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Abstract 

Shape memory alloys (SMAs) belong to an interesting type of materials that have 

attracted the attention of scientists and engineers over the last few decades. They 

have some interesting properties that made them the subject of extensive research 

to find the best ways to utilize them in different engineering, biomedical, and sci­

entific applications. In this thesis, we develop a mathematical model and analyze 

the behavior of SMAs by considering a one degree of freedom nonlinear oscillator 

consisting of a mass connected to a fixed frame through a viscous damping and a 

shape memory alloy device. Due to the nonlinear and dissipative nature of shape 

memory alloys, optimal control and Lyapunov stability theories are used to design 

a controller to stabilize the response of the one degree of freedom nonlinear oscil­

lator. Since SMAs exist in two phases, martensite and austenite, and their phase 

transformations are dependent on stress and temperature, this work is presented in 

two parts. The first part deals with the nonlinear oscillator system in its two sepa­

rate phases by considering a temperature where the SMA exists in only one of the 

phases. A model for each phase is developed based on Landau-Ginzburg-Devonshire 

theory that defines the free energy in a polynomial form enabling us to describe the 

SMAs shape memory effect and pseudoelasticity. However, due to the phenomenon 

of hysteresis in SMAs, the response of the nonlinear oscillator with a SMA element, 

in either phase, is chaotic and unstable. In order to stabilize the chaotic behavior, an 

optimal linear quadratic regulator controller is designed around a stable equilibrium 

for the martensitic and the austenitic phases. The closed-loop response for each phase 

is then simulated and computational results are presented. The second part of the 

thesis deals with the entire system in its dynamics by combining the two phases and 
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taking into account the effect of temperature on the response of the system. Gov­

erning equations for the system's thermo-mechanical dynamics are constructed using 

conservation laws of mass, momentum, and energy. Due to the complexity of the 

derived thermo-mechanical model, and the need to control the nonlinear oscillator, a 

model reduction based on the Galerkin method is applied to the new system in order 

to derive a low-dimensional model which is then solved numerically. A linear feed­

back control strategy for nonlinear systems is then implemented to design a tracking 

controller that makes the system follow a given reference input signal. The work 

presented in this thesis demonstrates how SMAs can be modeled by using efficient 

methodologies in order to capture their behavior, and how SMAs can be made stable 

and their chaotic behavior can be controlled by using linear and nonlinear control 

methods. 
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Chapter 1 

Introduction 

The interest in intelligent and smart materials has grown in the last decades due to 

their remarkable properties [50, 53, 56, 65]. This class of materials, usually applied 

as sensors and actuators in the so called intelligent structures, has the ability of 

changing its shape and stiffness, among other properties, through the imposition of 

electrical, electro-magnetic, temperature, or stress fields [50]. Shape memory alloys 

(SMAs) are a class of this type of materials that are becoming very popular with 

scientists and researchers, however their inherent nonlinear nature presents a challenge 

to mathematicians as well as engineers. In this chapter we will look at different 

constitutive models that describe the behavior of SMAs and the methods that have 

been used to solve these models. Also, some historical notes accounting for the 

developments of SMAs are given. 
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1.1 Shape Memory Alloys 

SMAs are typically metallic alloys that have the ability to recover a previously de­

fined shape when subjected to the appropriate thermal procedure. Generally, these 

materials can be deformed at some relatively low temperature, and when they are 

heated they return to their shape prior to deformation. The shape recovery occurs 

even under applied loads therefore resulting in high actuation energy densities. In 

addition, under specific conditions, SMAs can absorb and dissipate mechanical en­

ergy by undergoing a reversible hysteretic phase change when subjected to applied 

mechanical cyclic loading [30]. SMAs present complex thermo-mechanical behaviors 

related to different physical processes, and the most common phenomena presented 

by this class of materials, are pseudoelasticity, shape memory effect (SME), and phase 

transformation due to temperature variation [53] 1. Due to these unique characteris­

tics of SMAs, materials made of SMAs lend themselves to be used in many innovative 

applications in many scientific fields for sensing and actuation, ranging from biomed­

ical devices, such as stents , prosthetic limbs, and orthodontics, to apparatus for the 

deployment and control of space structures, such as antennas and satellites 2. SMAs 

have also been used in vibration control devices to improve the response of buildings 

and bridges subjected to seismic loads [18, 73]. In order to explore all potentials 

of SMAs, there has been an increasing interest in the development of mathematical 

models capable of describing the main behaviors of these alloys. In the next section 

we will explore some of these models. 

1 Further details about the properties of SMAs will be given in Chapter 2 
2For commercial SMAs and their applications see Appendix A 
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1.2 Overview of Constitutive Models for SMAs 

Over the years a great deal of research has been carried out in the study of complex 

thermo-mechanical response of shape memory alloys, many researchers have proposed 

a variety of constitutive models with the goal to predict the behavior of such materials. 

This section presents a summary of some of these models, and for further details on 

these and related models, one can consult [6, 18, 30, 53]. 

1.2.1 The Polynomial Model 

One of the most popular constitutive models for describing the behavior of SMAs 

stems from the original Landau-Ginzburg theory of phase transitions in systems such 

as ferroelectric and ferromagnets [16]. In [15], the author proposed a one-dimensional 

model based on Devonshire's generalization of the theory. This model assumes a 

polynomial free energy potential, which allows pseudoelasticity and SME description. 

According to this model, neither internal variables nor dissipation potential is nec­

essary to describe pseudoelasticity and SME. Thus, the only state variables for this 

model are strain and temperature. The form of the free energy is chosen in such a way 

that the minima and the maxima points present stability and instability of each phase 

of the SMA. Hence, the free energy is chosen such that for high temperatures, it has 

only one minimum at vanishing strain, representing the equilibrium of the austenitic 

phase. At low temperatures, martensite is stable, and the free energy must have two 

minima at non-vanishing strains. At intermediate temperatures, the free energy must 

have equilibrium points corresponding to both phases. Therefore, the free energy is 

defined as a sixth-order polynomial equation in a way that the minima and maxima 
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points represent stability and instability of each phase of the SMA. Three phases are 

considered: austenite (A) and two variants of martensite (M+, M—). Hence, the form 

of the free energy is chosen such that for high temperatures (T > T^), it has only one 

minimum at vanishing strain, representing the equilibrium of the austenitic phase. 

For intermediate temperatures (TM < T < TA), there are three minima correspond­

ing to three stable phases: austenite, and detwinned martensite induced by tension 

(M+) and by compression (M—). Lastly, at low temperatures (T < TM), martensite 

is stable, and the free energy must have two minima at nonvanishing strains [53, 57]. 

Therefore, the following free energy potential is defined as: 

W(eX) = l(T-TM)S-^+24Jf_TMy (1.1) 

where a and b are positive material constants, TA is the temperature above which 

austenite is stable and TM is the temperature below which martensite is stable. Thus, 

the constitutive equation is given by: 

a(e,T) = ^W (e,T) = a(T -TM)e -be3 + -—f^—- (1.2) 
oe 4a(TA-TM) 

The great advantage of this model, also known as Falk's model, bearing the name of 

its inventor, is its simplicity [53]. 

1.2.2 The Exponential Model 

The exponential model, also known as the Tanaka model, considers, besides strain and 

temperature, an internal variable used to represent the phase transformation when 

the SMA changes from the martensitic phase to the austenitic phase [18, 30, 53]. 

The constitutive relation between stress, temperature, and the phase transformation 



variable for SMA modeling is considered in the rate form as follows: 

a = Ee + aC + TT, (1.3) 

where E represents the elastic tensor, a corresponds to the phase transformation ten­

sor, and T is associated with the thermo-elastic tensor. Due to martensitic transfor­

mation non-diffusive nature, the martensitic volumetric fraction, £, can be expressed 

as a function of current values of stress and temperature C = £(<r, T). For example, in 

[70], the authors considered exponential functions to describe phase transformations. 

Following that idea, for (A ==>• M) transformation, we can consider the following 

function: 

C = 1 - exp [aM (Ms - T) - bMcr} + Co, (1-4) 

where aj« and bu are positive material parameters, Ms is the martensite formation 

start temperature, T is temperature, and Co represents the volumetric fraction when 

phase transformation takes place. 

For the reverse transformation (M ==• 4̂) another exponential function is considered 

as follows: 

C = Co exp [-aA (T - As) - bAcr] , (1-5) 

where a.4 and 6,4 are positive material constants and As is the austenite formation 

start temperature. 

1.2.3 The Trigonometric Model 

Other functional dependencies for constitutive models are also used. In [35] for in­

stance, the authors developed an empirical cosine model, to represent the martensitic 
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fraction as a function of stress and temperature during transformation, which agrees 

well with experimental findings [5]. According to this model, the volumetric fraction 

evolution equation for the martensitic transformation (A =>• M) is given by: 

, ( 1 - 6 ) 
C = 7, c o s AM\T-Mf-

a 
+ 

(1 + Co) 
(1.6) 

CM/ J 

where T is temperature, a is stress, CM is a material parameter, and Mf and Ms 

correspond to the martensite formation finish and start temperature, Co represents 

the volumetric fraction of the material prior to the current transformation, and the 

coefficient AM is defined in terms of Mf and Ms and is given by: 

AM = 
TT 

Ms- Mf 

For the reverse transformation (M =>• A), the equation is given by: 

(1.7) 

c 
Co 

cos[AA(T - A a 

C~A 

+ 1 (1.8) 

where CA is a material parameter, As and Af represent the austenite formation start 

and finish temperatures, and AA is defined in terms of Af and ^4S and is given by: 

AA = 
IT 

Af-As 
(1.9) 

1.2.4 The Model Based on the Fermi-Dirac Statistics 

Since a SMA exists only in martensite and austenite phases, it can be modeled as 

a two-state system, like an electron. The Fermi-Dirac statistics, which describes the 

distribution of electrons in two states depending on their energy levels, has been 

found to provide a good model for the state of an SMA in martensite and austenite 
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forms [24]. Since the SMA is in the martensite form at lower temperatures, the phase 

transformation equation during heating is described by analogy with the Fermi-Dirac 

statistics in the form: 

S>m 

c = 1 + exp 
<Ja

 a 

(1.10) 

where £ is the fraction of the austenite phase, £m is the fraction of the martensite 

phase prior to the present transformation from martensite to austenite, T is the 

temperature, Tfa is the transition temperature from martensite to austenite, aa is an 

indication of the range of temperature around the transition temperature Tfa during 

which the phase change occurs, a is the stress, and Ka is the stress curve-fitting 

parameter which is obtained from the stress-strain characteristic with no change in 

temperature. On cooling, the austenite phase gets converted to the martensite phase 

and the modeling equation during cooling is described by analogy with the Fermi-

Dirac statistics in the form: 

C = r r ^ r, (i-ii) 
1 + exp T fm-T 

Cm 
+ Kma 

where Qa is the fraction of the austenite phase prior to the transformation from 

austenite to martensite, T is the temperature, Tfm is the transition temperature 

from austenite to martensite, am is an indication of the range of temperature around 

the transition temperature Tjm during which the phase change occurs, a is the stress, 

Km and is the stress curve-fitting parameter which is obtained from the stress-strain 

characteristic. Since the SMA is modeled as a two-component system, at any given 

time the sum of the mole fractions of the austenite and martensite phase is 1, i.e., 

Ca + Cm = l- (1-12) 



The time derivatives of (1.10) and (1.11) are as follows: 

for heating 

- c - c2 

— exp \
Tfa ~T + KJ 

( 1 d 
\aadt 

T-Ka^-a 
dt 

(1.13) 

for cooling 

—C = — exp 
dt Ca 

•M T 
+ Kma 

an 

1 d d 
am dt dt 

(1.14) 

1.2.5 The Fremond Model 

The Fremond model is another constitutive model that describes the thermo-mechanical 

behavior of SMAs. The proposed model formulation considers four volumetric frac­

tions related to macroscopic phases: f3\ is associated with tensile detwinned marten-

site (M+) , fa is related to compressive detwinned martensite (M — ), /33 represents 

austenite (A) and /?4 corresponds to twinned martensite (M). A Helmholtz free energy 

potential (ip) is adopted for each individual phase, considering four state variables: 

elastic strain (e), temperature (T) and two internal variables (7 and //) that help the 

plastic phenomenon description, which are associated with the isotropic and kinematic 

hardening, respectively [67]. The constitutive thermo-mechanical model of SMAs is 

then given by: 

M+:pip1(e,T,>y,i2) = -EMe2-aTe-AM
T-nM(T-T0) e + -KMl

2 + —— ^2, 
z z In M 

(1.15) 

M- : p^2 (e,T,7,/x) = - EMe2 + ace - AC
T - flM (T - T0) e + - KMj2 + — — / ? , 

Z Z Z /iyVf (1.16) 



A:p^(^T,1^) = l)EAe2-AA-nA(T-T0)e + l)KAl
2 + 7^rix

2, (1.17) 
Z I Z tlA 

M : p ^ 4 (e e ,T, 7 , / / ) = \ EMee
2 - AM - QA (T - T0) e + ^ / W + 7rn-tf- (1-18) 

z 1 1 MM 

In equations (1.15)-(1.18), subscript M is related to martensitic phase while A is asso­

ciated with austenite. Moreover, superscript T is related to tensile parameters while 

C is associated with compressive parameters. Observing these indices, notice that 

a's are material parameters related to phase transformation, while A's are associated 

with phase transformations stress levels and are temperature dependent, while E's 

represent the elastic moduli, Q's are related to the thermal expansion coefficients, 

K's are the plastic modulus while H's are the kinematic hardening moduli; T0 is a 

reference temperature, ^ for i = 1..4 are the free energy potentials corresponding to 

the phases (M+) , (M—), (^4), and (M), and p is the material's density. 

1.3 Numerical Implementations 

The constitutive models discussed in section 1.2 are amongst the models that are 

widely used in describing the behavior of SMAs. These models combined with the 

dynamic equations of SMA systems form the basis of the mathematical models that 

describe their dynamic characteristics. A common feature of SMAs is the presence 

of hysteresis, which causes the input-output relations to be nonlinear. Because of 

the nonlinearities associated with the hysteresis, and the complex thermo-mechanical 

coupling of SMAs, the dynamic equations of SMAs are usually represented by com­

plex systems of PDEs or ODEs that do not have analytic solutions. Therefore, a 

number of approximation methods have been implemented to solve these type of sys­

tems of equations. Some common methods have been used by a number of authors 
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including, finite element analysis (FEA) [6], finite volume analysis (FVA) [77] and 

model reductions [43, 52, 75]. Since we are interested in using the SMA as an actua­

tor to pull mass m of the oscillator shown in Figure 3.1, the polynomial constitutive 

model discussed in section 1.2.1 will be used as it is capable of describing the shape 

memory effect of the SMA that produces the actuation. In Chapter 3, we will use the 

polynomial constitutive model to develop a mathematical model of the one degree of 

freedom (1 DOF) oscillator with a SMA at constant temperature. The model will 

then be solved numerically and results will be presented. In chapter 5 we will develop 

a thermo-mechanical model for the nonlinear oscillator with a SMA, but due to the 

complexity of the model, model reduction method based on Galerkin decomposition 

will be used to transform the model into a system of ODEs. 

1.4 Historical Notes 

In 1932, a Swedish physicist by the name of Arne Olander discovered an interesting 

phenomenon when working with an alloy of gold (Au) and cadmium (Cd) [32]. The 

Au-Cd alloy could be plastically deformed when it is cool and then be heated to re­

turn to, or "remember", the original dimensional configuration. This phenomenon is 

known as the shape memory effect "SME", and the alloys that exhibit the behavior 

are called shape memory alloys. In 1958, shape memory effect was demonstrated at 

the Brussels World's Fair, where the SME was used to cyclically lift a load mass using 

a Au-Cd SMA [48]. Further research revealed other materials that demonstrate this 

phenomenon. In 1961, a group of U.S. Naval Ordnance Laboratory researchers led 

by William Beuhler came across a significant discovery in the field of SME and SMA 
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[50]. While testing an alloy of nickel and titanium for heat and corrosion resistance, 

they found that it too exhibited the shape memory effect. The Ni-Ti shape memory 

alloy proved to be significantly less expensive, easier to work with than previously 

discovered alloys. These factors refreshed interest and research in the shape memory 

effect and its applications. 

Researchers, designers, and companies recognized the potential to use the shape mem­

ory effect in engineering, biomedical, and scientific applications. As a result, starting 

in the 1970s, commercial products began to appear. For the most part, the early 

devices functioned as fasteners and took advantage of a single shape memory dimen­

sional change. Some examples of these static devices are couplings for piping systems 

and electrical connectors. Next, researchers began to propose SMA devices to perform 

dynamic tasks; thus, they began to play the role of actuators. In order to perform a 

dynamic task, the SMA must experience a cycle of heating, cooling, and deformation. 

This requirement led some companies, such as Delta Metal in England, to use shape 

memory alloy actuators in temperature regulation systems, where the environmental 

temperature could be used for thermal actuation [40]. Delta Metal proposed that 

SMA devices could be used to automatically open and close greenhouse windows, op­

erate valves that control building temperatures, and control automobile fan clutches. 

In 1982 Sharp incorporated SMA actuators into electric oven dampers, and in 1983 

Matsushita Electric [32] designed SMA-actuated louvers for air conditioners. Other 

researchers pursued electricity as a source of heat and thus actuation. In 1971, a 

team led by Sawyer developed and tested an artificial heart powered by electrical 

actuation of SMA elements. In 1983, Honma, Miwa, and Iguchi showed that SMA 

actuation could be controlled by resistive heating and proposed that SMA actuators 
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could be used in micro-robotics. Research concerning the application and control of 

SMA actuators in robotic systems has continued and expanded through the present 

[53]. While design, modeling and dynamics of SMAs have been studied extensively, 

very little work has been done in the area of control [32, 57]. In this thesis we will 

address the issue of modeling and control of an SMA device using the laws of physics 

and optimal control techniques. 

1.5 Thesis Outline 

This thesis is organized in 6 chapters, conclusions, and appendices as follows: 

In Chapter 2 we will give an overview of dissipative systems, dissipative systems in 

an Input/State/Output setting, and the general properties of SMAs. 

In Chapter 3 a mathematical model of a nonlinear oscillator with a SMA device is 

developed. The model is then simulated for each of the two separate phases of the 

SMA, the martensitic phase and austenitic phase. 

Chapter 4 is devoted to the optimal control of the nonlinear 1 DOF oscillator. 

The hysteresis phenomenon in SMAs results in a nonlinear relationship between the 

input and output of the 1 DOF oscillator system. To compensate for the hysteresis 

phenomenon, Lyapunov indirect method will be used to design a Linear Quadratic 

Regulator controller to stabilize the system while at the same time optimize a certain 

performance measure. 

In Chapter 5 a thermo-mechanical model that accounts for the effect of temperature 

on the SMA will be developed, and model reduction, using Galerkin's method, will 
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be used to transform the system into a low-dimensional one. In Chapter 6 a non­

linear feedback control method will be used to design a nonlinear controller of the 

SMA. Numerical methods will then be used to find an approximate solution of the 

controlled model. In Chapter 7 we will give a summary of what was achieved in this 

research and we will conclude highlighting future directions. 

1.6 Summary 

The work presented in this thesis accomplished a number of results in terms of mod­

eling and control of the SMA. In Chapter 4 for example, the nonlinear model of the 

SMA oscillator was linearized and a Linear Quadratic Regulator (LQR) controller 

was designed and implemented to control and stabilize its response. In Chapter 5, a 

thermo-mechanical model that accounts for the effect of temperature on the response 

of the nonlinear oscillator with a SMA was modeled by a single nonlinear ODE. This 

result was achieved by applying a model reduction based on the Galerkin method to 

transform the mathematical model describing the behavior of the SMA system into 

an approximate, low dimensional one. Numerical results show that the model does 

capture the main properties of the SMA, mainly shape memory and superelasticity 

properties. In Chapter 6, an optimal linear control design for nonlinear systems strat­

egy was implemented to compensate for the hysteresis phenomenon of SMAs and to 

track the response of the SMA to a desired trajectory. A number of examples are in­

cluded at the end of Chapter 6 that showed the effectiveness of the proposed method. 

All the simulation results were obtained by using Maple's routines and algorithms 
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summarized in Appendix B. 
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Chapter 2 

Dissipative Systems and General 

Properties of Shape Memory 

Alloys 

Dissipation is a physical concept closely related to the first and the second law of 

thermodynamics. Recall that the first law ensures conservation of mass and energy 

in all its forms, while the second law determines the way in which the different forms 

of energy and material species evolve through transport phenomena and chemical 

reactions, taking place in a given spatial domain [1]. Shape memory alloys are dissi­

pative systems, therefore it is essential that we first give a brief overview of dissipative 

systems and how they relate to shape memory alloys. 
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2.1 Dissipative Systems 

Dissipativity theory gives a framework for the design and analysis of control systems 

using an input-output description based on energy-related considerations. Dissipativ­

ity is a notion which can be used in many areas of science, and it allows engineers and 

mathematicians to relate a set of efficient mathematical tools to well known phys­

ical phenomena [7]. The dissipation hypothesis on dynamical systems results in a 

fundamental constraint on their dynamic behavior, wherein a dissipative dynamical 

system can deliver only a fraction of its energy to its surroundings and can store only 

a fraction of the work done to it [22]. In this context, dissipation imposes a particular 

relationship between transport processes and their associated thermodynamic forces 

which guide the dynamic evolution of the system, giving room to variety of complex 

behaviors, such as hysteresis in the case of shape memory alloys. The constraints 

imposed on the dynamic behavior of dissipative systems actually present a challenge 

to both engineers and mathematicians, and a great deal of research has been done in 

this area. In this thesis optimal nonlinear control methods combined with Lyapunov 

stability methods will be used to deal with the constraints imposed on the dynamic 

behavior of shape memory alloys. The dissipativity theory for non-linear dynami­

cal systems has been developed by many authors (see, e.g., [71, 72] and references 

therein). Based on this theory, the definition of dissipativity for general non-linear 

dynamical systems can be formulated in terms of a dissipation inequality involving a 

generalized system power input, or supply rate, and a generalized energy function, or 

storage function. The dissipation inequality implies that the increase in generalized 

system energy over a given time interval cannot exceed the generalized energy supply 
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delivered to the system during this time interval. The set of all possible system stor­

age functions is convex and every system storage function is bounded from below by 

the available system storage and bounded from above by the required energy supply 

[22]. 
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Figure 2.1: Types of Stability of an Equilibrium Point 

The connections between input, output and state space stability for nonlinear systems 

have been established by the theory of dissipativity in which a Lyapunov-like storage 

function is used to monitor the "energy" flowing in and out of a system [17]. 

Stability theory plays an important role in engineering, physical as well as biological, 

systems. For any given dynamic system, stability is crucial, since unstable systems 

can oscillate uncontrollably and could lead to system failure. There are different kinds 

of stability problems that arise in the study of dynamic systems, but in the first part 

of this thesis we will focus on the stability of the 1 DOF oscillator in the vicinity of a 

stable equilibrium point, and in the second part we will use tracking control theory to 

make the system track a given reference input signal. Stability of equilibrium points, 
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see Figure 2.1, is usually characterized in the sense of Lyapunov * stability theory, 

which includes two methods, Lyapunov's first method and Lyapunov's direct method, 

also known as the second method [25]. 

In Chapter 4 Lyapunov's first method which uses the idea of system linearization 

around a given equilibrium point will be used to design a linear quadratic regula­

tor (LQR) to control the response of the shape memory alloy. Since the linearized 

model may drastically reduce the stability region of the nonlinear system, in Chapter 

6 a nonlinear feedback control method will be used to design a tracking controller to 

achieve global stability. The basic concept behind Lyapunov's direct method is that if 

the total energy of the system is continuously dissipating, then the system will even­

tually reach an equilibrium point and remain at that point. In general, Lyapunov's 

direct method includes two steps, first find a scalar function, referred to as Lyapunov 

function, second evaluate its first time derivative along the trajectory of the system. 

If the Lyapunov function derivative is decreasing along the system's trajectory as time 

increases, then the system's energy is dissipating and thus the system will eventually 

settle down [17]. 

2.2 Dissipative Systems in an Input/State/Output 

Setting 

In "closed" dynamical systems the response of the system is determined by the initial 

conditions. The trajectory is autonomous and driven purely by the internal dynamics 

XA Russian mathematician and engineer who laid the foundation of the theory which now carries 

his name 

18 



of the system, the environment has no influence on the motion. On the other hand 

"open" dynamical systems, take the influence of the environment explicitly into con­

sideration. They are a much more logical and richer starting point for a theory of 

dynamics leading to the concept of generalized dynamic systems[41, 42]. In the state 

space models of systems and control this interaction with the environment can be 

formalized through inputs and outputs. The environment acts on the system by im­

posing inputs, and the system reacts through the outputs [82]. This leads to models 

of the form: 

x = f{x,u), y = h(x,u) (2.1) 

with u the input value, U the input space, u £ U, y the output value, Y the output 

space, y £ Y, and x the state, X the state space, x £ X. The map / is called the 

controlled vector field, and h is called the read-outs. Thus the vector field assigns 

to (x,u) £ X x U the state "velocity" x = f (x,u), and the read-out assigns to 

(x, u) £ X x U, the output value y = h(x,u) £ Y. The notion of dissipative systems 

involves: 

• a dynamical system E in the form of equation (2.1), 

• a real-valued function: s : U x Y —> R called the supply rate, and 

• a real-valued function V : X —> M, called the storage. 

Definition 1 [82]: The system E is said to satisfy the dissipation inequality with 

respect to the supply rate s and the storage V if 

V (x (t2)) -V(x (h)) < [2s (u, y) dt (2.2) 
Jti 
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holds for all (u,y,x) and ti,t2 G R, with t\ < t2, The above inequality (2.2) is known 

as Dissipation Inequality. 

In the case of Lyapunov function, the dissipation inequality can be verified directly 

from the vectorfield / , the supply rate s, and the storage V. 

Then, the dissipation inequality holds if and only if: 

V = AVf (2.3) 

satisfies 

V <s(u,h(x,u)) (2.4) 

for all x G X and u G U. 

Definition 2 [82]: Consider the dynamic E, the function V : X —> R is said to be 

Lyapunov for E along x G X if: 

—V{x)<0. (2.5) 
dx 

The system E is said to be dissipative with respect to the supply rate s : U x Y —> R 

if there exists a Lyapunov function V : X —> R such that the dissipation inequality 

(2.2) holds. In the linear-quadratic case, the system is assumed to be linear, and the 

supply rate a quadratic in (u, x). 

Theorem 1 [25] (Lyapunov stability for autonomous systems): Let x* be an equi­

librium point for E and X G M be a domain containing x*. Let V : X —> R be a 

Lyapunov function, such that V (0) = 0 and V (x) > 0 in X — {0}. / / V (x) < 0 in 

X, then, x* is stable. Moreover, ifV(x)<0inX — {0} then x* is asymptotically 

stable. 
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The concept of dissipativity is closely connected to the stability and control of dy­

namic systems [21, 22, 71, 72]. In dissipative systems the storage function is usually 

chosen as a Lyapunov function, and thus the stability of dissipative systems can be 

investigated [83]. Since SMAs are dissipative systems, the concept of dissipativity 

and Lyapunov stability will be used in Chapter 4 to design a controller in order to 

stabilize a nonlinear 1 DOF nonlinear oscillator with and SMA device. 

2.3 General Properties of SMAs 

In section 2.2 we looked at dissipativity and stability of dynamic systems. In this 

section we will look at the general properties of SMAs that are used as actuators 

or transducers which are often found in many dynamic systems. We have seen in 

section 1.1 of Chapter 1 that when SMAs are subjected to thermal procedures they 

go through phase transformations that cause the SMA to change its crystalline struc­

ture. The change in the crystal structure of SMAs is associated with two main phases, 

austenite and martensite. At high temperature the SMA is in the austenitic phase, 

and at low temperature the SMA is in the martensitic phase. Austenite (generally 

cubic) has a different crystal structure from martensite (tetragonal, orthorhombic or 

monoclinic), see Figure 2.3. Martensite is relatively soft, whereas austenite is rel­

atively hard [40]. The phase transition from austenite to martensite is termed the 

forward transformation. When the SMA is heated from the martensitic phase, the 

crystal structure transforms back to austenite, and this transition is called reverse 

transformation, during which there is no associated shape change. The phase trans­

formation from martensite (product phase) to austenite (parent phase) and vice versa 
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forms the basis for the unique behavior of SMAs. 

There are four characteristic temperatures associated with the phase transformation. 

During the forward transformation, austenite, under zero load, begins to transform 

to twinned martensite at the martensitic start temperature Ms and completes trans­

formation to martensite at the martensitic finish temperature Mf, see Figure 2.2. At 

this stage, the transformation is complete and the material is fully in the twinned 

martensitic phase. Similarly, during heating, the reverse transformation initiates 

at the austenitic start temperature As and the transformation is completed at the 

austenitic finish temperature Af. If a mechanical load is applied to the material 

in the twinned martensitic phase (at low temperature), a subsequent heating of the 

SMA to a temperature above Af will result in a reverse phase transformation (from 

martensite to austenite) and will lead to complete shape recovery. Cooling back to 

a temperature below Mf (forward transformation) leads to the formation of twinned 

martensite again with no associated shape change observed. The process described 

above is referred to as the Shape Memory Effect (SME), which was mentioned in 

section 1.1 of Chapter 1. In addition to thermally induced phase transformation, 

transformation can also be induced by applying a sufficiently high mechanical load 

to the material in the austenitic phase. The result of this load is fully detwinned 

martensite created from austenite. If the temperature of the material is above Af , 

a complete shape recovery is observed upon unloading to austenite. This material 

behavior is called the pseudoelastic effect [30]. Pseudoelasticity and SME are some 

of the properties that make SMAs so unique an appealing to lot of researchers and 

scientists. In sections 2.3.1 and 2.3.2 we will further explore the shape memory ef­

fect and the pseudoelasticity of SMAs and how they impact the response of SMA 
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dynamical systems. 

H H 
Twinned Mf 
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Figure 2.2: Temperature-induced Phase Transformation of a SMA [30] 

2.3.1 Shape memory effect 

Since SMAs are stimuli-responsive materials, they have the capability of changing 

their shape upon application of an external stimulus. A SMA exhibits the shape 

memory effect when it is deformed while in the martensitic phase and then unloaded 

while at a temperature below As. When it is subsequently heated above Af , the 

SMA will regain its original shape by transforming back into the parent austenitic 

phase. A change in shape caused by a change in temperature is called a thermally 

induced shape-memory effect. In order to understand this phenomenon (SME), it 

is useful to consider the highly simplified representation of the material's crystalline 

arrangement shown in Figure 2.3. In the martensitic phase the molecular structure 

is twinned, which is the configuration shown in the middle of Figure 2.3. Upon 
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deformation this phase takes on the second form shown in Figure 2.3, on the right. 

Austenite, the stronger phase of shape memory alloys, occurs at higher temperatures. 

The shape of the austenitic structure is cubic, the structure shown on the left side 

of Figure 2.3. The undeformed martensite phase is the same size and shape as the 

cubic austenitic phase on a macroscopic scale, so that no change in size or shape is 

visible in shape memory alloys until the martensite is deformed [38]. The change that 

occurs within a SMA crystalline structure during the SME is not a thermodynamically 

reversible process. In other words, there is energy dissipation due to internal friction 

and creation of structural defects. As a result, a temperature hysteresis occurs which 

is illustrated in Figure 2.4. 

In Figure 2.4 Mt is the temperature below which the martensitic phase is stable 

and At is the temperature above which the austenitic phase is stable . The crystalline 

structure is in its deformable phase (martensite) when its temperature is lower than 

Martensite Phase Deformed Martensite Phase 

Figure 2.3: Crystal Lattice Deformation of Shape Memory Alloys During SME and 

Pseudoelasticity [63] 
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the Mt. In this state the SMA length can be changed about 10% as a consequence 

of external stress. If the material is heated to temperature At (line 1 in Figure 2.4) 

the crystalline structure will change to hard non-deformable state (austenite). If the 

temperature is held at At the element of the SMA stay in contracted state (line 3 

Figure 2.4). When the temperature is increased over point At, the shape memory 

effect (SME) of the material can be completely destroyed. It means that the material 

loses SME (element will stay contracted forever) [73]. 

2.3.2 Superelasticity of SMAs 

Superelasticity, or pseudoelasticity, occurs whenever a SMA sample is at a tempera­

ture above At (the temperature above which only the austenitic phase is stable for a 

stress-free specimen). Thus, one can consider a SMA sample subjected to a mechan­

ical loading at a constant temperature above At. A mechanical loading causes an 

elastic response until a critical value is reached, when the martensitic transformation 

— i 1 • 
Mt = 45°C At = 70°C 

I Temperature 

Figure 2.4: Hysteresis Loop in SMA [73] 
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(austenite to martensite) arises. At this point, the crystal structure of the sample is 

totally composed of detwinned martensite. For higher stress values, SMA presents 

a linear response. During the unloading process, the sample presents an elastic re­

covery. When the loading-unloading process is finished, SMA has no residual strain. 

However, since the path of the forward martensitic transformation does not coincide 

with the reverse transformation path, there is a hysteresis loop associated with en­

ergy dissipation as was seen in Figure 2.4 [37]. In Chapter 3, we will utilize the shape 

memory effect of SMAs to model a 1 DOF nonlinear oscillator. The 1 DOF model 

consists of a mass connected to a fixed frame through a viscous damping and a SMA 

device in the form of a nonlinear spring. When the SMA spring is heated, it will exert 

a restoring force on mass m of the oscillator. Since the SMA exists in two phases, 

martensitic and austenitic, two models will be developed and analyzed by choosing a 

temperature where the SMA exists in a single phase. 

2.4 Summary 

In this chapter we discussed the concept of dissipativity and how it is related to the 

stability of dynamic systems. We also gave an overview of the general properties of 

SMAs that make them a hot topic in so many areas of scientific research. SMAs, as 

we have seen in section 2.3, have unique characteristics, especially the shape memory 

effect that makes them suitable for use as actuators. It is this unique property, the 

shape memory effect, that we will use to develop and analyze a 1 DOF nonlinear 

oscillator with a SMA device acting as an actuator. The concept of dissipativity and 

stability will be used in Chapter 4 to overcome the hysteresis phenomenon of SMAs 
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and to stabilize their response. 
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Chapter 3 

Mathematical Modeling of 

Nonlinear Oscillators with Shape 

Memory Alloys at Constant 

Temperature 

Developing a mathematical model that captures the behaviors of a SMA as it under­

goes temperature, stress, and phase changes is a complicated and challenging problem. 

Researchers continue to study what are the best ways to model and control systems 

that use this unique family of materials [40]. 

Over the years researchers have proposed a number of constitutive models with the 

objective of predicting the dynamical behavior of shape memory alloys, and different 

models were discussed in Chapter 1. In this chapter a mathematical model of the 

shape memory alloy is formulated based on the polynomial constitutive model, and 
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then a 1 DOF nonlinear oscillator with a SMA device is used to analyze and simulate 

its response. We will consider the system only when it exists in one of its two different 

phases, martensite and austenite, and to achieve this the temperature will be chosen 

in such a way that only one of the phases is stable. 

3.1 Mathematical Model of a Nonlinear Oscillator 

with a SMA 

To study the behavior of the SMA we will consider a one degree of freedom oscillator 

which consists of mass m, connected to a rigid support through of a viscous damping 

with coefficient c and a shape memory alloy element in the form of a nonlinear spring 

where a periodic external force u(t) is applied to the system, as shown in Figure 3.1. 

In Figure 3.1 the SMA is represented by a nonlinear spring K that will exert a 

Figure 3.1: One DOF Oscillator 

restoring force on mass m. To be specific, in our analysis and computations that follow 
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we use all values for a spring made of Cu-Zn-Al-Ni alloy. The behavior of the nonlinear 

spring with shape memory is described by the polynomial constitutive model given 

in equation (1.2). Therefore, the restoring force is determined by substituting (e) by 

the displacement x(t) of mass m in equation (3.1): 

,3 , *x(t)5 

K (x, T) = a(T- TM) x (t) - bx (t)< + w (3.1) 

4a [lA — 1M) 

Using Newton's law of dynamics, the dynamic equation of the system in Figure 3.1 

is given by: 

m^2x (t) + cjx (t) + a(T-TM)x (t) - b (x (t))3 + J ^ r M ) =« (* ) , (3-2) 

where x(t) is the displacement and u(t) is the input representing the external force. 

The different phases of the SMA system are defined by the choice of the temperature 

T [57], therefore we will study the system given by equation (3.2) while the SMA is 

in its two different phases, austenitic and martensitic. In sections 3.2 and 3.3 we will 

study the behavior of the SMA system by carefully choosing the temperature T and 

the parameters a, b, TA and TM of the SMA element, keeping in mind that at high 

temperatures the austenitic phase of the SMA is stable, and at low temperature the 

martensitic phase of the SMA is stable. 

3.2 Analysis of the Martensit ic Phase 

For a temperature T < TM, where TM is the temperature below which the martensitic 

phase of the SMA is stable, the SMA is in its martensitic phase. The numerical 

values of the SMA parameters, a, b, TM,and TA that will be used in the analysis 

are given in Table 3.1 [57], and we choose a temperature T = 283K so that the 
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Table 3.1: Material Constants of Cu-Zn-Al-Ni SMA in Martensitic Phase [57] 

Parameters 

a 

b 

TM 

TA 

T 

Values 

1 MPa 

40 x 103 MPa 

287 K 

364 K 

283 K 

SMA is in its martensitic phase. The first numerical experiment deals with the SMA 

at low temperatures, or more precisely when the SMA is in its martensitic phase. 

Substituting the parameters a, b, TM, TA, and T given in Table 3.1 in the dynamic 

equation (3.2), and choosing as a mechanical load a time-varying periodic input force 

u(t) = 10sin(5£), we get a second order nonlinear differential equation that represents 

the SMA in its martensitic phase: 

d2 d 
—x (0 + 0.2 — x ( i ) - 4 x ( i ) - 4 0 0 0 0 . 0 x ( i ) 3 + 5194805.195x(^)5 = 10 sin (5*). (3.3) 
LLC \X%j 

We will assume a unit mass and the following initial conditions x(0) = 0.1 and 

x'(0) = 0. We now have a nonlinear ordinary differential equation in x(t), where 

x(t) is the displacement of mass m, and t is the time variable. The numerical results 

shown in Figures 3.2 and 3.3 were obtained using Maple's Runge-Kutta-Fehlberg 

method (RKF45) for solving ordinary differential equations.1 

From the numerical analysis (see Figures 3.2 and 3.3) that was performed on the 

model given by equation 3.2, we observed that the response of the 1 DOF oscillator 

1 The Maple code used to solve the nonlinear differential equation is given in Appendix B 
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Uncontrolled Response of Nonlinear SMA in Martensitic Phase 

Strata ° 

Uncontrolled Response of SMA{ 

Figure 3.2: Uncontrolled response of the SMA in its martensitic phase 

Phase Portrait of Uncontrolled Nonlinear SMA in Martensitic Phase 

Velocity o -f 

Strain 

Figure 3.3: Phase portrait of the uncontrolled SMA in its martensitic phase 
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oscillates in an irregular manner, it evolves over time so that any given region eventu­

ally overlaps with any other region. Tests of the model also showed that the response 

of the SMA is sensitive to changes in the initial conditions. These are some of the 

properties of chaotic behavior as defined in [51], in fact a number of studies (see e.g 

[58, 66, 68]) confirmed the presence of chaos in SMA systems. The chaotic behavior 

of the dynamical system represented by the model (3.2) can also be determined in 

terms of the Lyapunov exponents, which provide a qualitatively picture of the sys­

tem's dynamics [36, 58]. We will assume that the response of the SMA system is 

chaotic without resorting to the Lyapunov exponents method, and for further details 

about the method and the algorithm for the estimation of the Lyapunov exponents 

one can refer to ([36] pages 174-175). The chaotic response of SMAs prohibits their 

use in many engineering, biomedical, and scientific applications, despite their unique 

properties. In order to utilize these unique properties, especially the SME in our 

case, which gives rise to the actuation needed to pull mass m of the 1 DOF oscillator, 

one needs to find ways to eliminate the chaotic behavior. In Chapter 4, we will use 

linear optimal control methods to design a LQR controller that eliminates the chaotic 

behavior and tracks the response of the 1 DOF oscillator to a stable equilibrium. 

3.3 Analysis of the Austenitic Phase 

We will now analyze the response of the SMA system described by equation (3.2) 

when it exists in the austenitic phase. This can be done by assigning a value to 

temperature T in the region where the SMA exists in the austenitic phase only. We 

already know from section 2.3 Chapter 2 that SMAs exist in the austenitic phase at 
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Table 3.2: Material Constants of Cu-Zn-Al-Ni SMA in Austenitic Phase [57] 

Parameters 

a 

b 

TM 

TA 

T 

Values 

1 MPa 

40 x 103 MPa 

287 K 

364 K 

400 K 

high temperatures if T > TA- The numerical results presented in Figures 3.4 and 3.5 

were obtained by choosing the appropriate temperature T, and the numerical values 

of the SMA parameters, a, b, TM, TA given in Table 3.2. Similarly to the study of the 

SMA in its martensetic phase, the parameters are substituted in the dynamic equation 

of the system, equation (3.2), and choosing a similar input function u(t) = 10sin(5t) 

we get a second order nonlinear differential equation that represents the SMA in its 

austenitic phase: 

d2 d 
—x (t) + 0.2 —x (t) + 150 x (t) - 40000.0 x {t)3 + 5194805.195 x (tf = 10 sin (51). 
dt1 at 

(3.4) 

The numerical results representing the response of the SMA in its austenitic phase 

are shown in Figures 3.4 and 3.5. The response of the SMA in its austenitic phase 

is also oscillatory and chaotic, a behavior that hinders their use in many engineering 

and scientific applications. The difference between the responses of the SMA in the 

martensetic and the austenitic phases, is that in the martensetic phase the SMA's 

response evolves around two stable states representing the two variants of the marten-

site phase, while in the austenitic phase the response of the SMA evolves around a 
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Uncontrolled Response of Nonlinear SMA in Austenetic Phase 

strain o 

Time 

Figure 3.4: Uncontrolled response of the SMA in its austenitic phase 

single stable state. These results confirm the discussion of the polynomial constitutive 

model presented in section 1.2.1 of Chapter 1. 

Phase Portrait of Uncontrolled Nonlinear SMA in Austenitic Phase 

Velocity o 

Figure 3.5: Portrait of the uncontrolled SMA in its austenitic phase 

Based on the analysis of the SMA's response in its two phases, martensite and 

35 



austenite, it is clear from the response of the system that the behavior of the SMA 

is oscillatory and unpredictable. Therefore, to benefit from the unique properties of 

SMAs, such as the shape memory effect and pseudo-elasticity, we need to develop a 

controller to stabilize the system and eliminate the chaotic behavior. 

3.4 Summary 

In this chapter we have focused on the dynamic response of a 1 DOF oscillator where 

the nonlinear restoring force is provided by a spring with shape memory. The behavior 

of the spring with shape memory is described through the Falk polynomial constitu­

tive model. The system is then mathematically described by a second order nonlinear 

differential equation which was then solved using Maple's numeric differential equa­

tion solver RKF45. From the numerical results presented in Figures (3.2)-(3.5), we 

concluded that the response of the system is chaotic and unpredictable. In the next 

chapter we will focus on the design and implementation of a linear optimal controller 

with the aim to eliminate or compensate for the chaotic behavior. 
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Chapter 4 

Optimal Control 

In Chapter 3 we developed a model for a 1 DOF nonlinear oscillator with a SMA 

element based on Falk's polynomial constitutive model. The model was analyzed 

numerically by choosing a temperature where the SMA exists in either its martnesitic 

or austenitic phase. The simulation results presented in Figures (3.2-3.5) showed that, 

due to the hysteresis phenomenon of SMAs, the response of the system is chaotic 

and unpredictable. Therefore, the effectiveness of SMAs is hampered, making them 

difficult to use without some form of control. In this chapter we will address the issue 

of hysteresis of SMAs from a control perspective. 

While design, modeling and dynamics of SMAs have been studied extensively, there 

is still a great deal of open questions, in particular in the area of control of SMA 

dynamics. Analysis and control design of nonlinear systems are among the most 

challenging problems in systems and control theory [59, 60]. For SMAs in particular, 

control design is a very difficult problem to solve for three main reasons [12, 40]: 

• SMAs present complex thermo-electro-mechanical dynamics that are difficult 
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to model; 

• Due to their temperature dependency, SMAs are very sensitive to temperature 

changes; 

• Due to the flexible characteristics of SMAs, substantial vibrations can be excited 

when the SMA is used as an actuator; 

• Controllers for SMA devices need to be robust in system and environmental 

changes and modeling errors. 

In the past there has been a number of studies into control of systems with shape 

memory alloys in particular in [12, 30, 57, 74]. In [57] (see also references therein) 

for instance, the authors discussed a number of different strategies that were applied 

to systems with SMAs. These include the application of a proportional derivative 

(PD) control scheme to SMA wires used as actuators of a biped walking robot. An 

active proportional integral derivative (PID) control was used on a segmented active 

endoscope made with SMA springs, a proportional integral (PI) control was used on 

SMA actuators with an additional thermal sensor, and a very simple proportional (P) 

control was used to verify the SMA system model and analyze the system's stability. 

The control gains are tuned through simulations with trial and error method. The 

drawback of linear P, PI or PID control is that the controller may perform well in the 

range where the control gains are tuned, but deteriorates dramatically once outside 

that range [40]. 

Also, various adaptive control algorithms have been proposed for use in the appli­

cation of SMAs. In [12] for example, an adaptive control was used to compensate 
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directly the hysteresis of SMAs when these actuators are used in vibration suppres­

sion applications. In [30] (see also references therein), the authors took into account 

in their adaptive control algorithm the estimation of thermal changes between the 

SMA actuators and the environment and calculated the compensating input using 

an established SMA model. The drawback of this method is that the model and 

the calculations are very complicated, thus increasing the burden for computation in 

experimental implementations [40, 74]. 

In [74] (see also references therein) the authors used feedback linearization of the 

state equations by introducing a feedback which is a nonlinear function of the system 

states. The nonlinear factors introduced by the feedback aim at compensating the 

original nonlinear factor. Due to the hysteretic nature of SMAs, we have seen in 

the pervious chapter that the response of the nonlinear oscillator defined by equation 

(3.2) is chaotic and unpredictable (see Figures 3.2-3.5). In order to make use of the 

SMA in an effective way we need to deal with the hysteresis phenomenon that is the 

main cause of the nonlinearity in this case. To achieve this objective, a controller will 

be designed and implemented to move the system defined by equation (3.2) from the 

chaotic unstable state to a desirable stable state. Generally speaking, there are two 

ways to deal with hysteretic nonlinearities [12, 80]: 

• Open-loop compensation: Find a first-principle or phenomenological model, if 

possible, to remove or at least ameliorate the nonlinearity. 

• Closed-loop feedback: Use the output error (measured output subtracting the 

desired output) to generate the corrective input. 
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We will consider the closed-loop feedback method to deal with the nonlinearity of 

the nonlinear SMA oscillator discussed in the Chapter 3. In the coming sections, 

an optimal linear quadratic regulator (LQR) controller will be designed and applied 

to the system given by equation (3.2). The mathematical model of the closed-loop 

system will be derived and simulated, and the results will be presented. 

4.1 Linear Quadratic Regulator Control Design 

In an optimal control problem one attempts to find a controller which causes a given 

system to follow a trajectory that provides the best possible performance with respect 

to some given measure of performance [26]. 

The LQR optimal feedback is one of many methods to improve stability performance 

of any unstable system. Using LQR theory, it has been established that for a control­

lable linear time-invariant system, a set of optimal feedback gains may be found which 

minimize a quadratic index and makes a closed system stable by way of Lyapunov 

function as described in section 2.2 of Chapter 2 [4, 34]. 

We opted for an LQR controller design because it is easy to design and implement, 

and in our case it will improve the stability performance by compensating for the 

hysteretic relationship between input and output of the SMA system. The controller 

will perform as long as the system is controllable 1 and observable [23]. We will next 

cover all the steps involved in designing an LQR controller, which we will then apply 

to the nonlinear oscillator system described by equation (3.2) with the objective to 

find a control law that moves the system from the uncontrolled chaotic state to a 

Controllabili ty and Observability will be discussed in section 4.3 
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stable one, in this case a stable equilibrium. 

Since the system described by (3.2) is nonlinear, the first step to designing an LQR 

controller is to linearize the system. Applying the linearization steps, which will be 

discussed in section 4.2, to the nonlinear system described by equation (3.2) gives a 

system of first order differential equations in the form: 

£(t)=Axx(t) + Bxu(t), (4.1) 

where x(t) is the state vector, u(t) is the control vector, and A and B are two real 

matrices, that may be constants or time dependent, and whose dimension is consis­

tent with the dimension of the state and input vectors. 

For an LQR controller the objective is to minimize a particular performance measure. 

In our case the performance measure will be to minimize the energy of the controlled 

output x and the energy of the control signal u of the SMA system. Therefore, the 

performance measure is given by the standard expression [4, 24, 57]: 

/>oo 

1= (x(t))TQx(t) + (u(t))T Ru(t)dt, (4.2) 
Jo 

subject to (4.1) and the initial condition x(0) = XQ, where Q is a real symmetric 

positive semi-definite weighting matrix and R is a real symmetric positive definite 

weighting matrix, and XQ is the initial state of the system. The control law for the 

LQR controller is a linear time-varying function of the system states, see ([26], pages 

209 - 227), and is given by: 

u*(t) = -Kx{t), (4.3) 

where K is the gain matrix given by: 

K = R~1BTP, (4.4) 
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and P is found by solving the algebraic Riccati equation; 

ATP + PA- PBR~1BTP + Q = 0. (4.5) 

Before we begin the design and implement the LQR controller into the 1 DOF non­

linear oscillator we need to linearize the system. Linearization of the system will be 

discussed in section 4.2 and a linear approximation of the nonlinear oscillator will be 

derived. 

4.2 System Linearization 

Although almost every physical system contains nonlinearities, oftentimes its behavior 

within a certain operating range of an equilibrium point can be reasonably approxi­

mated by that of a linear model. One reason for approximating a nonlinear system by 

a linear model is that, by doing so, one can apply rather simple and systematic linear 

control design techniques, keeping in mind, however, that a linearized model is valid 

only when the system operates in a sufficiently small range around an equilibrium 

point. Linearization involves converting a given nonlinear differential equation into a 

system of first order differential equations, known as state-space form. The resulting 

system of equations is then solved to find the equilibrium points. Finally, a stable 

equilibrium is chosen and the system is linearized about this equilibrium to obtain a 

linear approximation of the nonlinear system. The dynamic equation of the nonlinear 

oscillator with the SMA device given in equation (3.2) is in the form: 

f(*) = / ( £ ( * ) , « ( * ) ) , (4.6) 
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where f(x(t),u(t)) is a vector function of the state vector x(t) and the control vector 

u(t) given by equation (4.9) . 

To linearize the system described by the equation (3.2), we will follow the steps 

described in sections 4.2.1-4.2.3: 

4.2.1 State-Variable Form 

The first step in linearizing a nonlinear system is to convert it into a set of first order 

differential equations. This is achieved by letting: 

Xi = X (t) , X2 = X (t) (4.7) 

We then take the first derivative of x\ and x2 with respect to time and substitute in 

equation (3.2), this gives the new system of first order differential equations (4.8): 

xi(t) 

x2(t) 

x2 

—cx2 — a(T — TM) Xi + bxi3 — b2X! 

4a(TA-TM) 

+ u{t) 
0 

1 
• (4.8) 

Therefore, the vector function f is given by: 

h{xl,x2) 

fi(xi,x2) 

x2 (4.9) 

-cx2 -a(T- TM) XI + bXl
3 - 4a{T*-TM) 

where a, b, TM, and TA are parameters of the SMA, and T is the temperature pa­

rameter. 
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4.2.2 Finding Equilibria 

The next step is to find the equilibria of the system by solving the system of equations 

(4.9) for x\ and x2: 

Mxuxt) = 0, ( 4 I Q ) 

fi(x1,x2) = 0 . 

4 .2 .3 S t a b i l i t y C h e c k 

If re* is an equilibrium of the the system of equations (4.10), its stability is determined 

by computing the Jacobian J of the system at this equilibrium, where the Jacobian 

is given by the following standard expression: 

J = 
^fo{xux2) ^fo(x1,x2) 

^fi(x1,x2) £-Ji(xux2) 

Next we recall the following result: 

(4.11) 

T h e o r e m 2 [26]: An equilibrium is stable if and only if the real part of the eigenval­

ues of its corresponding Jacobian matrix are all negative. 

The nonlinear system described by equation (3.2) can now be approximated by a lin­

ear system in the form of equation (4.1), where x(t) is the state vector of the system, 

the matrix A is obtained by computing the Jacobian J at the stable equilibrium, and 

B is the vector of input controls. 

Note that since we are dealing with a system with two phases, martensite and austen-

ite, we will compute the matrix A for each phase. 

Before we proceed to the design of the LQR controller for our system we need to check 
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first if the system is controllable and observable. The controllability and observability 

of the system will be discussed in section 4.3. 

4.3 Controllability and Observability 

In many control engineering applications, the task of a control engineer is to design 

a controller to interact with the pre-existing system. However, some systems simply 

cannot be controlled. The concept of controllability refers to the ability of a controller 

to move the system from an initial state to another state over a finite time [33]. In 

other words if we assume that the system is at the origin initially, can we find a 

control signal so that the state reaches a given position at a fixed time. We follow 

[9, 26, 33] to define controllability and observability of a dynamic system. 

Definition 3 [26]: A linear system in the form of equation (4-1) is controllable if for 

any [x0,Xf] € M.n and any time T > 0 there exists an input u : [0,T] —> E such that 

the solution of the dynamics starting at the initial condition x(0) = XQ and applying 

input u(t) gives x(T) = Xf . The controllability of the dynamical system is defined in 

terms of states and does not depend on the output. 

Theorem 3 [26]: A linear system is controllable if and only if the rank of the n* n 

controllability matrix: 

C B Ax B A2 x B ... An~l x B (4.12) 

is equal to n. 
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Definit ion 4 [26]: Observability of a linear system in control theory is a measure 

for how well internal states of a system can be inferred by knowledge of its external 

outputs. The observability and controllability of a system are mathematical duals. 

T h e o r e m 4 [26]: A linear system in the form of equation (4-1) is observable if and 

only if the rank of the observability matrix: 

C 

CxA 

CxA2 O 

C x A"- 1 

(4.13) 

is equal to n. 

Now that we defined the steps needed to design an LQR controller, in section 4.4 we 

will implement these steps to design a controller for the nonlinear oscillator with the 

SMA element while it exists in one of its two phases, martensite or austenite. 

4.4 LQR Design of the Martensi te Phase 

The phase of the SMA is determined by the change in temperature, for high tem­

peratures the SMA exists in its austenitic phase, and at low temperatures it exists 

in its martensitic phase. To simulate the response of the SMA in the martensitic 

phase we assume that the temperature T is constant and is set to a value where the 

SMA exists in its martensitic phase. The martensitic phase is stable when T < TM, 

where TM is the temperature below which the martensitic phase is stable. The SMA 
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used in our analysis has Tu = 287.K" (see Table 3.1), so by choosing a temperature 

T = 283fT the SMA is in its martenstic phase. In this section we will implement the 

steps defined in sections 4.2 and 4.3 to design an LQR controller for the martensitic 

phase of the SMA. We will begin by finding a linear approximation of the SMA in its 

martensitic phase, then check whether the approximated system is controllable and 

observable. We then compute the controller gain K using equation (4.18) and simu­

late the closed-loop response of the system. The numerical results are obtained using 

the following Maple routines: for controllability and observability the Maple routines 

"ControllabilityMatrix" and "ObservabilityMatrix" are used, and for the controller 

gain K the Maple routine "LQRController" is used. The Maple codes for all the 

routines developed in this context are included in Appendix B. 

Applying the linearization steps discussed in section 4.2 to the martensitic phase 

model given by equation (3.3), we get the following linear approximation at the equi­

librium point [x\ = 0.0525, X2 = 0): 

Xi (t) 

x2(t) 

0 1 

-237.0539232 -0 .2 

Xi 

%2 

+ u(t) 
0 

1 
(4.14) 

Therefore, the matrices A and B of the approximated linear system are: 

A = 
0 1 

-237.0539 -0 .2 
, B 

0 

1 
(4.15) 

Now based on (4.12) and (4.13), the system's controllability matrix C and the ob­

servability matrix O are: 

C 
0 1 

1 -0 .2 
, 0 = 

1 0 

0 1 
(4.16) 
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The rank of matrix C and 0 is 2, therefore the system is controllable and observable. 

The optimal control law that minimizes the performance measure I given in equation 

(4.2) is a linear time-varying function of the system states [26] and is given by: 

«*(<) = -Kx(t), (4.17) 

where K is the gain matrix given by: 

I D T I K = R-'B1 P: 

and P is found by solving the continuous time algebraic Riccati equation 

(4.18) 

A1 P + PA - PBR-'B1 P + Q = 0. (4.19) 

The matrix Q in equation (4.19) quantifies the divergence of system state, whereas 

R specifies the cost of the control effort. A suitable choice of Q and R leads to the 

computation of the controller gain K. If the components of Q are chosen large relative 

to those of R, then deviations of x will be penalized heavily relative to deviations of 

u. On the other hand, if the components of R are large relative to those of Q, then 

control effort will be more costly. Q and R are usually chosen randomly [39, 49, 57], 

keeping in mind that Q is chosen as a real symmetric positive semi-definite matrix 

and R is a scalar real value. In our simulation the Q and R matrices used in LQR 

design are selected as follows: 

Q = , 72 = 0.1. 
10 0 

0 10 

Using the Maple routine " LQRController" the gain matrix K is computed to be 

(4.20) 

K 0.0422 4.2860 (4.21) 
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Therefore, the control law is given by: 

u* (t) = -0.0422 xi (t) - 4.2860 x2 (t). (4.22) 

4.5 Closed-loop Feedback Response of the Marten-

sitic Phase 

Now that we found the control law that optimizes the linearized system, the closed-

loop representation of our system is found by substituting the input variable u(i) by 

the new control variable u*(t) given by equation (4.22) in the equation representing 

the martensitic phase. The resulting controlled system is: 

ftxx (t) = x2 (t) 

| x 2 (t) = 3.957819258a;! (t) - 4.4860x2 (t) + 40000.0 (Xl (t))3 - 15000000.0 (xi (t))5 

(4.23) 

The response of the controlled system is then given by solving the new system of 

differential equations (4.23) and the results are shown in Figures 4.1, 4.2. From the 

phase portrait, shown in Figure 4.2, of the closed-loop system given by equation (4.23) 

we observe that starting the system at the initial condition x0 = 0.01 the feedback 

control moved the 1 DOF nonlinear oscillator with SMA from the chaotic unpre­

dictable state to the stable equilibrium (xi = 0.0525, £2 = 0). This indicates that 

if we choose a region of operation around an equilibrium point, the LQR controller 

does indeed stabilize the system in the vicinity of the equilibrium point. This means 

that by linearizing the 1 DOF nonlinear oscillator around a stable equilibrium and 

using an LQR feedback control we managed to change the dynamics of the system. 
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Figure 4.2: Phase Portrait of the Controlled Nonlinear Oscillator "Martensitic Phase" 
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4.6 Stability by Lyapunov Method 

Having formulated the control problem for the martensitic phase in sections 4.4-

4.5, and numerical results of the controlled response of the SMA in its martensitic 

phase were presented in Figures 4.1 and 4.2, we now need to show that the closed-

loop response of the controlled system is stable. The most necessary and sufficient 

condition for stability of dynamic systems is the existence of a Lyapunov function 

[17, 25, 82]. In Chapter 2 section 2.2, we discussed the stability of dynamic systems 

by way of Lyapunov method as described by definition (2) and theorem (1). Choosing 

a Lyapunov function is not always straightforward, however for linear systems the 

theory is well established [82]. For linear dynamic systems, the Lyapunov function is 

chosen as a quadratic function in terms of the state vector x of the dynamic system 

and the matrix P which is the solution of the Riccati equation. Following this rule 

and using the Lyapunov stability definition, we will consider the following Lyapunov 

function to prove stability of the controlled dynamic system given by (4.23): 

V(x)=xPx, (4.24) 

where x is the state vector of the dynamic system described by equation (4.14) and P 

is the solution of the Riccati equation give by (4.19), and is at least positive definite. 

By solving the the Riccati equation (4.19) for P we get the following matrix: 

P 

and substituting P in (4.24) we get: 

9.45 3.16 

3.16 9.45 
(4.25) 

V (xux2) = 9.45x\ + 6.32Xl x2 + 9.45x\. (4.26) 
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Clearly, V(x) is positive definite, and V (0) = 0. Differentiating V(x) along the 

trajectory of the system gives: 

V (xi,x2) = -4473.213147xi x2 - 16.08952081 x2
2 - 1499.527547xx

2. (4.27) 

V (x) is negative, therefore the closed-loop response of the system (4.23) is stable. 

4.7 LQR Design of the Austenitic Phase 

Since the SMA exists in its austenitic phase when the temperature T > TA, the SMA 

used in our systems has TA = 362.2K, so by choosing a temperature T = 400K the 

SMA is in its austenetic phase. We proceed here in a similar way as for the martensitic 

phase to derive the equations of the linearized model. 

System's linearization gives: 

xi(t) 

x2(t) 

0 1 

-113 -0.02 

X\ 

X2 

+ u(t) 
0 

1 
(4.28) 

Therefore, the matrices A and B of the approximated linear system are: 

A = 
0 

-113 

1 

-0.02 
, B = 

0 

1 
(4.29) 

Based on definitions (4.12) and (4.13) the controllability and observability matrices 

of the 1 DOF nonlinear oscillator, when the SMA is in its astenitic phase, are given 

by: 

C 
0 

1 

1 

-0.02 
,0 = 

1 0 

0 1 
(4.30) 
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The rank of matrix C and 0 is 2, therefore the system is controllable and observable. 

The optimal control law that minimizes the performance measure I given in equa­

tion (4.2) is a linear time-varying function of the system states [26] and is given by 

equations (4.17)-(4.19): The matrix Q in the Riccati equation (4.19) is chosen as a 

diagonal matrix and R is a scalar real values given now as: 

Q = 
1 0 

0 1 
, R= 1. (4.31) 

Using the Maple routine "LQRController" the gain matrix K is computed to be: 

K 0.0422 4.2860 (4.32) 

Therefore, the control law in this case is given by: 

u* (t) = -0.00422 a;! (t) - 0.985x2 (t) (4.33) 

4.8 Closed-loop Feedback Response of the Austenitic 

Phase 

Similar to section 4.5, the closed-loop representation of our system is found by sub­

stituting the input variable u(t) by the new control variable u*(t) given by equation 

(4.33) in the equation representing the austenitic phase. 

The new system of first order differential equations is given by: 

dt X\ (t) = X2 (t) 

| x 2 (t) = -113.002 Xl (t) - 0.842 x2 (t) + 40000.0 (Xl {t)f - 5194805.195 (xa (t))5 

(4.34) 
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and the response of the controlled system is shown in Figures 4.3 and 4.4. 

As with the SMA in the martensitic phase, when it is in its austenetic phase the 

response of the uncontrolled system was chaotic and unpredictable. The model was 

then linearized around the equilibrium point (xi = 0.0525, X2 = 0). Using linear 

feedback control strategy we managed to modify the dynamics of the SMA oscillator. 

The effect of the LQR controller on the response of the system can be seen in Figure 

4.3, which indicates that starting the system from an initial state the system will 

eventually settle at the stable equilibrium. Stability of the system can be proved 

by way of a Lyapunov function as in the case of the SMA in the martensetic phase 

discussed in section 4.6. 

4.9 Summary 

In Chapter 4 the mathematical model describing a 1 DOF nonlinear oscillator SMA, in 

either phase, was linearized around the stable equilibrium point {x\ = 0.0525, X2 = 0). 

Optimal control was then used to design a LQR controller which was then imple­

mented in a closed-loop feedback control setup to compensate for the hysteretic rela­

tionship between input and output of the SMA system. Using LQR optimal control, 

the unpredictable response of the original system can be controlled to a stable equi­

librium as shown in Figures 4.1-4.4. The results show that by using linear feedback 

control we were able to modify the dynamics of the nonlinear SMA oscillator, and 

that the proposed method of using a linear quadratic regulator controller was effective 

in moving the system from the unstable, unpredictable state to a stable controllable 

state. Based on the results obtained in this chapter we can safely conclude that using 
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the LQR controller, the SMA can be used as an actuator in a 1 DOF oscillator and 

its response can be controlled. 
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Chapter 5 

Thermo-mechanical Modeling of 

SMAs and Model Reductions 

In Chapters 3 and 4 a nonlinear oscillator system with a SMA element was modeled, 

analyzed, and controlled while the SMA was in one of its two phases, martensite 

or austenite. This was achieved by choosing a temperature where the SMA existed 

in only one of the phases. In this chapter we will study the thermo-mechanical 

behavior of the SMA element of the nonlinear oscillator shown in Figure 3.1. As a 

development of the results obtained in Chapter 3 where the temperature of the SMA 

was maintained constant, in this chapter the temperature of the SMA will vary by 

applying a voltage input across it, resulting in the SMA behaving as a transducer 

converting thermal energy into mechanical energy. In section 5.1, the laws of physics 

are applied to develop a ID mathematical model of the SMA as a coupled thermo-

mechanical system consisting of a system of PDEs. In section 5.2 the model reduction 

via Galerkin projection method will be used to transform the system of PDEs into a 
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set of ODEs that describe the dynamics of the SMA and the heat transfer. In section 

5.4 we will also consider an alternative model consisting of three main equations that 

describe the dynamic characteristics of the SMA [24]. The temperature dynamics are 

described by Joules heating and natural convection, the mole fraction distribution 

is given by the Fermi-Dirac statistics that describe a system in two states, and a 

constitutive equation relating the changes in temperature and mole fraction to the 

stress and strain induced in the SMA. This model will be used to explain the hysteresis 

in the SMA as well as the phase transformation and heat transfer. 

5.1 Mathematical Model of SMAs 

It is well understood that in order to describe the dynamics of SMAs it is impor­

tant to account for the coupling of the three main physical quantities of continuum 

mechanics (stresses, deformation gradients, and displacements) to the thermal field 

[43, 62, 78]. Therefore, to model the dynamics of the SMA sample at the macroscale 

level accounting for phase transformations, we start from conservation laws for mass 

and momentum, which will give us the governing equations for the mechanical field. 

Due to the coupling of mechanical and thermal fields during phase transformations, 

the governing equation for temperature evolution of the SMA sample should also 

be added. This can be done using heat equation that is derived by applying the 

conservation of energy, the first law of thermodynamics and Fourier's law [13, 24, 32]. 
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5.1.1 Stress-Strain Relation 

In order to characterize both, austenite at high temperature and martensite at low 

temperature, by using a generic expression, the potential energy is constructed on 

the basis of the modified Landau-Ginzburg free energy function, which reduces to 

the Falk's polynomial model discussed in section 1.2.1 of Chapter 1 in the ID case. 

The ID reduced model can be written as follows [77, 79]: 

>£-i(^-™(£)-*(£),+*(£)V- (-» 
where p is the density of the material, x is the displacement in the x direction, F is 

the mechanical loading, k\, &2, and &3 are material specific parameters and TM is a 

reference temperature for the martensite transition. 

5.1.2 Heat Conduction 

For the heat conduction, we consider the temperature of the SMA to be independent 

of the strain and martensite-austenite fraction, and to be only a function of the 

heat transfer. The general solid heat conduction equation is derived by applying the 

conservation of mass, the first law of thermodynamics and Fouriers law [32]. Using 

the electrical charge as the input power, in the ID case the equation is written as: 

d d2T V2 

»c"mT = klu;-h{T-T*) + Ji< ( 5 2 ) 

where p is the material density, T is temperature, Cv is the specific heat coefficient, 

h is the heat transfer coefficient, Ta is the ambient temperature, and V is the voltage 

input. 

We assume that the transient temperature response of the wire heat conduction in 
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the direction x can be considered to be much faster than the heat convection (see [32] 

and reference therein). Therefore, equation (5.2) can be simplified into the following 

form: 

P Cv VSMA J t
T ^ = \ ~ h ASMA (T (t) - Ta), (5.3) 

where VSMA
 a n d A$MA are the total volume and surface area of the SMA. Therefore, 

the system that describes the coupled thermo-mechanical behavior of the ID SMA 

structure can be written as follows: 

d2u d (, .„ „ x (du\ , fdu\z , fdu\5\ „ 

"W = si{h(T-T"){-F,)-h{a-x)
 +*3(*j j + F- {54) 

pC\ VSMA jT{i) = ^ - -hASMA (T(() - T J . 

The numerical results reported in this chapter were performed for a Au-Cu-Zn rod 

with a length of L = 1cm and all parameter values are found in [77], in particular the 

material specific parameters shown in Table 5.1 in section 5.3. 

The system of equations (5.4) describing the thermo-mechanical behavior of the SMA 

system consists of a PDE and an ODE. In the next section we will propose a frame­

work to solve a closed-loop optimal tracking control problem for the system given by 

equations (5.4). The approach is based on model reduction via the Galerkin projec­

tion method to transform the PDE in the system (5.4) into an ordinary differential 

equation. 
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5.2 Model Simplification via Galerkin Model Re­

duction 

In this section, we focus on the ID model given by the system of equations (5.4) over 

fi = {(x,t) :0 <x < 1,0 <t <T}. 

The system given by equations (5.4) is nonlinear and cannot be solved analytically 

while its numerical simulation could be a very expensive endeavor. Numerical pro­

cedures to find a solution to ID models describing SMA behavior can be found in 

articles by a number of authors, in particular in [5, 43, 75-77]. Because of the nonlin­

ear nature of the SMA due to the hysteresis phenomenon, the response of the SMA 

will have to be controlled in order to make use of the SMA in many applications of 

these materials. The standard approaches to the control of a system described by a 

PDE or a system of PDEs involves the application of the standard Galerkin's pro­

jection method to derive a system of ordinary differential equations that accurately 

describe the dynamics of the system. The resulting system of ODEs is subsequently 

used as the basis for controller synthesis [3, 64]. Other model reduction methods were 

discussed where the center manifold reduction was applied to derive a new system of 

equation. More recently, the Proper Orthogonol Decomposition (POD) [11, 52, 78] 

for the model reduction od such systems. In section 5.2.3, we will apply the Galerkin 

reduction method to the model given by equations (5.4) in order to obtain a system 

of ODEs that will be used as basis for the design of a linear controller for nonlinear 

systems in Chapter 6. 
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5.2.1 Galerkin Projection 

Before we begin the discussion about the Galerkin Projection method, we briefly 

highlight the necessary mathematical preliminaries (e.g. [10]): 

Definition 5 (Hilbert Space): An Euclidean space W1 is a vector space endowed 

with the inner product < x,y >= xTy, norm \\ x ||= yxTx = y/< x,x > and asso­

ciated metric \\ x — y \\, such that every Cauchy sequence takes a limit in W1. This 

makes M.n a Hilbert space. A Hilbert space H is therefore a vector space endowed with 

an inner product and associated norm and metric, such that every Cauchy sequence 

in H has a limit in H. 

Definition 6 (Inner Product): The inner product serves several purposes in Galerkin 

procedure. Fundamentally, it helps define the Hilbert space on which the analysis pro­

ceeds. It also defines the projection of the governing equations onto the basis, which 

leads to the Galerkin dynamical model. An inner product on a real vector space V is 

a real function < x,y >: V x V —»M such that for all x, y, z in V and all c in R, 

• <x,y >=< y,x> 

• < cx,y > = c < x,y > 

• < x + y, z > = < x, z > + < y, z > 

• < x,x > > 0,x ^ 0 

For example, in the space C[0,1] of continuous real functions on [0,1], the inner 

product is defined as < f,g >— J0 f (t)g(t) dt. 
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Definition 7 (Orthonormal Basis): Let V = {fa, fa, • •., fa} be a set of contin­

uous functions. The functions fa of the basis V are said to be orthonormal to each 

other iff: 

< fa,fa >= Sitj, (5.5) 

where Sij is the Kronecker delta function defined as follows: 

kj = { 
0 ifi^j 

1 ifi= j 

5.2.2 Galerkin Method 

Let's now consider a dynamical system which evolves in a Hilbert space H. In par 

ticular, for U(x,t) € H, U(x,t) satisfies 

d 
U (x,t) = X {U {x,t)), 

(5.6) 

U(t,dQ) = 0, 

where X is a vector field on H. For instance following [3, 52], we note that for a 

partial differential equation governing variable U(x, t), defined on some spatial domain 

x 6 Q, H will be a space of functions defined on Q, and X will be a spatial differential 

operator. Given a finite-dimensional subspace S of H, Galerkin projection specifies 

a dynamical system which evolves on S and approximates (5.6) in some sense. This 

approximate dynamical system is obtained by orthogonal projection of the vector 

field X onto the subspace. The Galerkin method consists of finding an approximate 

function U(x, t) over some domain of interest as a finite sum in the variables-separated 
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form satisfying the boundary conditions of the model given by equation (5.6): 

n 

U(x,t)^^2ak{t)4>k(x), (5.7) 
fc=i 

where cf)k (x) are continuous orthonormal functions that form the basis, with the 

reasonable expectation that the approximation becomes exact in the limit as n ap­

proaches infinity. It is well known that the representation of equation (5.7) is not 

unique. For example, if the domain of a; is a bounded interval X on the real line, 

then the functions 4>k (x) can be chosen as a Fourier series, or Legendre polynomials, 

or Chebyshev polynomials, and so on. For each such choice of a sequence <pk (x) 

that forms a basis for some suitable class of functions U(x,t), the sequence of time-

functions ak (t) is different. That is, for sines and cosines we get one sequence of 

functions ak (£), for Legendre polynomials we get another, and so on [8, 27]. 

We substitute the expression (5.7) in equation (5.6): 
n , n 

J2 jt<n it) & [x) = Y,x ^ (*) & (*)) • (5-8) 
i = l i = l 

We then write the weak form of equation (5.8) using the inner product discussed in 

section 5.2.1 by multiplying both sides by 4>k (x), for k = 1, 2, ...,n, and integrating 

over the spatial domain, i.e., 
n , n 

Y^ -T-cii (t) < <\>% (x), <t>k (x) >=^X (^ (t) < 4>% (x), <f>k (x) > ) , (5.9) 
dt 

= 1 i = l 

where 

< <f>i (x), </)k (x) >= / 4>i{x)(f)k(x)dx. (5.10) 
Jan 

Since the modes c/>j (x) are orthonormal to each other, from (5.9) ^ a , (t) can be 

approximated by 

d_ 
dt 

a% (t) = V X (en (t) f <j>i (x) 0fe (x)dx) . (5.11) 
^Tx \ Jdn J 
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If we assume Dirichlet boundary conditions on the interval [0,1], then the orthonormal 

basis 4>k (x) = \/2sin (kirx) satisfies the boundary conditions and can be used to solve 

the system of equation given by (5.4). If we substitute the basis fa (x) in equation 

(5.11) we obtain a set of n ordinary differential equations. 

5.2.3 Reduced Order Model 

From the system of equations (5.4), we note that the energy equation is a simple ODE 

which can be solved independently for the temperature T. Therefore, if we apply the 

Galerkin method described in section 5.2.1, using a first order reduction, to the first 

equation (PDE) of the system (5.4) relating stress and strain, then the system of 

equations will be reduced into a system of two ordinary differential equations. Let 

$ = {fa = \/2sin(7ra;),02 = \/2sin (2TTX)} be the set of orthonormal basis that will 

be used for the model reduction using Galerkin method, where fa are continuous 

functions on the interval [0,1]. Using this orthonormal basis, we approximate the 

variable u(x, i) in the PDE describing the dynamics of the SMA as: 

2 

u ( x , * ) « ^ ^ ( ^ ( x ) . (5-12) 

Now substituting the expression given by equation (5.13) in the PDE equation given 

by (5.4) to obtain: 

i=i 

2 

KlXi(t)(T(t)-TQ)^2— fa(x)-

/ 2 \ 3 / 2 \51 (5.13) 

K2 x% (t)3 I J2 | U (x) J +K3Xi (t)5 I ^2 £<l>i (*) ) + F. 

The inner product rule defined in section 5.2.1 is then used to write the weak form of 

equation (5.13) by multiplying both sides by fa (x) and integrating over the spatial 
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domain [0,1] to obtain the following ordinary differential equation: 

'£*•<'> = I * + * (5I4) 

where a is given by equation (5.15), which has the form of the polynomial model 

discussed in section 1.2.1 of Chapter 1 : 

a = kx{T (t) - TM) XX (t) - k2xt {tf + kiXl (tf . (5.15) 

The reduced model can be written as follows: 

d2 , x d 

P Cv VSMA Jt
T^) = ^ - h ASMA (T (t) - Ta), 

(5.16) 

where V is the voltage applied across the SMA wire, k\,k2, and k^ are parameters of 

the SMA and R is the material resistance. 

The dynamic characteristics of the SMA are defined by the system of equations (5.16) 

where x(t) is the displacement, a(t) is the stress in the SMA, V is the voltage across 

the SMA wire, and F is the input load. The SMA model of equations (5.16) is 

similar to the model given by equation (3.2) that was studied in Chapter 3. The 

difference is that the new model takes into account the change in temperature using 

the heat equation that consists of Joule heating and natural convection [13]. In the 

next section the mathematical model given by (5.16) will be solved numerically and 

results will be presented. 

5.3 Computational Results 

In this section the system of equations (5.16) obtained in the previous section is solved 

using an input F, the force of gravity due to mass m of the nonlinear oscillator in 
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Table 5.1: Material Constants of Au-Cu-Zn SMA [77] 

Parameters Values 

h 

k3 

TM 

C„ 

P 

h 

480 ms2cmK 

6106 —«-ms2cmK 

4.5108 — 9 -ms2cmK 

208 

3.1274 / „ 

11.1 -a-

150 

cm0 

J 
m2KSec 

Figure 3.1, a voltage V = 101^, and the initial conditions given by (5.17). The SMA 

element used in this analysis is Au-Cu-Zn, and the values of the different parameters 

of the material can be found in Table 5.1. 

T (0) = 260if, x (0) = 0.03, x' (0) = 0. (5.17) 

Strain 

Step Input Response 

time 

Strain in the SMA During Heating 

Figure 5.1: Step Response of SMA During Heating of SMA 
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The results presented in Figure 5.1 show that the response of the SMA system 

described by the system of equations (5.16) is highly oscillatory. This is mainly due 

to the dissipative nature of the SMA that results in hysteresis between the input 

and output of the oscillator. The Figure 5.2 shows the temperature change in the 

340-

320-

300-

280-

Temperature 

/ / / / 
/ 

/ 

Temperature Change in the SMA Wire 
~ • " 

/ " " " " 

i i i 

time 

Figure 5.2: Temperature Change During Heating of SMA 

SMA element as it is being heated by applying the input voltage V across it. The 

temperature starts at the initial temperature T0 = 260K and continues to increase 

with time causing the SMA to heat up, making the SMA goes through a phase 

transformation. 

The Figure 5.3 is the phase portrait representation of the SMA system. From 

the figure it is clear that the response of the system is chaotic and unpredictable. 

This shows that despite the excellent properties of the SMAs, their hysteretic nature 

prohibits them from being used in many applications without adding controllers to 

compensate for the hysteresis phenomenon. 
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Phase Portrait of SMA During Heating 

velouL} 

wnmiiiiiiiiiii/n 11 0.10/ i 

Figure 5.3: Phase Portrait During Heating of SMA 

Stress-Strain Curves 
6000-

Figure 5.4: Stress-Strain Curves Illustrating SME and Pseudoelasticity 
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The results presented in Figure 5.4 show the stress-strain relationship of the SMA 

as it goes from the initial martensitic phase to the austenetic phase. As the tem­

perature increases from the initial temperature T = 260K} where the SMA is in it 

martensitic phase, to T = 340K where the SMA is in its austenitic phase, we see 

from the figure how the SMA goes through a phase transformation exhibiting shape 

memory effect as well as pseudoelasticity. 

5.4 Thermo-mechanical SMA Model Based on Fermi-

Dirac Theory 

A new mathematical model of the SMA, based on the Fermi-Dirac model discussed 

in section 1.2.4 of Chapter 1, will be analyzed in this section. The model consists 

of three equations, the phase transformation equation described by the Fermi-Dirac 

model, the Joules heating equation describing the temperature dynamics, and the 

constitutive equation that relates changes in stress, strain, and phase fraction [24]. 

The models we examined before were based on the polynomial model discussed in 

section 1.2.1 where the constitutive model depends on temperature and stress only. 

The model proposed in this section depends on the stress and temperature, in addition 

to a variable that represents phase transformation of the SMA. One of the advantages 

of this model, despite its simplicity, is its ability to capture the properties of the SMA, 

and it is in the form of a system of ODEs that can be used to design a controller 

without resorting to model simplification as we have seen in the section 5.2.3. 
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5.4.1 Phase Transformations 

Since a SMA exists only in martensite and austenite phases, it can be modeled as 

a two-state system, like an electron. The Fermi-Dirac statistics, which describes the 

distribution of electrons in two states depending on their energy levels, has been 

found to provide a good model for the state of a SMA in martensite and austenite 

forms [24]. Since the SMA is in the martensite form at lower temperatures, the phase 

transformation equation during heating is described by analogy with the Fermi-Dirac 

statistics in the form; 

C = T^T , (5-18) 
l + e-^+K** 

where £ is the fraction of the austenite phase, £m is the fraction of the martensite 

phase prior to the present transformation from martensite to austenite, T is the 

temperature, Tfa is the transition temperature from martensite to austenite, aa is an 

indication of the range of temperature around the transition temperature T/a during 

which the phase change occurs, a is the stress, and Ka is the stress curve-fitting 

parameter which is obtained from the stress-strain characteristic with no change in 

temperature [24]. On cooling, the austenite phase gets converted to the martensetic 

phase and the modeling equation during cooling is described by analogy with the 

Fermi-Dirac statistics in the form: 

C = T,„,-T > (5.19) 1fm-
1 -+- e "rn -+Kmcr 

where £a is the fraction of the austenite phase prior to the transformation from 

austenite to martensite, T is the temperature, T/m is the transition temperature 

from austenite to martensite, am is an indication of the range of temperature around 

the transition temperature T/m during which the phase change occurs, a is the stress, 
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Km and is the stress curve-fitting parameter which is obtained from the unloading 

part of the stress-strain characteristic. The parameters Ka and Kb indicate the re­

sponse of the SMA to application of external stress. Since the SMA is modeled as 

a two-component system, at any given time the sum of the mole fractions of the 

austenite and martensite phase is 1, i.e., 

C + Cm = l. (5.20) 

The time derivatives of (5.18) and (5.19) are given by equations (1.13) and (1.14) as 

defined in section 1.2.4 of Chapter 1, where equation (1.13) is used for heating, and 

equation (1.14) is used for cooling. In equations (1.13) and (1.14) Ca is the fraction of 

the austenite phase prior to the transformation from austenite to martensite, T is the 

temperature, Tfm is the transition temperature from austenite to martensite, am is an 

indication of the range of temperature around the transition temperature Tfm during 

which the phase change occurs, a is the stress, Km is the stress curve-fitting parameter 

which is obtained from the unloading part of the stress-strain characteristic. 

5.4.2 Temperature Dynamics 

The SMA actuator is heated by the process of Joules heating by applying a volt­

age across the SMA. The loss of heat from the SMA is through natural convection. 

Mathematically the dynamics of the temperature are given by the following equation 

which has also been used in [13, 24, 30]; 

dT{t) = _L_(v_(ho + h2 {TW)2){T{t)_Ta)\ (521) 
at mcp \H J 

where h = ho + h^T(t) , ho and hi are coefficients of convectional cooling of the 

SMA, V is the voltage across the SMA wire, Cv is the specific heat capacity of the 
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SMA, and T is temperature. 

5.4.3 Constitutive Equation 

The constitutive equation relating changes in stress, strain, temperature, and mole 

fraction is given by equation (5.22) that has been previously used in [24, 53], and was 

explained in section 1.2.2 of Chapter 1. 

!<M-!i'W-*!T(«-ri<W- (5.22) 

where a is the stress in the SMA, D is the Youngs modulus of the alloy, e is the 

strain, 0t is the thermal expansion factor, Y = —Dei is the phase transformation 

contribution factor, and e$ is the initial strain in the SMA after it had been deformed 

while in the martensitic phase. The model is capable of explaining the shape memory 

and super-elastic properties of the SMA. It should be noted here that the modulus of 

elasticity can be assumed to be the average of the Young's moduli for the martensite 

and austenite phases to model the shape memory effect while a more precise Young's 

modulus based on the composition of the alloy would be required to model the super-

elastic property. The dynamic characteristics of the SMA can be defined by the 

system of nonlinear differential equations (1.13), (1.14), and (5.22). The system will 

then be modeled by considering whether the SMA is being heated or cooled. In the 

next section numerical results will be presented by solving the system of equations 

(1.13), (1.14), and (5.22). 
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5.5 Computational Results 

Due to the hysteresis behavior of the SMA wire, two different models will have to be 

employed for a full cycle simulation, one model representing the SMA as it is being 

heated and the second one when it is been cooled. Both models will include the 

constitutive equation (5.22), the heat equation (5.21), and depending on whether the 

SMA is being cooled or heated we use either equation (1.13) or (1.14). The numerical 

results presented here are for the SMA when it is being cooled, they are obtained by 

solving the system of nonlinear differential equations (1.13), (1.14), and (5.22). We 

notice that as the SMA is being cooled its temperature starts to decrease (see Figure 

5.7) resulting in a phase transformation, austenite to martensite ( see Figure 5.6). The 

phase transformation causes a change in the SMA strain as given by the constitutive 

equation and shown in Figure 5.5. Figure 5.8 shows the relationship between strain 

and temperature as the SMA is being cooled. The reverse transformation which 

completes the cycle and shows the strain recovery, not included here, is obtained by 

solving the model representing the SMA as it is being heated. 

The computational results presented in Figures 5.5- 5.8 show that the new model 

based on the Fermi-Dirac to represent a two-state process provides a good model 

for the state of a SMA in martensite and austenite forms. We notice that as the 

temperature, see Fig 5.7, decreases, which corresponds to the cooling process of the 

SMA, the phase transformation curve 5.6 decreases from 1 towards 0, indicating a 

phase change from austenite to martensite. Fig 5.8 shows the temperature-strain 

relationship as the SMA is being cooled, and the reverse process, heating of the SMA 

while it is in its martensite phase, should complete the hysteresis loop. From the 
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Strain of SMA as it's been cooled 

- Strain 

Figure 5.5: Strain of SMA during Cooling 
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Figure 5.6: Phase transformation of SMA during Cooling 
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Temperature of SMA 

0.002 0.003 0.004 0.005 

- Temperature | 

Figure 5.7: Temperature of SMA during Cooling 

Strain vs Temperature during Cooling 

Strain versus Temperature | 

Figure 5.8: Strain versus Temperature of SMA during Cooling 
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analysis that we have seen so far, SMAs possess some interesting properties that 

make them suitable candidates for many applications (see Appendix A). However, in 

many cases, the presence of hysteresis hampers their performance. In order to utilize 

the SMAs unique characteristics a control strategy must be implemented to eliminate 

or reduce the inherent hysteresis of SMAs. In the next chapter we will consider the 

reduced model given by system of ODEs (5.16), and a tracking controller for the 

system will be designed by using a linear design for nonlinear systems method as 

described in [39]. 

5.6 Summary 

In Chapter 5 a thermo-mechanical model for the SMA was developed using the con­

servation laws. The model was then reduced by using the Galerkin method resulting 

in a system of ODEs, which was then solved and the results were presented in Figures 

5.1-5.4. The numerical results presented in section 5.3 were obtained using Maple's 

numeric solver "dsolve" that is based on the Runge-Kutta-Fehlberg (RKFAS) algo­

rithm. Figure 5.1 shows the strain of the SMA as it is been heated, and it is clear 

that the response is oscillatory and nonstable. Figure 5.2 shows the temperature in 

the SMA during the heating process. The temperature starts at the initial temper­

ature T0 = 260K and rises with time until it reaches temperature T = 340K. As 

the temperature changes, we see in Figure 5.4 how the SMA goes through a phase 

transformation and exhibits shape memory effect and pseudoelasticity. The numerical 

results show that the response of the uncontrolled SMA is chaotic, which prohibits 

their use in many applications without resorting to control techniques that would 
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eliminate or compensate for the nonlinear behavior of SMAs. In Chapter 6 we will 

develop a feedback control strategy to compensate for hysteretic relation between the 

input and output of a SMA. 

In section 5.4 a different model capable of describing the thermo-mechanical behavior 

of the SMA was examined. The model is based on the Fermi-Dirac statistics, which 

describes the distribution of electrons in two states depending on their energy lev­

els. The model was solved numerically and the computational results for heating of 

the SMA were presented. From Figures 5.6-5.8 we observe that as the temperature 

started to increase the SMA underwent a phase change. This was noticed as the 

martensitic phase variable decreased from 1 to almost 0 indicating that the SMA 

was transformed to the austenitic phase. As the SMA changed phase it recovered its 

original shape resulting in an actuation that is one of the main applications of SMAs. 
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Chapter 6 

Nonlinear Feedback Control 

In Chapter 4 a LQR controller was designed and implemented to stabilize and con­

trol a nonlinear 1 DOF oscillator with a SMA. Even though stability of the nonlinear 

system with SMA was achieved, it is nonetheless local and only valid in the vicinity 

of the equilibrium point, thus limiting the region of operation of the system. In this 

chapter we will take a different approach by considering an optimal control strategy 

of nonlinear systems to design and implement a controller that guarantees global sta­

bility of the nonlinear SMA system. 

Optimal control of nonlinear systems is one of the most challenging and difficult sub­

jects in control theory. It is well known that the nonlinear optimal control problem 

can be reduced to the Hamilton-Jacobi-Bellman (HJB) partial differential equation 

[29, 39, 44, 47, 57, 60], but due to difficulties in its solution, this is rarely a practi­

cal approach. Instead, the search for nonlinear control schemes has generally been 

approached on less ambitious grounds than requiring the exact solution to the HJB 

partial differential equation [39]. In this chapter, we will consider the system of dif-

79 



ferential equations given by (5.16), with the objective to design a tracking controller 

to compensate for the hysteresis phenomenon associated with SMAs, and make the 

SMA system track a given reference input signal. We will use a theorem proposed in 

[39] that expresses explicitly the form of minimized functional and gives the sufficient 

conditions that allow using the linear feedback control for nonlinear system. The con­

trolled system will then be simulated and results will be presented in the following 

sections. 

6.1 Linear Design for a Nonlinear System 

In Chapter 5 a thermo-mechanical model for the nonlinear oscillator with a SMA was 

developed using the laws of conservation. The model was then solved numerically and 

the results were presented in Figures 5.1-5.4. From the numerical results presented 

in these figures, it is clear that the response is oscillatory and nonstable, and this is 

mainly due to the hysteretic nature of SMAs. In order to remove or compensate for the 

hysteretic behavior, an optimal linear control design for nonlinear systems strategy 

based on the theorem proposed in [39] will be used to design a controller that tracks 

a reference input signal and guarantees asymptotic stability of the nonlinear SMA 

system by means of a Lyapunov function. 

The thermo-mechanical model developed in Chapter 5 for the nonlinear SMA system 

given by (5.16) can be written in the following form: 

£=A(t)x + G(x) + Bu,x(0)=xo, (6.1) 

where x is the state vector, A(t) G M™ is a bounded matrix and is not unique, 

whose elements are time dependent, B is a constant matrix, u{i) G M.m is a control 

80 



vector, and G(x) is a vector, whose elements are continuous nonlinear functions, and 

G(0) = 0. Assume that: 

G(x)=g(x)x, (6.2) 

where g (x) G R is a bounded matrix, whose elements depend on x. Assuming (6.2) 

we can write the dynamic system (6.1) as follows: 

x — A (t) x + g (x) x + B u, x (0) = x$. (6.3) 

One of the results that we will use in the subsequent section can be formulated as 

follows (see proof in [39]): 

Theorem 5 [39] 

If there exist matrices Q(t) and R(t), positive definite, being Q symmetric, such that 

the matrix: 

Q = Q(t)-g (x)TP (t) -P[t)g (x) (6.4) 

is positive definite for the bounded matrix g , then the linear feedback control: 

u = R-1BTP(t)x (6.5) 

is optimal, in order to transfer the non-linear system (6.3) from an initial to final 

state 

x(tf) = 0 (6.6) 

ftf 

J= xTQx + uT Rudt, (6.7) 
Jo 

where the symmetric matrix P(t) is evaluated through the solution of the matrix Ric-

cati differential equation: 

P(t) + PA + ATP-PBR-1P + Q = 0. (6.8) 
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satisfying the final condition: 

P(tf) = 0. (6.9) 

The functional J given by expression (6.7) is in the standard form that was used for the 

LQR controller in section 4.1 of Chapter 4. The difference between the two functionals 

is that, in the case of the LQR controller the dynamic equation of the SMA system 

was linear, whereas the the dynamic equation in this case is nonlinear. The expression 

of the functional J is made of two terms, the term x r Qx corresponds to the energy 

of the controlled output, and the term vF Ru corresponds to the energy of the control 

input. The controller seeks to minimize both energies. However, decreasing the energy 

of the controlled output will require a large control signal and a small control signal 

will lead to large controlled outputs. The role of Q and R is to establish a trade-off 

between these conflicting goals [26, 33]. The controller given by (6.5) minimizes the 

functional J and guarantees stability by way of Lyapunov function. 

In our case we will consider an infinite horizon time by making tf = oo, and the final 

state of the system is to track the reference input signal at all times by minimizing 

the error x(t) — x (£), where x is the state vector and x is the reference input signal. 

6.2 Linear Design of Nonlinear SMAs 

In Chapter 4 we implemented a linear optimal control strategy by designing a LQR 

controller to stabilize and control the nonlinear 1 DOF oscillator with a SMA. Even 

though stability of the nonlinear system with SMA was achieved, it is however local 

and the region of operation of the system is limited. In this section, we will address 

this issue by considering an optimal linear design control strategy for the nonlinear 
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system given by equation (5.16). We will apply the proposed linear design for non­

linear systems method stated in section 6.1 to control the nonlinear SMA oscillator, 

taking into account the change in temperature and how it affects the behavior of the 

SMA, with the objective to stabilize the system not only locally but globally. This 

will involve solving a differential Riccati equation as opposed to the algebraic Riccati 

equation in the case of the LQR designed in Chapter 4. If we examine the system of 

ODEs (5.16) we notice that the heat transfer equation given by equation (5.3): 

pCv VSMA jT{t) = ^ -hAsMA (T(t) - Ta), (6.10) 

does not depend on the space variable x, so the approach that we will be taking in the 

controller design is as follows; the heat transfer equation will be solved independently 

for the initial condition T(0) = 270K, and then substituted in the equation (5.16) 

relating stress and strain of the SMA. This results in a nonlinear ODE in the form: 

P -^x (t) = —CT (t) + u{t) + Ucontroi (t), (6.11) 

where a is given by equation (5.15). T (t) is the solution of the heat equation (6.10) 

and is given by equation (6.12), u(t) is the load function, and Ucontroi(t) is the control 

law. The function T (t) is found using Maple's dsolve command for solving ODEs 

and it is given by: 

h ASM At T ( * ) = , / 2
 R+Ta + exV 

n ASM A tx 
2 7 0 - o ^ r r r ° > - <612» P VSMA CV _ 

Let the desired trajectory, the reference input signal we would like the response of 

the SMA to follow, be a function x (t), then the desired response of the nonlinear 1 

DOF oscillator given by equation (6.11) is described by the following equation: 

72 o 

P JpX {t) = — a (t) +U(t) + UControl (*) , (6 .13) 
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where Ucontroi(t) is a control function which maintains the SMA in the desired trajec­

tory and a has the same expression as a by substituting x(t) for x(t). If the function 

x (t) is a solution of equation (6.11) without the control term then Ucontroi (t) = 0. 

Subtracting (6.13) from (6.11) and defining: 

V = 
x — x 

x — x 

(6.14) 

where x (t) is the desired trajectory and x (t) is the trajectory of the nonlinear SMA 

described by equation (6.11) that we want to keep as close as possible to x (t) by 

finding a suitable control law Ucontroi- After substitution, and accounting for the 

damping effect with damping coefficient C\, the following system is obtained: 

3/2 P 

V2 

ki(T-TM)yi | k2{yi+xf 
P P 

A)2 X 3 

P 

~ 

k3(yi+x)5 . k3x
5 | U 

p p p . 

, (6-15) 

where U = Ucontroi(t) — U (t) is the feedback control. Equation (6.15) has the form 

of equation (6.1), which can be reduced to the form of equation (6.3) after some 

algebraic manipulations: 

V2 

+ 
f(.Vl,xi) 

P 

0 

MT - TM 

) 0 

0 

1 

p 

J/1 

V\ 

V2 

+ 
0 

1 
. p . 

(6.16) 

U, 

where / (yi,#i) is given by: 

&2 (yi + x) +k2 (yi + x) x+k2x -k3 (yi + x) x-4k3x -k3x yx -3k3yix -k3 (yx + x) +k3x , 

(6.17) 
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and from equations (6.16) and (6.3) the matrices A and B are given as follows: 

A(t) 
^ ( T ( i ) - T M ) - a 

B = (6.18) 

Example 1. 

To demonstrate our approach in practice, let the desired trajectory be a periodic 

orbit: x = sin (lOt) + cos (5t). 

By using the proposed feedback control design procedure (see equations (6.5)-(6.8)), 

we will demonstrate that the response of the chaotic motion of the SMA oscillator can 

be tracked to the desired periodic orbit by the optimal control law to be calculated 

next. The first step to finding the optimal control law given by (6.5) is to solve the 

Riccati equation given by (6.8) that requires matrix Q and the scalar R. As in the 

LQR controller design in Chapter 4, Q and R are chosen randomly [24, 39, 57]. We 

select Q and R as follows: 

Q 
10 0 

0 10 
, B 

0 

1 

p 

and R = 0.001. (6.19) 

Next, we need to solve the differential Riccati equation (6.8), so let us define the 

matrix P(t) as : 

Pn(t) P12(t) 

P2i(t) P22(*) 

P{t) (6.20) 
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and substitute Q, R, A(t), and B in equation (6.8), this results in a nonlinear system 

of ODEs (6.21) with the unknown functions are Pu(t), P\2(t), P2i(t), and P22{t). 

pn(,)_ fi2(t)fa(r(t)-rM) _ h(T(t)-Tu)p.n{t) _l0MQpn(t)Pn(t) + l0 = 0i 

A i ( J ) _ ^(')Mr(O-W + _ £w> _ 10000fi,Wfh(t) = 

P 1 2 w + Pu w _ 5iWfi _ ^MMr«)-rM) _ 1M0Q p,2(»p22(t) = 
P P P 

P22 (t) + P21 (0 - 2 ^ ^ + P12 (t) - 1000.0 ̂ 4 ^ + 10 = °" 
p P 

(6.21) 

The system of ODEs given by (6.21) is solved for the functions Pu, F12, P21 and F22 

using Maple's numerical differential equation solver "dsolve" (for the corresponding 

Maple code see Appendix B). And by substituting B, R, and P(t) in equation (6.5) 

we can conclude that the optimal control law U(t) has the following form: 

U (t) = - IOO2/1 (t) P21 (t) - 100y2 (t) P22 (t). (6.22) 

Next, we substitute the optimal control law U (t) in equation (6.16) and solve the new 

system of ODEs for yi and y2 to obtain the response of the closed-loop control system. 

The Figure 6.1 represents the response of the controlled nonlinear SMA oscillator 

system given by (6.16). By changing the reference input signal from an orbit to a 

sawtooth and then to a squarewave we can create several instructive examples where 

the response of the controlled SMA system does closely follow the reference input 

signal. 

Example 2. 

By changing the reference input signal to a sawtooth function using the following 

Maple command / := x— > x — floor (x) and changing the parameter R value to 
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0.1, we get the response presented in Figure 6.2. From Figure 6.2 we observe that 

the response of the controlled SMA system does follow the reference input signal. 

Example 3. 

Finally, we will choose the reference signal as a squarewave and this time we be usin^ 

; \ 

Controlled Response of the SMA Oscillator 

/ \ 

1 ' '•* ' ' "^fcO '-¥ ' ' ' + ' 

i * 
\ / 

| Controlled Response + Reference Signal | 

\ 

.* 

J 
Figure 6.1: Periodic Orbit: Controlled Response of the Nonlinear Oscillator 

Controlled Response of SMA Oscillator 

Figure 6.2: Sawtooth: Controlled Response of the Nonlinear Oscillator 
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the following Maple code: 

/ l (t) = 2t- 2floor(t) - 1 

/ 2 {t) = abs (2 * fl ((2 * t - 1) * (1/4))) - 1 (6.23) 

SquareWave (t) = signum ( /2 (t)) 

The response to a squarewave reference input signal is shown in Figure 6.3. 

Controlled Response of the SMA Oscillator 
I -fc'f!fiiiii;iii[it11T]m)Mtuuui.j!i't:ir;mit[i>Uii[.jnttrrmtn[w^-ii;tiinrii'iifti.uinitl 

- Controlled Response + Reference input Signal! 

Figure 6.3: Squarewave: Controlled Response of the Nonlinear Oscillator 

To control the SMA system presented in this chapter, one of the most challenging 

tasks is to determine the necessary inputs to drive the SMA system in a certain way, 

due to the existence of the hysteresis associated with the shape memory effects. From 

the results presented in the exercises above (see Figures 6.1-6.3), we can see that the 

designed controller, based on the linear control for nonlinear systems strategy, did 

indeed compensate for the hysteresis in the original dynamics of the system, and 

at the same time it drove the response of the SMA system in a desired manner by 

tracking a desired trajectory in the form of a reference input signal. 

The stability of the closed-loop system given by equation (6.16) is guaranteed by way 



of Lyapunov function as described by theorem 1. For dynamic systems similar to 

SMA systems, the Lyapunov function is always chosen as follows [39, 57]: 

V (x) = xT P (t) x, (6.24) 

where P (t) is a symmetric positive definite matrix that satisfies the Riccati equation 

(6.8). It can be shown that for positive definite matrices Q and R, the derivative of 

the function (6.24) is given by: 

V{x) = -xTQx-uT Ru, (6.25) 

and, it is negative definite. Then, the function (6.24) is Lyapunov function, and the 

controlled system (6.16) is asymptotically stable. 

6.3 Summary 

In this chapter, optimal linear feedback control strategies for nonlinear systems were 

used to design a controller to stabilize the nonlinear SMA oscillator described by the 

system of equations (6.16). We applied the method in order to find a control law to 

eliminate the hysteresis in the SMA on the one hand, and to track the response of the 

SMA to a reference input signal on the other hand. Using the derived control law, the 

mathematical model of the closed-loop system was developed and simulated. The nu­

merical results presented here were obtained using Maple's RKF45 algorithm. The 

results show that the linear control design strategy applied to the nonlinear SMA 

system is effective in compensating for the hysteresis phenomenon and in lineariz­

ing the input/output relationship of the SMA system. Therefore, we can conclude 

that despite the inherent hysteresis nature of SMAs that hampered there usage in 
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many engineering applications, control methods, such as the one implemented in this 

chapter, can be applied to overcome the nonlinearities associated with the hystere­

sis phenomenon of SMAs, thus enabling SMAs to be used as a suitable source of 

actuation in many engineering applications. 
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Chapter 7 

Conclusions 

In this thesis, mathematical models for SMAs were developed to capture, analyze, 

and control their behavior. In the first part of the thesis, a 1 DOF nonlinear oscillator 

with a SMA element, in the form of a nonlinear spring, was used to study the non­

linear behavior of SMAs. The SMA spring in the nonlinear oscillator was used as an 

actuator that would exert a restoring force to pull mass m of the oscillator back to its 

initial position. Since SMAs exist in two distinct phases, martensite and austenite, 

we considered the case when the SMA existed in one of the phases by choosing the 

appropriate temperature. A mathematical model for the nonlinear oscillator with 

the SMA was then formulated for each phase, the model included the dynamics of 

the oscillator and the constitutive model describing the nonlinear behavior of the 

SMA. The behavior of the SMA was described by using the polynomial constitutive 

model that captures the main properties of SMAs. Each model was then simulated 

and computational results were presented. Due to the hysteretic nature of SMAs, 

the numerical results obtained showed that the response of the nonlinear oscillator 

91 



was chaotic and unpredictable, which hindered their effectiveness despite their unique 

properties. To overcome the difficulties related to hysteresis, a linear optimal control 

strategy was used to developed and implement a LQR controller to stabilize the non­

linear oscillator. The implementation of the LQR controller in a closed-loop feedback 

setup proved successful, and the numerical results showed that the chaotic response 

of SMAs can be eliminated, making SMAs usage in many engineering applications 

feasible and desirable. The linear optimal control strategy has its limitations as it 

is based on system linearization, and the main limitation is the region of operation. 

To overcome this problem, in the second part of this thesis we considered a different 

approach. Recall that in the first part of this thesis we considered the SMA while it 

was in one of its two phases, martensite and austenite, and this was done by keeping 

the temperature constant. In the second part however, we did account for the cou­

pling of the main physical quantities of continuum mechanics to the thermal field. 

A mathematical model describing the thermo-mechanical behavior of SMAs was de­

veloped using the conservation law of momentum and energy balance to model the 

dynamics of the SMA. The thermo-mechanical model was represented by a system of 

nonlinear PDE and ODE equations that do not have a general closed form solution. 

To overcome this problem, a model reduction based on the Galerkin method was used 

to transform the model from a system of nonlinear PDEs into a lower dimensional 

system of ODEs. The reduced model was then simulated and numerical results were 

presented. The results for the thermo-mechanical system showed that the response 

is chaotic and unpredictable, and prompted us to design an optimal controller that 

would eliminate or compensate for this behavior. This was achieved by choosing an 

optimal linear design for nonlinear systems to track the SMA's response. The con-
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troller was successfully designed and implemented in a closed-loop feedback setup, 

and by using different input signals the numerical results show that the response of 

the controlled nonlinear oscillator was kept close to the reference input. 
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Appendix A 

Commercial SMAs and Their 

Applications 

A.l Commercial Shape Memory Alloys 

A large number of SMAs have been discovered since the mid-1990s, and the list 

continues to grow. Many of these alloys, while scientifically interesting, consist of 

precious metals or only exhibit useful properties as single crystals, which do not lend 

them to practical use in commercial applications. Several groups of alloys, however, 

are commercially viable for novel devices and many others have strong potential. 

These include certain copper alloys and Ni-Ti-based alloys, such as near-equiatomic 

Ni-Ti, known as Nitinol1 and some ternary alloys such as NiTiCu and NiTiNb. To 

date, it is fair to say that Ni-Ti-based SMAs have the best memory and superelasticity 

Nit inol takes its name from Nickel-Titanium for its composition and NOL from Naval Ordinance 

Laboratory, which is the place where they first discovered its shape memory aspects 
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properties of all the known polycrystalline SMAs [18, 30, 69, 81]. 

A. 1.1 Ni-Ti 

Of all the shape memory alloys, Ni-Ti has been studied most extensively and has 

proven to be the most flexible and beneficial in engineering, biomedical, and scientific 

applications. Ni-Ti exhibits strong SME and pseudoelastic behavior, which makes it 

ideal for a variety of sensing and actuation applications. It also exhibits resistance 

to corrosion, greater ductility, more recoverable motion, the ability to be electrically 

heated for shape recovery, and high biocompatability making it suitable for use in 

many biomedical applications [18, 20, 37]. The Ni-Ti Young's modulus for marten-

site is 21 to 69 GPa and austenite 70 to 110 GPa meaning austenite has a two to 

fourfold larger Young's modulus in comparison to martensite. SMAs can be activated 

by external heating or electrical heating. By electrical heating the energy consump­

tion has to be considered carefully since most of the input energy is transformed to 

heat rather than mechanical strain resulting in low efficiency (< 2%). The transfor­

mation temperature between low-temperature and high-temperature phase —200°C 

to 110°C can be adjusted by varying the proportions between nickel and titanium 

within the alloy [46] (and references therein). The equiatomic composition (i.e. 50% 

of Ni and Ti) exhibits the maximum Af temperature (120°C) of all Ni-Ti composi­

tions studied. Decreasing the Ni atomic percentage from the equiatomic composition 

does not change the transformation temperatures. If the composition of nickel is 

increased above 50%, the transformation temperature begins to decrease, with Af 

becoming as low as —40°C for 51% nickel. This variation in composition can change 
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the ambient room temperature (23°C) characteristics from SME to pseudoelasticity. 

Recent studies have also investigated 55% Ni-Ti composition. This composition ex­

hibits transformation temperatures in the range of — 10°C to 60°C. The alloy is a 

chemically multi-phased alloy, which is one of the primary reasons why it exhibits low 

transformation strains. However, 55% Ni-Ti alloy has been proven to show superior 

corrosion resistance as compared to stainless steels in harsh environments such as a 

salt water bath or salt fog [30] (and references therein). Ni-Ti alloys are available as 

wires, rods, strips, plates, tubes, ribbons, and thin sheets. 

A.1.2 Ni-Ti-Cu 

Although Ni-Ti is the most common standard shape memory alloy available some 

of its properties might not be adept for specific designs, especially when used at 

high temperature. Because of this, extensive research has been conducted to improve 

some of its mechanical and thermal properties. One of the methods of doing this is 

by adding a ternary element to Ni-Ti, such as copper (Cu), zinc (Zn), iron (Fe), or 

aluminum (Al) [30, 81]. Adding a third elements opens even more possibilities for 

adapting binary NiTi alloys to more specific needs of applications [69]. The addition 

of Cu to Ni-Ti for example, forms the Ni-Ti-Cu alloy. Copper-based SMAs have 

some advantages, such as low cost and simple fabrication procedure, compared to TiNi 

alloys. Of the alloys, the ternary Cu-Zn-Al and Cu-Al-Ni alloys have been extensively 

studied and they are commercially available [81]. The unique property of these alloys 

is that addition of Cu reduces the hysteresis of the SMA response and lowers the 

martensite phase yield strength of the material compared to Ni-Ti [30]. Lower yield 
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strength on the martensite phase will decrease the amount of force required to deform 

the SMA element in that phase thus providing a higher net output force. The smaller 

temperature hysteresis provides faster actuation times or cycle rates, it can also make 

the actuator more suitable for thermal actuation [18]. However, copper-based alloys 

Cu based SMAs such as Cu-Al-Ni and Cu-Zn-Al suffer from low strength and poor 

corrosion resistance [81]. The material parameters of Ni-Ti as well as other SMAs are 

listed in Table A.2. 

A.1.3 Au-Cu-Zn 

Au-Cu-Zn alloy is also known as superelastic dental Au-Cu-Zn as it finds its use 

in dentistry. Au is an element that is important to improve corrosion resistance in 

the oral mouth and bring about a superelastic effort with Cu and Zn. Cu is an 

element that is necessary to limit melting point of alloys to a relatively low value and 

increase the tensile strength and elongation thereof. However, as the amount of Cu 

increases, there is a tendency for the superelastic effect toward dropping. On the other 

hand, as the amount of Cu decreases, the resulting alloys have an increased melting 

point. Zn is an element that combines a deoxidation with castability-improving effect. 

However, the amount of Zn decreases, there is a tendency for superelastic effect 

toward dropping, whereas as the amount of Zn increases, there is a lowering of tensile 

strength and elongation. The superelastic dental Au-Cu-Zn alloys are easily formed 

into dental cast materials with good precision by means of the conventional dental 

precision casting process. These alloys are free from any toxicity in the oral mouth, 

excel in corrosion resistance, and have excellent durability [84]. 
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A. 1.4 Ni-Mn-Ga 

Another type of SMAs that is becoming popular in the research arena is the Mage-

netic Shape Memory Alloys (MSMAs). These type of SMAs alloys present the same 

properties as the classic SMAs but with the addition of a magnetic field sensibility. 

The interest in MSMAs stems from their possible activation not only by stress and 

temperature actions but also by magnetic field [19, 30]. The magnetoelastic marten-

sitic transformation in MSMAs is defined as: when a magnetic field is applied to an 

alloy that exhibits a thermoelastic martensitic transformation, martensite variants 

may be induced while a magnetic field is applied and revert to the parent phase when 

the magnetic field is removed. The best known, and the most widely investigated 

MSMAs are Ni-Mn-Ga alloys [30], they have been shown to produce large strains of 

6 to 10 % when exposed to magnetic fields of 400 to 640kA/m, and actuator systems 

with these type of MSMAs typically achieve 2 to 3 % active strain [69]. While these 

strains are of the same order as those seen in shape memory alloys, the rotation of 

twin martensitic variants in response to magnetic activation is faster and thus can 

lead to faster response than those achieved through martensite-austenite phase trans­

formations. Ni-Mn-Ga alloys have a field and strain dependent Young's modulus of 

0.45 to 0.82 GPa. The density of the material is 8.36 g/cm3. Operating temperatures 

of Ni-Mn-Ga MSM materials presently ranges from -40°C to 60°C [46] (and refer­

ences therein). Despite their unique properties and potential, MASMa have been 

difficult and expensive to make. More recently, researchers have produced a lighter 

and potentially cheaper MSMAs. This new material, a porous foam made from a 

Ni-Mn-Ga alloy, stretches slightly when exposed to a magnetic field. It retains its 
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new form when the field is turned off, but it goes back to its original shape when the 

field is rotated 90 degrees. Making the foam is cheap and easy. The researchers pour 

molten alloy into a porous piece of sodium aluminate salt. After the alloy cools, the 

researchers dissolve the salt using acid, leaving behind a spongelike structure of the 

alloy. This material, sometimes referred to as smart foam, could be useful in devices 

that need very precise, repeatable, and rapid positioning. These devices include mi­

croscopes, tiny mirrors used in optical communication, and robots used in medicine. 

Because the foam is light, it could also lead to aerospace applications [54]. 

A.1.5 Thin Film SMAs 

More recently, thin film SMAs have been recognized as a new type of promising and 

high-performance material for microelectromechanical system (MEMS) [45]. Among 

these SMA films, Ti-Ni based films are the most promising ones. The main advan­

tages for MEMS applications of Ti-Ni thin film include high power density, large 

displacement and actuation force and low operation voltage. Application of SMA 

films in MEMS also facilitates the simplification of mechanisms with flexibility in 

design and creation of clean, friction free and non-vibrating movement. In order to 

apply the Ti-Ni alloys to MEMS, it is required to make them thin down to micron 

sizes. Rolling and melts-pinning methods are available for making thin plates with 

thickness larger than 15 |J.m. However, sputter-deposition techniques are available 

for making thin films with thicknesses less than 10 urn. Ti-Ni thin films fabricated 

by the sputter-deposition method are expected to be applied to microdevices such 

as microvalves, micropumps and cantilevers, since they exhibit an excellent shape 
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memory effect and good mechanical properties [45]. 

A. 1.6 Porous SMAs 

Porous SMAs have also attracted increasing attention for possible applications in 

medical implant devices and as high energy absorption structural material. The 

progress in manufacturing and characterization of the porous Ni-Ti SMA has been 

reported by a number of researchers [85] (and references therein). Different fabrication 

techniques for producing porous SMAs have been established. Some techniques focus 

on injecting gas into a melt, but most of the research work done on porous SMAs 

has been focused on using powder metallurgy techniques [14]. The authors in [85] for 

example, produced porous Ni-Ti using Ni-Ti powder using the Spark Plasma Sintering 

(SPS) technique, examples of porous SMAs with different volume percentages are 

given in Table A.l. Porous SMAs have a great potential application in orthopedic 

implants since their porosity enables the transport of body fluids from outside to inside 

the bone, which is important in the healing process. This fact optimizes the treatment 

and also helps the fixation of the implant [37]. Another application where porous 

SMAs can play a significant role ranges from isolation of machines and equipment to 

isolation of payloads during launch of space vehicles [14]. 

A.2 Shape Memory Alloys Applications 

The unique properties of SMA have prompted researchers and engineers to incorpo­

rate them in various applications in different fields of engineering. SMAs have been 

utilized in military, medical, micro-robotics, as well as other applications. In this 
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Table A.l: Ni-Ti Specimens Processed by Spark Plasma Sintering [85] 

Name of sample 

Dense Ni-Ti 

13% porous Ni-Ti 

25% porous Ni-Ti 

Porosity 

0 

13% 

25% 

SPS Processing Conditions 

850°C under 50 MPa, 5min 

800°C under 25 MPa, 5min 

750°C under 5 MPa, 5min 

Transformation Temperature (°C) 

As = 23.88, Af = 43.12 

Ms = 36.05, Mf = 23.09 

Aa = 19.3, Af = 38.82 

Ms = 20.65, Mf = 5.39 

As = 14.59, Af = 33.29 

Ms = 23.24, Mf = 2.55 

Table A.2: Properties of Different SMAs [48] 

Item 

Density (Kg/cm3) 

Young Modulus (GPa) 

Transformation Temperature (°C) 

Ni-Ti 

6450 

30-70 

-100-110 

Cu-Zn-Al 

7900 

70-100 

-200-110 

Cu-Al-Ni 

7150 

80-100 

-250-200 

Ni-Mn-Ga 

8.36 10"3 

0.45-0.82 

-40-60 

Ni-Ti-Cu 

6500 

25-50 

-140-250 
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section we present a discussion of some applications of SMAs. 

A.2.1 Medical Applications 

In recent years, medicine and the medical industry have focused on the concept of less 

invasive surgical procedures. Following this tendency, shape memory surgical instru­

ments have been created and are becoming noticeable. SMA biomedical applications 

have become successful due to the noninvasive characteristic of SMA devices and also 

due to their excellent biocompatibility2. In [37], the author discussed a number of 

medical applications where SMAs played a significant role in designing medical de­

vices. SMAs are usually employed in surgical instruments, cardiovascular, orthopedic, 

and orthodontic devices, among other applications. 
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Figure A.l: Simon Filter, taken from www.nitinol.com with permission, courtesy of 

NDC 

2Biocompatibility is the ability of a material to remain biologically innocuous during its functional 

period inside a living creature. This is a crucial factor for the use of SMA devices in the human 

body. A biocompatible material does not produce allergic reactions inside the host, and also does 

not release ions into the bloodstream. The period during which a biomaterial remains inside the 

human body is an important aspect to be considered concerning its use. 
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In cardiology for example, the first cardiovascular device developed with a SMA 

was the Simon filter. The Simon filter Figure A.l represents a new generation of 

devices that are used for blood vessel interruption in order to prevent pulmonary 

embolism. Persons who cannot take anticoagulant medicines are the major users of 

the Simon filter. The purpose of this device is to filter clots that travel inside the 

bloodstream. The Simon filter traps these clots that in time are dissolved by the 

bloodstream. The insertion of the filter inside the human body is done by exploiting 

the shape memory effect. From its original shape in the martensitic state Figure A.l 

the filter is deformed and placed on a catheter tip. Saline solution flowing through 

the catheter is used to keep a low temperature, while the filter is placed inside the 

body. When the catheter releases the filter, the flow of the saline solution is stopped. 

As a result, the bloodstream promotes the heating of the filter that returns to its 

former shape. In orthopaedy, SMAs have been used to make vertebra spacer. The 

insertion of this spacer between two vertebrae assures the local reinforcement of the 

spinal vertebrae, preventing any traumatic motion during the healing process. The 

use of a shape memory spacer permits the application of a constant load regardless of 

the position of the patient, who preserves some degree of motion. This device is used 

in the treatment of scoliosis . Figure A.2 shows spinal vertebrae and a shape memory 

spacer. On the left side, the spacer is in the martensitic state, and on the right side, 

the spacer is in its original shape, recovered by the pseudo-elastic phenomenon. 
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Figure A.2: Spinal vertebrae (A) and shape memory spacers (B) in the martensitic 

state (left) and in the original shape (right). Taken from [37] with permission. 

A.2.2 SMAs in Dentistry 

SMAs have also found their use in dentistry due to their remarkable biocompatibility, 

durability, corrosion resistance, and superelasticity. In orthodontics for example, see 

Figure A.3, SMAs have been used as archwires to move teeth with light continuous 

force. SMA archwires play a significant role in the alignment and leveling of teeth. 

The SMA used in this application is thermally activated and is fully martensitic at 

room temperature. The austenitic finish temperature of these wires is at approxi­

mately 32°C, which ensures that the wire is fully transformed at body temperature 

[86]. 
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A.2.3 Robotics 

Another area where SMAs have been used is humanoid robotics. In the years 2006 

and 2007 at the Darmstadt University of Technology, a female robot by the name of 

Lara was built, and was actuated by 34 SMA actuators. To use SMA as an actuator 

for humanoid robots high forces are needed, but the cycle time highly increases with 

the wire's diameter. To avoid this property the new actuator/sensor were made by 

combining many single SMA wires in a new way to one muscle-like actuator. Using 

two of these actuators in an antagonistic flexor-extensor muscle-like manner offers the 

possibility to generate a defined force at every time. The pull force depends directly 

on the number of wires. One type of actuator used in the humanoid robot was made 

up of 10 pairs of SMA wires with a thickness of 100 mircometer and 180 gf pull-force 

each. The total pull force is 3.6 kgf. The actuator has a length of 22 cm and a 

maximal displacement of 1.5 cm. The humanoid hand shown in Figure A.4 consisted 

of 5 fingers and was actuated by 7 SMA actuators and several springs [28]. 

Figure A.3: Dental Applications of Ni-Ti, taken from http://www.keytometals.com 

with permission 

[28] 
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A.2.4 Space Application 

SMAs have also been used in a number of space applications. They have been used 

as actuators, since their large power density offers compact and lightweight solutions, 

and their operation involves low accelerations and low voltage. SMA actuators have 

successfully been applied on spacecraft in release and unfolding mechanisms for solar 

panels, such as those of the Hubble Space Telescope as well as new microsatellites 

[31]. In [2] for example, the authors gave a detailed account of how the Air Force Re­

search Laboratory (AFRL), with corporate and government partners, has developed 

SMA spacecraft release mechanisms and hinges as alternatives to current off-the-shelf 

devices that may not be able to meet future satellite requirements. SMA-based sys­

tems are also being developed for the deployment of antennae, satellite, and inflatable 

structures in space programs. In [55] for instance, the authors discuss how SMA actua­

tors were used to develop a large surface area to mass ratio inflatable space structure 

with possible applications for a synthetic radar aperture (SAR) antenna. The key 

components of this inflatable structure are inflatable tubes, membrane, and the links 

installed in-between stretching the membrane as seen in Figure A.5. The SMA actu­

ators are installed in series with the links, which realize the tensions according to the 

Figure A.4: Humanoid Robot Hand [28], taken from http://www.lararobot.de with 

permission 
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instructions from a control system. 

Inflatable tubes 

Membrane 

Links and actuators 

Figure A.5: Sketch of the inflatable structure [55] 

A.2.5 SMA Micro-Damper for Microelectromechanical (MEMS) 

Applications 

There is an ever increasing demand for miniaturize devices, such as micro-dampers 

and micro-sensors, that are finding increased use in portable and mobile electronic and 

mechanical systems. SMAs are receiving special attentions for the MEMS systems 

applications nowadays. In [61], the authors proposes a Ni-Ti wire base micro-damper, 

see Figure A.6, utilizing the pseudoelasticity behavior of SMAs. The main compo­

nents of the micro-damper consist of internal shaft, external tube, blocks, shims, 

springs, slippers and NiTi wires. The length of the damper is designed as 32mm and 

the diameter is 14mm for special study purpose here. The diameter of Ni-Ti wires is 
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0.14mm and its free length is 35mm. 

Figure A.6: Prototype of SMA Micro-Damper [61]. Permission granted for noncom­

mercial purposes, courtesy of MDPI (www.mdpi.org). 
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Appendix B 

Maple Routines 

B. l Numerical simulation 

Maple is a technical computing software that has a large library of built-in functions 

that allows users to solve a large number of engineering problems. One of the areas 

where Maple is useful is for solving differential equations as well as partial differential 

equations numerically and symbolically. It also has a large set of plotting and graphing 

routines for creating 2D and 3D plots and many other types of plots. 

In this thesis Maple is used to do all the simulations and the routines that were 

used are listed in this appendix. 

The equation of motion that governs the vibrating 1 DOF nonlinear oscillator is 

a second order nonlinear differential equation, where x(t) is the displacement of mass 

m and u(t) is the input signal. Maple's numeric dsolve command is used to solve the 

ODE and the results are plotted using Maple's plotting routines. 
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at z at a{l A — J- M) 

params := [a = 1, 6 = 0.40e5, TM = 287, TA = 364, T = 283, c = .2] 

ode := eval(odel, [u(t) = 5 * sm(10 * t),params\\]) 

ics :=x(0) = .l,(£>(x))(0) = 0 

so/ := dsoZve([ode,ics],ratmerzc) 

plots[odeplot](sol, [t, x(t)], Z = 0..10, numpoints = 3000) 

B.2 Controllability 

The Maple routine ControllabiltyMatrix computes the Controllability matrix 

C=\B AXB A2 x B ...An-1xB] (B.2) 

where A is an nxn matrix and B is an nxm matrix 

ControllabilityMatrix:=proc( A: :Matrix,B:: Vector) 

local i,nA,mA,nB,mB,C,G; 

G := Matrix(B); 

(nA,mA) := op(l,A); 

(nB,mB) :=op( l ,G) ; 

if nA <> mA then 

error "first matrix must be square" 

elif nB <> nA then 

error " input matrices must have same row dimension"; 

else 

111 



G := Linear Algebra : — LAuain '• —Matrix Matrix Multiply {A, G,inpl ace = false, outputoptions 

0); 

C := Matrix(nB,nB * mB, datatype = rtable0ptions(G, datatype)); 

C[l..nB,l..mB] := B; 

C[l..nB,mB + 1..2*mB] := G; 

forifrom2to(nB — l)do 

G := Linear Algebra : —LAMain • — Matrix Matrix Multiply ( 

A,G,inplace = false, outputoptions = []); 

C[l..nB,i * mB + l..(i + 1) * mB] := G; 

od; 

fi; 

return C; 

end: 

B.3 Observability 

The Maple routine ObservabiltyMatrix computes the observability matrix 

/ c ^ 

0 = 

C xA 

C xA2 

C x A71-1 

(B.3) 
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where A is an n * n matrix and B is an m * n matrix. 

ObservabilityMatrix:=proc( A: :Matrix,C:: Vector) 

local i,nA,mA,nC,mC,0,G; 

G := Matrix(C); 

(nA,mA):=op(l,A); 

(nC,mC):=op(l,G); 

if nA <> mA then 

error "first matrix must be square" 

elif mC <> mA then 

error " input matrices must have same column dimension"; 

else 

Linear Algebra : —LAMO.™ '• —MatrixMatrixMultiply(G,A,inplace = true, outputoptions = 

D); 
O := Matrix(nC * mC, mC, datatype = rtable0ptions(G, datatype)); 

0[l..nC,l..mC] :=C; 

0[nC + 1..2*nC,l..mC] := G; 

for i from 2 to (mC-1) do 

Linear Algebra : —LAuain '• —Matrix Matrix Multiply ( 

G, A, inplace = true, outputoptions = []); 

0[i *nC+ l..(i + 1) * nC, l..mC] := G; 

od; 

fi; 

return 0 ; 

end: 
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B.4 LQR Control 

LQRControl := proc(A :: Matrix (numeric), 

B :: Matrix(numeric), 

Q :: Matrix(numeric), 

R) 

locali, n, invR, ham, evals, evects, Ml, M2, j , k, K, P, outputtype; 

n := op([l, 1], A); RowDimension(A) 

iftype(R,' Matrix(numeric)')then 

invR := Linear Algebra : —MatrixInverse(R); 

eliftype(R,' numeric')then 

invR := Matrix{[[l/R]]); 

else 

error "%-l parameter must be of type numeric" 

" oramatrixwithnumericentries'", 4; 

fi; 

outputtype := Linear Algebra : —GetResultDataType( 

rtable0ptions(A,' datatype'), 

rtable0ptions(B,' datatype'), 

UseHardwareF loots); 
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form the Hamiltonian matrix 

ham := Matrix([[A, — B.invR.LinearAlgebra : —Transpose{B)\, 

[—<5, — LinearAlgebra : —Transpose(A)]}, 

'datatype' = outputtype); 

(evals,evects) := Linear Algebra : — Eigenvector s(ham); 

Ml := Matrix(n,n); 

M2 := Matrix(n,n); 

3 •= 0; 

for i from 1 to 2*n do 

ifRe(evals[i]) < Othen 

J •= j + 1; 

for k from 1 to n do 

Mlfej := evectSkX, 

M2k,j := evectsn+k4; 

od; 

fi; 

od; 

P := map(Re, M2. Linear Algebra : — Matrix Inverse(Ml)); 

K := invR.Linear Algebra : —Transpose(B).P; 
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end; 

116 



Bibliography 

[1] A. A. Alonso, C. V. Fernandez, and J. R. Banga. DISSIPATIVE SYSTEMS: FROM 

PHYSICS TO ROBUST NONLINEAR CONTROL. International Journal of Robust 

and Nonlinear Control, 14:157-179, 2004. 

[2] B. C. Andrew Peffer, Eugene Fosnessb and K. Denoyer. O N - O R B I T EXPERI­

MENTS AND APPLICATIONS O F SHAPE MEMORY ALLOY MECHANISMS. Proceed­

ings ofSPIE, 3991:187-194, 2000. 

[3] A. Antonios and P. D. Christofides. FINITE-DIMENSIONAL CONTROL O F NON­

LINEAR PARABOLIC PDE SYSTEMS WITH TIME-DEPENDENT SPATIAL DOMAINS 

USING EMPIRICAL EIGENFUNCTIONS. International Journal of Applied Mathe­

matics and Computer Science, 11(2):287—317, 2001. 

[4] F. Borrelli and T. Keviczky. D I S T R I B U T E D L Q R DESIGN FOR IDENTICAL DY­

NAMICALLY DECOUPLED SYSTEMS. Technical report, University of Minnesota, 

2006. 

[5] L. C. Brinson. F I N I T E E E L E M E N T ANALYSIS O F THE BAHAVIOR O F S H A P E 

M E M O R Y ALLOYS AND THEIR APPLICATIONS. Solid Structures, 30:3261-3280, 

1992. 

117 



[6] L. C. Brinson and R. Lammering. O N E DIMENSIONAL CONSTITUTIVE BEHAVIOR 

OF SHAPE MEMORY ALLOYS: THERMOMECHANICAL DERIVATION WITH NON-

CONSTANT MATERIAL FUNCTIONS AND REDEFINED MARTENSITE INTERNAL 

VARIABLES. Intelligent Material Systems and Structures, 4:229-242, 1993. 

[7] B. Brogliato. DISSIPATIVE SYSTEMS ANALYSIS AND C O N T R O L . Springer, 2007. 

[8] A. Chatterjee. A N INTRODUCTION TO THE P R O P E R ORTHOGONAL DECOMPO­

SITION. Current Science, 78(7):808-817, 2000. 

[9] C. T. Chen. L INEAR SYSTEM: T H E O R Y AND DESIGN. Oxford University Press, 

1999. 

[10] L. Debnath and P. Mikusinski. INTRODUCTION T O HILBERT SPACES WITH 

APPLICATIONS. Journal of the American Statistical Association, 94(448):1390, 

1999. 

[11] B. T. Dickinson and J. R. Singlerf. NONLINEAR M O D E L R E D U C T I O N USING 

G R O U P P R O P E R ORTHOGONAL DECOMPOSITION. International Journal of Nu­

merical Analysis and Modeling, 7(2):356-372, 2010. 

[12] C. Dickinson and J. Wen. F E E D B A C K C O N T R O L USING S H A P E M E M O R Y A L ­

LOY ACTUATORS. Journal of Intelligent Material Systems and Structures, 9:242-

243, 1998. 

[13] M. Elahinia. NONLINEAR C O N T R O L O F A S H A P E M E M O R Y ALLOY A C T U A T E D 

MANIPULATOR. Master's thesis, Rose School, European School of Advanced 

Studies in Reduction of Seismic Risk, September 2003. 

118 



[14] P. B. Entchev. Micromechanical Modeling of Porous Shape Memory Alloys. PhD 

thesis, Texas A&M University, May 2002. 

[15] F. Falk. M O D E L FREE ENERGY, MECHANICS, AND THERMODYNAMICS O F 

SHAPE MEMORY ALLOYS. Acta Metallurgica, 28:1773-1780, 1980. 

[16] F. Falk. LANDAU THEORY AND MARTENSITIC PHASE TRANSITIONS, he Journal 

de Physique Colloques, 43(C4):3-15, 1982. 

[17] R. A. Freeman and P. V. Kokotovic. R O B U S T NONLINEAR C O N T R O L DESIGN. 

Birkhauser, 1996. 

[18] D. Fugaza. S H A P E MEMORY ALLOY DEVICES IN EARTHQUAKE ENGINEERING: 

MECHANICAL PROPERTIES, CONSTITUTIVE MODELING AND NUMERICAL SIM­

ULATION. Master's thesis, Villanova University, Pennsylvania, August 2001. 

[19] J. Gauthier, C. Lexcellent, a. Hubert, J. Abadie, and N. Chaillet. N I - M N - G A 

SINGLE CRYSTAL S H A P E M E M O R Y A L L O Y MAGNETO-THERMOMECHANICAL 

MODELING. EPJ Web of Conferences, 6:29003, 2010. 

[20] X. Gong and A. R. Pelton. F I N I T E E L E M E N T ANALYSIS ON NITINOL M E D I C A L 

APPLICATIONS. In International Mechanical Engineering Congress & Exposition, 

pages 1-9, New Orleans, Louisiana, 2002. 

[21] R. B. Gorbet and D. W. L. Wang. A DISSIPATIVITY APPROACH TO STABILITY 

O F A SHAPE MEMORY ALLOY POSITION CONTROL SYSTEM. IEEE Transactions 

on Control Systems, 6:554-562, 2002. 

119 



[22] W. M. Haddad and Q. Hui. DISSIPATIVITY THEORY FOR DISCONTINUOUS DY­

NAMICAL SYSTEMS: BASIC INPUT, STATE, AND OUTPUT PROPERTIES, AND 

FINITE-TIME STABILITY OF FEEDBACK INTERCONNECTIONS. Nonlinear Analy­

sis: Hybrid Systems, 3:551-564, 2009. 

[23] J. P. Hespana. L E C T U R E N O T E S ON L Q R / L Q G C O N T R O L L E R DESIGN. 

http://www.ece.ucsb.edu/ roy/classnotes/147c/lqrlqgnotes.pdf, April 2007. 

[24] J. Jayender, R. Patel, S. Nikumb, and M. Ostojic. M O D E L I N G AND CONTROL O F 

SHAPE MEMORY ALLOY ACTUATORS. IEEE Transactions on Control Systems 

Technology, 16(2):279-287, 2008. 

[25] H. K. Khalil. NONLINEAR SYSTEMS. Prentice Hall, 1996. 

[26] D. E. Kirk. O P T I M A L C O N T R O L T H E O R Y , A N INTRODUCTION. Dover Publi­

cations, 2004. 

[27] D. Kovacs. INERTIAL MANIFOLDS AND NONLINEAR GALERKIN M E T H O D S . 

Master's thesis, Virginia Polytechnic Institute and State University, December 

2005. 

[28] R. Kratz. T H E LARA P R O J E C T , http://www.lararobot.de/, 2008. 

[29] K. Kunisch, S. Volkwein, and L. Xie. H J B - P O D - B A S E D FEEDBACK DESIGN 

FOR THE O P T I M A L C O N T R O L O F EVOLUTION P R O B L E M S . SIAM Journal of 

Applied Dynmical Systems, 3(4):701-722, 2004. 

[30] D. C Lagoudas. S H A P E MEMORY ALLOYS: MODELING AND ENGINEERING 

APPLICATIONS. Springer, 2008. 

120 

http://www.ece.ucsb.edu/
http://www.lararobot.de/


[31] M. Langelaar, G. H. Yoon, S. Gurav, Y. Y. Kim, and F. van Keulen. ANALYSIS 

AND DESIGN TECHNIQUES FOR S H A P E M E M O R Y A L L O Y MICROACTUATORS 

FOR SPACE APPLICATIONS. https://escies.org/GetFile?rsrcid=1703, 2004. 

[32] C. J. Lee and C. Mavroidis. ANALYTICAL DYNAMIC M O D E L AND E X P E R I M E N ­

TAL R O B U S T AND O P T I M A L C O N T R O L O F S H A P E - M E M O R Y - A L L O Y BUNDLE 

ACTUATORS. www.robots.rutgers.edu/papers/IMECE2002_l.pdf, 2002. 

[33] W. S. Levine. T H E C O N T R O L HANDBOOK. CRC Press and IEEE Press, 1999. 

[34] F. L. Lewis. O P T I M A L C O N T R O L . John-Wiley, 1986. 

[35] C. Liang and C A. Rogers. O N E - D I M E N S I O N A L THERMOMECHANICAL C O N S T I ­

TUTIVE RELATIONS FOR S H A P E M E M O R Y MATERIALS. Journal of Intelligent 

Material Systems and Structures, 2:207-234, 2004. 

[36] L. Machado. S H A P E M E M O R Y ALLOYS FOR VIBRATION ISOLATION AND 

D A M P I N G . Master's thesis, Texas A __ M University, December 2007. 

[37] L. G. Machado and M. A. Savi. M E D I C A L APPLICATIONS O F SHAPE MEMORY 

ALLOYS. Brazilian Journal of Medical and Biological Research, 36(6):683-91, 

2003. 

[38] L. G. Machado and M. C Savi. A N OVERVIEW O F CONSTITUTIVE M O D E L S 

FOR S H A P E M E M O R Y ALLOYS. Brazilian Journal Of Medical And Biological 

Research, 36:1-31, 2006. 

[39] J. M. B. Marat Rafikov and A. M. Tusset. A N OPTIMAL LINEAR CONTROL DE-

121 

https://escies.org/GetFile?rsrcid=1703
http://www.robots.rutgers.edu/papers/IMECE2002_l.pdf


SIGN FOR NONLINEAR SYSTEMS. Journal of the Brazilian Society of Mechanical 

Sciences and Engineering, 30(4):279-284, 2008. 

[40] C. Mavroidis. D E V E L O P M E N T O F ADVANCED ACTUATORS USING SHAPE MEM­

ORY ALLOYS AND ELECTRORHEOLOGICAL FLUIDS. Research in Nondestructive 

Evaluation, 14:1-32, 2002. 

[41] R. Melnik. O N CONSISTENT REGULARITIES O F C O N T R O L AND VALUE F U N C ­

TIONS. Numerical Functional Analysis and optimization, 18(3 & 4):410-426, 

1997. 

[42] R. Melnik. M A R K O V CHAIN NETWORK TRAINING AND CONSERVATION LAW 

APPROXIMATIONS: LINKING MICROSCOPIC AND MACROSCOPIC MODELS FOR 

EVOLUTION. Applied Mathematics and Computation, 199(l):315-333, 2008. 

[43] R. Melnik and A. Roberts. MODELLING NONLINEAR DYNAMICS O F SHAPE-

MEMORY-ALLOYS WITH APPROXIMATE MODELS OF COUPLED THERMOELAS-

TICITY. ZAMM, 83(2):93-104, 2003. 

[44] R. V. N. Melnik. DETERMINISTIC AND STOCHASTIC DYNAMICS WITH H Y P E R ­

BOLIC H J B - T Y P E EQUATIONS. Dynamics of continuous discrete and impulsive 

systems series A: Mathematical Analysis, 10(l-3):510-520, 2003. 

[45] S. Miyazaki, Y. Fu, and W. Huang. T H I N F ILM S H A P E M E M O R Y ALLOYS 

FUNDAMENTALS AND D E V I C E APPLICATIONS. Cambridge University Press, 

2009. 

[46] H. P. Mooner. SMART MATERIALS FOR ACTIVE NOISE AND VIBRATION RE-

122 



DUCTION. In Novem - Noise and Vibration: Emerging Methods, pages 18-21, 

Sain-Raphael, France, 2005. 

[47] C. Navasca and A. Krener. SOLUTION O F HAMILTON-JACOBI-BELLMAN EQUA­

TIONS. In Proceedings of the 39th IEEE Conference on, Decision and Control, 

2000, volume 1, pages 570-574, Sydney, NSW, 2002. IEEE. 

[48] M. Novotny. S H A P E MEMORY ALLOYS: METALLURGY, BIOCOMPATIBILITY, AND 

BIOMECHANICS FOR NEUROSURGICAL APPLICATIONS. Neurosurgery, 64(5): 199-

214, 2009. 

[49] K. T. Oner, E. Cetinsoy, E. Sirimoglu, C. Hancer, T. Ayken, and M. Unel. L Q R 

AND SMC STABILIZATION OF A NEW UNMANNED AERIAL VEHICLE. Engineer­

ing and Technology, 58:373-378, 2009. 

[50] K. Otsuka and X. Ren. PHYSICAL METALLURGY O F T I - N I B A S E D S H A P E 

M E M O R Y ALLOYS. Progress in Materials Science, 50:511-678, 2005. 

[51] E. Ott. C H A O S IN DYNAMICAL SYSTEMS. Cambridge University Press, 2002. 

[52] Y. Ou and E. Schuster. M O D E L PREDICTIVE CONTROL: TERMINAL REGION 

AND TERMINAL WEIGHTING MATRIX. Journal of Systems and Control Engi­

neering, 222(2):69-79, 2008. 

[53] A. Paiva and M. A. Savi. A N OVERVIEW O F CONSTITUTIVE MODELS FOR SHAPE 

MEMORY ALLOYS. Mathematical Problems in Engineering, 2006:1-31, 2006. 

[54] P. Patel. SMART FOAM, http://www.technologyreview.com/communications/20016/pagel/, 

YEAR = 2008. 

123 

http://www.technologyreview.com/communications/20016/pagel/


[55] F. Peng, X. Jiang, Y. Hu, and A. Ng. ACTUATION PRECISION CONTROL O F 

SMA ACTUATORS USED FOR SHAPE CONTROL O F INFLATABLE SAR AN­

TENNA. Acta Astronautica, 63:578-585, 2008. 

[56] C. Pfeiffer, K. DeLaurentis, and C. Mavroidis. S H A P E MEMORY ALLOY ACTU­

ATED ROBOT PROSTHESES: INITIAL EXPERIMENTS. In Proceedings 1999 IEEE 

International Conference on Robotics and Automation, pages 2385-2391. IEEE, 

1999. 

[57] V. Piccirillo and J. M. Balthazar. CHAOS CONTROL O F A NONLINEAR OSCIL­

LATOR WITH SHAPE MEMORY ALLOY USING AN OPTIMAL LINEAR CONTROL: 

P A R T I: IDEAL ENERGY SOURCE. Nonlinear Dynamics, 55:139-149, 2008. 

[58] V. Piccirillo, J. M. Balthazar, B. R. P. Jr, and J. L. P. Felix. O N A NONLIN­

EAR A N D C H A O T I C N O N - I D E A L VIBRATING SYSTEM WITH S H A P E M E M O R Y 

A L L O Y (SMA). Theoretical And Applied Mechanics, 46:597-620, 2008. 

[59] S. Prajna and A. Papachristodoulou. NONLINEAR CONTROL SYNTHESIS BY 

SUM O F SQUARES OPTIMIZATION: A LYAPUNOV-BASED APPROACH, pages 1-9, 

Melbourne, Australia, 2004. 

[60] J. Primbs, V. Nevistic, and J. Doyle. NONLINEAR OPTIMAL CONTROL: A CON­

TROL LYAPUNOV FUNCTION AND RECEDING HORIZON PERSPECTIVE. Asian 

Journal of Control, 1:14-24, 1999. 

[61] P. Qiang and C. Chongdu. T H E INVESTIGATION O F A S H A P E M E M O R Y A L L O Y 

M I C R O - D A M P E R FOR MEMS APPLICATIONS. Sensors, pages 1887-1900, 2007. 

124 



[62] M. A. Qidawi and D. C. Lagouds. NUMERICAL IMPLEMENTATION O F A SHAPE 

MEMORY ALLOY THERMOMECHANICAL CONSTITUTIVE MODEL USING RETURN 

MAPPING ALGORITHMS. International Journal for Numerical Methods in Engi­

neering, 47(6):1123-1168, 2000. 

[63] M. Rahman. PATENTS ON SUPERELASTIC S H A P E M E M O R Y ALLOY. Recent 

Patents on Mechanical Engineering, 1:65-67, 2008. 

[64] R. C. H. Rosario and R. C. Smith. Introduction and characterization of a func­

tionally linked metal ion binding site at the exposed heme edge of myoglobin. 

Proceedings of the National Academy of Sciences of the United States of America, 

100(7):3647-52, 2003. 

[65] T. Roubicek. MODELLING O F THERMODYNAMICS O F MARTENSITIC TRANSFOR­

MATION IN SHAPE-MEMORY ALLOYS. DYNAMICAL SYSTEMS, 5402:892-902, 

2007. 

[66] M. A. Savi and A. M. Braga. C H A O T I C R E S P O N S E O F A S H A P E M E M O R Y 

OSCILLATOR WITH INTERNAL CONSTRAINTS. In 12th Brazilian Congress of 

Mechanical Engineering, pages 33-37, Rio De Janero, 1993. 

[67] M. A. Savi, A. Paiva, and P. M. Pacheco. PHENOMENOLOGICAL MODELING 

OF SHAPE MEMORY ALLOY THERMOMECHANICAL BEHAVIOR. T e c h n i c a l r e p o r t , 

2007. 

[68] M. A. Savi, M. A. Sa, A. Paiva, and P. M. Pacheco. T E N S I L E - C O M P R E S S I V E 

ASYMMETRY INFLUENCE ON S H A P E MEMORY A L L O Y SYSTEM DYNAMICS. 

Chaos, Solitons and Fractals, 36:828-848, 2008. 

125 



[69] M. Schwartz. ENCYCLOPEDIA O F SMART MATERIALS. John Wiley and Sons, 

2002. 

[70] K. Tanakaa, S. Kobayashia, and Y. Satoa. THERMOMECHANICS O F TRANS­

FORMATION PSEUDOELASTICITY AND SHAPE MEMORY E F F E C T IN ALLOYS . 

International Journal of Plasticity, 2:59-72, 1986. 

[71] H. L. Trentelman and J. C. Willems. SYNTHESIS O F DISSIPATIVE SYSTEMS 

USING QUADRATIC DIFFERENTIAL FORMS: PART I. IEEE Transactions on 

Automatic Control, 47:70-86, 2002. 

[72] H. L. Trentelman and J. C. Willems. SYNTHESIS O F DISSIPATIVE SYSTEMS 

USING QUADRATIC DIFFERENTIAL FORMS: PART II. IEEE Transactions on 

Automatic Control, 47:70-86, 2002. 

[73] M. Vasina and K. Hoder. UNCONVENTIONAL ACTUATORS FOR R O B O T I C S -

S H A P E M E M O R Y ALLOY. 2003 IEEE International Conference on Industrial 

Technology, 1:190-193, 2003. 

[74] L. Wang and R. V. N. Melnik. C O N T R O L O F COUPLED HYSTERETIC DYNAMICS 

O F FERROELECTRIC MATERIALS WITH A LANDAU-TYPE DIFFERENTIAL MODEL 

AND FEEDBACK LINEARIZATION. Applied Numerical Mathematics, 18(7):074011, 

2007. 

[75] L. Wang and R. V. N. Melnik. C O N T R O L O F COUPLED HYSTERETIC DY­

NAMICS OF FERROELECTRIC MATERIALS WITH A LANDAU-TYPE DIFFEREN­

TIAL MODEL AND FEEDBACK LINEARIZATION. Smart Materials and Structures, 

18(2009):401107, 2009. 

126 



[76] L. X. Wang and R. V. N. Melnik. D E V E L O P M E N T O F A SHAPE MEMORY ALLOY 

ACTUATED BIOMIMETIC VEHICLE. Smart Matrial Structures, 9:673-683, 2000. 

[77] L. X. Wang and R. V. N. Melnik. F I N I T E VOLUME ANALYSIS OF NONLINEAR 

THERMO-MECHANICAL DYNAMICS OF SHAPE MEMORY ALLOYS. Heat and Mass 

Transfer, 43(6):535-546, 2006. 

[78] L. X. Wang and R. V. N. Melnik. M O D E L REDUCTION APPLIED TO SQUARE 

TO RECTANGULAR MARTENSITIC TRANSFORMATIONS USING PROPER ORTHOG­

ONAL DECOMPOSITION. Applied Numerical Mathematics, 57(6):510-520, 2007. 

[79] L. X. Wang and R. V. N. Melnik. MODIFYING MACROSCALE VARIANT COMBI­

NATIONS IN A TWO-DIMENSIONAL STRUCTURE USING MECHANICAL LOADINGS 

DURING THERMALLY INDUCED TRANSFORMATION. Materials Science and En­

gineering, 481-482:190-193, 2008. 

[80] G. Webb, A. Kurdila, and D. Lagoudas. HYSTERESIS MODELING O F SMA 

ACTUATORS FOR C O N T R O L APPLICATIONS. Journal of Intelligent Material 

Systems, 9:432-448, 1998. 

[81] Z. G. WEI and R. SANDSTROM. REVIEW: SHAPE-MEMORY MATERIALS 

AND HYBRID COMPOSITES FOR SMART SYSTEMS. Journal of Materials Science, 

33:3743-3762, 1998. 

[82] J. C. Willems. DISSIPATIVE DYNAMICAL SYSTEMS. European Journal of 

Gontrol, 13:134-151, 2007. 

[83] L. Yan and B. Liu. STABILIZATION WITH O P T I M A L P E R F O R M A N C E FOR DISSI-

127 



PATIVE D I S C R E T E - T I M E IMPULSIVE H Y B R I D SYSTEMS. Advances in Difference 

Equations, 2010:1-15, 2010. 

[84] T. Yoshida. SUPERELASTIC DENTAL A U - C U - Z N ALLOYS. 

http://www.docstoc.com/docs/47466953/Superelastic-Dental-Au-Cu-Zn-

Alloys—Patent-4690799, 1987. 

[85] Y. Zhao, M. Taya, Y. Kang, and a. Kawasaki. COMPRESSION BEHAVIOR O F 

POROUS N I T I SHAPE MEMORY ALLOY. Acta Materialia, 53(2):337-343, 2005. 

[86] Y. Zheng and B. M. Buang. SUPERELASTIC AND THERMALLY ACTIVATED T I N I 

ALLOYS AND T H E I R APPLICATIONS. Matrial Science Forum, 394-395:57-60, 

2002. 

128 

http://www.docstoc.com/docs/47466953/Superelastic-Dental-Au-Cu-Zn-

	Mathematical Modeling and Control of Nonlinear Oscillators with Shape Memory Alloys
	Recommended Citation

	ProQuest Dissertations

