
Wilfrid Laurier University Wilfrid Laurier University 

Scholars Commons @ Laurier Scholars Commons @ Laurier 

Theses and Dissertations (Comprehensive) 

2009 

First-Passage Time Models with a Stochastic Time Change in First-Passage Time Models with a Stochastic Time Change in 

Credit Risk Credit Risk 

Hui Li 
Wilfrid Laurier University 

Follow this and additional works at: https://scholars.wlu.ca/etd 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
Li, Hui, "First-Passage Time Models with a Stochastic Time Change in Credit Risk" (2009). Theses and 
Dissertations (Comprehensive). 940. 
https://scholars.wlu.ca/etd/940 

This Thesis is brought to you for free and open access by Scholars Commons @ Laurier. It has been accepted for 
inclusion in Theses and Dissertations (Comprehensive) by an authorized administrator of Scholars Commons @ 
Laurier. For more information, please contact scholarscommons@wlu.ca. 

https://scholars.wlu.ca/
https://scholars.wlu.ca/etd
https://scholars.wlu.ca/etd?utm_source=scholars.wlu.ca%2Fetd%2F940&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholars.wlu.ca%2Fetd%2F940&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.wlu.ca/etd/940?utm_source=scholars.wlu.ca%2Fetd%2F940&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarscommons@wlu.ca


i+n Library and Archives 
Canada 

Published Heritage 
Branch 

395 Wellington Street 
OttawaONK1A0N4 
Canada 

Bibliotheque et 
Archives Canada 

Direction du 
Patrimoine de I'edition 

395, rue Wellington 
Ottawa ON K1A 0N4 
Canada 

Your file Votre reference 
ISBN: 978-0-494-54235-4 
Our file Notre reference 
ISBN: 978-0-494-54235-4 

NOTICE: AVIS: 

The author has granted a non­
exclusive license allowing Library and 
Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non­
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par Nnternet, prefer, 
distribuer et vendre des theses partout dans le 
monde, a des fins commerciales ou autres, sur 
support microforme, papier, electronique et/ou 
autres formats. 

The author retains copyright 
ownership and moral rights in this 
thesis. Neither the thesis nor 
substantial extracts from it may be 
printed or otherwise reproduced 
without the author's permission. 

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these. Ni 
la these ni des extra its substantiels de celle-ci 
ne doivent etre imprimes ou autrement 
reproduits sans son autorisation. 

In compliance with the Canadian 
Privacy Act some supporting forms 
may have been removed from this 
thesis. 

Conformement a la loi canadienne sur la 
protection de la vie privee, quelques 
formulaires secondaires ont ete enleves de 
cette these. 

While these forms may be included 
in the document page count, their 
removal does not represent any loss 
of content from the thesis. 

Bien que ces formulaires aient inclus dans 
la pagination, il n'y aura aucun contenu 
manquant. 

1*1 

Canada 





First-Passage Time Models 

with a Stochastic Time Change 

in Credit Risk 

Hui Li 

B.Sc , Wilfrid Laurier University, 2007 

THESIS 

Submitted to the Department of Mathematics in partial 

fulfilment of the requirements for Master of Science in 

Mathematics 

Wilfrid Laurier University 

©Hui Li 2009 



Contents 

Abstract 2 

Acknowledgements 3 

Chapter 1. Introduction 4 

1.1. Credit Risk Modelling 6 

1.2. Stochastic Processes in Credit Risk 11 

1.3. Multivariate Extension 15 

1.4. Models with a Stochastic Time Change 19 

Chapter 2. Evaluating the Default Probability for One Firm 22 

2.1. The GBM Model 22 

2.2. The VG Model 22 

2.3. Evaluation of the Default Probability for the VG Model 28 

Chapter 3. Evaluating the Default Probability for Two Firms 32 

3.1. The Bivariate GBM Model 32 

3.2. The Bivariate VG model 34 

3.3. The Monte Carlo Method 36 

Chapter 4. Numerical Results 46 

4.1. Comparison of the PDFs of the FHT r and r* 46 

4.2. Comparison of the Probabilities P(r > t) and P(T* > t) 48 

4.3. The Default Correlations in the GBM and VG Models 48 

4.4. The Control Variate Method 51 

Chapter 5. Conclusion 55 

Appendix 56 

Bibliography 60 

l 



Abstract 

Many authors have used a time-changed Brownian motion as a 

model of log-stock returns. Using a Levy process as a stochastic time 

change, one obtains well known asset price models such as the variance 

gamma (VG) and normal inverse Gaussian (NIG) models. Following on 

the heels of these asset price models, it is natural to extend structural 

credit models by using a time-changed geometric Brownian motion and 

other jump-diffusion processes to model the value of a firm. To avoid 

the difficulties that arise in computing the associated first passage time 

distribution and in analogy to the time-changed Markov chain models, 

where the default state is an absorbing state, we propose a specific 

variation of the first passage time applicable to time-changed Brownian 

motions, but not to general jump diffusions. 

This thesis deals with a time-changed bivariate Brownian motion 

(TCBBM) to model default in credit risk. In particular, we use a 

gamma process as a stochastic time change. The time of default is 

modelled as the first-hitting time of a default state. Analytical expres­

sions of the probability of default for a single firm are obtained. We 

develop the formulas for the probability of multiple default for the case 

with two firms as well. The Monte Carlo method is also presented to 

compute the default probability under the TCBBM model in a general 

case. 
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CHAPTER 1 

Introduction 

The computation of the probability of default is one of the pri­

mary objectives of credit risk analysis, which deals with distributions 

of financial losses due to unexpected changes in the credit quality of 

a counterparty in a financial agreement. Over the last three decades, 

different credit risk models have been set up to quantify this credit 

risk and to price bonds and credit derivatives. The vast majority of 

all modern credit risk models is based on either one of the two follow­

ing principles: the structural approach or the reduced-form approach. 

The structural approach to credit modelling, beginning with the works 

of Merton (1974) and Black &; Cox (1976), treats debt and equity as 

contingent claims on the firm's asset value process. While this unifica­

tion of debt with equity is conceptually satisfying, the approach often 

leads to inconsistencies with intuition and observation, such as the zero 

short-spread property and time inconsistency in Merton type models. 

Furthermore, it leads to technical difficulties when pushed to provide 

realistic correlations between different firms' defaults and with other 

market observables. Formulas in structural models tend to be either 

tractable but inflexible, or flexible but computationally intractable. 

Reduced-form modelling, introduced by Jarrow & Turnbull (1995), 

has been highly successful in providing remedies for these problematic 

4 



1. INTRODUCTION 5 

aspects. It treats default as locally unpredictable, with an instanta­

neous hazard rate, but does away with the connection between default 

and the firm's asset value process. 

Following on the heels of these models, Jarrow, Lando and Turnbull 

(1998) bridged the gap between reduced form and structural models 

by proposing a continuous time Markov chain to replace the firm value 

process as a determinant of credit quality. 

The purpose of this thesis is to develop and test some new ap­

proaches for determining the probability of default. We have used a 

stochastic time-changed Brownian motion as the model of log-prices. 

Using an independent Levy process as the stochastic time change pro­

cess, one can recover well-known models such as the variance gamma 

model of Madan and Seneta (1990), which assumes that the log-price 

obeys a pure jump Levy process with stationary increments that fol­

low the gamma distribution. The time of default is the first-hitting 

time of a default state which is an absorbing state of the asset price 

process. The analytical formulas of the probability of default for a 

single firm are obtained, and we develop the formula of the probabil­

ity of multiple joint default for the case with two firms as well. The 

Monte Carlo method is developed to compute the default probability 

under this model in the general case. Moreover, numerical results are 

presented. 

The outline of this thesis is as follow. In Chapter 1, we present pre­

liminaries related to the theory of credit risk modelling and stochastic 

processes. In Chapter 2, we derive the formula of probability of default 
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for a single firm, when the stochastic time change is a gamma process. 

In Chapter 3, we develop the formula for the probability of multiple 

default for the case with two firms, and applications of the model are 

presented. We also study the calculation of default probabilities using 

the Monte Carlo method. In Chapter 4, we present numerical results. 

We conclude the thesis in Chapter 5. 

1.1. Credit Risk Modelling 

1.1.1. Credit Risk. Before we understand why Credit Risk is an 

important issue in the current environment, we define a default risk, as 

a possibility that a counterparty in a financial contract will not fulfill a 

contractual commitment to meet her / his obligations in the contract. 

If this actually happens, we say that the party defaults or that a default 

event occurs. 

Credit Risk is a risk associated with any kind of credit-linked events, 

such as changes in the credit quality, variations of credit spreads, and 

the default event. 

Credit risk can happen if someone buys a good or service with­

out paying immediately for it. For example, individuals buy a house 

through borrowing money from banks whereas companies borrow to 

grow their share value. Therefore, everyone in the world is subject to 

a credit risk. 

Suppose one company has decided to take collaterals such as lands, 

farms or buildings in a small town. As we know, it takes too much time 

to liquidate those collaterals in the case of default. Banks will not give 

credits to those companies which we can predict to be as "unreliable". 
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Moreover, suppose a big multinational bank wants to sell a Euro­

pean call option both to a small local bank and another big multina­

tional bank. Does it charge them with the same premium? How can 

we determine a logical premimum according to the company and the 

current market situation. 

Answers to all above questions may be found by using credit risk 

models, which have developed rapidly over the past few years to become 

a key component in risk management systems. 

1.1.2. Credit Risk Modelling. Credit risk models play an im­

portant role in risk management and performance measurement pro­

cesses. Such models are intended to aid banks and other financial 

institutions in quantifying, aggregating and managing risk. 

There are three main quantitative approaches to analyzing credit 

risk. In the structural approach, we make explicit assumptions about 

the dynamics of a firm's assets, its capital structure, its debt, and share 

holders. A firm defaults if its assets are insufficient according to some 

measure. In this situation a corporate liability can be characterized as 

an option on the firm's assets. The reduced form approach is silent 

about why a firm defaults. Instead, the dynamics of default are ex-

ogenously given through a default rate, intensity or hazard rate. In 

this approach, prices of credit sensitive securities can be calculated as 

if they were default free using an interest rate that is a riskfree rate 

adjusted by the intensity. The incomplete information approach com­

bines the structural and reduced form models. While avoiding their 

difficulties, it picks the best features of both approaches: the economic 
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and intuitive appeal of the structural approach and the tractability and 

empirical fit of the reduced form approach. 

1.1.2.1. Univariate Structural Default Models. Structural default 

models aim to explain the economic cause of credit default of a com­

pany. More precisely, default is assumed to be the consequence of 

insufficient financial strength of a company. Solvency is linked to the 

ratio of the firm's assets and liabilities via the assumption that default 

is triggered when the value of the firm falls below a certain threshold. 

Consequently, the model of the firm-value process implicitly specifies 

the term structure of default probabilities. Therefore, this process plays 

the pivotal role in structural default models. Corporate bonds and 

credit derivatives are then priced based on this implied term structure 

of default probabilities. 

A natural criterion to distinguish structural default models is to 

classify them according to the underlying firm-value process. This 

classification is closely related to the historical development, as the 

model of the firm-value process has been generalized over the years. 

The first structural default model was published by Black and Scholes 

(1973), it relies on a geometric Brownian motion for the firm-value 

process. Originally, this model was designed to describe stock prices 

rather than the value of a firm. Then, the observation "It is not gen­

erally realized, that corporate liabilities other than warrants may be 

viewed as options" transformed their stock price model into the first 

structural default model. Their idea was worked out in detail by Mer-

ton (1974), who slightly changed the underlying stochastic differential 
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equation of the firm-value process to include dividends and interest 

payments. However, the solution to that equation is still a geometric 

Brownian motion. Moreover, as in Black and Scholes (1973), default 

within the original Merton model is only possible at maturity. This 

shortcoming was corrected by Black and Cox (1976), who criticize the 

original model as follows: "Furthermore, it assumes that the fortunes 

of the firm may cause its value to rise to an arbitrary high level or 

dwindle to nearly nothing without any sort of reorganization occurring 

in the firm's financial arrangement. More generally, there may be both 

lower and upper boundaries at which the firm's securities must take 

on specific values." To correct this unrealistic assumption, they pro­

pose to continuously test for default and define the time of default as 

the first-passage time of the firm-value process below a given barrier. 

Further generalizations of the model address the economic framework, 

allowing the valuation of coupon bonds and bonds indenture provisions 

as in Geske (1977), or include stochastic interest rates as in Longstaff 

and Schwartz (1995). 

Still, all these models suffer from the same defect. In pure dif­

fusion models, the time of default, defined as a first-passage time of 

the firm-value process, is a predictable stopping time with respect to 

the filtration generated by the Brownian motion. This property turns 

out to imply vanishing credit spreads for bonds with short maturities, 

which contradicts the empirical observation that credit spreads have a 

positive limit at the short end of the term structure. This problem can 

be approached from two sides. First of all, it is possible to reduce or 
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blur the filtration available to all investors. Alternatively, one can relax 

the assumption of a continuous firm-value process. In either case, the 

aim is to modify the model such that the time of default is no longer 

announced in advance. 

Duffie and Lando (2001)'s model is still based on a geometric Brow-

nian motion, but default probabilities are obtained conditional on noisy 

accounting data and survivorship of the firm. In contrast to Duffie and 

Lando, Zhou (2001a) does not change the filtration but suggests mod­

elling the firm-value process as the superposition of a diffusion and a 

jump component instead, the latter with normally distributed jumps. 

He also presents a simple Monte Carlo algorithm to evaluate bond 

prices within his model. Moreover, he shows that the limit of credit 

spreads as implied by the model is positive. 

Finally, Leland (1994), with Toft (1996) proposed a framework in 

which the default threshold is not exogenously given. Instead, share­

holders are free to choose the default threshold such that the value of 

the firm's equity is maximized. Mathematically, this translates in an 

optimal stopping problem. Generalizations of this approach have been 

proposed by Hilberink and Rogers (2002), allowing downward jumps 

in the firm-value process, and recently by Chen and Kou (2005), Acar 

(2006) and Dao and Jeanblanc (2006) to jump-diffusion processes with 

two-sided exponentially distributed jumps. 

1.1.2.2. Univariate Reduced-form Models. Unlike structural default 

models, reduced-form models do not intend to explain the default of a 

company by means of an economic construction. Instead, the time of 
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default is exogenously given and assumed to agree with the jump time 

of some stochastic process. The distribution of this totally inaccessi­

ble random variable depends on its default-intensity process, for which 

models with different complexity exist. Recent models often allow this 

default-intensity process to depend on a vector of state variables. An­

other important issue is the amount of information based on which 

bond and derivative prices are derived. Typical examples are the fil­

tration generated by the default indicator process, the filtration of the 

state variables, or some given filtration enlarged by the default indica­

tor. Each investor then calculates default probabilities conditional on 

the available information. 

1.1.2.3. Incomplete Information Credit Models. The incomplete in­

formation framework provides a common perspective on the structural 

and reduced form approaches to analyzing credit. This perspective en­

ables us to see models of both types as members of a common family. 

This family contains previously unrecognized structural/reduced form 

hybrids, some of which incorporate the best features of both traditional 

approaches. Incomplete information credit models were introduced by 

Duffle & Lando (2001), Giesecke (2001) and Jarrow, Protter & Yildirim 

(2002). A non-technical discussion of incomplete information models 

is in Goldberg (2004). 

1.2. Stochastic Processes in Credit Risk 

1.2.1. General Framework. Let us recall the definition and ba­

sic properties of Brownian motion. Let (Q., .F, P) be a probability 

space. Suppose that for each u £ fi, there is a continuous function 
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Wt — Wt(u)) of t > 0 that satisfies W0 = 0. Then (Wt)t>o is a standard 

Brownian motion (w.r.t.((Ft)t>o, P)) if for every m partition (m > 1): 

0 = t0 < t\ < ... < tm the increments 

wtl = wtl - wt0,wt2 - w h , . . . , w t m - wtm_x 

are independent random variables, and each of these increments is nor­

mally distributed with 

E[W{ti+1) - W(U)] = 0 and Var[W(ti+1) - W{U)} = ti+l - U 

The model for the evolution of asset prices (Vt)t>o over time is a geo­

metric Brownian motion (GBM) if the following stochastic differential 

equation is satisfied: 

^•^(jjL + oZffldt + adWt, t>0, V0>0, (1.1) 

where fj, G K. is a drift parameter, a > 0 is a volatility parameter. Ito's 

lemma implies that the strong solution to (1.1) is given by 

Vt = V0eftt+,,Wt, t>0. (1.2) 

Under the risk-neutral measure we have that fi = r — cr2/2, where r is 

the risk-free interest rate. 

If the value of the assets of a firm is smaller than the value of its 

liabilities, then the firm is in default. According to Black and Cox 

(1976), the default boundary, for which the time dependence takes an 

exponential form, is given by Ct = eXtK, t > 0. When the asset 

value Vt is larger than Ct, the firm continues to operate and meets its 
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contractual obligations. However, if Vt < Ct for some t > 0, then the 

firm immediately defaults on all of its obligations. In Figure 1.1, we 

see that default occurs at time r since the asset value is not sufficient 

to cover all the firm's liabilities. 

Value of asset 

v. 

% 

K 

r I 

Figure 1.1: A sample path of the firm's asset process with default at 
time r 

A common assumption is that the value of a financial asset follows 

a lognormal distribution, i.e, that the logarithm of the asset value is 

normally distributed. How does one simulate the asset values under 

such an assumption such that the model predictions are correct? By 

the above assumption, Xt := In Vt is a Gaussian process, which can be 

simulated exactly. One may use the Euler scheme to obtain sample 

paths of Xf This approach will be discussed in Chapter 3. 

1.2.2. The First Hitting Time Distribution for One Firm to 

Linear Boundaries. Let t —» b(t),t > 0, be a smooth function, and 

W = {Ws;s > 0} be a standard Brownian motion. We are interested 

;VVA, Default tnrashoid 
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in the distribution of the first hitting time defined by 

rXtb := inf{t > 0 : x + Wt = b{t)}, x e R, x ^ 0. (1.3) 

There are many papers devoted to this topic. We refer to one of them, 

Paavo Salminen (1988), for further references. For the case of linear 

boundaries, suppose b(t) = at, a G R. Then we have 

P(rx,b e (t,t + dt)) = exp(ax - ^Q2i) J f L exp ^ - | _ ^ dt. (1.4) 

The first hitting time for b(t) = at also can be recast as 

rXtb = inf{t > 0 : x + Wt = at} = inf{t > 0 : xa + aWt - aat = 0} 

= inf {* >0:Wt-at = -x) 

= inf{t > 0 : x - at + Wt = 0}. 

(1.5) 

We hence consider the scaled Brownian motion with drift: 

Xt = X0 + fit + crWt. (1.6) 

Xt presents a log-price of an asset, defined as the logarithm of a geomet­

ric Brownian motion process, and X0 ^ 0 is the initial point. Consider 

the first hitting time 

T = inf {t > 0 : Xt = 0} = inf{t > 0 : X0 + fit + aWt = 0} 
(1.7) 

= inf {t > 0 : X0/a - (-(i/a)t + Wt = 0}. 
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We have that r = TX^ when x = X0/a, a = —f^/cr. The following 

formula for the PDF of r is obtained from (1.4) 

P(r E (t,t + dt)) = e x p ( a X 0 / a ) ^ l - ^ e x p \ - - ^ t - - ^ d t 

\XQ\ _-(Xa+af\2 llaH 

aV2nt3 
e-(X0+fxty/2crHdt 

2 
- 5 ^ 0 - ^ * e "• 

aV2irt3 

X 

\X0\e~^~tdt. 

(1.8) 

The first hitting time given here will be discussed in detail in Section 

4 of this chapter. 

1.3. Multivariate Extension 

1.3.1. Notation and Approach for the GBM Model. Our 

model has the following parameters: 

<7; = the volatility of a diffusion component (i = 1,2); 

Hi = the drift of a diffusion component (i = 1,2); 

VQ = the initial value of the zth company (i = 1, 2); 

Ki = the initial value of the default threshold (i = 1,2); 

Aj = the constant of the exponential form Ct = KeXit (i = 1, 2); 

T = the maturity time. 

1.3.2. Multiple Default Probability. Typically, several factors 

can affect borrower's default probability. In the retail segment, one 

would consider the salary, occupation, age and other characteristics 

of the loan applicant; when dealing with corporate clients, one would 

examine the firm's leverage, profitability, and cash flows. 
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The first passage time approach allows a greater flexibility in com­

parison with the Merton model, since in Merton's model (1974), default 

can only occur at the maturity of a bond, that is restrictive and un­

realistic. We extend the original Merton model by accounting for the 

observed feature that the default may occur not only at the debt's ma­

turity, but also prior to this date, and evaluation using the first passage 

time model provides more practical results. 

Let us introduce the two random variables Di(t) and -D2(£), called 

the default indicators that describe the default status of two firms. For 

each firm we denote: 

{ 1, if firm i defaults by time t ; 

0, otherwise. 

In our model with two firms, we assume the default barriers are 

given by 

Cf) = Kie
Xi\ t>0, ! G { 1 , 2 } , 

where Ki > 0 is the initial value of the default threshold, and Aj is a 

constant, with i G {1,2}. Let's define the first passage times: 

Ti = inf {t > 0 : Vt
{i) < C?) , i G {1, 2} ; (1.9) 

where Vt is the value of firm i at time t. Then, the default indicator 

can be represented as follows: 

Firm i defaults by time t ^ D^t) — I <^> T^ < t; 

Firm i has no default by time t <4> Di(t) = 0 <£> Ti > t. 
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Based on the above definitions, we have the following formula for the 

default probability 

P(Di(t) = l)=P(ri<t). 

Assumption 1. Let V^ ' and Vt denote the asset values of firms 1 

and 2 at time t > 0, respectively. Assume that f Vt 1 and (Vt J 

satisfy the following vector stochastic differential equation 
t>o 

dHVt
{1)) 

dHvt
{2)) 

= 
/"l 

. ^ 2 . 

+ Q 
' dwll)' 

_ dwi2) _ 
(1.10) 

where fix and /x2 are constant drift coefficients, ( W; 1 and (W} 1 

are two independent standard Brownian motions, and Q is a constant 

2 x 2 matrix such that 

n n T = 
pcr1a2 

pai<J2 

(1.11) 

where ai,a2 > 0 and p G [—1,1]. At time t = 0, we assume VQ > 

o,i e {1,2}. 

The coefficient p = Corr(d\n(Vt '),dln(Vt
( )), reflects the corre­

lation between the movements in the asset values of the two firms. 

This correlation coefficient plays an important role in determining the 

default correlation between the firms. 

Now, we can move to the next step. Assuming the independence of 

default events, the joint default probability of the two firms is 

PiD^t) = 1 and D2(t) = 1) = P(£>i(i) = 1) • P(D2(t) = 1). (1.12) 
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When we exam the joint probability, however, it is reasonable to assume 

that if one entity is in default, the other entity may have a higher 

likelihood of defaulting. Thus, it is possible that the two entities may 

have a positive default correlation. 

We define the default correlation Corr(Di(t), D2(t))
 a s follows: 

corr[Dl{t),Dm^-^m^ML^. (,13) 
^Var[Di(t)\ • Var[D2(t)\ 

Since D\{t) and D2(t) are Bernoulli random variables, we have that 

E[Di(t)] = P(Di(t) = 1), 

Var[Di(t)] = P(Di{t) = 1) • [1 - P(A(*) = !)]• 

Prom equation (1.13), we can derive a probability that both firms are 

in default at time t as 

P(Di(t) = 1 and D2(t) = 1) 

= EiDtf) - D2(t)] 

= E[£>i(*)] • E[D2(t)] + CorriD^t), D2(t)} • ̂ Var^t)} • Var[D2(t)}. 

The default correlation is also taken in evaluating the probability that 

either firm defaults: 

P(D1(t) = 1 or D2(t) = 1) 

= P{Dx{t) = 1) + P{D2(t) = 1) - P(£>i(t) = 1 and D2(t) = 1) 

= £[A(i ) ] + E[D2(t)} - ElD^t) • D2(t)}. 
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1.4. Models with a Stochastic Time Change 

1.4.1. Time-changed Brownian Motion. Let (Q,F, P) be a 

probability space that supports a Brownian motion (Wt)t>o a n d a non-

decreasing process (Gt)t>o with Go = 0 called a stochastic time-change 

process. The measure P may be thought of as either the physical or 

risk-neutral measure. Let Bt = x + y,t + aWt be a scaled Brown­

ian motion starting at x and having constant drift parameter /i. We 

henceforth restrict our scope by assuming the following. 

Assumption 2. B and G are independent stochastic processes under 

the probability measure P. 

This assumption is introduced mostly for simplicity. The more general 

case where B and G are dependent stochastic processes is also of inter­

est in finance. A time-changed Brownian motion (TCBM) is defined 

to be a process of the form 

Xt:=BGt, t>0. (1.14) 

Identification of the components of such a TCBM leads to two subfil-

trations of the natural filtration (J-t)t>o (which we assume satisfies the 

"usual conditions"): 

Xt = a{Xs :s<t}, (1.15) 

Gt = °{GS :s<t}. (1.16) 

We also consider the Brownian filtration W4 = <r{Ws : s < t}. 
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1.4.2. The First Passage Time for TCBM. In this section, 

we define two distinct notions of the first passage time for a TCBM 

starting at a point x > 0 to hit zero. 

Definition. For any TCBM Xt = BGt,t> 0, we define 

1. The first passage time tx of the first kind is a ^-stopping time de­

fined by 

t{£ = inf{t > 0 : Xt < 0}. (1.17) 

The corresponding stopped TCBM process is Xi1} = XtMW. Note that 

in general X w < 0, with strict inequality possible at a time when G 

makes a jump. 

2. The first passage time tx of second kind is a ^"-stopping time de­

fined by 

t^ =mi{t>0:Gt>t{B)}. (1.18) 

where *£} = inf{i > 0 : Bt < 0}. The corresponding stopped TCBM 

process is X: — BQ . Note that X & = 0. 

For ease of notation, we let r* represents tx and r represent tB . 

1.4.3. Notation and Approach for the VG Model. Our model 

consists of the same parameters as the GBM model: ^ j , cr̂ , VQ , K^ 

Aj, % = 1,2, and T. 

This section extends the GBM process to another process obtained 

by evaluating the GBM process at a random time given by a gamma 

process. Each unit of calendar time is viewed as having an economically 

relevant time length given by an independent random variable which 
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has a gamma density with unit mean. Also, we focus on the case with 

two dependent firms. 

First, we consider the probability of default for the special case 

(Aj = fii,i = 1,2) and then consider the general case. Based on the 

result of Harrison (1990) we derive the formulas for the two above cases. 

Moreover, we obtain the analytical formula for the special case of two 

firms with the use of modified Bessel functions. Also the Monte Carlo 

simulation is used to compute the probability of default for the general 

case of two firms. Specifically, the default indicator can be represented 

as 

D*(t) = 1 o- firm i default <̂> r* <t, 

where r* = ini{t > 0 : Gt > Tj}, TJ is defined by (1.9), % = 1,2. 

Notice that the probability of default in the VG model refers to the 

corresponding probability in the GBM model as follows 

/•oo 

P(D*(t) = 1) = / P(Di(s) = 1) • f(s;t)ds, (1.19) 
Jo 

where f(s; t) is a gamma density function, which will be defined in 

Section 2 of Chapter 2. 



CHAPTER 2 

Evaluating the Default Probability for One Firm 

2.1. The GBM Model 

Following the result of Harrison (1990), we obtain the default prob­

ability of a single firm 

P(D(t) = l) = N(-^-^V-t 
[2.1) 

where (V0 > K) 

z^mm (2.2) 
o 

is the standardized distance of firm to its default point and N(-) denotes 

the cumulative probability distribution function for a standard normal 

variable with iV(-) defined in equation (2.14) 

Also, there exists a simplified version of (2.1) when A = //, given by 

2.2. The VG Model 

2.2.1. Defining the VG Model. Here we consider a time-changed 

Brownian motion as the model of log- stock returns. The new process, 

termed the variance gamma (VG) process, is obtained by evaluating 

22 
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Brownian motion with drift at a random time given by a gamma pro­

cess. 

The first important class of TCBMs arises by taking G to be a 

Levy time change, in other words, a Levy subordinator. Levy pro­

cesses form a general class of continuous time stochastic processes with 

stationary and independent increments. In addition to their interest in 

the theory of stochastic processes, they have found important uses in 

mathematical finance, where they are applied as models for log-stock 

price processes. 

Let us begin by introducing the gamma process—a continuous-time 

process with stationary, independent gamma increments. Madan and 

Seneta (1990), Madan, Carr, and Chang (1998) introduced in the con­

text of financial option pricing a continuous-time stochastic process 

termed variance gamma that is a Brownian motion with random time 

change, where the random time change is a gamma process. The au­

thors argued that the variance gamma model permits more flexibility 

in modelling skewness and kurtosis relative to Brownian motion. They 

developed closed-form solutions for European option prices under the 

VG model and provided empirical evidence that the VG option pric­

ing model gives a better fit to market option prices than the classical 

Black-Scholes model. 

Many papers, for example Geman and Ane (1996), show that Brow­

nian motion time-changed by a gamma process provides a significantly 

better description of historical asset returns and the risk-neutral return 
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distribution embedded in option prices. In fact, the time-changed pro­

cess successfully combats the well-known smile effects of Black-Scholes 

pricing for short maturity S&zP 500 index options. Bakshi and Madan 

(1999), on the other hand, use this process to learn about the proba­

bilities of large market moves from small ones. 

In what follows, we describe the statistical and risk neutral dynam­

ics of the stock price in term of the VG process, and derive closed form 

expressions for the return density. 

Let us define 

B(t;fjL,a) = fri + aWt, 

where (Wt)t>o is a standard Brownian motion. The process B(t; //, a) is 

a scaled Brownian motion with drift // and volatility a. We define the 

gamma process ^(t) := y(t; 0, u) with mean rate 9 and variance rate v 

as a process with independent gamma increments over non-overlapping 

intervals of time. The probability density f(s; At) of the increment 

5 = <y(£ + At) — 7(t), t, At > 0 over the time interval (t, t + At) is a 

gamma probability density function with mean 8At and variance uAt. 

Specifically, 

/(*;Ai) = (-J — r C A ] v ]. s > °> (2-4) 
where F(x) is the gamma function. The VG process X(t;a,u,^), is 

defined in terms of the scaled Brownian motion with drift B(t;/i,a) 

and the gamma process j(t; 1, u) with unit mean rate. We assume that 

7(0) = 0, hence f(s;t) is the transition PDF for ^(t). Therefore, we 
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define the VG (gamma time-changed drift BM) process by 

X{t;a,u,n)=B('y(t;l,u);fi,a), t > 0. 

The VG process has three parameters: a—the volatility of the Brown-

ian motion, v—the variance rate of the gamma time change, and \x—the 

drift of the Brownian motion. 

The transition probability density function of the VG process X(t) 

is a mixture density 

/•oo 

px(x,x0,t)= pB(x,xQ,s) • f(s;t)ds, (2.5) 
Jo 

where pB(x, XQ, S) is the transition PDF of the process B(s; //, a). Since 

for any s > 0, we have B(s) ~ N(fis, a2s), pB is a normal PDF. 

The new specification for the statistical stock price dynamics is 

obtained by replacing the role of Brownian motion in the original Black-

Scholes geometric Brownian motion model by the VG process. 

Under the risk-neutral measure, money market account discounted 

stock prices are martingales and it follows that the mean rate of re­

turn on the stock under this probability measure is the continuously 

compounded interest rate r. Let the risk neutral process be given by 

Vt = V0 exp(rt + X(t; aRN, uRN, fj,RN) + u>RNt), (2.6) 

where the subscript RN on the VG parameters indicates that these are 

the risk neutral parameters, and 

uRN = ln(l - VRNVRN ~ P2VRN/2)- (2.7) 
VRN 
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The density of the log-stock price over an interval of length t is, 

conditional on the realization of the gamma time change, a normal 

density function. The unconditional density is obtained by integrating 

out the gamma variate and the result is expressed in terms of the 

modified Bessel functions of the second kind. 

2.2.2. The VG Model and First Passage Time. Let the firm 

value process (Vt)t>o follows the VG model as given by (2.6). The 

default time is rd = inf{t : Vt < C t}, where Vt = VQe^r+^t+x^a'v^ and 

Ct = Kext. The default event is represented as follows: 

Vt < Ct ^ ln(VI) < ln(Ct) &\n(V0/K) + (r+u>-\)t+X(t;a,v,ii) < 0. 

(2.8) 

Assumption 3. For all VG models considered here we assume r + ui — 

A = 0, where ui is given in (2.7). 

Under this assumption the default time r^ is just the first passage 

time tx of the first kind for the subordinate process 

Xt = BGt = HVo/K) + nGt + aWGt, (2.9) 

where Gt = "f(t; 1, v) is a gamma process and Bt = ln(Vo/K)+fj,t+aWt 

is a scaled Brownian motion with drift. 

In contrast to traditional Brownian motion, the VG process is a 

pure jump process with an infinite arrival rate of jumps. Therefore, 

the paths of the VG process are discontinuous functions of time t. It is 

reasonable to use the first passage time of the second kind for modelling 

the time of default. Normally, the usual structural approach for credit 
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risk is based on the first passage time of the first kind, but it leads 

to technical difficulties. General properties have been presented via 

fluctuation methods (Bingham, 1975) and Wiener-Hopf factorization 

(2) 
X • (Bertoin, 1996). For this reason, we focus our efforts on t' 

Remark 1. tx can be viewed as an approximation of the usual first 

passage time tx with tx > tx . When the stochastic time change G 

is a process with continuous paths, the two definitions coincide. 

Remark 2. In general, tx is not an Af-stopping time. For more 

details, see Geman (2001) who discuss the problem of inferring the 

time change G from observing the history of X. 

As stated earlier in (1.17) and (1.18), we will use r* to represent 

tx , and r for tB for the ease of notation. In our model for the case 

with one default probability, we define r* = inf {t\Gt > r } , where r = 

mi{t\Bt < 0} = mf{t\Vt < Ct}. Here, Bt = \n(V0/K) + fit + aWu 

t > 0, (Vt)t>o defined by equation (1.2) is the asset value process of 

one firm and Ct = K, t > 0, where K is the initial value of the default 

threshold (i.e., A = 0). Then the default indicator D*(t) can be defined 

D*(t) = 1 «• firm defaults e> r* < t. 

Thus, we have the following expression for the probability of default in 

our VG model: 

poo 

P(D*(t) = 1) = P(T* <t) = P(T <Gt)= P(T < s) • f(s;t)ds, 
Jo 

(2.10) 
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where t is the maturity time, and / is the gamma density in (2.4). In 

this formula, the time of default is a first passage time of the second 

kind. 

2.3. Evaluation of the Default Probability for the VG Model 

Before we estimate the default probability using equation (2.10), we 

have to mention another formula which can also be used to evaluate 

the default probability for one firm. That is, 

P(T* <t)= f pT*(s)ds, (2.11) 
Jo 

where pr* is the PDF for r* given by 

PT.{t) = -P{r<Gt) = J P(r < s)-f(s;t)ds. (2.12) 

In this case, we prefer to use the first method to compute the default 

probability than the latter, since it is not easy to evaluate the integral 

of the default probability using equation (2.11). 

Let us recall the error function in advance. The error function (also 

called the Gauss error function) is a special function (non elementary) 

which occurs in probability, statistics, materials science, and partial 

differential equations. It is defined as 

erf(s) = -%= [ e-t2dt. (2.13) 
V71" Jo 
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Also, the cumulative probability distribution function (CDF) of a stan­

dard normal variable is expressed as 

fx 1 
N(x) = / -fT{ e - '2dt. 

Notice that 

N(x) = 1 - N(-x). 

From (2.13) and (2.14) we have 

1 e r f ( ^ ) 
^ ) = 2 + ^ 

(2.14) 

(2.15) 

(2.16) 

Now, we can get useful results using the error function instead of 

the normal CDF and the gamma density function. Using the formulae 

(2.3) and (2.10), we obtain the computational formula for the special 

case when /i = 0: 

p(r- <T)=r \N (.mm)+%N (.mm) 
Jo L V aVs J K V avs J 

-s^ 1^e "ds. 
(2.17) 

To solve the above the (2.17), we simplify the following two terms. 

One is written as 

•V5 / i / ? r ( J ) 
s(„ ! ) e v(ls 

^r(J) -f 
Jo 

1 (£_i) -± , 
-s\v L>e v(ls 

j („ x ) e vds\. 
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Let e " = y, so we have s = — ulny, hence ds — —v • -dy. Also 

we have s = 0 => y = 1 and s = oo =>- y = 0. So, by completing the 

integration and simplifying, we obtain the following result for the first 

term 

Similarly, the second term can be rewritten as follows: 

IK \n«-^*^*\ <2-i9) 
The final result for the special case is obtained by combining equations 

(2.18) and (2.19). 

Next, we present the formula for the general case (/z ^ 0). Similarly, 

using (2.1) and (2.10), the default probability can be calculated as 

follows: 

/•OO I 

P(T* <T)= P(T<S)- s^-1)e~-ds. (2.20) 
Jo i"-r(5) 

Following the formula (2.1), we need to simplify the following two parts. 

One is written as 

^Vi) • -f—— s (?_ 1 )e"-ds 

f°°A 1 c, l n ( f ) n „ . 1 ,£_„ ._, 

r i r p, ln(^) u. /_xl 1 ,T n . , 

Jo 2L v
 a^V2 <?V2 v$rp) 
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Let e~» = y, then s = —ulny =>- ds = —u--dy. That is, s = 0 =>• y — 1 

and s = oo =>• y = 0. 

Thus, the following result is obtained for the first part 

1 A: + erf(__£#> _ ̂ V=^)]. t^ f l* . 
(2.21) 

The other part is expressed as follows: 

_ > ^ * r [i+erf(-^a) + ^ y z ^ ) ] (,22) 
2 Jo a V-2z/In y oV2 

(-Inj^l) 

The final result for the general case is given by combining equations 

(2.21) and (2.22). 



CHAPTER 3 

Evaluating the Default Probability for Two Firms 

So far, we were primarily concerned with the default probability for 

a single firm. More generally, we consider the mulitple default prob­

ability, that is, the probability that at least one default has occurred 

by time t. In this chapter, we generalize the VG model presented in 

section 2.2 to the case with two firms. This model is able to explain 

the multiple default probabilities of several firms and their default cor­

relation. Also, our intention is to present analytical formulas, which 

allow us to compute the multiple default probability. 

3.1. The Bivariate G B M Model 

Based on the result of Harrison (1990) and Rebholz (1994), we 

derive the formulas of probability of default for the special case when 

Aj = fii,i = 1,2, and the general case, when Aj ^ pn for at least one 

i e {1,2}. 
32 
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3.1 .1 . T h e Special Case. Assume that Aj = / / j , for i = 1,2. We 

have the following formula based on the result of Rebholz (1994): 

P(D1(t) = 1 or D2(t) = 1) 

2r0 _d v - 1 • 
= 1 

'2-Kt 
sin 

n=l,3,.. n 

nnOc 

a (3.1) 

;i((^L+i) V i i i + I\«?z-v 4t 

where I„(2) is the modified Bessel function / of the first kind with order 

v and 

_ - i ( V ^ 2 

a = 
if p < 0, 

7T + tan ^ 

tan 
1 ( Z2y/l^? 

Z\ -pZ2 

ix + tan - l 
Zl-pZ2 

otherwise; 

if (•) > 0, 

otherwise; 

(3.2) 

r0 = Z2/sin(6>0). 

Here we denote 
^(0, 

H\) , i = l , 2 . 

3.1.2. The General Case. Let A; and /^, z = 1,2, be any given 

constants. We have 

P(L>i(t) = 1 or D2(t) = 1) 

2 __ I ^_ aixi+a.2X2+att _ \ "* 

n = l 
sin 

/ n n 6 0 

\ a (3.3) 

2 rot 

2t / 
sin (?) 9n{0)d9, 
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where 6Q, ro, a n d a are defined as in (3.2) and 

gn{9) = [°°r-e-£- edirsin(9-a)-d2rcos(e-a) . j ^ / ™ 0 \ ^ 

(Ai - fjLi)a2 - (A2 - A*2 W i 
(1 - p>2<72 

(A2 - /x2)c
ri - (Ai - H.\)poi 

(1 - p 2 ) ^ 

a* = —r— + paia2aia2 + — ai(Ai - //i) - a2(A2 - /x2), 

d\ = aiai + pa2cr2, 

d2 = a2cr2\/1 — p2, 

X\ — bi — o"i[(\/l — p2rcos(9) + pr sin(0)], 

x2 = b2- a2rsin(6), 

6i = - ln[K- i /V 0
w] . 

Since equation (3.3) involves a modified Bessel function and a double 

integral, it makes the calculation of the probability difficult. To over­

come this difficulty, we use the Monte Carlo method to compute the 

default probability. 

3.2. The Bivariate VG model 

A bivariate VG model is obtained by evaluating the bivariate GBM 

process at a random time given by a gamma process. Each unit of 

calendar time is viewed as having an economically relevant time length 

given by an independent random variable that has a gamma density 

with unit mean and positive variance. 
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3.2.1. The Special Case. When Lii — 0,ie {1,2}, based on the 

formulas (2.4) and (2.10), the probability of default is given as 

P{D{{t) = 1 or D*(t) = 1) 

/•oo 

= / P(Di(5) = 1 or D2(s) = l ) / ( s ; t)ds 
Jo 

00 ' 2r0 _d ^ 1 . (nn60 1 ; • e 4s . \ — . sin 7o r v ^ ~ nit,..." ""v « 

( ( -+i ) i i iy T i i ( ( - -DVS i/y r ( ? ) 
ds. 

(3.4) 

There are two approaches to the evaluation of the probability of 

default. One approach is to change the order of summation and inte­

gration in equation (3.4) and calculate the truncated series. The other 

approach, presented in the Appendix, is to use the series representation 

of the function / and to simply the integrals. 

3.2.2. The General Case. Here we consider the general case that 

allows us [ii T̂  0, i G {1,2}. We have the following formula for the 

probability of default of two firms. 

P{D\{t) = 1 or D*2(t) = 1) 

/•oo 

= / P(Di(s) = 1 or D2(s) = l)f(s;t)ds 
Jo 

~ VA^+^+^.y-y^oA (3-5) 
Jo { as ^ V <* 

rj r fmv8\ ,„N in\ fe\6~^ s V - 1 e x p ( - 5 s ) , 
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where all parameters are obtained by applying formulas of Subsection 

3.1.2 with Ai = A2 = 0. 

Computation of the multiple default probability given by equation 

(3.5) is technically difficult. How to deal with this problem? The Monte 

Carlo method can be used to estimate the probability of default for two 

firms instead of the direct application of equation (3.5). 

3.3. The Monte Carlo Method 

The Monte Carlo method is proposed in order to efficiently compute 

the multiple default probability. As we see, calculations of the default 

probability for two firms involve the evaluation of high-dimensional 

definite integrals, so the Monte Carlo method is now used here. 

We represent the default event as an indicator function. As we 

discuss as before, Di (i = 1,2), takes the value 1 if the obligor defaults 

and 0 otherwise. Our goal now is to show how the indicator function 

can be computed to estimate default probabilities. 

Let A be an event of the sample space fi, and w £ 0 be an outcome. 

The indicator 1^ of the event is a random variable defined by 

0, otherwise, 

1, with probability P(A); 
that is, 1A = { Therefore, 

0, with probability 1 - P(A). 

E[tA) = 1 • P(A) + 0 • (1 - P(A)) = P(A). 
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If we obtain N independent realizations ui,u>2,..- ,u>Ni by the law of 

large numbers, we have 

t = i 

3.3.1. The Brownian Bridge. A standardized Brownian bridge 

is a continuous-time stochastic process, whose probability distribution 

is the conditional probability distribution of a Wiener process Wt given 

that W0 = WT = 0 for some T > 0. 

The Brownian bridge can also be used in estimating the first passage 

time. Suppose we have a single Brownian motion (with / without drift) 

(Bt)t — 0 a n d a lower barrier b. Let the process be sampled at a finite 

number of times 0 < t\ < t2 < • • • < tn with time step At = tk — fyc-i-

One may estimate the first passage time r = ini{t > 0 : Bt < b} by 

using the approximation rAt := min{tj > 0 : Bti < b}. This estimate of 

the first passage time is biased, since during any time interval [t, t + At] 

the process may cross the barrier and return back. To catch these 

events, we use the construction of the Brownian bridge. We calculate 

the probability prob that the process crosses the barrier conditional on 

the event that it doesn't cross the barrier at t and t + At. Then we 

simulate the event of crossing the barrier by sampling random variable 

a from U(0,1) and checking if a < prob. The same method can be 

used in several dimensions if the multivariate Brownian bridge distribu­

tion is available. In practice, we may approximate such a probability 

distribution by a product of one dimensional distributions assuming 
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uncorrelation of the coordinates of the Brownian bridge process on a 

short time interval. 

The Distribution of the Minimum of the Brownian Bridge. L.Beghin 

and E.Orsingher (1999) present some extensions of the distributions 

of the maximum of the Brownian bridge in [0, t] when the condition­

ing event is placed at a future time or at an intermediate time. The 

standard distributions for Brownian motion and Brownian bridge are 

obtained as limiting cases. These results permit us to derive also the 

distribution of the first-passage time of the Brownian bridge. Let W be 

the standard Brownian motion, then for any positive /?, n G R, the fol­

lowing distribution of the maximum of the one-dimensional Brownian 

bridge holds: 

e x p / - M ( / ^ z ) \ p > 

P^max^> p\Wt = v} = { l J (3-6) 
0<S<t 1 1 1 a ^ 

In our model, we need to use a distribution of the minimum of the 

bridge process for a Brownian motion with drift. We obtain it through 

the following steps. Define Bt = fit + crWt, t > 0, o > 0. Let 0 < t± < 

£2, and b < di (i = 1,2). Consider the distribution of Bs, t\ < s < i2, 

conditional on Btl = a\ and Bt2 = a2. Of interest is the probability 

P [ min Bs <b 
tl<S<t2 

Btx — a,\, Bt2 = a2 

For s € [ti,t2], we have 

Bs = Btl + fi{s - ti) + a{Ws -Wtl), 



3.3. THE MONTE CARLO METHOD 39 

That is we can write Bs = Btl + BT, r = s — t\, where we define BT = 

fiT + aWT, T > 0, with WT a standard Brownian motion independent of 

the process (Wt)o<t<t1- Next, the distribution of the minimum of the 

Brownian bridge is obtained by shifting in time and in space: 

P min BT + ax < b 
\0<T<t2-t1 

B0 = 0, B t 2_ t l = a2 — ai 

= P I max (—BT) — ai > — b 
yo<T<t 2 - t i 

P max BT > d\ — b 
0<T<t 2 - t l 

= P[ max ± B T > ^ 
lo<T<t2-*i a a 

„ i Or ai — b 
= P [ max WT > — 

.o<T<t2-*i a 

B0 — 0, —Bt2-tl — a,\ — a-i 

Bo = 0,Bt2-tl=ai-a2 ) (3.7) 

\Bo = 0, \Bt2-tl = ^ 

W0 = 0,Wt2-t1 = ^ 

-_02 

Since a2 > b, then —b > —a2, and a\ — b > a\ — a2, hence 9J^ > 

a i ~° 2 . Using the formula (3.6), we continue formula (3.7). Here we 

denote Bt := —Bt, Wt := — Wt. We have also used the fact that the 

distribution of the max / min of the Brownian bridge does not depend 

on the drift. As a result, we have 

P ( max WT > ^ — -
\ 0<T<t 2 -* l 0" 

W V t l = ^ = e 
2 ( ^ X ^ - 2 ^ ) 

= e 'a-«i 

_ 2 ( a 1 - 6 ) ( o 2 - 6 ) 

(3.8) 

using (3.6) for (3 > rj. 
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3.3.2. The Control Variate Method. The method of control 

variates is among the most effective and broadly applicable techniques 

for improving the efficiency of the Monte Carlo integration method. It 

exploits information about the errors in estimates of known quantities 

to reduce the error in an estimate of an unknown quantity. 

To describe the method, we let Yi , . . . , Yn be outputs from n repli­

cations of a MC simulation. For example, Yi could be the discounted 

payoff of a derivative security on the ith. simulated path. Suppose that 

all Yi are independent and identically distributed and that our objec­

tive is to estimate E[Y]. Since the usual estimator is the sample mean 

Y = (Yi + . . . + Yn)/n. This estimator is unbiased and converges to 

E[Y~] with probability 1 as n —• oo. 

Suppose, now, that on each replication we calculate another output 

Xi along with Yj. Suppose that the pairs (Xi,Yj), i = 1 , . . . ,n, are i.i.d. 

and that the expectation E[X] of each Xi is known. We use (X, Y) to 

denote a generic pair of random variables with the same distribution 

as each (Xi,, Yi). Then for any fixed b we can calculate 

Yi(b) =Yi- b(Xi - E[X}) 

from the zth replication and then compute the sample mean 

Y(b) =Y-b(X- E[X\) = \ J2(Yi ~ b(Xi - E[X])). (3.9) 

This is a control variate estimator. The observed error X — E[X] serves 

as a control in estimating E[Y]. 
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As an estimator of E[Y], the control variate estimator (3.9) is un­

biased because 

E[Y(b)} = E[f - b(X - E[X})} = E[Y] = E[Y], (3.10) 

and it is consistent because, with probability 1, 

lim - V Y^b) = lim - Y(Yi - b(X{ - E[X})) 
i= l i=\ 

= E[Y - b(X - E[X})} 

= E[Y}. 

Each Yi{b) has variance 

VariY^b)} = VariY, - b{Xt - E[X])} 

= al-2bax(TYPxY + b2a2
x = a2(b), (3.11) 

where ax — Var\X\,o\ = Var[Y], and pxy is the correlation between 

X and Y . The control variate estimator Y(b) has variance a2(b)/n and 

the ordinary sample mean Y (which corresponds to b = 0) has variance 

aY/n. Hence, the control variate estimator has smaller variance than 

the standard estimator if b2ax < 2baYpxY-

The optimal coefficient b* that minimizes the variance in (3.11) is 

given by 
a y Cov[X,Y] 

b ~ VxPXY - Var[X] • ( 3 - 1 2 ) 

Substituting this value in (3.11) and simplifying, we find that the ra­

tio of the variances of the optimally controlled estimator and of the 
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uncontrolled estimator is 

Var[Y - b*(X - E[X})} , 
^ ^ -I-PXY- (J-W) 

3.3.3. Computation of the Default Probability and Algo­

rithm. Let us describe how to compute the default probability using 

the Monte Carlo method. First, we focus on the univariate case with 

one firm. In Section 1.2, we already have defined the firm value process 

Vt = V0e'lt+aWt and the default event given by Vt < KeXt. Also we have 

defined Xt = In (Vt) = X0 + fJ.t + aWt, where X0 := In (Vo), thus we 

have default if 

Xt<\n(K) + Xt. (3.14) 

Let's introduce a new process Yt with drift coefficient \i — A given by 

Yt := In (Vo/K) + (// - X)t + aWt. (3.15) 

Let 0 = t0 < t\ < t2 < ... < tn be a time partition. Using the Euler 

scheme, we obtain 

Yti+1=Yti-V{ix-X)^ti + aZi^ti, z > 0 , Y0 = \n(V0/K), (3.16) 

where (Zj);>o are i.i.d random variables generated from the standard 

normal distribution, and At; = ti+i — U are time increments. 

The first hitting time is given by the following formula for this new 

process Yt: 

T = inf{* >0:Vt< KeM} = inf{t > 0 : Yt < 0}. (3.17) 
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Denote h = max{t i+i — ti}, i = 0 , . . . , N — 1. The first hitting time r 
i 

in formula (3.17) is approximated by rh, which is defined by 

rh = min{^ > 0 : Yu < 0}, i = 0,...,N. 
i 

To estimate the default probability for either one firm or several 

firms, we sample M paths, k = 1 , . . . , M, and then calculate 
1 M 

P(D(t) = 1) = P(T < t) « P{rh < * ) « — £ l{T*<t}. 

fc=i 

Now we consider the two firm case. The asset values of firms still 

follow a geometric Brownian motion, but the asset value processes are 

coupled. Thus we have two equations to simulate two new firm value 

processes Yf1' (j = 1,2) using the Euler scheme: 

< > = Y£] + (to - Ai)At, + tnZly/Ab, (3.18) 

Yt{Z = Y™ + (A*2 - A2)Ati + v2Z?y/&ti, (3.19) 

where Z\ and Zf are coordinates of Zj, which is a random vector cho­

sen from the bivariate normal distribution with mean vector zero and 

*• V p 

covanance matrix 
P \ 

To evaluate the default probability with multiple firms, we define 
T} = mm{ti : Y^] < 0} ( j = 1, 2). Thus we have 

P(L>i(£) = 1 or D2(t) = 1) = P{TI < t or r2 < t) 

M 

M 
1 M 

P(T? <toiT^<t)^—Y^ l{Tf <t or r£<t for the fcth path}-
fc=i 
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Let I(t) denote the indicator function of the event D\(t) = 1 or 

Dz(t) = 1. We now have the default indicator estimator of the target 

probability of default using the control variate method: 

Ib{t) = I(t) - b • (Ic(t) - E[Ic(t)}), (3-20) 

where /;, is the controlled estimator of the default indicator, / is the 

default indicator without using the control variate, Ic is the control 

variate default indicator, E[IC] = P(IC = 1) is the expectation of Ic. 

We use the special case estimator (//j = Aj) as a control variate. 

To reduce error in the computation of the default probability, we 

do the following. Each time step is taken to be small, thus reducing 

the deterministic bias. In doing so we apply the Brownian bridge con­

struction. For the control variate method, we choose a large number 

of paths, hence reducing the stochastic error. The drawback of these 

changes is that it takes a longer time to run the code. 
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Algorithm 1 . Estimation of the default probability for two firms 
using the control variate method in GBM model (or VG model) 

Input: M is the number of sample paths, N is the number of time 
steps. Model parameters are VQ , Kj, Xj, fij, i/j, Oj,j = 1, 2 
Output: The sample value of the indicator function I(t) 
Compute the expectation of Ic using the formula (3.1) (or (3.8) for 
the VG model). For the VG model, generate random numbers from 
the gamma distribution 
if V0

(1) < Kx or V0
(2) < K2 then 

1 = 1 
Return 

end if 
for k = 1,...,M do 

for i = 1, ...,N do 
Compute Y£\j = 1,2, using (3.18) and (3.19) 
if Yt

(1) < 0 or y/2) < 0 then 
7 = 1 
Return 

else 
For j = 1, 2, compute probj using (3.8) 

with ax = YJJ}V oi = Y^\ b = 0, t2 - h = Atit a = <jj\ 
Generate ctj ~ U(0,1); 
if °-i < probx or a2 < prob2 then 

7 = 1 
Return 

end if 
end if 

end for 
end for 



CHAPTER 4 

Numerical Results 

Let us recall the notation used in our model: 

T = the maturity time(s); 

N = the number of simulated paths in the Monte Carlo method; 

v = the parameter for the gamma distribution; 

p = the correlation coefficient; 

r = the risk neutral interest rate (drift parameter); 

Hi, [i2 — the drift coefficients for two firms; 

oil °2 = the volatility coefficients for two firms; 

Ai, A2 = the constants of the barrier function C(t) = KeXt; 

V01 = Vi, VQ = Vi — the initial asset values of two firms; 

Ki, K2 = the respective constant values for K of the barrier func­

tion C(t) = Kext-

4.1. Comparison of the PDFs of the FHT r and r* 

In Figure 4.1, we notice that the first hitting time (FHT) density 

approaches zero as the maturity time T increases. The PDF becomes 

more heavy-tailed as v increases. 

46 
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-the GBM model 

-the VG model with v=1.0 

the VG model with v=5.0 

5 
Time 

Figure 4.1: The PDFs of the First Hitting Times r* and r, X0 

0.5, n = 0.8, a = 0.6, A = 0.03, V^KX = 2. 
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Figure 4.2: The GBM model vs. the VG model for one firm with 
o = 0.1, Vx/Ki = 2,r = 0.05, A = 0.03. 
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4.2. Comparison of the Probabilities P(T > t) and P(T* > t) 

In Figure 4.2, we note that, for fix a — 0.1, the default probability 

plot for the VG model with v = 1.0 is closer to that of the GBM than 

for the case when v = 3.0. 

0 3 - / / the GBM model 

/ / the VG model with v=0.6 

0.2* the VG model with v=4.6 

0.11 1 1 1 1 1 1 1 1 1 
1 2 3 4 5 6 7 8 9 10 

Time 

Figure 4.3: The GBM model vs. the VG model for one firm with 
a = 0.5, V1/K1 = 2,r = 0.05, A = 0.03. 

In Figure 4.3, we observe that, for fix a = 0.5, the default proba­

bility plot for v = 0.6 is closer to that of the GBM than when v — 0.4. 

Both Figures indicate that the default probability plot for the VG 

model is closer to the GBM model as v gets smaller and time gets 

larger. This conclusion is also obtained from formulas (2.4) and (2.5) 

since the no time change happens when v becomes smaller enough. 

4.3. The Default Correlations in the GBM and VG Models 

4.3.1. The Special Case of the GBM Model. Figure 4.4 il­

lustrates the following results. 
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Figure 4.4: Default correlations for the GBM model for different value 
of p; V1/K1 = V2/K2 = 1.8, ax = a2 = 0.4, and iV = 20000. 

a. The default correlation and the asset correlation p have the same 

sign. The higher p, the higher the default correlation. This result is 

intuitive. For instance, if the asset level correlation p is positive, when 

one firm defaults, it is likely that the value of the other firm has also 

declined and moved closer to its default boundary. The results explains 

why firms in the same industry often have higher default correlations 

than the firms in different industries. 

b. Default correlations are generally very small over short horizons. 

They first increase and slowly decrease with time. Over a short horizon, 

default correlations are low because quick defaults are rare and may 

converge to a stable value. Default correlations eventually decrease 

with time because over a sufficiently long time horizon, the default of a 

firm is virtually inevitable in the model, and nondefault events become 

rare. 
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o L£ i i i i i i i 1 1 I 
0 2 4 6 8 10 12 14 16 18 20 

Time 

Figure 4.5: Default Correlations for the GBM model for different 
values of VXIKX = V2/K2; p = 0.4, ox = a2 = 0.4, and N = 20000. 

Figure 4.5 illustrates the relation between the default correlations 

and time for various levels of the credit quality of the firms, which is 

effected by the initial value of V/K. This figure has some interesting 

results. 

a. High credit quality implies a low default correlation over typical 

horizons. For the higher credit quality firms, the conditional default 

probability P(D2(t) = l\Di(t) = 1) is small. Although the default of 

firm 1 signals that the value of firm 2, V2, may have declined, because 

the original ration V2/K2 is high, the probability that V2 falls below 

K2 is still very small. 

b. The time of peak default correlation depends on the credit quality of 

the underlying firms. The higher quality firms take a longer time to 

peak. 
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c. Because the credit quality of firms is time-varying, the default cor­

relation is dynamic. A rise in the credit quality leads to a substantial 

drop in the default correlation, and a decline in the credit quality leads 

to a rise in the default correlation. This dynamic behavior arises even 

when the underlying assets and liabilities of the firm have constant 

expected returns and risks. 
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Figure 4.6: Default Correlations in the VG model for different values of 
p; ii\ = 0.55, A: = 0.65, ^2 = 0.35, A2 = 0.65, V^Kx = 2, V2/K2 = 3, 
ax = 0.4, a2 = 0.6, v = 0.1, and N = 100000. 

4.3.2. The General Case of the VG Model. In Figure 4.6, we 

notice that the peak of the default correlation becomes higher and the 

correlation function tends to zero faster with the increase of time as p 

becomes larger. 

4.4. The Control Variate Method 
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Figure 4.7: The default probability computed with the analytic formula 
(5.1) vs. the Monte Carlo method for the GBM model (for the special 
case), p = 0.4, Vi/Ki = 2, V2/K2 = 3,a1 = 0.4, a2 = 0.6, N = 100000. 
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Figure 4.8: The default probability computed with the analytic formula 
(5.9) vs. the Monte Carlo method for the VG model (for the special 
case), p = 0.4, ̂  = //2 = 0, Ai = 0.55, A2 = 0.65, VjKt = 2, V2/K2 = 
1.8, <7i = 0.4, o-2 = 0.3, v = 0.1, N = 1000000. 
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Table 1: Comparison of analytic values and Monte Carlo estimates in 
the GBM model 

Time 

5 
10 
15 

Analytical 
Result 
0.6898 
0.7851 
0.8344 

MCM 
Estimate 

0.6898 
0.7851 
0.8344 

Standard 
Deviation 

0.0015 
0.0014 
0.0012 

Table 2: Comparison of analytic values and Monte Carlo estimates in 
the VG model 

Time 
5 

10 
15 

Analytical Result 
0.5319 
0.7547 
0.8835 

MCM 
0.5320 
0.7545 
0.8829 

Standard Deviation 
0.0016 
0.0014 
0.0013 

4.4.1. Comparison of the Analytic Results with the Monte 

Carlo Result. In table 1 and Figure 4.7, we we can conclude that 

the default probability obtained by the analytic formula (5.1) and the 

result from the Monte Carlo method for the special case are the same. 

In table 2 and Figure 4.8. we we can also conclude that the default 

probability obtained by the analytic formula (5.9) and the result from 

the Monte Carlo method for the special case have a little difference. 

Indeed, the difference between the analytic values and Monte Carlo 

estimates has a trend to increase as the maturity time gets larger. 

4.4.2. Efficiency of the Control Variate Method. In Figure 

4.9 and 4.10, we note that as the maturity time gets larger, the ratio 

of variances 1/(1 — p2) approaches 1. As for two firms, their asset level 

correlations p have decreased as the maturity time gets larger, so their 

ratio of variances decrease to approach 1 along p close to 0. 
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Figure 4.9: The ratio of variances in the control variate MCM for the 
bivariate GBM model; p = 0.4, r = 0.55, Ai = 0.75, oi = 0.4, Vi/lfi = 
1.8, A2 = 0.75, a2 = 0.4, V2/K2 = 2, and iV = 10000000. 

Figure 4.10: The ratio of variances in the control variate MCM for 
the bivariate VG model; p = 0.4, v — 0.5, p,i = 0.55, Ai = 0.75, a\ = 
0A,Vi/K! = 1.8,^2 = 0.55, A2 = 0.75, a2 = 0A,V2/K2 = 2, and JV = 
1000000. 



CHAPTER 5 

Conclusion 

This thesis has studied the variance gamma process as a model of 

credit risk. The first passage time of the second kind presents some key 

advantages over the classic definition of first passage time for a diffusion 

process. We provide analytical formulas for calculating probabilities of 

single and joint probabilities of defaults that are easily implemented. 

The formulas obtained provide a convenient tool for credit evaluation 

we demonstrated and risk management. 

Moreover, the application of the Monte Carlo method to the solu­

tion of the GBM and VG model. This was achieved by the construction 

of the Brownian bridge, which is used in estimating first passage times. 

For improving the efficiency of the Monte Carlo method, we have im­

plemented the control variate technique. 
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A p p e n d i x 

By using the series representation for the modified Bessel function 

Ip(Z), equation (3.1) has the following form. 

P(Dx(t) = 1 or D2(t) = 1) 

2r0 
= 1 f2irt 

e 4i E - sin 
71=1,3,... 

n7T^o 

a 

% ^ + D V 4t ~T~ J I (I ™1L 
2 ^ a 

= 1 -
2rn _rd 

£ 
'27Tt 

\ at J 

d v - 1 . 
4« • > — • SI 

n=l,3,, 

ro!^2fe+i(^+l) 
8* 

fnn80 sin 
n \ a 

+£ V 8< / 
-1) 

(5.1) 
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In our VG model, the default probability is an integral of a product 

between the expression in (5.1) and the gamma density. That is, 

P(Dl(t) = 1 or D*2(t) = 1) 

= r ( i - J l * _ . e~i • V - sin (n7rd°\ 
Jo [ V^s" ' \ 5 i n'Sm\ a J 71=1,3,. 

, 2 . O T . , 1/nTT _ 

2 ^ j,\r\l(nE 4--n 4- fc + 11 2^ ur\l(™ -

• —= s ^ - 1 ^ " ^ . 

Now, we need to simplify the following formulas 

(5.2) 

I 2r, 0 _ r a ^ / ? " 0 sO/c+^f — - 1 1 1 ( — -11 - - 7 

o y/7^3 8s i /? r (J ) 

_2\2fc+if / „ 2\ "§ ^.-^r^^^VS-irl^-D^ /•oo 

./O 

= r _ J L _ f v v"" «<-* -!'.-<^BH J - * 
00 4 / r 0

2 \ 2 f c + ^ 

o >/5Fr(Z)U/ 
(5.3) 
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and 

r°° 9 r / r 2 \ 2 f c + | ( = f + l ) 1 

Jo V2^ \8sJ vZr(Z) 

7o \ /2^ \ 8 s ; vssy ,/?r(j) 

r W fr0
2\2k+m _ (2 fc+^+i) - m ! _ l ( T_ 1 } , = / — F = -7T s ^"•-t-2a^^e 4S _ sv" ;e "as 

I 
A , 2\2fc+t2L+1 1 
- t ( ^ ) " -_L_ e ( - ( - /"W/4 S ) ) s (?-2fc-^-2) d S i 

(5.4) 

The above integral can be evaluated as follows. Let us consider the 

Generalized Inverse Gaussian, with density function. 

M = ^ x - ' e - ^ ^ , (5.5) 

WK7 (J) 

where fi > 0 and A > 0,7 € K. and 

K1(\/ti) = J ^ 7 _ 1 ^ * ^- (5.6) 

Now, the expressions (5.3) and (5.4) can be written more compactly 

as the expression (5.6): 

4 / r 0
2 \ 2 f c + ^ 

V*FT(?) V 8 

with 7 = -(2k + ^ ) + r / i / , A = r0
2 /2 and fi = *yfi, 

and 

(5.4) = -^(f) J ^ W / , 0 (5.8) 

4 / r 0
2 \ 2 f e + ^ (5.3) = - ^ ^ ( J -J 2/^7(A//z) (5.7) 
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with 7 - -(2k + =*) + T/v - 1, A = r0
2/2 and // = f ^ . 

Thus, the default probability (5.2) for two firms in the VG model 

can be written as: 

P(D*(t) = 1 or D*2(t) = 1) 

^ 1 . (U-KBQ 
— 1 — > — • sin 

*ri n \ a 
n=l,3,... v 

1 4 ^r„2\2'+" 
£ «r[i(¥ + i) + 4 + i ]vira ( t ) 2"7^(A/") 

1 4 / ^ 2 \ 2 f c + g + l 

& f c ! r I | ( ? - i ) + H i ] A l 8 j i/?r(J) ^ 7 W W 

(5.9) 
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