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A b s t r a c t 

On-line social networks such as Facebook or Myspace are 

of increasing interest to computer scientists, mathemati­

cians, and social scientists alike. In such real-world net­

works, nodes represent people and edges represent friend­

ships between them. Mathematical models have been pro­

posed for a variety of complex real-world networks such as 

the web graph, but relatively few models exist for on-line 

social networks. 

We present two new models for on-line social networks: 

a deterministic model we call Iterated Local Transitivity 

(ILT), and a random ILT model. We study various proper­

ties in the deterministic ILT model such as average degree, 

average distance, and diameter. We show that the domi­

nation number and cop number stay the same no matter 

how many nodes or edges are added over time. We inves­

tigate the automorphism groups and eigenvalues of graphs 

generated by the ILT model. We show that the random 
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ILT model follows a power-law degree distribution and we 

provide a theorem about the power law exponent of this 

model. We present simulations for the degree distribution 

of the random ILT model. 
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CHAPTER 1 

Introduction 

1.1. Motivat ion 

The popularity of on-line social networks like Facebook, 

My Space, and Orkut has increased dramatically over recent 

years. These networks are modelled by undirected graphs 

where nodes represent people and edges represent friend­

ship between them (we always assume such networks are 

undirected: if x is friends with y, then y is friends with x). 

In these massive real-world networks with millions of nodes 

and edges, new nodes and edges appear over time. There 

has been increasing interest in the mathematical and gen­

eral scientific community in such networks, in both gather­

ing data and statistics about the networks, and in finding 

accurate and rigorous models simulating their evolution. 

As a small snapshot of one of these networks, Figure 1.1 

shows the subgraph induced by my friends on Facebook, 

generated using the Nexus application. 

I 
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Figure 1.1: Subgraph induced by the neighbours of the Noor Hadi node 
on Facebook. 

A central idea in complex networks is the notion of the 

small world property which was introduced by Watts and 

Strogatz [18], and has roots in the work of Milgram [15] 

which suggests short paths of friends connecting strangers. 

The small world property demands low average distance (or 

diameter) and high clustering, and has been observed in a 

wide variety of complex networks. For more on the small 
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world property and other properties of complex networks, 

see [6]. 

Many recent studies have analyzed on-line social net­

works focusing on the small world property and other com­

plex network properties seen in on-line social networks. Ku­

mar et al. [12] studied the evolution of the on-line net­

works Flickr and Yahoo!360. They found that the aver­

age distance between users decreases over time, implying 

that these networks have the small world property. They 

also found that they exhibit power-law degree distributions. 

Golder et al. [11] analyzed the Facebook network by study­

ing the messaging pattern between friends. They also found 

a power law degree distribution and the small world prop­

erty. Similar results were found in [1] which studied Cy-

world, My Space, and Orkut, and in [4] which examined 

data collected from four on-line social networks: Flickr, 

YouTube, LiveJournal, and Orkut. 

In this thesis, we aim to develop mathematical models 

that dynamically simulate the on-line social networks and 

possess the aforementioned properties. We propose two 

models: a deterministic model and a random one. 
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The deterministic model, which we call the Iterated Local 

Transitivity (ILT) model, relies on the idea of what sociolo­

gists call transitivity: if u is a friend of v, and v is a friend of 

«;, then u is a friend of u> (see [9, 16, 20]). Figure 1.2 shows 

an example of transitivity. In its simplest form, transitivity 

U U 

w 
Figure 1.2: An example of transitivity. 

gives rise to the notion of cloning, where u is joined to all 

of the neighbours of v. In the ILT model, given some initial 

graph as a starting point, nodes are repeatedly added over 

time which clone each node, so that the new nodes formed 

have no edges between them. The ILT model uses only lo­

cal knowledge in its evolution, in that a new node only joins 

to neighbours of an existing node. Local knowledge is an 

important feature of social and complex networks, where 

nodes have only limited influence on the network topology. 

w 
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The random ILT model performs at each step, with cer­

tain probability, a cloning operation or a preferential at­

tachment operation. All nodes of the initial graph are as­

signed probabilities depending on their degrees. The higher 

the degree of a node, the higher the probability that it 

would be chosen. Cloning occurs in a similar way as in 

the deterministic ILT model; however, one existing node is 

chosen uniformly at random and only this node is cloned. 

In the preferential attachment step, a node is chosen ran­

domly giving preference to those with higher degrees and a 

new node is created and joined only to the randomly chosen 

node. 

1.2. Graph Theory 

In this section, we introduce various graph theoretical 

terminologies and concepts used throughout the thesis. A 

graph or undirected graph G consists of a non-empty node 

set V(G), and an edge set E{G) of 2-element sets from 

V(G). More formally, we may consider E(G) as a binary 

relation on V(G) which is irreflexive and symmetric. The 

graphs we consider are finite, undirected, and simple (no 
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loops nor multiple edges). A graph is also sometimes called 

a network, especially with regards to real-world examples. 

We often write G = (V(G), E{G)), or if G is clear from the 

context, G = (V,E). Elements of V(G) are vertices, and 

elements of E{G) are edges. Vertices are also often referred 

to as nodes. We write uv for an edge u,v, and say that 

u and v are joined or adjacent; we say that u and v are 

incident to the edge uv, and that u and v are the endpoints 

of uv. Graphs are usually visualized by simply drawing 

dots to represent nodes and lines to represent edges. The 

cardinality |V^(G)| is the order of G, while ^(GQI i s its 

size. For a node v G V{G), degG(i>) is the degree of v 

in G; namely the number of edges in G incident with v. 

For example, in Figure 1.3 the 4-cycle C4 has order 4, size 

4, and the degree of each node is 2. We often drop the 

subscript G if it is clear from context. 

We mention the so-called First Theorem of Graph The­

ory which says the following. 
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Figure 1.3: The graph C4. 

THEOREM 1.1. If G is a graph, then 

2\E(G)\= J2 deSc?H-
ueV(G) 

A path is defined as an open walk with no repeated 

node. A complete graph of order n or n-clique has all edges 

present, and is written Kn. A graph is connected if for each 

pair of nodes there is a path between them. Given a node w, 

define its neighbour set N(u) to be the set of nodes joined 

to u (also called neighbours of u). The distance between 

u and v, written d{u^v)^ is either the length of a shortest 

path connecting u and v (and 0 if u = v) or oo otherwise. 

The diameter of a connected graph G, written diam(G), 
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is the maximum of all distances between distinct pairs of 

nodes. 

In a graph G, a set S of nodes is a dominating set if 

every node not in S has a neighbour in S. The domination 

number of G, 7(C), is the minimum cardinality of a domi­

nating set in G. We use S to represent a dominating set in 

G, where each node not in S is joined to some node of S. 

A graph parameter related to the domination number 

is the so-called cop (or search) number of a graph. The 

game of Cops and Robber is a node pursuit game played 

on a graph G. There are two players, a set of k cops (or 

searchers) C , where k > 0 is a fixed integer, and the robber 

R. The cops begin the game by occupying a set of k nodes, 

and the cops and robber move in alternate rounds. More 

than one cop is allowed to occupy a node, and the players 

may pass; that is, remain on their current node. The play­

ers know each others current locations and can remember 

all the previous moves; that is, the game is played with 

perfect information. The cops win and the game ends if at 

least one of the cops can eventually occupy the same node 

as the robber; otherwise, R wins. A winning strategy for 
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|V(G)| cops is to occupy each node of G. Based on this, 

the cop number, written c(G), is defined as the minimum 

number of cops needed to win on G. Note that 

c(G)<7(G), 

since placing a cop on each node of a dominating set ensures 

that the cops win in at most one move. 

The Wiener index of a connected graph G, written W(G), 

is defined as 

W(G)= ] r d{x,y), 
x,yeV(G) 

where d(x, y) is the distance between any two distinct nodes. 

The Wiener index arises in applications of graph theory to 

Chemistry (see [19]), and may be used to define the average 

distance of G as 

where n is the order of G. 

A subgraph of G is a graph H such that V{H) C V{G) 

and E{H) C E(G). If S C V, then the subgraph induced 

by S, written as G \ S, is defined as the graph with nodes 
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S and with two nodes joined in G \ S if and only if they 

are joined in G. 

A homomorphism f between graphs G and if is a func­

tion / : V(G) —> V(H) which preserves edges; that is, if 

xy e E(G), then f(x)f(y) e E{H). We abuse notation and 

simply write / : G —> H. An embedding from G to H is an 

injective homomorphism / : G —> H with the property that 

xy G E(G) if and only if f(x)f(y) £ E(H). An isomor­

phism is a bijective embedding; if there is an isomorphism 

between two graphs, then we say they are isomorphic. If 

graphs G and H are isomorphic, then we write G = H. An 

automorphism of a graph G is an isomorphism from G to 

itself; the set of all automorphisms forms a group under the 

operation of composition, written Aut(G). 

As the results we present are sometimes asymptotic (es­

pecially in Chapter 4), we give some notation. Let / and g 

be functions whose domain is some fixed subset of M. We 

write f € 0(g) if 

hm —— 

exists and is finite. We will abuse notation and write / = 

0(g). We write / = Q{g) if g = O(f), and / = 9(g) if 
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/ = 0(g) and / = (1(g). If 

lim 4 4 = 0, 
.T->OO g[x) 

then / = o(g) (or g — u>(f)). So if / = o(l), then / tends 

to 0. We write / ~ g if 

lim M = 1. 
x^°° g{x) 

An important property of many complex networks is the 

presence of power-law degree distributions. Given a graph 

G and a non-negative integer /c, we define Nk,G by 

NkiG = \{xeV(G):degG{x) = k}\. 

The parameter Nkfi is the number of nodes of degree k in 

G. The degree distribution of G is the sequence 

(Nk,G :0<k<t), 

where t is the order of the graph G. The degree distribution 

of G follows a power law if for each degree k, 

t 
k~», 
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for a fixed real constant (3 > 1. We say that (3 is the expo­

nent of the power law. A graph whose degree distribution 

follows a power law is often referred to as a power law graph. 

Figure 1.4 shows an example of the degree distribution of 

the set of neighbours of the Noor Hadi node on Facebook. 

0 100 200 300 400 500 
Degree Distribution 

600 700 

Figure 1.4: Degree distribution of the neighbour set of the Noor Hadi 
node on Facebook. 

1.3. Linear Algebra 

Graphs are often represented by adjacency matrices. Let 

G have vertices 1,2,... ,n. The adjacency matrix, written 
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A(G), of the graph G is the n x n matrix defined by 

A{G)i5 = 
1 if ij eE{G), 

0 otherwise. 

Adjacency matrices are non-negative, symmetric and have 

zeros on the main diagonal. Several graph parameters can 

be read off from the adjacency matrix. For example, the 

degree of a node in a graph can be found by summing either 

the column or row of an adjacency matrix, while the size of 

a graph can be found from an adjacency matrix by summing 

all the ones in the matrix and dividing by 2. As an example, 

the adjacency matrix for C4 is 

' o 1 o 1 * 

A = 
1 0 1 0 

0 1 0 1 

1 0 1 0 

For a square matrix A, a scalar A for which 

V 7 

det{A - XI) = 0 
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is called an eigenvalue of A. The eigenvalues for A{C^) by 

direct checking are {—2,0, 2}. 

1.4. Probabil ity 

We provide some background on elementary probability 

theory. For additional background, see [10]. A (discrete) 

probability space S consists of a triple (S, T, P). The set S, 

called the sample space, is nonempty and finite. For us the 

set T is the collection of all subsets of S; the elements of T 

are events. The function P : T —>M, named the probability 

measure, satisfies the following properties. 

(1) For all events A, F(A) G [0,1], and P(5) = 1. 

(2) If (Ai : i E / ) is a countable set of events that are 

pairwise disjoint, then 

Vie/ / iel 

In a probability space with | 5 | = n a positive integer, 

an element chosen with probability - from S is said to be 

chosen uniformly at random, also written u.a.r. A random, 

variable X on a probability space S is a function X : S —> 

!L The expectation of a random variable X, written E(X) , 
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is defined by 

EpO = ]Tx(s)p({s}). 
s&S 

Note that E(X) is always finite. If X > 0, then E(X) > 0. 

An important property of expectation is the Linearity of 

Expectation. 

T H E O R E M 1.2. Suppose that X is a random variable de­

fined on a probability space. Let Ci1 where 1 < i < n, be 

real numbers. Then, 

/ n \ n 

We also use the notion of conditional expectation. Let 

X, Y be random variables on a common probability space. 

The conditional mass function of X given Y = y, written 

/x|y(-|2/), i s defined as 

/ y | r H 3 / ) = P ( A - = a;|y = 3/), 

for all y such that P(Y = y) > 0. Given Y = y1 we may 

think of fx\Y{x\y) a s a function of x. The expected value 
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of this distribution, which is 

Y^xfx\v{x\y) 
x 

is the conditional expectation of X when Y = y, and is 

written 

E[X\Y = y]. 

Define g(y) = E[X\Y = y]. The function g is the condi­

tional expectation of X on Y, written E[X|Y]. Note that 

E[X|Y] is a random variable, and so has an expected value. 

Intuitively, E[X|Y] is the expected value of X assuming Y 

is known. It can be shown that (see [10]) 

E(E[X|Y]) =E{X). 

1.5. Outline of Thesis 

The remainder of this thesis is organized as follows. In 

Chapter 2, we introduce the ILT model. We will provide re­

sults on the following parameters and properties for graphs 

generated by the ILT model : order, size, average degree 

and densification. We will also show the results for the de­

gree distribution from some simulations of the model. In 
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Chapter 3, we consider further properties of the ILT model: 

average distance, cop number and spectral properties. In 

Chapter 4, we introduce the random ILT model and ana­

lyze its degree distribution. In Chapter 5, we state some 

open problems related to this thesis. 

We note that the results of this thesis are original work. 

Parts of Chapters 2 and 3 were included in the accepted 

paper [7]. 





CHAPTER 2 

The Determinist ic ILT model 

2.1. Introduction 

The (deterministic) Iterated Local Transitivity (ILT) 

model generates simple, undirected graphs (Gt : t > 0) 

over a countably infinite sequence of discrete time-steps. 

The only parameter of the model is the initial graph Go, 

which is any fixed finite connected graph. At t + I, all 

nodes in V(Gt) are "cloned", in the sense that for every 

x G V(Gt) there is an x' G V(Gt+\) that is connected to x 

and all of its neighbours. Note that all the new nodes cre­

ated at t + 1 form an independent set (that is, contains no 

edges) of cardinality |V(Gt)|. The idea of cloning is anal­

ogous to how on-line social networks grow over time. At 

a specific time t, let Gt represent the graph of an on-line 

social network. At t + 1, a new user y joins the network 

and finds his friend, say x, and becomes a friend with him. 

Now using the idea of transitivity, y also becomes friends 

19 
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with the friends of x. Hence, the phenomenon of cloning 

naturally arises in real-world on-line social networks. 

Let deg^rr) be the degree of a vertex x at time t. The 

important recurrences governing the degrees of nodes are 

given as 

degt+1(a;) = 2degt(ar) + l, (2.1) 

degm (x ' ) = degt(x) + l. (2.2) 

Equation (2.1) comes from the fact that each neighbour of 

x contributes a new edge to x at time t + 1; hence, adding 

another deg(a:) to the degree of x, and x' connects to x 

giving 

degi+i(rc) = degt(z) + deg4(x) + 1 = 2degi(z) + 1. 

Equation (2.2) comes from the fact that the new node x' 

connects to all the neighbours of x and to x itself. Hence, 

degi+i(a/) = degi(x) + 1. 

As an example of the evolution of the graphs in the ILT 

model starting with the 4-cycle C4 graph, see Figure 2.1. 
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We use nt to denote the order of Gt, and et to denote its 

size. We now derive the order of the graph at time t. 

T H E O R E M 2.1. For t > 0, n t = 2fn0 

Proof. We proceed by induction on t > 0. If t = 0, then 

no = 20no- As the induction hypothesis, for a fixed t > 0 set 

n* = 2*no. Now for nt+i, note that Gt+i doubles its order 

at time t+1. In other words, nt+i — 2nt. Hence, 

nt+1 = 2nt = 2(2*n0) = 2 i+1n0 . • 
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(a) t=0 (b) t = l 

• r \w» 

(c) t=2 (d) t=3 

(e) t=4 (f) t=5 

Figure 2.1: The time-steps with G0 = C4, for t = 0,1, 2,3,4, 5. 

2.2. Size and Average Degree 

Recent work by Leskovec et al. [14] underscores the im­

portance of two additional properties of complex networks 
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above and beyond more traditionally studied phenomena 

such as the small world property. A graph G with et edges 

and nt nodes satisfies a densification power law if there is 

a constant a € (1,2] such that et ~ nt
a (a is called the 

exponent of the power law). In particular, the average de­

gree grows to infinity with the order of the network. In 

[14], densification power laws were reported in several real-

world networks such as the physics citation graph, and the 

internet graph at the level of autonomous systems. We 

show that the ILT model follows a densification power law 

making the ILT model more realistic, especially in light of 

real-world data mined from complex networks. 

Define the volume of Gt by 

voi(Gy= Y, des*W =2e*- (2-3) 
xeV(Gt) 

We find a formula for the volume of Gt by exploiting the 

following recurrence. 

L E M M A 2.2. Fort > 0, 

VOI(GM-I) = 3vol(Gt) + nt+i. 
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Proof. From Equations (2.1) and (2.2), 

vol(Gm) = Y^ degmO)+ Yl de&t+i(x') 
xeV(Gt) x'eV(Gt+i)\V(Gt) 

= Yl (2degt(a;) + l ) + £ ) (deg,(x) + 1) 
xeV(Gt) x&V(Gt) 

= (2(2et)+nt) + (2et + nt) 

= 6et + 2nt 

= 3vol(G,) + n m . • 

We now give a precise formula for the volume of Gt-

THEOREM 2.3. Fort>0 

vol(Gt) = 3*vol(G0) + 2n0(3* - 2*). 

Proof. We prove the theorem by induction on t > 0. As 

the base step, we have that 

vol (d) = 3vol(G0) + 2n0. 

As an induction hypothesis, for t > 0 fixed, set 

vol(Gt) = 3*vol(G0) + 2n0(3
f - 2*). 
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Now at time t + 1, 

vol(Gt+i) = 3vol(Gf) + nt+i 

= 3vol(<3*) + 2t+ln0 

= 3(3*vol(G0) + 2n0(3f - 2*)) + 2*+1n0 

= 3mvol(G0) + 3121n0(3f - 2*) + 2t+1n0 

= 3t+1vol(G0) + 2 n 0 ( 3 m - 21(2<)) 

= 3*+1vol(G0) + 2n0(3 t+1 - 2 i+1). 

Hence, by induction on t, we have that 

vol(Gt) = 3*vol(G0) + 2n0(3* -2*) . • 

We provide the formula for the average degree of a graph 

Gt. 

THEOREM 2.4. Fort > 0, the average degree ofGt, writ­

ten degave(Gt), equals 
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Proof. By Theorem 2.3 we have that 

degave(Gt) = • 
nt 

_ 3*vol((?o) + 2n0(3* - 2l) 
~ ¥n~0 

We can now determine the size et of Gt using the fact 

that 

_ vol(Gf) 
6 t " 2 • 

LEMMA 2.5. For i > 0, 

e* = 3*(e0 + n0) - nt. 

Proof. By Theorem 2.3 we have that 

vol(Gt) 
et = ~ ^ 

_ 3*260 + 27^0(3*-2*) 
~ 2 

= 3\e0 + n0) - nt. • 

Note that Lemma 2.5 and Theorem 2.4 supplies a densifi-

cation power law with exponent a = ^ | « 1.58. 
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2.3. Average Distance, Diameter, and Degree 

Distribution 

Define the Wiener index of Gt as 

w(Gt)= J2 b&y)-
x,yeV(Gt) 

The Wiener index arises in applications of graph theory 

to Chemistry [19], and may be used to define the average 

distance of Gt as 

We will compute the average distance by deriving first the 

Wiener index. Define the ultimate average distance of Go, 

as 

UL(G0) = lim L(Gt) 
t—s-OO 

assuming the limit exists. We provide an exact value for 

L(Gt) and compute the ultimate average distance for any 

initial graph Go. An important lemma about distances be­

tween the nodes in a graph Gt will help us compute the 

recurrence for the Wiener index. 
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LEMMA 2.6. Let x and y be nodes in Gt with t > 0. Then 

dt+i{x',y) = dt+i(x,y') = dt+i{x,y) = dt(x,y), 

and 

[ dt(a;,2/) + l = 2 ifxyeE(Gt). 

Proof. We prove that ^+i(rr, y) = dt(x, y). The proofs that 

dt+i(x, y') = dt(rc, y), dt+i{x', y) = dt(x, y), and dt+i(x', y') = 

dt(x,y) if x and y are not joined are analogous and so omit­

ted. Since in the ILT model we do not delete any edges, 

the distance cannot increase after a "cloning" step occurs. 

Hence, dt+i(x,y) < dt(x,y). Now suppose for a contradic­

tion that there is a path P' connecting x and y in Gt+i 

with length k < dt(x,y). Hence, P' contains nodes not in 

Gt- Choose such a P' with the least number of nodes, say 

s > 0, not in Gt- Let z' be a node of P' not in Gt, and let 

the neighbours of z' in P' be u and v. Then z £ V(Gt) is 

joined to u and v. Form the p a t h Q1 by replacing z' by z. 

But then Q' has length k and has s — 1 many nodes not in 

Gt, which supplies a contradiction. 



2.3. AVERAGE DISTANCE, DIAMETER, AND DEGREE DISTRIBUTION 29 

In the case where xy G E(Gt), we have 

d{x', y') = d(x', y) + d(y, y') 

= d(x,y) + 1 

= 1 + 1 = 2. • 

We now give the recurrence for the Wiener index. 

THEOREM 2.7. For t > 0, 

W(Gt) = 4* W(G0) + (eo + n0) 1 
4 

Proof. To compute W(Gt+i), there are five cases to be 

considered: distances within Gt-, and distances of the forms: 

dt+iix,]/), dt+i(x',y), dt+i{x,x'), and dt+i(x',y'). The first 

three cases contribute 3W(Gt) by Lemma 2.6. The 4th case 

contributes n*. The final case contributes W(Gt) + et (the 

term et comes from the fact that each edge xy contributes 
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dt(x,y) + 1). Hence, 

x,yeV(Gt) 

Y dt(x,y)+ Y dt+i(x,y') 
x,yeV(Gt) xeV(Gt), 

y'eV(Gt+1) 

+ Y d*+i(a;/>2/) + X^ dt+i(x,x') 
x'eV(Gt+1), xeV{Gt), 

yeV(Gt) x'e(Gt+1) 

+ Y dt+iix>,y') 
x',y'eV(Gt+1) 

= w(Gt)+ Y dt(x,y)+ Y dt{x,y) + nt 
x,yeV(Gt) x,yeV(Gt) 

+ Y (dt(x,y)) + £t 

x,yeV(Gt) 

= 4W(Gt) + et + nt. 

By Lemma 2.5 we have that 

W(Gt+i) = W(Gt) + 3*(e0 + n0) -nt + nt 

= 4W(Gt) + 3*(e<,+ n0). (2.4) 
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Now we prove the final recurrence for WiGt) by induction. 

As the base step, using (2.4) we have that 

W{G{) = 4:W{G0) + e0 + n0. 

As the induction hypothesis, for a fixed t > 1 we set 

W{Gt) = 4*W(Go) + 4*(eo + n0) f 1 - (J) J 

At time £ + 1, we have that 

W(Gt+1)=4W(Gt)+3t(e0 + nQ) 

= 4 U*W(G0) +4'(eo + no) f1 ~ ( T ) 

+ 3*(e0 + n0) 

= 4t+1V^(G0) + (4 i+1 - 3*4-'4*+1)(e<, + n0) + 3 % 

+ 3*n0 

= 4t+1W(GQ) + 4i+1(eo + no) - 3 m ( e 0 + n0) 

= 4t+1W(G0) + (e0 + n0)(4 t+1 - 3*+1) 

= 4t+lW(G0) + 4 i+1(e0 + n0) M - { j ) j • 
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Hence, by induction for alH > 1 we have that 

W{Gt) = 4*W(G0) + 4f(eo + n0) 11 - (^\ J . • 

We now state the theorems for average distance and ul­

timate average distance for graphs generated by the ILT 

model. 

THEOREM 2.8. For t>0, 

A ' ( w ( G o ) + (eo + n o ) ( l - ( j ) ' ) ) 
i ( G , ) " 2 I 4>n% - 2 'n 0 

Proof. We have by Theorem 2.7 that 

L(Gt) = W{Gt) • 
2 

2W(Gt) 
(nt)

2 - nt 

2(40(^(Go) + (eo + n 0 ) ( l - ( | ) t ) ) 

~ 4*(n0)
2 - 2*n0 

THEOREM 2.9. For a// graphs Go, 

2(W(G0) + e0 + nQ) 

D 

UL(G0) nl 
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Proof. By Theorem 2.8 it follows that 

v uy i^oo 4t(n0)
2-2tn0 

= l i m 2 ( ^ ( g o ) + (eo +n 0 ) ( 1 - ( | » ) 

t->oo (n0)2 - 4" i2 in0 

= l i m 2(M/(Go) + (e0 + n 0 ) ( l - ( | » ) 

t^oo (no)2 — 2"%o 

2(^(G 0 ) + eo + n0) 

Theorem 2.9 tells us that for certain graphs, the ultimate 

average distance is in fact lower than its average distance. 

Hence, for many initial graphs Go, the average distance 

decreases, a property observed in on-line social and other 

networks (see [12, 14]). 

LEMMA 2.10. UL(G0) < L(G0) if and only if 

^ ( G o ) > ( n 0 - l ) ( e o + n0). 

Proof. Now UL(G0) < L(G0) holds if and only if 

Q >2(W(G'o) + eo + no) 2W(G0) 

~ (n0)2 ( n 0 ) 2 - n 0 ' 
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This in turn is equivalent to 

2W(G0)n0 > 2(e0n
2
0 - e0n0 + n3

0 - n2
0) 

W(G0) > e0nl - e0n0 + n§ - UQ 

which simplifies to give the desired equivalence. • 

We found the least n required to satisfy the condition 

UL(Go) < L{GQ) for a cycle. If n > 16, where n is even, 

then UL(Cn) < L(Cn). This was found using the fact that 

W(Cn) = - . 

Diameters are constant in the ILT model. We record 

this as a strong indication of the small world property in 

the model. 

THEOREM 2.11. For all graphs G different than a clique, 

diam(G^) — diam(Go), 

and 

diam(Ci) = diam(Go) + 1 = 2 

when Go is a clique. 
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Proof. As the diameter of a graph is the maximum over all 

distances, the proof follows directly from Lemma 2.6. • 

A formal discussion of the degree distribution of the ILT 

model is beyond the scope of this thesis. As an example of 

the degree distribution (in log-log scale) of a graph gener­

ated by the ILT model, see Figure 2.2 which was generated 

using MATLAB. If G0 = K3 and t = 11, then the resulting 

graph Gn seems to follow a binomial-type distribution. 

3 4 5 
Degree (log scale) 

Figure 2.2: Degree distribution for Gn with Go = K3. 





CHAPTER 3 

Other Propert ies of the ILT model 

In this chapter, we supply theorems on the cop and dom­

ination numbers of the graph Gt- We provide theorems 

about the automorphisms of Gt- We finally prove a recur­

rence for eigenvalues of the adjacency matrix of Gt. 

3.1. Cop and Dominat ion number 

In the following theorems, we prove that the domina­

tion and cop numbers depend only on the initial graph Go-

Theorem 3.1 shows that even as the graph becomes large 

as t progresses, the same number of nodes needed at time 0 

to dominate the graph will be needed at time t. In terms of 

on-line social networks, this suggests that a gossiper in the 

network can easily spread gossip no matter how large the 

graph becomes. Hence, one interpretation of Theorem 3.1 

is t ha t gossip can easily spread in an on-line social network. 

We now prove the theorem on the domination number of 

Gt. 

37 
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T H E O R E M 3.1. For all t > 0, 

7 ( G t ) = 7(Go). 

Proof. We prove that for t > 0, 7 ( G m ) = j(Gt). It 

then follows that 7(6^) = J (Go). When a dominating node 

x G V{Gt) is cloned, it's clone x' will be dominated by the 

same dominating node x since x' is joined to x and N(x). 

The clone y' of a non-dominating node y G V(Gt) will 

be joined to a dominating node since y has a dominating 

node as its neighbour. Hence, a dominating set in Gt is a 

dominating set in Gt+\. • 

As an example, Figure 3.1 shows a dominating set in Go = 

C4 that is a dominating set in G\. The black nodes consti­

tute the dominating sets of GQ and G\. 

^:~^ / 

y~-x^ 
\ \ /-

-^l \ 

(a) 7(Go) = 2 (b) 7 ( d ) = 2 

Figure 3.1: The dominating sets in Go and G\. 
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We prove that the cop number remains the same for Gt-

This implies that no matter how large the graph Gt be­

comes, the robber can be captured by the same number of 

cops used at time 0. In terms of on-line social networks, 

the robber is synonymous to a gossiper who spreads gos­

sips in the network. In order to "track" this gossiper at 

time t, we only require the initial number of cops to follow 

him. Therefore, one interpretation of Theorem 3.2 is that 

gossip can easily be tracked in an on-line social network. 

This contrasts with Theorem 3.1: although gossip can be 

tracked with few resources in an on-line social network on 

one hand, on the other gossip can be easily spread through 

the network. 

T H E O R E M 3.2. For all t > 0, 

c(Gt) = c(G0). 

Proof. We prove by induction that for t > 0, c{Gt) — 

C(GQ). The base case is immediate. For the induction step, 

we show that c(Gt+i) = c(Gt). Let c = c(Gt). Assume 

that c cops play in Gt+\ so that whenever R is on x' G 



40 3. OTHER PROPERTIES OF THE ILT MODEL 

V(Gt+i)\V(Gt), the cops C play as if he were on x € V(Gt). 

Either C captures R on a/, or using their winning strategy 

in Gti the cops move to x with R on x'. The cops then win 

in the next round. Hence, 

c(Gt+1) < c(Gt). 

Suppose for a contradiction that b = c(Gt+i) < c. The cops 

then use their winning strategy in Gt+i to win with b cops 

in Gt\ this contradiction will show that b > c. To see this, 

C plays in Gt so that whenever R is on x G V(Gt), C plays 

as if R were on x' G V(Gt+i). As x and x' are joined and 

share the exact same neighbours in G i + i , C may win in Gt 

with b < c cops. • 

3.2. Automorphisms 

In this section, we provide theorems about the auto­

morphism groups of graphs generated by the ILT model. 

We say that an automorphism ft € Aut(Gf) extends to 

ft+i e Aut(G t + i ) if 

ft+i r V{Gt) = ft-
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We show that symmetries from t = 0 are preserved at time 

t since there is an embedding of automorphism groups as 

we see in Theorem 3.4. This provides further evidence that 

the ILT model retains a memory of the initial graph from 

time 0. 

THEOREM 3.3. Each f0 e A\it(G0), extends to ft e 

Aut(Gt). 

Proof. Given f0 E Aut(Go), we prove by induction on 

t > 0 that /o extends to ft € Aut(G^). The base case is 

immediate. Assuming that ft is defined, let 

ft+i(x) = < 
ft(x) XxeV(Gt), 

(ft(y)Y where x = y' 

To prove that ft+i(x) is injective, we consider three cases. 

Let x,y be distinct nodes of V(Gt). As ft is one-to-one, 

ft+i(x) ^ ft+i(y). For the case when x G V(Gt), we have 

ft(x) / ft{y). Then ft+i(x) ^ ft+i(y). In the case when 

x,y e V{Gt+1) \ V{Gt), we have that ft+1(x) = (ft{z))', 

where x = z', and ft+i(y) — (ft(u))', where y = u'. Since 

x ^ y and z' ^ u' we have that z ^ u. It follows that 
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ft{z) ^ ft(u). Hence, it follows that (ft(z))' ^ (ft(u))', 

which in turn implies that ft+i(x) ^ ft+i(y). 

For the last case when x G V(Gt) and y G V(Gt+i) \ 

V(Gt), we have that ft+i(x) = ft(x) and ft+i(y) = {ft(z))', 

where y = z'. We know that ft(x) G V(Gt) and (ft(z))' G 

V(Gt+1) \ V(Gt). Hence, ft(x) ? (ft(z))', and so ft+1(x) ^ 

ft+i(y). Thus, ft+1 is injective. 

To show that the map ft+\{x) is onto, consider the cases 

for x G V{Gt), and x <£ V{Gt). For the first case x G 

V(Gt)i there exists a y G V(G^) such that /f(?/) = x as /f 

is onto. Therefore, ft+i(y) = x. For the second case where 

a; i V(Gt), let a; = y' for y G V"(G;). Let ft(z) = y. Then 

ft+i(z') = y' for some z G V((?t). 

We show that xy G E(Gt+i) if and only if ft+\{x) ft+i{y) G 

E(Gt+i). This will prove that / i + i G Aut(Gt), as / i + i ex­

tends ft. 

The case for x, y G V(Gf) is immediate as / t G Aut(Gt). 

Next, we consider the case for x G V(Gt) and y' G V((?M-I). 

Now rry' G E(Gt+i) if and only if 

ft+i(x)ft+i(y') = ft(x)(ft(y))' e E(Gt+1). 
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Note that x'y' £ E(Gt+l) for all x',y' e V(Gt+i) \ V(Gt). 

But ft+i{x')ft+l(y') £ E(Gt+1) by definition of Gt+1. D 

A homomorphism of a group (G, •) into a group (if, *) 

is a function T of G into if, such that if x € G and y E G) 

then T(a; • y) = T(x) * T(y). An embedding is a one-to-

one homomorphism. We abuse notation and say that G 

embeds in H. We now present a theorem for the embedding 

of automorphism groups of graphs generated by the ILT 

model. 

THEOREM 3.4. For allt > 0, Aut(G0) embeds inAut(Gt). 

Proof. We show that for all t > 0, k\it(Gt) embeds in 

Aut(Gf-i-i). The proof of the theorem then follows from 

this fact by induction on t. Define 

0 : Aut(Gt) —> Aut{Gt+i) 

by 

" (f(y)Y iix = y'eV(Gt+1)\V(Gt). 
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Note that (j){f){x) is injective, since / ^ g implies that 

4>{f) 7̂  0(sO by the definition of <f>. 

We now prove by cases that for all x G V(Gt+\) and 

f,geAut(Gt), 

0(M(*) = 0W(</)W 

Case 1: The node x G V{Gt). 

In this case, 

Case 2: The node x £ V(Gt). 

In this case, say x = y', with y G V(Gt). Then we have 

that 

<Kf9)(x) = (fg(y))' 

= M)((g)(y))' 

= Hf)<t>g(y') 

= Hf)4>(g)(x)- n 
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3.3. Eigenvalues of ILT Model 

In this section, we consider the adjacency matrix for Gt-

We present a recurrence for the eigenvalues of the graph 

Gt. 

If A(Gt) = A is the adjacency matrix of Gt, then the 

adjacency matrix of Gt+i is 

M = 
A A + I 

A + I 0 

where is I is the identity matrix of order nt. In this matrix, 

A corresponds to nodes at time t, A -\- I corresponds to 

nodes at time t + 1, and the zero matrix represents that 

there are no edges between V(Gt+i) \ V(Gt). The identity 

matrix / appears since for every x' G V(Gt+i) there exists 

a node x e V(Gt) and an edge between x and x'. For 

example, if GQ = C4, then A(GQ) is 

^ 0 1 0 1 ^ 

1 0 1 0 

0 1 0 1 

1 0 1 0 V / 
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The adjacency matrix of G\ in this case will be: 

0 

1 

0 

1 

1 

1 

0 

1 

1 

0 

1 

0 

1 

1 

1 

0 

0 

1 

0 

1 

0 

1 

1 

1 

1 

0 

1 

0 

1 

0 

1 

1 

1 

1 

0 

1 

0 

0 

0 

0 

1 

1 

1 

0 

0 

0 

0 

0 

0 

1 

1 

1 

0 

0 

0 

0 

> 

1 

0 

1 

1 

0 

0 

0 

0 

We now present a theorem for a recurrence of the eigen­

values of Gt-

THEOREM 3.5. If X is an eigenvalue of A{Gt), then 

A ± ^A 2 + 4(A + l)2 

P± = 2 

are eigenvalues of A(Gt+i). 

Proof. We first assume that A ^ - 1 . Hence, p — p± 7̂  0. 

Let u be an eigenvector of A = A{Gt) such that 

An = Au. 
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(A+l) Let ft = ^ ^ , and let 

u 
v = 

ftu 

Then we have that 

A A + I \ / u 
Mv 

1 A + I 0 J \ ftu 

An + (A + I) ftu 

(A + I)u 

( Au+(A + l)/?u 

V ( A + ! ) u 

Now ftp = A + 1, and so (A + l)u = ftpu. The condition 

/Q = A + /?(A + 1) = A + ( A + 1) 

P 

is equivalent to p solving 

x _ A _ (A±ll! = 0, 
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which it does by its definition. Hence, 

Mv = p\ 

as desired. 

Now let A = — 1. In this case, p- = — 1. Let 

where 0 is the appropriately sized zero vector. Thus, 

Mv = 

Hence, 

Mv = p-v 
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as desired. In this case when p+ = 0 and A = — 1; let 

0 
v = 

u 

Hence, 

MY = 

We therefore have that Mv = p+v • . 

The recurrence of eigenvalues can be explicitly seen by 

taking, for example, Go = if3. The eigenvalues at vari­

ous time-steps are given in Table 1. We computed these 

eigenvalues directly using MATLAB. Figure 3.2 shows the 

eigenvalue distribution for K3 at various time-steps, and it 

seems to follow a binomial-type distribution. 
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Table 1: Eigenvalues of Gt for t = 0,1,2, 3,4 with G0 ^ K3 

t Eigenvalues 
- 1 , - 1 , 2 

-2.16,-1,-1,0,0,4.16 
-3.48, -2.66, - 1 , - 1 , - 1 , - 1 , 0,0,0.50,1,1, 7.64. 

-5.63, -4.77, -3.47, -1.56, -1.56, -1.27, 
- 1 , - 1 , - 1 , - 1 , - 1 , - 1 , 0 , 0 , 0 , 0 , 0 . 8 0 , 

1,1.29,1.78,2.56,2.56,13.2 
-9.10, -8.23, -6.85, -4.75, -2.50, -2.50, -2.02, -1.74 

-1.74,-1.73, -1.56, -1.56, -1.44, -1.33, - 1 , - 1 , - 1 , - 1 , - 1 , - 1 
-1,-1,-1,-1,0,0,0,0,0,0,0.05,0.18,0.18,1,1,1,1, 

1.28,2.08, 2.24, 2.56, 2.56, 2.60, 3.02,3.80,5.06,5.06, 22.38. 

Eigenvalues 

(a) t = 3 

Eigenvalues 

(b) t = 5 

-100 -50 
J L L L , , ..Ll 

0 50 
Eigenvalui 

(c) t=« 

150 200 -300 -200 -100 100 200 300 400 500 600 700 

Eigenvalues 

(d) t = l l 

Figure 3.2: The eigenvalue distribution for Gt for various time-steps, 
with G0 = K3. 



CHAPTER 4 

The Random ILT Model 

Random graph models have been widely used to simu­

late and predict the behaviour of complex real-world net­

works (see [6, 12]). A model that incorporates random­

ness is more realistic, and is often tuneable: choosing the 

parameters affects the observed properties. Various studies 

(see [4, 13]) have shown that networks, like blogspace (that 

is, the network whose nodes consist of blogs, and edges are 

links between blogs) and the web graph follow a power law 

degree distribution. In this chapter, we introduce a random 

ILT model whose graphs follow a power law degree distri­

bution. We present simulations for the degree distribution 

of graphs generated by the random ILT model. 

4.1. Power law Degree Distributions 

One of the most important properties observed in com­

plex networks is a power law degree distribution. Given an 

undirected graph G and a non-negative integer k, we define 

51 
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Nk,G by 

NktG = \{xeV(G):degG(x) = k}\. 

The parameter N^Q is the number of nodes of degree k in 

G. For simplicity, suppose that |V(GQ| = t. Then \Nk,G\ is 

an integer in the interval [0, i\. 

The degree distribution of G is the sequence 

(NkiG :0<k<t). 

We say that the degree distribution of G follows a power 

law if for each degree k, 

^ ~ *"", (4.1) 

for a fixed real constant j3 > 1. Note that (4.1) is asymp­

totic and can be interpreted for a fixed graph as meaning 

that —Y~ is approximately k~@. We are more interested in 

the approximate rather than exact value of —^ since G is 

a large graph. 
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Power law distributions are sometimes referred to as 

heavy-tailed distributions, since the real-valued function 

f(k) = k~P 

exhibits a polynomial (rather than exponential) decay to 0 

as k tends to oo. We say that j3 is the exponent of the power 

law. If G possesses a power law degree distribution, then 

we simply say G is a power law graph. If we take logarithms 

on both sides of (4.1), then the relationship is expressed as 

log(Wfc>G)~log(t)-/flog(fc). 

Hence, in the log-log plot, we obtain a straight line with 

slope —f3. In both real-world networks and graphs gener­

ated by theoretical models, the power law may only fit for 

a certain range of degrees, with discrepancies for small or 

large degree nodes. 
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4.2. Preferential Attachment and Duplicat ion 

Models 

Preferential attachment models are used to simulate the 

web graph and other complex networks. Barabasi and Al­

bert [2] designed the first model for the web graph. The 

main idea in their model is that new nodes are more likely 

to join to existing nodes with high degree. This model is 

now referred to as an example of a preferential attachment 

(or PA) model. Barabasi and Albert concluded that the 

model generates graphs whose in-degree distribution fol­

lows a power law with exponent j3 = 3. The first rigorous 

analysis of a PA model was given in Bollobas, Riordan, 

Spencer, and Tusnady [5]. 

The duplication model is similar to the deterministic ILT 

model; however, cloning (or duplication) occurs on only one 

uniformly randomly chosen node. The node chosen to be 

cloned (or duplicated) will have a new node linked to it 

and all of its neighbours. The duplication model was de­

signed to describe the behaviour of biological networks such 

as protein-protein interaction networks in a living cell. It 
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was observed that graphs generated by duplication mod­

els follow power law degree distributions with power law 

exponents in the interval (1,2) (see [8]). 

4.3. The Random ILT Model 

In this section, we introduce a randomized version of the 

ILT model. The motivation for the model is that at each 

time-step, the new member of the on-line social network 

becomes friends with a popular person (modelled by pref­

erential attachment), or clones the neighbour set of some 

existing node. As we will see, graphs generated by the ran­

dom ILT model follow a power law degree distribution. 

Let a E (0,1] be a fixed real number. At time t = 

0, let Go be an initial graph with minimum degree 1. At 

time t + 1, with probability a, a PA step is taken; that is, 

an existing node is chosen giving preference to nodes with 

higher degrees and a new node is linked to it. Hence, the 

probability the new node is joined to x G V(Gt) is 

deg(x) = deg(x) 

T,xeV{Gt)
 d e § ( x ) vol(G t) ' 
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Figure 4.1 shows an example of a graph before and after a 

PA step is taken where the white node is the new node that 

is added at t + 1 and joined to the node with the highest 

degree. Note that one new edge is added in a PA step. 

With probability 1 — a, a duplication step is taken; that is, 

a node is chosen uniformly at random and an edge is added 

to it and to all of its neighbours. Thus, at every time-step 

only one node is added to the graph. If we allowed a = 0, 

then we would have the duplication model. In the case that 

a = 1, we have the preferential attachment model. Hence, 

if a 6 (0,1), we may view the random ILT model as a 

mixture of both models, so that duplication occurs more 

often if a is closer to 0. 

Figure 4.1: A graph before and after a PA step. 

For simplicity, we write N^ct as Nk,t- Observe that the 

parameters Nkj are random variables. We derive the so-

called master equation for E ( A ^ ) and show that the power 
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law exponent depends on the probability a. In order to find 

lE(AT^) we first derive a recurrence for the expected value 

of the number of edges et as shown in Lemma 4.2 and then 

find a solution for e(t), the expectation of et) in Lemma 4.3. 

We note that |V(C?£)| = t + n0 ~ t. 

T H E O R E M 4.1. Assuming that 

E(Nk,t) = bkt and bk ~ ck~7, 

where c > 0, then 

( H */« < b 

7= < 

We first prove the following lemmas. 

LEMMA 4.2. For all t>0, 

e(t + l)=e(t)(l+2^^-)+l. 
V t + riQ J 
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Proof. By the linearity of expectation, we have that 

e(t + l) a (l) + ( l - a ) V (1 + degt(x))~ + e(t) 
xeV(Gt) 

a + 
T,xeV(Gt)(i + de9t(x)) 

nt 

YtxcViGji1 + de9t(x)) 
— a — 1- eft) 

nt 

a+ni+2e^_ani_2_ae{t1 + e{t) 

= 1 + 

nt nt nt nt 

2e(t) 

nt 

•{l-a) + e{t) 

, N / 2 ( l - a ) \ , 
= e{t) -± 1 + 1 ) + 1 nt 

a 

L E M M A 4.3. ^4.o.s 

r 

e(t2^-°^), a < 1/2; 

e(0 = { G( t ln t ) , a = 1/2; 

9 ( t ) a > 1/2. 

Proof. A rigorous proof of the lemma is beyond the scope 

of this thesis. However, we use a method given in [3] (see 

the proof of Lemma 7) for approximating the recurrence by 

a differential equation. 
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We may show by direct substitution that the values 

given in the statement of the lemma satisfy the recurrence 

relation in Lemma 4.2. We only consider the case when 

e(t) = G(t) for a > \ (the other cases are similar, and so 

are omitted). In this case, 

/ x / 2(1 - a) Y A M A 2(1 -OL)\ 

e t 1 + ~ —- + 1 = O f 1 + -\ J- + 1 

= e( t ) ( i + 0(i)) + i 

= 0(t + l ) = e ( t + l). 

The recursion in Lemma (4.2) suggests the following dif­

ferential equation: 

dt K ' n0 + t 

with an initial condition e(0) = eg. From Calculus (see, for 

example, [17]) we know that the solution to a differential 

equation of this form is, 

e(t) = eJ^dt(c+ fe-l2^dtdt\ 

= (t + n0)
2(1"a) (c + f(t + nQy2{-l-^dt\ , (4.2) 
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where C is a constant. Since eg > 1, it follows that C ^ O . 

We now consider three possible cases for a. 

Case 1: The parameter a satisfies a < \. 

From (4.2) we notice that 2(1 — a) > 1. Hence, we have 

that 

e{t) = (t + n0)
2{1~a) (c + [{t + n0y

2^dt\ 

= C(i + n0)2(1-a) + — ^ - ( t + no) 
La, — 1 

= e ^ + n o ) 2 ^ ) . 

Case 2: The parameter a satisfies a = \. 

From (4.2) we have that, 

e(t) = (t + n0) (c+ l{t + nQ)-ldt\ 

= 6 ( t in t ) . 

Case 3: The parameter CK satisfies a > h. 
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Then by (4.2), since 2(1 — a) < 1, we have that 

e(t) = (£ + no)2a-«) fC + [(t + noy^-^dt) 

= C(t + n0)
2(1"Q) + - J — - ( t + no) 

la — I 
= 0 ( i ) . • 

We can now prove Theorem 4.1. 

Proof of Theorem 4.1 We first solve for the master equa­

tion when a < \. For each u € V(Gt+i), let Xu be the 

indicator random variable defined as, 

1 i fdegm(u) = fc, 
X(w) = 

^ 0 ifdeg i+1(u)^fc. 

Then 

ueV{Gt+1) 

and so by the linearity of expectation we have that 

E(JVM + 1)= Yl nxu = i). 

ueV(Gt+i) 

We find F(XU — 1) by considering two cases for degGt(w). 

Case 1: The degree of u satisfies degG (u) = k — 1. 



62 4. THE RANDOM ILT MODEL 

Such a node u may have degree k at time t + 1 if it was 

chosen as a random node for a PA step, or the node u or any 

of its neighbours were chosen as a node for a duplication 

step. Thus, we have that 

p(x» = *> = Q f e y + (1 - a^0 
Case 2: The degree of u satisfies degGt(w) = k. 

Such a node u may have degree k at time t + 1 if it neither 

it was chosen as a random node for a PA step, nor the node 

u or its neighbours were chosen as node for a duplication 

step. Thus, we have that 

p^=1) = 1 - adk- ( 1 - a ) rS-
We now have 

HNk,M\Gt) = Nk.u ( 4 = ^ + (1 - a ) ^ ) 
+ ^(1-adb- (1-a)rS)- (4-3) 
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Taking expectation on both sides of (4.3), we have that 

E(Nk,t+1) = E (Nk-ltt (a^-j-l + {l-a)-_ k 

2e(t) t + n0> 

+ E ( ^ ( 1 - a 2 ^ - ( 1 - a ^ 

E(Nk-lit) ( a ^ + (1 - a): * 
2e(t) v Jt + no) 

V k'tJ\ 2e(t) V Jt + n0) 

(4.4) 

Using the assumption that E(A^,t) = bkt, (4.4) becomes 

7 , ' fa(k-l) (l-a)k\ 7 

/ a/c ,„ . A; + 1 \ , 

so that 

( l -q ) ( f c + l)* t ( l - a ) f c 
Ok i — °fc — - 7 ~ Ofc-i, 

t + no r + no 

which follows from the fact that -4^ = o(l) by Lemma 4.3 

Hence, 

/ 1 + ( 1 - a ) ( t + l ) A = M l ^ ^ , 
V £ + n0 / t + n0 
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and so 

Therefore, 

b t{1 " a ) k b 
k £ + n0 + ( l - a ) ( / c + l)£ k~ 

b - k{1~a) b 
k ~~ 1 + f + (fc + l ) ( l - a ) ^ 

k(l-a) 
- -Ofc-i. l + ( / j+ l ) ( l -Q!) 

Using the assumption that bk ~ cfc~7, we have that 

6 - (k y=(i+Tis=i+4+o^ r^j 

bk \k~lj V k - \ ) 'k \k'2 

To find 7 we use the fact that 

/ k V l + (fc + l ) ( l - a ) 
\k-lj k(l-a) 

Using long division on (4.5), we have that 

Hence, 7 = f=^. Thus, we obtain that 
' ' 1—en ' 

bk ~ A;-13". 

We now present the master equation for a > \. 

(4.5) 

file:///k~lj
file:///k-lj
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Similar to the case when a < | , we have 

E(Nk,t+1\Gt) = Nk-ltt ( a ^ + (1 - <*)•_ k 

2e(t) v Jt + n0J 

Taking expectation on both sides of (4.6) and assuming 

that E ( ^ j i ) = bkt, we have that 

_ , fa(k-l) (l-a)k\ 

+ b t t ( i - J * - { i - a ) . k + 1^ 
2e(t) v t + n0/ 

Hence, 

ka(2a-l)1 (1 - a)(k + l)t1 

2 t + n0 

a ( / c - l ) ( 2 a - l ) , t ( l - a ) / c L 
= ^ Ofc-i + —T-; ok-i, 

2 i + no 

which follows from the facts that e(t) ~ ^PI a n d ^y 

2a — 1 by Lemma 4.3. Hence, 

bk (i + a / c ( 2 a ~ !) + ^( l -«)(fc + l ) \ 
\ 2 t-\-n0 J 

= ̂  1 — 2 — + - T ^ r J • 
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Thus, 

k(l-a) + (k-l)a(2a-l)/2 
k ~~ 1 + (k + 1)(1 - a) + ka(2a - l ) / 2 fe_1' 

Using the assumption that b^ ~ cfc~7, we have that 

6fc U - i y v fc-i/ 7fc U2 

To find 7, we use the fact that 

f k y l + (k + l)(l-a) + ka(2a-l)/2 
, - • (4.7) 

\k-lj k{l-a) + (k-l)a(2a-l)/2 K J 

Using long division on (4.7), we have that 

Hence, 7 = 1 + 9 l ,,. • 

Theorem. 4.1 only claims a power law for the expected 

value of Nkj, with no reference to the concentration of this 

random variable around its expected value. Proving the 

concentration for Nk:t around E.(Ar^) is a difficult open 

problem for the duplication model (see [8]), and it is open 

for the random ILT model (which includes the duplication 

model when a — 1). 

file:///k-lj
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4.4. Simulation results 

We simulated the Random ILT model using C + + . See 

the Appendix for the code. We plotted the cumulative 

degree distribution for different values of a; namely, a = 

0.25,0.5,0.75, and 1 (see Figures 4.2, 4.3, 4.4, and 4.5). 

The plots seem to follow a power-law degree distribution 

for degrees up to some threshold. We note that since these 

plots are for the cumulative degree distribution, the slope 

of the line is 1 —7, where 7 is the power law exponent. The 

values found for the power-law exponent from the plots 

coincide with the results stated in Theorem 4.1. See Table 

1 for a comparison of the power law exponents found from 

the plots (called ^pi0t) and the power law exponents from 

Theorem 4.1 (called jthm)-

We notice that there are some differences between jpiot 

and ^thm values. This may be due to the time t being too 

small as we ran the simulations up to t = 10,000 only. 

A larger t would likely give us a closer estimate for jpi0t-

The other reason may be due to Nk>t not being sufficiently 

concentrated. 
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3 4 5 

Degrees (log scale) 

Figure 4.2: Cumulative degree distribution for Gioooo, with Go 
K3, a = 0.25. 

Degrees (log scale) 

Figure 4.3: Cumulat ive degree dis tr ibut ion for Giooooj wi th G0 = 
K3,a = 0.50. 
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I 

2 3 4 

Degrees (log scale) 

Figure 4.4: Cumulative degree distribution for Gioooo, with Go = 
K3,a = 0.75. 

2 3 4 

Degrees (log scale) 

Figure 4.5: Cumulative degree distribution for Giooooj with Go = 
K3,a = 1. 
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Table 1: Comparison of power law exponents 

a 
0.25 
0.5 
0.75 

1 

Iplot 

1.18 
3 
2 

2.66 

Ithm 
2.33 

3 
2.28 

3 



CHAPTER 5 

Open Problems 

Several open problems remain pertaining to both the 

deterministic and random ILT models. Several of these 

problems—which were stated throughout the thesis—are 

listed below. We hope to address these problems in future 

work. 

(1) Do the eigenvalues in the deterministic ILT model 

follow a binomial distribution? In Section 3.3, we 

presented a simulation for the distribution of eigen­

values, and this seemed to follow a binomial distri­

bution. 

(2) Does the degree distribution of graphs generated by 

the deterministic ILT model follow a binomial dis­

tribution? We noticed a binomial-like distribution 

from simulations presented in Section 2.2. 

(3) Can we prove the concentration of N^t around E(A^fc;i) 

in the random ILT model? 
71 
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(4) In Theorem 4.1, we made the assumptions that E(A /̂C)i) — 

bkt and b^ « cfc~7. Can we prove both assump­

tions directly from the properties of the random ILT 

model? 

(5) In Theorem 2.4, we proved that the deterministic 

ILT model has a densification power law exponent 

j ^ « 1 . 5 8 . log 2 

Can we design a random ILT model where changing 

the parameters of the model gives variable densifi­

cation power law exponents? 



Appendix 

The following original code was used to simulate the 

random ILT model. 

/*****This file contains the main 

function for the simulation of 

the Random ILT Model.******* 

Author: Noor Hadi 

Year: 2008 

File name: test.cpp 

#include <cstdlib> 

#include<stdio.h> 

#include<string.h> 

#include <vector> 

#include"mat.h" 

#include"rand_model.h" 

#include"amat.h" 

#include"duplication_model.h" 

73 
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#include"adj mat.h" 

#include <time.h> 

using namespace std; 

int main(int argc, char** argv) 

{ 

//Declaring variables 

int i,j,rand_node,si; 

double alpha, beta; 

//Declaring and initializing instances 

// of the class adjmat 

adjmat adj_M(5,"adj_M"); 

adjmat adj_M_t(5,"adj_M_t"); //for adjmat 

adjmat adj_M_r(5,"adj_M_r"); //for adjmat 

//Declaring s to hold the size of the matrix 

int* s=new int[2]; 

//Declaring T to hold the time-steps that the 
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/ /user will give to the program 

int T=atoi(argv[l]); 

//Declaring pfile to point to the file to be read 

FILE * pfile; 

//Initializing the elements of the matrix adj_M 

adj_M.set_elem(0,l,l); 

adj_M.set_elem(0,2,1); 

adj_M.set_elem(l,2,1); 

adj_M.set_elem(2,3,1); 

adj _M.set.elem(2,4,1); 

srand(time(0)); 

//Initializing the probability alpha 

// to the desired value 

alpha=l; 

//Looping T times and 

//choosing between PA & duplication 
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for(i=0;i<T;i++) 

{ 

//Generating a random number beta 

beta = (double)(rand())/(RAND_MAX); 

//If beta<l-alpha, do duplication 

if(beta<l-alpha) 

{ 

//Get and store the size of the matrix adj_M in si 

si=adj_M.get_size(); 

//Choosing a node randomly 

rand_node=rand()%(si); 

//Declaring adj_deg_v as a vector 

// to store the degrees of the nodes 

vector<int> adj_deg_v(si); 

//Calling the function size and 

//storing the degree of the nodes in adj_deg_v 

adj _M.degree(adj _deg_v); 
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/ / • 

dele te [] adj_M_t .ge t_da ta ( ) ; 

//Resizing adj_M_t to 

//the size of the new adj_M matrix 

adj_M_t = adjmat(adj_M.get_size()); 

//Copying the matrix adj_M 

//to the matrix adj_M_t 

adj _M.c opy(adj _M_t); 

//Resizing the matrix adj_M 

adj_M.resize(); 

//Duplicating the chosen node 

//"rand_node" and storing it in the matrix adj_M_t 

adj _M_t.dup_node(adj _M,rand_node); 

} 

//else if beta<alpha, do PA 

else 
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{ 

//Initializing si to the size of the matrix adj_M 

si=adj_M.get_size(); 

//Creating a new vector to 

//store the degrees of the nodes 

vector<int> adj_deg_vc(si); 

//Storing the degrees of the 

//nodes in adj_M in adj_deg_vc 

adj_M.degree(adj_deg_vc); 

//Calling the function b_preferential_choice 

//and storing the node chosen 

// preferentially in rand_node 

rand_node=b_preferential_choice(adj_deg_vc); 

// 

delete [] adj_M_r .get_data(); 

//Resizing the matrix adj_M_r 
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//to the size of the matric adj_M 

adj _M_r=adjmat(adj _M.get_size()); 

//Copying the matrix adj_M 

//to the matrix adj_M_r 

adj_M.copy(adj_M_r); 

//Resizing the matrix adj_M 

adj_M.resize(); 

//Adding the node chosen 

//preferentially to the matrix adj_M_r 

adj _M_r.add_node(adj _M,rand_node); 

} 

} 

//Declaring a new variable vs to store s 

int *vs=new int[2]; 

//Declaring a new vector adj_vec 

//of the same size as the matrix adj_M 
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vector<int> adj_vec(adj_M.get_size()); 

//Declaring a new variable counter 

int counter; 

//Setting the vector adj_vec to zeros 

for(counter=0; counter<adj_M.get_size(); counter++) 

{ 

adj _vec.at(counter)=0; 

} 

//Storing the degrees of the 

//nodes in the matrix adj_M into adj_vec 

adj_M.degree(adj_vec); 

//Finding the maximum degree in 

//the vector adj_vec and storing it in adj_max_deg 

int adj_max_deg=b_max_deg(adj_vec); 

//Declaring a new vector adj_deg_dist 

// to store the degree distribution 
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vector<int> adj_deg_dist(adj_max_deg); 

//Declaring a new vector adj_cumul_deg_dist 

// to store the cumulative degree distribution 

vector<int> adj_cumul_deg_dist(adj_max_deg); 

//Calling the function b_deg_dist 

//and storing the degree distribution in adj_deg_dist 

b_deg_dist(adj_vec,adj_deg_dist); 

//Calling the function b_inverse_cumul to 

//change the degree distribution to 

// a cumulative degree distribution 

b_inverse_cumul(adj _deg_dist,adj _cumul_deg_dist); 

//Creating a new vector adj_deg_vc 

//of the same size as the matrix adj_M 

vector<int> adj _deg_vc(adj_M.get_size()); 

//Storing the degree of the 

//matrix adj_M in the vector adj_deg_vc 
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adj_M.degree(adj_deg_vc); 

//Storing the size of the 

// vector adj_cumul_deg_dist in adj_cumul_size 

int adj_cumul_size=adj_cumul_deg_dist.size(); 

//Declaring a variable p 

int p; 

//Opening a txt file called "alpha=l.txt" 

pfile=fopen("alpha=l.txt", "w")i 

//Looping and writing the log-log cumulative 

//degree distribution in the file "alpha=l.txt" 

for(p=l; p<=adj_cumul_size; p++) 

{ 

fprintf (pfile,'7„f\t °/„f \n", log ((double) p) , 

log(double(adj_cumul_deg_dist.at(p-l)+l))); 

} 

//Closing the file 
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fclose(pfi le); 

//Exiting main 

return 0; 

} 

/*****This is the header file for adjmat.cpp********* 

Author: Noor Hadi 

Year: 2008 

File name: adjmat.h 

#ifndef ADJMAT.H 

#define ADJMAT_H 

#include <vector> 

using namespace std; 

class adjmat 

{ 

//Declaring variables 

private: 
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int s; 

bool * data; 

char * name; 

//Declaring functions 

public: 

adjmat(int N,char * Name="matrix"); 

"adjmatO; 

void set_one(); 

void set_zero(); 

int get_size(); 

bool get_elem(int i, int j); 

void set_elem(int i, int j, int value); 

void print(); 

bool *get_data(); 

int node_degree(int node); 

void degree(vector<int>& v); 

void fprint_adjmat(FILE *pFile); 

void resizeO ; 

void copy(adjmat new_copy); 

void add_node(adjmat M,int node); 
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void dup_node(adjmat M,int node); 

}; 

#endif 

/*****This file contains the 

implementation of the class adjmat ******* 

Author: Noor Hadi 

File name: adjmat.cpp 

#include "adjmat.h" 

#include <stdio.h> 

#include <string.h> 

#include <stdlib.h> 

#include <math.h> 

#include <vector> 

using namespace std; 

//constructor 
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a d j m a t : : a d j m a t ( i n t N,char* Name) 

{ 

s=N; 

data=new bool[(N*N+N)/2]; 

s e t _ z e r o ( ) ; 

name=Name; 

} 

//destructor 

adjmat: : ~adjmat() 

{ 

} 

//Set all the elements of the 

// upper diagonal triangle of the matrix to 1 

void adjmat::set_one() 

{ 

int i; 

for (i=0; i<(s*s+s)/2; i++) 

data[i]=l; 
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} 

//Set all the elements of the 

//upper diagonal triangle of the matrix to 0 

void adjmat::set_zero() 

{ 

int i; 

for (i=0; i<(s*s+s)/2; i++) 

data[i]=0; 

} 

//Get a specific element in row i, column j 

bool adjmat::get_elem(int i, int j) 

{ 

if(i<=j) 

return data[i*s+j-i*(i+l)/2]; 

else 

return data[j*s+i-j*(j+l)/2] ; 

} 
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//Set a specific element in row i, column j to value 

void adjmat::set_elem(int i,int j, int value) 

{ 

if(i<=j) 

data[i*s+j-i*(i+1)/2]=value; 

else 

data[j *s+i-j*(j+1)/2]=value; 

} 

//Print the matrix 

void adjmat::print() 

{ 

int i,j; 

printf(name); 

printf (" An"); 

for(i=0; i<s; i++) 

{ 

for(j=0; j<i; j++) 

•C 

printf ("7od\t\data[j*s+i-j*(j+l)/2]); //if i<=j 

} 



APPENDIX 89 

printf('7od\t\0); 

for(j=i+l;j<s;j++) 

{ 

printf (l7od\t",data[i*s+j-i*(i+l)/2]); //if i>j 

} 

printf("\n"); 

} 

} 

//Write the matrix to a file 

void adjmat::fprint_adjmat(FILE *pFile) 

{ 

int i,j; 

for(i=0; i<s; i++) 

{ 

for(j=0; j<i; j++) 

{ 

f printf (pFile, ,,0/„d\t" ,data [j*s+i] ) ; 

} 

f printf (pFile, n7„d\t", 0); 

for(j=i+l;j<s;j++) 
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{ 

fprintf (pFile, "7„d\t" ,data[i*s+j]); 

} 

fpr intf(pFile ," \n") ; 

} 

} 

//Get all the elements in the matrix 

bool *adjmat::get_data() 

{ 

return data; 

} 

//Find the degree of a specific node 

int adjmat::node_degree(int node) 

{ 

int sum=0; 

for(int i=0; i<s; i++) 

{ 

if(get_elem(i,node)) 

sum+=l; 
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re turn sum; 

} 

//Storing the degree of each node 

void adjmat::degree(vector<int> &v) 

{ 

int i; 

for (i=0; i<s; i++) 

{ 

v.at(i)=node_degree(i); 

} 

} 

//Resizing the matrix 

void adjmat::resize() 

{ 
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s=s+l; 

delete [] data; 

data=new bool[(s*s+s)/2]; 

set_zero(); 

} 

//Copying 2 matrices 

void adjmat::copy(adjmat new_copy) 

{ 

int i; 

for (i=0; i<(s*s+s)/2; i++) 

{ 

new_copy.data[i]=data[i] ; 

} 

} 

//Adding a new node 

void adjmat::add_node(adjmat M,int node) 

{ 

int i,j; 

for( i=0;i<s; i++) 
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{ 

for( j=0; j<s ; j++) 

{ 

M.se t_e lem( i , j ,ge t_e lem( i , j ) ) ; 

} 

} 

M.set_elem(node,s,1); 

} 

/ /Dupl icat ing a node 

void adjmat::dup_node(adjmat M,int node) 

{ 

in t i , j ; 

for( i=0; i<s; i++) 

{ 

for ( j=0; j<s ; j++) 

{ 

M.se t_e lem( i , j ,ge t_e lem( i , j ) ) ; 

} 

} 
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for(i=0;i<s;i++) 

M.set_elem(i,s,get_elem(i,node)); 

M.set_elem(node,s,1); 

} 

//Getting the size of a matrix 

int adjmat::get_size() 

{ 

return s; 

} 

/*****This is the header file 

for duplication_.model.cpp ***** 

Author: Noor Hadi 

Year: 2008 

File name: duplication_model.h***************** 

#ifndef duplication_model_H 

#define duplication_model_H 

#include "amat.h" 

http://duplication_.model.cpp
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int b_preferential_choice(vector <int> degree); 

void b_deg_dist(vector<int> &A, 

vector<int> &degree_distribution); 

int b_max_deg(vector <int> a); 

void b_inverse_cumul(vector<int>& A, 

vector<int>& ICA); 

#endif 

/*****This file contains the 

implementation of the class duplication_model***** 

We note that the code for the functions 

to find the maximum degree, 

degree distribution and inverse degree 

distribution are not included here as 

they are easy to implement. 

Author: Noor Hadi 

Year: 2008 

File name: test.cpp 
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#include l,duplication_model.hn 

#include <string.h> 

#include <cstdlib> 

#include <stdio.h> 

//Choosing a node preferentially 

int b_preferential_choice(vector<int> degree) 

{ 

int leng=degree.size(); 

int max_deg=0; 

int sum=0; 

int i; 

double val; 

double alpha; 

double * cumulative_array=new double[leng]; 

for (i=0; i<leng; i++) 

{ 

sum+=degree.at(i); 

} 

cumulative_array[0]=((double)degree.at(0))/sum; 

for(i=l; Kleng; i++) 
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{ 

cumulative_array[i]=cumulative_array[i-1]+ 

((double)degree.at(i))/sum; 

} 

alpha=(double)rand()/RAND.MAX; 

for(i=0; Kleng; i++) 

{ 

if(cumulative_array[i]>alpha) 

return i; 

} 

} 
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