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Chapter 1 

General Summary 



The goal of this thesis was to compare the effects of waterborne Cd 

exposures and dietary Cd exposures to Hydra attenuata. Before the Hydra could be 

exposed to dietborne exposures of Cd, the effects of waterborne exposures had to 

be understood. This was done by looking at the sensitivity of D. pulex to Cd and then 

understanding the accumulation of Cd. After bioaccumulation patterns of Cd to D. 

pulex were known, we could then feed the prey to the Hydra and compare the 

effects to waterborne effects of Cd to Hydra. 

To understand the waterborne effects of Cd to D. pulex 48 h acute toxicity 

tests were done using a lethal endpoint. It was found that Cd toxicity was most 

strongly affected by Ca2+ activity followed by Mg2+ activity. D. pulex in soft waters 

were more sensitive to the effects of Ca and Mg relative to C. dubia in hard waters. 

Na+, K+, H+, and CI" did not have any significant effects on Cd toxicity. Nordic 

Reservoir and Suwannee River NOM did not differ in their effects on Cd toxicity, 

however both sources were able to complex Cd, rendering Cd un-bioavailable to D. 

pulex. 

The waterborne effects of Cd to H. attenuata were similar to what was seen in 

waterborne exposures of Cd to D. pulex. From this study, Ca proved to have a 

protective effect on Cd toxicity, while the other ions manipulated in toxicity tests (Mg, 

Na, K, CI) did not. DOC also did not show any signs of decreasing Cd toxicity in the 

concentrations tested. When Cd toxicity was assessed by lethality, LC50s varied 

from 0.39-1.53|aM, and when Cd toxicity was assessed using the sub-lethal end 

vi 



point of clubbed tentacles, the EC50s ranged from 0.18-0.79|aM. The latter 

concentrations may not be associated with immediate death, however the 

impairment of feeding capabilities would ultimately affect the population of H. 

attenuata. 

From the above tests on waterborne Cd toxicity to D. pulex and H. attenuata it 

was found that Hydra are more sensitive and thus Daphnia can be used as a vector 

for dietborne exposures. To quantify the effects of dietary Cd to H. attenuata we 

chose an exposure concentration of Cd with a known toxicological effect: the EC50, 

which is marked by the presence of clubbed tentacles. In hardness' of 40 and 140 

mg CaCCVI the EC50 for Hydra has been determined to be approximately 35 and 

90 ng/l, respectively. The percentage of surviving Hydra after being exposed to 

dietborne exposures will allow for a comparison to the waterborne effects and 

determine which pathway is more sensitive. Waterborne and dietary exposures can 

also be combined into a co-exposure that will mimic the exposures in a natural 

setting where the food is exposed to the same concentration and the Hydra. 

After determining that Hydra are more sensitive to Cd than Daphnia, we were 

able to use Daphnia as the dietborne exposure vector. When we compared the 

waterborne and dietborne exposures of Cd to Hydra, it was clear that when the 

exposure concentrations of the Hydra and the prey were consistent the dietborne 

effects were not significantly affecting the Hydra relative to the waterborne 

exposures. 
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Chapter 2 

General Introduction 



2.1 General Overview 

The impact of metals on aquatic organisms is strongly influenced by the 

geochemistry of their environments (Campbell, 1995). Variations in ion 

concentrations, pH and organic matter can alter the bioavailability of dissolved 

metal and thus the uptake and degree of physiological disruption induced (Di 

Toro et al., 2001). In recent years, progress has been made on understanding 

geochemical influences on metal speciation and bioavailability. However, the 

relationship between bioavailabile metal and the toxicity of such metal remains 

an area that needs to be better understood. The bioavailability and thus toxicity 

of waterborne metals is reduced by two factors, anionic complexation of metals, 

and the competition between free ion forms of the metal in solution with other 

cationic elements (Campbell, 1995; Di Toro et al., 2001). In addition to 

waterborne exposures of metals, organisms can be exposed to metals through 

diet. While waterborne exposure to metals primarily results in the disruption of 

ionoregulation, dietary exposures represent a different route of exposure and 

different tissues being exposed. Direct effects on the digestive tract are possible 

and the uptake and bioaccumulation to tissues will differ compared to waterborne 

exposures (Goulet et al., 2007). In contaminated ecosystems, organisms are 

exposed via both water and diet and therefore understanding both vectors of 

exposure and the relative toxic effects (both acute and chronic) is essential for 

metals risk assessment. 
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2.2 Hydra spp.: 

Hydra (Cnidaria: Hydrazoa) are freshwater organisms that are commonly 

found in slow moving rivers and streams (Beach and Pascoe, 1998). Such 

organisms have a simple anatomy consisting of two major divisions: the column 

and the hydranth (Trottier et al., 1997). The column can be subdivided into four 

sections, starting from the basal disk, which attaches the organism to a substrate 

followed by the peduncle, the budding region, and the gastric region (Trottier et 

al., 1997). The hydranth contains the hypostome where the tentacles articulate, 

and also the mouth (Trottier et al., 1997). The gross anatomy of Hydra is 

completely diplobastic (Karntanut and Pascoe, 2000), meaning that the organism 

consists of two layers of cells. This means that all of the cells of the organism are 

in contact with the aquatic environment and, therefore directly exposed to any 

contaminants that are present. 

Because of its sensitivity to metals, Hydra is a good organism to be used 

in laboratory toxicity tests (Holdway et al., 2001). Hydra are also relatively small 

and multiply rapidly, therefore they can be tested in high numbers. Hydra 

reproduce asexually via budding, which significantly decreases the genetic 

variability in populations cultured in laboratories. Reduced genetic variability is 

assumed to reduce the variability of responses in tests. This allows for a stronger 

correlation between exposure concentrations and the responses observed 

(Holdway et al., 2001). Finally, the expression of toxicity in Hydra is easily 

assessed. Toxicity results in morphological changes; tentacles shrink and 
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completely retract and this is followed by the complete disintegration of the 

organism (Trottier et al., 1997). 

2.3 Daphnia spp.: 

Daphnia pulex is a small planktonic crustation that can be found in many 

freshwater ecosystems. A carapace covers the soft-tissues of the body and 

provides protection for the organism. Daphnia spp. are filter feeders that swim 

using two antenna on either side of their carapace. Near the antenna lies the 

opening of the digestive tract. The digestive tract runs through the body and ends 

at the anus, which is located near the postabdominal claw. On the ventral side of 

the organism are gills, which sweep water in a ciliary movement. The heart and 

brood pouch are located on the dorsal side of the organism. Broods can consist 

of 5-30 neonates, depending on the species. 

The cladoceran D. pulex was also chosen to be a test organism in these 

experiments because of its ability to be reared in soft waters (Muyssen et al., 

2006) and its sensitivity to metals. From a practical perspective, Daphnia spp. 

are an ideal organism because they can be easily cultured in the lab and, with a 

short life cycle, can produce large numbers of offspring (Muyssen et al., 2006). 

From an ecological perspective, Daphnia spp. are very low on the food chain, 

and therefore their response to environmental stressors may be considered as 

an early bio-indicator of impacts on the biota in the ecosystem (Muyssen et al., 
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2006). In comparison to other Daphnia spp., D. pulex has been shown to have a 

higher sensitivity to metals, and thus, is believed to be a better bio-indicator to 

the effects of metals in the environment (Shaw et al., 2006). 

2.4 Biotic Ligand Model: 

Biotic Ligand Models (BLMs) predict the toxicity mitigating effects of 

anionic complexation, cationic competition by dissolved ions such as Ca, Mg and 

Na and organic matter complexation of metals to different organisms 

(Villavicencio et al., 2005). In order to develop a BLM, many acute toxicity tests 

are performed and in each parameters such as ionic composition, dissolved 

organic matter (DOC) concentration, and pH are varied to determine their effects, 

if any, on toxicity. As a result, a matrix of test results are generated and the 

trends in toxicity for each parameter can be observed and compared relative to 

other parameters. Observed trends among the parameters can be used to 

calculate equilibrium binding constants (Log K values). These binding constants 

are then incorporated into the model to integrate all of the variables that will 

affect the toxicity of the metals. 

Niyogi and Wood (2004) discussed three principles on which the BLM is 

founded. These principles are integrated with an equilibrium modeling approach, 

which uses speciation prediction equations to determine the complexation of 

metal in the water and thus calculate the amount available to bind to the ligand. 
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The first principle is that it is the free ion form of metal that is taken up by an 

organism and causes toxicity; this is the direct interaction of the organism with 

the free ion form of the metal, and is categorized as physiology in figure 1. When 

free metal ions are complexed in solution they are not taken up and thus do not 

contribute to toxicity. The second principle is that the water chemistry will affect 

the speciation of the metal in solution and specifically the amount of metal in free 

ion form. In figure 1, these chemical interactions between the metal and 

inorgancs or organic matter are categorized as chemistry. The third principle is 

that dissolved cations in a solution can compete for the binding sites on the 

organism; this will result in decreased metal binding to the organism and thus 

decrease the toxicity of the metal (Niyogi and Wood, 2004). The competition is 

diagramed in figure 1 at the gill or biotic ligand. The toxicity predictions of the 

BLM are reported as a lethal concentration value (LC50); this value is 

representative of the concentration of metal that will result in a 50% mortality of 

the population exposed to the specific water chemistry during a defined period of 

time. 

The primary advantage of the BLM is that as a computer model that 

predicts toxicity the need for laborious and expensive toxicity tests is reduced. 

Thus, time and resources can be better directed towards understanding 

environmental impacts and, if necessary, treatment and/or remediation. The 

BLM also serves as a tool that can be used to account for site-specific water 

chemistry conditions and thus has a potential role in improving water quality 
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guidelines and/or criteria, facilitating the derivation of site-specific 

guidelines/criteria. The BLM is also useful in the process of risk assessment. 

2.5 Modes of Toxicity 

Dissolved metals are generally considered the most bioavailable to the 

organism and particulate forms are not available for uptake (Niyogi and Wood, 

2004). Metal can potentially have toxic effects at both the gills and, if ingested, 

the gastrointestinal tract. When examining the gills as a site of toxicity, it is 

important to understand the high level of ion uptake taking place in this tissue. 

Specialized channels specific for sodium, chloride, and calcium allow the ions to 

enter the gill (Figure 2). These ions are exchanged for other ions, in order to 

maintain an electrochemical balance (Paquin et al., 2002). Chloride ions are 

exchanged from the external environment for the similarly charged bicarbonate 

ion while sodium ions enter the cell in exchange for a proton or ammonium 

(Paquin et al., 2002). Once in the gill epithelium, sodium ions are forced into the 

blood by a Na+/K+ ATPase; this creates an electrochemical gradient that pulls 

chloride ions into to the blood (Paquin et al., 2002). The gill epithelium also has 

calcium channels that allow calcium ions to pass through the epithelium and 

enter the blood stream. 

Ion regulation in the gut involves the same ion channels, however, there 

are two main differences. The first is that the lumen of the gut is not subjected to 
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the same changes in water chemistry as the external environment. The second 

difference is the epithelial tissue has different affinities for the ions. The ionic 

demands of the gastrointestinal tissue are not the same as that of the gill 

(Macklin and Josephson, 1971). Although these two tissues have differences, 

they are both susceptible to the effects of metal (Goulet et al., 2007). 

The mechanisms for waterborne toxicity have been thoroughly examined 

and models such as the BLM and FIAM have been developed to predict such 

toxicity in many different water chemistries. The BLM incorporates competition of 

different cations, in both soft and hard waters and complexation of the metal with 

both inorganics (hydroxides, chlorides, carbonates, etc.) as well as organic 

matter (Niyogi and Wood, 2004). However this model does not apply to dietary 

exposures. Goulet et al., (2007) explain that accumulation of metal via digestion 

is dependant on other factors. Speciation may differ in gut resulting in different 

competing factors and also affect the availability of the metal. Organisms also 

have certain detoxification mechanisms that must be overwhelmed before toxicity 

is observed. Dynamic multipathway bioaccumulation models (DYMBAM) have 

been proposed to predict bioaccumulation in organisms. DYMBAM incorporates 

the rate of uptake of metals as well as the rate of elimination (Goulet et al., 

2007). Few of the published bioaccumulation models predict toxicity. 

2.6 Objectives: 
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The broad objective of this research was to understand the toxicity of Cd 

on the freshwater invertebrates Hydra attenuata and Daphnia pulex. This 

involved experiments to understand the influence of water chemistry during 

waterborne Cd exposures as well as the dietary toxicity of cadmium to Hydra. 

Ultimately, the goal was to compare the relative impacts of waterborne and 

dietary exposure routes to H. attenuta. 

The first phase of the research was to develop and understand the 

waterborne acute toxicity of Cd and the influence of water chemistry. This work 

was done using D. pulex and water chemistry manipulations that included Ca, 

Mg, Na, K, CI, pH, and natural organic matter (NOM). Waterborne toxicity of 

cadmium to Hydra attenuta used similar manipulations of the test water 

chemistry as mentioned above and was assessed by both lethal and sub-lethal 

endpoints. In both invertebrate species, the observed toxicity was compared to 

existing prediction models in order to determine their validity and also derive new 

models to more accurately predict the observed toxicity in soft waters. To 

address the dietary toxicity of Cd, the second phase of the research involved 

trophic transfer studies with H. attenuata, using D. pulex as the exposure vector 

to deliver Cd. The third phase was the combination of both waterborne and 

dietary exposures to H. attenuata to determine if there were any compounding 

effects. 
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Chapter 2: Figure 1. A schematic representation of the biotic ligand model 

(Paquinetal.,2002). 
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Chapter 2: Figure 2. Schematic diagram of ion channel on gill epithelium (Paquin 

etal.,2002). 
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Chapter 3 

Development of a Biotic Ligand Model to predict the Acute 

Toxicity of Cadmium to Daphnia pulex in Soft Water. 

This chapter is in manuscript form, and will be submitted to Environmental 

Toxicology and Chemitry. This manusciprt is currently under review by industrial 

funding partners. 
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3.1 ABSTRACT 

The aim of this study was to develop a biotic ligand model (BLM) that can predict 

the acute toxicity of cadmium to Daphnia pulex in soft water. Standard 48 h 

acute toxicity tests were used to determine EC50s in various water chemistries 

where the effects of Ca2+, Na+, Mg2+, CI", K+, pH, and dissolved organic carbon 

(DOC) were tested. Increases in Ca2+ resulted in higher EC50s, indicating that 

Cd2+ competes with Ca2+ for uptake at the biotic ligand. Similar cation 

competition effects were seen when Mg2+ was varied but with a less pronounced 

protective effect relative to Ca2+. Changes in Na+ and K+ concentrations had no 

significant effect on Cd toxicity. EC50 values increased when pH was adjusted 

over a range of 8.0 to 6.1. A previously published BLM (HydroQual BLM ver 

2.2.3) was tested for its ability to estimate acute Cd toxicity to D. pulex in soft 

waters. While the protective effect of Ca could be predicted reasonably well, 

predictions for other test chemistry series did not match with measured EC50s. 

The existing model was modified by altering binding constants for competitive 

cations and the LA50 (or critical value). This modified model was able to predict 

Cd toxicity to D. pulex in soft water except for the protection provided by DOC, 

which was overestimated. 

Keywords: BLM; Cd; modelling; cladocerans; water hardness; bioavailability; 

metal; water quality; risk assessment. 
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3.2 INTRODUCTION 

Cadmium is a non-essential element that is present in freshwater aquatic 

systems at trace levels but that can also be toxic if concentrations increase 

sufficiently, for example as a result of mining activities. The degree of toxicity in 

contaminated ecosystems depends not only on the concentration of metal, but 

also on the entire water chemistry. Bioavailability of metal in aquatic 

environments is dependant on geochemical speciation with the free ion form 

generally associated with toxicity to organisms (Campbell, 1995). Complexation 

of free ions reduces the potential for toxic impacts, as does cationic competition 

for uptake sites on the biotic ligand (Di Toro et al., 2001). Complexation and 

competition capacity are reduced and therefore the potential for metal toxicity is 

enhanced in soft waters, such as those of the many lakes on the Canadian 

Shield (David et al., 1997; Jeziorski and Yan, 2006). 

The influence of complexation and competition on Cd toxicity was 

demonstrated previously in many organisms. For example the importance of 

complexation, and the relationship between Cd2+ and toxicity in grass shrimp 

(Palaemonetes pugio) was shown by Sunda et al., (1978). Niyogi et al., (2008) 

documented competition between Ca and Cd and complexation by dissolved 

organic carbon (DOC) in gill binding and acute toxicity studies to rainbow trout 

(Oncorhynchus mykiss). As waterborne Ca concentration was increased from 

0.1 to 3.0 mM there was an increase in the 96 h LC50 from 1.4 to 15.4 JKJ Cd/L. 

Competition of Ca on Cd uptake into Daphnia magna has been shown by Tan 
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and Wang (2008), who compared accumulation of Cd at 0.5 and 50 mg Ca/L. 

Increased Ca resulted in decreased whole organism Cd (Tang and Wang, 2008). 

Current water quality criteria/guidelines for Cd only take into account the 

modifying effect of hardness on toxicity (e.g. EPA, 2001; CCME, 1999) although 

there is recognition of the importance of aquatic geochemistry in assessing the 

potential for impacts (e.g. CCME, 2009; EPA, 2007a). Biotic ligand models 

(BLMs) have been successfully developed for a number of metals, including Cd, 

as tools to predict metal toxicity and incorporate the influence of water chemistry 

on bioavailability (McGeer et al., 2009). The premise of the model is that the 

toxicity arises from threshold accumulations of bioavailable metal (generally the 

free ion form) on the biotic ligand and both cationic competition and complexation 

are accounted for (Di Toro et al., 2001). Accumulation thresholds associated 

with LC50 exposure concentration are termed the LA50 (Villavicencio et al., 

2005). The site(s) of accumulation associated metal toxicity are typically 

respiratory surfaces (Santore et al., 2002; Playle, 2004). The practical application 

of the BLM is to provide site-specific toxicity predictions and this approach has 

recently been adopted for a revised derivation of the water quality criteria for Cu 

in the United States of America (US EPA, 2007b). 

The BLM uses the Chemical Equilibrium of Species and Surfaces 

(CHESS) and Windemere Humic Aqueous Model (WHAM, ver 5) for calculating 

speciation including organic matter complexation to predict free ion 

concentrations leading to estimates of toxicity (Tipping, 1994). For the BLM to 

accurately predict toxicity the relative equilibrium binding affinity of metal ions 
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(Log K values) must be known (Niyogi et al., 2004b) and these constants can be 

derived through gill-binding experiments or estimated from toxicity data 

(Villavicencio et al., 2005; Santore et al., 2002; Playle and Dixon, 1993). The final 

input for the BLM, the critical value (accumulation associated with 50% lethality 

or the LA50), can be determined from accumulation data or also developed by 

calibrating it to toxicity endpoints using the BLM (McGeer et al., 2009). Most of 

the BLMs that have been developed characterize conditions for waters of 

medium to high hardness and this is the case for Cd (McGeer et. al., 2009; 

Niyogi et al., 2008). Recent studies have illustrated that for Ni and Zn, BLMs 

developed for hard water conditions require modifications in order to predict 

acute toxicity in very soft waters (Clifford and McGeer, 2009; Kozlova et al., 

2009). 

The goal of the study was to understand the influence of cationic 

competition and complexation on the toxicity of Cd to Daphnia pulex in soft water 

and to test the predictive ability of an existing hard water BLM under these low 

hardness conditions. Daphnia pulex was chosen as the test species because of 

it's high sensitivity to metals and its ability to thrive in soft waters (Bury et al., 

2002; Shaw et al., 2006; Environment Canada, 1996). 

3.3 MATERIALS AND METHODS 

D. pulex were obtained from a commercial supplier (Aquatic Research 

Organisms Inc. Hampton, NH) and cultured in 1.5 L glass beakers at a 
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temperature or 21 ± 1°C. Adults were transferred to new media daily and fed 

algae (70% Pseudokirchneriella subcapitata and 30% Chlorella vulgaris) and a 

yeast, cerrophyl and trout feed mixture (YCT, Aquatic Research Organisms NH) 

at the rates recommended by Environment Canada (1996). The culture medium 

for D. pulex was reconstituted soft (RS) water based on additions of CaSC^, 

MgSC-4, NaHCCb, and KCI (all Sigma-Aldrich Inc. St. Louis, MO) as described in 

(Clifford and McGeer, 2009). RS water was based on the standardized soft 

water media recommended by Environment Canada and the US EPA 

(Environmental Canada, 1996; EPA, 2002) modified to reduce the Mg content 

(Kozlova et al., 2009). The final measured concentrations of Ca, Mg, Na, CI, K, 

S04", and HC03" were 170, 140, 570, 30, 30, 310 and 570^iM, respectively and 

20L batches of media were made as needed and aerated prior to use. The pH 

was 7.8 and the dissolved organic carbon (DOC) content was measured to be 

1.53mgC/L 

Test solutions were prepared to understand the potential effects of Ca, 

Mg, Na, K, CI, pH, and natural organic matter (NOM) on acute Cd toxicity. For 

Ca, Mg, Na, K and CI tests RS, water was prepared as described above except 

for the parameter under test, which was added to give the desired 

concentrations. When examining the effects of pH on Cd toxicity, the methods 

outlined by De Schamphelaere et al., (2004), using the non-complexing buffer 3-

(n-morpholino)-propanesulphonic acid (MOPS) was used at a concentration of 

3.58 x 10"3 M in RS water. Additions of HCI or NaOH were used to set the 

solution pH, which was maintained at ±0.1 pH units. The protective effects of two 
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sources of NOM were also tested; Nordic Reservoir NOM (International Humic 

Substances Society no. 1R108N) and Suwannee River NOM (no. 1R101N). A 

complete outline of the test water chemistries is detailed in Table 1. 

Acute lethality tests followed the Environment Canada test methodology 

guidelines (Environment Canada, 1996). Each toxicity test consisted of one 

control (soft water test medium with no added Cd) and 7 different concentrations 

of Cd. Exposure concentrations ranged from 0.09-4.4 \xM Cd depending on the 

factor being tested and were made by additions of stock solution that was 

prepared from reference standard (Inorganic Ventures Inc., Lakewood, NJ). 

Each test was done in duplicate using 250 ml plastic beakers containing 100ml of 

test solution. To ensure uniform concentrations, 2L batches of base test medium 

(without Cd) were prepared and then 250 ml aliquots were spiked with the 

appropriate volume of Cd stock solution to create the test exposures, which were 

then split into the individual test replicates. Ten neonate D. pulex (age <24 h) 

were placed in each test beaker without food. After 48h, the neonates were 

assessed based on the endpoint of immobility. Tests with more than 10% 

mortality in controls were not considered valid (Environment Canada, 1996). 

Water samples (10 ml) were collected prior to addition of neonates as well 

as at test end to assess the consistency of exposure conditions over the 48h test 

duration. At sampling times pH was measured (Radiometer PHM240 meter with 

pHC2701-8 electrode). Samples were acidified to 1% (volume with 16N trace 

metals grade HNO3, Fisher Scientific, Nepean, ON) then measured by atomic 

absorption spectrophotometry (SpectAA-880, Varian Inc, Palo Alto, CA) for Cd. 
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The manipulated ion under test (either Ca, Mg, Na or K) was similarly measured 

on three randomly chosen samples per test series. Samples for Cd analysis 

were not filtered and this was based on preliminary sample collections and a 

comparison of 0.45 urn filtered (see below) and unfiltered samples where 

dissolved Cd was 96.3% (range 92.4% to 98.9%) of total (unfiltered sample) Cd. 

Samples for measurement of DOC concentrations were also collected, and 

filtered (0.45 j^m Acrodisc syringe filter, HT Tuffryn) prior to analysis (5050A TOC 

Analyzer, Shimadzu, Columbia, MD). When NOM was the parameter under test, 

DOC characterization was done on all test solutions while for other trials DOC 

analysis was done on 3 random samples from each test. 

EC50 values for total Cd were calculated using the software program 

PROBIT (Ver. 1.5) using the measured water chemistry and the Hydroqual BLM 

(ver. 2.2.3; downloaded from www.hydroqual.com/BLM) speciation of Cd in the 

different test media was done to derive Cd2+ concentrations. EC50 values for 

Cd2+ were calculated as described above. Speciation data was also used to 

derive stability constants for the competitive interaction of cations (Ca2+ and 

Mg2+) on Cd2+ toxicity, calculated according to the method described by De 

Schamphelaere and Janssen (2002). In brief, linear regression analysis of free 

cation activities, Ca2+ on Cd2+ EC50, in the presence of constant Mg2+ was used 

to generate the slope and intercept variables that were used to develop the 

matrix equations to derive estimates of Log KcaBL (De Schamphelaere and 

Janssen, 2002). Similarly, regression variables for the toxicity mitigating effect of 

Mg2+ activity on Cd2+ activity at the EC50 concentration in the presence of 
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constant Ca were used to estimate the Log KMgBL- The conditional equilibrium 

constant describing the toxic interaction of Cd2+ on the biotic ligand (Log KCCBL) 

was calculated from the average of the intercepts of the individual regression 

relationships of Cd2+ on Ca2+, Mg2+, Na+, K+, H+, SRNOM and NRNOM. 

Predictions of acute Cd toxicity were developed using the HydroQual 

BLM. A D. pulex BLM is not available therefore the input files for Ceriodaphnia 

dubia were used and adjusted to develop a soft water BLM. Measured water 

chemistry values were used as model inputs and DOC was assumed to be 10% 

humic acid (BLM default value). Predictions were done using the model without 

adjustment (as downloaded from the HydroQual website) and then with 

adjustments to the LA50 value (adjustments made to achieve the best fit 

between predicted and measured). A third round of predictions was made, this 

time adjusting Log K constants within the input parameter file, replacing them 

with the calculated values for D. pulex in soft water. The Log Ks were calculated 

using methods outlined by De Schamphelaere and Janssen (2002). This soft 

water BLM was refined by making adjustments to the Log K values as well as the 

LA50 value to achieve improved correlation between measured and predicted 

toxicity. 

3.4 RESULTS 

A significant decrease in the acute Cd toxicity was observed when the Ca 

was increased (Table 1, Figure 1A). The concentrations of tested, Ca ranged 
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from 0.03 mM to 1.61 mM and over this range EC50 values increased 9 fold, 

from 0.15 to 1.38 JJ.M Cd. Mg also reduced Cd toxicity, however compared to Ca 

the effect was modest, only a 2.6 fold increase in EC50 over the range of 0.01 

mM to 1.40 mM Mg (Table 1, Figure 1B). The slopes of the linear regression 

lines for the effect of Ca2+ and Mg2+ on EC50 for Cd2+ (Table 2) confirmed that 

the protective effect of Mg2+ was about 30% that of Ca2+. It is noteworthy that 

decreases in Mg test concentrations below those present in the culture media did 

not result in any decreases in EC50 below that for the culture medium as had 

been observed at low Ca concentrations in the Ca test series (Figure 1A and 1B, 

Table 1). Across a Na range of 0.54 to 1.65 mM, changes in Na did not alter Cd 

toxicity (Table 1, Figure 1C). The slope of the lines of regression describing the 

relationship between Na+ and Cd2+ toxicity does not significantly differ from zero 

(Table 2). Na concentrations were adjusted using NaCI and K concentrations 

were altered using KCI, therefore since no effect was observed on Cd toxicity, it 

can be concluded that in addition to Na and K, CI also plays no role in modifying 

Cd toxicity (Table 1). 

A linear relationship between pH and Cd toxicity was observed over a pH 

range of 6.10 to 8.02 (Table 1) with EC50 showing a trend toward higher values 

as pH decreased. This data is also shown as a function of H+ in Figure 2A and in 

spite of the trend, the slope of the linear regression of H+ activity and Cd2+ activity 

was not significant. 

The relationships between DOC concentration and the EC50 

demonstrated that NOM provided protection against toxicity (Table 1, Figure 2B). 

28 



When toxicity was expressed as a function of calculated Cd concentrations 

(generated by WHAM 5, within the Hydrqual BLM), the results illustrated that 

toxicity mitigation was due to complexation. In other words the EC50 for Cd2+ 

was relatively constant (Fig 2C, Table 3). Both Nordic Reservoir and Suwannee 

River NOM sources had similar protective effects. The regression of DOC (mg/L) 

vs EC50 (total Cd in solution) is EC50 = 0.04 [DOC] + 0.35 (r2 = 1.00) and EC50 

= 0.04[DOC] + 0.33 (r2 = 0.96) for Nordic Reservoir NOM and Suwannee River 

NOM, respectively. 

Estimates of the conditional equilibrium constants for Ca2+, Mg2+ and H+ 

on Cd2+ toxicity were derived using geochemical speciation modeling from 

measured water chemistries, producing a calculated Log KC3BL of 4.08, Log KM9BL 

of 3.71 and a Log KHBL of 6.13. The calculated value for the interaction of Cd2+ 

on the biotic ligand (Log KCCIBL) was 6.97. The HydroQual BLM for the acute 

effects of Cd on C. dubia generally under-estimated Cd toxicity to D. pulex in soft 

water (Figure 3A). When the critical values (LA50 threshold for lethal 

accumulation) was adjusted from 7.53 down to 7.1 nmol/g, the model delivered 

reasonable predictions for NOM and Ca test solutions but over-estimated toxicity 

in other test solutions (Figure 3B). With calculated Log K values from this study 

(for Ca, Mg and H) as parameter file inputs and with Log KNaBL removed, the best 

fit between measured and predicted toxicity was achieved with a LA50 values of 

2.5 nmol/g (Figure 3C). However the protective effects of DOC were over­

estimated and those for Ca and Mg were under-estimated. As well, the 

prediction of toxicity at pH 6.1 was dramatically incorrect at 2.9 uM (point off 
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scale and not visible in Figure 3C) compared to the actual measured EC50 of 

0.65 uM. In the final modelling series the strength of the binding affinities of both 

Ca and Mg was increased to 3.8 and 3.7 respectively, with a concomitant 

decrease in LA50 to 0.6 nmol/g (Figure 3D) in order to improve predictions. The 

protective effect of NOM in this model was still somewhat over-estimated (Figure 

3D). 

3.5 DISCUSSION 

Ca had a significant protective effect on Cd toxicity (Figure 1A, Table 2) 

and this has been reported previously for Cd (Santore et al., 2002) and other 

metals including Cu (De Shamphelaere and Janssen, 2002), Zn (Clifford and 

McGeer, 2009) and Ni (Kozolva et al., 2009). Verbost et al., (1989) showed that 

Cd2+ uptake and Ca2+ uptake are functionally linked, sharing the same uptake 

site on the gills of fish and interacting competitively for those influx sites. 

Evidence that Cd2+ competes for uptake at Ca2+ uptake sites in D. magna is 

strongly supported by the recent study by Tan and Wang (2008), who looked at 

the effects of different Ca concentrations of the accumulation of Cd and Zn in D. 

magna. Tan and Wang (2008) found the amount of Cd accumulated was 

inversely proportional to the amount of Ca in solution thus clearly illustrating the 

competitive interaction that we also observed through toxicity mitigation. 

Mg has an effect similar to that of Ca, however the protection was 

relatively less prominent (Figures 1A and 1B). At the highest Mg concentration a 
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reduced EC50 for Cd was evident (Table 2, Figure 1B) indicating that elevated 

Mg may be causing a physiological effect that sensitizes Daphnia pulex to Cd. 

This is rather speculative, however it is noteworthy that transferring Ceriodaphnia 

dubia from low to higher concentrations of Mg resulted in sublethal effects 

(temporary inhibition of reproduction; Schwartz et al., 2007). The relatively 

weaker protective effect of Mg compared to Ca could arise through interactions 

that Mg is known to have on Ca uptake mechanisms (Markich and Jerrfee, 1994; 

Pattnaik et al., 2007). Markich and Jeffree (1994) highlighted the permissiveness 

of the Ca uptake mechanisms thus allowing other divalent cations to also be 

taken up. Although both Ca and Mg can bind to the receptor, Ca has a higher 

binding affinity because its ionic radius is more suited for the ligand (Markich and 

Jeffree, 1994). Following a similar mechanism of Ca and Mg, other divalent 

metals (in this study Cd) can compete for the Ca ligand. This hypothesis has 

been strengthened by Pattnaik et al., (2007), who characterized Ca2+-ATPase 

activity at varying concentrations of Ca and Mg. It was evident that the Ca2+-

ATPase could be induced by the presence of both Ca and Mg. These data are in 

agreement with the finding in our study in that although Mg can have competitive 

effect on the Ca ligand, it will be less pronounced due to a relatively weaker 

affinity for Mg compared to Ca. 

Na manipulations suggest that Cd toxicity is independent of the Na 

concentration in the system (Figure 1C) and Niyogi et al., (2008) found similar 

results for Cd uptake in rainbow trout. The transport of Na across the respiratory 

epithelium of fish is known to be a two-part system that involves a Na transport 
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channels and H+ ATPase pumps on the apical surface of the membrane, and 

Na+/K+-ATPase pumps on the basolateral side (Grosell et al., 2002). Neither of 

these steps in Na up-take would allow for Cd2+ or other divalent ions to enter the 

organism and therefore our results, showing no effect of Na+ on Cd2+ toxicity was 

in agreement with Grosell, et al., (2002). 

In toxicity tests where pH was varied there was a general trend toward 

increased EC50 values when pH decreased from 8.02 to 6.10. This change 

(38% increase but not significant) suggests the possibility of a modest 

competition between H+ and Cd2+ (Figure 2A). Playle et al., (2004) found a 

similar competitive interaction, reducing the binding of Cd to the gills of fathead 

minnows (Pimephales promelas) as pH was decreased to 4.8. The results are 

contrary to those of Niyogi et al., (2008) who noted no change in acute toxicity of 

Cd to rainbow trout across a range of pH values from 5.8 to 8.8 or in gill binding 

from 4.8 to 9.4. In these tests MOPS, a buffering agent that does not complex 

metals (De Schamphelaere et al., 2004), was used to fix the different exposure 

pH values whereas Niyogi et al., (2008) co-varied pH and alkalinity. 

The effects of two standard NOM sources, Nordic Reservoir and 

Suwannee River were examined at concentrations that typically occur in soft 

Canadian Shield waters (David et al., 1997). Increases in both sources of NOM 

resulted in higher EC50s when toxicity was considered on a total Cd basis 

(Figure 2B). The toxicity of Cd as a function of Cd2+ activity was relatively 

constant (Figure 2C) illustrating both the complexation of Cd by DOC and that 

the free ion form of Cd is associated with acute lethality. Our results therefore 
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are consistent with the free ion activity model (Campbell, 1995) and the results of 

Niyogi et al., (2008) and Playle et al., (2003) demonstrating that NOM binds Cd2+ 

in solution and the Cd-DOC complexes that are formed are not bioavailable. Cd 

has been shown to bind to humic acid (HA), fulvic acid (FA) and also less 

abundant functional groups like thiols and amines (Cao et al., 2006; Karlsson et 

al., 2006). Both sources of NOM, Nordic Reservoir and Suwannee River, had 

similar protective effects on Cd toxicity indicating that they contain similar binding 

characteristics with regards to Cd complexation. This result is similar to those of 

Clifford and McGeer (2009) with Zn but differ from those of Kozlova et al., (2009) 

who found that Suwannee River and Nordic Reservoir NOMs provided much 

different levels of protection against Ni toxicity. 

In order to integrate the soft water Cd toxicity data into a biotic ligand 

model a step-wise approach was used. The first step was to test the capabilities 

of a previously published BLM, calibrated for predicting the acute impact of Cd to 

Ceriodaphnia dubia in relatively hard waters. This model was chosen, as it is the 

only BLM available for the effects of Cd in invertebrates. Toxicity predictions 

were made using the test water chemistries (Table 1) and demonstrated that D. 

pulex in soft water appears to be generally more sensitive than C. dubia (Figure 

3A). As well, the protective effects of DOC, Ca and Mg are over-estimated by 

the BLM (Figure 3A). With adjustments of the LA50 to reflect the elevated 

sensitivity it was possible to achieve reasonable predictions for the protective 

effects of Ca and NOM (Figure 3B). However this sensitivity correction did not 

capture the effects of pH, Mg and Na test series where predicted toxicity was 
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greater than measured (Figure 3B). 

Development of a model specific for the toxicity to D. pulex in soft water 

followed as a third step, one where the calculated equilibrium constants (Table 3) 

were tested. Once the LA50 value was adjusted (2.5 nmol/g) it was obvious that 

the protective effects of NOM were over-estimated while those of Ca and Mg 

were underestimated (Figure 3C). As well, the effects of H+ were dramatically 

overestimated at low pH. It was possible to account for these by increasing the 

constants for Ca and Mg (Figure 3D and Table 3). The final soft water BLM 

predicted that DOC would have a stronger protective effect than it actually did 

(Figure 3D) and this was also observed in the negative slope of the free ion 

EC50 relationships (see Table 2). Unfortunately, the DOC-Cd interaction is not 

one that can be manipulated within the WHAM V/HydroQual BLM interface. 

A comparison of the soft water BLM for acute Cd effects on Daphnia pulex 

and the hard water BLM for acute Cd effects on Ceriodaphnia dubia illustrated 

features of Cd toxicity as well as BLM modelling. The Log KcdBL for Daphnia 

pulex in our study (7.0) was lower than the 8.6 reported by Playle et al., (2003) 

and is used in the HydroQual BLM. However it agrees reasonably well with other 

published values such as the 7.5 reported by Niyogi et al., (2008) and the 7.3 

reported by both Niyogi et al., (2004a) as well as Hollis et al., (2000) in soft 

water. The protective effects of Ca2+ on Cd toxicity to D. pulex in soft water were 

similar to those for C. dubia in the HydroQual BLM however those for Mg2+ and 

H+ were less than observed (Figure 3B). Niyogi et al., (2008) found no protective 

effect of Mg on Cd gill binding in rainbow trout (Oncorhynchus mykiss) however 
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Cd exposure concentrations were well above the acute LC50 concentration. The 

enhanced protective response to Mg2+ that we observed may be due to species 

differences or may be related to physiological differences that may occur in 

organisms acclimated to soft water. In a recent study with Zn, Clifford and 

McGeer (2009) postulated that acclimation to soft water in Daphnia pulex up-

regulate Ca and Mg uptake mechanisms and this created conditions whereby the 

toxicity of divalent cationic metals that mimic Ca is enhanced in very soft water. 

The upregulated uptake may also explain the increased protective effect of 

waterborne Ca and Mg in soft waters compared to hard water. 

In conclusion, our studies indicate that the acute toxicity of Cd to Daphnia 

pulex is significantly increased by Ca and to a lesser extent Mg. Tests with 

varying concentrations of Na and K (as chloride salts) in the exposure water did 

not result in changes in EC50 values. Two sources of NOM were tested and as 

concentrations increased toxicity decreased. The results of these experiments 

are consistent with FIAM and BLM principles (Campbell, 1995; Di Toro et al., 

2001) and also with Cd2+ as a mimic of Ca2+ (Verbost et al., 1994). A Cd BLM, 

developed primarily on data from hard and moderately hard water, the 

HydroQual BLM was tested for its ability to predict toxicity to Daphnia pulex in 

soft water. Once adjusted for the sensitivity of Daphnia pulex (via calibration of 

LA50 value) the HydroQual BLM provided reasonably accurate predictions of the 

protective effects of Ca and also the NOMs. However other test data was 

underestimated. Using soft water specific BLM parameters an alternative BLM 

was developed and with adjustment, this model provided reasonable estimates of 
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Cd toxicity although the effects of NOM and elevated Mg were predicted to 

provide more protection than actually occurred. 
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Chapter 3: Table 2. Regression coefficients for the linear regression of Ca , 

Mg2+, K\ H+ and Na+ on the acute toxicity of Cd2+. Where significant effects 

were observed, the Log K values were calculated. The units for slope are 

AEC50 (Cd2+ uM) per mM change in cation activity, except for NOM which is 

per mg C/L of DOC. The intercept is Cd2+ uM. 
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Calculated 
slope intercept r2 

Log K value 

Ca*+ 

Mg2+ 

Na+ 

K+ 

H+ 

*NR NOM 

#SR NOM 

0.708 

0.260 

0.035 

-0.001 

0.227 

-0.018 

-0.014 

0.106 

0.283 

0.315 

0.226 

0.416 

0.339 

0.328 

0.95 

0.55 

0.18 

1.00 

0.72 

0.88 

0.88 

4.08 

3.71 

n.a. 

n.a. 

6.13 

n.a. 

n.a. 

* NR NOM - Nordic Reservoir Natural Organic Matter. 

* SR NOM - Suwannee River Natural Organic Matter. 
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Chapter 3: Table 3. BLM input parameters for the C. dubia in hard water model 

of Santore et al., (2002) and for the modified BLM for D. pulex in soft waters. 

See Figure 3A, B, C and D for additional detail. 
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Cd-BL 

Ca-BL 

H-BL 

Mg-BL 

Na-BL 

Critical Value 

Santoreetal., 

2002 

8.6 

4.5 

6.7 

3.5 

3.0 

7.53 

Modified BLM 

7.0 

4.9 

7.7 

4.8 

n.a. 

0.6 
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Chapter 3: Figure 1. Measured EC50s (with 95% confidence interval) for the 

effects of Ca2+ (panel A), Mg2+ (panel B) and Na+ (panel C) on Cd2+ to D. 

pulex. In each case the linear regression line is shown (also see Table 2). 
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Chapter 3: Figure 2. Measured EC50s (with 95% confidence intervals) for D. 

pulex in soft water at different H+ concentrations (panel A) and DOC 

concentrations (panel B and C). Panels A and C give EC50 values on a Cd2+ 

basis while panel B shows the effect of DOC on total Cd concentration basis. 

For each panel, the linear regression line of best fit is shown (also see Table 

2). In DOC experiments (B and C), two sources of NOM were used, Nordic 

Reservoir (closed circles) and Suwannee River (open circles) and the open 

square shows EC50 values at no added NOM (control water). 
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Chapter 3: Figure 3. Ability of BLM models to predict measured EC50 

concentrations in soft water. Panels A and B show the HydroQual BLM 

predictions where the model predictions are done with an unadjusted model 

(Panel A) and then adjustments are made to the critical value (LA50) to 

provide the best fit possible (Panel B). In Panel B the adjusted critical value 

was 7.1 nmol/g. Panel C shows the predicted EC50 where the model used 

Log K values that were calculated based on the toxicity data (Table 2). The 

final adjusted version of the modified BLM for D. pulex in soft water is shown 

in Panel D (see also Table 3). Symbols show different experimental test 

series and the solid diagonal lines in each panel represent the 1:1 line of 

perfect prediction. 
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Chapter 4 

The Effects of Water Chemistry on Lethal and Sub-lethal 

Cadmium Toxicity to Hydra attenuata in Soft Water. 

This chapter is in manuscript form, and will be submitted to Comparative 

Biochemistry and Physiology. This manusciprt is currently under review by 

industrial funding partners. 
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4.1 ABSTRACT 

The primary objective of this study was to develop toxicity prediction models in 

soft water for Hydra attenuata. The toxicity of cadmium to H. attenuata was 

assessed with lethal and sub-lethal toxicity tests. Acute toxicity tests were 

conducted with adult hydra over a 96-hour period to generate LC50s and EC50s. 

Complete disintegration of the organism was used as a lethal end-point to 

generate LC50s, and clubbing the tentacles as a sub-lethal end point to generate 

EC50. For both series, water chemistry parameters of Ca2+, Na+, Mg2+, and CI" 

were all altered to determine the effects, if any, on the toxicity of cadmium. Two 

sources of dissolved organic matter (DOM) were also tested while assessing the 

lethal endpoint. For both lethal and sub-lethal endpoints, increases in Ca2+ 

activity showed a protective effect, indicating a competition for Ca2+ and Cd2+ 

with biological ligand. Surprisingly, cadmium toxicity acted independently of Mg2+ 

activity. Altering the concentrations of Na\ K\ and CI" did not have any effects 

on cadmium toxicity when assessing either endpoint. EC50s were approximately 

one third of the LC50s. In lethal assays, DOM had a small protective effect 

against Cd toxicity but this was less than would be expected based on modeled 

DOC-Cd complexation. The BLM was used to estimate sublethal toxicity, 

however the protective effects of Ca were overestimated as was the 

complexation effects of natural organic matter. This would suggest that using a 

BLM to predict Cd toxicity to H. attenuata would not be advantageous over using 

a simple hardness equation. 
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4.2 INTRODUCTION 

Hydra (Cnidaria: Hydrazoa) are freshwater organisms that are commonly found 

in slow moving rivers and streams (Beach and Pascoe, 1998). They have a 

relatively simple anatomy consisting of two major divisions: the column and the 

hydranth (Trottier et al., 1997). Anatomically, Hydra are completely diplobastic 

(Karntanut and Pascoe, 2000), which allows all of the cells of the organism to be 

in contact with the aquatic environment and, therefore directly exposed to any 

contaminants that are present. Hydra have been shown to be sensitive to 

contaminants such as insecticides (Kalafatic, 1997), pharmaceuticals (Quinn et 

al., 2007) and metals (Holdway et al., 2001; Karntanut and Pascoe, 2002). In 

addition to its sensitivity to environmental stressors Hydra can be maintained and 

cultured in a laboratory setting, they reproduce rapidly and exhibit clear and 

distinctive morphological changes during stress and therefore are suited to 

toxicity studies (Karntanut and Pascoe, 2000; Trottier et al., 1997). 

Morphological changes as expressions of toxicity can be easily assessed in 

Hydra: tentacles shrink and then completely retract followed by a gradual 

regression, loss of structure and then disintegration of the organism (Trottier et 

al., 1997). 

Understanding the effects of metals in aquatic environments requires 

knowledge on the interactions between the metal and the water geochemistry 

that influence bioavailability (Di Toro et al., 2001; De Schamphelaere and 

Janssen, 2002). The free ion is the most bioavailable form in solution (Campbell, 
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1995) and water chemistry variables that complex metal, such as natural organic 

matter (NOM), decrease the bioavailability to the organism (Niyogi et al., 2008; 

De Schamphelaere and Janssen, 2002, Di Toro et al., 2001). Additionally, 

cations such as Ca2+, Mg2+, Na+, K+ and H+ may compete with metal ions for 

uptake into organisms (Niyogi and Wood, 2004; Di Toro et al., 2001). 

Competition for uptake explains, at least in part, the protective effect that 

hardness has, particularly for divalent metals such as Cd, Pb, and Zn (Clifford 

and McGeer, 2009a,b). 

The combined effect that complexation and competition can have on metal 

toxicity to aquatic organisms have been integrated into a geochemical equilibrium 

modeling framework, the biotic ligand model (BLM; Di Toro et al., 2001). BLMs 

have been developed to provide water chemistry specific predictions for the 

effects of metals including Cd, Cu, Zn, Ag and Pb (Niyogi and Wood, 2004; 

McGeer et al., 2009). The available BLM software for Cd (HydroQual BLM 

available at www.hvdroqual.com/blm) was developed based on the gill binding 

studies of Playle et al., (1993). Two recent studies have produced BLM modeling 

parameters for the effects of Cd on rainbow trout (Niyogi et al., 2008) and 

Daphnia pulex (Clifford and McGeer, 2009a). In general the development of 

BLM approaches for Cd have not been studied as extensively as other metals 

such as Cu, Zn or Ni (McGeer et al., 2009). For example, with the exception of 

Clifford and McGeer (2009a) Cd BLM studies have been done in waters of 

intermediate to high hardness. 
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The role of cationic competition and anionic complexation in reducing 

bioavailability and toxicity results in increased susceptibility for metal toxicity to 

organisms in soft water (ion depleted) environments. These environments are 

highly relevant in the Canadian context as many of the lakes on the Canadian 

Shield have very low hardness. David et al., (1997) completed a survey of 100 

lakes on the Canadian Shield and recorded an average hardness of 14 mg/L as 

CaC03, and average Ca and Mg concentrations of 100 JJ.M and 40 ^iM, 

respectively. The performance of BLMs in these very soft waters where toxicity 

may be enhanced has been identified as a gap in the understanding of ecological 

risks of metals (McGeer et al., 2009). 

This study aims at increasing the knowledge of Cd toxicity to a less 

frequently studied organism, Hydra attenuata. Our goal was to investigate the 

effects of water geochemistry on Cd toxicity by manipulating water ions (e.g. Ca, 

Mg, Na, K, and CI), pH and dissolved organic matter (DOM). The capacity of the 

existing BLM to estimate toxicity of Cd to Hydra was tested with a view to 

developing a BLM for Hydra in soft water. Both lethal and sub-lethal 

morphological endpoints were used to determine the effects of Cd in various 

water chemistries. 

4.3 MATERIALS AND METHODS 

Hydra attenuata were obtained from C. Blaise (Centre Saint-Laurent, 

Environment Canada, Montreal). Hydra cultures were fed brine shrimp and 
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maintained according to the procedures outlined in Trottier et al., (1997). In brief, 

cultures were maintained in 1.5 L glass crystallizing dishes, filled with 500ml of 

culture media and at a temperature of 21 °C (± 2°C). Hydra were fed daily with 

rinsed Artemis nauplii (Ocean Star International Marine Lab Inc., Snowville UT), 

which had been hatched no more than 24h before in a 30 g/L NaCI at 29°C. 

Hydra were allowed to feed for at least 30 min before the dishes were cleaned 

and the culture media was replaced. 

The culture media for H. attenuata was reconstituted soft water (RSW), 

modified to have a pH of 7.0 (Clifford and McGeer, 2009a). RSW used CaS04, 

MgS04, NaHC03l and KCI (all Sigma-Aldrich Inc. St. Louis, MO) additions to 

deionized water to achieve final measured concentrations of Ca, Mg, Na, CI, K, 

S04", and HCO3" of 170, 140, 140, 30, 30, 310 and 140 nM, respectively. RSW 

was modified from the standardized soft water recommended by Environment 

Canada and US EPA to reduce the Mg content (Kozlova et al., 2009). The 

dissolved organic carbon (DOC) content was measured to be 1.53 mg C/L. 

Test media was prepared as a 2L aliquot of culture media but lacking the 

chemistry parameter under test, which was added separately. The parameters 

that were varied in different test series were Ca, Mg, Na, K and CI and these 

were added (as CaS04, MgS04, NaCI and KCI) to achieve the concentrations 

required for each test. Additionally, the potential protective effect of NOM on Cd 

toxicity was tested in RSW using two sources; Nordic Reservoir NOM (1R108N) 

and Suwannee River NOM (1R101N), both obtained from the International Humic 

Substances Society. The effect of pH on Cd toxicity was also tested in RSW. In 

65 



these tests the buffering compound 3-(n-morpholino)-propanesulphonic acid 

(MOPS) was used at a concentration of 750 mg/L to adjust pH from 7 (pH of 

RSW) to either 6.0 or 8.0 using either HN03 or NaOH (De Schamphelaere et al., 

2004). Test solution chemistries are given in Table 2 (associated with EC50 

tests) and Table 3 (LC50 tests). 

Toxicity tests followed the methods given by Trottier et al., (1997) with 

minor modifications. In brief, tests were carried out in 12-well microplates where 

Hydra were exposed, in triplicate, to one of the eight exposure concentrations 

(each test consisted of a control and 7 Cd exposure concentrations). Appropriate 

volumes of Cd, from a 0.89 mM stock solution, were added to the 25 ml of test 

medium (exposure media without Cd as described in the previous paragraph) 

and 5 ml added to each of the 3 microwell plates. The remaining 10 ml was 

saved for subsequent analysis. Ten Hydra with either no buds or with slightly 

developed buds were selected and inoculated into each microplate well to start a 

test, which lasted for 96 h. Results from toxicity assays were considered 

acceptable if the mortality of the controls was less than 10% (Trottier et al., 

1997). 

The effects of Cd on Hydra were assessed as morphological changes to 

the whole organism. Morphological endpoints assessed either lethal or sublethal 

endpoints and were based on the 10 point system developed by Wilby (1988, as 

reported in Karntanut and Pascoe, 2000) where a normal healthy organism score 

as a 10 and the complete disintegration scores as a 0 (see Table 1). The 

sublethal endpoint (96 h EC50) for morphological change was clubbed and 
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shortened tentacles (score of 8, Table 2, Figure 1B), and for the lethal endpoint 

(96 h LC50) the morphological endpoint was 'tulip' phase (score of 2, see Table 

1, Figure 1D). Independent test series for the two endpoints were used to assess 

the effects of Cd on H. attenuata in varying water chemistries. Images of 

representative morphological responses to waterborne Cd were taken using a 

Nikon Zoom Steriomicroscope SMZ 1500 (Kikon Canada Inc., Mississauga, ON) 

with a Fiber-Lite M1-150 high intensity illuminator (Dolan-Jenner Industries, 

Boxborough, MA). The stereomicroscope was fitted with a Paxcam digital 

camera and the images were captured using the Pax-it Image Management 

Software (Paxcam, Villa Park, IL). 

Samples (10 ml) were collected for each test solution at the beginning of 

each test and acidified with a 1% volume of 16N HNO3 (trace metal grade, Fisher 

Scientific, Nepean, ON). Total (unfiltered) Cd concentrations in solution were 

measured following a comparison of unfiltered and filtered (0.45 jim Acrodisc 

syringe filter, HT Tuffryn) samples that demonstrated that dissolved Cd was 

96.3% (range 92.36% to 98.87%, n = 10) of the total Cd in solution. For each test 

series, three samples (randomly chosen from the 8 collected) were analyzed for 

Ca, Mg, Na, and K. Cation concentrations were measured by atomic absorption 

spectrophotometry (SpectAA-880, Varian Inc, Palo Alto, CA). The pH of test 

solutions was measured using a PHM240 meter with pHC2701-8 electrode 

(Radiometer). DOC was also measured on samples from each test series. 

Samples for DOC were filtered (0.45 jim Acrodisc syringe filter, HT Tuffryn) and 
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measurements done on a total organic carbon analyzer (5050A TOC Analyzer, 

Shimadzu, Columbia, MD). 

96 h EC50 and LC50 concentrations for total dissolved Cd were calculated 

by using the software program PROBIT (Ver. 1.5). The measured water 

chemistry and the calculated total dissolved Cd concentrations associated with 

the EC50 or the LC50 were entered into the HydroQual BLM (ver. 2.2.3) to 

generate geochemical speciation estimates of Cd2+ concentrations in solution. 

The HydroQual BLM was also used to develop toxicity predictions for the 

protective effects of Ca (EC50 and LC50s) and NOM (LC50s) on Hydra. Other 

test solutions were not compared because no other protective effects were 

evident from test results. In both cases the sensitivity parameter or critical value 

(the LA50 or lethal accumulation (in nmol/g) associated with the EC50 or LC50) 

was adjusted to provide the best fit between predicted and measured. Similarly, 

the predicted protective effect of Ca from the US EPA "hardness equation" 

associated with the Criteria Maximum Concentration (CMC: 

http://www.epa.gOv/waterscience/criteria/wqctable/index.html#K) was applied 

with the calculated hardness values for both Ca test series (EC50 and LC50). In 

each of these series the hardness adjusted CMC values was multiplied by the 

appropriate constant to bring the values into the range of Cd toxicity to Hydra. 

4.4 RESULTS 
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H. attenuata responded to waterborne Cd in a dose dependent manner for 

both lethal (LC50) and sublethal endpoints (EC50) with the latter being about 3 

fold lower (Table 2 compared to 3). Cd toxicity was significantly decreased when 

the waterborne Ca concentration was increased and this occurred for both lethal 

and sublethal endpoints (Figure 3,4). In the sub-lethal data set Ca was tested 

over a range of 0.2-1.21 mM resulting in a 4-fold reduction in EC50 values, from 

0.18 to 0.79 (iM (Table 2, Figure 2A). In the lethal endpoint study Ca 

concentrations ranged from 0.13 to 1.31 mM and the LC50 values increased by 

approximately 3 fold (from 0.62 to 1.53 (iM, Table 3, Figure 4A). The 

relationships for Ca2+ on sub-lethal and lethal Cd2+ EC50 and LC50 free ion 

activity based toxicity is shown in Figure 2A and 4A with regression variables 

given in Table 4. The slopes of these two lines of regression were similar, 

indicating that the effect of Ca is consistent across lethal and sublethal endpoints 

(Table 4). The intercept of the line of regression for the sub-lethal end point was 

9 times lower than that of the regression for the lethal end point indicating a clear 

difference between the two endpoints. These intercepts were used to estimate 

the Log KcdBL, the binding of Cd to the biotic ligand in the absence of competitive 

interactions, yielding values of 6.4 for the lethal endpoint and 7.3 for the sublethal 

endpoint. 

In sub-lethal and lethal data sets, the concentrations of Mg were tested 

over 0.18-0.58 mM and 0.14-1.12mM, respectively and in each data set there 

was no significant effects of waterborne Mg (Table 2 and 3). The lack of 
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protective effect of Mg on Cd toxicity is also evident from the regression data 

(Figure 2B and 4B; Table 4). 

Testing with Na and K demonstrated little protective effect on Cd toxicity. 

There were no significant changes in EC50 or LC50 for Na tests (Table 2, 3, 

Figure 3A, 5A). Similarly there was no decrease in Cd toxicity during LC50 tests 

with K. In fact, elevated K concentrations resulted in increased Cd toxicity 

(decreased LC50, Table 2). This produced a negative slope to the relationship of 

K+ on Cd2+ toxicity (slope not significantly different from 0). In the case of the 

sublethal toxicity test series there was a small but none-the-less significant 

increase in EC50 at the highest K concentrations (Table 2) although the slope of 

the regression line for the effect of K+ on Cd2+ toxicity was not significant (Table 

4). Adjusting of Na and K concentrations was done with NaCI and KCI and 

because there were no consistent effects it can be concluded that CI binding has 

no significant effect on Cd toxicity. 

The effect of NOM and pH on Cd toxicity was assessed for the lethal 

endpoint only and for both sources there was a small (approx 20% increase) but 

significant increase in LC50 (Table 3). These differences were not sufficient to 

produce a significant slope to the regression relationship between NOM 

concentration and total dissolved Cd (Figure 5B). The BLM was used to estimate 

Cd complexation in solution with added NOM; the Cd2+ associated with the LC50 

concentration with no added NOM (total Cd of 0.62 uM and DOC of 1.5 mg C/L) 

0.49 uM. The modeled free ion concentrations associated with the NOM 

treatments that provided the highest protective effect were: Suwannee River 
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NOM (EC50 of 0.74 CdTot uM at 6 mg C/L DOC) was 0.38 uM CcT (22% 

reduction from the baseline EC50 of 0.49 uM Cd2+), and for Nordic Reservoir 

NOM (EC50 of 0.75 CdTot MM at 12 mg C/L DOC) it was 0.25 uM Cd2+ (nearly a 

50% reduction). The effects of pH could not be tested because Hydra proved to 

be very sensitive to pH changes. Increasing the pH to 8, or decreasing it to 6.1, 

resulted in elevated mortality in the controls invalidating these tests (data not 

shown). 

The HydroQual BLM was used to develop predictions of Cd toxicity to 

Hydra. There is no Hydra specific BLM and therefore the one developed for 

Ceriodaphnia dubia was used. Following adjustments of the LA50 value (the 

predicted accumulation associated with 50% effect, also known as the critical 

value) to 6.95 nmol Cd/g a good match between measured and predicted EC50 

was evident (Figure 6A). In the case of LC50s the LA50 value in the model was 

adjusted up to 7.74 nmol/g to give a good match between measured and 

predicted at low Ca levels (Figure 6B). The predicted toxicity at high Ca levels 

showed that the BLM over-estimated Cd LC50s (Figure 6B). The actual 

protective effect of NOM on acute lethality was also much less than predicted by 

the BLM (Figure 5B). The EPA CMC hardness equation was also tested for its 

ability to predict the protective effect of Ca. The CMC is designed for extremely 

sensitive organisms and it was necessary to multiply hardness adjusted CMC 

values by constants of 28 and 132 (EC50 and LC50 series respectively) to bring 

estimates up to a level where trends in Ca protection could be compared. In both 
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cases the estimates provided by the adjusted CMC Cd hardness values were 

remarkably close to BLM prediction values (Figure 6A and 6B). 

4.5 DISCUSSION 

The goal of this study was to understand the toxic effects of Cd on H. 

attenuata in terms of lethal and sublethal endpoints as well as the effect of water 

chemistry. When exposed to Cd, the morphology of Hydra can change 

dramatically. We successfully applied pre-defined sublethal and lethal endpoints 

to evaluate the effects of Cd over 96 h. In soft water the sublethal endpoint was 

about three fold more sensitive than the lethal endpoint. In terms of the potential 

protective effects of aquatic geochemistry on the impact of Cd, this study shows 

that Ca strongly influences toxicity but other cations do not and neither does 

NOM. 

Healthy H. attenuata will have an elongated body with 4-6 tentacles and 

will be responsive to stimuli (Pascoe et al., 2003). The morphological changes in 

response to stress have been noted as changes in tentacle size, shape and 

number as well as changes in body size and shape (Quinn et al., 2009; Pascoe 

et al., 2003; Karntanut and Pascoe, 2000; Trottier et al., 1997). Wilby (1988, as 

reported by Karntanut and Pascoe, 2000) assigned a scoring system to the 

morphological characteristics in order to quantify the effects of a toxicant on an 

organism (Table 1). Assessing toxicity through a progression of morphological 

damage allows for a more detailed understanding of the response to stressors 
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(Karntanut and Pascoe, 2000). Some of the stages in the ten stage scoring 

system can be somewhat ambiguous and it has been accepted that specific 

morphological endpoints are less subjective to assess toxicant effects on Hydra. 

Pascoe et al., (2003) found that feeding (ingestion of Artemia) decreases were 

associated with tentacle regression and clubbing (scores of 8 and less on the 10 

point scale). While there is evidence of organisms surviving and being able to 

recover from toxicant exposure from the clubbed tentacle endpoint it is clear that 

feeding is affected. Inhibition of feeding can affect the long-term fitness of the 

population and therefore is a relevant sublethal endpoint. Based on the study of 

Quinn et al., (2007) we used the tulip phase of morphological regression (scale 

value of 2) as the lethal endpoint. 

In these studies, sub-lethal and lethal Cd toxicity was reduced by the 

presence of Ca, illustrating a strong competitive interaction between Ca2+ and 

Cd2+ (Figure 2A, 4A; Table 2, 3). Cd2+ is a well-known analogue for Ca2+ up-take 

channels (Verbost et al., 1989). Similar trends in Cd toxicity have been shown in 

Daphnia spp. (Shaw et al., 2006; Yim et al., 2006), and with rainbow trout (O. 

mykiss) in the presence of Ca (Birceanu et al., 2008; Niyogi and Wood, 2004). 

Tan and Wang (2008), who studied the effects of Ca on Cd and Zn toxicity, 

hypothesized that since Cd is not an essential metal there is likely no direct 

uptake channel and it must therefore be taken up through other ion channels, 

such as the Ca up take channel. 

The competitive effects of Ca on Cd toxicity were seen when assessing 

both sub-lethal and lethal end points and the strength of the protection offered by 
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Ca was generally similar (slopes of regressions only differed by a factor of 1.5; 

Table 4). The intercepts for the regressions of Ca2+ on lethal and sublethal Cd2+ 

endpoints, which represent the effects of free ionic Cd in the absence of 

protective factors, differ by over 9 fold (Table 4) and this illustrates the relative 

sensitivity of the sublethal endpoint. These concentrations were used to estimate 

binding characteristics for Cd2+ onto the biotic ligand and yielded Log KCdBi_ of 6.3 

and 7.4 for the lethality and tentacle regression endpoints respectively. The 

values generally agree with those of previous studies; 7.0 for Daphnia pulex in 

soft water (Clifford and McGeer, 2009b) and 7.5, 7.3 and 7.3 reported for rainbow 

trout by Niyogi et al., (2008), Niyogi et al., (2004) and Hollis et al., (2000) 

respectively but it is considerably lower than the 8.6 for fathead minnow reported 

by Playle et al. (1993). 

The protective effects of Ca2+ on metal toxicity is frequently linked with 

associated protective effects from Mg2+ as well as the general protection that 

water hardness offers (Niyogi and Wood, 2004; Santore et al., 2002; Di Toro et 

al., 2001). Independent protective effects of Mg2+ on Cd2+ toxicity has been 

shown in fish species (Di Toro et al., 2001; Pascoe et al., 1986; Playle et al., 

1993) but the mechanisms of this competitive protective effect are not well 

understood and may result from direct interactions at Mg2+ uptake sites and/or 

interactions occurring at Ca2+ uptake sites that Mg2+ and Cd2+ both have an 

affinity for (Markich and Jeffree, 1994). In this study there was no effect of Mg on 

Cd toxicities (Figure 2B, 4B; Table 2 and 3) and this similar to the study of Niyogi 
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et al., (2008) who found no protection associated with Mg in acute Cd toxicity 

tests with rainbow trout. 

Increased waterborne Na also had no significant protective effect on Cd 

toxicity (Figure 3A, 5A; Table 4). Na up-take on the gills of fish occurs via a H+ 

ATPase linked Na channel that has not been associated with the uptake of 

divalent metal ions, such as Cd2+ (Grossell et al., 2002). Therefore our finding 

that there is no competitive effect between Na+ uptake and Cd2+ uptake is data is 

consistent with previous studies and mechanisms of Cd toxicity (Niyogi and 

Wood, 2004). Similarly, K also had no effects on Cd toxicity to H, attenuata 

(Figure 3B, 5A; Table 4), as expected. These results are in agreement with 

previous work done on Cd toxicity in rainbow trout (Birceanu et al., 2008; Niyogi 

et al., 2008) and D. pulex (Clifford et al., 2009b). 

The effects of pH could not be studied because of the high sensitivity of H. 

attenuata to small variations in pH. Toxicity tests where pH was manipulated 

consistently resulted in mortalities greater than the acceptable 10% in the 

controls (data not shown). In order to understand the effect that pH could have 

on mitigating Cd toxicity it would be necessary to pre-acclimate cultures to the 

desired pH. Hyne et al., (1992) successfully studied the effects of different pH 

values on uranium toxicity to H. viridissima and H. vulgaris. In that study, they 

adjusted pH in the range of 6-9 with bicarbonate, sodium bicarbonate, tris 

(hydroxymethyl) methylamine, or acetic acid, although it was not clear if cultures 

were pre-acclimated to the test pH. In our study, pH manipulations were made 

with the buffer MOPS, following the protocol outlined by De Schamphelaere et 
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al., (2004). MOPS has been shown to have no significant effect on Daphnia and 

algae (Clifford et al., 2009a; Kozlova et al., 2009; De Schamphelaere et al., 

2004), however there is no available data on the potential effects of MOPS to 

Hydra. Therefore, it could be that the H. attenuata in our study were affected by 

MOPS or, alternatively they are a species that is more sensitive to abrupt pH 

changes compared to H. viridissima and H. vulgaris. 

The two sources of NOM, Nordic Reservoir and Suwannee River, both 

decreased Cd toxicity to Hydra (Table 3) but this protective effect was weak. 

These were unexpected results as the free ion activity model (Campbell, 1995) 

principles underlying the BLM (Di Toro et al., 2001) indicate that an increase in 

waterborne DOC would result in complexation of Cd2+ in solution and a 

corresponding increases in LC50 values. Under this theory the LC50 

concentrations would increase on a total Cd in solution basis but on a free ion 

basis the concentration of Cd2+ would be relatively constant and this has 

illustrated recently with Daphnia pulex (Clifford et al., 2009b). In this study, when 

we used the BLM (HydroQual ver. 2.2.3) to estimate the LC50s on a Cd2+ 

concentration basis a decrease of Cd2+ was noted for the LC50s at higher DOC 

concentrations (reduced by up to 50%). The relatively weaker than expected 

(from BLM speciation predictions) effect of NOM on Cd toxicity suggests that the 

affinity of Cd uptake sites in Hydra is strong relative to DOC complexation of Cd. 

Alternatively, Cd-DOC complexes, in addition to Cd2+, may be bioavailable to H 

attenuata. The results of Niyogi et al., (2008) offer some evidence on the 

equivocal nature of Cd-DOC interactions. In that study, there was no effect of 
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DOC on the short term binding of Cd to rainbow trout gills in test solutions up to 

10 mg C/L, however in toxicity tests the 96 h LC50 values increased by about 

60% as DOC increased from 3 to 10 mg C/L. 

The development of Cd toxicity predictions illustrated that the BLM could 

be used to estimate the protective effect of Ca on the sublethal effects of Cd on 

Hydra attenuata but not LC50s (Figure 6A and 6B). The hardness equation within 

the EPA acute water quality criteria value (CMC) for Cd, once adjusted for the 

sensitivity of H. attenuata, proved to be very similar to the BLM based predictions 

and this may illustrate an overlap in some of the data sets used to generate 

these bioavailability adjustment procedures. Within BLM predictions of EC50s 

and LC50s the protective effect of Ca was the same (Log K value was not 

changed), and only the LA50 value had to be changed to achieve reasonable 

predictions. However, the measured protective effect of Ca on the lethal 

endpoint was weaker than it was on the sublethal endpoint and therefore the 

predicted toxicity matched to EC50 values (Figure 6A) it was expected that the 

model would underestimate LC50 toxicity (Figure 6B). The reason for a stronger 

protective effect of Ca at the low concentrations associated with the tentacle 

clubbing endpoint than at the higher (and acutely lethal) concentrations is 

unknown but may be related to the relative affinity of Ca vs Cd at different 

populations of uptake sites. These results suggest some potentially interesting 

features of Hydra physiology and are deserving of further study. 

This study demonstrates that Ca provides a protective effect on Cd toxicity 

but that other cations (Mg, Na, K, CI) do not. NOM showed minor protective 
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effect against Cd lethality and this was less than would be expected based on 

modeled DOC-Cd complexation. On a total Cd concentration basis EC50 values 

were approximately one third that of LC50 values and on a Cd2+ basis the 

maximum difference between lethal and sublethal endpoints was 9 fold. The 

BLM was successfully applied to estimate the sublethal toxicity endpoint but it 

overestimated the protective effect of Ca on acute lethality. While the BLM was 

partially successful in estimating the mitigation of Cd toxicity by Ca, it was not 

successful for NOM and the general lack of Cd toxicity mitigation through 

complexation and cationic competition suggests that application of this approach 

does not provided added benefits. Simple hardness adjustment approaches 

appeared to work equally well for sublethal toxicity and equally ineffectively for 

lethal toxicity. 
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Chapter 4: Table 1. Scoring key for morphological traits associated with 

contaminant stress in Hydra. The scores corresponding to the lethal and 

sublethal endpoints used in this study were 2 and 8, respectively. 
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Score Morphology 

10 Extended tentacles and body reactive 

9 Partially contracted, slow reactions 

8 Clubbed tentacles, body slightly contracted 

7 Shortened tentacles, body slightly contracted 

6 Tentacles and body shortened 

5 Totally contracted, tentacles visible 

4 Totally contracted, no visible tentacles 

3 Expanded, tentacles visible 

2 Expanded, no visible tentacles 

1 Dead but intact 

0 Disintegrated 
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Chapter 4: Table 4. Regression coefficients for the linear regression of Ca , 

Mg2+, K+ and Na+ on the sub-lethal (EC50 for clubbed tentacles) and lethal 

toxicity (LC50 for mortality) of Cd2+. The units for slope are AEC50 (umol 

Cd2+/L) or ALC50 (umol Cd2+/L) per mmol/L change in cation activity except 

for NOM, which is per mg/L of DOC. The intercept is umol Cd2+/L. Slopes 

that were significantly different from 0 are denoted by *. 
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Slope Intercept R2 

Ca 
Sub-lethal 

Mg 

Na 

K 

Ca 

Mg 

Na 
Lethal 

K 

Nordic Reservoir NOM 

Suwannee River NOM 

0.5471* 0.0477 0.96 

0.0827 0.1234 0.51 

-0.0109 0.1458 0.27 

0.0207 0.1310 0.45 

0.6985* 0.4224 099 

0.0602 0.5064 0.21 

-0.0001 0.4738 0.00 

-0.0840 0.4579 0.51 

0.0124 0.5889 0.86 

0.0060 0.6475 0.33 
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Chapter 4: Figure 1. Changes in morphological appearance associated with 

stress in H. attenuata. Panel A shows a normal responsive Hydra with a 

budding offspring and this corresponds to a score of 10 (see Table 1). Panel 

B shows a contracted body and clubbed tentacles, which corresponds to a 

score of 8 (the sub-lethal end point). Panel C illustrates a completely 

contracted body and shortened tentacles while Panel D shows the 'tulip' 

stage, a totally contracted body and barely visible tentacles (a score of 2 and 

the lethal end point). Panel E shows complete disintegration of the Hydra. 
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Chapter 4: Figure 2. Measured EC50s (with 95% confidence intervals) for the 

effects of Ca2+ (panel A) and Mg2+ (panel B) on sub-lethal Cd2+ toxicity to H. 

attenuata over 96 h. The linear regression best fit line is also shown (see 

Table 4). 
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Chapter 4: Figure 3. Measured EC50s (with 95% confidence intervals) for the 

effects of Na+ (panel A) and K+ (panel B) on sub-lethal Cd2+ toxicity to H. 

attenuata over 96 h. Linear regression lines of best fit are shown (see Table 

4). 
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Chapter 4: Figure 4. Measured LC50s (with 95% confidence intervals) for the 

effects of Ca2+ (panel A) and Mg2+ (panel B) on lethal Cd2+ toxicity to H. 

attenuata over 96 h. Linear regression lines of best fit are shown (see Table 

4). 
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Chapter 4: Figure 5. Measured LC50s (with 95% confidence intervals) for the 

effects of Na+ (panel A; closed circles), K+ (panel A, open circles) and DOC 

(panel B) on Cd toxicity to H. attenuata over 96 h. In panel A effects are 

shown on a free ion basis (Cd2+) while in panel B lethality is shown as total 

Cd. Panel B also shows the result from tests with two sources of NOM, 

Nordic Reservoir (closed circles) and Suwannee River (open circles) and the 

open square show EC50 values at no added NOM. Best-fit linear regression 

lines are also shown (see Table 4 for details). 
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Chapter 4: Figure 6. Ability of modelling approaches to predict the measured 

sublethal toxicity (EC50s, Panel A) and lethality (LC50 Panel B) of Cd to 

Hydra attenuata. In both panels the prediction estimates are given for the Ca 

test series using the BLM (filled circles) as well as the adjusted CMC 

hardness equation (open circles). For LC50s (Panel B) predictions for the 

NOM test series is also shown (closed triangles is BLM and open is adjusted 

CMC hardness equation). In both panels the solid line shows where 

predicted values are equal to measured. 

106 



1J 

OS 

t J 

04 I 

02 1 

§j 04 m §J 

Measured BCSO QiM) 

i j 

B 

11 

MMsnral LCSO (aM) 
107 



Chapter 5 

Sub-lethal Waterborne and Dietary Effects of Cadmium on Hydra 

attenuata. 

This chapter is in manuscript form, and will be submitted to Aquatic Toxicology. 

This manuscript is currently under review by industrial funding partners. 
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5.1 ABSTRACT 

The objective of this study was to determine the sensitivity of Hydra attenuata to 

dietborne Cd exposure relative to waterborne exposure. The approach 

employed was to determine the sublethal toxicity of waterborne Cd through 96 h 

EC50 tests using tentacle regression and clubbing as the effect endpoint, and 

then to compare this to the effect of Cd delivered via the dietary route. Dietary 

exposures were done by loading Cd into old Daphnia pulex and then feeding 

these to H. attenuata. The influence of Ca on Cd bioavailability was assessed by 

conducting studies in soft (hardness of 40 mg/L as CaCOs) and hard (140 mg/L) 

waters. In soft water the 96 h EC50 for Cd on H. attenuata was 0.30 \iM while in 

harder waters it was 0.79 jaM, illustrating the protective effect of Ca on Cd toxicity 

in Hydra. Preliminary studies assessing the time-course of Cd bioaccumulation 

in Daphnia pulex also showed the protective effect of Ca. The dietary toxicity of 

Cd to H. attenuata was examined by feeding them 7-8 day old Daphnia pulex 

that had accumulated Cd for 24 h (to reach whole body saturation). D. pulex 

were exposed to the Cd concentrations that were approximately equal to the 

EC50 concentration for waterborne toxicity to H. attenuata. After 96-hours, no 

significant tentacle clubbing was observed in dietary Cd exposures. Combined 

waterborne plus dietary exposures to Cd produced effects that were at a level 

that was similar to those induced by waterborne only exposure. The lack of 

effects observed during dietary exposures and the lack of additional effects in 
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combined water and diet exposure suggests that the dietary exposure pathway 

may not contribute to the impacts that Cd has on H. attenuata. 

Keywords: Cd; Hydra; water hardness; bioavailability; dietary. 
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5.2 INTRODUCTION 

The biotic ligand model (BLM) has recently been developed to predict the 

interaction between dissolved metals and toxic effects in aquatic organisms (Di Toro 

et al., 2001). BLMs have been successfully developed for a variety of metals 

including Cu (De Schamphelaere and Janssen, 2002; Di Toro et al., 2001; 

Villavicencio et al., 2005), Ni (Kozlova et al., 2009) Cd (Santore et al., 2002) and Zn 

(Clifford and McGeer, 2009; Heijerick et al., 2005). The strength of this geochemical 

equilibrium approach and the robustness of it's physiological principles have led to 

the application of this toxicity prediction model for Cu water-quality guideline and 

criteria derivation (EPA, 2007). Although the BLM is being applied in regulatory 

contexts it has been developed for a limited number of species (McGeer et al., 2009) 

and it does not account for potential effects that occur via dietary exposure routes. 

In fresh waters, the site of metal uptake during waterborne exposures is 

primarily at the respiratory epithelium (gills in fish) and effects have been well 

documented for a number of metals. Incorporation of dissolved metal into food 

represents a potentially important route of exposure for prey organisms but less is 

known about dietary uptake and the potential for associated impacts (reviewed 

Handy et al., 2005). Filter feeding aquatic organisms will also be exposed to metal 

bound to algae and metal bound to particulates through their diet (Geffard et al., 

2008). Dietary uptake and accumulation may not always lead to toxicity, the study of 

Goulet et al., (2007) demonstrated that Daphnia magna fed Cd loaded algae 
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accumulated significant burdens with no effects on survival or reproduction. 

However, waterborne Cd exposures resulted in significant impacts with relatively low 

levels of Cd accumulation. 

The effects of dietary and/or waterborne Cd have not been extensively 

studied, however, the studies that do exist appear to be inconsistent. Allen et al., 

(1995) and Taylor et al., (1998) found a reduction in feeding in Daphnia magna 

during dietborne exposures with Cd loaded algae. Taylor et al., (1998), Weltens et 

al., (2000), and Barata et al., (2002) found observed acute effects of dietary Cd on 

survival and feeding. Goulet et al., (2007) concluded that dietary Cd was not 

associated with lethal or sublethal effects, when exposed to two species 

(Chlamydomonas reinhardtt and Pserdokirchneriella subcapita) of Cd contaminated 

algae. Considering the discrepancies among studies, it is clear that there are gaps in 

the understanding of the potential for dietborne Cd to cause impacts in freshwater 

organisms. 

Hydra (Cnidaria: Hydrazoa) are freshwater organisms commonly found in 

slow moving rivers and streams (Beach and Pascoa, 1998). Because of its 

sensitivity to metals, Hydra is a good organism to be used in laboratory toxicity tests 

(Holdway et al., 2001). Toxicity results in morphological changes; tentacles shrink, 

completely retract and then this is followed by the complete disintegration of the 

organism (Trottier et al., 1997). Hydra have been used to assess the toxicity of a 

variety of contaminants in freshwater (Hyne et al., 1992; Pollino and Holdway, 1999; 
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Quinn et al., 2008). With the exception of Karntanut and Pascoe (2007), who studied 

the bioaccumulation of Cu, Cd, and Zn in Hydra vulgaris from contaminated Artemia 

nauplii, the effects of metal-contaminated food on Hydra do not appear to have been 

well studied. 

The goal of this study was to assess the relative toxicity of waterborne and 

dietary Cd to Hydra attenuata. Daphnia pulex were used as the source of dietary Cd 

to Hydra. To understand the role that water chemistry may have on bioaccumulation 

and toxicity, studies were conducted at hardnesses of 40 and 140 mg CaC03/L. 

This study builds on the previous works of Goulet et al., (2007) and Clifford et al., 

(2009a,b) to understand the relative toxicity of Cd to Daphnia and Hydra from 

waterborne and dietary sources. 

5.3 MATERIALS AND METHODS 

Cultures of Hydra attenuata, obtained from C. Blaise (Centre Saint-Laurent, 

Montreal) and maintained according to protocols adapted from Trottier et al., (1997) 

in glass crystallizing dishes with approximately 500ml of culture media at 22°C. 

Medium was renewed daily, after feeding. Hydra were fed with Artemia salina that 

had been hatched in 30 g/L NaCI at 29°C. Artemia were rinsed in deionized water 

prior to feeding and Hydra were allowed to feed for approximately 30 min before the 

media was replaced (Trottier et al., 1997). 
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Daphnia pulex were obtained from Aquatic Research Organisms Inc. 

(Hampton, NH). Neonate-producing cultures of approximately 30-60 adults were 

maintained in 1.5L glass beakers with approximately 1 L of media. Cultures followed 

the standardized procedures outlined by Environment Canada (1996), the medium 

was replaced daily at which time daphnids were fed daily with 5 ml/L of YCT (yeast, 

cerrophyl, and trout feed) and 10 ml/L of algal feed. Algal feed consisted of a mixture 

of 70% Pseudokirchneriella subcapitata and 30% Chlorella vulgaris at a 

concentration of 3.5 x 107 cells/ml. YCT was purchased from Aquatic Research 

Organisms Inc. (Hampton, NH) and algae from the Canadian Phycological Culture 

Centre (CPCC, formerly known as University of Toronto Culture Collection of Algae 

and Cyanobacteria, UTCC). 

H. attenuata and D. pulex were maintained in reconstituted soft water (RSW), 

modified from the soft water guidelines recommended by the Environment Canada 

(1996) to reduce the Mg content (Clifford and McGeer, 2009). RSW was made by 

adding CaS04, MgS04, NaHC03, and KCI (Sigma-Aldrich Inc. St. Louis, MO) to 

deionized water to achieve concentrations of Ca, Mg, Na, CI, K, SO4", and HC03" at 

170, 140, 150, 30, 30, 310 and 150 jxM, respectively. Solution pH was measured at 

7.0 (Radiometer PHM240 meter with pHC2701-8 electrode) and the dissolved 

organic carbon (DOC) content was measured to be 1.53 mg C/L (5050A TOC 

Analyzer, Shimadzu). Two series of experimental exposures were done, one at a 

Ca concentration of 260 uM (corresponding to a hardness of 40 mg CaCOs/L) and 
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the other at 1,260 |JM Ca (corresponding to a hardness of 140 mg CaC03/L). 

Details of water chemistry are given in Table 1. 

Hydra toxicity test methods followed procedures outlined in Trottier et al., 

(1997). 96 h toxicity tests were carried out in 12 well microplates, where each well 

contained 5 ml of test medium and 10 individuals with no buds or immature buds. 

Each test consisted of 1 unexposed control treatment along with 7 different exposure 

concentrations of Cd, in triplicate. Test solutions were made as 25 ml aliquots, 

taken from the base test media and spiked with appropriate volumes of a 0.89 mM 

stock solution of Cd, prepared from a purchased standard solution (Inorganic 

Ventures Inc., Lakewood, NJ), to achieve the desired exposure concentration. A 10 

ml sample from each concentration was taken for subsequent characterization. The 

sub-lethal endpoint for Cd was the presence of clubbed tentacles, corresponding to 

a scoring of 8 on the 10 point morphological scale for contaminant effects on Hydra 

(see table 1 of Karntanut and Pascoe, 2000). Toxicity tests where control 

treatments showed more than 10% of the organisms had clubbed tentacles were not 

considered acceptable (Trottier et al., 1997). The 96 h EC50 concentrations for 

tests in water hardness' of 40 and 140 mg CaCOa/L were calculated using the 

software program PROBIT (Ver. 1.5). 

Daphnia pulex (7 to 8 d of age) were exposed to waterborne Cd to develop a 

dietary source for Hydra exposures. Daphnia were exposed in 100 ml of test 

solution, prepared a day prior and left to equilibrate overnight. Preliminary 
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experiments with D. pulex were done to establish appropriate exposure times to 

ensure that organisms had reached steady state Cd tissue burdens. In time-course 

tests groups of 150 Daphnia were exposed to either 35 ^g/L or 115 p.g/L of Cd 

depending on water hardness (40 and 140 mg/L respectively). Daphnia (n = 15) 

were sampled at 0, 3, 6, 12, 24, and 30 h. Sampling involved removing Daphnia 

from test solutions, rinsing them in MilliQ water for approximately 30 s to remove 

loosely bound metals and then placing individuals on a filter paper to absorb excess 

moisture. Individual Daphnia were weighed to the nearest 0.01 milligrams (SE2 Ultra 

Micro Balance, Sartorius) and then digested in 10 |il of 1N HNO3 for subsequent 

analysis (adapted from Janes and Playle, 1995). The accumulation over time was 

plotted and curves fitted using a model that describes and exponential rise to a 

maximum: 

[/(x) = Cs*(1-exp-(ln2/t(,/2)*x))] 

where f(x) is the Cd content at hour x, Cs describes the maximum body burden in D. 

pulex (saturation) and t(1/4) is the time to half Cs (McGeer et al. 2000). Modelling 

was done using the software package SigmaPlot (ver. 11.0). 

Testing for the potential toxic effects of dietary Cd was done relative to 

waterborne toxic effects. In other words, the EC50 concentrations from the 

waterborne only exposures were used to determine appropriate exposure 

concentrations to produce contaminated food and in this manner a tiered strategy 

was applied. In the first tier Hydra were fed Daphnia that had been exposed to Cd 
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concentrations associated with waterborne effects in Hydra (EC50 concentration). 

Subsequent tier 2 dietary exposures were planned only in the case that dietary 

effects were evident in tier 1 (i.e. if Hydra were sensitive to the dietary exposure 

route relative to the waterborne exposure route). In these side-by-side tests 

waterborne, dietary and combined water and diet exposures were done where all 

Hydra were fed. Individual Hydra were exposed in a single well of a 12 well 

microplate which contained 5 ml of exposure medium. Hydra were fed one 7-8 day 

old Daphnia every 24 h for a period for the 96 h duration of the tests. The 

regurgitated remains of the Daphnia were removed daily with the renewal of the 

exposure media. Waterborne Cd exposure experiments had unexposed controls, 

one group that was fed uncontaminated Daphnia (n=6) and another that was not fed 

(n=6) for the duration of the test. The effects of waterborne exposures, dietborne 

exposures and co-exposures of Cd were observed at water hardness' of 40 and 140 

mg CaCCVL Treatment groups tested in water hardness of 40 mg CaCC>3/L and 

140 mg CaCC>3/L had an n of 48, and 24 respectively. In all, the mean of the 

proportion of the individuals showing the presence of clubbed tentacles was 

calculated. Daphnia were exposed to waterborne Cd for 24 h to create Cd 

contaminated food for Hydra and samples for subsequent measurement of Cd 

burden (as described above) prior to feeding. Samples were also collected from 

unexposed Daphnia (uncontaminated control food). 
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Water samples (10 ml) were taken during each test to measure for water ion 

concentrations (Ca, Mg, Na, K), pH and total Cd concentration using atomic 

absorption spectrophotometry (SpectAA-880, Varian Inc, Palo Alto, CA) either in 

flame or via graphite furnace (GTA 100) mode depending on the concentration. 

Each sample for atomic absorption spectrophotometry was acidified to 1% volume 

using 16N HNO3 (trace metal grade, Fisher Scientific, Nepean, ON). 

5.4 RESULTS AND DISCUSSION 

The goal of this study was to determine the relative importance of dietary Cd 

toxicity to H. attenuata in relation to waterbome effects. In waterbome only tests the 

EC50 for tentacle regression in hard water (140 mg/L as CaC03) was 0.79 uM Cd 

while in softer water it was significantly less at 0.30 uM (Table 1). The protective 

effect of hardness was anticipated based on recent work illustrating the protective 

effect of Ca on Cd sublethal impacts in Hydra (Clifford, 2009b). Protection via 

cationic competition of Ca2+ on Cd2+ at uptake sites for Ca2+ is well known and 

occurs in many aquatic organisms, from Hydra, Daphnia and other invertebrates to 

fish (Clifford and McGeer, 2009; Niyogi and Wood, 2004; Santore et al., 2002; 

Verbostetal., 1994). 

The results from the waterbome tests establish the relative toxicity of dietary 

Cd in relation to waterbome Cd, and also demonstrated the protective effect of Ca. 
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These tests were single exposure concentrations at 0.41 uM Cd at low hardness and 

1.42 uM Cd at the higher hardness (Table 2, Figure 2). The level of affected 

individuals was similar at these concentrations, 50% and 54% at hardness values of 

40 and 140 mg/L respectively thus illustrating that more Cd was needed to produce 

the same effect when more Ca was present. It is noteworthy that the EC50 values 

(Table 1) were somewhat lower than the EC50s in these latter tests (Table 2). This 

difference in EC50s could have arisen because one group was fed and the other 

was not (in EC50 tests there was no feeding). The additional nutrition provided by 

the food could have facilitated this enhanced tolerance as was illustrated for acid 

stressed rainbow trout (D'Cruz and Wood, 1998). Additionally the presence of food 

(8-9 day old Daphnia) may have altered the bioavailability of Cd. Other differences 

between these tests include the fact that individuals were exposed in the dietary-

waterborne comparison while in the EC50 tests it was groups of 10. 

The accumulation of Cd into Daphnia at low and elevated hardness also 

illustrated the protective effect of Ca2+ on Cd2+ uptake. In spite of very different 

waterbome Cd exposure concentrations in solutions of 40 and 140 mg/L hardness, 

the accumulation of Cd was similar. Accumulation data was fitted to an exponential 

model that gave estimates of the saturation concentrations. In lower hardness an 

exposure of 0.29 uM Cd resulted in a modeled saturation whole body burden of 47.2 

± 4.2 nmol Cd/gram wet weight (Cs ± SEM; Figure 1A). In the higher hardness an 

exposure of 1.04 uM Cd the corresponding modeled whole body saturation 
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concentration was 47.3 ± 4.0 nmol Cd/gram wet weight (Cs ± SEM, Figure 1B). 

Therefore higher hardness water required a much higher exposure concentration of 

Cd to achieve the same body burden indicating an interaction between Ca and Cd. 

In fact the molar ratios of Ca:Cd were similar, 896 in soft water and 1211 in harder 

water. As discussed above in relation to the mitigation of impacts in Hydra, the 

accumulation of Cd2+ in Daphnia pulex occurs in competition with the uptake of Ca2+ 

and this has previously been illustrated in bioaccumulation studies with Daphnia 

magna (Tan and Wang, 2008) and acute toxicity test with Daphnia pulex (Clifford et 

al., 2009). 

The characterization of the time-course of Cd bioaccumulation was an 

essential component of providing a consistent and relevant dietary exposure for 

Hydra. The exposure concentrations (see above) used to establish the time-course 

of accumulation at hardnesses of 40 and 140 (mg/L CaC03) were set at the 

approximate EC50 for tentacle regression in Hydra. Based on the recent study of 

Clifford (2009a) demonstrating the influence of water chemistry (including Ca) on the 

toxicity of Cd, it was known that the exposures were below the EC50 for D. pulex 

and they would survive at these concentrations. Modelling of the time-course of 

accumulation showing that the half-time for whole body saturation was 0.31 ± 0.09 h 

(VA ± SEM; Figure 1A) in low hardness and 0.40 ± 0.12 h (Figure 1B) in higher 

hardness, attesting to the very rapid initial uptake that occurred. Based on the 
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overall pattern of uptake we decided to use 24 h as the exposure period to prepare 

prey food for dietary exposures to Hydra. 

Exposures to test for the relative effects of waterborne versus dietary 

exposures of Cd demonstrated that Hydra are unaffected by dietary Cd. Whether in 

hard water or in soft water, Hydra fed Daphnia pulex contaminated with Cd (at the 

Hydra EC50 concentration) showed no effects (Table 2, Figure 2). As well, Hydra 

exposed to waterborne Cd plus dietborne Cd showed there was no additivity as no 

additional tentacle clubbing occurred beyond that induced by waterborne Cd alone. 

This unequivocally shows that the effects of waterborne Cd are more important than 

those arising from dietary exposures where Hydra consume D. pulex. 

The reasons for dietborne Cd having no effects on Hydra are either related to 

the bioavailability and uptake of Cd from the dietary source and/or differences in the 

impact that arises from accumulated Cd. During waterborne exposure the majority 

of cells in the organisms including those on the tentacles and the body (external 

epidermal as well as gasterodermal) are exposed to Cd. During dietary exposure 

only the gastrodermal cells will receive an exposure to Cd. Little is known about Cd 

uptake in Hydra but it may be that the uptake and impacts of Cd differs across cell 

types and gastrodermal cells are tolerant or have relatively low uptake. It is also 

possible that the accumulated Cd present in the Daphnia was sequestered by 

metallothioneins (MT) or other metal binding like-proteins. Work by Fraysse et al., 

(2006) has shown that D. magna can contain as much as 57% of the total 
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accumulated Cd bound to MTs. Daphnia have been shown to increase synthesis of 

these proteins in as little as 2-24 h (Amiard et al., 2006) and therefore it is also 

possible that the Cd accumulated by the Daphnia was bound to the MT and not 

available for uptake across gastrodermal cells in Hydra. It is also important to 

highlight that Hydra do not consume all of the Daphnia as undigested particles (e.g. 

the carapace) are eliminated from the gut space. 

In testing the importance of dietary Cd to Hydra our experimental design was 

to assess effects in relation to waterborne effects in a tiered manner considering that 

within natural systems both waterborne and dietary exposure occur simultaneously. 

Dietary exposures are relevant and it is necessary to fully understand dietary 

exposure-effect relationships only when effects occur at and/or below concentrations 

that cause waterborne effects. Hydra have to be able to sustain themselves in a 

waterborne exposure in order to consume contaminated prey items. Therefore, as 

the first tier of our dietary exposure study we used D. pulex that had been exposed 

to the EC50 for tentacle regression in Hydra. When consumption of these Cd 

loaded daphnids did not produce effects in Hydra we concluded that, at least in the 

context of our exposure system, there was little potential for dietary effects of Cd in 

Hydra (i.e. waterborne Cd will affect populations at lower exposure concentrations 

than dietary based exposures). 

The lack of dietary based effects at waterborne concentrations that are 

toxicologically relevant is consistent with findings by Goulet et al., (2007) who did not 
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see a contribution to chronic toxicity in D. magna when fed contaminated algae. In 

that study the direct effects of waterborne Cd occurred at relatively low 

concentrations and feeding of algae (both Chlamydomonas reinhardtii and 

Pseudokirchneriella subcapitata were tested) that had been contaminated at very 

high waterborne concentrations resulted in no significant impacts on reproduction in 

spite of significant accumulations of Cd (Goulet et al., 2007). Mount et al., (1994) 

observed no effects on survival and growth in fish consuming Cd contaminated 

Artemia. Contrary to our findings Karntanut and Pascoe (2007) saw a decrease in 

regeneration and bud production in Hydra after feeding on Cd loaded Artemia 

(nauplii stage). However, the preparation of the dietary exposure in that study was 

done by exposing Artemia to 100 uM Cd resulting in a body burden of 2.7 uM Cd / 

gram dry weight, equivalent to approx 0.27 uM Cd / gram wet weight (assuming 9:1 

for wet weight to dry weight ratio). The waterborne exposure used to load Artemia 

was 333 and 126 fold higher than the EC50 for Hydra exposed to waterborne Cd at 

hardness values of 40 and 140 (mg/L as CaCOa), respectively. In our study these 

exposures would have been lethal to the Hydra. 

In conclusion, this study illustrates the relative sensitivity of Hydra attenuata 

to waterborne and dietary Cd exposure in soft and hard water. In 96 h EC50 tests a 

protective effect of Ca on the toxicity of waterborne Cd was clearly evident. This Ca 

mitigation was also observed in Cd bioaccumulation tests with Daphnia pulex, which 

served as prey organisms in dietary exposure tests. Feeding of Hydra with Daphnia 
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that had been exposed to Cd concentrations similar to the waterborne EC50 

concentrations did not alter toxicity. In both soft and hard water the co-exposure of 

both waterborne and dietary Cd resulted in no additional impacts beyond those 

associated with waterborne Cd only. Therefore it would appear that dietary Cd 

exposure could be of lesser importance compared to waterborne exposures for 

Hydra. 
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Chapter 5: Table 1. Measured concentrations for of exposure water parameters as 

well as the associated measured 96 h EC50 (with 95% confidence interval) for 

Cd in Hydra attenuata. The units are mM except for DOC (mg C/L), pH and 

EC50s (uM). 
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Hardness (as mg CaC03/L) 

40 140 

Ca 0.26 1.26 

Mg 0.14 0.14 

Na 0.15 0.15 

K 0.04 0.04 

CI 0.04 0.04 

so4 

pH 

DOC 

EC50 H. attenuata 0.30 

0.40 

7.0 

1.53 

(0.28-0.33) 0.79 

1.40 

7.0 

1.53 

(0.67-0.87) 
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Chapter 5: Table 2. Mean (± SEM) for exposure parameters for waterborne, dietary 

and combined waterborne plus dietary exposures in soft and hard water. The 

associated effect of the treatment, as the % of Hydra showing clubbed tentacles 

after 96 h, is also given. 
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Exposure 

Waterborne Cd 

(MM) 

Dietary Cd 

(nmol/g w wt) 

% no. 

Hard water (140 mg CaC03) 

Control (fed) n.d. 

Waterborne only 1.42 ±0.004 

Dietary only n.d. 

Waterborne + diet 1.42 ± 0.004 

affected exposed 

Soft water (40 mg CaC03) 

Control (fed) 0.003 ± 0.001 0.01 ± 0.01 0 6 

Waterborne only 0.41 ± 0.004 0.01 ± 0.01 50 48 

Dietary only 0.003 ±0.001 88 ±4.7 2 48 

Waterborne + diet 0.41 ± 0.004 88 ± 4.7 50 48 

0.01 ±0.01 

0.01 ±0.01 

185 ±7.3 

185 ±7.3 

0 

46 

12.5 

42 

6 

24 

24 

24 



Chapter 5: Figure 1. Whole body bioaccumulation of Cd in 7 to 8 day old Daphnia 

pulex (mean ± SEM) over 24 h of exposure to 0.31 |Jvl Cd at a hardness of 40 

mg CaC03/L (Panel A) or 1.02 (iM Cd at a hardness of 140 mg CaC03/L (Panel 

B). Best fit lines using an exponential model are given with 1^=0.90 of Panel A 

and 0.87 for Panel B, see text for other model parameter details. Each mean 

represents n=15 Daphnia at low hardness (A) and n=13 for high hardness (B). 
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Chapter 5: Figure 2. Percentage of Hydra displaying no clubbed tentacles (i.e. 

unaffected Hydra) as a result of the waterborne, dietborne, or combined water 

plus dietborne Cd to H. attenuata following a 96 h exposure. Bars show mean ± 

SEM percent of unaffected Hydra at exposures of either 0.41 (xM Cd in solutions 

at a hardness of 40 mg CaC03/L (dark bars, n=48) or 1.42 |aM Cd in solutions at 

a hardness of 140 mg CaCC>3/L (light bars, n=24). For dietary exposure 

Daphnia pulex were exposed to these same waterborne exposure 

concentrations for 24 h prior to feeding to Hydra. 
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