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Abstract 

For individuals diagnosed with Binge Eating Disorder (BED) or Bulimia 

Nervosa (BN) eating is often manifested in intermittent bouts of gorging, a 

behaviour that is similar to excessive consumption of rewarding drugs in 

addiction (American Psychiatric Association, 2000; Corwin & Grigson, 2009; 

Epstein & Shaham, 2010). Our laboratory has found that sucrose solution intake 

by rats escalates markedly when provided on Discontinuous Access (DisA; 24h 

once every 3 or 4 days) schedules but is maintained at lower, stable levels with 

Continuous Access (ConA; ad lib) schedules (Hewitt & Eikelboom, 2008). Once 

DisA/ConA consumption differences are established, they persist even after both 

access schedules are equalized to alternate day sucrose exposures. To examine 

whether taste, rather than the postingestive properties of sucrose, drive these 

access-induced intake changes, saccharin was substituted for sucrose. In 

Experiment 1, rats with DisA escalated their intake to consume more than ConA 

rats over a range of saccharin concentrations (1, 0.5, 0.25, and 0.125%). Taste, 

even without the postingestive properties of sucrose, drove the access 

consumption effects. Once DisA/ConA saccharin consumption differences were 

established in Experiment 2, they were maintained for over 50 days of equal 

access, even when saccharin was replaced with sucrose. 

Whereas intermittent access schedules utilizing repeating 1 to 3 day inter-

exposure intervals result in gradual and sustained intake increases, a single 

longer, isolated period of abstinence can result in a Deprivation Effect (DE), a 

transient increase in post-abstinence intake (Gandelman & Trowill, 1969; 
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Neznanova, Zvartau & Bespalov, 2002). To explore the influence of access 

history on DE expression, intake was examined in rats with DisA and ConA 

0.25% saccharin (Experiment 2) and 4% sucrose (Experiment 3) experience. In 

Experiment 2, a robust saccharin DE was observed in all rats but the intake 

differences induced by initial DisA/ConA were maintained. In Experiment 3, 

DisA/ConA differences emerged for sucrose but no DE was observed after either 

3 or 9 days of sucrose abstinence. Collectively these findings suggest that 1) 

taste predominantly drives DisA/ConA induced differences, and 2) that this 

DisA/ConA difference and the DE may be under control of separate factors. 

These results highlight the importance of taste and postingestive properties in 

access consumption effects and suggest that not all experiences with access 

interruptions are the same. This work underscores the role of access factors in 

excessive sweets consumption which could be involved in BED or BN etiology 

and may play a similar role in excessive drug intake in addiction. 
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Abbreviations 

BED: Binge Eating Disorder 

BN: Bulimia Nervosa 

ConA: Continuous Access 

DE: Deprivation Effect 

DisA: Discontinuous Access 

EPM: Elevated Plus Maze 

LAb: Long Abstinence 

MWF: Mondays, Wednesdays and Friday (diet) 

NAb: Non-abstinence 

SAb: Short Abstinence 

SEM: Standard Error of the Mean 
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Introduction 

Although occasional overeating is generally not an issue for most, it can 

become a pathological concern for some. In Binge Eating Disorder (BED) or 

Bulimia Nervosa (BN), eating often occurs in intermittent, excessive bouts which 

are characterized by rapacity and a loss of control (American Psychiatric 

Association, 2000). What factors and conditions govern and contribute to the 

transition from controlled intake, to uncontrolled and excessive ingestion that 

characterizes BN and BED are clearly of significant interest. 

The pathological obsession with and loss of control over consummatory 

behaviour as manifested in both eating disorders may parallel the loss of control 

over drug taking behaviour seen in addiction (Corwin & Grigson, 2009; Davis & 

Carter, 2009; Epstein & Shaham, 2010). There is in fact a substantial comorbidity 

between substance dependence, BN and BED (Brewerton etal., 1995; Bulik, 

Sullivan & Kendler, 2002; Grilo, White & Masheb, 2009; Hudson, Hiripi, Pope & 

Kessler, 2007; Spitzer etal., 1993). DSM-IV TR diagnostic criteria for BN and 

BED overlap with criteria for substance dependence. By merely replacing the 

term "substance" with references to binge eating most subjects diagnosed with 

BED also met criteria for substance dependence (Cassin & von Ranson, 2007). 

Food access may play a role in overeating and contribute to the 

development of BN and BED (Corwin, 2006; Corwin & Grigson, 2009; Corwin & 

Hajnal, 2005; Fisher & Birch, 1999; Fisher & Birch, 2000; Huon, 1994). For many 

people, some food is always available and the concern is access to foods which 

are over-consumed during binges. These are usually highly palatable, dessert-
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type foods, laden with fat and refined sugars (Hadigan, Kissileff & Walsh, 1989; 

Kales, 1990; Rosen, Leitenberg, Fisher & Khazam, 1986). Access to these foods 

is often self-restricted (Kales, 1990), but may also be controlled externally by 

parents for example (Fisher & Birch, 1999; Fisher & Birch, 2000). Whereas 

human studies are largely epidemiological or correlational and often rely on self-

reports, animal models permit experimental manipulation. A number of animal 

models have explored access to dessert-type foods that are commonly 

overconsumed during binges (Avena, Rada & Hoebel, 2009; Corwin, 2006; 

Hagan & Moss, 1997; Hagan etal., 2002; Hewitt & Eikelboom, 2008; Smith, 

1989; Van Vort, 1988). Many of these studies utilize access schedules that 

restrict availability of such fatty or sugary foods permitting the evaluation of 

consumption patterns for binge-like intake (Avena, Rada & Hoebel, 2008; 

Corwin, 2006; Hewitt & Eikelboom, 2008). These studies have shown that with 

some limited (intermittent) access schedules, intake of fatty or sugary foods 

becomes excessive and resembles binging in humans. However, in addition to 

access schedules, intake is influenced by properties of the food itself. Two of 

these, taste and postingestive properties are often although not always 

interrelated. That is, consumption can be driven by calories in the absence of 

taste (de Araujo et ai, 2008), or by taste in the absence of calories (Smith & 

Sclafani, 2002). Which properties of the food are responsible for excessive intake 

is not known. 

This thesis explores how consumption of sweet solutions is influenced by 

their taste, as opposed to the postingestive properties of calories, under different 
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access schedules. By focusing on saccharin, a non-nutritive sugar substitute that 

lacks some of the postingestive effects of sugar (Kushner & Mook, 1984; Mook & 

Cseh, 1981; Smith, 2000) and comparing its intake profile to that of sucrose 

(Hewitt & Eikelboom, 2008) under continuous and different intermittent access 

schedules, the role of taste and caloric factors in consumption can be probed. 

However, it is important to not that saccharin still causes postingestive activity 

such stomach distension or cephalic phases insulin release (Berthoud etal., 

1981). Nevertheless, the physiological effects of saccharin are limited compared 

to to those of sugar, which has profound impact impact on food intake (Collier & 

Bolles, 1968), results in a rise in glycemia (Berthoud, Bereiter, Trimble, Siegel & 

Jeanrenaud, 1981) and can serve as a postingestive reward (de Araujo etal., 

2008). 

Exploring how access conditions affect intake may be interesting because 

these factors are also implicated in the development of drug addiction, another 

disorder of excessive consumption (Ahmed, 2005; Spanagel & Holter, 1999; 

Wise, 1973). Addiction and pathological overeating have been suggested to 

share a common etiology (Davis & Carter, 2009; Frascella, Potenza, Brown & 

Childress, 2010; Holden, 2001; Orford, 2001; Volkow & Wise, 2005). While this 

thesis will examine factors that lead excessive intake of sweet solutions, the 

same factors may also be relevant to excessive drug intake. 

Access variables that may lead to excessive consumption 

In a laboratory setting, factors governing access to a specific food, with or 

without concurrent restriction of the regular laboratory diet, can be defined 
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according to the following variables: 

1) The duration of the interval between access sessions 

2) The duration of an isolated, generally longer access interruption 

(abstinence) after some experience with a specific food/drink 

("abstinence" also refers to withdrawal in the addiction literature) 

3) The quality of the food source: amount, nutritive value, energy 

density and taste quality 

4) The cumulative number of individual access sessions (or total 

duration of access) 

5) The duration of an individual access session 

These are variables that define how a given food can be accessed and affect 

how consumption occurs in any experiment. Manipulations of these variables 

may sometimes lead to intake that is clearly excessive. This thesis examines 

aspects of the first three variables and explores their role in the development of 

excessive sweets consumption in a rat model. 

Several laboratories, including our own have shown that intermittent, or 

Discontinuous Access (DisA) to optional fat or sugar, compared to Continuous 

Access (ConA) or daily access (Variable 1), can lead to a sustained intake 

escalation (Avena, Rada & Hoebel, 2008; Celejewski & Eikelboom, 2009; Corwin 

et ai, 1998; Hewitt & Eikelboom, 2008; Wojnicki, Stine & Corwin, 2007). 

Saccharin intake also increases following a single, isolated period of abstinence 

(Variable 2) but this increase is transient in nature (Dube, Ashton & Trowill, 1970; 

Gandelman & Trowill, 1969; Neznanova, Zvartau & Bespalov, 2002). Because 
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consumption of the palatable food in these models can be driven by its taste as 

well as calories (Sclafani, 2001; Sclafani & Ackroff, 2004), it is not clear if the 

observed intake escalation with DisA is due to taste or postingestive caloric 

factors (quality, Variable 3). A simple way to explore this is by providing 

ingestants with minimal postingestive consequences such as saccharin. 

An additional question addressed in this thesis is whether intake increases 

caused by repeated intermittent access (Variable 1) and by a single longer 

abstinence period (Variable 2) are under the control of a single factor i.e. any 

access interruption. Under DisA conditions, the amount consumed during an 

access session increases with inter-session interval duration. For example, rats 

will consume more sucrose solution with every fourth day access than with every 

second day access (Hewitt & Eikelboom, 2008). Similarly, the magnitude of a 

transient increase in saccharin intake depends on the duration of the saccharin 

access interruption and increases as abstinence duration is extended at least up 

to 14 days (Neznanova, Zvartau & Bespalov, 2002; Sukhotina, Malyshkin, 

Markou & Bespalov, 2003). It is not clear however, if this increase is linked to the 

sustained consumption increase under DisA conditions. 

Intermittent Access Schedules 

Intermittent access to an optional, palatable food can lead to very large 

increases in consumption (Hewitt & Eikelboom, 2008). In addition to the 

procedure employed in our laboratory, two other intermittent access schedules 

examining intake of optional palatable foods have been characterized. The cyclic 

sugar diet model employs daily cycles of 12 h concurrent food and sugar solution 
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access (10 to 25% glucose or sucrose), provided 4 h into the dark phase, 

followed by 12 h of sugar solution and food deprivation. (Avena, Rada & Hoebel, 

2008; Colantuoni etal., 2002; Colantuoni etal., 2001). In this model, cyclic 12 h 

access rats are generally compared to ad lib sugar and lab chow animals. 

Because binging in humans is partially defined as consumption of an excessive 

quantity of food within a short duration (American Psychiatric Association, 2000), 

and rats maintained on the cyclic sugar diet engage in larger/longer bouts of 

sugar drinking (Avena, Rada & Hoebel, 2008), it may be argued that they are 

binging. However, although the rate of sugar intake by the cyclic rats was greater 

than by ad lib access animals, it was comparable in terms of total quantity 

consumed per day. It therefore appears that cyclic diet rats are simply consuming 

a "normal" amount of sugar (and likely lab chow as well although never reported) 

but over shorter duration, particularity as food and sugar availability was delayed 

by 4 h into the active night cycle. By analogy, eating a larger lunch and dinner 

after having skipped breakfast probably does not amount to binging. 

A second intermittent access preparation compares vegetable shortening 

or sucrose solution intake by rats with 1 or 2 h of access daily, to intake by rats 

with access on Mondays, Wednesdays and Fridays (MWF) only (Corwin & 

Wojnicki, 2009; Corwin etal., 1998; Dimitriou, Rice & Corwin, 2000; Wojnicki, 

Stine & Corwin, 2007; Wojnicki, Stine & Corwin, 2007). This MWF preparation is 

different from the cyclic sugar diet in two key ways. First, in contrast to the cyclic 

diet, MWF rats always have ad lib access to lab chow. Second, instead of 

access/abstinence cycles within a 24 h period, all rats in this model have the 
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same daily access duration, but the interval between daily sessions is varied 

(every day versus once every two or three days on weekends). Unlike cyclic diet 

rats, MWF rats consume more sucrose or fat per access session than those with 

every day access, a true elevation of consumption. 

The access paradigm employed in our laboratory incorporates features of 

both cyclic sugar and MWF models (Celejewski & Eikelboom, 2009; Hewitt & 

Eikelboom, 2008). Our rats are provided with either ConA to a 4% sucrose 

solution or 24 h periods of DisA to the same solution once every 2, 3 or 4 days. 

As with the MWF diet, DisA/ConA model rats are never food deprived, and 

sucrose solutions are always available in addition to ad lib lab chow and water. 

Similar to the cyclic sugar model, intermittent access (DisA) is compared to ad lib 

access (ConA). This approach has led to a number of findings. First, in 

agreement with the MWF model, DisA relative to ConA leads to a substantial 

escalation of sucrose intake. Second, the amount consumed during a 24 h 

access session increases as the duration of the inter-session interval is 

lengthened from 1 to 3 days. The sucrose intake escalation under this DisA 

schedule is much larger, both as a percent difference and in absolute terms than 

previously reported with MWF access (Wojnicki, Stine & Corwin, 2007). For 

example, MWF rats were reported to consume approximately 4 ml more (10 ml in 

total) sucrose solution than their everyday access counterparts. This increase 

was apparent only during the first 30 min of a 2 hour access session before 

dissipating. With our preparation, consumption is measured over 24 h sessions 

instead of 1 or 2 h periods. Compared to the 40 to 50 g water consumed by rats 
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with no other fluids available, ConA animals consume -100 g of 4% sucrose. 

This relatively high level of sucrose solution intake suggests that it is hedonically 

attractive. Rats with DisA however, increase their intake as the inter-session 

interval is extended from 1 to 3 days coming to consume about 300 g of solution 

per 24 h access session. This also underscores the importance of the duration of 

an individual access session (Variable 5). 

Although it might be argued that escalating intake with DisA reflects an 

increase in sucrose loading to compensate for abstinence days, comparing 

consumption between access groups under subsequent equal access conditions 

suggests otherwise. After switching from DisA or ConA access schedules (Phase 

I) to alternate day exposures (Phase II), the access differences induced in Phase 

I were maintained. In Phase II, DisA history rats continued to consume more than 

those with a ConA history for at least 24 days which was as long as followed 

(Hewitt & Eikelboom, 2008). Therefore, the initial access history can determine 

future consumption under equivalent access conditions with a history of DisA 

access leading to chronically higher levels of sucrose intake. For these access-

induced differences to persist during the equal access phase, the number of 

DisA/ConA cycles is important (Variable 4). With eight or twelve every third or 

fourth day exposures (and 29 or more days of ConA) but not four DisA exposures 

(or 10 days ConA), access-induced changes persist during the alternate day 

equal access phase (Hewitt & Eikelboom, 2008). This suggests that a minimum 

number of DisA exposures is necessary in order to maintain consumption 

changes. It is unknown whether this escalation is permanent or if it eventually 
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dissipates. 

The Deprivation Effect 

In contrast to short, repeating 1 to 3 day abstinence periods as with DisA, 

which result in a sustained consumption increase, the deprivation effect (DE) is 

transient intake increase of an optional rewarding food or drink following a longer 

period abstinence (Neznanova, Zvartau & Bespalov, 2002; Sukhotina, Malyshkin, 

Markou & Bespalov, 2003). Abstinence in the context of the DE, which is also 

sometimes referred to as an "elation effect" (Gandelman & Trowill, 1969), refers 

only to a food or drink that is additional to regularly available lab chow or water. 

A DE can be expressed by rats receiving daily access to a palatable 

saccharin solution. Following a period of abstinence, rats will consume more 

saccharin on their first post-abstinence session than during pre-abstinence 

baseline sessions (Ashton & Trowill, 1970; Dube, Ashton & Trowill, 1970; 

Gandelman & Trowill, 1969). On subsequent daily sessions, saccharin intake 

decreases towards the pre-abstinence levels. The magnitude of the post-

abstinence intake elevation depends on the duration of the access interruption 

and increases as it is lengthened for at least 14 days (Neznanova, Zvartau & 

Bespalov, 2002). Although a DE may not be evident after abstinence periods 

approaching 30 days (Dube, Ashton & Trowill, 1970), the precise time-frame of 

post-abstinence intake changes is unclear due to methodological differences 

across studies which may be important. For example, if saccharin containing 

bottles are replaced with a second water bottle for the duration of abstinence 

rather than being removed, DE magnitude is diminished (Neznanova, Zvartau & 
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Bespalov, 2002). 

Addiction-like characteristics of excessive food intake 

Common neural systems may mediate excessive intake of food and drugs 

(Davis & Carter, 2009; Epstein & Shaham, 2010; Frascella, Potenza, Brown & 

Childress, 2010; Holden, 2001; Levine, Kotz & Gosnell, 2003; Lutter & Nestler, 

2009; Volkow & Wise, 2005). The cyclic sugar model has examined similarities 

between excessive eating and drug intake by looking for behaviours and 

neurobiological changes that are also evident following exposure to rewarding 

drugs that may be indicative of addiction (Avena, Rada & Hoebel, 2008; Avena, 

Rada & Hoebel, 2009). For instance, withdrawal symptoms in opiate-treated rats 

such as somatic symptoms or anxiety-like behaviour, can occur spontaneously 

after morphine abstinence or can be precipitated by an opiate antagonists like 

naloxone (Schulteis etal., 1994; Schulteis, Yackey, Risbrough & Koob, 1998). 

Likewise, rats maintained on the cyclic sugar diet (relative to ad lib sugar and 

chow) display somatic characteristics of opiate withdrawal and anxiety-like 

behaviour following naloxone injections or a period of food and sucrose 

deprivation (Avena etal., 2008; Colantuoni etal., 2002). 

Psychomotor sensitization refers to an increased drug response, such as 

elevations in locomotion after repeated administration of stimulant drugs, 

whereas cross-sensitization is the same effect but elicited by a drug different 

from the one administered initially (Sanchis-Segura & Spanagel, 2006). 

Amphetamine-sensitized rats show sugar-induced hyperactivity and consume 

more sucrose relative to saline controls (Avena & Hoebel, 2003). Conversely, 
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rats maintained on the cyclic sucrose diet have been reported to increase their 

locomotor activity in response to a low dose of amphetamine (Avena & Hoebel, 

2003) and to consume more alcohol (Avena etal., 2004). Collectively, these 

findings may suggest cross-sensitization between cyclic sugar access and 

rewarding drugs. 

Finally, in rats maintained on the cyclic diet for periods over a week, a 

number of neurobiological alterations that resemble changes induced by 

rewarding drugs have been reported. Notably, these include changes in levels of 

dopamine receptors, the dopamine transporter, u-opioid receptors and 

enkelaphin mRNA (Avena, Rada & Hoebel, 2008; Avena, Rada & Hoebel, 2009). 

Research Rationale 

This thesis explores two aspects of access variables using the DisA/ConA 

model. First, the role of taste and postingestive consequences in the excessive 

consumption of sweet solution was investigated by comparing non-caloric 

saccharin solution intake under DisA and ConA conditions. Sweet taste is 

rewarding in the absence of calories and non-nutritive tastants can be consumed 

in large volumes despite conferring no benefit to the animal (Smith, 2000; Smith 

& Sclafani, 2002). While the reward value of saccharin has sometimes been 

questioned (White & Carr, 1985), the fact that rats select a taste of saccharin 

over cocaine infusions suggests high hedonic capacity (Lenoir & Ahmed, 2007). 

Conversely, calories can be rewarding in the absence of taste. Taste-blind mice 

readily learn to prefer sucrose (but not the non-nutritive sweetener sucralose) to 

water, and its consumption results in neural reward-like activity (de Araujo etal., 



2008). Intragastric infusions can produce a conditioned taste preference despite 

the lack of orosensory stimulation (Puerto, Deutsch, Molina & Roll, 1976; 

Sclafani, 2001; Sclafani & Ackroff, 2004). Because sweetness and caloric value 

of a sucrose solution vary together with concentration (Smith, 2000) sucrose 

could be consumed due to the hedonic value of taste and calories. Therefore, it 

is not clear whether escalating consumption in the DisA/ConA model is driven by 

taste factors, caloric factors or some combination of both. Separating taste and 

postingestive consequences is not a new problem and is simple to address by 

replacing sucrose with the artificial sweetener saccharin. While this might 

suggest that taste is sufficient to induce the DisA/ConA difference, it does not 

rule out a possible role for positive postingestive factors, in establishing or 

maintaining the access-driven sucrose intake difference. 

In Experiment 1 of this thesis, several saccharin concentrations were 

made available to rats on either DisA or ConA schedules. Because saccharin 

intake is driven primarily by taste (Smith & Sclafani, 2002), DisA rats should 

consume considerably more than ConA rats if taste is predominantly responsible 

for driving the intermittent access effect. By exploring a variety of saccharin 

solutions the concentration response function of the effect was explored. In 

Experiment 2, a single saccharin solution (showing the biggest difference in 

Experiment 1), was used to determine if any differences in consumption can be 

maintained after all rats are given alternate day access. 

Second, whereas intermittent every 1, 2 or 3 day DisA produces a 

sustained consumption change, a single longer period of abstinence can result in 
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a DE that is transient in nature. Experiment 2b examined the impact of longer 

term abstinence in rats expressing access-induced differences resulting from 

previous DisA/ConA experience. Because increased intake following the longer 

abstinence (the DE), did not interact with DisA/ConA-induced differences 

suggesting that the DE and DisA/ConA consumption differences are under the 

control of separate factors, Experiment 3 sought to replicate and expand on this 

finding by returning to the sucrose model. Although previous studies have shown 

that a DE can be observed with saccharin but not sucrose solutions (Ashton & 

Trowill, 1970; Ashton, Gandelman & Trowill, 1970), large intake increases have 

been observed with DisA to sucrose solutions (Hewitt & Eikelboom, 2008). 

Moreover, a number of operants studies have shown that motivation to obtain 

sucrose increases over abstinence durations relevant to DE studies (Avena, 

Long & Hoebel, 2005; Grimm, Shaham & Hope, 2002; Lu, Grimm, Hope & 

Shaham, 2004; Neznanova, Zvartau & Bespalov, 2002) suggesting that some 

other factor must account for the lack of sucrose DE. Because a possible 

explanation for the lack of a DE is an inhibition by the satiating properties of 

calories, particularly because the concentrations utilized in sucrose DE studies 

were high (Ashton & Trowill, 1970; Ashton, Gandelman & Trowill, 1970), 

Experiment 3 further explored the DE in rats with DisA or ConA histories using a 

relatively weak 4% sucrose solution. 
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Experiment 1 

The objective of Experiment 1 was to determine whether taste factors are 

primarily responsible for the intake under escelation intermittent access 

conditions. This was accomplished by providing DisA and ConA to saccharin 

solutions to circumvent the positive or rewarding postingestive consequences of 

calorie-laden sucrose solutions (de Araujo etal., 2008; Sclafani, 2001; Sclafani & 

Ackroff, 2004). If postingestive factors alone underlie the sucrose intake 

escalation under DisA conditions, the consumption difference between ConA and 

DisA rats should not be evident with saccharin. If escalating sucrose intake under 

DisA conditions is also driven by taste, then a similar increase would be expected 

to occur with DisA to saccharin. 

Previous work in our lab has shown that the DisA/ConA intake difference 

is most robust with a 4% sucrose solution but smaller or absent at lower (1%) 

and higher (8 and 16%) concentrations (Randell and Eikelboom, Unpublished). A 

secondary objective of Experiment 1 was to determine whether access-induced 

intake differences can emerge across a range of saccharin concentrations. 

Confirming this would suggest that consumption differences for 8 and 16% 

sucrose solutions were inhibited by limiting satiating postingestive consequences 

(distinct from rewarding postingestive consequences). 

Although the absence of a DisA/ConA difference for the low 1% solution 

might be attributed to a floor effect, this cannot account for the diminished or 

absent effect of DisA on the intake of higher sucrose concentrations. Instead, the 

lack of access-induced differences may be accounted for by the sucrose intake-



concentration function. When the sucrose intake-concentration function is 

measured over 24 h, the volume consumed increases with concentration, peaks 

at 8% and declines with further increases in sucrose concentration (Smith, 2002). 

If sucrose solute consumed, as opposed to solution volume is measured, 

sucrose solute intake peaks and plateaus with 16% sucrose solutions. However, 

if postingestive effects are reduced by fitting the animals with a gastric fistula 

(Sclafani & Nissenbaum, 1987) or circumvented by brief access procedures that 

largely preclude satiety (Smith & Sclafani, 2002), intake will continue to increase 

with concentrations beyond 16%. Similarly, preference tests show that the higher 

of two sucrose concentrations is always preferred (Collier & Bolles, 1968). For 

sucrose solution volume therefore, the 24 h intake-concentration function takes 

the shape of an inverted U with a descending arm that is most readily accounted 

for by the inhibitory, satiating postingestive properties of calories. Thus, if an 8% 

concentration represents a ceiling for volume and calories consumed over a 24 h 

period potentially masking DisA/ConA difference, than a 4% solution would still 

permit further intake increases. 

Although both sucrose and saccharin are sweet, they differ in taste 

characteristics (Dess, 1993). The 24 h saccharin intake-concentration function 

also takes on an inverted U shape but the descending portion can be accounted 

for by saccharin's bitter, quinine-like after-taste that increases in salience with 

concentration (Dess, 1993). For a 24 h period, saccharin solution consumption 

initially increases with concentration but begins to decreases at higher 

concentrations regardless of whether rats are real or sham fed (Sclafani & 



Nissenbaum, 1985; Smith, 2000). The same intake-concentration function is 

obtained with short term (Smith & Sclafani, 2002) and preference tests (Smith & 

Rashotte, 1978). Therefore, unlike sucrose, saccharin intake is regulated 

primarily by taste. Consequently, a DisA-driven saccharin intake escalation might 

be expected to emerge across a wider range of concentrations compared to 

sucrose which would suggest that satiety masks sucrose consumption effects at 

higher concentrations. 

A final caveat regarding the taste characteristics of saccharin vs. sucrose 

is that although rats drink higher volumes of saccharin compared to other 

commonly employed sweeteners such as aspartame (Sclafani & Abrams, 1986) 

or sucralose (Bello & Hajnal, 2005; Sclafani & Clare, 2004), saccharin is not 

preferred to sucrose except with very dilute sucrose solutions. Therefore, 

regardless of access conditions less saccharin than sucrose solution is expected 

to be consumed under similar conditions. 

Methods 

Subjects 

Sixty-four male Sprague Dawley Rats from Charles River Laboratories (St. 

Constant Quebec), weighing 200-225 g at arrival (approximately 47 days old) 

were maintained on a 12:12 light/dark cycle (lights on 09:00). Rats were single 

housed in shoe box cages (21 cm height x 24 cm width x 45 cm length) with ad 

lib access to water and Harlan Teklad Rodent Diet 8460 (3.1 kcal/g 

metabolizable energy). Due to subjects' high fluid intake, hardwood chip bedding 

was replaced as needed (more frequently than normal and at least once a week). 



All procedures in this and subsequent experiments were approved by the Wilfrid 

Laurier Animal Care Committee in accordance with Canadian Council on Animal 

Care policies and guidelines. 

Apparatus 

Water and one of the 4 saccharin solutions, 0.125, 0.25, 0.5 or 1%, were 

provided to each rat in glass bottles fitted with rubber stoppers and stainless 

steel sipper tubes. Throughout the course of the study, water and saccharin 

bottles were always available on the same side of the cage. Although some 

spillage of fluids occurred during measurement, between group differences were 

not affected because bottles were handled similarly for all groups. Daily 

consumption of saccharin, food and water was reported as the weight difference 

in grams between two consecutive measurements. Solutions were prepared as 

needed, four litres at a time from tap water and sodium saccharin (Sigma, 

Oakville Ontario). All concentrations were reported as weight/volume (w/v) 

percentages: 

/ grams solute \ 
Percent Solute Concentration = I — — X 100 

\m i I alters water/ 

Water and saccharin bottles were replaced after approximately 7 days of 

use or every three discontinuous exposures. 

Procedure 

After an initial 7 day period of acclimation to the colony room and daily 

animal handling, consumption of food, water, and body weight was recorded for 



an 8 day baseline period. Next, animals were divided into four weight matched 

groups (n = 16 each) that were randomly assigned to one of four saccharin 

concentrations: 0.125, 0.25, 0.5 or 1%. At the end of the first day of saccharin 

access, animals in each group were assigned to either DisA or ConA conditions 

(n = 8 each), matched by day 1 saccharin intake and body weight. ConA rats 

received continuous exposure to their designated saccharin concentration for 34 

days whereas DisA rats received 12 every third day saccharin exposures (days 

1, 4, 7 34). Food and water were always available to all rats. 

The length of each daily access period was 23 h as food, water, and 

saccharin were not available for approximately 1 h during which daily 

measurements were taken. These were conducted 4 h prior to the onset of the 

dark cycle as to minimize interference with feeding and drinking behaviour. 

During this time food, water and saccharin (when available), were removed, 

weighed, and replaced after body weight was recorded. Rats in the DisA groups 

(n = 32) were weighed first (15:00 to 16:00), followed by rats in ConA groups (n = 

32; 16:00 to 17:00). Also during this time, solution and water bottles were refilled 

to ensure adequate supply for the following day. 

To reduce day to day variability, two concurrent replications were 

conducted with a 1 day difference between them, i.e. half of all rats in each 

condition started saccharin access 1 day after the first half. 

Statistics 

Saccharin consumption data were analyzed for common saccharin access 

days only, that is, for days on which DisA and ConA rats received saccharin 



access (days 1, 4, 7 34). The 12 common saccharin exposures were divided 

into three blocks consisting of four saccharin exposures each: the first four, the 

middle four and the last four common exposures which were analyzed using an 

Access (ConA, DisA) by Concentration (0.125, 0.25, 0.5 and 1%) by Days (four 

common exposure days) mixed design Analysis of Variance (ANOVA) with 

repeated measures on Days. Where main effects were significant, REGWQ (p < 

0.05) post hoc analysis were performed. 

Food intake data were averaged over 8 baseline days and three blocks 

that corresponded to blocks over which saccharin data was analyzed: Block 1 

(days 1 to 10), Block 2 (days 11 to 22) and Block 3 (days 23 to 34). Baseline data 

for mean food, water and last baseline day weight were analyzed in Access by 

Concentration ANOVAs. For experimental days, food data were analyzed in an 

Access (DisA, ConA) by Concentration (0.125%, 0.25% 0.5% and 1%) by Block 

(Blocks 1, 2 and 3) mixed design ANOVA with repeated measures on Block. 

Weight data were also compared at three time points but for the last day of each 

block only in an Access by Concentration by Day (days 10, 22, 34) mixed design 

ANOVA. Water data, which was probably strongly affected by saccharin intake, 

was not analyzed. 

Within-subject effects and interactions were reported as significant only if 

significance was also met after Greenhouse-Geisser corrections were applied for 

these and all subsequent analyses. All statistical analyses were performed with 

SPPS 17.0. 



Results 

Consumption by DisA and ConA rats is illustrated in Figure 1 by 

concentration, in Figure 2 by schedule, and averaged across the baseline and 

three blocks in Table 1. During the first four common exposures (days 1, 4, 7 and 

10) there was a main effect of Access [F(1,56) = 12.57, p < 0.001], and 

Concentration [F(3,56) = 21.86, p < 0.001] a within effect of Days [F(3,168) = 

6.80, p < 0.001] and an Access by Days interaction [F(3,168) = 20.68, p < 0.001]. 

The main effect of Access was due to greater saccharin intake by DisA relative to 

ConA animals whereas the effect of Days and Access by Days interaction 

reflects that this difference was predominantly due to an increase by DisA rats 

that emerged gradually over these first four common exposures. The main effect 

of Concentration was due to greater consumption of lower saccharin 

concentrations regardless of access schedule. Post-hoc testing revealed three 

homogeneous subsets consisting of the 0.125 and 0.25%, the 0.5%, and the 1% 

concentrations. Over the middle four common saccharin exposures (days 13, 16, 

19 and 22), the main effects of Access [F(1,56) = 23.77, p < 0.001], and 

Concentration [F(3,56) = 14.97, p < 0.001] were maintained. Post-hoc testing 

revealed three homogeneous subsets consisting of the 0.125 and 0.25%, the 

0.25 and 0.5%, and the 1% concentrations. Similarly, over the last four 

exposures (days 25, 28, 31 and 34), the intake difference between DisA and 

ConA rats was sustained Access [F(1,56) = 24.99, p < 0.001] as was the main 

effect of Concentration [F(3,56) = 11.14, p < 0.001]. Post-hoc testing revealed 

two homogeneous subsets consisting of the 0.125, 0.25 and 0.5%, and the 1% 



concentrations. The lack of Access by Days interaction during the middle and last 

four common exposures suggests that consumption levels had stabilized. Over 

the last eight common exposures, in the order of ascending concentration (1% to 

0.25%), DisA rats consumed 54, 81, 62 and 74% more than ConA rats. 

All water, food and body weight data are reported in Table 1. There was 

no effect of Access or Concentration on baseline food and water intake or 

baseline body weight (note that rats were matched for body weight in their group 

assignment). For the experimental days, there were also no significant effects of 

Access or Concentration on food intake or body weight. However, there was an 

effect of Block for weight [F(2,112) = 1513.86, p < 0.001] and food intake 

[F(2,112) = 52.46, p < 0.001] as rats tended to increase their food consumption 

with weight gain over the duration of the experiment. 

Discussion 

These results suggest that taste, in the absence of the positive 

postingestive consequences of calorie rich sucrose solutions, is predominantly 

responsible for the DisA-induced intake escalation. While consumption of 

saccharin solutions varied as expected given the saccharin intake-concentration 

function (Smith, 2000) across all concentrations, DisA rats consumed more over 

24 h periods than ConA animals. 

The DisA/ConA differences were observed for different saccharin 

concentrations in Experiment 1, but not previously with more concentrated 

sucrose solutions (Hewitt & Eikelboom, 2008). Saccharin lacks the postingestive 

properties of sucrose and intake differences emerged across the saccharin 



concentrations range (taste intensity). Therefore, it is unlikely that taste 

differences of higher sucrose concentrations could account for the lack of access 

consumption effects. Instead, because calories increase with sucrose 

concentration, it is more likely that the postingestive consequences of calories 

suppressed or masked access-induced differences for more concentrated 

sucrose solutions. 

That sucrose calories may play an inhibitory role under conditions which 

otherwise lead to excessive intake is also corroborated by the absence of a large 

intake increase with the cyclic sugar diet which employed relativity energy dense 

(10 or 20% w/v) sucrose or glucose concentrations (Avena, Rada & Hoebel, 

2008; Avena, Rada & Hoebel, 2009; Colantuoni etal., 2001). Moreover, rats 

subject to MWF access were found to consume slightly more sucrose solution 

over 2 h access sessions relative to their daily access counterparts for 3.2% and 

10% but not 32% concentrations (Wojnicki, Stine & Corwin, 2007). 

Although access-induced differences were observed with saccharin, the 

intake difference between DisA and ConA rats was smaller than previously 

reported for a 4% sucrose solution, even compared to the most consumed 

saccharin concentrations (0.25 and 0.125%). DisA rats consumed an average of 

62 to 81% more saccharin than those with ConA. In comparison, under similar 

access conditions, DisA animals consumed two to three times as much of a 4% 

sucrose solution as animals with ConA. Although the smaller magnitude of the 

DisA/ConA difference and lower overall intake of saccharin relative to sucrose 

may have occurred due to a positive postingestive component for sucrose, 
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saccharin's less attractive taste was probably the main contributing factor (Smith 

& Sclafani, 2002). The present data however, do not rule out the impact that 

postingestive factors may have had on the DisA/ConA difference. This could be 

ascertained in future studies by employing taste blind animals such as trpm5"/_ 

knockout mice which lack functional transient receptor channel M5 required for 

sweet, bitter and umami taste signalling (de Araujo et ai, 2008) and therefore 

consume sucrose only for its postingestive consequences. Intragastric infusion 

can also be utilized to bypass taste consequences. 

Finally, the 1% saccharin solution was consumed at lower levels than all 

other concentrations (Figure 2). This was probably due to the bitter component of 

the saccharin flavour which would have been most salient at the highest, 1% 

concentration (Dess, 1993). Even a relatively palatable 0.1% saccharin solution 

can result in both positive ingestive and negative aversive responses in a taste 

reactivity procedure (Parker & Lopez, 1990) suggesting both attractive and 

unpleasant taste components. 

In conclusion, Experiment 1 suggests that taste is predominantly 

responsible for the emergence of access-induced differences. Second, although 

postingestive feedback can be rewarding and stimulate intake under certain 

conditions (de Araujo etal., 2008; Sclafani, 2001; Sclafani & Ackroff, 2004), it 

might also inhibit access-induced intake increases at higher sucrose 

concentrations under DisA/ConA conditions. 



Experiment 2 

Experiment 1 established that taste is predominantly responsible for 

access-driven consumption changes. The main objectives of Experiment 2 were 

first, to replicate this finding and second to determine whether saccharin access 

history can affect consumption after access conditions are equalized. As 

described in the introduction, access-induced differences in sucrose intake have 

been shown to persist under equal access conditions (Hewitt & Eikelboom, 2008) 

suggesting that access history has long term effects on consumption. As sucrose 

and its consumption differs from saccharin in a number of ways, it is not clear if 

saccharin DisA/ConA consumption changes could be maintained under similar 

equal access conditions. Because the first part of this experiment (Experiment 

2a) shows that access-induced changes do indeed persist under equal access 

conditions, a number of other potentially important factors are also explored. 

Elevated drug intake in addiction has been hypothesized to be driven by a 

negative affective or anxiety-like state (Koob & Le Moal, 2001). In order to 

examine if a similar affective state is associated with escalated levels of 

saccharin intake, behavioural measures of anxiety were assessed during Phase 

II of 2a. Details of these procedures and results can be found in Appendix A as 

they are not central to the main thrust of this thesis and showed no significant 

differences between access conditions. 

Although intermittent access to every third or fourth day sucrose or 

saccharin can result in large and sustained intake increases, isolated longer 

periods of saccharin abstinence can result in a DE - a transient saccharin intake 



increase (Gandelman & Trowill, 1969; Neznanova, Zvartau & Bespalov, 2002). 

Experiment 2b examined the expression of the saccharin DE in animals with a 

preceding history of DisA or ConA experience to determine if these two access 

driven consumption increases are related. 

Finally, because saccharin and sucrose have different taste 

characteristics, to determine whether access-induced changes in saccharin 

consumption are flavour specific or generalize between different sweet solutions, 

in Experiment 2c saccharin was replaced with a sucrose solution. 

A consequence of these multiple tests, is the relatively long equal access 

period (55 days) that followed initial differential access in Phase I during which 

rats were provided with same solution on the same access schedule. This 

allowed the effects of DisA/ConA histories to be followed over a longer duration. 

The complete time-line of Experiment 2 is summarized in Figure 3 and Table 2. 

Because in Experiment 1 weight or food consumption was not affected by the 

saccharin access schedule, these data were not analyzed. 

General Methods 

Subjects 

Thirty-two male Sprague Dawley Rats were obtained from Charles River 

Laboratories, St. Constant Quebec. All specifications and conditions were 

identical to Experiment 1. 

Apparatus 

Administration and preparation of 0.25% saccharin (Sigma 1002) solution 

was described for Experiment 1. Water and solution bottles were replaced after 



approximately 7 days of use or every two discontinuous cycles of exposures. 

Procedures 

Rats were initially acclimatized to the colony room for a 7 day period 

during which they were handled daily. Next food, water, saccharin, sucrose 

solutions (when available) and body weight were followed daily for 8 baseline 

days and 101 experimental days as summarized in Table 2 and Figure 3. 

Measurements were recorded in the manner described for Experiment 1 except 

that food, water and saccharin were removed only for the time required to record 

all values for each subject individually. Therefore, all animals received 24 h 

(minus 1 or 2 minutes) of access to food, water, and when available, saccharin or 

sucrose solutions. 

Experiment 2a 

Changes in sucrose solution intake induced by DisA and ConA can persist 

even after access schedules are equalized (Hewitt & Eikelboom, 2008). 

However, as with the emergence of these consumption effects, consequences of 

access history may be due to postingestive or taste properties of sucrose. 

Therefore, the main objective of Experiment 2a was to determine whether a 

DisA/ConA saccharin solution intake difference can be maintained after access 

schedules for all animals are switched to equal access conditions, as in sucrose 

studies (Hewitt & Eikelboom, 2008). Switching the saccharin access schedule to 

alternate day exposures (Phase II) for rats that initially received DisA or ConA 

(Phase I) permits a direct comparison of intake between animals with different 

access histories. In order to ensure maximum consumption differences, the 



interval between access sessions was increased from 2 to 3 days for a 0.25% 

saccharin solution which had produced the greatest DisA/ConA intake difference 

in Experiment 1. 

Methods 

Procedure. Following an 8 day baseline period, on Day 1 of Phase I, 

0.25% saccharin was provided for 24 h. After the first saccharin day, rats were 

assigned to either DisA or ConA conditions (n = 16 each), matched for saccharin 

intake and body weight. The DisA condition rats received saccharin for 24 h once 

every 4 days whereas ConA rats received constant saccharin access. After 12 

DisA exposures and 45 days of ConA, both access schedules were changed to 

alternate day access for 12 24 hour exposures (Phase II). Therefore, between 

days 46 and 69, saccharin was available every other day for all rats. 

Two anxiety tests, elevated plus maze (EPM) and light/dark emergence, 

were conducted on day 56 to explore whether anxiety-like affective states are 

linked to changes in consumption. See Appendix A for details. 

Statistics. Saccharin consumption data were analyzed on common 

saccharin exposure days only (days 1, 5, 9, ..., 45). That is, on days during which 

rats in ConA and DisA groups received access to saccharin. Both Phase I and II 

saccharin intake was compared across three blocks, each consisting of four 

common saccharin exposures. The transition between Phases I and II was also 

compared across one block of four common access days (days 41, 45, 47 and 

45). Blocks were analyzed in Access (ConA, DisA) by Days (four common 

access days) mixed design ANOVAs with repeated measures on Days. 



Results 

Saccharin intake by DisA and ConA rats is illustrated in Figure 4. Over the 

first four common saccharin exposures (days 1, 5, 9 and 13), there was a main 

effect of Access [F(1,30) = 12.7, p < 0.001], an effect of Days [F(3,90) = 5.4, p < 

0.01] and an Access by Days interaction [F(3,90) = 12.7, p < 0.001] as intake by 

DisA rats increased gradually while consumption by ConA rats decreased 

slightly. As in Experiment 1, the main effect of Access was maintained over the 

middle four exposures (days 17, 21, 25 and 29) [F(1,30) = 38.09, p = 0.001] and 

the last four exposures (days 33, 37, 41 and 45) [F(1,30) = 42.29, p < 0.001]. The 

lack of Access by Days interaction during the middle and last four common 

exposures suggests that consumption levels stabilized. The differences in 

consumption over the last eight common exposures expressed as a percent 

increase of DisA over ConA was 116% (158 g DisA, 72 g ConA). 

At the beginning of Phase II on day 46, saccharin access conditions were 

equalized for all rats to 24 h periods of alternate day access. Over the transition 

between Phase I and II (saccharin days 41, 45, 47 and 49), there was a main 

effect of Access [F(1,30) = 26.1, p < 0.001] and an Access by Days interaction 

[F(3,90) = 21.4, p < 0.001]. The interaction appeared to be due to a decrease in 

saccharin consumption by DisA rats, and an increase in consumption by ConA 

rats as access conditions were changed (see Figure 4). 

Over the course of Phase II, the main effect of Access [F(1, 30) = 12.56, p 

< 0.001] was maintained during the first four saccharin exposures (days 47, 49, 

51 and 53) and there was an effect of Days [F(3,90) = 5.04, p < 0.01], most likely 



due to an unexplained intake increase on day 49 and decrease on day 51. Over 

the middle four saccharin exposures (days 55, 57, 59 and 61) there was only a 

main effect of Access [F(1, 30) = 15.5, p < 0.001]. Finally, over the last four 

saccharin four exposures (days 63, 65, 67 and 69) there was a main effect of 

Access [F(1, 30) = 12.56, p < 0.01], as well as an effect of Days [F(3,90) = 5.67, 

p < 0.01] apparently due to an intake increase for all rats on day 67. Once again, 

a lack of Days by Access interactions along with the maintained effect of Access 

suggests that access-induced differences remained stable over the course of 

Phase II. The mean percent increase maintained during the 12 saccharin 

exposures of Phase II by DisA over ConA animals dropped to 61% (129 g DisA, 

80 g ConA) from 116% in Phase I. All data collected are summarized in Table 3. 

Discussion 

In agreement with Experiment 1, solution intake by DisA rats escalated 

over the initial four exposures to significantly exceed ConA consumption. The 

magnitude of the intake difference between DisA and ConA rats was greater than 

in Experiment 1 for the equivalent concentration. With every fourth day DisA in 

Experiment 2, rats drank a little over twice as much as those with ConA, 

approximately 40 g more than rats with every third day DisA to the same solution 

in Experiment 1. ConA rats consumed similar amounts in Experiments 1 and 2. 

The difference in DisA consumption in Experiments 1 and 2 may be accounted 

for by the extension of the inter-exposure interval from 2 to 3 days underscoring 

its importance in intermittent access schedules. 

In Phase II, when access conditions were equalized, rats with a DisA 



history continued to consume more than rats with a ConA history. This difference 

was robust and persisted over the 12 alternate day access sessions (24 days) of 

Phase II replicating previous sucrose work (Hewitt & Eikelboom, 2008). This 

suggests that taste factors are predominantly responsible for the persistence of 

DisA/ConA differences after access is equalized. 

Experiment 2b 

Previous studies have investigated consumption effects of chronic 

intermittent access, as with the DisA schedule, or of individual, longer abstinence 

periods. Whereas intermittent access schedules utilizing repeating 1 to 3 day 

inter-exposure intervals result in gradual and sustained intake increases (Avena, 

Rada & Hoebel, 2008; Corwin, 2006; Hewitt & Eikelboom, 2008) a single, 

isolated period of abstinence results in a transient post-abstinence consumption 

increase - a DE (Gandelman & Trowill, 1969; Neznanova, Zvartau & Bespalov, 

2002; Sinclair & Senter, 1968). The impact of different access schedules 

(DisA/ConA) on DE expression is unknown. Experiment 2b examined the impact 

of a single longer saccharin access interruption in rats with different access 

histories by following saccharin consumption after an 8 day abstinence period 

after the end of Phase II. This abstinence duration is consistent with previous 

studies investigating the DE (Gandelman & Trowill, 1969; Neznanova, Zvartau & 

Bespalov, 2002; Zakharova etal., 2004). 

Methods 

Procedure. Following the removal of saccharin bottles on the last 

alternate exposure day of Phase II (day 69), rats began an 8 day saccharin 



abstinence period which was followed by 4 alternate day saccharin exposures 

(days 78 to 84). 

Statistics. Saccharin DE data were analyzed comparing the last pre-

abstinence saccharin day (day 69), with the first post-abstinence day (day 78) in 

an Access (DisA, ConA) by Days (last pre-abstinence day, first post-abstinence 

day) mixed-design ANOVA with repeated measures on Days. Saccharin intake 

during the 4 alternate day post-abstinence exposures was compared in an 

Access (DisA, ConA) by Days (four common access days) mixed-design ANOVA 

with repeated measures on Days. 

Results 

Following 8 days of saccharin abstinence, access was restored on day 78 

for four alternate day saccharin exposures illustrated in Figure 5. Over the last 

pre- and first post-abstinence days there was a main effect of Access [F(1,30) = 

9.03, p < 0.001] an effect of Days [F(3,90) = 145.01, p < 0.001] but no Access by 

Days interaction. All rats increased their intake after abstinence but the access-

induced intake difference was maintained. Over the course of the four post-

abstinence alternate day saccharin exposures, there was a main effects of 

Access [F(1,30) = 10.36, p < 0.003], an effect of [Days [F(3,90) = 56.46, p < 

0.001], but no Access by Days interaction. The effect of Days was due to 

decreasing consumption by rats in both groups after the first post-abstinence 

saccharin exposure and the effect of Access was due to the maintained access-

induced consumption difference. All data collected are summarized in Table 3. 

Discussion 



Rats in both groups displayed a robust DE after saccharin was restored 

following 8 days of abstinence. This agrees with previous studies reporting a 

saccharin DE after similar periods of abstinence (Gandelman & Trowill, 1969; 

Neznanova, Zvartau & Bespalov, 2002). The expression of DE did not interact 

with the access schedule history: the DE was similar for rats in both groups. 

When access was restored after abstinence, both DisA and ConA rats increased 

their consumption from their pre-abstinence Phase II baselines by similar 

amounts. On days subsequent to the first post-abstinence day saccharin intake 

by all rats decreased while the access-induced difference was maintained. The 

lack of interaction between access history and DE expression suggests that the 

increase caused by the 8 day access interruption was not related to increased 

saccharin intake induced by DisA and that separate mechanisms may underlie 

DE and DisA/ConA consumption differences. 

Experiment 2c 

Because saccharin and sucrose differ in terms of taste (Dess, 1993), it is 

not clear whether access-induced changes in saccharin intake could generalize 

to other sweet substances. To answer this question, saccharin can be replaced 

with another sweet substance such as sucrose. Observing a maintained access-

induced difference after a switch to a sucrose solution would indicate that 

access-induced intake differences can generalize from one sweet flavour to 

another rather than being taste specific. In Experiment 2c a 4% sucrose solution 

was provided to rats displaying saccharin access-induced consumption changes 

under equivalent access schedules. 
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Methods 

Procedure. On Day 86, the saccharin solution was substituted with a 4% 

(w/v; Redpath Sugar) sucrose solution for 8 alternate day exposures (days 86, 

88, 90, ..., 100). The sucrose solution was prepared in the manner previously 

described for saccharin solutions (Experiment 1). 

Statistics. Sucrose solution intake data were analyzed over two 

subsequent Blocks consisting of four exposures each in Access (ConA, DisA) by 

Days (four common sucrose days) mixed-design ANOVAs with repeated 

measures on Days. 

Results 

Sucrose consumption over the 8 alternate day exposures is illustrated in 

Figure 6. Over the first 4 alternate day sucrose exposures (days 86, 88, 90, 92), 

there was a main effect of Access [F(1,30) = 8.06, p < 0.01], an effect of Days 

[F(3,90) = 31.53, p < 0.001] and an Access by Days interaction [F(3,90) = 5.73, p 

< 0.001]. The main effect of Access was due to the maintenance of saccharin 

access-induced consumption differences with sucrose. The Days effect appears 

due to gradually increasing consumption by rats in both groups during this period 

while the interaction effects appears due to the larger increase in sucrose 

consumption by DisA than ConA rats. Over the second 4 alternate day sucrose 

exposures, consumption stabilized and there was only a main effect of Access 

[F(1,30) = 7.73, p < 0.01]. All data collected is summarized in Table 3. 

Discussion 

Experiment 2c results show that access-induced saccharin intake 
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differences are not flavour specific and generalized to sucrose. These 

consumption differences were initially induced during Phase I (days 1 - 45) 

whereas sucrose was presented on day 86, after 41 days of equivalent access 

(see Figure 3). During this long equal-access period, all rats received the same 

exposure to the same solutions. Over the course of the 8 alternate day sucrose 

exposures, all rats increased their intake over the initial sucrose exposures, but 

the DisA rats did so more rapidly and to a greater extent than those with ConA. 

Intake stabilized over the last four exposures as access-induced differences were 

maintained. It is possible that the gradual increase over the first four exposures 

was due to learning about the more attractive nature of sucrose relative to 

saccharin as evidenced by its higher consumption. 

In addition to demonstrating that access-induced differences generalize to 

sucrose, their persistence throughout Experiment 2c indicates that access-

induced changes are remarkably durable. In total they persisted over 55 days of 

equal access (32 saccharin and 15 sucrose). Thus, even in the absence of 

postingestive consequences of caloric solutions, changes induced by DisA to 

sweet solutions are relativity permanent. 



Experiment 3 

In Experiment 2b, the post-abstinence consumption increase added 

linearly to the apparently permanent consumption differences induced by 

previous DisA or ConA. This suggests that a single isolated period of abstinence 

may have an effect on consumption that is different from intermittent DisA, that 

is, not all experiences with abstinence are the same. The primary objective of 

Experiment 3 was to replicate this finding. Because the DE is a time-dependent 

phenomenon and short repeating abstinence periods may be different from a 

single long abstinence period, in Experiment 3, consumption by rats with 

DisA/ConA experience was examined after 3 or 9 abstinence days and 

compared to animals maintained on an alternate day accesses schedules. 

A second objective of Experiment 3 was to examine DE expression with 

sucrose. This is because previous studies which measured sucrose solution 

intake following abstinence did not observe a sucrose DE (Ashton & Trowill, 

1970; Ashton, Gandelman & Trowill, 1970) despite the fact that large intake 

increases have been observed in DisA to sucrose (Hewitt & Eikelboom, 2008). 

The failure to observe a sucrose DE may have been due to several aspects of 

the procedure employed. First, in these studies, bottles containing sucrose 

solutions were replaced with water bottles (rather than removing them during 

abstinence), which has been shown to significantly reduce, although not entirely 

abolish subsequent saccharin DE expression (Neznanova, Zvartau & Bespalov, 

2002). Second, the sucrose solutions utilized in the sucrose DE studies were 

relatively energy dense 8 and 16% concentrations. It is therefore possible that 



unconditioned or learned satiety effects may have suppressed DE expression 

(Davis, Smith, Singh & McCann, 1999; Smith & Sclafani, 2002; Weingarten & 

Kulikovsky, 1989). As discussed, postingestive factors may inhibit further intake 

increases for more energy dense sucrose solutions during DisA. Finally, both 

studies exploring the sucrose DE utilized relatively short abstinence intervals (2 

or 3 days), whereas saccharin studies have shown that the saccharin DE 

continues to increase for at least 14 days and was only significant after 3 days of 

abstinence (Neznanova, Zvartau & Bespalov, 2002). If these concerns are 

addressed, a sucrose DE may be observed. 

Under the protocol employed in our laboratory, solution bottles are 

removed rather than replaced with water bottles. Second, because large 

consumption increases have been observed with DisA to 4% sucrose solution, a 

satiety ceiling effect that could mask a sucrose DE might be avoided with this 

concentration. Finally, a longer abstinence duration that reliably produces a 

saccharin DE may also result in a sucrose DE. 

Other studies also suggest that a sucrose DE may be expressed under 

the appropriate conditions. For example, operant responding for 25% glucose 

solutions increases after a 14-day abstinence period (Avena, Long & Hoebel, 

2005). Cue induced reinstatement of sucrose-seeking behaviour following 

extinction also increases as the duration of abstinence is lengthened (Grimm, 

Fyall & Osincup, 2005; Lu, Grimm, Dempsey & Shaham, 2004). Taken together, 

these results suggest that the motivation to consume sucrose increases with 

abstinence duration. 



Finally, because eating disorders are substantially more prevalent in 

women (Hudson, Hiripi, Pope & Kessler, 2007), to enhance model validity, 

female rats were employed in Experiment 3. 

Methods 

Subjects 

Forty-two female Sprague Dawley Rats, bred on site and derived from rats 

provided by Charles River Canada, were paired housed until approximately 70 

days of age before being separated and single housed. All other specifications 

and conditions were identical to Experiment 1. 

Apparatus 

Sucrose solution (4% w/v; Redpath Sugar), food and water intake, as well 

as body weight were measured every day beginning on baseline day -7 through 

to day 102 in a manner identical to Experiment 2. 

Procedure 

As in Experiments 1 and 2, after 7 days of initial acclimatization to the 

colony room and to individual housing accompanied by daily handling, food and 

water consumption as well as body weight was followed for an 8 day baseline 

period. Next, a 4% sucrose solution was provided for 24 h. Rats were then 

assigned to two groups (n = 21 each), matched for weight and initial sucrose 

solution consumption and designated as either ConA or DisA. As in Experiment 

2, the DisA sucrose inter-exposure interval was 3 days whereas ConA rats 

received constant sucrose access. After 12 DisA exposures or 45 days of ConA 

to sucrose, both access schedules were changed to alternate day access for 4 



alternate day exposures (days 47, 49, 51, and 53). 

On day 53, after sucrose intake was measured, both DisA and ConA 

group were subdivided into three groups (n = 7 each), matched by weight and 

average Phase II sucrose consumption. Each of these three groups with a prior 

history of ConA or DisA access was randomly assigned to one of the following 

conditions: Long Abstinence (LAb), Short Abstinence (SAb) and Non-Abstinence 

control (NAb). Sucrose bottles were not available for a period of 9 days for the 

LAb rats, 3 days for the SAb rats, whereas NAb rats continued to receive 

alternate day sucrose access. After sucrose access was restored for LAb and 

SAb rats, consumption was followed for at least 12 more alternate day exposures 

(days 57 to 85 for SAb rats and 63 to 85 for LAb rats). The experimental design 

is summarized in Table 4. 

Statistics 

Sucrose solution intake data were analyzed on common sucrose exposure 

days only (1, 5, 9 45 Phase 1 and days 47, 49, 51 and 53 for Phase II). 

Phase I was partitioned into three consecutive blocks as for Experiments 1 and 

2. Intake during each block as well as for the transition between Phases I and II 

(days 41, 45, 47 and 49) was analyzed in Access (ConA, DisA) by Group (LAb , 

SAb, NAb) by Days (four common access days) mixed design ANOVAs with 

repeated measures on Days. 

Sucrose DE data for the LAb and SAb groups were analyzed by 

comparing the last pre- and first post-abstinence days in Access (ConA, DisA) by 

Days (last pre-abstinence day, first post-abstinence) mixed design ANOVAs with 



repeated measures on Days for each abstinence group. 

Post-abstinence consumption data were compared to NAb rats (always 

across the same common exposure days) for each abstinence group. The 

analysis was conducted for three consecutive blocks of four common exposures 

comparing each abstinence group to the NAb group. The SAb and LAb groups 

were each compared to the NAb group in Access (ConA, DisA) by Group (SAb or 

LAb, NAb) by Days (four common exposure days) mixed design ANOVAs with 

repeated measures on Days. The three additional sucrose days for the SAb 

group rats were not analyzed. 

Results 

Phases I & II 

Sucrose solution intake by DisA/ConA LAb, SAb and NAb rats during 

Phases I and II is illustrated in Figure 7. During the first four common sucrose 

exposures (days 1, 5, 9, and 13), as in previous experiments there was main 

effect of Access [F(1,36) = 20.95, p < 0.001], within effect of Day [F(3,108) = 4.31 

p < 0.01] and an Access by Day interaction [F(3,108) = 23.23, p < 0.0001]. This 

was due to a large increase of sucrose intake by DisA rats and a small decrease 

by ConA rats. The main effect of Access was maintained over the middle four 

exposures (days, 17, 21, 25 and 29) [F(1,36) = 36.32 p < 0.001]. Over the last 

four exposures (days 33, 37, 41, and 45), there was also a main effect of Access 

[F(1,36) = 46.78, p < 0.001] and an Access By Days Interaction [F(3,108) = 3.66, 

p < 0.05]. The effect of Access during the middle and last four common 

exposures suggests that consumption differences were reasonably stable. The 



Access by Day interaction effect for the last block appeared to be due to a slight 

intake decrease by DisA rats and a slight increase by ConA rats over these days. 

During these last eight exposures of Phase I, DisA rats consumed 114% percent 

more than ConA rats. At no point did abstinence group assignment impact intake 

levels as there was a complete lack of Group effects. 

At the beginning of Phase II, ConA and DisA access schedules were 

changed to alternate day exposures. During the transition between Phases I and 

II (days 41, 45, 47 and 49), the main effect of Access was maintained, [F(1,36) = 

30.98, p < 0.001] and there was an Access by Days interaction [F(3,108) = 6.43, 

p < 0.001]. The interaction appeared to be due to an intake increase by ConA 

rats, and a small decrease by DisA rats at the beginning of Phase II. The main 

effect of Access was due to maintained access-induced difference. Over the four 

alternate access days of Phase II (days 47, 49, 51 and 53), the main effect of 

Access persisted [F(1,36) = 22.66, p < 0.0001]. The lack of Access by Days 

interaction suggests intake quickly stabilized after the transition to Phase II. 

During Phase II, DisA rats consumed on average 68% more solution than ConA 

rats. Once again, the lack of Group effects indicates that group assignment had 

no impact on sugar intake. All collected data are summarized are Table 5. 

Deprivation Effect 

At the end of Phase II, sucrose access was withdrawn and restored after a 

period of 3 (SAb) or 9 (LAb) abstinence days, illustrated in Figure 8. The two NAb 

groups continued to receive alternate day access. Comparing sucrose solution 

consumption during the last pre- and first post-abstinence day in the SAb groups 



(days 53 and 57), there was an effect of Access [F(1,12) = 5.85, p < 0.05], but 

not Days, [F(1,24) = 0.001, p > 0.05]. The interaction effect approached 

significance, [F(1,12) = 4.726, p = 0.05]. This interaction appeared to reflect a 

small intake decrease by DisA rats and a small increase by ConA rats over this 

period. The same analysis for the LAb group (days 53 and 63) yielded an effect 

of Access [F(1,12) = 6.70, p < 0.05] but not Days [F(1,24) = 0.029, p > 0.05]. The 

lack of Days effect indicates an absence of a sucrose DE for both LAb and SAb 

conditions. The significant Access effect indicates that access-induced 

differences were maintained after both short and long abstinence periods. 

For the SAb group which was compared with the NAb group on common 

saccharin days, over the first four post-abstinence sucrose days (days 57, 59, 61 

and 63) there was a main effect of Access [F(1,24) = 8.08, p < 0.001] but not 

Group [F(1,24) = 0.35, p > 0.05] or Access by Group interaction [F(1,24) = 0.24, 

p > 0.05]. Similarly, over the middle four post-abstinence exposures (days 65, 67, 

69 and 71), there was only a main effect of Access [F(1,24) = 5.55, p < 0.05]. 

Over the last four exposures (days 73, 75, 77 and 79), there again was a only 

main effect of Access [F(1,24) = 7.03, p < 0.05]. Thus although SAb ConA rats 

may have consumed slightly more sucrose during the post-abstinence period 

than NAb ConA rats, this effect was not significant. 

The situation was similar for the LAb group and during the first four post-

abstinence sucrose days (days 63, 65, 67 and 69) there was only a main effect of 

Access [F(1,24) = 10.86, p < 0.01]. There was however, a Days by Group 

interaction [F(3,72) = 5.08, p < 0.01] which appeared to be due to increasing 



consumption by both LAb DisA and LAb ConA rats after abstinence relative to 

the NAb groups. It was explored further in a Group (LgA, NcR) by Access 

ANOVA for the first post-abstinence day (day 63). There was only an effect of 

Access [F(1,24) = 13.57 p < 0.001] indicating that the Days by Group interaction 

was not due to a DE on the first post abstinence day. Over the middle four post 

abstinence days (days 71, 73, 75 and 77) there was only a main effect of Access 

[F(1,24)= 13.909, p< 0.001]. Finally, over the last four post-abstinence 

exposures, there was again only a main effect of Access [F(1,24) = 15.05, p < 

0.05]. Overall, although there appeared to be a trend of increased consumption 

by SAb ConA and LAb DisA rats in Figure 8, these effects were not large and 

never reached significance. The effect of previous access history was maintained 

throughout the duration of the post-abstinence period. All collected data are 

summarized are Table 5. 

Discussion 

Phase I and II are in agreement with previous findings from our laboratory 

using male rats (Hewitt & Eikelboom, 2008). Once every fourth day DisA to 4% 

sucrose resulted in significantly higher solution intake than ConA. In Phase II, 

under equivalent access conditions, access-induced changes were maintained. 

Therefore, female rats readily express the DisA/ConA consumption effects 

previously described for males. 

Post-abstinence sucrose solution consumption was not affected by either 

short or long periods of abstinence. This is in contrast to elevated post-

abstinence consumption following 8 days of saccharin abstinence by both ConA 
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and DisA history rats in Experiment 2b as well as previous reports describing a 

saccharin DE (Gandelman & Trowill, 1969; Neznanova, Zvartau & Bespalov, 

2002) but consistent with a lack of evidence for a similar consumption increase 

following sucrose abstinence (Ashton & Trowill, 1970; Ashton, Gandelman & 

Trowill, 1970).These findings are discussed further in the general discussion. 



General Discussion 

In addition to replicating previous results, several new findings are 

documented in this thesis. First, Experiments 1 and 2 demonstrated that DisA, 

relative to ConA to an optional sweet solution results in intake increases even 

when that solution is non-nutritive saccharin. Therefore, access-induced 

consumption changes appear to be driven predominantly by taste in the absence 

of the positive reinforcing postingestive factors of sucrose (de Araujo et ai, 2008; 

Sclafani & Ackroff, 2004). Experiment 2 showed that even with saccharin, once 

the DisA/ConA difference is established, it can persist after both access 

schedules are switched to a common alternate day access. More saccharin in 

Experiment 2 (and sucrose in Experiment 3) was consumed by DisA than ConA 

rats during the extended equivalent access period. Further underscoring the 

importance of taste, Experiment 2c showed that access-induced differences 

could transfer from saccharin to sucrose solutions. Experiment 2c also extended 

the duration over which access history consumption effects are known to persist; 

even after 55 days of equal access rats that had initially received DisA consumed 

more sucrose solution than rats with a ConA history. 

Experiments 2b and 3 examined the influence on consumption of a single 

longer abstinence period in groups with a DisA or ConA sweet solution history. In 

Experiment 2b, 8 days of saccharin abstinence resulted in a robust but transient 

saccharin intake elevation, i.e. a DE. The preservation of earlier access-induced 

intake differences following abstinence suggests that the effect of a single 

abstinence period on consumption is not an extension of DisA/ConA induced 



differences. In contrast, Experiment 3 failed to find a DE with 4% sucrose after 

either 3 or 9 abstinence days. That saccharin and sucrose support a DisA/ConA 

difference but only saccharin supports DE expression provides further evidence 

for a difference between the two consumption effects. Because sucrose, but not 

saccharin intake is limited by calories (Smith & Sclafani, 2002) the sucrose DE 

may have been suppressed by postingestive satiety factors. 

This work shows that access variables play an important role in 

consumption. Repeated intermittent abstinence (Variable 1) can lead to 

sustained and long term intake increases (p. 11). On the other hand, a single 

long abstinence period (Variable 2) may cause a transient intake increase that is 

different from that induced by Variable 1. The quality of the ingestant (Variable 3) 

appears to interact with both variables. Whereas sweet taste is sufficient for 

access difference to emerge with Variable 1, postingestive consequences may 

have had a largely inhibitory effect on Variable 2. This is largely consistent with 

the idea that orosensory properties stimulate intake of palatable foods whereas 

postingestive factors often act to limit their consumption (Sclafani & Ackroff, 

2004; Smith, 2000). 

Relation to previous work 

Our laboratory has been examining the influence of different access 

schedules on liquid sucrose intake. The finding which provided the impetus the 

present thesis was that consumption of sucrose solutions increases dramatically 

with DisA relative to ConA (Hewitt & Eikelboom, 2008). This difference was found 

to persist when rats with different access histories were switched to equivalent, 



alternate day access schedules. The first prediction tested in Experiments 1 and 

2a was that DisA/ConA access-induced differences could be induced and 

maintained by sweet taste alone in the absence of reinforcing postingestive 

factors. Both Experiments 1 and 2 confirm that DisA versus ConA to saccharin 

solutions induce large intake differences. Experiment 2a showed that as for 

sucrose (Hewitt & Eikelboom, 2008), once saccharin consumption differences 

are established, they can be maintained under equivalent access schedules. 

Moreover, in Experiment 2c consumption changes induced by DisA/ConA to one 

sweet taste, saccharin, could generalize to another sweet taste, sucrose. 

Collectively, these findings demonstrate that access history can significantly 

affect current and future consumption by the influence of sweet taste alone. 

These finding also conform to early studies that examined saccharin 

during intermittent access. First, Pinel and Huang (1976) reported that repeating 

alternate day 24 h saccharin access resulted in an increased saccharin 

preference (relative to water which was always available in a second bottle) for a 

high saccharin concentration (1.5%). Second, Wayner et al. (1972) noted that 

four rats presented with a low concentration of saccharin (0.05%) for 2 days on 

and 1 day off tended to increase their saccharin intake but their results were not 

supported by statistics. 

A second finding reported by our lab was that the DisA/ConA effect was 

most robust for a 4% sucrose solution but less apparent or absent at higher (8 

and 16%) and lower (1%) concentrations (Hewitt & Eikelboom, 2008). The lack of 

access-induced difference for the 1% solution is probably due to it being less 



attractive than a 4% solution (Smith, 2000; Young & Greeene, 1953). Because 

saccharin is generally less preferred than sucrose (Collier & Novell, 1967; Young 

& Madsen, 1963), small or non-existent DisA/ConA with low sucrose 

concentrations are also consistent with smaller saccharin intake differences in 

Experiments 1 and 2. 

Although in choice tests more concentrated sucrose solutions are always 

preferred, the amount of solution that can be ingested over a period of time is 

limited by its postingestive effects which increase with concentration (Collier & 

Bolles, 1968; Smith & Sclafani, 2002). Therefore, more satiating postingestive 

consequences of more concentrated solutions may have masked DisA/ConA 

differences for 8 and 16% sucrose solutions. This agrees with findings showing 

that 2 hour MWF relative to 2 hour daily access results in increased intake of 

3.2% and 10% but not 32% sucrose solutions (Wojnicki, Stine & Corwin, 2007) 

and 3.2% and 10% but not 32% sucrose/fat mixtures (Wong, Wojnicki & Corwin, 

2009). 

For saccharin, both preference and intake decrease at higher 

concentrations but this appears to be determined primarily by increasing salience 

of its bitter, quinine-like aftertaste (Dess, 1993; Smith & Sclafani, 2002). 

Therefore, a second prediction tested in Experiment 1 was that the DisA/ConA 

intake effect would be evident across a range of saccharin concentrations due to 

its relative lack of post-ingestive satiating consequences. That this was confirmed 

adds to the idea that with higher sucrose concentrations postingestive inhibitory 

factors may mask access-induced differences. 



Although DisA/ConA consumption differences may not be evident with 

higher sucrose concentrations, previous work in our laboratory has shown that 

this may only mask rather than abolish the effect of access (Adams and 

Eikelboom, Unpublished). When rats were given DisA/ConA to a 16% sucrose 

solution, intake differences were small or absent. However, when all rats were 

subsequently switched to alternate day exposures and the concentration dropped 

from 16 to 4%, consumption differences readily emerged with DisA history rats 

consuming more than those with a ConA history. Therefore, although the effect 

of DisA access may have been masked with more calorie-laden solutions, it was 

revealed by switching to a lower concentration. 

Experiment 2 also showed that the impact of access history persists over 

a relatively long duration. After 45 days of initial ConA/DisA in Phase I, access 

history effects did not dissipate even after 55 days of equal access. That is, even 

though all rats were provided with access to the same solutions on the same 

schedule, rats with a DisA history continued to consume more than those with 

ConA history. 

Taken together, these results show that taste can drive access-induced 

consumption changes that are long-term and durable. This is important because 

like taste, postingestive consequences alone can be rewarding (de Araujo etal., 

2008; Sclafani, 2001; Sclafani & Ackroff, 2004). However, these findings do not 

exclude a potential role for postingestive processes in inducing access 

differences which may function independently of taste. Further studies might 

address this issue by employing intragastric infusions bypassing orosensory 



stimulation or by utilizing taste-blind animals. 

Experiments 2b and 3 explored consumption effects of a longer isolated 

period of abstinence relative to the short repeating periods as in the DisA 

schedule. In agreement with previous work (Gandelman & Trowill, 1969; 

Neznanova, Zvartau & Bespalov, 2002), both access history groups displayed a 

robust saccharin DE after 8 days of saccharin abstinence. The size of the post-

abstinence intake increase relative to the last pre-abstinence day was similar for 

both DisA and ConA rats while the access-induced difference evident during the 

alternate day access phase was maintained. This DisA/ConA difference was also 

maintained on subsequent alternate day access exposures as saccharin intake 

decreased to pre-abstinence levels. In other words, while access-induced 

changes persisted after access to saccharin was restored, the access history did 

not impact the relative size of the saccharin DE. 

Experiment 3 was designed to expand this finding to sucrose, but contrary 

to the predicted outcome and in contrast to Experiment 2b, a DE was not 

observed when 4% sucrose was utilized and there was no evidence for 

increased consumption after either 3 or 9 days of abstinence. This was surprising 

because a 4% solution is significantly more attractive than a 0.25% saccharin 

solution. 

Several possible explanations for the failure to find a sucrose DE can be 

ruled out. First, although the alternate day equal access phase of Experiment 3 

(8 days) which preceded the longer abstinence was shorter than for Experiment 

2 (24 days), in both cases solution intake was stable. Second, although female 



rats were used in Experiment 3 and males for Experiment 2, previous work has 

shown that both male and female rats express a saccharin but not a sucrose DE 

(Ashton, Gandelman & Trowill, 1970; Dube, Ashton & Trowill, 1970). Third, 

although a ceiling effect might explain the lack of DE for DisA rats, it does not 

account for its absence in ConA animals which consumed less sucrose solution 

overall and could have consumed more as evidenced by DisA rats consumption. 

Fourth, because the DE was only observed with saccharin it is possible that 

motivation to obtain saccharin but not sucrose increases after abstinence. 

However, there are a number of operant studies that suggest increased 

motivation for sucrose after periods of abstinence. Using a standard operant 

procedure, rats were found to increase responding for sucrose after being 

returned to operant chambers following 14 days of sucrose abstinence (Avena, 

Long & Hoebel, 2005) suggesting a higher motivation for sucrose. Moreover, the 

reinstatement model which is often employed to study craving (Shaham etal., 

2003) has also provided evidence for increasing motivation to obtain sucrose 

during abstinence (Grimm, Fyall & Osincup, 2005; Grimm etal., 2003; Grimm, 

Shaham & Hope, 2002; Lu, Grimm, Hope & Shaham, 2004). In these studies, 

initial lever presses resulted in 10% liquid sucrose delivery paired with a tone-

light stimulus. Following a period of abstinence, responding was measured again 

during an extinction test (no stimulus or sucrose) and a subsequent 

reinstatement test (reinforced by the tone-light stimulus only). Responding during 

both extinction and reinstatement tests was found to increase with abstinence 

duration, peaking after approximately one month (Grimm, Fyall & Osincup, 2005; 



Lu, Grimm, Hope & Shaham, 2004). This increasing responding was taken to 

index increasing craving. Therefore these findings can be taken to suggest that 

sucrose craving "incubates" during abstinence in a manner that may be similar to 

a saccharin DE. However, because these operant procedures may be different 

from measuring 24 h ad lib intake, it is not clear how DEs and the incubation of 

craving are related. 

Only one study compared post-abstinence extinction and reinstatement 

responding with post-abstinence ad lib intake (Grimm, Fyall & Osincup, 2005). 

Rats consumed more 10% sucrose solution in their home cage after 7 days 

(relative to 1 or 30 days) of sucrose absence suggesting a possible sucrose DE. 

However, these results may be problematic for several reasons. First, the 

saccharin DE has been shown to be dependent on context, and is not expressed 

when the post-abstinence environment is distinct from the pre-abstinence 

environment (Neznanova, Zvartau & Bespalov, 2002). In the case of Grimm et al. 

(2005), rats were trained to respond for sucrose in an operant chamber, whereas 

ad lib access following abstinence occurred in the animal's home cage. Second, 

groups were not divided on the basis of sucrose consumption which is highly 

variable between rats. Taking these issues into consideration along with the fact. 

that a sucrose DE was not observed in Experiment 3 after a comparable 

abstinence duration, nor by others (Ashton & Trowill, 1970; Ashton, Gandelman 

& Trowill, 1970) suggests that findings reported by Grimim et al. (2005) were 

anomalous. Therefore, although evidence suggests that sucrose craving 

increases with abstinence it does not necessarily translate to increased post-



abstinence consumption and other factors must account for the discrepancy 

between Experiments 2b and 3. 

All studies suggesting increasing motivation for sucrose with abstinence 

utilized operant procedures during which sucrose access was limited (Avena, 

Long & Hoebel, 2005), or not available (Grimm, Fyall & Osincup, 2005; Grimm et 

ai, 2003; Grimm, Shaham & Hope, 2002; Lu, Grimm, Hope & Shaham, 2004). 

On the other hand, studies utilizing non-operant ad lib access, as in Experiment 

3, have consistently failed to observe a sucrose DE (Ashton & Trowill, 1970; 

Ashton, Gandelman & Trowill, 1970). This is despite the fact that a saccharin DE 

was observed in Experiment 2b and in previous studies (Gandelman & Trowill, 

1969; Neznanova, Zvartau & Bespalov, 2002; Sinclair & Li, 1989). As operant 

procedures limit or eliminate sucrose intake, they also limit the postingestive 

feedback which inhibits sucrose intake, i.e. satiety. Inhibitory postingestive 

feedback exerts stronger limiting control over sucrose than saccharin 

consumption (Smith, 2000; Smith & Sclafani, 2002) so differences in satiety 

induced by the two solutions could account for the discrepant outcomes of 

Experiments 2b and 3. 

If this is indeed the case, further support would be provided for a 

distinction between DE and DisA/ConA consumption effects suggesting that the 

former is more liable to suppressing postingestive influences. Whereas the 

shortest isolated access interruption reported to result in a saccharin DE intake 

increase was 3 days (Neznanova, Zvartau & Bespalov, 2002), no consumption 

increases were observed with sucrose after 3 or 9 days in Experiment 3. On the 
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other hand, experiments reported here and by others (Hewitt & Eikelboom, 2008; 

Pinel & Huang, 1976) showed that repeated 1, 2 or 3 day abstinence periods 

produce robust intake increases of both saccharin and sucrose solutions. 

Suppression of sucrose DE by satiety is also consistent with its limiting 

effect on consumption of higher sucrose concentrations despite their being 

preferred to lower ones (Collier & Bolles, 1968; Smith & Sclafani, 2002) and that 

DisA/ConA differences for sucrose solutions above 4% were suppressed by 

satiety as proposed earlier (p. 54). Inhibitory postingestive feedback appears to 

be mediated by both stomach distension and by nutritive information presumably 

transduced by chemoreceptors in the intestine (Powley & Phillips, 2004). Vagal 

afferents innervating the stomach and intestine project to the nucleus of the 

solitary tract which also receives orosensory input. This nucleus can serve as a 

site that could integrate orosensory and postingestive feedback to control feeding 

(Smith, 2000). 

The influence of satiety on the DE can be addressed in future studies. For 

example, if a 4% sucrose solution is too satiating to produce a DE over 24 h, 

then a weaker, less calorie-dense solution may not be. In addition, taking finer 

resolution measurements of consumption, comparing individual licks or intake 

over a shorter time frame following onset of post-abstinence access may reveal 

an initial DE that is masked over the course of 24 hours. Alternatively, 

postingestive feedback could be limited by exploring the DE in sham feeding 

preparation. 

Role of access variables 



The introduction identified access variables that influence how food is 

consumed (p. 11). The current data underscores that intermittent access 

schedules can lead to a sustained intake escalation (Variable 1). The results are 

consistent with previous findings showing that intermittent access to optional fat 

or sugar can lead to elevated levels of consumption (Avena, Rada & Hoebel, 

2008; Corwin, 2006; Hewitt & Eikelboom, 2008; Wojnicki, Stine & Corwin, 2007). 

It also agrees with previous findings showing that intermittent access history can 

significantly impact consumption even after access schedules are made 

equivalent (Hewitt & Eikelboom, 2008). 

Isolated periods of abstinence (Variable 2) appear to produce transient 

consumption increases which Experiment 2b and 3 suggest may be different 

from access-induced consumption changes induced by DisA/ConA. Although 

increasing duration of abstinence probably results in increased craving (Grimm, 

Fyall & Osincup, 2005; Spanagel & Holter, 1999) Experiment 3 shows that this 

does not always result in increased intake. This suggests that postingestive and 

taste factors (quality; Variable 3) are a determining properties which interact with 

Variables 1 and 2 to determine how much or little is consumed. Not only does it 

appear that taste is predominantly responsible for access-induced consumption 

changes with Variable 1, but that they can also be maintained by taste in the 

absence of calories. Postingestive effects on the other hand may suppress 

access-induced changes by Variables 1 and 2, although isolated periods of 

abstinence appear to be more liable. 

Previous work has examined the number of access sessions (Variable 4) 



that are required for establishing a persistent DisA/ConA difference. With eight or 

twelve DisA exposures every third or fourth day and 29 days of ConA or more to 

sucrose, differences induced by access persist during alternate day access 

exposures, but not after only four DisA exposures relative to 10 days of ConA 

(Hewitt & Eikelboom, 2008). 

Combined, this work shows that relatively simple manipulations can have 

long term effects on consumption. Intake differences after 45 days of ConA/DisA 

to saccharin persisted over 55 days of equal access without any indication of 

dissipating. That these variables affect intake is interesting because previous 

research has shown that similar manipulations may contribute to escalating drug 

intake and the development of drug addiction. 

Access Variables and Excessive Intake of Food and Drugs 

The outlined access variables may also exert similar control over drug 

self-administration. Alcohol studies methodologically similar to Experiments 1-3 

and previous sucrose work (Hewitt & Eikelboom, 2008) have also yielded similar 

results (Pinel & Huang, 1976; Sinclair & Senter, 1967; Wise, 1973). Moreover, 

escalating intake of rewarding drugs is concomitant with certain behaviours 

characteristic of addiction and similar behaviours may emerge with escalating 

intake of palatable foods. This suggests that common phenomena are involved in 

excessive food and drug intake and implies overlapping neural substrates. 

Access variables and alcohol intake 

A number of studies have found that, as for sweet solutions, intermittent 

ethanol access can lead to a large and sustained intake increases (Pinel & 



Huang, 1976; Simms, Bito-Onon, Chatterjee & Bartlett, 2010; Simms etai, 2008; 

Spanagel etai, 1996; Wayner etai, 1972; Wise, 1973). Alternate day 24 hour 

periods of 20% ethanol access result in escalating intake whereas continuous 

access to the same solution results in low, stable levels of intake (Wise, 1973). 

Such large intake increases with DisA are particularly striking as it is notoriously 

difficult to induce ethanol drinking at appreciable levels in rats without the aid of 

additional methods such as sucrose fading (Samson, 1986). 

Escalating ethanol intake with intermittent access may be influenced by 

the inter-session interval which appears to interact with the concentration of the 

solution. Whereas intake of 20% ethanol increased with the duration of the inter-

exposure interval for up to 5 days (Holloway, Bird & Devenport, 1984) with lower 

10 or 7% concentrations, the increase became asymptotic with 1 day inter-

session intervals (Sinclair & Bender, 1979). Interestingly, this suggests that 

longer inter-session intervals could yield larger consumption changes for higher 

sucrose (>4%) or saccharin concentrations. 

The alcohol DE is a transient intake increase that follows isolated access 

interruptions (Heyser, Schulteis & Koob, 1997; Holter etai, 1998; LeMagnen, 

1960; Spanagel & Holter, 1999). As with saccharin, the alcohol DE increase as a 

function of abstinence duration (Neznanova, Zvartau & Bespalov, 2002; Sinclair, 

Walker & Jordan, 1973) and has proved so robust that a simple mathematical 

equation has been proposed to model it (Sinclair, 1979; Sinclair & Li, 1989). 

Finally long term access (Variable 4) has been argued to lead to loss of 

control over drug taking (Wolffgramm & Heyne, 1995; Wolffgramm, Galli, Thimm 



& Heyne, 2000). For example, drinking of ethanol solutions is less inhibited by 

quinine adulteration after long but not short exposure (Wolffgramm & Heyne, 

1991). Similarly, adulterating ethanol with quinine suppresses an alcohol DE in 

rats with two but not eight months of ethanol experience (Spanagel, Holter, 

Allingham, Landgraf & Zieglgansberger, 1996), suggesting that with extended 

access consumption becomes inflexible. 

Importantly, the aforementioned alcohol studies utilized procedures very 

similar to those described in Experiments 1-3 in that alcohol was delivered in a 

non-operant manner in standard drinking bottles attached to the animal's homes 

cage. However, merely showing that both alcohol and sweets consumption 

increases under similar conditions is a relatively crude measure of behaviour. 

Evidence from a number of self-administration studies suggests that escalating 

intake may be accompanied by a number of behavioural changes argued to 

reflect addiction, some of which may also be evident with palatable foods. 

Escalating intake and addiction-like behaviour. Rats with intermittent 

DisA to a palatable food or rewarding drug escalate their intake to unusually high 

levels. An escalation from low to high levels of drug intake has been argued to 

reflect the transition from moderate and controlled, to excessive and compulsive 

consumption (Koob & Le Moal, 2001; Wolffgramm, Galli, Thimm & Heyne, 2000) 

and has been shown to be concomitant with a number of behaviours thought to 

be characteristic of addiction (Ahmed, 2005; Wolffgramm & Heyne, 1995; 

Wolffgramm, Galli, Thimm & Heyne, 2000). Intake of rewarding drugs such as 

cocaine escalates when it is available intermittently for 6 hour sessions (Ahmed 



& Koob, 1998; Ahmed, Walker & Koob, 2000). Although in these studies 

intermittent access was not the manipulation of interest, daily access sessions 

were sometimes skipped to combat weight loss (Ahmed & Koob, 1998; Ahmed & 

Koob, 1999), effectively resulting in a DisA schedule. For instance, in the study 

by Ahmed and Koob (1999) escalating intake was observed over 48 access 

sessions spaced over 100 days. 

Rats that escalate cocaine self-administration also display increased 

motivation for the drug as reffected by higher breakpoints on a progressive ratio 

schedule (Paterson & Markou, 2003), are more resistant to extinction, more 

prone to reinstatement of drug seeking behaviour (Ahmed & Cador, 2006; 

Ahmed, Walker & Koob, 2000) and persist in drug-seeking in the face of aversive 

consequences (Vanderschuren & Everitt, 2004). These are behaviours thought to 

parallel characteristics of human drug addiction (Deroche-Gamonet, Belin & 

Piazza, 2004). Similar behavioural changes have been found to emerge with 

escalating intermittent intake of palatable foods. Rats with MWF access had 

higher breakpoints for vegetable shortening relative to animals with everyday 

access (Wojnicki, Babbs & Corwin, 2010). Additionally, rats with DisA, relative to 

ConA sucrose solution experience preferred their sucrose solution more in a 

preference test (relative to sweet, Kool-Aid flavoured solutions; Adams and 

Eikelboom, Unpublished). Although these findings suggest that escalating food 

intake with intermittent access is concomitant with an increased motivation for 

food, evidence is limited and more studies examining these changes would be 

useful. 



Relevance to BN and BED 

BN and BED are both characterized by intermittent bouts of gorging, or 

binging on highly palatable foods, but BN is also accompanied by inappropriate 

purging behaviour (American Psychiatric Association, 2000). A binge is defined 

as "eating in a discrete time period, an amount of food that is definitely larger 

than what most people would eat in a similar time period under similar 

circumstances" (American Psychiatric Association, 2000). The forbidden food 

hypothesis suggests that foods consumed during binges tend to be designated 

as "forbidden", ones to which the patient has self-restricted their access (Kales, 

1990). In the DisA/ConA, MWF, and cyclic access models, rats which receive 

limited access to fats or sweets engage in longer/larger bouts of eating/drinking 

and consume more during a discrete time period than animals with less limited or 

ad lib ConA (Avena, Rada & Hoebel, 2008; Corwin etai, 1998; Hewitt & 

Eikelboom, 2008; Wojnicki, Stine & Corwin, 2007). This repetitive overeating 

corresponds to the definition of binging in humans diagnosed with BN or BED. 

Although in humans consumption is often self-restricted, children who's parents 

were rated more restrictive with dessert/snack type foods consumed more when 

given free access to similar foods in an experimental setting (Fisher & Birch, 

1999). Therefore, intermittent access protocols may model aspects of binge-like 

eating, possibly implicating cycles of intermittent gorging and restriction in the 

development of BN and BED. This is interesting because although binging is 

associated with dieting there is disagreement about whether dieting causes 

binging (Grilo & Masheb, 2000). Intermittent access protocols, which like dieting, 



restrict access suggest that restrictive eating habits may precede excessive 

eating. 

Criteria for BN and BED also overlap significantly with criteria for addiction 

(American Psychiatric Association, Diagnostic and statistical manual of mental 

disorders (4th ed., text rev.)., 2000; Corwin & Grigson, 2009; Epstein & Shaham, 

2010) and these disorders are frequently co-expressed (Brewerton et ai, 1995; 

Bulik, Sullivan & Kendler, 2002; Bushnell etai, 1994; Herzog etai, 1992). It is 

therefore particularly interesting that manipulations that lead to excessive intake 

of food in rats can also lead to escalating drug consumption, and suggests that 

common mechanisms lead to excess in both cases. It may therefore be 

warranted to further explore the relationship between eating disorders and drug 

abuse. 

Concluding Comments 

This thesis shows that relatively simple access manipulations can have 

remarkably large and long term consumption effects. Because the access 

parameters leading to excessive food or drug intake are similar, a common 

mechanism may be involved. This is not a radical proposal especially given that 

both are examples of a behaviour that can be expressed casually and in 

controlled manner but in certain situations, and for some individuals, can 

becomes excessive and uncontrolled (American Psychiatric Association, 2000). 

Additionally, the extensive overlap in neurobiology involved in addiction and 

eating behaviour supports such a possibility (Figlewicz et ai, 2003; Kelley & 

Berridge, 2002; Lutter& Nestler, 2009; Zheng, Lenard, Shin & Berthoud, 2009). 
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According to one account, addiction is a result of repeating drug 

withdrawal that causes a chronic increase in the threshold for activation of 

reward circuits (Koob & Le Moal, 1997). This elevated threshold leads to 

increased drug intake as a compensatory measure. Opiate systems are known to 

be involved in sugar intake (Levine, Kotz & Gosnell, 2003) and precipitated and 

spontaneous opiate-like withdrawal symptoms have been reported in rats with 

cyclic sugar experience (Avena, Bocarsly, Rada, Kim & Hoebel, 2008; Colantuoni 

et ai, 2002). This is similar to depression or anxiety like behaviours that are 

reflective of drug withdrawal but dissipate over 2-6 days (Barr & Markou, 2005). 

Alternating access between highly palpable chow for 2 days of the week and less 

palatable standard lab chow on the other 5 may cause increased release of 

corticotropin releasing factor (Cottone et ai, 2009), the same neuropeptide 

suggested to be involved in the chronic reward deficiency (Koob & Le Moal, 

2001). Therefore, one possibility is that repeating DisA to sweet solutions 

produces intermittent withdrawal that leads to alterations in the reward threshold 

leading to increased intake similar to those seen with drug consumption. 

Because a behavioural criterion of BED in humans is feelings of depression or 

disgust that follow an episode of overeating (American Psychiatric Association, 

2000), it may be useful to evaluate behavioural measures that suggest 

withdrawal after intermittent access to palatable foods (Appendix A). 

That taste alone might have such profound effects on consumption 

patterns is not surprising given that the capacity to distinguish food sources high 

in energy is essential to survival. Animals may have evolved mechanisms that 
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encourage consumption of infrequently available, high quality resources. On the 

other hand, environments in which highly palatable food sources are constantly 

available may not require increased intake. A potential consequence of this for 

humans is that rich foods coupled with access restrictions (possibly ones that are 

self-imposed), may lead to aberrant eating patterns such as those manifested in 

BEDorBN. 
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Appendix A 

In humans diagnosed with BN or BED, an episode of binging may be 

followed by distress or guilt or other aversive affective states (American 

Psychiatric Association, 2000) and these disorders are often comorbid with 

depressive and anxiety disorders (Brewerton etai, 1995; Hudson, Hiripi, Pope & 

Kessler, 2007). According to one account of addiction, drug withdrawal reduces 

in brain reward area activation and the recruitment of brain stress systems that 

becomes chronic with frequent drug use (Koob & Le Moal, 2001). The resulting 

aversive affective state may then drive drug consumption. It is possible that rats 

binging on food may display behaviours reflecting aversive affective states that 

are known to follow drug use, such as anxiety (Barr & Markou, 2005). 

For rats, a validated operational measures of anxiety is a greater 

proportion of time spent in closed relative to open arms of an EPM (Pellow, 

Chopin, File & Briley, 1985). Relative to ad lib sucrose and chow rats, after a 

month of the cyclic sugar diet rats spent more time on the closed arms of the 

EPM following administration of the opiate antagonist naloxone (Colantuoni etai, 

2002), or after a 36 h fast (Avena, Bocarsly, Rada, Kim & Hoebel, 2008). Also 

after three or four weeks of MWF fat access, mice spent more time in the hide-

box during a light/dark emergence test (de Araujo-Held, Martin, de Sousa & 

Luscher, 2002) which is another validated rodent model of anxiety (Crawley & 

Goodwin, 1980). Collectively, such findings suggests that animals with 

intermittent access display increased anxiety and the purpose of Experiment 2b 

was to test anxiety-like behaviour in DisA and ConA rats on two consecutive 



anxiety tests; the EPM, and the light/dark emergence test. 

Methods 

Apparatus 

Animals were tested on the EPM for 300 seconds each. The EPM was 

constructed of 4 arms at right angles 12 cm wide and 52 cm in length. Two 

opposing arms were walled by opaque Plexiglas ® 40 cm high and the remaining 

two arms were open without sides. All arms were joined at a central 12 by 12 cm 

square platform elevated 53 cm from the ground. The maze floor was removed 

and washed between test trials. The room was illuminated by one 13 W 

fluorescent red lamp (2 LUX at apparatus floor level). The rat's performance was 

recorded by an overhead camera and scored with ANY-maze Video Tracking 

System software (Stoelting Co., Illinois USA). The animal was considered to 

have entered or left an arm or the central platform when the central point of the 

tracked animal passed across one of the boundaries. Scored behaviours 

included percent number of open arm entries, percent time spent in open arms, 

and number of entries to closed arms. 

The light/dark emergence test was conducted in a room illuminated by one 

13 W fluorescent lamp (2 LUX at maze floor level) within an apparatus consisting 

of a 120 x 120 x 45 cm white melamine enclosed arena and a black ABS plastic 

floor. A 40 x 24 x 17 cm black melamine hide box was located at the midpoint of 

the edge at one side of the arena. At the start of each trial, animals were placed 

in the hide box and activity was recorded by an overhead camera and scored 

with ANY-maze Video Tracking System software. Subjects were followed for 300 



s and considered to have entered or left the hide box when their entire tracked 

area was in either the arena or the hide box. Scored behaviours included latency 

to emerge from the hide box and, time spent in the open field. 

Procedure 

On day 56 of Experiment 2a (Phase II), immediately after daily access to 

saccharin was withdrawn, animals were tested on the two anxiety measures. 

Because data collection was staggered across two days, 16 animals were tested 

across two days. Rats were first tested on the EPM. At the beginning of each 

test, the rat was placed in the centre facing the open arm furthest away from the 

experimenter and recording was initiated once the experimenter left the room. 

After 300 s in the EPM, each rat was returned to their home cage. When EPM 

testing was completed for all animals, rats were subjected to the light/dark 

emergence test. Each rat was tested in the light/dark emergence test 

approximately 1.5 h after completing the EPM. 

Statistics 

Differences between DisA and ConA rats on the EPM measures (percent 

time spent in open in open arms, percent of open arm entries) and light/dark 

emergence test (time spent in open field, number of open-field entries) were 

analyzed using independent samples f-tests. Pearson's correlation coefficients 

were calculated between day 1 saccharin consumption, average Phase II 

consumption, and the behavioural measures. 

Results 

There was no difference between DisA and ConA rats on EPM or 
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light/dark emergence measures which is illustrated in Figure 9. DisA rats spent 

an average of 56% of their time in the open arms relative to 54% by ConA rats, 

[f(30) = 0.66, p > 0.05]. ConA rats made 56% of their entries into the open arms 

relative to the 54% by DisA rats, [f(30) = 0.61, p > 0.05]. Day 1 saccharin 

consumption by all rats was correlated with percent time spent in open arms, [r = 

0.39, p < 0.05] and percent open arm entries, [r = 0.47, p < 0.01]. Mean Phase II 

consumption sucrose intake was not significantly correlated with time spent in 

open arms, [r= 0.32, p < 0.10] or percent open arms entries, [r= 0.33, p < 0.10] 

although both approached significance. 

During the light/dark emergence test, the DisA and ConA rats did not differ 

in latency to exit the hide box. [r(30) = 1.5, p > 0.05] or in time in open field, [£(30) 

= 0.925, p > 0.05]. Emergence test scores were not correlated with either first 

day and average Phase II saccharin intake or EPM measures. 

Discussion 

Anxiety was measured on day 56 of Phase II but no differences in 

behavioural measures were detected between DisA and ConA rats on any 

measure reported. It is possible that if tests were conducted following a period of 

food and saccharin restriction, or after naloxone administration, anxiety 

differences could be detected as reported previously (Avena, Bocarsly, Rada, 

Kim & Hoebel, 2008; Colantuoni etai, 2002). Our results also contrast with 

reported increases in anxiety-like behaviour in mice after three to four weeks of 

MWF fat access (de Araujo-Held, Martin, de Sousa & Luscher, 2002), although in 

this case MWF access mice were compared to control animals that had lab chow 
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but no fat access. Therefore, it is not clear if access history or dietary richness 

had an effect on anxiety. 

Although access history did not seem to have an impact on the anxiety 

measures, EPM measures were inversely correlated with the day 1 saccharin 

intake, and approached significance for average intake in Phase II. These results 

agree with the inverse relationship previously reported between EPM anxiety 

measures and sugar intake (DeSousa, Wunderlich, De Cabo & Vaccarino, 1998). 

High sucrose intake has also been previously correlated with a faster acquisition 

of cocaine and amphetamine self-administration (DeSousa, Bush & Vaccarino, 

2000; Gosnell, 2000) and an upward shifted amphetamine self-administration 

dose-response curve (DeSousa, Bush & Vaccarino, 2000). In future studies, it 

might be useful to obtain EPM and other behavioural measures prior to sugar 

exposure that may provide information about subsequent consumption. 
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Tables and Figures 

Table 1: Summary of Data Collected in Experiment 1 

Food Weight Water Saccharin 

Concentration Block DisA ConA DisA ConA DisA ConA DisA ConA 

1.00% Baseline 28.9 2{j\6 i l l 308 43^ 44.5 - -

Block 1 29.2 29.5 367 365 38.1 38.9 26.3 14.6 

Block 2 30.2 31.0 426 426 36.5 32.7 43.8 23.5 

Block 3 31.2 31.9 482 477 34.8 28.4 48.1 29.1 

0.5% Baseline 29.7 28.6 313 307 42.7 39.6 

Block 1 29.3 29.4 370 361 31.4 12.0 65.9 49.1 

Block 2 30.4 30.8 425 416 32.9 10.7 88.6 56.8 

Block 3 31.5 31.4 473 465 30.8 8.9 92.2 54.4 

0.25% Baseline 29.0 28.8 312 310 40.9 41.9 

Block 1 28.6 28.8 366 358 29.5 7.7 101.9 61.6 

Block 2 29.1 30.5 418 410 30.2 6.5 116.2 65.0 

Block 3 30.0 30.5 462 456 29.8 6.3 113.6 62.0 

0.125% Baseline 29.3 28.7 312 306 41.6 43.3 

Block 1 29.8 30.4 372 357 30.2 4.3 93.2 73.0 

Block 2 31.3 30.9 434 411 32.8 3.3 119.4 77.3 

Block 3 31.5 30.7 484 459 30.4 2.9 113.4 73.9 

Note. Food, water and saccharin data are averaged across the 8 day baseline and blocks 1-3 (days 1-10, days 11-22, 
and days 23-34). Weight data are reported for last baseline and block days. Saccharin was not provided during the 
baseline period. 



Table 2: Summary of Experiment 2 Design 

Days Experiment Second Bottle Second Bottle Access 

Baseline -7 to 0 None 

Phase I 1to45 2a 0.25% Saccharin 45 ConA (24 h/day) or 12 DisA (24h/4 days) exposures 

Phase II 46 to 69 0.25% Saccharin 12 alternate day exposures 

Anxiety Tests 56 N/A N/A 

DE 

Sucrose 

70 to 85 

86 to 100 

2b 

2c 

0.25% Saccharin 

4% Sucrose 

8 abstinence days followed by 4 alternate day exposures 

8 alternate day exposures 
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Table 3: Summary of Data Collected in Experiment 2 

Experiment 2a Experiment 2b Experiment 2c 

Baseline Phase I Phase II DE Sucrose 

Weight (g) DisA 325 468 574 610 635 

ConA 319 455 557 593 615 

Food (g) 

Water (g) 

Solution (g) 

Kilocalories 

DisA 

ConA 

DisA 

ConA 

DisA 

ConA 

DisA 

ConA 

31.2 

29.8 

45.1 

44.5 

-
-
96.7 

92.3 

32.5 

32.2 

36.8 

5.7 

147.6 

73.1 

101.0 

100.0 

33.9 

32.7 

27.1 

26.3 

128.7 

80.2 

105.3 

101.4 

33.1 

32.2 

36.1 

35.1 

144.1 

96.3 

102.5 

99.7 

28.7 

29.2 

25.7 

24.1 

252.1 

169.2 

110.0 

104.9 

Note. Food, water, solution, and kilocalorie data is averaged for each section. Weight data are reported for last baseline 
and section days. 



Table 4: Summary of Experiment 3 Design 

Days Second Bottle Access 

Baseline -7 to 0 

Phase I 1 to 45 45 ConA (24 h/day) or 12 DisA (24h/4 days) 4% sucrose exposures 

Phase II 46 to 53 4 alternate day 4% sucrose exposures 

Abstinence 54 to 63 (LAb) or 54 to 57 (SAb) Only NAb group continued to receive alternate day 4% sucrose access 

Post-Abstinence 63 to 85 (LAb) or 57 to 85 (SAb) LAb and SAb 4% sucrose access restored for at least 12 more alternate day exposures 



Table 5: Summary of Data Collected in Experiment 3 

100 

Weight (g) 

Food (g) 

Water (g) 

Sucrose (g) 

Kilocalories 

DisA 

ConA 

DisA 

ConA 

DisA 

ConA 

DisA 

ConA 

DisA 

ConA 

SAb 
LAb 
NAb 

SAb 
LAb 

NAb 

SAb 
LAb 
NAb 

SAb 
LAb 
NAb 

SAb 
LAb 

NAb 

SAb 
LAb 
NAb 

SAb 
LAb 
NAb 

SAb 
LAb 

NAb 

SAb 
LAb 

NAb 

SAb 
LAb 

NAb 

Baseline 

252 
255 
250 

259 
253 

250 

21.2 
21.1 

20.8 

20.7 
22.2 
20.3 

30.4 
32.7 

31.6 

33.2 
32.6 

30.9 

-
-
-
-
-
-
65.8 
65.6 
64.4 

64.2 
68.8 

63.1 

Block 1 

270 
269 
267 

274 
274 

267 

18.7 
18.7 

18.5 

17.3 
17.8 
17.1 

22.6 
24.7 

23.2 

5.1 
6.6 
4.1 

211.1 
231.2 
220.4 

136.7 
115.8 

153.3 

68.1 
69.2 

68.1 

73.8 
74.7 

75.2 

Block 2 

289 
287 

286 

294 
290 

289 

19.3 
19.3 
18.7 

16.8 
17.2 

16.6 

25.0 
27.3 

26.7 

4.2 
5.3 

4.3 

269.2 
269.7 
261.6 

132.0 
114.8 

143.5 

70.5 
70.4 

68.4 

72.8 
72.7 
74.4 

Block 3 

303 
301 
300 

304 
303 

299 

19.4 
18.9 

19.6 

17.2 
17.6 
17.4 

24.8 
26.6 

26.3 

5.7 
5.2 

4.0 

264.2 
265.0 

272.0 

116.7 
115.8 
125.2 

70.0 
68.3 
70.8 

72.9 
73.3 
74.2 

Phase II 

313 
311 
310 

309 
311 

305 

17.4 
17.7 

17.7 

18.0 
18.2 

18.3 

18.3 
19.1 

19.3 

23.0 
21.1 

21.8 

248.2 
255.4 

251.3 

128.3 
115.5 
125.2 

71.3 
72.4 
72.1 

66.3 
67.0 

67.0 

Abstinence 

317 
316 
315/317 

316 
317 

308/309 

20.0 
19.8 
19.0/18.3 

21.6 
21.4 

19.3/19.5 

31.9 
31.9 

29.2/22.6 

38.3 
34.4 

26.3/23.5 

-
-
-
-
-
-
62.1 
61.5 

72.3/74.2 

67.0 
66.4 

68.2/77.7 

Post-abstinence 

329 
325 

325/330 

324 
331 

314/318 

18.4 
17.3 

18.0/18.0 

19.8 
20.2 

19.5/19.5 

18.9 
19.1 
18.8/18.4 

25.7 
21.7 

20.8/20.9 

229.8 
268.6 
218.8/229.1 

186.6 
158.4 

145.2/151.2 

77.3 
75.6 
75.2/74.5 

77.4 
75.6 

73.1/72.9 

Note. Food, water, solution, and kilocalorie data is averaged for each section. Weight is reported for last baseline and 
section days. Where necessary, NAb values are reported to correspond with both SAb and LAb values: SAb/LAb. 
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Figure 1: Access-induced saccharin consumption changes by concentration in Experiment 1. Mean (±SEM) daily intake of 
0.125, 0.25, 0.5 and 1% saccharin solutions by DisA and ConA rats. Across all concentrations utilized, DisA animals 
consumed more than ConA animals. 
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Figure 2: Access-induced saccharin consumption changes by access schedules in Experiment 1. Mean (±SEM) 
daily intake of 0.125, 0.25, 0.5 and 1% saccharin solutions by DisA and ConA rats. For DisA and ConA schedules 
saccharin intake differed with saccharin concentration. 



Experiment 2a 

1 
Experiments 2b & 2c 

A 
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Jl 
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Days 

69 100 

DisA/ConA Equal Access 

Figure 3: Timeline for Experiment 2. In Phase I of Experiment 2a, DisA and ConA groups were maintained on 
different access schedules (every fourth day vs. continuous saccharin exposure) for 45 days. During Phase II of 
Experiment 2a, Experiments 2b, and 2c, both groups received identical treatments. 
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Figure 4: Access-induced saccharin consumption changes in Experiment 2a. Mean (±SEM) daily 0.25% saccharin 
solution intake by DisA and ConA groups during discontinuous/continuous saccharin access (Phases I) and 
alternate day saccharin access (Phase II). 
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Figure 5: Saccharin DE after DisA/ConA experience in 
Experiment 2b. Mean (±SEM) daily 0.25% saccharin 
solution intake before and after 8 days of abstinence. 
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Figure 6: Transfer of access-induced saccharin 
consumption differences to sucrose in Experiment 2c. 
Mean (±SEM) daily 0.25% saccharin solution intake on the 
last saccharin day and 4% sucrose solution intake on 
sucrose days. 
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Figure 7: Access-induced sucrose consumption changes in Experiment 3. Daily mean (±SEM) 4% sucrose intake by DisA 
and ConA and by different abstinence conditions, LAb, SAb and NAb, during discontinuous/continuous sucrose access 
(Phases I) and alternate day sucrose access (Phase II). 
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Figure 8: Sucrose intake after ConA or DisA experience by abstinence group in 
Experiment 3. Mean (±SEM) daily 4% sucrose solution intake by rats with DisA 
and ConA histories on the last pre-abstinence day (day 53) and after three day 
SAb (top panel) or nine day LAb periods (bottom panel) relative to NAb intake 
(identical in both panels). 
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Figure 9: Anxiety tests in Experiment 2 (Appendix A). DisA and 
ConA rats were subjected to two consecutive anxiety tests on day 
56: the EPM followed by the light/dark emergence test. 
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