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Abstract 

Northern boreal wetland complexes are substantial reservoirs for carbon and play a 
crucial role in both regional and global carbon budgets but they are showing significant 
signs of impact by climate change. This study examined the carbon dioxide flux of a high 
boreal wetland during the snowmelt and growing season of 2008 in Scotty Creek Basin, 
located near Fort Simpson (61°18'N, 121° 18'W), Northwest Territories. This basin is not 
only responding to shifts in atmospheric temperatures, but it is also under additional 
pressure from increasing permafrost degradation. A dynamic closed-system chamber was 
used to monitor and quantify mid-day total respiration (Rtot), gross ecosystem production 
(GEP), and net ecosystem exchange (NEE) at nine sites, in order to characterize and 
compare the gas flux gradients for three landscape units typical of the lower Liard River 
valley (channel fens, ombrotrophic flat bogs and peat plateaus). 

Each landscape unit exhibited increasing rates of Rtot and GEP for the duration of 
study. Instantaneous rates of Rtot and NEE were highest in the permafrost plateau and 
channel fen, while the flat bog remained consistently low throughout the season. While 
there was significant variation in magnitude, the results demonstrated relatively similar 
temporal variability between landscapes. Temporal and spatial variability in CO2 
exchange was further examined through the relationships with local environmental 
conditions: photo synthetically active radiation, air temperature, soil temperature, soil 
moisture, and frost table and water table depth. Light response curves derived using an 
exponential model showed GEP was primarily driven by photosynthetically active 
radiation, yet significant scatter suggested additional environmental influences. 
Differential development in Rtot appeared to be most influenced by temperature and 
moisture regimes. Ambient air temperature, and soil and water temperatures at 20 cm all 
showed strong positive correlations with Rtot, while decreasing frost and water table 
depth, and soil moisture enhanced Rtot. 

These relationships for the 2008 season were used with assistance from 
meteorological stations to develop a continuous dataset for this region. In addition, 
remote sensing technology was used to scale the continuous dataset to the ecosystem 
level. Results showed that while the individual channel fen examined was the greatest 
emitter of CO2 into the atmosphere, it was the permafrost plateau that had the greatest 
total flux over a larger area. The potential future regional flux for this region as a sink or 
source for CO2 was also examined through site specific instantaneous gas flux and a 
simplified continuous model. This study highlights the need for long term measurement 
in order to develop an annual budget for CO2 and capture a more complete carbon profile 
of permafrost-dominated boreal wetlands. Further study will also result in a more holistic 
understanding of how CO2 gas flux gradients vary between the three distinct landscape 
units and periods of climatic variability. As the climate in northern ecosystems continues 
to alter, understanding the interactions between the physical, biochemical, and 
environmental conditions of different landscapes and the processes which define them 
can aid in the parameterization and interpretation of current and future climate and 
biogeochemical models. 
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Chapter 1 Introduction 

1.1 Boreal Wetland Ecosystems 

As climate change continues to be the dominant environmental issue, the present 

and future condition of Northern environments is a growing concern with public, political 

and scientific communities. As one of the most sensitive environments in the world it is 

not only affected by, but also affects global climate change (ACIA, 2004). However, 

there is still much that is not understood as a result of remote locations and extreme 

climates that have historically limited the development of intensive long term study in the 

North (ACIA, 2004; Elberling, 2007; IPCC, 2007; Tarnocai et al., 2007). High latitude 

regions are defined by considerable spatial and temporal variability in climate, resulting 

in an assortment of regional climates that exhibit different ecological and physical 

climatic characteristics and responses (ACIA, 2004). To develop quantitative models that 

accurately represent these ecosystems, it is important to understand the physical 

processes that define them. 

A wetland is considered the transition between land and water that is neither firm 

land nor open water (NWWG, 1988). These areas are waterlogged either most or all of 

the time with a fluctuating water table (NWWG, 1988), dominated by "hydric soils, 

hydrophobic vegetation, and biological activity" (Tarnocai, 1980) that are adapted to the 

presence of excess water. Waterlogged conditions often promote greater rates of plant 

production than decomposition, resulting in peat accumulation (NWWG, 1988). Peat is 

the product of the incomplete decomposition of plant material in water-saturated 

conditions (NWWG, 1988). Peatlands are organic wetlands that have accumulations of 
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peat greater than 40 cm in depth (NWWG, 1988). Approximately 97% of Canadian 

peatlands occur in the boreal wetland and subarctic wetland regions (Tarnocai, 2006). 

In Canada wetlands are estimated to cover approximately 14% of the total land 

mass, the distribution of which is a result of local climate and surficial geology (NWWG, 

1988). Wetland and peatland ecosystems extend from temperate and boreal into subarctic 

regions, distinguished by variations in canopy and vegetation coverage, hydrology, 

wetland features, and permafrost distribution (Kuhry and Turunen, 2006). The 

development of peatlands is also distinguished by latitude as temperate peatlands have 

experienced higher rates of peat accumulation in comparison to those in the north and 

subarctic (Kuhry and Turunen, 2006). Temperate regions experience warmer climates, 

while boreal and sub-arctic wetlands experience cold winters with wet and limited 

growing seasons (NWWG, 1988). As a result, the boreal and subarctic regions currently 

experience a greater sensitivity to shifts in temperature, precipitation and permafrost loss 

(Kuhry and Turunen, 2006). 

Boreal wetland regions, in particular, extend across the Canadian landscape from 

coast to coast. The ecological diversity encompassed by this distribution has resulted in 

four regions: high, mid-, and low and Atlantic boreal wetlands (NWWG, 1988). The 

continental high boreal wetlands situated in Northwestern Canada lie within the southern 

boundaries of the Taiga Plains and in the centre of the Mackenzie River Basin, Canada's 

largest river basin (Natural Resources Canada, 2009). Saturated conditions in a flat, cold 

northern ecosystem result in poor drainage with substantial deposits of peat and a wetland 

composed of three landscape units: permafrost plateaus, flat bogs, and channel fens 

(NWWG, 1988; Quinton et al., 2003) (Figure 1-1). 
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Permafrost plateaus rise ~ 1-2 m above the surrounding wetlands as forested islands 

underlain by permafrost (Quinton et al., 2003; Robinson and Moore, 2000). It is believed 

that permafrost plateaus evolved from bogs (Robinson and Moore, 2000), their expansion 

and elevation the result of peat accumulation over time (Geological Survey of Canada, 

1998) and uplift due to the expansion of water as it freezes (Harris and Schmidt, 1994). 

As the peat elevates above the bog water level it is exposed to colder temperatures, 

surface wind, and greater drainage. These conditions result in an increased penetration of 

winter frost initiating permafrost growth. Moreover, the relatively drier peat acts as an 

insulating barrier allowing further permafrost growth. The development of vegetation and 

tree species sustain the presence of permafrost by decreasing the amount of incident solar 

radiation reaching the ground surface. The water table of permafrost plateaus fall 0.5 m 

or more below the ground surface during the annual thaw and drainage of the active layer 

(Quinton et al., 2003). As a result, they are not wetlands by definition (Quinton et al., 

2003). 

Permafrost plateaus direct runoff into adjacent bogs and fens, maintaining the 

current hydrological drainage network (Quinton et al., 2003). Plateaus vary in size, form, 

and stage of development (ranging from youthful, to mature, to old). Initially in the 

development of the permafrost plateau there is little diversity in the distribution of 

vegetation. However, with maturity the vegetative species common to plateau 

environments begin to establish themselves (Geological Survey of Canada, 1998). 

Typically, permafrost plateaus support a tree canopy of Picea mariana (black spruce), 

and a ground cover dominated by lichen, feather and Sphagnum mosses, Labrador tea, 

and ericaceous shrub species (NWWG, 1988). Plateaus with a dense canopy, often have a 
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well decomposed surface peat with high nutrient concentrations, while an open-canopy is 

often more fibric at the surface with lower nutrient concentrations (NWWG, 1988). 

Permafrost plateaus will eventually reach a maximum stage of development as limited by 

the local conditions and at which point permafrost will begin to slowly degrade. Thawing 

of the permafrost causes ground surface subsidence and local flooding (Robinson and 

Moore, 2000). This degradation and disappearance of plateaus will result in canopy loss 

and a shift in vegetation dominance as the sub-surface becomes unstable for tree roots 

and saturated. 

Flat bogs are ombrotrophic, low-lying features that appear as patches on the 

landscape. They are broad and poorly defined (NWWG, 1988; Quinton et al., 2003). 

Most flat bogs are isolated in terms of surface and near-surface flow interactions, and are 

surrounded on all sides by raised plateau. Hydrologically-isolated by the surrounding 

elevated permafrost they receive water from precipitation and sub-surface runoff from the 

plateaus and experience loss through evaporation and possibly groundwater recharge 

(Quinton et al., 2009). Hydrologically-connected bogs are those that are connected during 

periods of high water supply to channel fens by surface and near-surface flows (Quinton 

et al, 2009). The water table remains close to the surface throughout the year in bogs. 

Stunted trees, typically Picea mariana, can be found near the edges with plateaus 

(NWWG, 1988); while the surface is often dominated by Sphagnum mosses (NWWG, 

1988). The underlying peat is generally composed of fibric mosses and ericaceous leaves 

at the surface, which overlies a mesic layer of moderately decomposed material, and 

lastly a well-decomposed basal layer with residues of sedges and tree wood. 
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Channel fens are minerotrophic, low-lying features that appear as large linear 

features on the landscape along the drainage network of a basin (NWWG, 1988; Quinton 

et al., 2003), with broad (50 to > 100 m wide) channels. The water table remains close to 

the surface throughout the year resulting in consistent saturation, similar to the flat bog 

(Quinton et al., 2003). Water received from the surrounding permafrost plateau and bog 

landscapes is conveyed through the drainage network toward the basin outlet (Quinton et 

al., 2003). As a result of this function, channel fens are often relatively nutrient-enriched 

(NWWG, 1988). Channel fens typically have a buoyant peat mat on the surface that 

responds to changes in the water table, resulting in an inconsistent surface elevation 

(Quinton et al., 2003). The mat, which sits just below the water surface, supports the 

development of sedges, grass, herbs and shrubs above the water table, while trees are 

usually absent (NWWG, 1988). 
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Figure 1-1 Image depicting a typical boreal wetland complex composed of peat plateaus, 
flat bogs, and channel fens, looking south (Goose Lake in the background), Northwest 
Territories, Canada (photo courtesy of William Quinton). Schematic cross-section of a 
boreal wetland complex detailing a permafrost plateau flanked by a flat bog and channel 
fen (Quinton et al., 2009). 

1.2 Permafrost Distribution and Landscape Evolution 

Permafrost is ground that remains at or below 0°C for a minimum of 2 consecutive 

years (Brown and Kupsch, 1974). Approximately 50% of the Canadian land mass is 

underlain by permafrost (Geological Survey of Canada, 1998) and approximately 50% of 

the peatlands in Canada are found in permafrost-affected regions (Robinson et al, 2003). 
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A significant portion of Northern boreal wetlands lie within the zone of discontinuous 

permafrost, which is both extensive and sporadic. Permafrost in the zone of discontinuous 

permafrost is particularly vulnerable to disturbance (Camill, 2005) and thaw can be 

initiated by disturbances such as fire, deforestation, erosion, flooding, and climate 

warming. In recent decades, increasing thaw depth and shallow ground temperatures have 

been documented around the globe and here in Canada (Wright et al., 2008). Permafrost 

with a temperature close to 0°C is extremely sensitive to increases in the mean annual air 

temperature (Robinson, 2002). Halsey et al. (1995) documented a continuous northward 

shift of the southern boundary of permafrost throughout Alberta, Saskatchewan, and 

Manitoba as a result of over 200 years of relatively warm climate. Based on current 

global climate predictions permafrost retreat is expected to accelerate over the coming 

decades (e.g. Anisimov et al., 2002; Camill and Clark, 1998). However, the increase in 

thaw depth could be even greater than what has been forecasted by modelling estimates. 

While warming can enhance the productivity of an ecosystem, Zoltai (1993) and 

Vitt et al. (1994) argue the importance of permafrost to the survival of ecosystems in the 

wetland-dominated zone of discontinuous permafrost. Permafrost has three crucial roles 

in the climate system (Anisimov et al., 2001; Nelson et al., 1993; U.S. Arctic Research 

Commission Permafrost Task Force, 2003): first as a "geoindicator" of environmental 

change, acting as a temperature archive that does not experience seasonality in its 

warming or cooling below depths of 15 to 20 cm; second as a control for the hydrological 

and biological processes in its surrounding ecosystem, defining the seasonally thawed 

depth (active layer) to which they will be confined, altering surface and subsurface water 
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fluxes and the functions of overlying vegetation; and third its control over the release of 

trace gases back into the atmosphere. 

Rising air temperatures threaten the current physical characteristics of wetland 

landscapes as they evolve from permafrost to non-permafrost terrain. Further, with 

continued alteration to the growing season and its productivity, snow depth, and the 

timing of annual freeze-thaw cycles on a local scale, it is unknown how long permafrost 

will remain (Camill and Clark, 1998). What is known is that seasonal alterations further 

enhance the natural hydrological shift and subsidence of permafrost plateaus into collapse 

scar bogs (Camill and Clark, 1998). Permafrost distribution is also endangered by human 

disturbance. When the tree canopy is removed by human disturbance or natural 

processes, radiation received at the surface increases, resulting in an increased depth of 

thaw (Quinton et al., 2009). By creating a localized depression in the frost table water 

from the surrounding area will drain towards it, increasing the water table depth and soil 

moisture in the unsaturated zone (Quinton et al., 2009). Thermal conductivity of peat is 

enhanced with increasing soil moisture (Wright et al., 2009), allowing thermal energy to 

transfer deeper into the sub-surface, resulting in a greater depth of thaw and further 

drainage (Quinton et al., 2009). Unable to survive in water-logged conditions, the canopy 

is further thinned out resulting in even greater radiation loading at the surface over a 

larger area. Eventually an isolated flat bog will develop and over time it will grow in size 

with continued degradation, potentially leading to the elimination of the permafrost 

plateau. 
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1.3 Atmospheric Carbon and Global Change 

General Circulation Models (GCMs) predict an increase in the average annual air 

temperature of 1.7-4.0 °C in northwestern Canada by 2050 (IPCC, 2007). The global 

mean annual air temperature has increased by approximately 0.74 °C ± 0.18 °C over the 

last 100 years (1906 - 2005) (IPCC, 2007). Atmospheric temperatures are strongly 

influenced by the concentrations of greenhouse gases (including carbon dioxide (CO2), 

methane (CH4), nitrous oxide (N20), and halocarbons), the concentrations of which have 

steadily increased over the industrial era, largely a result of human activities (IPCC, 

2007). Anthropogenic emissions of CO2 into the atmosphere since 1850 have been well 

documented (Watson et al., 2000; Apps, 2002). Atmospheric CO2 concentrations have 

increased as a result of fossil fuel combustion (coal, oil, and natural gas); however, 

during the last century a growing contributor to CO2 increase has been the shift in 

ecosystem carbon responses due to increased land use change (IPCC, 2007). 

Approximately 43% of CO2 emissions over the last century have been retained in the 

atmosphere (Apps, 2002). This accumulation could potentially contribute over 60% of 

the total increase in radiative forcing (Ruddiman, 2002). The growth rate for CO2 in the 

atmosphere from 1995 to 2005 was 1.9 ppm yr"1 resulting in an increase in radiative 

forcing of 0.28 Wm"2 during the same time period (IPCC, 2007). 

Northern peatlands are a substantial reservoir for greenhouse gases, accumulating 

carbon for thousands of years (Yu et al., 2002; Rosenberry et al., 2006). During the 

Holocene, post-glacial conditions resulted in a significant sink for atmospheric carbon in 

such environments (Makiranta el al., 2009). The circumpolar boreal zone contains close 

to 30% of the global terrestrial carbon storage within its peatlands (Watson et al., 2000; 
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Apps, 2002). The shifting balance between production and decomposition of peat has 

created a reservoir estimated at 455 Pg of C (Gorham, 1991). The cycle of CO2 removal 

from, and emission into, the atmosphere has a large impact on global temperatures. 

However, the direction and magnitude of feedback to air temperatures resulting from CO2 

exchange between northern peatlands and the atmosphere is poorly understood and 

requires further research (IPCC, 2007; Schlesinger and Andrews, 2000; Yu et al., 2002). 

1.4 Ecosystem - Atmosphere Carbon Dioxide Exchange 

The carbon cycle of peatlands includes carbon removal from the atmosphere 

through photosynthesis, storage in living and decomposing plant tissues in the active 

layer and permafrost, and its release to the atmosphere through autotrophic and 

heterotrophic respiration and peat oxidation. The general carbon (C) balance for 

terrestrial ecosystems is represented by, 

A C (NEE) = C02 (GEP) - C02 (Rtot) - CH4 - DOC - DIC 

( 1 . 1 ) 

where AC (NEE) is the net change in carbon storage within the ecosystem (g C m" day" 

'), GEP is the gross ecosystem production, which represents total plant uptake or release 

of CO2 from the system, Rtot is the loss of CO2 from roots, microbial activity 

(decomposition) and vegetation respiration, CH4 is methane, and DOC and DIC represent 

dissolved organic and inorganic carbon, respectively. However, in this study only gross 

ecosystem production and total respiration were examined to monitor the temporal and 
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spatial variability and potential controlling variables on net ecosystem exchange and 

carbon accumulation. Thus, this balance was simplified for this study as, 

NEE = GEP + Rtot 

(1.2) 

where net ecosystem exchange is the balance between photosynthesis (the process of CO2 

uptake from the atmosphere) and plant and soil respiration (the release of CO2 back into 

the atmosphere) (Bubier et al., 2003). 

Over thousands of years, significant amounts of carbon dioxide (CO2) have been 

removed from the atmosphere through photosynthesis and sequestered as un-decomposed 

organic matter (Camill and Clark, 1998). Photosynthesis is the process of converting light 

into chemical energy to sustain life in the biosphere (Schlesinger, 1977) and carbon is 

assimilated by plants during this process. CO2 is diffused through the plant stomata into 

the leaf from the atmosphere, in exchange for water, which is available in excess in the 

leaf, and PAR is the photosynthetically active radiation from the sun (between 400 and 

700 nm) (Campbell and Norman, 1998). Energy that is not utilized by the plant for 

metabolism and heterotrophic respiration is distributed through the plant to above-ground 

leaves and shoots, and below-ground to the roots (Raven et al., 1999). Carbon dioxide, 

water, and light are fixed by the vegetation and converted into a carbohydrate (CH2O) 

and oxygen (Campbell and Norman, 1998), 

6 C02 + 12 H20 + PAR = C6H1206 + 602 + 6H 2 0 

(1.3) 
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Decomposition determines the rate of carbon respiration and carbon accumulation 

on the ground and varies with plant species, nutrient concentrations, and oxygen 

availability (Gorham 1991; Thormann et al., 2002). The aerobic zone near the ground 

surface enables high rates of decay (Yu, 2002) as unsaturated conditions promote greater 

microbial activity. In the anaerobic zone, saturated conditions limit microbial activity; 

however, at greater depths climatic warming is no longer influential and the rate of decay 

is more constant (Yu, 2002). Older peat layers located at the bottom of the active layer 

are situated in direct contact with the underlying permafrost. At this depth, where the soil 

is frozen and saturated, organic material freezes, halting decomposition. As long as it 

exists in such a state, the carbon will remain stored within frozen residues (Figure 1-2). 

Slightly higher values of carbon are often recorded nearer the ground surface where new 

peat and fresh plant matter is initially less decomposed (Vardy et al., 2000). However, as 

aerobic conditions persist the volume of carbon released will increase (Vardy et al., 

2000). Less mobile carbon is present at greater depths as the organic material will have 

undergone a greater degree of decomposition over time. 
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Thawed Ground 

Frozen Ground 

Figure 1-2 Accumulation and decay of organic matter in peatlands underlain by 
permafrost. 

Carbon is released from peatlands through respiration and soil leaching. 

Respiration is the process of releasing carbon from plants, the soil, and organic 

compounds in the form of CO2. Soil respiration involves a combination of processes: 

biotic (rhizosphere (root and root exudates)), heterotrophic (microbial and faunal), 

chemical (oxidation of soil carbonates), and physical (degassing) (Raich and Schlesinger, 

1992; Suyker et al, 2003). 
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1.5 Environmental Factors Controlling CO2 Gas Flux 

In addition to monitoring CO2 flux, examination of site specific environmental 

variables, such as localized climate and unique physical characteristics of a landscape, 

provides a more comprehensive understanding of what drives the CO2 flux within an 

ecosystem. As there is considerable spatial variability of sub-surface carbon, 

environmental measurements should be made at the location where CO2 is being 

monitored and in the immediate surroundings. By determining the relationship between 

CO2 and its localized environmental conditions, it is possible to relate temporal and 

spatial variability to changes in climatic, hydrological, vegetative, and soil characteristics. 

The most influential climatic variables to CO2 flux are air temperature and 

photosynthetically active radiation. Air temperature not only drives near-surface soil 

temperatures, creating a temperature gradient between the surface and atmosphere but 

also affects photosynthesis through stomatal control. Photosynthetically active radiation 

(between 400 and 700 nm) (Campbell and Norman, 1998) used in photosynthesis, helps 

vegetation fix CO2 from the atmosphere, as discussed in the previous section. 

Hydrological characteristics of a landscape are also important to CO2 flux. During 

winter, CO2 flux varies with depth of snow and the presence or absence of ice layers 

within the snow profile, directly above the surface (Bubier et al., 1998). An overlying 

snowpack insulates the ground surface from cooler air temperatures, defining the depth of 

the frost table (Dingman, 1994; Sturm et al., 2005). Below the ground surface, the frost 

table represents the lowest extent of the seasonally thawed sub-surface (Woo, 1986). As 

the relatively impermeable upper surface of the frozen and saturated soil beneath it, it 

also coincides with the zero-degree isotherm (Carey and Woo, 1998; Quinton et al., 
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2000). The frost table depth is an indicator of the amount of available space for microbial 

activity to increase decomposition rates and the amount of thawed organic matter 

available to decompose and release CO2. A snowpack also temporarily stores 

precipitation and reduces its contribution to the wetland surface. During snowmelt 

meltwater is unable to infiltrate past the frost table. Seasonal ice in the active layer 

decreases the available storage capacity and movement of water in the thawed and 

saturated portion of the soil profile (Wright et al., 2008). As a result, water must drain 

laterally between the water table and frost table (Hayashi et al., 2004; Wright et al., 

2008), downslope from the permafrost plateau into the adjacent wetlands. As meltwater 

infiltrates the ground surface and refreezes it convects heat into the sub-surface causing a 

rise in ground temperature and a lowering of the frost table (Woo, 1986). Thermal energy 

is conducted from the ground surface to the frost table at a higher rate in wet, rather than 

dry, peat (Hayashi et al., 2007). The occurrence of overland flow on the typically dry 

plateau surface is rare; however, small ponds may develop on the surface (Wright et al., 

2009) during snowmelt and early spring when stored water is released, overwhelming an 

already heavily saturated environment. The large majority of water is stored in the 

saturated layer, with the remainder in the unsaturated zone. In relation to the amount of 

CO2 within an ecosystem, the position of the water table controls the depth and size of 

the aerobic and anaerobic zones which are critical to productivity, decomposition, and 

peat accumulation (Rouse et al., 1997). Lowering of the water table will result in a 

thickening of the aerobic zone and increase in oxygen availability needed to increase 

decomposition rates and thereby CO2 loss (Bubier et al., 2003). Water depth may also 

15 



play a role in determining the number and type of microbial communities; thereby, 

indirectly influencing decomposition rates. 

Vegetative and soil characteristics also play a role in determining site specific CO2 

flux, and can often be correlated with spatial variability within and between landscape 

units. Plant species in wetland environments are controlled by nutrient availability, soil 

characteristics, and hydrology. In turn they influence the soil microclimate structure 

through their root development, moisture and nutrient use, and the quantity and quality of 

detritus supplied to the soil profile (Raich and Tufekcioglu, 2000). Most importantly, 

plant species determine the rate of carbon assimilated from the atmosphere through 

photosynthesis and the amount contributed to the soil profile through the process of 

organic decomposition. Below the surface, characteristics of the soil profile, such as 

texture and porosity, can determine the ease and volume of water and gas movement in 

and out of the soil. The amount of thawed organic material and its total carbon and 

nitrogen composition can determine the volume of mobile carbon. Greater concentrations 

of nitrogen in the soil profile can stimulate plant production and therefore, result in a 

potential increase in storage of atmospheric CO2 in soil organic matter (Holland et al., 

1997). Soil temperature is also a strong driver of CO2 flux. Not only an indicator of 

frozen ground, soil temperature plays a role in controlling productivity and 

decomposition rates throughout the soil profile (Rouse et al., 1997). Microbial activity is 

sensitive to temperature; however, recent studies (Minkkinen et al., 2007; Makiranta et 

al., 2009) have documented this sensitivity as having large spatial variation. Makiranta et 

al. (2009) suggest this variation may be a result of different soil microorganisms 

responding differently to temperature. 
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1.6 Chamber Measurement of Carbon Dioxide Flux 

Although gas fluxes can be directly measured by eddy covariance at the ecosystem 

scale, continuous flux measurement requires extensive instrumentation, which can be 

difficult to maintain in harsh northern environments. In addition this method relies on 

atmospheric instability and sufficient wind velocities (Rouse et al., 2002) and can be 

complicated by advection. Defining a footprint for eddy covariance can often be difficult 

to determine in ecosystems with heterogeneous landscapes. Chambers provide a much 

finer scale measurement from the soil and living vegetation at the spatial scale defined by 

the size of the chamber. While chambers do not provide an ecosystem scale assessment 

of fluxes or quantify the complete flux of an ecosystem (trees and shrubs are not included 

in monitoring), chambers do capture the diversity of each landscape through the 

characterization of temporal and spatial heterogeneity of CO2 and its controls at the 

surface-atmosphere boundary. An infrared gas analyser attached to a portable chamber is 

used to measure CO2 respiration. There are two chamber techniques that can be used: 

open-system and closed-system. 

Open-system chambers allow interaction between the chamber environment and 

surrounding atmospheric conditions (Davidson et al., 2002) and are sealed to the ground 

surface where CO2 concentrations can be measured for hours, or days, at a time (Streever 

et al., 1998). While chamber designs vary according to the objectives of a project there 

are some similar construction techniques. Ambient air is often pumped into the chamber, 

where it circulates thoroughly with the application of internal fans and then finally 

pumped out of the chamber through an exhaust feature (Streever et al., 1998). As a result 

of the interaction with the surrounding atmosphere during measurement, consideration 
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must be taken in regards to temperature, velocity, and flow of air entering and exiting the 

chamber (Alterio et al., 2006; Balogh et al., 2005). One of the main advantages to open-

system chambers is their ability to measure continuously over longer periods, ranging 

from several hours to days at a time (Streever et al., 1998). However, they are not the 

most conducive to some field studies as the equipment involved can be expensive and is 

not easy to transport if several sites are involved due to the complexity of its construction. 

In addition, the needed power supply is not always accessible in remote situations. In 

comparison, closed-system chambers do not incorporate surrounding atmospheric 

conditions. The chamber is sealed to the ground surface for the duration of measurement 

without any ventilation features. The use of an infrared gas analyzer (IRGA) is common 

for closed-system chambers and can be applied using two methods. The first, circulates 

air from the chamber to an external IRGA (Petrone et al., 2008; Solondz et al., 2008; 

Waddington et al., 2003), through tubing connecting the two. The second technique 

measures CO2 concentrations directly within the chamber through the insertion of a 

portable IRGA into the chamber structure. 

Chambers are most commonly cylindrical structures that can be constructed out of 

materials such as vinyl chloride (Bekku et al., 1995), transparent perspex plastic 

(Streever et al., 1998; Strom and Christensen, 2007), or polycarbonate sheets (Grau, 

1995; Bubier et al, 2003). Clear chambers permit light penetration during measurement. 

Photosynthetically active radiation can have a direct relationship to the CO2 

concentrations being measured in the chamber and should be monitored simultaneously 

(Streever et al, 1998). To construct a 'dark' chamber, covers can be placed over the 

chamber instantaneously (Streever et al., 1998; Strom and Christensen, 2007) or in 
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degrees of darkness using multiple shrouds of varying mesh sizes (Bubier et al., 2003). 

The size and volume of a chamber should be small enough to capture minor flux 

measurements but large enough so as to minimize chamber disturbance effects. 

To ensure data quality, attention must be given to the environmental factors that 

influence chamber performance: air temperature, relative humidity, pressure, and oxygen. 

A closed-system chamber sealed to the ground surface eliminates interaction with the 

surrounding atmosphere but as a result can develop its own microclimate, which may not 

accurately represent the current conditions of the system being measured. An enclosed 

chamber on the ground surface can result in potential flux disturbances related to air 

pressure differences between the chamber headspace and the ambient atmosphere, 

modification to wind speeds, influence on the soil-to-air CO2 gradient, and alterations to 

temperature, relative humidity, and rates of evaporation within the chamber (Davidson et 

al., 2002; Lund et al., 1999). However, if the duration of measurement is short, this 

impact is minimal. Sampling time and duration has a direct influence on respiration rates. 

Bekku et al. (1995) found that longer sampling periods resulted in a significant decrease 

in CO2 emission as the CO2 gradient between the soil and air decreased within the 

chamber between 20-25 min after the start of measurement. Researchers that have 

utilized a closed-system chamber typically apply a sample period of 2-10 minutes in 

order to avoid gradient errors. A secondary consideration is the time of day when the 

measurements are made. Taking measurements at the same point and time every day 

creates an inaccurate representation of the site (Davidson et al., 2002). CO2 flux is not 

constant throughout a 24-hour period and measurements should reflect this by changing 

the order in which sites are sampled and at what time. Chamber measurements may also 
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be affected by lateral diffusion of carbon in the soil profile. During simulations of both 

steady and non-steady-state chambers, Davidson et al. (2002) found that there was an 

alteration in the CO2 gradient outside the perimeter of the collar placed on the ground 

surface. Therefore, a chamber may not be measuring total respiration at the surface of a 

soil column and losses may be occurring laterally beyond the chamber's capacity. 

1.7 Temporal and Spatial Variability of C0 2 Flux 

Northern ecosystems are experiencing changes in carbon cycling as a result of 

climate warming and land use change. In order to determine, or predict, the magnitude of 

response it is important to understand the sensitivity of the carbon cycle to local 

environmental changes and fluctuations. Studies examining the CO2 flux of Arctic and 

Sub-Arctic regions have often focused on the fluxes of the mid-growing season to the 

exclusion of other seasons, eliminating several months that could be contributing to the 

net annual CO2 balance. Elberling (2007) estimated that as much as 30-40 % of annual 

CO2 loss can occur during the winter months. Therefore, this study focused on the 

transition between snowmelt conditions and the early stages of vegetation growth to 

capture the shoulder seasons that play a key role in the hydrology of northern wetlands 

and work towards a greater understanding for annual gas flux gradients. 

Temporal variability of net CO2 exchange during the shoulder seasons of spring 

and fall has often been attributed to plant species type, their growth cycle, nutrient 

conditions, and the variations in their interaction and response to soil moisture, 

photosynthetically active radiation and temperature (Bubier et al., 1998; Frolking et al., 

1996; Griffis et al., 2000; Kindermann et al., 1996; Waddington et al., 1998). The 
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transition from cold winters to cool wet summers, results in slight shifts in climate, 

hydrology, vegetation, and soil characteristics that can impact the balance between a sink 

and source for CO2. While snow cover in Northern Canada builds up over several 

months, snowmelt can occur in a matter of days. During snowmelt and spring, increases 

in air temperature and the amount of water alters the landscape. Wet and warm conditions 

promote soil thaw, plant growth and photosynthesis (Griffis et al., 2000). In addition, the 

timing of leaf-out, can often correlate to an annual change from net loss to net gain of 

CO2 (Griffis et al., 2000) based on the assumption of increased plant activity (i.e. 

photosynthesis) sequestering CO2. Furthermore, according to Frolking et al. (1996) the 

timing of spring could be one of the most important factors for inter-annual variability 

and should not be discounted. At high latitudes, snowmelt occurs when day length is near 

the annual maximum (Bubier et al., 1998); therefore, reducing the delay in leaf-out and 

gas flux response once bare ground is snow-free. 

During late summer and early fall, decreases in air temperature and the amount of 

water once again alter the landscape. Cool conditions promote vegetation senescence and 

thinning of the thaw depth as freeze-up begins and the winter season approaches. This 

cooling in addition to a decline in plant productivity can result in a change, once again, to 

the balance between net gain and net loss of CO2. However, Goulden et al. (1998) 

demonstrated that soil respiration persists for an extended period at depth where soil 

cooling lags behind the cooling of shallower depths. Despite the initial lag in deep soil 

cooling, a significant portion of the soil profile will eventually freeze-up; limiting 

decomposition and the emission of CO2 during winter months. The timing of surface 
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thaw in the spring and freeze-up in the fall is therefore, important to the net exchange of 

C02 (Bubier et al., 1998). 

As previously discussed, in a northern boreal wetland there are very distinct 

differences between a permafrost plateau, flat bog and channel fen. Spatial variability of 

net CO2 exchange can occur both within and between landscape units, thus, the 

significance of environmental controls may differ at various sites and scales (Maestre and 

Cortina, 2003). The relationship between CO2 and site-specific conditions of 

microclimate, hydrology, vegetation and soil profiles are complex. Studies have 

attempted to clarify these intricate relationships through field observations and modeling 

predictions but they have yet to remain consistent between ecosystems. However, these 

studies have demonstrated that there is a significant temporal and spatial variation in gas 

flux based on changes in temperature, moisture, vegetation and sub-surface regimes 

(Bubier et al., 1998; Davidson et al., 2006; Elberling, 2007; Frolking et al, 1998; 

Goulden et al., 1998; Schreader et al., 1998; Silvola et al., 1996; Solondz et al., 2008; 

Waddington and Roulet, 1996). 

1.8 Study Rationale and Objectives 

Northern boreal wetland ecosystems are large natural reservoirs for carbon, but are 

showing significant signs of impact by climate change. Changing climates have the 

ability to influence the balance of CO2 by altering its relationships with permafrost 

distribution, local air temperature, and other environmental variables that play a role in 

the uptake, storage, and respiration of CO2. Understanding the current relationships 

within northern permafrost-dominated peatlands and the drivers of CO2 at the ecosystem 



scale can contribute to modelling and predicting how they will continue to respond to 

ongoing change (Lafleur, 2002). 

Many previous and ongoing studies have focused on monitoring the carbon storage 

of peatlands in Norway, Sweden, and Greenland (Frolking et al., 1998; Groendahl et al., 

2007; Lindroth et al., 1998; Makiranta et al., 2009; Silvola et al., 1996; Waddington and 

Roulet, 1996; Waddington and Roulet 2000). However, approximately half of the global 

peatlands are distributed between Canada's boreal forest and arctic (taiga and low arctic 

tundra) zones. Studies and projects, such as the Boreal Ecosystem-Atmosphere Study 

(BOREAS), examined the boreal forests and peatlands stretching from Quebec, Ontario, 

Manitoba, Saskatchewan, into Northern Alberta (Bubier et al., 1999; Griffis el al., 2000; 

Lafleur et al, 2001; Moore, 1989; Petrone et al, 2001; Petrone et al., 2003; Roulet, 

1991; Solondz et al., 2008; Trumbore et al, 1999; Turetsky et al., 2007). While these 

studies observed peatland and boreal ecosystems, few addressed the impacts and 

influence of permafrost. Moving north into Alaska (Fahnestock et al., 1998; Jones et al., 

1998; Oechel et al., 1995; Poole and Miller, 1982; Vourlitis et al, 2003) and the 

Canadian Arctic tundra (Lafleur and Humphreys, 2007; Oberbauer et al., 2007), 

permafrost environments have been studied under projects such as the International 

Tundra Experiment (ITEX). However, the examination of peatlands with underlain 

permafrost, in reference to CO2 flux, has received comparatively little study. In the Fort 

Simpson, Northwest Territories, Canada region methane flux has been previously 

examined (Liblik et al., 1997) but no studies have yet monitored CO2 flux for the boreal 

wetlands of this area. While cold and remote locations in northern environments prove 
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more difficult to monitor continuously they are the greatest indicators of potential CO2 

loss to the atmosphere with changing climate. 

Historically, permafrost-dominated landscapes have acted as a net sink for CO2 but 

the balance between uptake and emission is now tenuous enough that small changes in air 

and soil temperature, water table depth, timing and extent seasonal thaw and freeze-up 

could favour decomposition over plant production (Bubier et al., 1998; Carroll and Crill, 

1997; Chivers et al, 2009; Shurpali et al, 1995; Waddington and Roulet, 1996). 

Disturbances caused by changes in both climate and land use are resulting in landscape 

evolution both physically (permafrost degradation) and chemically (CO2). Saturated and 

frozen conditions, maintained through the presence of permafrost and cooler air 

temperatures, limit decomposition thereby preserving larger quantities of carbon. If this 

accumulation exceeds respiration the sink function is maintained. However, climate 

warming has resulted in the thawing of permafrost. As frozen organic matter thaws and is 

available for decomposition, large quantities of carbon can then be lost in the form of 

CO2, potentially shifting the ecosystem from a sink to a source of atmospheric CO2. This 

loss of CO2 back into the atmosphere from peat oxidation (Gorham, 1991) will 

exacerbate the warming climate trend and continue thawing. In addition, the landscape 

will experience increases in mean annual air temperature, increasing precipitation 

variability, and lengthening of the growing season (Price and Waddington, 2000). These 

changes will affect water availability, evapotranspiration and photosynthesis. The 

temporal and spatial variability of net CO2 ecosystem exchange within a northern boreal 

wetland and between its representative landscapes is for the most part sparsely 

documented and unknown. Being unable to quantify these relationships makes it difficult 
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to predict the future condition of boreal wetlands as a sink or source for CO2 as they 

adapt to permafrost thaw and landscape evolution. 

This study attempts to bridge the gap of limited research and understanding of CO2 

changes in northern boreal wetlands. To date there is no monitoring system for ecosystem 

or finer-scale CO2 flux data collection at the Scotty Creek Basin, Northwest Territories, 

Canada. This study examines the interaction between the atmosphere and fluxes at the 

soil and ground surface interface. In order to relate CO2 flux to its environmental controls 

measurements must be made at the same temporal and spatial scale (Davidson et al., 

2002). Therefore, the use of a closed-system static chamber to measure CO2 flux at a 

finer scale provides the most direct way to measure net ecosystem exchange (NEE) and 

total respiration (Rtot)- Moreover, by incorporating the surrounding environmental 

conditions of each site this research identifies significant relationships influential in 

controlling the CO2 balance. Identification of these relationships can aid in the prediction 

of future shifts between sink and source of CO2 and the greater understanding of the 

spatial variability of this physical process. 

The objectives for this research project are to 1) characterize and compare the mid-

day CO2 flux for three landscape units: permafrost plateau, flat bog, and channel fen 

from the period of snowmelt through the growing season until late summer; 2) determine 

and compare the temporal patterns and ranges of total respiration, net ecosystem 

exchange, and gross ecosystem production between and within each landscape unit as 

they develop different light, vegetation, thermal and moisture regimes; 3) define the 

existing relationships between the gas flux gradients and their environmental controls to 

improve the understanding of boreal wetland CO2 exchange; and 4) scale the 
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relationships, as defined in objective #3, to the spatial variability of CO2 for each 

landscape unit and use IKONOS satellite imagery and aerial photography to scale to the 

ecosystem level, in order to explore the potential changes in gas flux gradients as this 

ecosystem responds to landscape evolution. 
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Chapter 2 Study Site 

2.1 Geographical Location 

The study site chosen for this research is located within the Scotty Creek basin (61° 

18'N, 121° 18'W). Covering an area of 152 km2, this wetland-dominated drainage basin is 

situated approximately 50 km south of Fort Simpson, Northwest Territories, Canada in 

the lower Liard River valley. Located centrally within Canada's largest river basin, one 

of the most unique ecological and hydrological areas of Northern Canada, it also lies 

within the boundaries of Canada's continental high boreal wetland just slightly south of 

the transition into low subarctic wetland (NWWG, 1988), and in an area dominated by 

discontinuous permafrost (Heginbottom and Radburn, 1992) (Figure 2-1). The study site 

in Scotty Creek basin was located 1.1 km North of Goose Lake (Figure 2-2) with sites 

distributed across permafrost plateau, flat bog, and channel fen landscape units. Field 

measurements were limited to two trips, the first made between April and June 2008, to 

evaluate CO2 exchange during the months capturing snowmelt and early growing season 

conditions. The second, only involved one day of measurements at the end of August 

2008 to capture an example of late summer conditions. 
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Figure 2-1 (a) Location of study site within the Mackenzie Basin (Cohen, 1997). (b) The 
lower Liard River valley near Fort Simpson, Northwest Territories, Canada (Natural 
Resources Canada, 2009). (c) Major ground-cover types in Scotty Creek within a 22 km2 

area of interest (Quinton et al., 2009). The area presented in (Figure 6-1) is outlined in 
white in Figure 2-1(c). 
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Figure 2-2 Location of study site, looking south with Goose Lake in the background 
(photo courtesy of William Quinton). 

2.2 Physiography 

Scotty Creek basin is composed of three main landscape units: permafrost plateaus, 

flat bogs, and channel fens. These landscape units are easily identified in aerial 

photography by abrupt changes in vegetation coverage and their distinguishable forms. 

Ground classification conducted by Quinton et al. (2009) on a sub-section of the Scotty 

Creek basin, covering an area of approximately 22 km , indicated the dominance or 

permafrost plateaus on the landscape. Permafrost plateaus occupied the greatest areal 

portion (43%), followed by isolated and connected bogs (26.7%), and channel fens 

(21%). As was previously discussed in the introductory chapter, each of these landscape 

units exhibits differences in topography, hydrology, vegetation and canopy coverage, and 
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underlying organic and soil profiles. These unique characteristics are described in the 

following sub-sections. 

2.2.1 Permafrost plateau 

Permafrost plateaus are easily distinguished on the landscape as the only forested 

terrain above the water table. Situated ~ 1-2 m above the surrounding wetlands these 

elevated landscape units are also the only features underlain by permafrost (Quinton et 

al., 2003; Robinson and Moore, 2000). Plateaus vary in size, form, and stage of 

development (youthful, mature, and old) and are dominant in the Fort Simpson region; 

however, increasing rates of maturity and permafrost degradation are threatening this 

landscape dominance. Permafrost thickness in the region has been reported to be between 

5-10 m (Burgess and Smith, 2000). The plateau examined in this study rises 0.9 m above 

the surrounding wetlands and appears to be degrading. Along most of its edges it shows 

signs of collapse as well as additional subsidence in its central portions, which may be a 

result of isolated patches of surficial permafrost loss. The water table of permafrost 

plateaus fall 0.5 m or more below the ground surface during the annual thaw and drainage 

of the active layer (Quinton et al., 2003). In terms of its role in the hydrological network, 

permafrost plateaus experience surface and sub-surface runoff as water drains from the 

plateau into the topographically lower wetland of permafrost-free isolated and connected 

bogs and channel fens (Quinton et al., 2009). It also acts as a physical barrier to obstruct 

and redirect water flow owing to the high elevation of the permafrost table above the 

surrounding wetlands (Quinton et al., 2003). However, additional release of water from 

permafrost thaw and the development of flow pathways between landscape units 
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previously separated by permafrost plateaus are to be expected as basin storage and 

runoff response to hydrological inputs change. 

The study plateau supports an open tree canopy, composed predominantly of black 

spruce (Picea mariana). Maximum measured tree height is 9.3 m with a mean tree height 

of 3.1 ± 2.2 m, and density of 1 stem m" (Wright et al., 2008). Ground cover is 

dominated by lichen, feather and Sphagnum mosses, in addition to Labrador tea, and 

ericaceous shrub species (Table 2-1). Scotty Creek has an organic cover that can range up 

to 8 m in depth under which a silt-sand layer and thick clay to silt-clay layer (with low 

permeability) respectively lie (Aylesworth and Kettles, 2000). The organic cover contains 

an upper layer (the top 0.5-0.2 m) composed of living vegetation and lightly decomposed 

fibric peat under which lies a layer of dense sylvic peat in a more advanced state of 

decomposition with dark, woody material and the remains of lichen and moss, rootlets 

and needles (Quinton et al., 2003). 

2.2.2 Flat Bog 

The flat bog is a low-lying feature in comparison to the permafrost plateau without 

the underlying presence of permafrost to elevate it above the water table. They appear as 

patches on the landscape (Quinton et al., 2003) with no consistency in size or form. The 

water table remains close to the surface throughout the year, except during the snowmelt 

runoff period when it rises above its peat mat, resulting in a high level of consistent 

saturation (Quinton et al., 2009). 

The flat bog examined in this study is connected to the nearby channel fen, 

therefore during periods of high water there is potential for sub-surface lateral flow into 
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the fen. The flat bog is dominated by Sphagnum mosses with thick underlying layers of 

Sphagnum peat (Table 2-1). There is little to no canopy coverage due to unstable 

conditions for trees to take root and remain upright. Therefore, only a few black spruce 

(Picea mariana) stand stunted and scattered throughout the bog. The ratio of above water 

vegetation to open water fluctuates according to changes in the water table and the 

growth of vegetation, altering the presence and distribution of mosses above the water 

surface. 

2.2.3 Channel Fen 

Like the flat bog, the channel fen is a low-lying feature in comparison to the 

permafrost plateau as it does not have the underlying presence of permafrost to raise it 

above the water table. They appear as large linear features on the landscape along the 

drainage network of a basin (Quinton et al., 2003), conveying water received from the 

surrounding permafrost plateau and bog landscapes through the drainage network toward 

the basin outlet (Quinton et al., 2003). Like the flat bog, the water table remains close to 

the surface throughout the year retaining a high level of consistent saturation (Quinton et 

al., 2003). 

The channel fen examined by this study runs the length of the study site, along the 

northwest side of the permafrost plateau and connected to the bog. The fen has a buoyant 

Sphagnum riparium-dominated peat mat on the surface, approximately 0.5 - 1.0 m thick 

(Hayashi et al., 2004) that responds to changes in the water table, resulting in an 

inconsistent surface elevation. The mat, which sits just below the water surface, supports 

the development of sedges, feather mosses, grasses, and various herbs and shrubs above 
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the water table (Table 2-1). There is no canopy coverage due to unstable conditions for 

trees to take root and remain upright. Therefore, the presence of trees does not extend far 

beyond the fringe of the channel fen. Beneath the peat mat, at a depth of 3 m below the 

water surface, is a dense organic layer with mineral soils (Hayashi et al., 2004). 
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Table 2-1 Vegetation species for each landscape unit based on percent coverage in area 
captured by chamber collars for each site. Refer to Figure 3-1 for site locations. 

Site Canopy Cover Ground Cover Above Ground Biomass % 

PPC-1 Closed Sphagnum capillifolium ; Sphagnum fuscum 90% 

Picea mariana Sphagnum girgensohnii 10% 
Rubus chamaemorus 2% 

Ledum groenlandicum 5% 
Oxyoccus microcarpus 5% 
Vaccinium vitis-idaea 5% 

Betula glandulosa 10% 

PPC-2 Closed Sphagnum capillifolium 90% 

Picea mariana Sphagnum girgensohnii 10% 
Oxyoccus microcarpus 2% 
Rubus chamaemorus 5-10% 

PPC-3 Closed Cladina mitis; Cladina rangiferina 85% 

Picea mariana bare ground 15% 
Ledum groenlandicum 2% 
Rubus chamaemorus 10% 

BC-1 Open Sphagnum capillifolium ; Sphagnum fuscum 50% 
Sphagnum riparium 50% 

Carex spp. 2-5% 
Andromeda polifolia 5% 

Chamaedaphne calyculata 5% 

BC-2 Open Sphagnum capillifolium ; Sphagnum fuscum 50% 
Sphagnum riparium 50% 

Carex spp. 1% 

BC-3 Open Sphagnum capillifolium ; Sphagnum fuscum 50% 
Sphagnum riparium 50% 

Chamaedaphne calyculata 1% 
Carex spp. 2% 

FC-1 Open Helodium blandowii 50% 
Sphagnum squarrosum; Brachythecium rivulare 40% 

Aulacomnium palustre 10% 
Oxyoccus microcarpus 5% 

Potentilla palustris 10% 
Salix pedicellaris 10% 

Carex spp. 15% 

FC-2 Open Aulacomnium palustre 100% 
Oxyoccus microcarpus 5% 

Galium trifidum 5% 
Carex spp. 40% 

FC-3 Open Brachythecium rivulare 90% 
Calla palustris 10% 

Carex spp. 20% 
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2.1 Climate Record 

The region experiences a dry continental climate characterized by cold, long 

winters and short, dry summers limiting the growing season (NWWG, 1988; Robinson 

and Moore, 2000). Climate data is available from the Fort Simpson airport, which is the 

nearest Environment Canada weather station, 50 km north of the study site and 169 m 

above sea level. The mean annual air temperature for this region has increased by 

approximately 2.0 °C over the last 100 years (1906-2005) (Environment Canada, 2010). 

Based on the 30-year annual averages (1971-2000), the Fort Simpson region receives 369 

mm of precipitation of which 170.3 cm is snowfall while the average annual temperature 

is -3.2 °C (Environment Canada, 2010) (Figure 2-3). During the year in which sampling 

occurred (2008) the average annual temperature was slightly colder at -4.1 °C, with 360.5 

mm of precipitation and 259.8 cm of snowfall. Snowmelt typically begins in the later 

weeks of March and continues through the month of April, with little to no snow 

remaining by May (Hamlin et al., 1998) at which point all waterways are open and 

flowing. It is these cold and wet conditions dominating in the low-lying flat terrain of a 

northern wetland that perpetuates the poorly drained landscape with a sub-surface profile 

of peat, organic soil and underlying permafrost. 
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Average Monthly Total Precipitation 

Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec 

Average Monthly Snowfall 

Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec 

Average Monthly Air Temperature 

Figure 2-3 Fort Simpson climate normals for 1971-2000 and monthly averages for 2008 
(Data Source: Environment Canada, 2010). 
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2.2 Permafrost Distribution and Landscape Evolution 

Approximately half of the peatlands in the Fort Simpson region are underlain with 

permafrost (Robinson et al., 2003). However, due to the disequilibrium of discontinuous 

permafrost with the current climate (Geological Survey of Canada, 2007) and increasing 

land use changes, this region is at risk of rapid change to its current permafrost 

distribution. Slight shifts in temperature can have significant impacts on the sensitive 

state of permafrost in the Fort Simpson region, which has experienced some of the 

greatest warming in Canada during the past century and where permafrost temperatures 

are generally just slightly below 0°C (Robinson, 2002). Scotty Creek basin is also 

situated within a General Use Zone in the Dehcho territory (Dehcho Land Use Planning 

Committee, 2006). Seismic cut lines and winter roads in this region have traversed bog, 

fen, and permafrost plateaus, removing canopy and vegetation in their path. This has 

resulted in permafrost degradation and alterations to the natural drainage pattern, habitat 

and migration patterns in the immediate surrounding area. The combined length of roads 

and seismic cut lines within the Scotty Creek basin is 133.2 km, and the density of linear 
•j 1 

features within the 152 km area is 0.88 km" (Quinton et al., 2009). 

In the Mackenzie Valley air photo coverage extends back to the late 1940's. In a 

study conducted by the Geological Survey of Canada (Geological Survey of Canada, 

2001), comparisons between these historical aerial photographs and more recent 

IKONOS satellite images were used to examine and quantify landscape evolution from 

permafrost degradation. For an area approximately 40 km west of Fort Simpson, the 

terrain encompasses within a 1947 aerial photograph and IKONOS satellite image taken 

in 2000 was delineated and classified as unfrozen or frozen. In 1947, the landscape was 
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classified as 45% frozen and 55% unfrozen while in 2000 it was classified as 22% frozen 

and 78% unfrozen. A documented loss of approximately 23% of the landscape, once 

frozen ground, over a time span of 53 years identifies significant and rapid loss of 

permafrost for this region. It also documents the disappearance and degradation of 

permafrost plateaus, shown by the expansion and merging of bogs and fens. Similar 

analysis was conducted by Chasmer et al (in press), looking more specifically at a 1 km2 

area within the Scotty Creek basin. Land cover classification was delineated from a series 

of aerial photographs taken between 1947 and 2008, in addition to IKONOS 

multispectral satellite imagery (4 m resolution) from 2000. In 1947, the 1 km2 subset area 

was classified as 70% frozen, decreasing to 43% in 2008. The degradation and 

disappearance of plateaus have resulted in growing and merging wetlands (i.e. bogs and 

fens), corresponding to a 38% loss in permafrost for this area over a time span of 61 years 

(Chasmer et al., (in press); Quinton et al, (in review)). 
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Chapter 3 Methodology 

3.1 Experimental Design 

Three landscape units were selected based on their close proximity to one another 

and the existing presence of meteorological (MET) stations in each one: permafrost 

plateau, flat bog and channel fen (Figure 3-1). Sites within each landscape unit were 

chosen based on their representation of major site types. Nine sites in total were 

constructed over the entire site, with three placed in each landscape unit (Figure 3-1). 

Permafrost plateau collars (PPC) were placed across the width of the plateau. PPC-1 and 

PPC-3 were placed on opposite flanks, with PPC-2 placed on the plateau crest (Figure 

3-1). Flat bog collars (BC) extended from the edge of the plateau to the center of the bog. 

BC-1 was placed in a bog near the edge of a permafrost plateau; BC-3 was in the centre 

of the bog, and BC-2, roughly mid-way between the two. Representative sampling across 

the width of the fen was not possible due to the persistence of standing water. Therefore, 

all fen collar (FC) sites (FC-1, FC-2, FC-3) were located along one side of the fen which 

was accessible for sampling. 

The respective MET stations monitored meteorological variables automatically 

within each landscape unit during the study. Additional environmental variables and CO2 

flux were measured discretely at each site. Each site within the bog and the fen, in 

addition to PPC-1 and PPC-2 were developed as 4 m long linear transects. Environmental 

variables were measured every 0.5 m along the length of each transect, while chambers 

were located at the 2 m mark to monitor CO2 flux. The ninth site, located at PPC-2, was 

developed with a 5 m by 5 m grid (6 transects, 9 points along each). Environmental 
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variables were measured every 1 m along the length of the transect, while the chamber 

was situated in the center of the grid. While the bog and fen sites do not experience much 

variation in topography, the elevated peat plateau had some slight variations over the 

length of the study site. In order to capture the variation between elevated and depressed 

points, measurements were taken at the three sites (PPC-1, PPC-2, and PPC-3) along each 

transect from the surface at each point up to a given height. Measurement of 

environmental variables began on April 13th; however, chamber measurements were 

delayed until April 26th when the melting snowpack was able to support the weight of the 

chamber. 

Figure 3-1 Sampling Design chosen for Scotty Creek outlining locations chosen for 
collar placements and chamber measurement (photo courtesy of William Quinton). 
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3.2 C0 2 Measurement 

At each site, C02 respiration and net ecosystem exchange were measured with a 

closed-system chamber and a portable infrared gas analyzer (IRGA), the Vaisala 

CARBOCAP® GMP343 Carbon Dioxide Probe (Vaisala Oyj, Vantaa, Finland). The 

GMP343 is a single-beam, dual-wavelength, non-dispersive infrared sensor. Inside the 

chamber, pulsed light is emitted from a miniature filament lamp, reflecting and 

refocusing back to the infrared detector which is situated behind a silicon-based Fabry-

Perot Interferometer. The CO2 gas present in the chamber absorbs a portion of this light 

at a particular wavelength. The detector is designed to measure this wavelength and 

recognize it as a loss in the light transmission. The detector is also designed to measure 

another wavelength that acts as a reference signal, which has no absorption and records it 

as no loss in light transmission. The ratio between the two signals is the gas concentration 

value. All data is recorded and sent to the Ml70 indicator which simultaneously serves as 

a display, communicator (with the probe), and data-logger. 

NEE was measured using a clear lexan chamber to capture both plant uptake 

simultaneously with soil and plant respiration. A dark shroud (two black plastic bags) 

was placed over the chamber for the measurement of Rtot for soil and plant respiration 

(Figure 3-2). Polyvinylchloride (PVC) collars (interior radius = 12.3 cm) were inserted at 

each location on April 12th, 2 weeks prior to sampling and remained permanently in place 

for the duration of the entire study. This was done to minimize plant and soil disturbance 

and allow for repeated measurement at a single location. Chamber measurements were 

then conducted from April 26th to June 6th, and then again on August 23rd. Measurement 

on the fen sites began on May 7th once the sites could be safely reached. 
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Figure 3-2 Dark and clear chambers measuring CO2. 

Grooves cut along the top of each collar were filled with water before the chamber 

was placed on top; this ensured an airtight seal to limit interaction between the chamber 

environment and the surrounding atmosphere. The chamber enclosed a surface area of 

0.56 m2, with a volume of 0.03 m3. As seen in Figure 3-2, to avoid the development of a 

"greenhouse effect", from lack of circulation, the interior air temperature was cooled by a 

tube that circulated water pumped in to maintain an atmosphere within 2 °C of ambient 

conditions. In addition, a small fan was mounted to the inside of the chamber, circulating 

air to equilibrate the gas concentration and avoid an artificial decrease in gradient. The 

fan was mounted near the top of the chamber to also minimize aeration of the soil. The 

GMP343 probe inserted into the side of the chamber, recorded every minute for ten 

minute durations. To ensure the quality control of CO2 flux for each measurement, a trial 
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test was conducted at each site before the start of the study period. The regression slope 

(change in CO2 over the duration of each sampling interval) for the trial tests was used as 

a reference for all sampling intervals conducted during the rest of the study. Samples that 

deviated significantly from this linear regression slope were removed. Dark and clear 

chambers were run at each location daily. Measurements were made during peak daylight 

hours between 10:00 and 17:00 daily. The measurement times at each site, and the order 

of measurement was varied day to day to minimise a temporal bias in the sampling 

regime. 

The dark chamber measurements were made first, after which the chamber was 

removed from the collar and aired out for approximately two minutes. The water in the 

collar groove was replaced, and the clear (i.e. un-shrouded) chamber was set-up. The gas 

flux was then computed from the rate of increase in CO2 concentration in the chamber. 

CO2 concentration, in ppm, was used to estimate the average gas flux F and converted 

2 1 into mg CO2 m" sec" using: 

[ { ^ x c v ) x C F ] x C F 2 

F~ T 

(3.1) 

where F is the gas flux (g CO2 m"2 sec"1), A is the linear change in CO2 concentrations 

with time (ppm min"), MM is the molar mass of C02 (44.01 g mol"1), N is the molar 

volume of an ideal gas (22.414 L mol"1) at standard temperature and pressure (STP), CV 

is the temperature corrected volume within the chamber (m ), A is the chamber area (m ), 

CF is the conversion factor from ppm to mol (lppm = 10"6 mol), CF2 is the conversion 

43 



factor from grams to milligrams (1 g = 1000 mg), and T is the conversion factor for time 

(60 sec min"1). 

Gas flux calculated from the dark chamber represents the gross Rtot for above and 

below ground respiration. The gas flux calculated from the clear chamber represents the 

NEE of both above and below ground respiration in addition to photosynthesis. Since the 

Rtot and NEE measurements were made within minutes of each other the difference 

between the two types of chamber measurement is considered the gross ecosystem 

production (GEP) at that particular light level. The computation of GEP determines the 

influence of photosynthesis by subtracting total respiration from the net ecosystem 

exchange: 

GEP = NEE - Rtot 

(3.2) 

Positive fluxes indicate CO2 emission from respiration, while uptake of CO2 is 

indicated by negative fluxes. The field study was divided into four periods to better 

depict the temporal relationships: snowmelt (SM), pre-green (PG), green (G), and late-

green (LG) (Table 3-1). Seasonal periods are based on the 2008 environmental conditions 

where changes in snow cover, temperature and vegetation growth clearly defined four 

stages of development within the duration of measurement (Table 3-2). The Snowmelt 

season extended until the sites were snow-free, showing visible signs of exposed bare 

ground. Pre-Green season extended from when the ground became snow-free until the 

emergence of immature vegetation. The Green season represents the early summer period 

following leaf-out. Late-Green represents only a single measurement day at the end of 
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summer, a result of limited time at the study site. Fluxes were then averaged within these 

periods to get temporal flux values. 

Table 3-1 Growing seasons for measurement during the 2008 field season transitioned 
from snowmelt (SM), visible melting snowpack exposing bare ground; pre-green (PG), 
emerging immature vegetation; green (G), maturing vegetation; to late-green (LG), the 
onset of dormancy. 

Season Dates 

Snowmelt April 26 - April 30 

Pre-Green May 1 - May 10 

Green May 11 - June 6 

Late-Green August 23 
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3.3 Environmental Factors Controlling CO2 Gas Flux 

To define relationships between CO2 flux and the environmental factors discussed 

in Chapter 1, the latter were monitored continuously at meteorological towers and 

discretely at each chamber site (Figure 3-1) during the CO2 flux measurements. Cloud 

cover and general weather conditions were observed and noted daily at the time of the 

flux measurements. 

The climatic conditions measured were: air temperature (Ta), relative humidity 

(RH), photosynthetically active radiation (PAR), soil (T SOii) and water temperature 

(TwaterX and precipitation (P). Mounted on the bog and plateau MET towers at a height of 

1.7 m and 2.4 m above the ground surface, Tajr and RH, respectively, were measured 

every 60 seconds and then averaged every 30 minutes by a HMP45C Temperature and 

Relative Humidity Probe (Vaisala, Finland) and recorded by a CR10X and CR1000 

Datalogger (Campbell Scientific Inc., Utah). Mounted on the interior wall of the 

chamber, a Veriteq Spectrum SP-2000-20R data logger (Veriteq Instruments Inc., 

Canada) monitored Tair and RH for the enclosed environment. Measurement within and 

outside the chamber monitored and ensured the chamber's enclosed environment 

remained representative of its surroundings. PAR was monitored outside of the chamber 

during flux measurements of the clear chamber using a Quantum Metre, Model QMSS 

(Apogee Instruments Inc., Utah). Placed unobstructed on top of the chamber, the 

quantum meter measured PAR every minute simultaneously with the IRGA. TSOii 

readings were taken at six points around the chamber collar (from which an average was 

calculated) at a depth of 20 cm using a Digi-Sense Thermocouple (Type T) Model 60010-

20 (Eutech Instruments, Netherlands). As a result of high water tables at the bog and fen 
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sites Twater readings were taken rather than TSOii- Readings were taken directly after 

chamber measurements were completed in order to prevent disturbance while CO2 was 

being recorded. At the bog meteorological tower, a tipping bucket rain gauge (0.2 m 

diameter, 0.35 m height) (Jarek Manufacturing Ltd., Canada), calibrated to 0.25 mm per 

tip, recorded total half-hourly P. 

Hydrological conditions: snow depth (SD), snow water equivalent (SWE), frost 

table depth (FT), water table depth (WT), precipitation (P), and soil moisture (VMC) 

were also measured at each site simultaneously with the CO2 flux measurements. Snow 

depth and SWE were measured with an MSC fibreglass snow tube beside the collar. 

Once the ground surface at a measurement point became snow-free, the depth to the frost 

table was measured at the same point. The frost table depth was measured with a 

graduated 1.2 m steel rod that was driven into the ground to the depth of refusal. Frost 

table depths greater than 1.2 m were not measured. Water table depth was measured 

daily, approximately 0.25 m in front of the chamber, after flux measurements were 

completed. A shovel was used to cut into the ground surface and pull back the soil. The 

water was then given time to settle after initial disturbance before being measured as a 

depth below the surface. The point of measurement was not done at the same point as 

frost table depth in order to prevent disturbance to the frost table measurements, through 

physical disturbance to the soil profile or by increased exposure at the measurement point 

for radiation permeation. VMC was measured beside the chamber with a Hydrosense soil 

water measurement system, Model CD620 (Campbell Scientific, Canada). Inserted into 

the surface vertically between the frost table and water table measurement points, these 

measurements represent the integrated soil moisture in the 0-20 cm layer directly below 
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the surface. Due to the limitation of the probe length, once frost table depths were greater 

than 20 cm all soil moisture measurements only account for the top 20 cm portion of the 

thawed profile. Vegetation surveys were conducted for each site on August 24th and 25th. 

Vegetation identification and percent coverage was documented within each collar. Soil 

cores were sampled on August 24th: 6 in total, 2 for each collar. Cores were inserted into 

the ground on either side of the collar at a depth of 50 cm and removed for sampling. As 

a result of open water and saturated conditions at the bog and fen sites, soil core samples 

of similar depth were compacted and not viable for sampling. Therefore, samples 

recovered from the fen and bogs were much shallower in depth than those from the 

permafrost plateau, capturing only the first 20 cm below the surface. At the bog sites, the 

lack of unsaturated material at the surface within the collar resulted in core samples taken 

from beside the collar at the nearest representative ground vegetation that was located 

above the water table and easier to extract. 

The cores were cut horizontally into 5 cm sub-samples, each with a volume of 

approximately 210 cm3. The bulk density (Pb), porosity (<t>), specific yield (Od), degree of 

decomposition, organic matter content (SOM), and C:N ratios of each sub-sample were 

measured or computed. Bulk density measured the mass of soil per unit volume in 

addition to available pore space, and was computed from: 

Weight of Oven Dried Sample (g) 
Bulk Density = — — r~?— 

Volume of Sample (cm6) 

(3.3) 
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The total porosity measured the amount of space in the soil occupied by air and water and 

was computed from: 

Saturated Mass (a) — Dry Mass (q) 
% Porosity = „ , , — — x 100 

Volume (cm3) 

(3-4) 

Specific yield measured the drainable porosity under the force of gravity after saturation 

of a soil and was derived from: 

Saturated Mass (g) — Drained Mass (g) 
Specific Yield = — — 

Saturated Mass (g) 

(3.5) 

The VonPost humification scale is the qualitative measure of decomposition for a soil, 

which was used to classify each sub-sample with a degree of decomposition. The amount 

of organic matter in each sub-sample was measured by loss on ignition (Konen et al., 

2002) from: 

% Loss on Ignition = — —r x 100 
(Wcso ~ Wc) 

(3.6) 

where Wc is the weight of the crucible (g), Wcso is the weight of the oven dried soil in the 

crucible (g), and Wcsj is the weight of the remaining (inorganic) soil after combustion (g). 

For C:N ratios, the samples were oven dried at 100°C for 24 hours and ground in a 

tumbling ball mill for 2-5 minutes until homogenized into a powder for sampling. 
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Percentage of total carbon (TC) and nitrogen (TN) was determined through combustion 

utilizing an Isochrom - elemental analysis, Carlo - Erba Isotope Ratio Mass 

Spectrometry, autocombustion carbon - nitrogen analyzer (Micromass UK, Ltd., 

Environmental Isotope Laboratory, Dept. of Earth Sciences, University of Waterloo, 

Waterloo, Ontario, Canada). 

3.4 Relationship Between Gas Flux and Environmental Factors 

The first relationship examined was derived for GEP, to determine its dependence 

on incident PAR. The relationship was fitted empirically using an exponential model 

(Gomes etal., 2006; Goudriaan, 1979): 

GEP = {GPmax[l-exp(i-axPAR)]} 

(3.7) 

where a is the initial slope of GEP versus PAR, PAR is the measured PAR (jimol m" sec" 

'), and GPmax is the empirically derived gross photosynthetic exchange of CO2. GEP 

values were converted to positive values for the ease of computation, in order to use the 

exponential model. 

To determine the environmental controls that play a role in total respiration, 

relationships between Rtot and Ta, TSOii, T w a t e r , VMC, snow depth, frost table depth, and 

water table depth were also examined. Due to the water table conditions of the bog and 

fen sites soil temperature, VMC, and water table depth were only monitored at the 

permafrost plateau sites. Therefore, a comparison between landscape units, in regards to 

the relationship between Rtot and TSOii and VMC, cannot be made. However, these 
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relationships are still examined for the permafrost plateau to understand the variability 

within an evolving plateau. In addition, the frost table depth at the fen remained 

immeasurable (>1.2 m) for the duration of the study so variability was not captured at any 

of the channel fen sites in relation to frost table depth. 

Since this study collected instantaneous midday fluxes, the relationships that were 

determined were then applied to the continuous climate data for this site during the 2008 

season of study. Using half hourly air temperature and PAR averages from the bog and 

plateau MET towers, GEP, Rtot and NEE were modeled for each landscape unit. The bog 

MET tower data was used for both the fen and bog landscapes due to the similarities of 

canopy conditions and their close proximity. This modeled gas flux was then summed to 

determine total seasonal flux for each landscape unit. These values were then scaled to a 

portion of the Scotty Creek basin based on the ground classification conducted by 

Quinton et al. (2009). 

3.5 Statistical Analysis 

The standard error was used to define the uncertainty and magnitude of error in the 

reported mean for this study. While standard deviation captures the dispersion of the data, 

standard error captures the potential of sampling error, therefore describing the 

confidence of the mean rather than the variability. To model the relationship between Rtot 

and air temperature, most studies implement an exponential model to best describe the 

relationship (Fang and Moncrieff, 2001). This also applies to the relationship between 

Rtot and soil temperature, based on the assumption that microbial activity increases at an 

accelerated rate as temperature increases. As a result, an exponential model depicts this 
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reaction best rather than a linear model. For the relationship between Rtot and 

hydrological conditions of each landscape, the uses of a linear or quadratic model are 

most suited. Linear models are more accurate when measurements are made in either 

"wet" or "dry" conditions (Simek et al., 2004). However, if the range of conditions 

during measurement occurs during both wet and dry conditions, a quadratic model is then 

best suited to depict the relationship (Davidson et al., 1998). Since this study conducted 

measurement during a range of conditions from snowmelt to late-green season, the 

quadratic model was used to represent the relationship between Rtot and VMC as well as 

water table depth, snow depth and frost table depth. 
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Chapter 4 Results: Temporal Variability in C0 2 Flux and its 

Environmental Controls 

4.1 Relative Variability in C0 2 Flux 

Daily instantaneous flux measurements of CO2 were taken at the nine locations 

with both clear and dark chambers. Time-series plots were used to show the average 

instantaneous gas flux of the three sites for each landscape unit over the duration of study 

(Figure 4-1). The permafrost plateau showed distinct trends for Rtot, NEE and GEP. Rtot 

fluctuated between 0 and 0.02 mg CO2 m"2 sec"1 during the latter half of April and first 

week of May, increasing for the remaining duration of study. GEP remained low until 

late-May at which point it began to increase (negatively) and show greater variability. 

NEE was similar to Rtot, demonstrating that average instantaneous midday gas flux for 

the three sites on the plateau were sources of CO2 to the atmosphere at the time of 

measurement. However, data collected on August 23rd responded as a sink for CO2 at that 

particular time of measurement, suggesting a decline in NEE later in the summer. The 

channel fen exhibited a similar pattern to the permafrost plateau in its average 

instantaneous gas flux variability (Figure 4-1). Rtot steadily increased for the duration of 

the study; however, GEP increased (negatively) at a greater rate later in the growing 

season, which corresponded to a lower rate of NEE than that found at the plateau sites. 

These declining rates of NEE signified that the average instantaneous midday flux at the 

fen sites started as sources and became sinks for CO2 at the time of measurement as the 

growing season progressed. 
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The average instantaneous gas flux for the flat bog did not show any distinct trends 
•j I 

for Rtot, NEE and GEP (Figure 4-1). Rtot fluctuated below 0.02 mg CO2 m" sec" during 

the latter half of April and first week of May, with only a slight increase for the 

remainder of the season. GEP remained almost negligible, resulting in an NEE flux 

similar to Rtot, which signifies the average instantaneous midday gas flux for the three 

sites on the bog were sources of CO2 to the atmosphere at the time of measurement. 

Figure 4-1 clearly shows that there was some temporal and spatial variability between the 

three landscapes and their seasonal development. 
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Figure 4-1 Instantaneous average gas flux of total respiration (Rtot), net ecosystem 
exchange (NEE), and gross ecosystem production (GEP) for each landscape unit during 
snowmelt (SM), pre-green (PG), green (G), and late-green (LG) (defined and separated 
by red lines) of the 2008 field season at Scotty Creek, Northwest Territories, Canada. 
Positive values indicate the emission of CO2 and negative values indicate the ecosystem's 
uptake of CO2. 
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4.2 Temporal Variability in C0 2 Flux 

To depict the temporal variability within and between landscapes, the average gas 

flux was also computed for each of the four seasonal periods. For each season and 

landscape unit the average Rtot, NEE, and GEP was compared (Figure 4-2). The 

maximum, minimum, and average point measurements for each landscape unit during 

each season are presented in Table 4-1. These values represent an instantaneous CO2 flux 

during midday and do not take into account fluctuations throughout the remainder of the 

day or night, and therefore cannot be extrapolated to average daily values. However, by 

averaging within periods a representative range of environmental conditions and controls 

were captured which can be used to determine functional relationships. 

4.2.1 Permafrost Plateau 

There was a steady increase in Rtot between snowmelt and late green for all three 

sites (Figure 4-2 and Table 4-1). Snowmelt had the lowest average Rtot of 0.011 ± 0.003 
•j 1 9 1 

mg CO2 m" sec" with fluxes ranging from 0.001 to 0.047 mg CO2 m" sec", while late-

9 I 

green had the highest average Rtot of 0.128 ± 0.019 mg CO2 m" sec" with fluxes ranging 

from 0.103 to 0.165 mg CO2 m"2 sec"1. NEE fluctuated between snowmelt and late-green, 

due to a strong CO2 uptake during pre-green and late-green periods for PPC-1, in 

comparison to the other two plateau sites. As a result, pre-green had an average uptake of 

-0.037 ± 0.047 mg C02 m"2 sec"1 with fluxes ranging from -1.201 to 0.034 mg C02 m"2 

sec"1, while the green period had the highest average emission of 0.023 ± 0.003 mg CO2 

m"2 sec"1 with fluxes ranging from -0.156 to 0.108 mg CO2 m"2 sec"1. There was a small 

increase in GEP between snowmelt and late-green. Again snowmelt had the lowest 
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average GEP of -0.006 ± 0.004 mg C02 m"2 sec"1 with fluxes ranging from -0.002 to -

9 1 0.045 mg CO2 m" sec" , while late-green had the highest average GEP of -0.141 ± 0.067 

2 1 2 1 mg CO2 m" sec" with fluxes ranging from -0.065 to -0.275 mg CO2 m" sec" . 

4.2.2 Flat Bog 

There was a steady increase in Rtot between snowmelt and late-green for all three 

sites (Figure 4-2 and Table 4-1). There was a small fluctuation during the pre-green 

period with BC-3 experiencing CO2 uptake. As a result, pre-green had the lowest average 

Rtot of-0.010 ± 0.040 mg C02 m"2 sec"1 with fluxes ranging from -0.964 to 0.106 mg C02 

9 1 9 1 m" sec" , while late-green had the highest average Rtot of 0.081 ±0.014 mg CO2 m" sec" 

9 1 with fluxes ranging from 0.056 to 0.106 mg CO2 m" sec" . NEE steadily increased 

between snowmelt and late-green. Snowmelt had the lowest average emission of 0.009 ± 

2 1 2 1 0.001 mg CO2 m" sec" with fluxes ranging from 0.005 to 0.015 mg CO2 m" sec" , while 

2 1 

late-green had the highest average emission of 0.053 ± 0.008 mg CO2 m" sec" with 

fluxes ranging from 0.041 to 0.068 mg CO2 m"2 sec"1. There was a slight increase in GEP 

between snowmelt and late-green. Snowmelt and the green period had the lowest average 

GEP. Snowmelt had an average GEP of -0.002 ± 0.001 mg C02 m"2 sec"1 with fluxes 

ranging from -0.001 to -0.006 mg CO2 m"2 sec"1, and the green period had an average 

GEP of-0.006 ± 0.001 mg C02 m"2 sec"1 with fluxes ranging from -0.001 to -0.057 mg 

C02 m"2 sec"1. Late-green had the highest average GEP of -0.028 ± 0.014 mg C02 m"2 

1 2 1 sec" with fluxes ranging from -0.011 to -0.056 mg CO2 m" sec" . 
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4.2.3 Channel Fen 

Unlike the flat bog and permafrost plateau sites there were no flux measurements 

recorded during snowmelt for the channel fen. There was a small increase in Rtot between 

pre-green and green with a sudden and rapid increase during late-green for all three sites 

(Figure 4-2 and Table 4-1). Pre-green and green had the lowest average Rtot. Pre-green 

0 1 had an average Rtot of 0.030 ± 0.003 mg CO2 m" sec" with fluxes ranging from 0.022 to 

0.052 mg CO2 m"2 sec"1, and the green period had an average Rtot of 0.044 ± 0.003 mg 

2 1 2 1 CO2 m" sec" with fluxes ranging from 0.007 to 0.155 mg CO2 m" sec" . Late-green had 

2 1 

the highest average Rtot of 0.171 ± 0.027 mg CO2 m" sec" with fluxes ranging from 

0.120 to 0.214 mg CO2 m"2 sec"1. NEE slightly decreased between pre-green and green, 

and then rapidly increased in CO2 uptake during late-green. In this case, pre-green had 

the highest average emission of 0.020 ± 0.005 mg CO2 m"2 sec"1 with fluxes ranging from 

-0.002 to 0.053 mg CO2 m"2 sec"1. While the green period had the lowest average 

emission of 0.012 ± 0.002 mg CO2 m"2 sec"1 with fluxes ranging from -0.037 to 0.083 mg 

CO2 m"2 sec"1. In comparison, late-green had the highest, and only, average CO2 uptake of 

-0.120 ± 0.038 mg C0 2 m"2 sec"1 with fluxes ranging from -0.172 to -0.046 mg C02 m"2 

sec"1. There was a strong increase in average GEP between pre-green and late-green. Pre-2 1 

green had the lowest average GEP of -0.010 ± 0.003 mg CO2 m" sec" with fluxes 

ranging from -0.005 to -0.025 mg CO2 m"2 sec"1, while late-green had the highest average 

GEP of-0.291 ± 0.030 mg C02 m"2 sec"1 with fluxes ranging from -0.259 to -0.351 mg 

C02 m"2 sec"1. 
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4.3 Temporal Variability of Environmental Controls on CO2 Flux 

To compare the environmental factors with the CO2 flux demonstrated in each 

landscape unit, they were divided into the same four seasonal periods (Table 3-1). Due to 

the proximity of the three landscape units examined and the lack of a substantial canopy 

on the plateau sites, there was little to no spatial variability among the landscape units in 

regards to Tajr, RH and P (Figure 4-3). At the start of the snowmelt season the average 

daily Tajr was 2 °C. However, as the winter season ended, the average daily Tajr steadily 

increased, peaking in early to mid-July at 23.9 °C. As the growing season progressed 

temperatures remained warm, cooling off in mid-August during the late-green period. RH 

fluctuated throughout all the seasons but peaked in mid-May at 95 %. This was however, 

quickly followed by a sudden decrease in RH at the end of May to 38.5 %. Periods of low 

RH that occurred during early May, June, and July were dry with very little P. The other 

environmental factors examined during this study did vary among landscape units, and 

are therefore discussed independently in the following sections. In comparison to the 

climatic conditions described above these factors were measured discretely, for the 

duration and time at which chamber measurements occurred. They represent conditions at 

the time of measurement rather than a continuous record averaged for each day. 

4.3.1 Permafrost plateau 

PAR fluctuated throughout the seasons but there was an overall trend of increasing 

PAR measured at each chamber from snowmelt into the green season (Figure 4-4). PAR 

values peaked at the end of May at 1536 pmol m"2 sec"1, and then decreased in late 

August to 685 jj,mol m"2 sec"1 on August 23rd. Several of the fluctuations that represented 
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large decreases in measured PAR appeared to coincide with large P events. Snow and soil 

temperatures were low during the snowmelt season; however, once the ground surface 

was exposed the temperature steadily increased, peaking in early May at 7 °C (Figure 

4-4). In late August soil temperatures were significantly higher with a value of 10.4 °C on 

August 23rd. 

As depicted in Figure 4-5, snowmelt measurement began in mid-April when the 

snowpack depth was 84.5 cm (SWE = 172 mm) and continued daily until the pack 

disappeared in the first week of May. The peak snow water equivalent of 205 mm was 

measured on April 20th. The frost table depth steadily increased as the pre-green and early 

green seasons progressed. By August 23rd the average frost table depth was 105 cm. As 

the sub-surface thawed, the frost table depth was shallow and the initial soil profile 

completely saturated, in some cases with ponded water as the water released during 

snowmelt could not infiltrate the soil. As the frost table deepened the average water table 

dropped steadily below the surface reaching 27 cm and on August 23rd dropping to 40 

cm. During the green season soil moisture steadily increased, with occasional 

fluctuations, starting from 35 % and reaching 84 % on June 1st. By August 23rd soil 

moisture had decreased slightly coming down to 68 %. 

The first 20 cm of the soil profile below the ground surface had an average organic 

content of 96.5%. The average percentage of carbon was 44.7 %, while nitrogen was low 

at 0.8 %, resulting in a C:N ratio of 69.6. When the entire 50 cm core was examined it 

showed an increasing state of decomposition, increasing bulk density, and lower specific 

yield with depth. Porosity on the other hand remained fairly consistent with very little 

change with depth (Table 4-2). 
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4.3.2 Flat Bog 

PAR fluctuated throughout the seasons with a slight trend of increasing 

photosynthetic activity from snowmelt to the late-green season (Figure 4-4). PAR values 

peaked on June 1st at 1566 p,mol m"2 sec"1, and then decreased in late August to 936 p.mol 

m"2 sec"1 on August 23rd. Similar to the plateau, several of the fluctuations that 

represented large decreases in measured PAR appeared to coincide with large P events. 

Open water conditions at the bog sites resulted in chamber collars submerged in water 

rather than solid ground; therefore, Twater measurements were more relevant to these 

conditions in comparison to the TSOii recorded on the plateau sites. Snow and water 

temperatures were low during the snowmelt season; however, once the snow cover 

diminished temperatures rapidly increased, peaking in early June at 17 °C (Figure 4-4). In 

late August water temperatures remained high with a value of 14.5 °C on August 23rd. 

As depicted in Figure 4-5, snowmelt measurement began in mid-April when the 

snowpack depth was 64 cm (SWE = 120 mm) and continued daily until the pack 

disappeared in the first week of May. The peak snow water equivalent of 179 mm was 

measured on April 18th. The bog sites experienced an above ground water table once the 

snowpack disappeared. As a result, the monitoring of the frost table depth was interpreted 

at these sites as the depth to the ice layer below the water surface. Under this definition 

the frost table depth rapidly increased as the pre-green season progressed. By May 9th the 

ice had completely disappeared and the average frost table depth was over 120 cm. 

The average soil profile for the first 20 cm below the water surface had an organic 

content of 97 %. The average percentage of carbon was 47.4 %, while nitrogen was low 

at 0.9 %, resulting in a C:N ratio of 52.4. When examined, the cores showed an 
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increasing state of decomposition, increasing bulk density and a slight decrease in 

porosity and specific yield with depth (Table 4-2). 

4.3.3 Channel Fen 

The channel fen experienced similar conditions to the flat bog. PAR fluctuated 

throughout the seasons initially with a trend of decreasing PAR during snowmelt into the 

first few weeks of the green season, and increasing for the remainder of the study period 

(Figure 4-4). PAR values peaked on May 27th at 1621 jamol m"2 sec"1, and then decreased 

in late August to 922 jimol m"2 sec"1 on August 23rd. Similar to the bog, open water 

conditions at the fen sites resulted in chamber collars submerged in water rather than 

solid ground; therefore, Twater measurements were more relevant to these conditions. 

Snow and water temperatures were low during the pre-green season; however once the 

snow cover diminished temperatures rapidly increased, peaking in late May at 17 °C 

(Figure 4-4). In late August water temperatures remained high with a value of 13 °C on 

August 23rd. 

As depicted in Figure 4-5, snowmelt measurement began in mid-April when the 

snowpack depth was 52 cm (SWE = 1 2 0 mm) and continued daily until the pack 

disappeared at the end of April. The peak snow water equivalent of 148 mm was 

th 

measured on April 18 . Similar to the bog, the frost table represented the depth of ice 

below the water surface. Under this definition the frost table rapidly increased as the pre-

green season progressed. By May 8th the ice had completely disappeared and the average 

frost table depth was over 120 cm. 
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The average soil profile for the first 20 cm below the water surface had an organic 

content of 94 %. The average percentage of carbon was 48.7 %, while nitrogen was low 

at 1.2 %, resulting in a C:N ratio of 43.4. When examined, the cores showed an 

increasing state of decomposition, a slight increase in bulk density, a slight decrease in 

specific yield, and a variable porosity with depth below the surface (Table 4-2). 
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Figure 4-3 Average air temperature (°C), relative humidity (%), precipitation (mm) for 
all three landscape units (permafrost plateau, flat bog, and channel fen) during snowmelt 
(SM), pre-green (PG), green (G), and late-green (LG) (defined and separated by red lines) 
for the 2008 field season at Scotty Creek, Northwest Territories, Canada. 
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Figure 4-5 Average snow water equivalent (cm), precipitation (mm), snow depth (cm) (> 
0 cm), frost table depth (cm) (< 0 cm), water table depth (cm), and soil moisture (%) for 
each landscape unit during snowmelt (SM), pre-green (PG), green (G), and late-green 
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Chapter 5 Results: Spatial Variability in C0 2 Flux and 

Environmental Controls 

5.1 Spatial Variability in C0 2 Flux 

Measuring CO2 daily at nine locations with both clear and dark chambers, the 

average mid-day gas flux was computed for each of the four seasonal periods. Taking the 

average chamber Rtot, and GEP for each landscape unit, these values were plotted against 

PAR, Ta, TWater, TSOii, VMC, water table depth, snow depth, and frost table depth to 

establish functional relationships that can be used to extend the point flux measurements 

to a continuous dataset for each landscape in a given area. Understanding these 

relationships also aids in identifying the extent to which surrounding environmental 

conditions influence CO2 gas flux. Taking the areal coverage of each landscape unit these 

results were then scaled to the ecosystem level. Ascertaining gas flux response at the 

larger scale is important in the prediction of future shifts between a net sink and net 

source of CO2 for any ecosystem. For the Scotty Creek region, as permafrost plateaus 

shrink in size and number due to permafrost degradation and landscape subsidence, it is 

becoming increasingly crucial to classify and understand the difference between different 

landscape units as it relates to CO2 gas flux. 
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5.1.1 Transect Topography 

Variation in elevation between landscapes plays a significant role in the hydrology, 

and ultimately CO2 flux, of a sub-arctic boreal wetland. It physically defines sub-surface 

and overland flow between and within each landscape. Topography of the ground surface 

influences the spatial distribution of soil moisture (Western et al., 2001), therefore 

indirectly influencing thaw and rates of CO2 exchange. While the fen and bog 

experienced fluctuating microtopography due to water level changes in much more 

unstable terrain environments, the plateau had a fixed ground surface. Vertical 

displacement between each plateau site was identified through measurements conducted 

along the length of each site's transect. The highest plateau site was PPC-1 with its collar 

located at 285 asl, followed by PPC-2 at 283 asl, and PPC-3 at 280 asl (Figure 5-1). Site 

PPC-1 was situated in the middle of a slight slope on the surrounding topography. It 

experienced the greatest drop in water table depth and driest soils of all three sites on the 

plateau. In addition to its sub-surface hydrology, it also had the most established 

vegetation cover and as a result the greatest rates of Rtot and was the only plateau site to 

experience NEE uptake during the study. The lowest plateau, PPC-3, was situated 

slightly lower than its surrounding topography. With moist soils and a relatively bare 

surface this site had a steady Rtot rate and NEE respiration throughout the study. Last of 

the three plateau sites, PPC-2 was situated in a depression. Lower than the surrounding 

topography this site experienced extended periods of flooding and high saturation in 

comparison to the other plateau sites. As a result, it had the lowest rates of Rtot and NEE 

respiration of all three sites. 
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Peat Plateau (PPC-2) Grid Transect 

Figure 5-1 Elevation of peat plateau sites (m) above sea level during the 2008 field 
season at Scotty Creek, Northwest Territories, Canada. PPC-1 and PP-3 are 4 m long 
linear transects with measurement points at every 0.5 m and the chamber located at 2 m. 
PPC-2 was developed as a 5 m by 5 m grid (6 transects, 9 points along each) with 
measurement points at every 1 m and the chamber located in the center of the grid (Photo 
courtesy of William Quinton). 
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5.1.2 Relationship with Gross Ecosystem Production 

The first relationship examined was derived for GEP, to determine its dependence 

on incident PAR. The relationship was fitted empirically using an exponential model 

(Gomes et al, 2006; Goudriaan, 1979) (Figure 5-2). GEP values were converted to 

positive values for the ease of computation, in order to use the exponential model. In 

addition, GEP values were averaged based on PAR given that the chamber data was point 

values in time and not simultaneous among collars, making time averaging invalid. The 

permafrost plateau had a much greater slope of increasing productivity with increasing 

light intensity than the channel fen and flat bog. GPmax was reached between 0.02 and 

0.03 mg CO2 m~2 sec"1, at PAR values recorded around 500 |imol m"2 sec 1 (r2 = 0.3). The 

flat bog and channel fen experienced more gradual slopes for increasing productivity with 

increasing PAR. The flat bog does not reach a GPmax within the constraints of the dataset 

2 1 2 

but is predicted to occur at approximately 0.06 mg CO2 m" sec" (r = 0.4). The channel 

fen also does not show GPmax but is predicted to occur at approximately 0.04 mg CO2 m" 

sec"1 (r2 = 0.4). Each landscape unit received similar light levels but displayed 

considerable scatter in GEP response, which indicates the possibility that other 

environmental factors may be contributing to the variation in flux response between 

landscape units as seen in Figure 5-2. 
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Figure 5-2 Relationship between gross ecosystem production (GEP) of CO2 and 
photosynthetically active radiation (PAR) for 2008 at Scotty Creek, Northwest 
Territories, Canada. Showing the variation between landscape units: permafrost plateau 
(n=104, r2=0.3), flat bog (n=110, r2=0.4), and channel fen (n=84, r2=0.4). The fitted curve 
for GEP versus PAR is an exponential model from Eq. (3.7). Symbols denote GEP bin-2 1 averages based on PAR intervals of 10 |_imol m" sec" . 
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5.1.3 Relationships with Total Respiration 

The relationship between Rtot, Ta, Tson, and Twater examines the influence that 

temperature can have upon the surface and sub-surface processes of respiration (Figure 

5-3). Rtot values were averaged based on changes in temperature given that the chamber 

data were point values in time and not simultaneous among collars, making time 

averaging invalid. The permafrost plateau had the strongest positive correlation between 

Rtot and Tajr (r2 = 0.5). While the flat bog and channel fen displayed a more moderate 

2 2 

positive correlation in comparison (r = 0.3, r = 0.4, respectively), the fen appeared to 

have similar responses (and in some instances stronger) to changes in Tajr between 10 -
20 °C. The variability between landscapes and the lower response by both the bog and 

fen to temperature changes suggested that there were also influenced by additional 

environmental variables. 

Despite being unable to compare the relationship between Rtot, Tson, and Twater 

among the three landscape units, these relationships depict other environmental variables 

that could be playing a role in controlling rates of total respiration within specific 

landscapes. Measured only on the permafrost plateau, Rtot showed a strong exponential 

correlation with TSOii (r2 = 0.5). Surface water temperatures were measured in the flat bog 

and channel fen where high and fluctuating water tables dominated. Water controls heat 

diffusion in peat (Roulet et al., 1992); therefore Twater was considered a reasonable a 

surrogate for TSOii- Both the bog and fen showed moderate to strong relationships between 

Twater and Rtot (r2 = 0.3, r2 = 0.3, respectively). The channel fen appeared to be more 

responsive with Rtot rates than the flat bog at lower temperatures, while the bog displayed 

more variability at greater temperatures. 
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Figure 5-3 Relationship between total respiration (Rtot) and temperature for each 
landscape unit: permafrost plateau (n=104), flat bog (n=110), and channel fen (n=84). 
Symbols denote Rtot bin-averages based on 1 °C intervals for air temperature and 0.1 °C 
intervals for soil and water temperature. All data is from the 2008 field season at Scotty 
Creek, Northwest Territories, Canada. 
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The relationship between Rtot, snow depth, and frost table depth examines the 

influence that snow cover insulation and thaw depth can have upon the surface and sub-

surface process of respiration (Figure 5-4). Measurement on the fen sites began on May 

7th once the sites could be safely reached; however, by this time snow cover was gone 

and the frost table depth was greater than 120 cm below the surface and immeasurable. 

The permafrost plateau and flat bog on the other hand displayed moderate to strong 

relationships between Rtot, snow depth and frost table depth. Both landscapes showed 

consistently low rates (above zero) of Rtot for the duration of snow coverage; however, 

with increasing snowmelt and frost table depth Rtot began to steadily increase. In the flat 

bog frost table depths greater than 120 cm were reached early on in the season 

corresponding with a rapid increase in rates of Rtot. 

The relationship between Rtot, soil moisture and water table depth examines the 

influence of hydrological conditions on the process of respiration (Figure 5-5). These 

conditions were only monitored at the permafrost plateau where the water table was 

below the surface for the majority of the study season. Water table depth showed a strong 

quadratic relationship with Rtot (r2 = 0.6), which demonstrated that the dropping of the 

water table, allows soils and peat to aerate, increasing rates in Rtot. PPC-2 was the only 

plateau site to experience above surface flooding for a period of 26 days during May 

2008. As can be seen in Figure 5-5 water table depths above the surface reflected in 

lower rates of Rtot. Soil moisture displayed no apparent relationship with Rtot on the 

permafrost plateau (r2 = 0.1). There was a significant amount of variation between sites, 

making it difficult to discern any overall patterns for this landscape unit. 
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5.1.4 Modelling Continuous Seasonal and Ecosystem CO2 Flux 

Based on the relationships examined in this chapter, a model was developed to 

estimate continuous flux of GEP, Rtot, and NEE for each landscape unit between April 1st 

and August 23rd of the 2008 study season. GEP was modelled based on the light response 

curves. Rtot is strongly influenced by temperature and Tair was the only temperature 

variable continuously measured at all three landscapes during the 2008 season; therefore, 

Rtot was modelled based on Tajr. The modelled total daily gas flux shown in Figure 5-6 

clearly identifies the greatest variability in flux rates on the permafrost plateau. Despite 

differences in magnitude, the temporal responses are similar in all three landscapes. Sinks 

for CO2 occurred pre-dominantly during April and early May, while positive rates of 

NEE were greatest in the months of July and August. Table 5-1 summarizes the modelled 

total seasonal flux of GEP, Rtot, and NEE for each landscape unit. From these results, 

each site showed fairly similar total seasonal flux of GEP; however, they varied 

significantly in Rtot. The channel fen experienced the greatest total flux for GEP, Rtot, and 

NEE, while the flat bog experienced the lowest fluxes of all three landscapes. Based on 

the total seasonal flux for NEE, the channel fen was the greatest source of CO2, while the 

flat bog was the lowest. 
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Figure 5-6 Modelled total daily gas flux for each landscape unit during the 2008 field 
season at Scotty Creek, Northwest Territories, Canada. Results based on the computed 
continuous flux of gross ecosystem production (GEP), total respiration (Rtot), and net 
ecosystem exchange (NEE) between April 1st and August 23rd, 2008. 
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Total Seasonal 
Flux 

Permafrost 
Plateau 

Flat Bog Channel Fen 

GEP (g C02 m2 ) 178.0 153.5 196.5 

Rtot {g C02 m"2) 353.7 295.7 451.8 

NEE (g C02 m'2) 175.7 141.5 255.3 

Table 5-1 Total seasonal flux for each landscape unit examined during the 2008 field 
season at Scotty Creek, Northwest Territories, Canada. Results are based on the modelled 
continuous flux of gross ecosystem production (GEP), total respiration (Rtot), and net 
ecosystem exchange (NEE) between April 1st and August 23rd, 2008. 

Ground classification conducted by Quinton et al. (2009) on a sub-section of the 
-y 

Scotty Creek basin, covering an area of approximately 22 km (Figure 2-1 (c)) shows the 

dominance of permafrost plateaus on the landscape (Table 5-2). Permafrost plateaus 

occupy the greatest areal portion (43%), followed by isolated and connected bogs 

(26.7%), and channel fens (21%). 

Cover Type N Area (km2) Area (%) 

Permafrost Plateaus 609 9.52 43.0 

Flat Bogs (isolated) 999 0.89 4.0 

Flat Bogs (connected) - 5.03 22.7 

Channel Fens 2 4.65 21.0 

Lakes 4 2.06 9.3 

Table 5-2 Selected results of detailed ground cover classification of sub-section of the 
IKONOS image of Scotty Creek, Northwest Territories, Canada, representing an area of 
~ 22 km2 on the ground. N is the number of samples of each cover type. Deriving the 
number of connected flat bogs was not attempted (Quinton et al., 2009). Refer to Figure 
2-1 (c) for map detailing classification area. 
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The total seasonal NEE results (g CO2 m") computed from the model for 

continuous seasonal CO2 flux (Table 5-1) were applied to the areal coverage of the three 

landscape units (Table 5-2) over an approximately 22 km2 sub-section of the Scotty 

Creek basin. This resulted in an ecosystem-scaled gas flux (g CO2) summarized in Table 

5-3. The greatest source of CO2 for this ecosystem is the permafrost plateaus which 

dominate the landscape, while the channel fens and flat bogs appear to be lower total 

contributors to the emission of CO2 back into the atmosphere. 

Ecosystem-Scaled 
Seasonal Flux 

Permafrost x _ . _ 
Flat Bog Channel Fen 

Plateau 

Area (km2) 

Weighted Flux 
(§C02) 

9.52 5.92 4.65 

1,672,812 837,642 1,187,067 

Table 5-3 Ecosystem-scaled net ecosystem exchange (NEE) for each landscape unit 
between April 1st and August 23rd of 2008. Results based on modelled continuous flux for 
each landscape and ground cover classification of a sub-section of Scotty Creek, 
Northwest Territories, Canada, representing an area of ~ 22 km2 on the ground. Refer to 
Table 5-1 and Table 5-2 for source values. 

Lastly, the weighted fluxes calculated in Table 5-3 were multiplied by the known 

areal coverage of each landscape unit over the 22 km2 sub-section of Scotty Creek basin. 

The sum of these calculations were equivalent to the total weighted average CO2 flux (g 

CO2) for this portion of the Scotty Creek Basin (Table 5-4), representing the current 

distribution of landscape units. Modifications made to the areal coverage of each 

landscape and re-calculation of the total CO2 flux for this area would quantify the 

potential impact of landscape evolution on ecosystem-scaled CO2 exchange. For 

example, if the plateau coverage declined by 10%, resulting in an increase in bog 
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coverage by 10%, the weighted average of the basin based on the results of this study 

would decline by 83, 516 g C02. 

Proportional Flux Permafrost _ _ _, . _ Flat Bog Channel Fen 
Plateau 

Area (%) 

Weighted Flux 
(gco2 ) 

43.0 26.7 21 

719,309 223,650 249,284 

Weighted Average 
Flux of the Basin 
(gC02) 

1,192,243 

Table 5-4 Proportional net ecosystem exchange (NEE) for each landscape unit between 
April 1st and August 23rd of 2008. Results are based on modelled continuous flux for each 
landscape and ground cover classification of a sub-section of Scotty Creek, Northwest 
Territories, Canada, representing an area of ~ 22 km2 on the ground. Refer to Table 5-2, 
and Table 5-3 for source values. 
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Chapter 6 Discussion 

6.1 Temporal and Spatial Variability of CO2 Exchange 

The three landscapes examined in this study in the Scotty Creek basin are 

representative of a typical continental high boreal wetland. Based on the 30-year annual 

averages for 1971-2000, the Fort Simpson region experiences an average annual air 

temperature of -3.2 °C and receives approximately 369 mm of precipitation of which 

170.3 cm is cumulative snowfall. Figure 2-3 however, illustrated that during 2008 

average annual air temperatures were cooler (-4.1°C), and while total precipitation did 

not vary significantly (360.5 mm), there was greater cumulative snowfall (259.8 cm). 

Examining the seasonal periods as defined by this study, the winter of 2008 experienced 

a greater volume of snowfall, the snowmelt and pre-green period was wetter and colder, 

and the green period was drier and warmer than normal. 

Temperature and moisture play a significant role in the balance between carbon 

acquisition and loss. Increasing temperatures are more favourable for vegetation growth, 

resulting in an increase in GEP; however increasing temperatures also favour thaw depth 

and decomposition, resulting in an increase in Rtot (Chimner et al., 2010; Griffis and 

Rouse, 2001; Groendahl et al., 2007; Zimov et al., 1996). Dry conditions can often result 

in limited vegetation growth due to a lack of available water, reducing GEP, while wet 

conditions can suppress Rtot (Chimner et al., 2010; Griffis and Rouse, 2001; Groendahl et 

al., 2007). 
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Examining instantaneous fluxes during 2008 captured the temporal variability of 

CO2 flux at Scotty Creek. Flux rates observed at each site reflected rates for CO2 flux 

found in similar studies (i.e. Bubier et al., 2003; Griffis et al, 2000; Lafleur, 1999, 

Moore, 1989; Petrone et al., 2001; Silvola et al., 1996). There was a large accumulation 

of snow during this study and the months previous. Deep snowpacks act as insulators to 

enhance thaw depth and microbial activity below the ground surface with the potential 

result of high rates of Rtot- While the presence of ice layers within the snowpack can be 

an impediment to the flow of gas between the surface and the atmosphere, this was not 

the case on the plateau where snowpacks were monitored every few days with no sign of 

ice layers. However, low rates of CO2 emission were still recorded during the snowmelt 

season at each site. Therefore, the effect of snow as an insulator was negligible as cooler 

air temperatures during the shoulder season initially maintained a shallow frost table. The 

amount of available moisture over-saturated the remaining available thawed space, 

resulting in low rates of Rtot- The majority of studies that have had the opportunity to 

examine CO2 fluxes during snowmelt have also observed a net source of CO2 to the 

atmosphere (i.e. Corradi et al., 2005; Zimov et al., 1996). The predictions and 

observations of Elberling (2007) and Zimov et al. (1996), among others, continue to 

suggest that while CO2 flux rates during the winter are often relatively small (Aurela et 

al., 2002), as seen in this study, the cumulative efflux of CO2 during winter in many 

ecosystems may be near or equal to the amount lost during the growing season, playing a 

critical contribution to annual carbon budgets. 

In northern environments the presence of snow cover later in the year corresponds 

to near maximum light levels and large amounts of available water at the time when the 

87 



ground becomes snow and ice-free (Bubier et al., 1998). In addition, pre-green season 

nutrient levels are often high initially as a result of snowmelt supplying the sub-surface 

with nutrients, labile root and detrital organic matter preserved from the previous year by 

freezing temperatures (Schlesinger, 1977). These types of conditions in addition to 

increasing air temperatures typically initiate a swift response by the ecosystem after 

snowmelt, resulting in the quick succession of vegetation and increasing Rtot and GEP 

(Bubier et al., 1998). Sudden and rapid development of root structures and shoots will 

often give rise to the removal of CO2 from the atmosphere (Rouse et al., 2002) creating a 

net sink during early spring, captured in studies such as Griffis et al. (2000) and Lafleur 

and Humphreys (2007). This was the case for each of the landscapes studied at Scotty 

Creek. All three experienced late snow cover and an abundance of water and organic 

matter after snowmelt, resulting in a short pre-green season due to the quick succession 

of vegetation. On the plateau the ground surface was bare and exposed with a large 

amount of available water both above and below the surface. Available water on the 

plateau and its runoff into the surrounding wetlands can supply nutrients to areas where 

microbes and vegetation can utilize them, enhancing decomposition and Rtot (Bekku et 

al, 2003). Both the daily and seasonal averages reflected these conditions with increases 

in Rtot- Rates remained low for both Rtot and GEP at PPC-2 and PPC-3 most likely due to 

the over-abundance of water which flooded and over-saturated the two sites, suppressing 

CO2 flux. Meanwhile, GEP increased substantially at the vegetated plateau site, PPC-1, 

resulting in a sink for CO2. The channel fen and flat bog had little to no vegetation 

growth and high water tables, which was reflected in small GEP flux rates; however, Rtot 

rates increased similar to the plateau. 
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During the transition between the pre-green and green season, when vegetation is in 

its early stages of development, the timing of leaf-out can signify a shift in the carbon 

budget (Bubier et al., 2003). Through observation, the plateau began to show signs of 

vegetation growth by the end of the pre-green season May 7th), while the bog and fen 

began developing in the first two weeks of the green season (~ May 14th). Throughout the 

entire growing season nutrients in the sub-surface are accessed by root growth and 

dissolution from precipitation and sub-surface water flow (Schlesinger, 1977). 

Photosynthetic activity and surface warming are controlled by the presence and seasonal 

development of an above ground canopy which limits the amount of light able to 

penetrate down to the ground surface. Frost table and water table depths define and 

allocate the amount of the sub-surface able to thaw and aerate, allowing microbial 

activity to operate at high rates and have access to a greater store of organic matter. All of 

these conditions further stimulated vegetation growth, nutrient enrichment, and 

decomposition at each site while maintaining and increasing the rates of Rtot and GEP. 

Whether a landscape becomes a sink or source for CO2 during this time, under such 

conditions, is dependent upon temperature and moisture regimes in addition to the 

specific nature of the landscape. Studies in the sub-arctic tundra have documented the 

growing season as a consistent source for CO2 (Lafleur, 1999; Lafleur and Humphreys, 

2007), while other peatlands have found considerable sinks for CO2 as productivity 

outweighed total respiration (Bubier et al, 2003; Rouse et al., 2002; Waddington and 

Roulet, 1996). Or in the case of Groendahl et al (2007), the growing season began as a 

source but shifted to a sink during the month of August. At Scotty Creek, the greatest 

increases in both Rtot and GEP occurred in the productive vegetated landscapes of the 
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plateau and fen, with a lower response in the bog, which retained only slight vegetation 

growth above a high water table. As seen in both the time-series and seasonal averages 

there is growing variability during this season both between and within landscapes. 

However, the green period remained an overall source of CO2 for the majority of sites. 

Despite only a portion of the summer months being captured for this study, it is assumed 

that Rtot and GEP would continue to increase, the rates of which would depend upon the 

limitations or advantages provided by environmental conditions. 

In the late-green season, at the end of summer and start of fall, GEP can show signs 

of decline as light levels decrease, soil temperatures cool, frost table depths become 

shallow, and vegetation nears senescence (Goulden et al, 1998). Rtot however, may 

remain high if temperature and moisture deficits are not strong enough to break down 

microbes and slow down decomposition rates (Goulden et al., 1998). The one day 

measured during the late-green season showed high rates of both Rtot and GEP for the 

plateau and fen, again most likely a result of significant vegetation growth and lower 

water tables than the flat bog. While only one day's worth of data was collected for the 

late-green period, it would be expected that these rates would begin to decrease over 

more time and this would be captured in a more extensive study, seen in studies such as 

Silvola etal. (1996). 

The greatest rates of Rtot between landscapes occurred in the permafrost plateau and 

channel fen with the lowest rates in the flat bog. For both the channel fen and flat bog, the 

greatest rates of Rtot took place at the sites with the least vegetation (FC-3, BC-3 and BC-

2). Meanwhile, the greatest rates of Rtot on the permafrost plateau took place at the most 

elevated and vegetated of the three sites, PPC-1, and the lowest rates at the flooded site, 
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PPC-2. The greatest rates of GEP between landscapes occurred in the permafrost plateau, 

then the channel fen, with the lowest in the flat bog. Within the landscapes the bog 

showed little variation between sites, similarly in the fen with only slightly greater GEP 

in FC-2. The permafrost plateau however, showed more variability between sites. The 

vegetated PPC-1 had significantly greater rates of GEP compared to the bare and flooded 

sites of PPC-3 and PPC-2, respectively. For both Rtot and GEP, the flat bog displayed the 

least amount of variability and range in magnitude in comparison to the permafrost 

plateau and channel fen. This response in respiration is similar to other studies that have 

found low CO2 flux in bog terrains (Bubier et al., 1998). 

6.2 Environmental Controls of C0 2 Exchange 

The three landscape units have characteristic properties (presence or absence of 

permafrost, canopy cover, microtopography, vegetation and key species, soil profile, 

thermal and light regimes, and hydrology). Therefore, the differences in Rtot, NEE, and 

GEP among the landscape units are considered in terms of these contrasting site 

properties and their microclimate. The bog and fen sites were the first to become snow-

free and the first to have frost table depths reach to an immeasurable depth resulting in 

saturated and open water conditions at each site. Both experienced high and variable 

water tables, high light levels, and increasing air and water temperatures; however, they 

had very different temporal responses in vegetation distribution and development, and 

CO2 exchange. The bog sites had little vascular plant or shrub development above water 

and were dominated by Sphagnum moss species. When a major portion of the moss 

species is underwater, in a saturated and anoxic environment, it slowly dies with lack of 
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light. The weight of overlying peat compresses the dead plant material as it weakens to 

decay (Johnson et al., 1990). Anoxic conditions due to a high water table create very 

slow rates of decomposition, often resulting in greater rates of accumulation (Aerts et al., 

2001; Bubier et al., 1998). This is further inhibited by the nutrient-limited conditions 

found in northern bogs that receive nutrients solely through atmospheric deposition and 

surrounding landscape runoff (Aerts et al., 2001; Bubier et al., 1998). In comparison, the 

fen sites had a buoyant peat mat at the water surface once the initial snowmelt water 

supply receded. Dominated by Sphagnum squarrosum, Helodium blandowii, 

Brachythecium rivulare, and Aulacomnium palustre moss species; in addition to 

ericaceous shrub and sedge species, the fen had a more competitive and diverse 

vegetative cover. As water conveyors, minerotrophic channel fens are also more nutrient-

rich than ombrotrophic flat bogs and therefore more productive, as demonstrated by their 

abundance in vegetation at the sites monitored. In this case, the channel fen had a greater 

percent of total nitrogen than the bog. 

The differential development between the two landscapes is reflected in the gas 

flux results. The fen had greater temporal variance, in both direction and magnitude, than 

the bog. A lack of canopy and high PAR values throughout the season resulted in 

increased photosynthetic activity for the fen, while the bog experienced little to no GEP 

due to its limited vegetation coverage above the water table. For NEE, the lowest 

emission occurred at the Sphagnum-dominated bog due to slow decomposition and low 

abundance of vascular plants, especially trees. Bogs typically have less primary 

production and slower decomposition (Silvola et al., 1996; Thormann and Bayley, 1997). 
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The highest emission occurred at the photosynthetically active channel fen, which 

received fresh, nutrient-rich water from the adjacent plateau soils. 

The permafrost plateau is a more complex landscape in comparison to the flat bog 

and channel fen. In addition to climatic, hydrological and biological variables, the 

presence of a canopy and variation in microtopography will influence CO2 flux and 

respond differently than the surrounding wetlands (Bubier et al., 1998; Petrone et al., 

2010; Solondz et al., 2008; Waddington and Roulet, 1996). During the winter months the 

presence of a canopy decreased the potential decline in snow depth from wind-driven 

drift and sublimation. With the deepest snowpacks of the three landscapes, the plateau 

had a slower rate of loss and was the last to become snow-free. The presence of 

permafrost creates unique sub-surface conditions that heavily determine the survival of 

the over-lying plateau (Vitt et al., 1994; Zoltai, 1993). Through its presence it elevates 

the surface and allows the development of tree roots that need relatively dry conditions to 

survive. While in the absence of permafrost this elevation does not occur and soils once 

dry become saturated, reducing potential growth and increasing mortality of forest stands. 

Permafrost thickness and the depth of its overlying active layer are dependent upon, and 

influence, the stability of climatic variables, soil characteristics, hydrology, and 

vegetative cover at the surface, all of which are controls on the CO2 flux. 

The frost table depth only reached an average depth of 105 cm for the duration of 

the study season, in comparison to the bog and fen, and the fluctuating water table was 

continuously re-defining the depth below the surface that was saturated and unsaturated. 

Lowering of the water table results in greater Rtot due to the increasing availability of 

oxygen and organic matter as the aerobic zone thickens, thereby enhancing microbial 
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activity and decomposition rates (Billings et al., 1983; Griffis et al., 2000; Oechel et al., 

1995). Therefore, high water tables or flooding often reflect in lower rates of Rtot- While 

over-saturation can reduce decomposition rates, increases in soil moisture can positively 

influence thaw depth by increasing thermal conductivity (Hayashi et al., 2004; Wright et 

al, 2009). Standing water on the surface, unable to percolate into saturated soils, will 

transfer heat from the warmer surface into the cooler soil. This effect will strongly 

influence ground thaw in locations where lateral flow is converging into a depressed area 

(Guan et al, 2010; Wright et al., 2009). The strongest rates of Rtot were measured at 

PPC-1 with the lowest water table, while the lowest rates were measured at PPC-3 which 

was flooded for a majority of the study period. 

Vegetation and ground cover varied on the plateau. For example, PPC-1 was 

predominantly covered with Sphagnum and lichen species while PPC-3 was bare. Moss 

can potentially have a strong effect on NEE of CO2 (Petrone et al., 2004). Sphagnum 

moss species are seasonally photosynthetic, usually peaking in the middle of the growing 

season (Botting and Fredeen, 2006; Swanson and Flannagan, 2001). The thin black 

spruce canopy cover on the plateau allowed high levels of PAR to reach the ground 

surface, stimulating plant production, and thereby, increasing rates of GEP during the 

growing season. Incident PAR at the ground surface also increases air and soil 

temperatures. Air temperature steadily increased; however, soil temperature remained 

low, which could be due to the insulating properties of sphagnum moss (Oechel and Van 

Cleve, 1986; Van Cleve et al., 1983). 

Further, the plateau had slightly lower average total nitrogen and total carbon 

percentages than the flat bog and fen, with the highest C:N ratio. Typically higher quality 
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soils (low C:N) have greater nutrient availability for microbial activity (Moore et al., 

1998; Raich and Schlesinger, 1992) and thereby the possibility for greater soil 

respiration. Although the permafrost plateau had a lower quality soil profile in 

comparison to the bog and fen sites, other factors may have played a greater role in 

stimulating soil respiration. 

When examining the dependence of the CO2 flux to these environmental controls 

previous studies have attributed temporal variability in GEP to PAR, and Rtot to TSOii and 

Tair (Botting and Fredeen, 2006; Bubier et al., 1998; Goulden et al., 1998; Law et al., 

2002; Raich and Schlesinger, 1992; Waddington and Roulet, 1996). The exponential 

model used in this study has been proven as an adequate quantitative tool for fitting light 

response curves that realistically portrays the ecosystem being examined (Gomes et al, 

2006). The relationship between GEP and PAR showed significant scatter and variability 

for all three landscapes suggesting the influence of additional environmental variables on 

gas flux other than PAR. This type of scatter is also seen in other studies (Bubier et al., 

1998; Lafleur, 1999) and can be a reflection of limiting environmental conditions such as 

temperature and moisture. Persistence of winter conditions later in the year in northern 

environments, in combination with the climatic conditions at Scotty Creek during 2008 

may have limited early spring growth with cool and wet conditions and growth during 

peak growing season with the warm and dry conditions during summer. These could have 

influenced the scatter between PAR and GEP. 

Temperature appeared to be an influential factor on CO2 exchange on all three 

landscapes with strong positive correlations between Rtot, Ta,r, Tson (permafrost plateau) 

and TWater (flat bog and channel fen). Hydrological characteristics also appeared to 
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significantly influence CO2 exchange. As the bog (and most likely the fen based on 

similar development) became snow-, and ice-free, and water temperatures increased, Rtot 

increased. Similar strong negative trends were found with snow depth, frost table depth, 

and water table depth on the permafrost plateau. VMC had a significant amount of scatter 

and no trends were established as each plateau site responded differently to the same 

VMC. This could potentially be due to instrument error or the possibility that other 

environmental conditions measured were more influential to CO2 exchange. 

Microtopography and vegetation appeared to influence each landscape differently. 

In the flat bog the two sites (BC-2 and BC-3), located furthest away from the plateau in 

open water conditions with little above water vegetation, had stronger responses in Rtot 

than BC-1 to temperature variation and thaw depth. For the channel fen, all three sites 

were located along the edge of the fen and only varied in the amount of vegetation 

present, which did not appear to significantly influence their responses in Rtot. While the 

bog and fen sites differed little in topography, the three sites studied on the permafrost 

plateau did. PPC-1 was the highest site, situated on a slope and predominantly vegetated, 

PPC-2 was situated in a depression and flooded, while PPC-3 was the lowest site, situated 

at the bottom of a slight slope and bare. Typically higher topographical features have a 

larger NEE uptake than lower sites due to greater aerobic conditions (Waddington and 

Roulet, 1996). This was replicated at the plateau sites where PPC-1 had the greatest 

uptake of CO2. PPC-1 had the strongest relationship with the environmental variables 

examined, PPC-3 had the strongest rates of Rtot, while and the magnitude of CO2 

exchange at PPC-2 appeared to be significantly impacted by its flooded conditions. 
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6.3 Modelled Seasonal Flux: Sink or Source for CO2 

Peatlands have been net sinks for CO2 since deglaciation (Makiranta et al., 2009). 

However, the balance between CO2 uptake and loss is sensitive enough that a small 

change in water table depth, temperature, or timing of thaw, leaf-out and senescence can 

favour decomposition over plant production (Bubier et al., 1998; Carroll and Crill, 1997; 

Chivers et al., 2009; Shurpali et al., 1995; Waddington and Roulet, 1996). When the data 

collected from the 2008 study season was scaled into a continuous dataset for each 

landscape, the total daily flux showed similar temporal variability but differed in 

magnitude. The flat bog displayed the least variability in CO2 flux of the three landscapes 

and recorded the lowest total seasonal flux for Rtot, GEP, and NEE. Meanwhile, the 

permafrost plateau displayed the greatest variability in CO2 flux; however, it was the 

channel fen that ultimately recorded the highest total seasonal flux for Rtot, GEP, and 

NEE. While in situ measurements showed sinks for C02 in both the plateau and fen 

landscapes during the pre-green and green periods, respectively, the continuous data 

alternated between sink and source trends during snowmelt and developed into a 

consistent source during the growing season, with signs of decline towards the end of the 

season (August 23rd, 2008). 

Studies examining the seasonal patterns and controls on net ecosystem CO2 

exchange in peatland, wetland, and northern environments have found differing results. 

What they all appear to agree on is the sink and source variability during snowmelt and 

pre-green. Winter and snowmelt typically respond as small consistent sources of CO2 to 

the atmosphere (i.e. Corradi et al, 2005; Zimov et al., 1996), while pre-green often 

switches to a sink of CO2 (i.e. Griffis et al., 2000; Lafleur and Humphreys, 2007; Rouse 
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et al., 2002). The greatest discrepancy occurs during the green (growing) season. The 

ecosystems examined by Botting and Fredeen (2006), Burton et al. (1996), Griffis et al. 

(2000), Griffis and Rouse (2001), Groendahl et al. (2007), Lafleur et al. (1997), Lafleur 

and Humphreys (2007), Petrone et al. (2001), Rouse et al. (2002), Schreader et al. 

(1998), Shurpali et al. (1995), Swanson and Flannagan (2001), and Waddington and 

Roulet (1996) had a net loss of CO2 to the atmosphere during the growing season. As 

many of these studies are based on several years of data they have also monitored 

growing seasons with net uptake of CO2 from the atmosphere, in addition to Bubier et al. 

(2003), and Lafleur (1999). For example, Griffis et al. (2000) examined a similar 

transition from pre-green to late-green and reported variability ranging from a net sink of 

- 235 g CO2 m"2 in one year to a net source of 76 g CO2 m"2 in the same peatland a few 

years earlier. For many of these studies, temperature and moisture played a large role in 

annual alteration between sink and source. Cool, wet conditions during the growing 

season often resulted in greater sinks for CO2, while warm, and dry conditions resulted in 

greater sources for CO2. Drier conditions can change a peatland from a sink to a source 

within a single season (Griffis et al., 2000; Joiner et al., 1999; Oechel et al., 1995; Oechel 

et al., 2000; Shurpali et al., 1995). As previously mentioned, the growing season during 

2008 at Scotty Creek was warmer and drier than normal which could explain the overall 

sources of CO2 observed for each landscape unit. 

While instantaneous rates of Rtot, GEP, and NEE were comparable between this 

study and previous studies, the continuous data ranged in magnitude (i.e. Griffis et al., 

2000; Petrone et al., 2001). This could be due to differences in the methodology between 

studies. For example, many studies incorporated eddy covariance measurements, which 
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include below and above canopy fluxes while this study was more site-specific at the 

atmosphere-ground surface interface and then scaled up. Not including canopy cover and 

shrub vegetation in this study eliminates a potentially significant source of CO2 uptake 

from these predictions. Therefore, the quantitative comparison between studies is difficult 

to make. Chamber measurements were also taken daily at midday, which can result in 

higher Rtot and GEP rates than if the fluxes were continuously monitored throughout the 

day and night. Moreover, many studies also focused their measurements only on the 

growing season between mid-May and August, or into October, while this study focused 

on the months of April to June, and the end of August. This could potentially create 

variability in the relationships established between CO2 flux and its environmental 

controls, from which this study developed its continuous dataset. In addition, respiration 

rates can be greater in northern boreal wetlands than lower latitudes because the soil does 

not experience the same degree of water deficit in the summer months (Law et al., 2002), 

which could explain the high rates of Rtot captured during this study. 

Applying remote sensing information to spatially extend in situ measurements 

allowed for a preliminary assessment of the relative importance of each landscape to the 

CO2 functioning of this ecosystem. Raich and Schlesinger (1992) found respiration was 

more dominant in plateau features than fens and bogs. Computing the total seasonal flux 

for NEE (g CO2 m~2) at Scotty Creek, the channel fen was identified as the greatest 

source of CO2 to the atmosphere (255.3 g CO2 m"), then the permafrost plateau (175.7 g 

CO2 m"), and lastly the flat bog (141.5 g CO2 m"). This could reflect the unique 

characteristics of permafrost environments, or a particularly nutrient-rich fen. Once these 

cumulative fluxes were areally weighted to cover a larger area (-22 km ), the permafrost 
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plateau was identified as the greatest cumulative source of CO2 (1, 672, 812 g CO2) back 

into the atmosphere, a reflection of its dominance on the landscape, covering 

approximately 43 % of the region examined. It was followed by the channel fen (1, 187, 

067 g C02) and lastly the flat bog (837, 642 g C02). Although the channel fen had the 

greatest seasonal flux its areal coverage on the landscape was much less than the 

permafrost plateaus. 

As the climate continues to change and the landscape evolves, the current state of 

the Scotty Creek basin as an overall source of CO2 is unstable and will continue to 

transform. Images covering a 1 km x 1 km subset area of Scotty Creek, dating from 1947-

2008 clearly shows the threat of permafrost degradation (Figure 6-1). In 1947 

approximately 70.4 % of this region was underlain by permafrost. In the 61 years since 

1947 there has been a consistent and steadily increasing decline in plateau coverage. In 

2008, the year of this study, the region was re-estimated at only 43.3 % underlain by 

permafrost. Since 1970 the rate of loss was occurring at approximately 0.2 % per year. 

However, from 2000 to 2008, this rate has increased to 0.8 % per year. Continued 

subsidence of permafrost plateaus will result in increasing bog landscape coverage. This 

evolution into a northern boreal wetland predominantly composed of bog landscapes, 

could potentially result in an initial increasing loss of CO2 to the atmosphere as 

permafrost degrades and exposes more of the sub-surface to the processes of respiration. 

However, this trend will eventually reach a threshold and decline as the percentage of 

bogs on the landscape increases, the weakest emitters of CO2. 
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Figure 6-1 Evidence of permafrost loss, degradation and evolving permafrost plateau 
distribution in a 1 km2 sub-set area of Scotty Creek, Northwest Territories, Canada in 
1947, 1970, 1977, 2000, and 2008 (Quinton et al (in review)). 
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Chapter 7 Conclusion 

Northern boreal wetlands represent an ecosystem that has hydrological, biological, 

and greenhouse gas exchange significance. This study observed the region-specific 

temporal and spatial variability of net ecosystem CO2 exchange and its driving 

environmental controls. By examining the different landscape units within a boreal 

wetland these physical processes were further defined by determining how differences in 

canopy cover, vegetation distribution, sub-surface profile, and other site specific 

environmental controls influenced CO2 exchange. The mean annual air temperature for 

the Fort Simpson region has increased by approximately 2.0 °C over the last 100 years 

(Environment Canada, 2010). General Circulation Models (GCMs) predict a further 

increase in the average annual air temperature of 1.7 - 4.0 °C in northwestern Canada by 

2050 (IPCC, 2007). Relationships identified in this study with temperature, thaw depth 

and water table depth reflect the possibility of further stress on CO2 exchange in this 

region in response to such climate change. While potential limitations in methodology 

create some uncertainty in the strength of the spatial relationships captured, the primary 

interest of this study was to examine and attempt to understand the relative difference in 

CO2 exchange within and between three unique landscape units in a boreal wetland. 

Through the use of environmental relationships and remote sensing technology this 

study found that during the study season of 2008, while the individual channel fen 

examined was the greatest emitter of C02 into the atmosphere it was the permafrost 

plateau that had the greatest total seasonal flux over a larger area. Based on this 

assessment, the continued subsidence of permafrost plateaus will initially result in an 
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increasing amount of CO2 emitted into the atmosphere as plateaus decline in number and 

size. This trend however, will most likely reach a threshold and begin to decline as bog 

landscapes become more prominent on the landscape. Whether this ecosystem will 

ultimately shift from a source to sink of CO2 over time is uncertain based on the results 

found. 

This study has illustrated that although previous work has examined the spatial and 

temporal variability of CO2 exchange in many ecosystems, it can't necessarily be 

extrapolated to the northern boreal wetlands of Scotty Creek basin. This basin is a 

representative example of northern boreal wetlands, their current landscape composition, 

and their ongoing adaption to landscape evolution. Their position on the landscape in 

relation to one another, maintained by the presence of permafrost, defines their 

hydrology, nutrient status, and vegetation composition, all of which control the current 

CO2 flux of this landscape. As the climate in northern ecosystems continues to change, 

understanding the interactions between the physical, biochemical, and environmental 

conditions of different landscapes and the processes which define them can aid in the 

parameterization and interpretation of current and future climate and biogeochemical 

models. This study highlights the need for long term measurement in order to capture and 

examine a variety of climatic conditions, which can strengthen the relationships captured 

in 2008, and validate whether they are similar to those found in climatically different 

years. 
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Figure A-l Frequency distribution of sampling times during daylight hours: permafrost 
plateau (n=108), flat bog (n=106), and channel fen (n=83) for the 2008 field season at 
Scotty Creek, Northwest Territories, Canada. 
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