June 24th, '09 

Sept. 21st, '09 

Nov 17th, '09 

July 5 th,'10 

Sept. 28th, '10 

pH Ambient Temp. Water Temp. Dissolved 

(Max. -Min.,°C) (°C) Oxygen 

(mg/L) 

7.57 30.7-18.1 27°C 5.86 

7.18 24-13 21°C 3.24 

7.61 7.9-2.7 11°C 9.16 

N/A 33.9-23 N/A , N/A 

N/A 18.4 - 13.8 N/A N/A 

6.65 30.7-18.1 25°C 7.14 

7.15 24-13 20°C 7.8 

7.05 7.9-2.7 9°C 10.69 

N/A 33.9-23 N/A N/A 

N/A 18.4 - 13.8 N/A N/A 

9.23 30.7-18.1 27°C 6.44 

8.46 24 - 13 20°C 7.62 

9.50 7.9-2.7 8°C 11.56 

N/A 33.9-23 N/A N/A 

N/A 18.4 - 13.8 N/A N/A 

* Areas marked as unavailable have not been yet provided or released by site administrators. The request 
for this information is pending. 
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