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Abstract 

The main focus of this thesis is in the application of a new family of 

analytical solvable diffusion models to arbitrage-free pricing exotic financial 

derivatives, such as barrier options. The family of diffusions is the so-

called "Drifted Bessel family" having nonlinear (smile-like) local volatility 

with multiple adjustable parameters. In particular, the drifted Bessd-if 

diffusion is used to model asset (stock) price processes under a risk-neutral 

measure whereby discounted asset price are martingales. 

Closed-form spectral expansions for barrier option values are derived 

within the Bessel-K family of models. This follow from the closed-form 

spectral expansions for the transition probability densities which are ob­

tained for the Bessel family of processes with imposed killing boundaries. 

We also show that the commonly adopted CEV model is recovered as a 

special parametric limit of our Bessel family of models for the case of zero 

drift. 

The rapid convergence of the spectral expansions leads to very efficient 

numerical implementations of barrier option pricing and sensitivity analysis. 

We hence carry out various numerical computations in order to study the 

relative effects of the parameters (state dependencies) of the Bessel family 

of models with respect to barrier option pricing and hedging. We com­

pare our results with the standard Black-Scholes (GBM) and CEV models, 

demonstrating that model specification leads to important differences when 

pricing non-vanilla options, such as barrier options. 
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Introduction 

Derivative contracts or options can be broadly classified into two main 

categories: (i) non-path-dependent (European vanilla options) or (ii) path-

dependent (Exotic options). Most standard equity options, such as Euro­

pean calls and puts, are of type (i). 

Derivatives of type (ii) encompass a wide variety of modern-day con­

tracts that are formulated within various markets that include equity, fixed-

income and credit markets. Within the equity derivative arena, the basic 

difference between options of type (i) and type (ii) is either the inclusion of 

an early exercise feature (ie. American) or a more strongly path-dependent 

option feature whereby the payoff is a function of the history of the stock 

process, as in lookback or barrier options. Some contracts combine both 

features, and this gives rise to so called American style, lookback style and 

barrier options. This thesis focusses on the pricing of European style bar­

rier options on a stock with fixed expiration date. These options come in 

various flavors: single or double-barrier, knock-in or knock-out, constant or 

time dependent barrier levels, etc. The characteristics of such options are 

well known [see Albanese and Campolieti 2005]. Chapter 3 of this thesis 

contains a description of knock-out options with constant barrier levels. As 

the name suggests, a single barrier knock-out option expires worthless if 

the stock price hits a predetermined single upper or lower level, in the case 

of a double-barrier knock-out, if the stock price reaches either level before 

l 



2 INTRODUCTION 

expiration. A nonzero payoff results only under scenarios in which the stock 

price does not attain the barrier(s) throughout the lifetime of the option. 

The payoffs are typically call-like or put-like. Knock-in barrier options have 

a complementary payoff structure and are hence valued by knock-in/knock­

out symmetry, i.e. the valuation problem is reduced to that of the knock-out 

barrier option. 

In the study of stochastic diffusion processes with application to finance, 

geometric Brownian motion is among the simplest models for continuous 

time asset pricing. In the GBM model, the asset price process is assumed to 

have a linear drift and a constant local volatility (i.e. dSt = iiStdt-\-aStdWt). 

For many years the GBM model was one of the few known continuous dif­

fusion models to admit exact pricing formulas for various options, such as 

lookback and barrier European options. However, in the real world the 

volatility is not constant across maturities. The constant elasticity of vari­

ance (CEV) diffusion model is the first model to incorporate a nonlinear 

local volatility. The Laplace transform and spectral expansion approaches 

[see Davydov and Linesky 2001, Linetsky 2004] are useful for deriving an­

alytical pricing formulas for CEV and other nonlinear volatility diffusion 

models. 

In recent years, there was a new development in the construction of 

various new families of solvable multi-parameter nonlinear local volatility 

diffusion models that have a wide range of applicability in finance (see Al-

banese and Campolieti 2005, Campolieti and Makarov 2006, Campolieti 

2008). The main idea in this new development is the use of a so-called dif­

fusion canonical transformation methodology. The method allows us to map 



INTRODUCTION 3 

more complex families of diffusions (we name them F-diffusions) into sim­

pler families of diffusions (we name the latter X-diffusions). In particular, 

the approach allows us to develop analytically exact transition probabil­

ity densities for new families of diffusions of interest (i.e. for F-diffusions) 

based on analytically exact transition probability densities that are readily 

obtained for underlying X-diffusions using Green's functions and spectral 

expansions. The diffusion canonical transformation methodology is appli­

cable to general choices of underlying X-diffusions. However, in this thesis 

we focus exclusively on so-called Bessel families of nonlinear local volatility 

models with linear drift. These processes are generated by choosing the 

squared Bessel process as the X-diffusion. 

In particular, we consider a new family of models referred to as the 

drifted Bessel-K diffusion processes. We use this subfamily of diffusions as 

a basis for describing asset (stock) price processes. The drifted Bessel-if 

diffusions consist of four freely adjustable parameters, and for all choices of 

these parameters the processes describe discounted asset prices as martin­

gales within an assumed risk-neutral measure. The local volatility of this 

Bessel family is highly nonlinear and consists of various desirable features 

that are observed in the equity options markets. Such features include the 

leverage effect at lower values of the asset price and pronounced smiles and 

skews in the implied volatility surface. Moreover, the Bessel-if models are 

supersets of the CEV model, i.e. the driftless CEV model is recovered as 

a special limiting case of the Bessel-lf model. In this thesis, we tackle the 

problem of deriving new analytically exact pricing formulas for barrier op­

tions written on an underlying asset (stock) price process that is modeled 

according to a Bessel-K diffusion. 



4 INTRODUCTION 

The thesis is organized as follows. Chapter 1 provides the background 

for deriving closed-form spectral expansions for the transition probability 

density of an underlying solvable X-diffusion. The chapter presents the 

basic Green's function method and Sturm-Liouville formalism. Included in 

Chapter 1 are analytically exact spectral expansions for transition probabil­

ity densities of a squared Bessel diffusion process with killing at one or two 

barriers. Chapter 2 presents the essential features of the diffusion canonical 

transformation methodology. This methodology leads to the construction 

of a new drifted Bessel family of diffusions, i.e. the drifted Bessel-if and 

Bessel-/ diffusions with four parameters contained in the nonlinear local 

volatility function. Moreover, Chapter 2 also contains a brief introduction 

of the first hitting time for diffusions. The latter are used partly to derive 

barrier pricing formulas in Chapter 3. Chapter 3 presents derivations of 

new analytically exact pricing formulas for various standard European bar­

rier options. This includes double knock-out, down-and-out and up-and-out 

call (and put) options. Moreover, we compare these results with those of 

the well-known GBM model. In addition, we recover the zero-drift CEV 

volatility model from the Bessel-if subfamily and present various pricing 

results for the CEV. Finally, in Chapter 4 we investigate the sensitivity of 

barrier option prices under the drifted Bessel-A" model. That is, we compute 

the so-called "Greeks" for the European barrier call options which include 

the Delta and Theta of the option. 



CHAPTER 1 

Spectral Expansion For Underlying Processes 

1.1. Transition Density and Fundamental Solutions 

Consider a one-dimensional time-homogeneous diffusion process (Xt)t>o 

on the state space V = (I, r) with two endpoints, I > —oo and I < r < oo, 

and obeying the stochastic differential equation 

dXt = a{Xt)dt + u(Xt)dWt, X0 = x0eV (1.1.1) 

{Wt)t>o is a one-dimensional standard Brownian motion and the X-process 

starts at xo at time t = 0. The drift function a(x) is assumed to be contin­

uous and differentiable on V. The volatility function v(x) is assumed to be 

twice continuously differentiable on T>. 

Let u(x,xo,t) be a transition density of the X process. The transition 

probability density u(x, xo,t) hence satisfies the time-homogeneous forward 

Kolmogorov equation 

and the backward Kolmogorov equation 

du 1 , . .d2u . . du . oX 

fr=2"(Xo)dxl + a{Xo)dx-o=gx°U ( L L 3 ) 

with initial condition u(x, Xo, 0+) = 5(x — xo), where 8(x — XQ) is the Dirac 

delta function. The operator Hx is the Fokker-Planck differential operator 

5 



6 1. SPECTRAL EXPANSION FOR UNDERLYING PROCESSES 

which acts on variable x and QXo is the generator (Lagrange adjoint op­

erator) acting on XQ. The transition density u(x, xo,t) of the X-diffusion 

process is obtained by solving either forward or backward Kolmogorov par­

tial differential equation. 

For convenience, we introduce the speed density m(x) and scale density 

s(x) functions: 

s{x) = exp{-fW)dz)' m(x) =
 s"R^) (LL4) 

Then the operator in equation (1.1.2) and (1.1.3) take the compact forms 

in terms of speed and scale densities: 

«•'==£)(.-&)'• H ^ G © t y y (I-L5) 

The ordinary differential equation 

Qxy(x) = sip(x), s 6 C, x e V (1.1.6) 

allows two linearly independent (fundamental) solutions </>*(x) and (p~(x), 

for Re(s) > 0 and subject to appropriate boundary conditions. For positive 

value p (i.e. p = Re(s) > 0), the fundamental solutions <p^{x) and (p~ (x) are 

strictly increasing and decreasing, respectively (see Borodin and Salminen 

2000, Karlin and Talylor 1981). The boundary points {l,r}, the diffusions 

(Xt)t>o, can be either regular, natural, entrance or exit (see Linetsky 2004). 

For regular boundaries, the diffusions (Xt)t>o, are either killing (or absorb­

ing) upon hitting the boundaries points or instantaneous reflecting. For 

instantaneous reflection boundaries, the boundaries points are included in 

the state space. On the other hand, for the other types of boundaries, the 
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endpoints are excluded from the state space. In this thesis we only consider 

the regular killing boundary conditions. The fundamental solutions <pf(x) 

satisfy the homogeneous endpoints regular killing boundary conditions: 

<pt{x) ft(x) 
lim . . = oo and lim • - = 0 (1.1.7) 

x-*r- <p-(x) x^i+ (p-(x) 

The Wronskian of fundamental solutions can be computed as: 

W[p7,<pt]{x) := ¥>;(*)£ (*>+(*)) - tf ( a ) £ (y,;(x)) =w#[x) (1.1.8) 

where ws is a constant with respect to x. 

First note that the operator £ := —Q, where £ is a Sturm-Liouville 

operator, and hence equation (1.1.6) can be written as 

Cx<p(x) = Mx) (1.1.9) 

where we set A — — s. The linear independent solution set becomes y^A(^) 

on the space L2(m, (l,r)). 

Consider the Green's function G(x, x0, s) for finding the transition prob­

ability density u(x,x0,t) for the X-diffusion with homogenous boundary 

conditions. The Green's function G(x, x0, s) is defined by the Laplace trans­

form 

/>oo 

G(x,x0,s) = L[u(x,x0,t)](s) = e~stu(x,x0,t)dt, s e C (1.1.10) 
Jo 

The transition probability density u(x,x0,t) satisfies the same homoge­

nous boundary conditions as G(x, xo,s), and is obtained by the following 

inverse Laplace transformation: 

t) = L-1[G(x,x0,s)](t) (1.1.11) 
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Prom Sturm-Liouville theory, the spectral expansion of a transition den­

sity fall into three main categories (see Campolieti 2008, Davydov and 

Linetsky), spectral category I, spectral category II, spectral category III. 

Throughout this thesis we only need to consider spectral category I, i.e. the 

spectrum is simple, nonnegative and purely discrete. This corresponds to 

the case where G(x,xo,s) has simple poles at s = — \n,n = 1,2, •• • ,oo. 

These form countably infinite set {An}^=1 with an increasing unique se­

quence 0 < Ai < A2 < A3 < • • •, with A„ —• 00 as n —• 00. Therefore, the 

Green's function G(x, XQ, S) takes on the form of spectral expansion 

G(x, x0, A = - s ) = m(x) \ — • \ (1.1.12) 
n=l S + An 

where </>„(#) are the eigenfunctions corresponding to An. These satisfy 

£>x<i>n(x) = A„(/>n(z), n = 1,2, • • • (1.1.13) 

and form a complete orthonormal basis with inner product: 

(<l>n(x),<t>m(x))[a,b]:= m(x)(j)m(x)(f)n(x)dx = 5mn (1.1.14) 
J a 

with speed density m(x) defined in equation (1.1.4). 

The transition probability density u(x, xo,t), is obtained by taking the 

inverse Laplace transform of equation (1.1.10) with Green's function G(x, XQ, s) 

is given in equation (1.1.12). This leads to: 

1 
U(X, XQ, t) = m(x) ^ 4>n{x)(pn(xo)L 1 

n=l 
oo 

= m(x) ^2 e~Xnt(t>n{x)^n{xQ) 

s + \ n 
(t) 

(1.1.15) 

7 1 = 1 
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In this thesis we are interested in diffusion processes with killing at two 

arbitrary finite endpoints, x = XL and x = XH (i.e. Xt e [XL,XH\ where 

XL < XH)- The process with killing at a single arbitrary finite endpoint, 

either upper x = XH or lower x = XL, can be obtained by taking appropriate 

limits, i.e. lim:Ei_>;+ for the process killed at x = XH and limlH_^r_ for 

the process killed at x = XL- The transition probability density with two 

barrier endpoints, XL and XH, is denoted by u(x, xo,XL,XH,t). Hence, the 

zero homogenous boundary conditions at two finite endpoints, XL and XH, 

imposed on a transition density u(x, XQ, XL, XH, t) read as 

u(xL, x0, xL, xH, t) = u(xH, x0, xL, xH, t) = 0 (1.1.16) 

By imposing homogenous boundary conditions on the transition proba­

bility density u(x,xo,XL,XH,t), the eigenfunctions <frn(x) (corresponding to 

eigenvalues An) satisfy equation (1.1.13) with boundary condition 4>{XL) = 

4>{xH) = 0 and inner product in equation (1.1.14). This gives (see Campoli-

eti 2008) 

Ux) = ± ^ ^ M (i.i.iy) 

where An and Cn are defined as follows: 

A ^SXH) 

* ^ > L ) (1.1.18) 

Cn = -J^-j- (wss(x)f(xL, xH; s)) \s=-xn 

and a cylinder function f(x, xn\ —An) given as 

f(x,y;-Xn) = yZXn(x)vtXn{y) ~ V-xM**^*) (1.1.19) 

The eigenvalues A„ are the simple zeros solving / ( # L , a;#; — An) = 0. 
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1.2. Squared Bessel Process 

Suppose we have a regular one-dimensional squared Bessel diffusion pro­

cess (Xt)t>o E T> = (l,r) = (0, oo) which obeys the stochastic differential 

equation 

dXt = a0dt + ly/Xt&Wt (1.2.1) 

where ao is a constant. Assume that the process Xo starts at XQ € V and 

we define \i = a0/2 — 1 > 0. From equation (1.1.4) given in the previous 

section, we obtain the speed and scale densities: 

m(z) = f , s(x) = x - " - 1 (1.2.2) 

The fundamental solutions, (pf{x) and <pj(x) for s € C, to the homoge­

nous ordinary differential equation (1.1.9) are given as 

<p+{x) = x->>l%{y/2ri), ¥>7(X) = Z - " / % ( N / 2 ^ ) (1.2.3) 

The functions I^(z) and K^z) are the first and second kind of modified 

Bessel functions with order //, respectively (see Abramowitz and Stegun), 

and satisfy a Wronskian relation as in (1.1.8) with ws = 1/2. Using the 

small and large argument asymptotics of the modified Bessel functions I^z) 

and K^z), we readily show that ff(x) satisfy the boundary conditions in 

(1.1.7). Note that, at the boundary point 1 = 0, the squared Bessel process 

has entrance for // > 0, exit for fj, < — 1 and regular killing for fi e (—1,0). 

Similarly, at the boundary r = oo, the process is attracting for \i > 0. In 

this thesis we only consider the case where // > 0. 

From equation (1.1.15) and the speed density m(x) defined in equation 

(1.1.4), we obtain an exact double-barrier transition density, u(x, xo, XL, XH, t), 
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with lower level XL > 0 and upper level XH < oo of a squared Bessel dif­

fusion process. That is, the transition probability density for the squared 

Bessel process with killing at both endpoints xL < XH is: 

u(x, x0, xL, xH, t) = m(x) ^2 e Xnt<pn(x)(j)n(xo) 
n = l 

oo 
(1.2.4) 

Y^ e-Xnt<j)n{x)(t>n{xQ) 
n=l 

The eigenfunctions (j)n(x) are obtained via equations (1.1.17), (1.1.18), 

(1.1.19) and (1.2.3). Upon using the identities I^(ix) = i^J^x) and K^{ix) = 

r^(7r/2)[yM(a;) - iJ„(x)], for x € R gives 

4>n{x) = Nnx M / 2 / M ( X , XL, An) (1.2.5) 

Here we define a normalization constant Afn, and a Bessel cylinder function 

/^(a;,y,An), as follows 

„ . _ , -1/2 

A/"« = IT^/Xi 
Y^^2X~^L) i 

(1.2.6) 

The functions Jfi(z) and Y^z) are the ordinary Bessel functions of the 

first and second kind with order fi > 0. The corresponding eigenvalues An 

are the positive simple zeros of the cylinder functions 

IH(XL, xH, A„) = 0, n = 1,2, • • • , oo (1.2.7) 

Using the asymptotic forms J^(z) ~ y/2/irz cos (z — fxir/2 — 7r/4) and 

Y^x) ~ y/2/irzsin {z — (m/2 — ir/4) for a cylinder function / ^ ( Z L , XH, Xn) 
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as An —» oo, gives 

U(xL,XH, Z) f •= sin (s/z{y/2x~L - V2x^)), z -> oo (1.2.8) 

-KsJZ 

Hence, the eigenvalues An can be approximated as 

XI 7T 

Note that we use zn as an initial guess in obtaining numerically exact 

values of An. The exact values of A„ were obtained using the Matlab built-in 

fzero function. 

Similarly, the squared Bessel diffusion with killing at a single upper 

barrier XH (i.e. (Xt)t>o £ (0, XH]) falls in the spectral category I (i.e. simple, 

nonnegative and purely discrete spectrum). The closed-form upper barrier 

transition probability density, denoted by u(x, xo,XH,t), takes on the form 

of equation (1.1.15) with normalized eigenfunctions (see Campolieti 2008) 

x~^ MV2X^c) 
<t>n(x) = /nT—\ (1-2.10) 

An accurate initial guess for the eigenvalues An follows from the asymptotic 

form for J^z) as z —• oo, i.e. the simple zeros solving J^{y/2X^Xff) = 0 are 

approximated as 

A n ~ - ^ - [ ( 2 n + / / ) - l / 2 ] 2 (1.2.11) 
4XH 

Another approach for computing single barrier transition densities fol­

lows by taking limits as xL approaches zero (for single upper barrier xH) 

or as XH approaches infinity (for single lower barrier XL) within the double-

barrier transition density. In chapter 4, we will develop single barrier pricing 

formulas for the drifted Bessel-if family by using such a limiting approach. 
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This limiting approach is particularly useful for the case of the single lower 

barrier problem which has a purely continuous positive spectrum. 





CHAPTER 2 

Spectra l E x p a n s i o n s for Transformed F-Dif fus ions 

2.1. Canonical Transformation Methodology 

In this section, we derive families of new diffusions (i.e. so-called F-

diffusions) which are obtained via the diffusion canonical transformation 

methodology (see Albanese and Campolieti 2005, Campolieti and Makarov 

2006, Campolieti 2008). One of the basic ideas is to consider the so-called 

X-diffusions where the transition densities can be solved analytically by a 

Green's function technique. Then, the pricing kernels (transition probability 

densities) of F-diffusions are related to those of the X-diffusions. 

Consider a one-dimensional time-homogenous regular diffusion process 

(X^)t>0 G (I, r) with a parameter p > 0, defined by the generator 

gMnxy.._^ix)fM^aix)+Ax)^ym (,L1) 

where u'(x,p) = £f an(^ ^(X^P) *s defined in (2.1.3). a(x) and u(x) 

are the drift and diffusion coefficients of the X-diffusion given in equation 

(1.1.1). The X^-diffusions can be viewed as satisfying the stochastic dif­

ferential equation 

dX^ = aW (X\p) )dt + i » (X{
t
p) )dWt (2.1.2) 

15 
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where a^(x) := a(x) + v2(x)uJ*'p) and u^p\x) :=• u(x). The transfor­

mations from Xt to Xf processes are described in much more detail in 

Campolieti and Makarov 2006, 2008, Campolieti 2008. 

For real values s = p > 0, the homogenous ordinary differential equation 

(1.1.6) admits a set of linearly independent solutions, <p^(x) and <p^(x). We 

define a generating function u(x,p) as 

u(x, p) = qitp+{x) + q2<Pp(x) (2.1.3) 

where qu q2 are parameters and at least one of them is assumed to be strictly 

positive. 

The transition probability density function of an X^-diffusion, denoted 

by u^(x,xo,t), is related to that of the X-diffusion: 

u 
(p) (x, s0> t) = e - ' * ^ 4 u ( z , x0, t) (2.1.4) 

The speed and scale densities of the X^-diffusion are defined as 

m^(x):=u2(x,p)m(x), s^(x) := - ^ ^ (2.1.5) 

Now consider a (new) one-dimensional regular F-diffusion (F t) t>0 defined 

via a strictly monotonic mapping of an ^ -d i f fus ion , i.e. F t = F(Xt
(p)). The 

diffusion process has regular state space (Ft)t>o € V = ( F ( / ) , F ^ ) , where 

F® = min{F(Z+), F ( r - ) } and F& = max{F(J+), F ( r - ) } are left and right 

endpoints of V, respectively. Throughout we assume that the mapping 

F = F(x) is continuous and twice differentiate for all x in T> = (I, r) and 

that the process (F t) t>0 obeys the stochastic differential equation 

dFt = 0Ftdt + a(Ft)dWt, F0 = F0 (2.1.6) 
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where (Wt)t>o is a standard Brownian motion and 6 is a constant. 

As discussed in Albanese et al. 2001, Albanese and Campolieti 2005, 

Campolieti and Makarov 2006, Campolieti 2008, the diffusion canonical 

transformation methodology gives 

— = ± -^1 (2 17) 
dF ±a{F) ( 2 > L 7 j 

and a volatility function 

^ - w 8 ^ ^ (2'L8) 

where x = X(F) := F -1(F) is an inverse mapping of F = F(x), as follows 

by equation (2.1.7) and u(x, p) is given in (2.1.3). The signs ± in equation 

(2.1.7) permit two possible maps. A negative sign (—) gives a monotonically 

decreasing map and a positive sign (+) provides a monotonically increasing 

map. For p + 9 > 0, we define v(x, p + 0) as 

v(x,p + 6) = [citf+e{x) + c2ip-+g(x)] (2.1.9) 

where c\ and c<i are real constants, and one of them is assumed to be strictly 

nonzero. 

Now, using the relationship between equations (2.1.7) and (2.1.8), we 

achieve the mapping F — F(x) 

f(x) = ^+
p+e{x) + c^-p+e{x) i 

where q and %, for i = 1,2, are real parameters. By choosing appropriate 

values of parameters % and c* in equation (2.1.10), the mapping yields 

different families of F-diffusions. That is, setting <?i = C2 = 0,<3<2 = l,ci = 



.a(F) = a " ' L
r T,: ; i 2

P + > « > 0 
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a > 0, F = F(x) gives a monotonically increasing map, and similarly, setting 

qi = 1, q<i = c\ = 0, C2 = a > 0 F = F(x) leads to a monotonically decreasing 

map. Two (dual) families of diffusions arise as follows: 

(1) Monotonically increasing maps and volatility function: 
_v{x)W[<p;(x),<p-^e(x)] 

• u(x,p) = (p-(x) 

(2) Monotonically decreasing map and volatility function: 

m < F ) = a — W M — ' a > 0 

.F(x) =«*%£> 
• u(x,p) = <p+(x) 

The transition probability density of an F-diffusion, denoted by U(F, Fo, t), 

is related to that of an X(p)-diffusion (or X-diffusion) as 

U(F,F0,t) = \X'(F)\u^(X(F),X(F0),t) 

_ KX(F))n(X(F),p) (2-L11> 
- a(F) u(X(F0),p)e " W ^ ' ^ o ) , * ) 

The transition densities of the F-diffusions with killing, at either single 

or double barrier(s), are obtained by directly substituting either a single or 

a double barrier transition density u(x, x0, t) for the underlying X-diffusion. 

2.2. First Hitting Time 

The main objective of this thesis is to develop barrier pricing formulas 

for the stock price process modeled by the new F-diffusions. For this reason, 

it is important to introduce the first hitting time concept, i.e. the first time 

that the process Ft crosses a particular barrier either from below or above. 
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In what follows we shall only consider F-diffusions on the regular state space 

2> = (FW>F<p>) = (0,oo). 

Consider the F-diffusions defined in (2.1.6) with killing at any real value 

b G (0,oo). We denote the first hitting time of the process Ft at level b, 

either from above or below, by TJ*, and it is defined by 

r6* = i n f { i > 0 | F t = 6,F0G(0,oo)} . (2.2.1) 

Also, we consider the process F\ ' ': the F-diffusions defined in (2.1.6) 

with killing at two barriers, upper barrier H < oo and lower barrier L > 0. 

We assume that the process starts at FQ € [L, H]. We denote the first 

hitting time for reaching the lower barrier L and the first hitting time for 

reaching the upper barrier H by T/, and TJJ, respectively. We hence define 

TL and TH as follows: 

TL = inf{t > 0|F t = L, F0 G [L, H]} 
(2.2.2) 

TH = ini{t>0\Ft = H,F0e[L,H]} 

If an F-diffusion hits either L or H, then it is absorbed (or killed) and 

sent to the so-called cemetary state o. If F t G (L,H), (i.e. TL,TH < t), we 

have Fj ' = F t . We can rewrite the process F ^ ' , killed at both barrier 

levels L and H in the compact form: 

IT m I o, if TL or TH < t; 
F{

t
L'H) =1 (2.2.3) 

( Ft, \irL,rH>t. 

The process with a single absorbing barrier can be obtained by a limiting 

approach. That is, taking the limit L —• 0 + of F\ ' ' gives a F-diffusion 

with a single killing upper barrier at H, and limit H —> oo of F\ ' leads 
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to a F-diffusion with imposed killing at lower level L. The barrier-free case 

arises when L —> 0+ and H —> oo. 

For the purpose of pricing barrier options, to follow in chapter three, we 

define T£(H), the first hitting time down of the process Ft for barrier level L 

conditional on the process reaching L before level H, given that the process 

starts at F0 = F0 G (L,H) (see figure 2.2.1). Similarly, we define T^(L) as 

the first hitting time up at H before hitting level L, given that the process 

starts at Fo = FQ G (L,H). Hence, r£(H) and T#(L) are defined as: 

r£(H) = M{t > 0|Ft = L,Mt< H, F0 G (L, H)} 
(2.2.4) 

T+(L) = inf{t > 0|Ft = H,mt> L, F0 G (L, H)} 

where Mt and mt are defined to be the realized maximum and minimum of 

the process up to time t: 

Mt = sup F„ mt = inf Fs (2.2.5) 
0<s<t 0<s<t 

Therefore, from equations (2.2.2) and (2.2.4), for FQ G (L,H), we have 

the following probability relations 

P{rL < TH, TL<t} = F{T£(H) < t} (2.2.6) 

and 

n-TH < TL, rH<t} = P{r+(L) < t} (2.2.7) 
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Figure 2.2.1: Typical paths depicting first hitting times. 

2.3. Drifted Bessel Family of F-Diffusions 

In this section we develop new families of F-diffusions satisfying equa­

tion (2.1.6), where the underlying diffusion Xt is a squared Bessel process 

satisfying equation (1.2.1). 

By directly substituting i>(x, p+9) into equation (2.1.10), with v defined 

in equation (2.1.9), with u(x, p) given in equation (2.1.3) and the fundamen­

tal solutions <pf(x) given in equation (1.2.3), we obtain the general form for 

the Bessel mapping F — F(x), i.e. 

F(x) = 
ClI^2(p + e)x) + c2Kll(y/2{p + e)x) 

qiI»(V2p~x) + q2Ktl(y/2px) 

The general form for the volatility function is 

l ^ i ^ p + g f o ) + C2^+ 9(x), qirfjx) + q2<P~(x)]\ 

(2.3.1) 

a(F) = v(x)-
[qivt(x) + q2<Pp(x)]2 

(2.3.2) 
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where (p*(x) are given in equation (1.2.3). The mapping x = X(F) := 

F_ 1(F) is the unique inverse given by inverting equation (2.3.1). Note that, 

in equations (2.3.1) and (2.3.2), the parameters c* and <& for i — 1,2, are 

real nonnegative parameters such that either q\ > 0 or q<i > 0 and either 

c\ > 0 or c2 > 0. 

Equation (2.3.2) gives a general form for the volatility function cr(F) 

for all families of drifted Bessel diffusions. By setting the appropriate pa­

rameters Ci and qu this reduces to different subfamilies. That is, setting 

q\ = 0, (& = l,Ci = a > 0 and c2 = 0 gives the so-called (four-parameter) 

Bessel if-subfamily. Similarly, setting q2 = 0, q\ — 1, c2 = a > 0 and c\ = 0 

gives the so-called (four-parameter) Bessel /-subfamily. 

The (dual) drifted Bessel I- and If-subfamilies are characterized as fol­

lows. 

(1) Monotonically increasing map, Bessel if-subfamily: 

' a(F) = y/TpK^W^x) ^/2(JT9)Ill+1(y/2(p + e)x) 

F 2Klt(y/Zfi) 2I^2(p + e)x) 

v ; K^y/^pla) 

^ U(X,P) = X-^2K11{TJ2P1C) 

(2) Monotonically decreasing map, Bessel /-subfamily: 

f a(F) = y/TpI^WItx) s/2jp~+0)K,+1(^2(p + e)x) 

F 21^^/2^) 2K^2{p + 6)x) 

^ P ^ ) (2.3.4) 

u{x,p) = x->*l2Ill{j2p~x') 
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The four adjustable parameters are p, 9, a, JJL such that p, p + 0, a, p, are all 

strictly positive. In both cases, x = X(F) where X = F _ 1 is given by the 

respective inverse map. 

Local Volatility 
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0 
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F 

Figure 2.3.1: Typical local volatility curves for the Bessel if-subfamily. 

Figure 2.3.1 displays typical local volatility curves, o(F)/F versus F , for 

the Bessel A'-subfamily with fixed values r (= 0),p,a := a(Fo)/F0 = 0.25 

for Fo = 100, and various choices of parameters (p, a). The parameters have 

been chosen such that the volatility function a(F)/F has a fixed value of 

0.25 at F = 100. In contrast, Figure 2.3.2 shows local volatility functions 

for the Bessel /-subfamily with various choices of values (//, a), where 6 = 

0.02(= r),p = 0.0125, a := a(F0)/F0 = 0.25 for F0 = 2. In both Figures, the 

model parameters have been chosen such that the local volatility function 

o(F)/F has a fixed value at some spot value F = F0. It is apparent that 

the Bessel-iiT model exhibits a pronounced leverage effect at smaller values 

H=0.1,a=626.0725 
H=0.2,a=672.8989 
H=0.5,a=728.7468 

F0=100p=0.00001 

0=0.25, 9=0.02 
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Figure 2.3,2: Typical local volatility curves for the Bessel /-subfamily. 

of the asset price F. The relative steepness of the curves can be controlled 

by adjusting the model parameters. 

2.4. Transition Density for Drifted Bessel-/^ Family 

In this section we present the transition probability density for the Bessel 

if-subfamily of F-diffusions with killing at two barriers. We denote this 

transition density by U(F, F0, L, H, t), where L > 0 and H < oo are lower 

and upper barriers, respectively. 

The transition density is obtained by substituting the generating func­

tion, u(x, p) in (2.3.3), and the (double-barrier) transition density into equa­

tion (2.1.11). This gives an exact closed-form spectral expansion for the 

transition density: 

U(F, F0, L, H, t) = | X ' ( F ) | ^ ^ ^ f ; e-^») fAC/,(xo, xLt \n)U(x, xL 

(2.4.1) 

l2KJ^2p~x^) 
n = l 
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where \X'(F)\ = v{x)/a{F) = 2^/a(F),xL = X(L),xH = X(H),x0 = 

X(F0),x = X(F) via equation (2.3.3). The normalization constant Mn and 

the cylinder function /^(x, y, An) are given by equation (1.2.6). The end-

points XL and XH are uniquely given by inverting 

F(xL) = L = a 

F(x#) = H = a 

Ill(y/2(j> + 0)xL) 

K^y/2^1) ' 

Ilt(y/2{P + 9)xH) 
(2.4.2) 

Since F(a;) is a Bessel-iiT map (i.e. monotonically increasing), then for all 

values x and XQ in [XL, XH] we have F, F0 G [L,H]. 

U(F,FO,L,H,t) Vs. F 

110 

Figure 2.4.1: Rapid convergence of series in (2.4.1). 

Figure 2.4.1 shows plots of the computed series in (2.4.1) using N = 

2,4,8,12,20 number of terms in the sum, where FQ = 100, L = 80, H = 

110,0 = 0.02, a = 626,/i = 0.1, p - 0.0001, t = 0.01. As shown in 
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Figure 2.4.2: Converged p.d.f.s. 

the figure, equation (2.4.1) gives a rapidly convergent series expansion for 

U(F,F0,L,H,t). 

Figure 2.4.2 shows the (converged) transition densities U(F,F0,L,H,t) 

with different values of t and fixed parameters F0 = 100, L = 80, H = 

110,6 = 0.02, a = 626, \i = 0.1 and p = 0.0001. 

Single-barrier transition probability densities, for either upper or lower 

barrier, are obtained by a similar direct substitution as in the double-barrier 

case, i.e. substitute u(x, p), defined in equation (2.3.3), and a probability 

density u(x, xo, XL, t) (for lower barrier) or u(x, xo, XH, t) (for upper barrier) 

into equation (2.1.11). On the other hand, we can obtain single-barrier 

densities by a limiting approach. That is, taking L —> 0+ of the double 

barrier p.d.f, U(F, F0, L, H, t), leads to an upper barrier p.d.f. and the limit 

H —> oo of U(F, FQ, L, H, t) gives the single lower barrier transition p.d.f. 

-
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Similarly, the transition probability densities of a four-parameter Bessel 

/-subfamily, can be achieved by directly substituting equation (2.3.4) into 

(2.1.11). In this thesis we only consider the Bessel if-subfamily. The main 

reason for this is that the "discounted" process (e~etFt)t>o G (0, oo) is a 

martingale for all choices of parameters, which is crucial for applications 

in arbitrage-free option pricing. On the other hand, the Bessel /-subfamily 

of discounted process on (0, oo) are strict supermartingales. For detailed 

analysis of properties of these processes see Campolieti G. and Makarov R., 

2006; 2008. 





CHAPTER 3 

Pricing Formulas For F-Diffusions 

In this chapter, we derive analytical pricing formulas for European bar­

rier options under the drifted Bessel if-family of diffusions. A barrier option 

is a type of option contract where the option value depends on whether the 

underlying asset crosses a given barrier level, either from above or below. 

In what follows we deal explicitly with knock-out barriers. The pricing of 

the corresponding knock-in barrier options follows immediately by knock-

in/knock-out symmetry. 

Suppose the price of an asset (e.g. a stock) at calendar time t is given 

by the process (Ft)t>o and hence obeys the stochastic differential equation 

dFt = rFtdt + a{Ft)dWt, F0 = F0 (3.0.3) 

where Ft is a drifted Bessel-iiT diffusion with volatility in (2.3.3). Wt is a 

standard Brownian motion within an assumed risk-neutral measure where 

(e_rtF t) t>o is a martingale. 

To simplify notation, and without loss in generality, we set current time 

as t = 0. Throughout we will use the following representations: 

• T > 0 represents the time to maturity. 

• FT represents the underlying asset price at maturity time T. 

• Fo represents the current (spot) price of the underlying asset. 

• K > 0 represents the strike or exercise price. 

• r represents the continuously compounded annual interest rate. 

29 
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• L > 0 represents the lower barrier. 

• H > L represents the upper barrier. 

Recall the payoff of a standard European option, denoted by A(FT), 

given as 

A(F r) = { 
max[(FT - K), 0] = (FT - K)+, for call option; 

max[(K - F r ) , 0] = (K - FT)+, for put option. 

We denote a double-barrier payoff function by A^-L'H^, where L and H are 

lower and upper barriers, respectively. We assume A(-) € L2(S,mp), where 

S is the regular state space of the F-diffusion. 

Now, consider the possibilities that the process Ft might cross lower 

barrier L or upper barrier H. That is, if F t crosses level L, the option 

contract is knocked-out (i.e. canceled and has zero value). Similarly, if the 

process F< reaches an upper barrier H, the option contract is knocked-out, 

and hence, in either case the payoff A(L'H^(FT) — 0. Otherwise, the process 

F T e (L,H) (i.e. TL,TH > T) and the double-barrier payoff A^L'H\FT) = 

A(Fr), as shown in Figure 3.0.1. Therefore, we define a double-barrier 

payoff, A(L'H\ as follows: 

A < L ^ ( F r ) = -

f 0, TL < T or TH < T; 
(3.0.5) 

A(FT), TL,TH>T; 

Similarly, we denote the upper barrier knock-out payoff function by A ^ . 

If the process F t crosses an upper barrier H (TH < T), then the option 

contract is knocked-out. This means that the payoff A ^ ( F r ) = 0. On the 

other hand, if the process F t reaches 0 (or T > r0), we have two possible 

cases. Case one: for a call payoff, A ^ ( F T ) = A(0) = (0 - K)+ = 0. Case 
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Figure 3.0.1: Typical double barrier payoff ( note t — T). 

two: for a put payoff, k^H\¥T) = A(0) = (K - 0)+ = K. The payoffs for 

the different possible scenarios are depicted in Figure 3.0.1. Therefore we 

define A(H)(FT) as 

A(")(FT) = < 

K, for put; 
, TQ<T,TQ< TH\ 

T0,TH>T; 

TH <T,TH < TQ. 

(3.0.6) 
0, for call. 

A(FT), 

0, 

Note that the above put payoff points to yet another important difference 

between the Bessel-ff model and the standard GBM model of Black-Scholes 

theory. When asset prices are assumed to obey the GBM process then 

no default scenarios are possible since the origin is a natural boundary 

and is hence not attainable in finite time. In contrast, if asset prices are 

modeled according to the drifted Bessel-A" diffusion then the origin is an exit 

boundary (i.e. attainable). In this case we tacitly assume the process stays 

at zero. The latter gives an asset pricing model that admits the possibility 

of default and, within the default scenario, the asset price hits zero in finite 

time with put payoff having maximal nonzero value of K. 
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For a single lower barrier the payoff is denoted by A^L). If F ( hits a lower 

barrier L (TL < T), the option contract is knocked-out and hence the payoff 

is A( i)(Ft) = 0 and if rL > T the payoff is A ^ ( F r ) = A(F r ) . Therefore 

A( i)(Fr) = I 
A(FT), rL>T; 

V ' (3.0.7) 
0, rL < T. 

The double-barrier pricing formulas for F-diffusions can be obtained via 

the risk-neutral probability measure, denoted by P, with probability density 

function U(F,F0,L,H,t). In particular, the present value of the double-

barrier option is given by the conditional expectation of the discounted 

payoff under the P-measure: 

VDB(F,F0,T) = e~rtE [A^L'H\FT)\F0 = F0] (3.0.8) 

We note that the discounted asset price process, modeled as a drifted Bessel-

K process with 6 = r, where r is the constant interest rate, is a P-martingale. 

The single knock-out barrier pricing formulas, either upper or lower, are 

achieved by replacing A^L'H^ with A ^ or A ^ in equation (3.0.8). Another 

method for obtaining the single-barrier pricing formulas is by using the 

limiting approach. That is, letting L —> 0+ in (3.0.8) leads to an upper 

barrier pricing formula. Similarly, l i m ^ ^ VDB(F, F0, t) gives a single lower 

barrier pricing formula. Later in this chapter, we use this method to derive 

up-and-out and down-and-out call, and up-and-out put pricing formulas. 

Before we derive the European double barrier (i.e. double knock-out) 

pricing formulas using equation (3.0.8), it is convenient if we first compute 

a cumulative transition distribution, denoted by $(F, FQ,t), and a related 

cumulative transition distribution, denoted as $(F, F0,t). 
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Prom the transition probability density, U(F, FQ, L, H, t), given in equa­

tion (2.4.1), we define a cumulative probability distribution by 

fF - -
$(F,F0,t):= U(F,F0,L,H,t)dF, (3.0.9) 

F, FQ 6 [L, H]. This integral is readily computed by changing integration 

variable from F to x. This can be done by the map F = F(x), with inverse 

x = X(F), dF = F(x)dx, \F'{x)\ = u{x)/a(F), giving 

* ( F , F o , t ) = / \F'(x)\U(F(x),F0,L,H,t)dx (3.0.10) 
JX(L) 

Now, we substitute U(F, FQ, L, H, t), given in equation (2.4.1), into equa­

tion (3.0.10) and simplify giving the spectral expansion 

1/2 °° 
$(F, F0, t) = ' . T e-(r+x"»KU(xo, xL, Xn)^n>p(x), (3.0.11) 

J^nWzPxo) " 

where xL = X(L), x0 = X(F0), x = X(F) and X = F_1 is the inverse map for 

the Bessel-if defined in (2.3.3). Throughout we define \&n)P as 

^n,p(z)=Mnf' Kli(y/2^)fll(x,X(L),Xn)dx (3.0.12) 
JX(L) 

The integral in (3.0.12) can be evaluated in closed-form as follows. Using 

the cylinder function f^x, xL, An) of equation (1.2.6) and changing integra­

tion variable we have 
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/•X(F) 

*n,P(X(F)) =K / ^ ( x / 2 ^ ) [ J M ( 7 2 A ^ ) y M ( V
/ 2 A ^ ) 

JXIL) 

fX(F) 

/X(L) 

rv/x(F) 
=2NnJli(V2\nxL) / xKli(y/2px)Yli(y/2Xnx)dx 

7^/XCL) 

- a V n ^ C ^ A n S i ) / xKli{y/¥px)Jll{y/2\lx)d, 
JjX{L) 

(3.0.13) 

The last two integrals on the right can be computed by using the fol­

lowing indefinite integral identities (valid within an arbitrary constant): 

/ xYli(ax)Kli(bx)dx = [aYll+1(ax)KfJl{bx) - bY^l(ax)Kfi+i(bx)] 

xJli(ax)Kfi(bx)dx - -Y—To[aJli+i{ax)Kli(bx)-bJtJ,(ax)Klj,+i(bx)} 

Hence, after some algebra, equation (3.0.13) simplifies to 

1 
™n,p\x) 

P + K 
[-y/2X^K„(y/2^)^n(x) 

7T 

(3.0.14) 

where x = X(F), XL = X(L) and (pn(x) is given by an associated cylinder 

function 

4>n{x)=Nn Y^(y/2\nxL) J»+i(y/2Xnx) - J^2XnxL)Y„+i(^2Xnx) 

(3.0.15) 

Figure 3.0.2 contains plots of partial sums using (3.0.11) for $(F, Fo,t) 

with fixed values F0 = 100, L = 80, H = 110, r = 0.02, a = 626, // = 0.1, p = 
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Figure 3.0.2: Rapid convergence of c.d.f.s. 
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Figure 3.0.3: converged c.d.f.s. 

0.00001, t = 0.01. We see that the spectral expansion in (3.0.11) is rapidly 

convergent as more terms are added to the series. The five different curves 
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correspond to the series sum in the first N = 2,4,8,12 and 20 terms of the 

series in (3.0.11). 

Figure 3.0.3 gives plots of numerically (converged) cumulative distribu­

tions in (3.0.11) with different values t = 0.01,0.05,0.1 and fixed parameters 

F0 = 100, L = 80, H = 110, r = 0.02, a = 626, \L = 0.1 and p = 0.00001. 

Similarly, the related cumulative distribution $(F, Fo, t) is defined as 

fX(F) 

'X(L) 

The analogue to equation (3.0.11) is 

_ ,X(F) 

${F,F0,t):= \F'(x)\U(F(x),FQ,L,H,t)F{x)dx (3.0.16) 
JX(L) 

In °° 

*(F,F0 ,t) = a/ Y^e-^^KU^x^K^ix), (3.0.17) 

where ^n,p is defined as: 

#„,„(*)= A/"n / hi.\/2{p + r)x)/^(x, xt, \n)dx (3.0.18) 

Using the cylinder function /^(x, XL, An) in equation (1.2.6) we have 

/X(I) 

,V
/X(F) 

/x(Z) 

(3.0.19) 

_ r\/HF) 

*„,P(X(F)) = 2MMS/2KXL) / x / / i ( V ^ ( p T 0 ^ ) ^ ( v / 2 ^ ^ ) ^ 
v^/xcl) 

. r V ^ , ^— 
- 2A/"„FM(V2A„xL) / xl„{y/2(p + r)x)JM(V2A„x)da 

A/xrZ) 



3. PRICING FORMULAS FOR F-DIFFUSIONS 37 

Similarly, we compute the integrals in equation (3.0.19) above by using 

the indefinite integral identities (valid within an arbitrary constant): 

/ 

/ 

xYfl(ax)Iti(bx)dx = -j——^[bYfl+i(ax)Il,(bx) + aYll(ax)Ifj,+1(bx)] 

xJli(ax)Itl(bx)dx = [aJM+i(aa;)/M(6x) + 6JM(ax)JM+i(ba:)] 
+ 

After simplification, the integrals in equation (3.0.19) reduce to the fol­

lowing compact form: 

1 
*?n,p\%) — p + r + Xn 

\/2XnxIlj,(y/2(p + r)x)<j>n(x) 

+ x^2y/2{p + r)x/M+1(x/2(p + r)x)<j>n{x) + -KUV^P + r)xL) 

(3.0.20) 

where x = X(F),xL = X(L),x0 = X(F0) are given by the inverse mapping 

for the Bessel if-subfamily defined in equation (2.3.3). (j)(x) is given in 

(3.0.15). 

Figure 3.0.4 contains typical plots of partial sums using (3.0.17), where 

the parameters F0 = 100, L = 80,H = 110, r = 0.02, a = 626, p = 0.1, p = 

0.00001, t = 0.01. Uniform rapid convergence is observed as more terms are 

added (i.e. N = 2,4,8,12,20) in the series in (3.0.17). 

Figure 3.0.5 displays some numerically plots of <5(F, F0, t) given by equa­

tion (3.0.17) with constant parameters F0 = 100, L = 80, H = 110, r = 

0.02, a = 626, p = 0.1, p = 0.00001 and various times t = 0.01,0.05,0.1. 
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Figure 3.0.4: Rapid convergence of related c.d.f.s. 
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Figure 3.0.5: Converged related c.d.fs. 
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3.1. European Barrier Call Options 

In this section, we derive pricing formulas for European barrier call op­

tions where the underlying asset follows a drifted Bessel-A" process. The 

derivations include double knock-out, down-and-out and up-and-out call 

options. The derivations follow by the risk-neutral pricing formula, given 

in (3.0.8). In what follows, we introduce the indicator set function, 1A (w), 

where 1A(W) is 1 for all u> € A C J-T and 0 otherwise. We implement 

the usual formalism of a filtered probability space whereby (^ r i)0 < t < T is the 

natural filtration generated by the asset price diffusion process (Ft)0<t<r-

The first hitting times TL and TH are defined in (2.2.2). 

3.1.1. Double-Knock-Out Call. We now derive a double knock-out 

European call option value, denoted by C(L,H,F0,K,T), where L and H 

are lower and upper barrier levels, respectively. A double knock-out payoff 

function, K^L,H\ is given in equation (3.0.5). Hence, it follows from the 

risk-neutral pricing formula (equation (3.0.8)) and equations (3.0.4), (3.0.5) 

that the double knock-out call with time-to-maturity T has present value 

C(L, H, F0, K,T) = e~rTE [(FT - K)+1{TH>T,TL>T}\FQ = F0] (3.1.1) 

For L < K < H, the double knock-out call option value C(L, H, F0, K, T) 

is hence given by the integral over the (risk-neutral) transition p.d.f. for the 
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asset price process killed at both barriers: 

C(L, H, F0, K, T) = e~rT f U(F, F0, L, H, T)(F - K)+dF 

= e~rT / U(F, F0, L, H, T)FdF 
JK 

- Ke~rT / U{F, F0, L, H, T)dF 
JK 

(3.1.2) 

where U(F,F0,L,H,T) is given in equation (2.4.1). Using the definition 

of $(F, F0,t), with spectral expansion given in (3.0.11), and of $(F, F0,t) 

given by (3.0.17), the European double knock-out call option has value 

C(L, H, F0, K, T) = e-rT[$(H, F0, T) - $(K, F0, T)) 

- e~rTK [$(H, FQ, T) - $(K, F0, T)] 
(3.1.3) 

Numerical results for the valuation of double knock-out using (3.1.3) are 

presented in Figures (3.1.1)-(3.1.4). 

Call Option 

P 

110 

Figure 3.1.1: Rapid convergence of double knock-out call series expansion. 
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Figure 3.1.1 shows plots of partial sums for the series in (3.1.3) for the 

double knock-out European call option value as function of spot price F0, 

with fixed parameters L = 80, H = 110, r = 0.02, p = 0.00001, n = 0.1, a = 

626, t — 0.01 and K = 100. As shown, the double knock-out call series 

converges rapidly as more terms are included. The five distinct curves rep­

resent the series sum in the first N = 2,4,8,12 and 20 terms in the spectral 

expansion of C(L, H, F0, K, T). 

Call Option 

' x -

' / V" 
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Figure 3.1.2: Converged double knock-out call. 

Figure 3.1.2 shows plots (converged) of the double knock-out European 

call option values, with different choices of strike prices K and fixed param­

eters L = 80, H = 110, r = 0.02, p = 0.0001,// = 0.1, a = 626, T = 0.01. 

As displayed in the figure, we notice that, as strike price K increases, the 

option price values are shifted to the right. This is consistent with a greater 

probability for paths having terminal values FT > K as FQ increases. 

I U 

-

K=100 
K=98 
K=95 

-
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Figure 3.1.3: Converged double knock-out call option value. 

Figure 3.1.3 gives plots of the double knock-out call value C(L, H, F0, K, T) 

as a function of spot F0, with different time to maturities T and fixed pa­

rameters L = 20, H = 110, r = 0.02, p = 0.0001, n = 0.1, a = 626, K = 100. 

Converged plots of C(L, H, F0, K, T) are presented in Figure (3.1.4) with 

fixed L = 80,H= 110, r = 0.02, p = 0.0001, T = 0.03, K = 100 and various 

choices of (//, a) in the Bessel-if family. Note that the family with fj, = 

0.1 corresponds to the local volatility with greatest steepness and highest 

leverage effect for a given spot price F0 . 
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Figure 3.1.4: Converged double knock-out call value. 

For strike price K below both barriers (i.e. K < L < H), the European 

double knock-out call option value, C(L, H, FQ, K, T), is given by 

C(L, H, F0, K, T) = e~rT I U(F, F0, L, H, T)(F - K)+dF 

J U(F,F0,L,H,T)FdF (3.1.4) 

"K U(F,F0,L,H,T)dF 

-rT 

-rT ] 

with U(F,F0,L,H,T) given in equation (2.4.1). Using $(F,F0 ,t), given in 

(3.0.11), and the related cumulative density, $(F, F0,t), given in (3.0.17), 

equation (3.1.4) leads to the following result: 

C(L,H,F0,K,T) = e-rT[$(H,FQ,T) -K$(H,F0,T)] (3.1.5) 

Figure 3.1.5 gives plots of the double knock-out call value C(L, H, Fo, K, T) 

(using equation (3.1.5)), as function of spot F0 with fixed parameters L = 
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Figure 3.1.5: Convergence of spectral expansion for double knock-out call. 

80, H = 110, r = 0.02, a = 626,/i = 0.01, p = 0.0001, A" = 70, T = 0.01. 

This figure shows the rapid convergence of the double knock-out call value 

C(L, H, FQ, K, T), as more terms are included in the series sum in equation 

(3.1.5). The four distinct graphs correspond to the first 2,8,12 and 20 terms 

in the series for C(L, H, F0, K, T). 

Figure 3.1.6 shows converged double knock-out call values using equation 

(3.1.5) with different strike prices K < L < H, where L = 80, H = 110, r = 

0.02, a = 626, \i = 0.1, p = 0.0001, T = 0.01. 

Figure 3.1.7 gives plots of converged double knock-out call values as 

function of spot Fo for different values of T and fixed parameters L = 

80, H = 110, r = 0.02, a = 626, p = 0.1, p = 0.0001, K = 70. 

Plots of the double knock-out call option values for K < L < H are given 

in Figure 3.1.8. The three distinct curves represent the three choices of pa­

rameters (ji, a) with fixed value L = 80, H = 110, r = 0.02, p = 0.0001, T = 
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Figure 3.1.6: Converged double knock-out call value where K < L < H. 
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Figure 3.1.7: Converged double knock-out call value. 

0.01, K = 70. The three sets of parameter choices for (/i, a) correspond to 

the respective local volatility curves in Figure 2.3.1. Note that smaller ft 
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Figure 3.1.8: Converged double knock-out call values with K < L < H. 

values correspond to steeper local volatility curves. The steepening of the 

local volatility has pronounced effects on the barrier option value at the 

extremities of the spot value FQ close to either barrier L or H. 

3.1.2. Down-and-out Call. In this subsection we develop a pricing 

formula for a down-and-out European call option, which we denote by 

CDO(L,FQ,K,T), with L > 0 as a lower barrier. The derivation is ob­

tained by using a limiting approach. That is, by taking limit H —> oo of 

the double knock-out call option value. 

By risk-neutral pricing we have 

CDO(L,F0,K,T) = e- r rE[AW(F r) |Fo = F0] 

= e- r T E[(F r - K)+1{TL>T}\F0 = F0] 
(3.1.6) 

where TL is given in equation (2.2.2). Note that, an indicator function in 

the last step of (3.1.6) can be rewritten as 1{TL>T} = lirnff-^oo &{TL>T,TL<TH}-
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Hence, equation (3.1.6) leads to: 

CDO(L, F0, K, T) = e~rT lim E[(FT - i q + l { T i > r , T , < T H } | F 0 = F0] 

= lim C(L,H,F0,K,T) 
H—>oo 

47 

(3.1.7) 

where C(L, H, FQ, K, T) is the double knock-out call option value, given by 

equation (3.1.3) or (3.1.5). 
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Figure 3.1.9: Convergence of down-and-out call value. 

Figure 3.1.9 shows a sequence of double-barrier call values for increasing 

values of H, for L = 80, r = 0.02, p = 0.0001, fi = 0.1, a = 626, T = 10, K = 

100, N = 150. The graphs show the rapid convergence of the double-barrier 

values to the down-and-out call value within the region of interest for spot 

values on the order of 80 — 500. 

Figure 3.1.10 gives plots of down-and-out call values for three different 

families of Bessel-A" diffusions (i.e. three sets of (//, a) values) and for the 

GBM model (thick solid line) with local volatility at spot FQ = 100 chosen 
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Figure 3.1.10: Converged down-and-out call in comparison with GBM 
model. 

such that a(F0)/F0 = 0.25, and fixed parameters L = 80, r = 0.02, if = 

100, T = 10. As displayed, the three curves for the Bessel-if model (with 

choices (fJ>,a)) are quite close to the GBM model. On the other hand, 

the curve with (//, a) = (0.5,729) is much closer to the thick solid line 
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representing the GBM model than the other two sets of values (/i, a). This 

is consistent with the fact that the local volatility of the Bessel-if model is 

flatter for larger [L values (approaching the GBM local volatility) for spot 

values > 100. See Figure 2.3.1 for comparison. 

3.1.3. Up-and-out Call. In this subsection we derive the pricing for­

mula for an up-and-out European call, denoted by Cuo(H,Fo,K,T), with 

upper barrier H < oo. The derivations for an up-and-out call option are 

similar to that of the down-and-out call. However, we now consider the 

limit L —> 0+ of the double knock-out call value. 

By risk-neutral pricing we have: 

CUO(H,F0,K,T) = e~rTE [A^(F r ) |F 0 = F0] 
(3.1.8) 

= e~rTE [(FT - K)+t{TQ>T}t{rH>T}\F0 = F0] 

where TL,T# are defined in equation (2.2.2). The indicator functions can be 

rewritten as 1{TO>T}1{T„>T} = ^{T0>T,TH>T} = limL->o+ l{rL>r,rH>T}- Hence, 

equation (3.1.8) becomes: 

Cuo(H, F0, K, T) = lim e~rTK [(F r - K)+±{rL>T<TH>T}\ F0 = F0] 
^ 0 + (3.1.9) 

= lim C(L,H,FQ,K,T) 
i->0+ 

where C(L, H, F0, K, T) is the double knock-out call value. 

Figure 3.1.11 shows the convergence of the limiting procedure as L —> 0+ 

of C(L,H,F0,K,T) for H = 300,r = 0.02,p = 0.00001,// = 0.1,a = 

626, T = 1Q,K = 200, N = 100. The double-barrier values C(L, H, F0, K, T) 

converge to CUO(H,FQ,K,T) as L approaches zero (e.g. L « 0.1). 
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Call Option 

300 

Figure 3.1.11: Convergence of double knock-out call to the up-and-out call. 

Call Option 

300 

Figure 3.1.12: Converged up-and-out call in comparison with GBM model. 

Figure 3.1.12 shows the converged up-and-out call values for three dis­

tinct sets of parameters (fi, a) (dotted lines) and an up-and-out GBM model 
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(solid dotted line), with local volatility a = 0.25 at spot F0 = 100, where 

H = 300, r = 0.02, p = 0.00001, T = 10, K = 200. The three graphs 

of Cuo(H,F0,K,t) for the Bessel-if model (with choices of (//, a)) show 

quite different qualitative and quantitative behavior. The difference is pro­

nounced for lower values of the spot F0 < 50. For larger values of //, the 

Bessel-if model is closer to the GBM model, whereas much steeper local 

volatility curves characterize the Bessel-fiT model as fi —> 0+. See Figure 

2.3.1 for the comparison. The GBM model has constant local volatility and 

hence the call price approaches zero very rapidly as spot goes to zero. In 

contrast, the Bessel-if diffusion exhibits a strong leverage effect for small 

values of the asset price. So the option price does not decrease sharply as 

spot Fo —> 0+. This is particularly the case for smaller \i values, i.e. for 

Bessel-if models with steeper local volatility profile. The Bessel-.K' models 

also admit default, i.e. the asset price can hit zero in finite time as 0 is 

an exit boundary (see section 3.2.2 for details). This effect, in some sense, 

competes with the leverage effect to bring the call price down to zero as the 

spot F0 -* 0+. 

3.2. European Barrier Put Options 

In this section, we derive the exact (closed-form spectral expansion) 

pricing formulas for European barrier put options for double knock-out and 

up-and-out put options. The derivations are similar to that of the barrier 

call options, except that the first hitting time at the origin now also plays 

a role. An up-and-out put option pricing formula can be derived via the 

above-mentioned limit approach. That is, by taking L —»• 0+ of the double 

knock-out put option pricing formula. 
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3.2.1. Double Knock-Out Put. Let P(L,H,F0,K,T) denote the 

double knock-out put value, with lower barrier L > 0 and upper barrier 

H > L, spot price FQ e [L, H] and time to maturity T. Following similar 

arguments in previous sections, the exact closed-form pricing formulas for 

double knock-out put options can be derived. 

First we consider the case where the strike price K is in between the 

barriers, i.e. L < K < H, then we have: 

P(L, H, F0, K, T) = e~rTE [(K - FT)+l{rH>T>TL>r} |F0 = F0] (3.2.1) 

where rz is defined in equation (2.2.2). 

The last expression in equation (3.2.1) can be computed by using the 

double-barrier transition probability density function U of equation (2.4.1). 

Hence, equation (3.2.1) reduces to: 

P(L, H, F0, K, T) = e~rT f U(F,F0, L, H, t){K - F)+dF 

rK 

"K I U(F, F0, L, H, t)dF (3.2.2) 

' I U{F,F0,L,H,t)FdF 

= e - r T i 

e~rT 

The integrals are computed by using the cumulative density $ in equa­

tion (3.0.11) and the related cumulative density $ in equation (3.0.17). 

Combining gives an analytically exact spectral expansion for the double 

knock-out put value: 

P(L, H, FQ, K, T) = e~rT [K$(K, F0, T) - $(K, F0, T)] (3.2.3) 
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10 

Figure 3.2.1: Rapid convergence of the spectral expansion for equation 
(3.2.3). 

Figure 3.2.1 displays the convergence for the double knock-out European 

put option value using equation (3.2.3), as function of spot Fo, with fixed 

parameters L = 80, # = 110, p = 0.00001, p = 0.1, r = 0.02, a = 626, T = 

0.01, K — 90. The six distinct curves correspond to the first N = 1,2,4,8,12 

and 20 (solid line) terms of the series sum in equation (3.2.3). 

Figure 3.2.2 contains some calculated curves for P(L, H, F0, K, T) using 

the spectral expansion in (3.2.3), were L = 80, H = 110, p = 0.00001,// = 

0.1, r = 0.02, a = 626, T = 0.01 and different choices of strike price K. 

Figure 3.2.3 shows curves for P(L, H, F0, K, T) for various T, where 

L = 80, H = 110, p = 0.00001, \i - 0.1, r = 0.02, a = 626, K = 90. 

Figure 3.2.4 displays curves for P(L, H, FQ, K, T) for three choices of 

Bessd-if models. The three curves correspond to the three separate sets 
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Figure 3.2.2: Converged double knock-out put values with various K values. 
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Figure 3.2.3: Converged double knock-out put value with various T. 

of parameters (/i, a) as given in Figure 2.3.1, where L = 80, H — 110, p 

0.00001,6 = r = 0.02, T = 0.01, K = 90. 
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Figure 3.2.4: Converged double Knock-Out put for three sets of (/x,a). 

Similarly, for the case where L < H < K, the double knock-out put 

option value is given by 

P(L, H, FQ, K, T) = e~rTE [(K - F T ) + l { r „ > T n > T } |F 0 = F0] 

= e 
-rT J U(F,F0,L,H,T)(K-F)+dF 

(3.2.4) 

where U(F, F0, L, H, T) is given in (2.4.1). 

Using $(K,F0,T) and $(K,F0,T) in equations (3.0.11) and (3.0.17), 

the double knock-out put option value is: 

P(L,H,F0,K,T) = e~rT [K$(H,F0,T) - ${H,F0,T)] (3.2.5) 

For the case that K < L < H, the value of the option P(L,H,F0, K, T) 

is trivially zero. 

Figure 3.2.5 demonstrates the convergence of the spectral series for the 

put value given in equation (3.2.5), for all FQ € [L,H] where L = 80, H = 
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Figure 3.2.5: Series convergence for double knock-out put with L < H < K. 

110, p = 0.0001,/x = 0.1, r = 0.02, a = 626, T = 0.01, if = 130. As shown 

in the figure, the series converges quickly as more terms are added in the 

sum of equation (3.2.5). The five curves represent the series sum of the 

first 2,4,8,12 and 20 (solid line) terms of the double knock-out put option 

formula. 

Figure 3.2.6 displays the put value P(L,H,F0,K,T) using equation 

(3.2.5), as function of spot FQ, with fixed parameters L = 80, H = 110, p = 

0.00001, fi = 0.1, r = 0.02, a = 626, T = 0.01. The three curves correspond 

to the distinct choices of strike prices K above the barriers. 

Figure3.2.7 displays curves of P(L,H,F0,K,T) for various maturities 

with parameters L = 80, H = 110, p = 0.00001, A* = 0.1, r = 0.02, a = 

626, K = 130. 

Figure 3.2.8 presents P(L, H, F0, K, T) for three choices of Bessel-if dif­

fusions where L = 80, H = 110, p = 0.00001, r = 0.02, T = 0.01, K = 130. 
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Figure 3.2.6: Converged double knock-out put option value for various K. 
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Figure 3.2.7: Converged double knock-out put values with various T. 

The three individual curves correspond to the three separate sets of fami­

lies depicted in Figure 2.3.1. The curve corresponding to the steepest local 
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Figure 3.2.8: Converged double knock-out put with different choices of 
(fi,a). 

volatility model (/i = 0.1) displays a pronounced skewness in the double-

barrier put option price as function of spot FQ. 

3.2.2. Up-and-Out Put. Here we derive the up-and-out put option 

pricing formula, denoted by P(H,F0,K,T), where H is an upper barrier. 

The derivations are similar to that of the up-and-out call. The derivation is 

based upon a limiting procedure where we take L —• 0+ within the double 

knock-out put option formula P(L, H, FQ, K, T). The derivation given below 

takes into account the possibility of the asset price hitting zero (i.e. default) 

before maturity. 
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By risk-neutral pricing we have 

P{H,F0,K,T) = e~rTE [MH\FT)\F0 = F0] 

= e-^E [(K - FT)+l{^>T,TH>T}|Fo = F0] (3.2.6) 

+ Ke~rTE [l{TO<T,ro<rH}|F0 = F0] 

The second term corresponds to the discounted put payoff under scenarios 

where the asset price hits zero (i.e. default) before hitting the upper barrier 

level H, before maturity time T. The first expectation term is equivalent to 

lim e~rTE [(K - F T ) + l { r , > 7 > H > r } |F„ = F0] = lim P(L, H, F0, K, T) 
Li—>\)-\- Li—•U-r 

Hence, equation (3.2.6) becomes: 

P(H, F0, K, T) = lim P(L, H, F0, K,T) + Ke'rTE [l{To<T,r0<r„}|F0 = F0] 
Li—•[)+ 

(3.2.7) 

Using equation (2.2.6) then gives 

P(H, F0, K, T) = lim P(L, H, F0, K, T) + Ke~rT lim F{r£(H) < T} 
Li—*UT LI—•U-r 

(3.2.8) 

where T£(H) is defined in equation (2.2.4) and F{T£(H) < T} is the risk-

neutral probability that the process Ft starts at F0 G [L, H] and is absorbed 

at the lower level L before it is killed at upper level H. The derivation of 

this probability is given by Campolieti 2008 and has the closed-form spectral 

expansion 

P{T£(H) <T} = $-(OO; F0, L\H) - F{T < r£(H) < oo} (3.2.9) 



60 3. PRICING FORMULAS FOR F-DIFFUSIONS 

where 

*-(oo; F0, L\H) = R / / ^ \ " ^ ^ (3.2.10) 

R„{z) := /„(*)/#„(*) and 

P{T < rL(H) < oc} = 1 4 ^ E ( v j ( ^ A ^ 0 ^ ^ 

(3.2.11) 

In equations (3.2.10) and (3.2.11), xL = X(L), xH = X(#) and x0 = X(F0) 

where X := F_1 is the inverse map given by equation (2.3.3). fn(x,y,X) 

and Nn are the Bessel cylinder function and the normalization constant, 

respectively, given in equation (1.2.6). 

Finally, substituting (3.2.9) into (3.2.8) gives 

P(H,F0,K,T) = Ke-rT lim ($-(oo;FQ,L\H) -¥{T < T£(H) < oo}) 
Lt—•OH-

+ e~rT lim [X$(max{#, K}, F0, T) - ¥(max{#, K}, F0, Tj\ 

(3.2.12) 

where $ and $ are given in equations (3.0.11) and (3.0.17), respectively. 

Figure 3.2.9 shows the double-barrier put values P(L, H, F0, K, T) con­

verge toP(H,F0 ,K,T)asL-+ 0+, withH = 110,p = 0.00001,n = 0.1,a = 

626, r = 0.02, T = 0.1, # = 90. 
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Figure 3.2.9: Convergence of up-and-out put value. 
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Figure 3.2.10 displays the converged up-and-out put values for the drifted 

Bessel-if model with three different sets of parameters (/j, a) and the up-

and-out put value for the GBM model (solid dotted line), with local volatil­

ity a = 0.25 = a(F0)/FQ at F0 = 100, where H = 110, p = 0.00001, r = 

0.02,T = 0 .1 ,K = 90. As seen, the three curves of P(H,FQ,K,t) for the 

Bessel-.K' diffusions give fairly different results. Especially for smaller values 

of spot Fo < 95. The Bessel-isT model is closer to the GBM model for larger 

H values. For smaller values of p, the local volatility curves are steeper and 

deviate drastically from the constant local volatility line of the GBM model. 

3.3. Recovering CEV Models from Bessel K-Subfamily 

In this section we recover the zero-drift CEV model, i.e. with asset price 

process F t , t > 0, obeying the SDE 

dFt = 5F]+l3dWu (3.3.1) 

as a special limiting case of the zero-drift Bessel If-subfamily. The volatility 

function for the CEV model follows a power law where a{F) = 5F1+!3. 

Throughout we consider the case where 8 > 0, (3 < 0 which leads to a 

martingale diffusion. For the general connection between the CEV and the 

Bessel family of diffusions, we refer the reader to the papers by Campolieti 

and Makarov 2006. In this thesis we further establish the pricing kernels 

and consequently derive closed-form pricing formulas for barrier options 

for the driftless CEV diffusion with imposed killing at barriers. Following 

Campolieti and Makarov, the derivation is based upon setting the drift 

0 = 0 and taking the limit p —> 0+, while keeping ap1* constant along the 

limit, within the drifted Bessel-ff formulas, and using the small argument 
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asymptotic forms of the modified Bessel functions I^z) and K^z), with 

order \x > 0. 

Now, taking p —> 0+, with 0 = 0, within the map F = F(x) (for the 

Bessel if-subfarnily defined in equation (2.3.3)), we have: 

F(x) « a 1 (yfipxV 1 
T(p +1) V 2 y (2/v

/2px)'ir(/x)/2 

« 2O(P/2)"[T(M + l ) r V ) ] - V (3-3-2) 

where we define the constant C = 2a(p/2)^[r(// + l)r(p)]-1 . T(-) is the 

standard gamma function. Moreover, we set // = 1/(2|/3|) (/? = — (2/x)-1) 

and the above map reduces to 

F(x)«(<52/3V)^ (3.3.3) 

with inverse X := F - 1 : 

p2\/3\ p-2/3 
X<F> - ( w = w <3'3-4) 

Applying the above limiting procedure, the volatility function a(F) in 

(2.3.3) becomes 

a 
a(F) = 

\/XJ\~\\/&UX) 

(3.3.5) 
Vx^(v^i) 

1 
a-

V^[r(^)/2(2/v^i)^]2 

Now, substituting a = r%(p/ffi^ (<V2A*)2/* and using x = X(F) into equation 

(3.3.5), along with the property T([i + 1)/T(/J) = // = 1/2|/?|, leads (as 
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required) to the above CEV volatility: 

a{F) = SF1-^ = 6F1+0 (3.3.6) 

Let UCEV (F, F0, L, H,t) denote the double-barrier transition probabil­

ity density of a zero-drift CEV model, with L and H as lower and up­

per barriers, respectively. An analytically exact spectral expansion for 

UCEV(F, F0, L, H, t) is now obtained by applying the above limiting pro­

cedure to the transition density for the Bessd-if process. That is, setting 

9 — 0 and taking p —> 0+ within equation (2.4.1) gives 

^(^"g^o,*.™-) UCEV(F,F0,L,H,t) 
uyr j V/M/'O-'/ ~x 

(3.3.7) 

where T(/i, x, x0, xL, n) = A/^/^(x0, xL, An)/A1(x, xL, An). Using the mapping 

in (3.3.4) gives the explicit closed-form transition density 

UCEV(F, F0, L, H, t) = V ° J2 e-Xnt^U(xo, xL, Xn)Ux, xL, An) 

(3.3.8) 

where /M, JJL = ^ T , and Mn are the Bessel cylinder function and normaliza­

tion given in equation (1.2.6) with values x = X(F) = Fvm-, x0 = X(F0) = 
Fo2/3 _v/r\_i"^ —wtu\ — H-2^_ 
$20T, XL — A^ZvJ — -glpS-, XH — A ^ i l J — 72^2--

Figure 3.3.1 shows the rapidly convergent plots of the transition density 

UCEV(F, F0, t) with fixed values F0 = 3, L = 2, H = 10, t = 10,0 = - 2 , <5 = 

2. The five different curves correspond to the first N = 2,4,8,12 and 20 

terms of the series in equation (3.3.8). 

Figure 3.3.2 gives converged plots of the series in equation (3.3.8) with 

different values of time t, where FQ = 3, L = 2, H = 10, /3 = —2,5 = 2. 
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Figure 3.3.1: Convergence of CEV transition density. 
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Figure 3.3.2: Converged CEV density with various t. 

The exact spectral expansion for the cumulative transition density of 

the CEV volatility model, $CEV(F,F0,t) := f[ UCEV{F,F0,L,H,t)dF, is 
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readily obtained by the above limit approach. That is, setting 0 = 0 and 

taking p —* 0+, while using the asymptotic form K^z) ~ ir(/ i)( | )_^, gives 

$CEV(F,F0lt) = Vm_ ° K
T

P'} £ e ~ K t ^nUxo , x L t A n )* n , p (x ) 
" ' 7 1 = 1 

(3.3.9) 

As p —> 0+, ^niP(x) in equation (3.0.14) has the leading asymptotic form 

*n,P(aO 

(3.3. 0) 

Hence, using this latter asymptotic form into equation (3.3.9) gives us the 

exact spectral expansion for $CEV(F, F0,t): 

oo —At 
$CEV(F, F0, t) = xf J^ ^KUxo, xL, An) 

n = l 
An 

X ..[hxy^i^n{x) _ ^ n ( x ) + V n x / / 2 

V l TT 
(3.3.11) 

Similarly, $CEV(F,F0,t) := / f UCEV{F,F0,L,H,t)FdF, is obtained by 

applying the above limit to the expressions in equations (3.0.17), (3.0.20) 

with drift r = 0 and simplifying. The related cumulative distribution has 

the closed-form spectral expansion: 

l / ( J x 2 U „ / , ^ e - A " < 
*CEV(F, F0tt) = \ {f-f1^'2 E tj^-KMxo, xL, Xn) 

ra=l 

X (3.3.12) 
7T 

In both equations (3.3.11) and (3.3.12): \i 

XL = %spr, xH = ^ r , with 4>n(x) and </>„ 

and (1.2.5)-(1.2.6), respectively, with eigenvalues solving equation (1.2.7) 

1 _ F-2g _ Fp2f} 

2\0\' X ~ 6202 ' X ° — <52/?2 ; 

£L = frgr, ## = i ^ i with <l>n{x) and </>n(z) given by equations (3.0.15) 
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3.3.1. Pricing Formulas for Zero-Drift CEV. In this subsection, 

we develop the analytical double-knock-out European call and put pricing 

formulas for the zero-drift CEV volatility model. Let CCEV(F0,K,T) de­

note the double-knock-out call option value with lower barrier L and upper 

barrier H, with payoff A^L,H^ given in equation (3.0.5). Since we are dealing 

with the zero-drift case, then asset prices are driftless under the assumed 

risk-neutral measure P. Hence, in what follows we are pricing options under 

the CEV model with the assumption of zero (negligible) interest rate with 

(Ft)*>o representing the asset (e.g. stock) price process. 

For the case where L < K < H we have 

CCEV(F0,K,T)=E [(FT - K)+1{TH>T,TL>T}\F0 = F0] 

= f U(F,F0,L,H,T)(F-K)+dF 
JL (3.3.13) 

= ^CEV(H,F0,T)-^CEV(K,Fo,T) 

- K [$CEV{H, FQ, T) - $CEV(K, FQ, T)] 

where §CEV and $ are given by equations (3.3.11) and (3.3.12), respec­

tively. 

Figure 3.3.3 gives plots for the computed double-knock-out call using 

equation (3.3.13) as function of spot F0, where F0 = 3, L = 2, H — 10, T = 

10,/? = -2,8 = 2,K = 5. As shown, CCEV{FQ,K,T) converges rapidly as 

more terms are added to the series. The five curves correspond to the first 

N = 2,4,8,12 and 20 terms of the series sums in equations (3.3.11) and 

(3.3.12). 

Figure 3.3.4 shows converged plots for CCEV(F0,K,T) with fixed F0 = 

3, L = 2, H = 10, T = 10, /3 = - 2 , 6 = 2 and various choices of strike K. 
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Figure 3.3.4: Converged double knock-out European call value CEV model. 

Figure 3.3.5 demonstrates the converged plots of the double-knock-out 

call using equation (3.3.13), with different choices of T and fixed F0 = 3, L = 

2,H = 10,0= -2,6 = 2,K = 5. 
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Figure 3.3.5: Converged double-knock-out CEV model with various matu­
rities. 

Similarly, for strike price K below the barriers (ie K < L < H), we 

have: 

CCEV(F0,K,T) = JB', U°hV(F, F0, L, H,T){F - Ky-dF 
(3.3.14) 

-zrCEV 
= Wor (H,F0,T) - K*UhV(H,F0,T) 

Figure (3.3.6) presents some converged plots of equation (3.3.14) with 

fixed parameters FQ = 3,L = 2,H = 10, T = 10,(3 = -2,8 = 2. The 

three distinct graphs correspond to the three different strike prices K. 

Figure(3.3.7) gives plots for CCEV(FQ,K,T) as function of spot F0 with 

F0 = 3, L - 2, H = 10, T = 10, /? = -2 ,6 = 2 and various times T. 
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Figure 3.3.7: Double-knock-out call for CEV model with various T values. 

The double-knock-out put pricing formula for the zero-drift CEV model, 

denoted by PCEV(L, H, F0, K, t), is derived as follows. For L < K < H, 

PCEV(L,H,F0,K,T)=E [(K - FT)+±{TH>T,TL>T}|F0 = F0] 

=i:< UCEV(F, F0, L, H,T)(K - F)+dF (3.3.15) 

CEV, 
= K^EV{K, F0, T) - &"v (K, F0, T) 
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Figure 3.3.8: Rapidly convergent double-knock-out put series for CEV 
model. 

Figure (3.3.8) shows rapidly convergent plots for the series of equation 

PCEV(L,H,F0,K,T) with fixed parameters F0 = 3,L = 2,H = 10,T = 

10, £ = -2 ,5 = 2, if = 5. The five graphs represent the first iV = 2,4,8,12 

and 20 (solid line) terms of the series sum of equation (3.3.15). 

Figure (3.3.9) gives converged plots of equation (3.3.15) with different 

strike price K and fixed parameters Fo = 3, L = 2,H = 10, T = 10,/3 = 

-2,<5 = 2. 

Figure (3.3.10) provides the converged plots of PCEV(L,H,F0,K,T) 

with different values of T and fixed parameters F0 = 3, L = 2, H = 10, K — 

5,(3 =-2,5 = 2. 
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Figure 3.3.9: Converged double-knock-out put for CEV model with various 
K. 
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Figure 3.3.10: Converged double-knock-out put values with various T. 

Similarly, for the case where L < H < K, we have: 

PCEV(L, H,F0,K,T)=E [{K - F r )
+ l { r w > r , r L > T } |F 0 = F0] 

= / UCEV{F,F0,L,H,T)(K-F)+dF (3.3.16) 

CEV, 
= K<f>°hV(H, F0, T) - &"r (H, F0, T) 
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Figure 3.3.11: Double-knock-out put for CEV model with L<H <K. 

Figure (3.3.11) displays the converged plots of equation (3.3.16) with 

different strike price K and fixed parameters F0 = 3, L = 2,H = 10,T(= 

t) = 10,ff = -2,S = 2. 

Figure (3.3.12) gives plots of the double knock-out put value PCEV(L, H, FQ, K, T), 

computed using the series in equation (3.3.16) where L < H < K. The three 

distinct curves represent the three different times to maturity T with fixed 

parameters F0 = 3, L = 2, H = 10, K = 5, p = -2 ,8 = 2. 

J I I L 
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Figure 3.3.12: Convergence of double knock-out put for CEV model with 
various T. 



CHAPTER 4 

Sensitivity Analysis For European Barrier Call Option 

In this chapter, we present a sensitivity analysis of the double knock-out 

European call options under the new family of drifted Bessel-if diffusion 

models. That is, in financial terminology we study the so-called "Greeks" 

associated to the barrier options. The name Greeks is used because it 

is standard notation to denote certain derivatives of an option value by 

particular Greek letters. The derivatives represent the sensitivities of a 

given option value under changes in an underlying parameter or asset price. 

In this thesis we shall only focus on the explicit analysis of the knock-out 

call. In particular, the double knock-out call price C(L, H, F0, K, T) is given 

by equation (3.1.3), in Section 3.1.1. Its value can be re-written in a more 

convenient form, i.e. 

-rT °° 
C(L, H, F0 , K, T) = 2 ^ ^ ^ / - _ ) J^ e-(p+Xn)TMn^nJ^xQ, xL, An) 

(4.0.17) 

where 

Vn,P = a [#n,p(Ztf) - *n,p(2*)] - K [#n,p(zff) ~ *n,pM] (4.0.18) 

/M(x0,Xi, An) and J\fn are defined in equation (1.2.6). ^n,P, ^n,P and <f)n 

are given in equations (3.0.14), (3.0.15) and (3.0.20), respectively, and x = 

X(F),xL = X(L),XH = X(if), XK = X(K) and x0 = X(F0) are the unique 

inverse maps X := F _ 1 in equation (2.3.3). 
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4.1. Delta 

Here, we derive the so-called Delta, denoted by A, of the European 

double knock-out call option. A measures the change in the option value 

due to small changes in the underlying asset price. The delta is of primary 

importance in hedging risk for portfolios of options. A is defined as the first 

derivative of C(L, H, F0, K, T) (in this case) with respect to the spot price 

F0, i.e. 

- 1 
Now, using |X'(F0)| = 2^/X(FQ)/a(F0), and the chain rule for differenti­

ation, along with the Bessel recurrence relations, J'^z) = ^J^z) — Jfl+i(z), 

Yfr) = *yp(s) - Y,+1(z), Ifr) = %(z) + I^izlK'^z) = «*„(*) + 

K,j,+i(z), we obtain a closed-form spectral expansion 

-rT °° 
A = Pi ^ L / ^ E e " ( P + A n ) r ^ P ( x o , x , ) ^ (4.1.2) 

V2CT(FO)#2(\ /2PZO) ~ i 

where a(F0) is given by equation (2.3.3) and 

ttn,p = a \VUAXH) ~ ^n,p(XK)] ~ K [Vn,p(XH) ~ ^nAxK)} (4-1.3) 

and 

Xn,P(a;o, xL) -i^/i(V'2pa;o)^n(iCo) + y/pKli+1(y/2px0)f^(x0, xL, Xn) 
K 

The Delta of a single-barrier call can be computed by the previous lim­

iting approach. That is, taking the limit L —> 0+ of the double-barrier call 

A leads to the upper single-barrier call A. Similarly, taking H —> oo gives 

the lower single-barrier call Delta. Some calculations for typical graphs of 

Delta as function of spot price are given below. 
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Figure 4.1.1: Double-knock-out call Delta values. 

Figure 4.1.1 presents graphs of the double knock-out call Delta as func­

tion of spot using equation (4.1.2), with fixed parameters L = 80, H = 

110, if = 90, T = l,p = 0.00001, r = 0.02. The three distinct curves cor­

respond to the three different families of Bessel-X diffusion models (with 

different sets of values for parameters (A*, a)). 

Figure 4.1.2 gives the convergence plots of the down-and-out call Delta. 

The calculations were done by taking limit L —• 0+ of the A defined in 

equation (4.1.2). The three curves represent the different sets of values 

(//, a) within the different families of Bessel-if diffusion models, with fixed 

parameters L = 80, # = 110,K = 90,T = l,p = 0.00001. 

We observe that the values (//, a) have a dramatic effect on both the 

double knock-out and up-and-out call Delta values of the Bessel-if model, 

as seen in Figures 4.1.1 and 4.1.2, respectively. This is also observed in 

Davydov and Linetsky, 2001. In their CEV model, the parameter /3 has 
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Figure 4.1.2: Converged up-and-out call Delta curve. 

a similar effect on the CEV double knock-out and up-and-out call Delta 

values. 

4.2. Theta 

Here we compute the knock-out call Theta value, denoted by G. 9 is 

given by the first derivative of the option value with respect to the time to 

expiration T. It hence measures the rate of change of the option value with 

respect to maturity. In other words, 0 represents the time decay on the 

value of the option. 

Using C(L,H,F0,K,T) given in equation (4.0.17), and differentiating 

the series with respect to T trivially gives 

e = —C(L,H,F0,K,T) 

(4.2.1) 
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The single-barrier call 0 value is then obtained via a similar limiting proce­

dure as above. That is, by taking L —• 0+ within the double-barrier Theta 

we obtain the upper single-barrier call Theta and taking H —* oo gives the 

lower single-barrier Theta. 
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Figure 4.2.1: Double-knock-out call Theta values. 

Figure 4.2.1 shows plots of the double-knock-out call Theta using equa­

tion (4.2.1), as function spot F0, with L = 80,H = 110,K = 90,T = l,p = 

0.00001, r = 0.02. The three different graphs represent the three distinct 

families of Bessd-if (i.e. with different sets of values (fi, a)). 

Figure 4.2.2 presents the converged up-and-out Theta curves as the limit 

L —> 0+ of the down-and-out call Theta. The three curves represent the 

convergence of the three families of drifted Bessel-K (i.e. different choices 

of values (//, a)) with fixed parameters L = 80, H = 110, K = 90, T = 1, p = 

0.00001,r = 0.02. 
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Figure 4.2.2: Converged up-and-out call Theta values. 

In this chapter we have given only a brief account of the sensitivity 

analysis, namely of A and 0, for knock-out barrier options within the drifted 

Bessel-X family of models. The other standard Greeks, i.e. such as the so-

called Gamma (r), Vega (u) and Rho (p), are also readily computed via 

analogous closed-form spectral expansions and are left for future work. 



Conclusion and Future Work 

In this thesis we developed analytically closed-form spectral expansions 

for pricing barrier options under new families of diffusion models (i.e. F-

diffusions). The asset pricing models, referred to as the drifted Bessel fam­

ily, are characterized by multi-parameter nonlinear local volatility functions. 

Our theoretical development made use of the so-called diffusion canonical 

transformation methodology. Particularly, we focussed on a four-parameter 

drifted Bessel K"-subfamily. By applying the diffusion canonical transfor­

mation method with a combination of Green's function methods and first 

hitting time techniques, we arrived at new closed-from spectral expansions 

for barrier option pricing formulas as well as the corresponding sensitivities 

(Greeks). 

We showed that the rapidly convergent spectral expansions are read­

ily and efficiently implementable. The spectral expansions were derived in 

closed-form for killing at two barriers (i.e. double-barrier case) where the 

spectrum is simple and discrete. However, we also showed that by taking 

appropriate limits in one of the barrier levels, the double-barrier formulas 

lead to the single-barrier formulas. Our closed-form spectral expansions 

paved the way for efficiently carrying out various calculations of barrier 

options under the drifted Bessel if-subfamily for various choices of model 

parameters. Furthermore, we compared the results (for down-and-out and 

up-and-out call options, up-and-out put options) with the standard GBM 
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model. The deviation from the GBM model is very significant and the 

variability of this deviation can be modified with the choice of model pa­

rameters. In addition, we showed that by setting the drift parameter to 

zero and taking a particular limit, the four-parameter Bessel if-subfamily 

recovers the familiar zero-drift CEV local volatility model. 

In the last chapter we presented closed-form spectral expansions for 

the Greeks associated to the barrier options under the new family of four-

parameter drifted Bessel K models. Although the sensitivity analysis that 

was presented is preliminary, the formalism is very useful for more thorough 

future studies. In particular, in future work the drifted Bessel-if model can 

be calibrated to optimally fit a given implied volatility surface based on 

standard European call option market prices. Once the model parameters 

are calibrated, the closed-form spectral expansions provided in this thesis 

can be implemented to readily study the option prices as well as any of the 

"Greeks" for the barrier options. 

Lastly, we remark that within this thesis the diffusion canonical transfor­

mation methodolgy and spectral expansion approaches were used to develop 

closed-form formulas for some barrier options, and their sensitivities, under 

the Bessel family. In fact we showed that such a family resulted as a con­

sequence of considering the squared Bessel diffusion process as the solvable 

underlying model. This family is only one example among other families of 

so-called F-diffusions that are exactly solvable. The method presented in 

this thesis extends more generally to other solvable families of F-diffusions 

that have wide applicability in finance. Such families arise by considering 

other choices as the underlying solvable X-diffusion. For example, these 

include the Ornstein-Uhlenbeck process as well as the so-called confluent 
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hypergeometric family of processes. Further development and applications 

of these new models are the subject of future work. 
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