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ABSTRACT 

This study examined the midday (10:00 - 16:00) growing season (April -
October) surface cover CO2 relationships with different canopy closures and 
microtopography (lawn and depression) in a forested upland - peatland - pond 
complex in the Western Boreal Plain, north - central Alberta, Canada. A dynamic -
closed chamber technique was used to: evaluate the relative contributions of 
heterotrophic and autotrophic respiration and photosynthesis and assess the relative 
roles of substrate, plant communities, hydrology, and microclimates on CO2 
exchange. 

Large differences were observed among the forest floors of landscape units 
with different canopy covers with respect to midday total respiration (Rtot

= vegetation 
respiration (Rveg) + soil respiration (RSOii)) and gross ecosystem production (GEP), 
and the seasonal pattern of GEP and Rtot. Highest rates of Rtot followed the general 
progression of riparian > upland > open peatland > covered peatland, with high RSOJI 

contributions. Strong correlations were observed between C:N, soil temperature, 
moisture and Rtot. Photosynthetic Active Radiation (PAR) controlled GEP, which was 
highest in the open and covered peatland. GEP and Rtot were highest in the middle of 
the growing season when soil and air temperatures were warmest, in addition Rveg 

contributed more to Rtot during this time, however RSOii dominated the flux. 

Small differences were observed between lawn and depression sites in terms 
of net ecosystem CO2 exchange (NEE). The general trend was for warmer, drier lawn 
sites to have higher GEP and Rtot than the topographically lower, cooler and wetter 
depressions. The moisture and temperature differences between microtopography 
drove differences in the productivity of species but did not drive differences in 
vegetation distribution. 

This study demonstrated that degrees of spatial and seasonal temporal 
variability as well as controlling environmental factors on CO2 exchange cannot 
necessarily be extrapolated to a sub - humid region, such as Canada's Western Boreal 
Plain. In addition, forest floors of different land cover units, and microtopography 
should be taken into account when discussing understory contributions to CO2 
exchange. 
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Chapter 1 

Introduction 

1.0 Atmospheric C0 2 and Global Change 

The primary cause of global warming over the past century is believed to be 

due to the increased combustion of fossil fuels (for industrial or domestic usage), 

biomass burning and land use change that has lead to increased greenhouse gases 

(GHGs) in the atmosphere (IPCC, 2001; Schlesinger, 1997). As a result, the mean 

global temperature has risen 0.6 ± 0.2°C over the 20th century, and 0.2 - 0.3°C over 

the past 40 years (IPCC, 2001). Global circulation models (GCMs) predict that if 

these trends continue ambient temperatures are expected to rise anywhere from 1.4 -

5.8 °C by 2100 (IPCC, 2001) and may be augmented by land use change (Vitousek et 

al., 1997). There are many implications that may result from warmer ambient 

temperatures such as sea - level rise, changing precipitation, and transpiration 

patterns, and altered dynamics of the soil - atmosphere carbon exchange (IPCC, 

2001). However, climate change and its effects on our future environment requires a 

better understanding and quantification of the processes contributing to global change 

(Fang and Moncrieff, 2001). Global change predictions are difficult to generalize 

since the magnitudes, feedback directions and interactions are unknown (Goulden et 

al., 2007; Schlesinger and Andrews, 2000). 

The most abundant and prominent GHG is water vapour, but human activity is 

not believed to have directly affected its average global concentration (IPCC, 2001). 

However, other prominent anthropogenic GHGs such as carbon dioxide (CO2), 
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methane (CH4) and nitrous oxide (N2O) (greenhouse warming potentials of 

approximately 1, 23 and 296 respectively) (IPCC, 2001) may directly affect the 

hydrological cycle due to positive feedbacks from radiative forcing (William and 

Ruddiman, 2002). Although the greenhouse warming potentials of CH4 and N2O are 

much larger than CO2, actual increases due to CO2 are dominant and estimates 

indicate it has contributed 60% of the total increase in radiative forcing, followed by 

CH4 (16%), and a combination of other gases (24%) (William and Ruddiman, 2002). 

Natural systems and biogeochemical cycles have historically maintained 

carbon pools in dynamic equilibrium. However, due to anthropogenic activities large 

shifts among carbon pools have occurred (IPCC, 2001), and the fate of the CO2 

loaded into the atmosphere has been uncertain (Quay et al., 1992). Measurements of 

terrestrial carbon dynamics have been measured for nearly 80 years (Gainey, 1919), 

and the biosphere is now recognized as a reservoir that can exchange significant 

amounts of CO2 on the time scale of the observed anthropogenic perturbations (Quay 

et al , 1992). The total global emission of CO2 from soil is recognized as one of the 

largest fluxes in the global carbon cycle, and small changes in the magnitude of soil 

respiration could have a large effect on the concentration of CO2 in the atmosphere 

(Schlesinger and Andrews, 2000; Rustard et al , 2000). 

Vegetation is considered the regulator of carbon exchange in terrestrial 

ecosystems (Schlesinger 1997). Some authors believe that warming may stimulate 

plant production (e.g. Silvola, 1996). Higher CO2 concentrations in the atmosphere 

may result in larger biomass uptake (increased photosynthesis) (Barton and Jarvis, 

1999), which would act as a negative feedback to climate change. However, it is 
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expected that this effect would be modest as the soil currently stores more carbon 

than a mature temperate or boreal forest, and any indirect stimulation of production 

would have to be large to offset the expected loss of carbon (Goulden et al., 1998). 

Thus, understanding the feedbacks between terrestrial ecosystems and the atmosphere 

is a key instrument to predict the evolution of atmospheric CO2 concentrations and 

global cycling of CO2. 

Currently, there is much uncertainty about the role of terrestrial ecosystems in 

the global carbon budget (Swanson and Flanagan, 2001; Fan et al., 1998). Direct 

measurements of the increase in atmospheric CO2 levels when compared to the rates 

of fossil fuel combustion, indicated that about 57% of the CO2 produced has been 

accumulated in the atmosphere (Quay et al., 1992), and the other 43% of the 

industrially derived CO2 is either in the biosphere or ocean. However, recently a 

number of techniques (atmosphere - based methods (eddy covariance, tracer -

transport inversion), and land - based approaches (chamber measurements, ecosystem 

models)) have all indicated that the terrestrial biosphere is a significant sink for the 

industrially derived CO2. In fact, 70 - 100% of the missing sink may be in northern 

sub - arctic and arctic wetlands and forest ecosystems (Swanson and Flanagan, 2001; 

Fan et al., 1998). The mechanisms responsible for the carbon sequestration and the 

relative combination from different land covers of exact spatial location of the 

ecosystems contributing most to the terrestrial sink remain controversial (Swanson 

and Flanagan, 2001; Lloyd, 1999). Therefore, a major research challenge is to 

identify more accurately the mechanisms and location of the terrestrial sinks and 

sources for atmospheric CO2, and how they will respond to changes in climate, land 
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use and management practices (Swanson and Flanagan, 2001; Pacala et al., 2001; 

Rustard et al., 2000). 

1.1 Terrestrial Carbon Exchange 

The general carbon balance for any terrestrial ecosystem can be expressed by: 

AC (NEE) = C02 (GEP) - C02 (Rt0) )-CHA- DOC (1.1) 

where AC (NEE) is the net change in carbon storage within the ecosystem (mg C m"2 

i 9 1 

sec" or g C m" day"), GEP is the net primary productivity, which represents total 

plant uptake or release of carbon from the system, Rtot represents CO2 loss from roots, 

microbial activity (decomposition) and vegetation respiration, CH4 is methane and 

DOC represents dissolved organic carbon. However, within this study only part of the 

carbon balance is examined, that is photosynthesis and total respiration are observed 

in detail to allow for the examination of spatial and temporal variability and the 

controlling variables on the fluxes. Thus, the terrestrial CO2 exchange can be 

simplified as: 

NEE = GEP + Rlot (1.2) 

1.1.1 Photosynthesis 

In terrestrial ecosystems atmospheric vegetation is able to convert light energy 

to chemical energy through photosynthesis. Photosynthesis (directly or indirectly) 

provides energy for many forms of life in the biosphere (Schlesinger, 1997). 

Atmospheric CO2 is fixed by the vegetation and then converted to a carbohydrate 

(C3H6O3) and oxygen: 
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6C02+12H20-*C3H603+602+6H20 (1.3) 

Some of the carbohydrates are used by the vegetation during metabolism and 

carbohydrate production, which is referred to as heterotrophic respiration (Raven et 

al., 1999). The remaining carbon is partitioned between above - ground (shoots and 

leaves) and below - ground biomass (roots) (Raven et al., 1999). 

1.1.2 Respiration 

The release of CO2 from soils due to the production of CO2 by roots and soil 

micro - organisms, and to a lesser extent chemical oxidation of carbon compounds, is 

commonly referred to as soil respiration (Lloyd and Taylor, 1994). Soil respiration 

exceeds all other terrestrial - atmosphere carbon exchanges with the exception of 

gross photosynthesis (Raich and Schlesinger, 1992). The overall carbon flux from 

soils will herein be referred to as RSOii for soil plots and Rtot and Rveg for vegetated 

plots. Rtot and RSOii is comprised of biotic (rhizosphere (root and root exudates)), 

heterotrophic (microbial and faunal respiration), chemical (chemical oxidation and 

soil carbonates) and physical factors (soil degassing) (Suyker et al., 2003; Raich and 

Schlesinger, 1992). However, Rtot will also include the above - ground biomass 

respiration (plant metabolism). Rveg will only be comprised of the above - ground 

vegetation respiration which can be described as: 

Keg = Rtot ~ Rsoil (I-4) 

When the vegetation enters senescence, large amounts of organic carbon is 

contained within the dead bodies of the plants and contribute to the soil organic 

matter (SOM) and detritus, which is then consumed by decomposers (small 

invertebrates, bacteria and fungi) (Raven et al., 1999). The carbon cycle is then 
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completed through the return of CO2 to the atmosphere from the mineralization of 

SOM (Rustad et al , 2000): 

C6Hn06 + 602 + 6H20 -» 6C02 +\2H20 + heat (1.5) 

Soil carbon represents a major proportion of the total carbon budget (1500 Pg C), 

comprising twice the amount of carbon present in the atmosphere (750 Pg C) 

(Eswaran et al., 1993). It has been shown that 10% of the atmosphere's CO2 passes 

through soils each year (Raich and Tufekcioglu, 2000), which represents more then 

10 times the CO2 released from anthropogenic sources (Raich and Tufekcioglu, 

2000). Consequently, understanding the magnitudes and processes that regulate the 

transfer of carbon in the soils of forest floors in terrestrial ecosystems is essential 

from a global change perspective. 

1.2 Significance and Uniqueness of Boreal Forests 

Boreal forest ecosystems constitute the second largest biome on Earth 

(Heijmans et al., 2004), and is a region where the climate has warmed significantly in 

this century and is predicted to warm further in the next century (IPCC, 2001). The 

Western Boreal Plain (WBP) spans 6.5x 10 km of land in the prairies, from 

southeastern Manitoba to northwestern Alberta (Env. Canada, 2007a), which is part 

of the boreal forest. Within the boreal forest seasonally and perennially frozen soils 

contain one of the largest pools of carbon in the terrestrial biosphere (200 to 500 

gigatons of carbon, 1 GT= 10 metric tons) (Schlesinger, 1997). The accumulation of 

carbon here is believed to be the result of slow rates of decomposition of plant matter 

rather than large rates of net primary production (Vitt, 1990). Thus, the large amount 

of soil carbon stored could increase the concentration of CO2 in the atmosphere by as 
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much as 50% if it were released by climatic warming (Oechel et al., 1993; Goulden et 

al., 2007). In addition, regions such as the WBP may respond to changes in the 

climate and land use more dramatically as this area is operating in a potential 

moisture deficit, such that in most years potential evapotranspiration is higher then 

precipitation (Env. Canada, 2007a). Thus, under heavy industrial pressures (for 

example, forestry and oil extraction) landscape alteration may cause significant 

changes to its biogeochemical cycling. For example, road establishment may compact 

the soil restricting the flow of gases such as CO2, and in a region where water may be 

limiting, changes to the hydrology may release large amounts of CO2 to the 

atmosphere. Thus, it is important to understand the fate of this carbon in response to 

global climate change and land use change since its release to the atmosphere could 

act as a positive climatic feedback (Strack et al., 2006). 

The role of boreal forests, including the WBP in the global carbon cycle is 

determined by the net exchange of CO2 between the terrestrial ecosystem and the 

atmosphere (commonly referred to as net ecosystem exchange (NEE)) (Gower et al., 

1997), which is driven by the balance between the uptake of CO2 by photosynthesis 

and its emission via plant and soil respiration (Bubier et al., 2003). As a result of 

differences in photosynthetic uptake and respiratory loss, there can be considerable 

spatial and interannual variability in NEE. A better understanding of the influence of 

the environmental and ecological factors on the major components of NEE is required 

to determine the causes of spatial and temporal variability in NEE (Gower et al., 

1997; Suykeretal., 1997). 
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Despite the importance of these regions in the global carbon budget there are 

few studies that examine these areas as a diverse set of land cover units that are 

structured by a variety of factors (Bridgham et al., 1998). Most studies have viewed 

them as homogeneous land cover units in budget estimates (Gorham, 1991), focused 

only on peatlands breaking them down into only two or three vegetation communities 

(Botting and Fredeen, 2006; Swanson and Flanagan, 2001), microtopographical units 

(e.g. depressions and lawns) (Kim and Verma, 1992; Potter et al., 2001) or examined 

upland canopy CO2 dynamics without partitioning between forest floor and canopy 

fluxes (Gower et al., 1997). In addition, estimates of above ground productivity is 

generally easier as they can be determined from satellites, however, below canopy 

forest floors are very important as they are a major component of CO2 exchange but 

are poorly studies. Thus, the forest floor is poorly represented in models, and 

predictions for climate and land use change for the boreal forest, and therefore the 

WBP will likely be variable due to the heterogeneity of the area. Thus, the key to 

understanding the biogeochemical cycling in the boreal forest is to understand how 

heterogeneity in soil characteristics, vegetation and canopy conditions interact with 

the atmosphere and ecosystem in terms of hydrology and microclimate. That is, by 

studying a process - based local site (Utikuma Research Study Area (URSA)) within 

the boreal forest, the aforementioned interactions can be examined and ways to 

extrapolate and generalize can be applied to larger scales. 

1.3 Study Rational 

Climate change will continue as long as humans continue transforming the 

land surface, much of which has already been altered by humans (30 - 50%) 
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(Vitousek et al., 1997). It was with the initiation of the Kyoto Protocol that 

quantifying global carbon emissions has become of great significance (IPCC, 2001). 

Anthropogenic increases of carbon dioxide (CO2) already represent a 30% increase 

relative to the pre - industrial era (Vitousek, 1997). 

There have been studies on CO2 effluxes from northern peatlands for nearly a 

decade that can be attributed to their importance in climate change scenarios (c.f. 

Gorham, 1991; Waddington et al., 1998; Moren and Lindroth, 2000). However, due 

to GMC predictions of increased temperatures in northern boreal forest and subarctic 

areas, research has recently increased. Controls on trace gas fluxes are fairly well 

known qualitatively, thus many studies try and quantify CO2 emissions and establish 

links to physical process (Amiro, 2001; Black et al., 1996; Petrone et al , 2003). This 

has lead to research examining atmospheric conditions, (Megonigal and Schlesinger, 

1997), surface conditions (snowmelt, growing season, understory species) (Griffis et 

al., 2000b; Heijmans and Chapman, 2003; Bisbee et al., 2000; Petrone et al., 2004), 

and subsurface properties (water table, peat temperature, soil temperature) (Bubier et 

al., 2003; Petrone et al., 2004) in relation to CO2 exchange. However, the controls on 

the dynamics of these fluxes, and in particular the relationships between them are 

currently not well understood, particularly for differing vegetation types and 

potentials for carbon storage (Joabsson et al., 1999; Hobbie, 2000). 

Ecosystem - scale measurements such as eddy covariance systems while 

allowing for continuous measurements only provide CO2 exchange from the entire 

ecosystem, and do not differentiate among the combined effects of the species, 

functional groups, or microtopography within the ecosystem; and chamber 
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measurements required for such a study are labor intensive (Lund et al., 1999). This 

allows for understory species to be poorly represented in climate change models. 

Thus, the primary focus of this study was to explore forested boreal wetland 

complexes to obtain region - specific flux variability and examine the environmental 

controls on CO2 exchange to improve the understanding and modeling of forest 

wetland exchange, which is lacking in the literature (Heijmans et al., 2003; Bubier et 

al., 1998) 

1.4 Research Objectives 

This research has two main objectives involving the examination of forest 

floors within the Western Boreal Plain (WBP) in a forested upland peatland - pond 

complex: (1) characterize the seasonal rates of forest floor gross ecosystem 

production (GEP) and total respiration (Rtot) from closed to open canopy of three land 

forms (upland, riparian and peatland) and to assess the relative roles of substrate, 

plant communities, hydrology, and microclimates on CO2 exchange; and (2) measure 

the rates of understory NEE, GEP and Rtot from peatland lawn and depression 

mictotopographical units through the growing season to determine if there are 

differences in CO2 exchange between microtopographical units and if vegetation 

types can be used as a proxy for photosynthesis and respiration. 
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Chapter 2 

Forest Floor Carbon Dioxide Fluxes within an Upland 

Forested Peatland - Pond Complex in the Western Boreal 

Plain 

2.0 Introduction 

The Canadian boreal forest zone has been a centre for research for many years 

through collaborative projects such as BOREAS and BERMS (AEP, 1998). However, 

the boreal forest consists of two distinct geologic and climatic zones: glacial deposits 

and sub - humid climate in the Western Boreal Plain (WBP), and bedrock dominated 

and humid climate in the Canadian Shield zone. Differences in the hydrologic cycle 

between these zones (Devito et al., 2005) will have a large influence on 

biogeochemical cycling and carbon dynamics, and therefore trace gas exchange. 

Currently there is limited work on these linkages between the hydrology and 

biogeochemical cycling in the WBP, and it is not yet known if carbon dynamics 

within the runoff - dominated Shield can be extrapolated to the complex hydrology of 

the sub - humid WBP. 

The WBP is within the Boreal Forest, which is a diverse biome, including a 

wide climatic range, from dry aspen forests of interior Alaska, to cold, wet peatlands 

of Hudson Bay (Gulledge and Schimel, 2000). Even a single watershed can 

encompass great variation. For example, closed dry aspen stands that occur adjacent 

to wet open canopy black spruce peatlands (Gulledge and Schimel, 2000). Forested 

wetland systems within the WBP also have a unique suite of external natural 
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(drought, climate variability and fire) and anthropogenic (forestry, petroleum 

development, agriculture and recreation) stressors (Schindler et al., 1990) which 

control the mosaic of vegetation. The importance of the WBP to global carbon 

cycling is known (IPCC, 2001; Heijmans et al., 2004), but the sensitivity of the 

component landcover units (i.e. forested upland, wetland and pond) to environmental 

changes are not well understood (Margolis and Ryan, 1997). Therefore, more 

information is needed on the processes that control the storage and fluxes of energy, 

water and carbon in this region; particularly the linkages between carbon and water 

cycling within the different land cover units that comprise the WBP landscape. 

Consequently, understanding the ecohydrological and biogeochemical connections in 

the sub - humid WBP is essential to predict the impact of climatic changes and 

resource development in the region on water resources and greenhouse gas emissions. 

The carbon cycling in this region is controlled by the amount of water the land 

cover receives and stores, which is a function of precipitation (PPT), 

evapotranspiration (ET), underlying glacial deposits and land cover physiography. 

Peat formations within the riparian zones of many ponds in the WBP have formed 

forested wetland complexes (N.W.W.G.,1988), and influence the shallow 

hydrological connections between the ponds and surrounding mineral uplands 

(Devito et el., 2005; Ferone and Devito, 2003) whose hydrologic cycling is 

dominated by ET (Devito et al., 2005; Petrone et al., 2006). Wetlands here exist at a 

hydroclimatic threshold where their carbon exchange (storage) changes dynamically 

in response to climatic variability. However, they may persist in a homeostatic state 

where negative feedbacks with larger scale hydroclimatology maintain their current 
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water and carbon storage status, by limiting decomposition despite lower productivity 

rates. Further, in a sub - humid forested environment, ET also dominates the water 

balance of the adjacent uplands that generally produce little runoff (Ferone and 

Devito, 2003). Therefore, understanding all aspects of the hydrologic cycle in the 

context of these interactions between land cover units is essential to quantify the 

carbon cycle functioning of these systems, as patterns in water cycling will produce 

temporal and spatial variability in moisture conditions and vegetation communities 

that is important to carbon cycling. Preliminary results show that substantial amounts 

of carbon are stored in these systems (Petrone et al., 2005). Therefore, understanding 

the linkages between the hydroclimatology and carbon exchange within these 

landscapes is essential in understanding carbon storage in wetland systems 

(Branfireun and Roulet, 1998; Waddinton and Roulet, 1997). 

One of the key questions to be addressed is the fate of the large amounts of 

carbon that is currently stored in soil organic matter (Fang and Moncrieff, 2001), and 

the possible positive feedback effects that warming could have on the release of CO2 

from these terrestrial carbon pools. For example, soil carbon is highly sensitive to 

changes in near surface temperature (Fang and Moncrieff, 2001) and relatively small 

changes in surface temperature may have a major role in the magnitude of the soil 

carbon flux. In addition, models generally predict that temperatures will increase in 

the WBP, but the predictions for precipitation and soil moisture vary (IPCC, 2001). 

Therefore, predictions for changes in boreal carbon exchange also vary (Gulledge and 

Schimel, 2000). Thus, the boreal wetlands and ponds that are sustained by a balance 

between pond and peatland evaporation and hydrologic connectivity with surrounding 
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forested uplands are likely to show large spatial variability and could be interrupted 

as the result of external stressors. For instance, higher soil temperatures that will 

accompany increased atmospheric temperatures could increase soil decomposition 

(Oechel et al., 1993; Raich and Schlesinger, 1992). However, the response of the 

terrestrial vegetation in the upland forested areas and wetlands that comprise this 

region could increase their uptake as a result of higher temperatures and atmospheric 

CO2 concentrations (Goulden et al., 1998; Heijmans et al., 2004). Thus, it is critical to 

understand the spatial variability in soil respiration, as changes in climate and land 

use may not cause uniform changes in the cycling of carbon. 

Most previous research in this area has focused on ecosystem scale 

measurements of CO2 exchange, but very little is known about the role of the 

understory vegetation (Heijmans et al., 2004). An understanding of the factors 

controlling the exchange dynamics in understory vegetation could be especially 

important in areas where forests and wetlands meet or merge, which will be 

especially important in highly heterogeneous regions like the WBP. Further, changes 

in species composition or vegetation structure in response to climatic or land use 

change could alter water and energy feedbacks to the regional climate system 

(Heijmens et a l , 2004; Chapin et al , 2000). 

Optimal productivity in any ecosystem requires inter - plant interactions to be 

understood - both between, and within, land cover units (i.e. including over - and 

understory vegetation) (Powell and Bork, 2005). Understory production in boreal 

forests and wetlands can be as high as the above tree production (Oechel and Van 

Cleve, 1986; Bisbee et al., 2001). For example, mosses in the wetland and riparian 
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areas, as well as litter and understory vegetation, can insulate the soil, intercept water 

and nutrients, and decompose slowly, which reduces soil temperatures and rates of 

nutrient supply (Heijmans et al., 2004; Oechel and Van Cleve, 1986; Hobbie et al., 

2000). However, vegetation growth under an aspen stand is also a strong function of 

the microclimate controlled by that aspen, which can produce a mixture of 

competitive and facilitative effects for understory productivity (Callaway and Walker, 

1997; Powell and Bork, 2005). An aspen canopy can serve to reduce frost and insect 

damage, and alter competition among other understory species (Man and Lieffers, 

1999). Thus, by altering the microclimate, and vegetation interactions, the 

biogeochemical characteristics of an aspen forest floor may also facilitate the cycling 

of CO2 exchange within, and from, the canopy (Kishchuk, 2002; Hannam et al., 

2004). However, thus far the differing effects, and interactions, between over - and 

understory vegetation productivity, and the resultant effects on CO2 exchange in an 

aspen dominated stand are not well understood (Powell and Bork, 2005). 

The objective of this study is to characterize the average rates of forest floor 

gross ecosystem production (GEP) and total respiration (Rtot) along a gradient from 

closed to open canopy and to assess the relative roles of substrate, plant communities, 

hydrology, and microclimates on CO2 exchange to improve our carbon flux 

understanding and modeling of forest floors. Key research questions are: What is the 

spatial variability among forest floors in CO2 exchange? Are there differences in 

average seasonal patterns of CO2 exchange? To which environmental or biotic factors 

are the differences related? To answer these questions in situ CO2 exchange was 
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measured on the forest floor of different land cover units using a dynamic - closed 

chamber system. 

2.1 Study Site 

The forested peatland - pond - upland complex in this study is situated on 

common disintegrated moraine (Redding et al., 2005), located in the Utikuma Region 

Study Area (URSA) near Utikuma Lake, northern Alberta (56°20' N, 115°30' W) 

within the Western Boreal Plains (WBP) ecozone (Figure 2.1) (Devito et al., 2005). 

The climate is characterized by warm summers and long, cold winters. The 30 - year 

average annual temperature and precipitation for the region are 1.7 °C and 485 mm, 

respectively and potential evapotranspiration (PET) is 515 mm (Environment Canada, 

2007). The sampling year's (January - December) average temperature and 

precipitation for 2005 and 2006 (in parentheses) were 2.8 °C (2.9 °C) and 374 mm 

(396.5 mm), respectively. Therefore these years were slightly warmer and drier than 

the 30 - year climate normals. 
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Figure 2.1: Study site Pond 40, located within the western boreal plain ecozone, 
Utikuma Region Study Area, Alberta, Canada. (A) Topographic relief showing 
distributions of sites along main collar transect (shown in (B) by red dashed line), 
canopy coverage, maximum and minimum depth to water table and dotted line 
represents average depth of organic layer. (B) Site locations within the study area, 
stars represent site locations, solid lines represent roads, dashed lines represent 
seismic lines. 
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Table 2.1: Midday point measure averages of total respiration (Rtot), and gross 
ecosystem production (GEP) (± standard error) for upland, riparian, and peatland 
(covered and open) showing the number of collars, and distribution of the fluxes 
within the uplands. 

Land Cover 

Unit 

Upland 

Riparian 

Peatland 

Distribution 

Top 
Midslope 

Toe 
Depression 

Covered 

Open 

Number 

of Collars 

1 
1 
2 
3 

2 

5 

6 

Average 

"tot 

-0.19+0.011 
-0.17+0.001 
-0.19± 0.009 
-0.17± 0.013 

-0.21+0.011 

-0.05± 0.002 

-0.09± 0.004 

Average 
GEP 

0.019± 0.001 
0.017± 0.002 
0.015± 0.003 
0.013± 0.004 

0.017± 0.001 

0.024±0.12 

0.078± 0.005 

Vpland (top)- n=62; Upland (midslope)- n=62; Upland (toe)- n= 126; Upland (depression)- n=144; 
Riparian- n=96; Peatland (covered)- n=311; Peatland (open)- n=263 

Three land cover units were chosen within the catchment to span the 

continuum in canopy cover: upland aspen dominated (closed canopy), riparian 

(transition canopy), and peatland (covered and open canopies). In addition, the land 

cover units were defined by the depth of organic layer, water table location, and the 

degree of soil humification (Figure 2.1a). The depth of the organic layer in the upland 

was shallow and much less humified in comparison to the riparian and peatland. The 

water table in the riparian and peatland fluctuated close to the surface, whereas the 

depth of the water table in the upland sites were far from the surface, however it did 

fluctuate over the growing season. The upland sites were distributed at the top, 

midslope and slope toe (Figure 2.1). However, it was observed (Table 2.1) that there 

was little variation within the uplands (top, mid - slope, and slope toe); thus, they 

were grouped together to represent the uplands. 
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The three land covers (upland, riparian, and peatland (open and covered)) had 

variable canopy covers which will affect the moisture, thermal, and plant 

communities on the forest floors. Therefore, collars were placed along these gradients 

to capture a range of environmental conditions in addition to the variations observed 

in depth of organic layer, water table locations, and soil humification (Upland n= 7; 

Riparian n= 2; Peatland open n= 6; and Peatland covered n= 5). Forest floor plant 

community descriptions for each site are found in Table 2.2. 
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Table 2.2: Vegetation as percent coverage in vegetated collars for each site and land 
cover unit, and dominate canopy cover. Over 100% coverage is observed at some 
collars as moss mats were present with vascular vegetation growing through. Refer to 
Figure (2.1) for site locations. 

Site Canopy Cover 

Dominant Canopy 

Coverage 

Piceamanana 

Picea manana 

Piceamanana 

Piceamanana 

P/cea manana 

Piceamanana 

Aim spp. 
Piceamanana 

Alms spp. 
Piceamanana 

Popuius tremuloi<fes 

Popuius Iremu/oides 

Popuius Iremuloides 

Popuius tremuloides 

Po0ustremuloioes 

Popuius fremutoides 

Popuius tremuloides 

Lawn 

Cladinamifis 
Empefnjm nigrum 
Ledum groenlandicum 
Oxycoccus microca/pus 
Spnagnum fuscum 
l/accinium vifis-idaea 

Empefnjm nignjm 
hiium groenfandicum 
Oxycoccus microcarpus 
Spnagnum fuscum 
vaccinium vifis-idaea 

Cfacfma m/'t/s 
Ledum geoenlandicum 
Pieuroaum scnreberi 
Vaccinium viis-idaea 

HeMumolandOMi 
Wolarenifolia 

Ludumgroenlandicum 
Smtecinafnfbiia 
vaccinium wiis-idaea 

1 

15% 
30% 
25% 
10% 
100% 
3% 

10% 
25% 
30% 
90% 
10% 

95% 
15% 
25% 
15% 

10% 
10% 

30% 
1% 
25% 

Peatland 

Depression 

Ciadiiiamilis 
Vaccinium vifis-idaea 
Oxycoccus wicrocsrpus 

Helodium olandomi 
Ledum groenlandicum 
Oxycoccus microcarpus 
Spiiagnum fuscum 
Vaccinium vifis-idaea 

Clad/namif/s 
Ludumgroenlandicum 
Pieurozium sclireta) 
vaccinium vifis-idaea 

Helodiumolandowii 
Vaccinium vifus-idaea 

Hylocomium spiendens 
Helodium Wandomi 

Heiodium oiandow 
Hylocomium spiendens 

95% 
50% 
5% 

4% 
5% 
3% 
85% 
15% 

20% 
10% 
95% 
30% 

95% 
30% 

20% 
55% 

65% 
15% 

1 
1 

I 

Riparian 

40-16 

40-12 

40-2 

40-3 

40-4 

40-5 

40-6 

40-17 

40-7 

40-8 

40-9 

40-10 

40-11 

40-14 (a) 

40-14 (b) 

Open 

Open 

Covered 

Covered 

Covered 

Eguisefumsylvaficum 5% 

Rises Tn'ste 15% 

defnfus 

Comus canadensis 
Mtellanuda 

defnfus 

Maianfnemum canadense 
Mifelianuda 

Comus candensis 
Epllobim angusfifdlium 
Frageria virgin/ana 

defnfus 

defrifus 

Eumyncniumpulcnellum 

Hylocomium spiendens 

5% 
10% 

20% 
20% 

10% 
25% 
7% 

10% 

50% 
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2.2 Materials and Methods 

2.2.1 C02 Measurements 

CO2 exchange between the forest floor and atmosphere was measured using a 

dynamic - closed chamber system with an EGM - 4 Infrared Gas Analyzer (IRGA) 

(P.P. Systems, Maryland). Net ecosystem CO2 exchange (NEE) and gross ecosystem 

productivity (GEP) were measured using clear lexan chambers, while total (Rtot) and 

soil respiration (RSOii) were measured using an opaque neoprene shroud over the 

lexan. Each site consisted of a vegetated and a bare plot (vegetation removed) to 

assess soil respiration by separating below - ground from above - ground plant 

respiration. This permitted the examination of whether the variability of CO2 

exchange was influenced more by soil or vegetation dynamics. Measurements were 

conducted from May to September, 2005 and April to October, 2006 (Table 2.3). 

Polyvinylchloride (PVC) collars (radius= 9cm) with a groove for collar placement 

were inserted one week prior to initial measurements. Due to the placement of the 

collars early in the season there was no vascular plant growth on the forest floor 

within the uplands and riparian land cover units. Therefore some sites contained only 

detritus, which is typical of the forest floors in this region. The groove in the top of 

the plastic collar was filled with water and remained throughout the measure to 

ensure an airtight seal when the chamber was inserted during the flux. A climate 

controlled system in each chamber consisted of a cooler with cold water pumped 

through a coolant tube to maintain chamber conditions within 2 °C of ambient 

conditions and a fan mounted on the inside of the chamber to minimize concentration 

build - up influencing the gradient, without ventilating the surface (Welles et al., 
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2001). Five 1 minute CO2 concentrations were sampled at each collar location 

midday (9 - 1600 hrs), twice a week. The rate of CO2 concentration increase within 

the 5 minute interval was used to determine the average flux (Lund et al., 1999). The 

9 1 

concentration of CO2 was measured in ppm and then converted into mg CO2 m" sec" 

using, 

^ AxMM V „ , „ . , 
F = x—xCF (2.1) 

N A 

where F is the gas flux (mg CO2 m sec"), A is the linear change in CO2 

concentration with time (ppm x sec"1), MM is the molar mass of CO2 (44010 mg mol" 

x), JVis the molar volume of a gas (22.4 L mol"1) at standard temperature and pressure 

(STP), V is the temperature corrected volume within the chamber (m ), A is the 

chamber area (m2) and CF is the conversion factor from ppm to mol (1 ppm =10" 

6mol). Sampling times at each site were random and rotated to allow for different 

light, temperature and moisture regimes that may occur throughout the day to be 

measured. 

Photosynthesis (GEP) was estimated by subtracting the gross respiration 

(Rtot
= autotrophic and heterotrophic) from NEE which is the combined above - and 

below ground respiration and photosynthesis: 

GEP = NEE - Rtot (2.2) 

The sign convention of CO2 uptake by the ecosystem as positive and CO2 emissions 

from respiration as negative was adopted here. For comparative purposes the season 

was divided into different time periods (Table 2.3) (early green (EG), green (G), late 

green (LG) and senescence (S)). 
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Table 2.3: Time periods for 2005 and 2006. The periods fluctuated slightly between 
years; early green (EG), vascular species emerge but are immature; green (G), 
vascular species are maturing; late green (LG), vascular species reach maturity and 
leaf area index (LAI) reaches a maximum; senescence (S), onset of dormancy. 

Dates 
Time Period 2005 2006 
Early Green April 30-June 10 April 26-June 6 

Green June 10-August 6 June 6- July 31 
Late Green August 6-September 7 July 31-September 1 

Senescence N/A September 1- October 3 

The periods fluctuated slightly between the years as they were based on precipitation, 

temperature and understory vegetation growth. Early green in 2005 and 2006 (in 

parentheses) extended from DOY 120 (116) to 161 (157). At this time vascular 

species emerge but are immature. Green extended from DOY 161 (157) to 218 (212). 

During this time vascular species are maturing. Late green extended from DOY 218 

(212) to 250 (244). During this time the vascular species reach maturity and leaf area 

index (LAI) reaches a maximum. The senescence period was only monitored in 2006 

and extended from DOY 244 to 276. Onset of dormancy occurred at this time. 

The relationship between GEP and PAR was fitted empirically using an 

equation for a rectangular hyperbola (Whiting, 1994; Waddington and Roulet, 1996): 

C g s ' " M f - ' (2.3) 

where PAR is the measured PAR (in u,mol m"2 sec"1), GPmax is the empirically derived 

gross photosynthetic exchange of CO2, and a is the initial slope of GEP versus PAR. 

To determine the temperature coefficients (Q10) which represents the difference in 
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respiration rates over a 10°C interval, Fang and Moncrieff s (2001) first - order 

exponential equation was used: 

QW={R2IRT(T^] (2-4) 

where Ri and R2 were measured respiration rates at temperatures Ti and T2 

respectively. 

2.2.2 Environmental Variables 

Relative humidity (RH), air temperature (Ta) and photosynthetically active 

radiation (PAR) were measured at each site during each 5 minute chamber sample, 

both inside and outside of the chamber (at approx. 0.5 m above the forest floor). Peat 

and soil temperatures were recorded at the same temporal and spatial scale as the CO2 

fluxes using a digital thermocouple at 2, 5, and 10 cm depths. Soil moisture was 

measured using time domain reflectometry (TDR) (tectronics) such that the probe 

was inserted horizontally at each collar site to give a bulk soil moisture value over 10 

cm. TDR's were calibrated in the lab by extracting representative samples from the 

field and then allowing them to dry to different moistures. Hydro - sense (Campbell 

Scientific), theta soil moisture probe (Delta-T Devices), and recording 615 TDR were 

used to monitor the soil moistures and were recorded twice daily for 3 weeks. Soil 

properties for the representative samples were then determined in the lab, and 

calibration curves were determined and fitted to the data. Water table positions 

relative to the ground surface at each site were recorded weekly using wells 

constructed of PVC tubing. Wells were located within a 5 meter radius of each upland 

site. However, within the peatland and riparian area one well represented numerous 

sites due to the close proximity of the sites to each other. 
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2.2.3 Vegetation Sampling 

Plant species composition was recorded in each collar by percent cover of 

vascular plant and bryophyte species. Nomemclature follows Anderson et al. (1990) 

for all species. Canopy closure was determined using digital photographs. The 

camera (Kodak DC-120) with a fixed 39 - 114mm //2.5 - 3.8 lens and 1280 x 960 

pixel image resolution was leveled above each collar and manual photos were taken. 

Photos from all sites were taken mid day on clear days to avoid large variations in 

brightness among the images. Photos were analyzed using Adobe Photoshop CS 

(Adobe Systems incorporated). The threshold to classify pixels into 'sky' and 

'canopy' was determined on the first image and then applied to the rest of the images 

in that set. Classified images were then analyzed to calculate canopy area. The ratio 

of the canopy area to frame area of the image was expressed as a percentage and used 

to estimate canopy closure (Guevara - Escobar & Gonzalez - Sosa, 2005). 

2.2.4 Soil Analysis 

Soil cores were taken in duplicate for each collar site in August 2005 and were 

analyzed for bulk density (pb), porosity (9), soil organic matter (SOM), specific yield 

(Sy), VonPost and C:N ratios. Bulk density measured the mass of soil per unit 

volume, including pore space and was determined by: 

„ „ ^ . WeightOfOvenDriedSample(g) 
BulkDensity = ^—J- \ KSJ (2.5) 

VolumeOjSample(cm ) 

Porosity measured the portion of soil occupied by air and water and was determined 

using: 

„, „ . SaturatedMass(g)-DryMass(g) .nn ._ .. 
VoPorosity = ——r-^- — x 100 (2.6) 

Volume{cm ) 
25 



Specific yield was determined by saturating the soils and then allowing them to drain 

for 48 hours: 

SpecificYield = SaturatedMas<S) - DrainedMassjg) (2J) 

SaturatedMass(g) 

Total carbon (liable carbon and carbonate) for all sites were determined through loss 

on ignition (LOI) in a muffle furnace (Fang et al., 1998) using: 

\(w -w)-(w -w )1 
%LossOnIgnition = LV cso , c) v c\ c-^ x 100 (2.8) 

(wcso-wc) 

Where Wc is the weight of the crucible (g), Wcso is the weight of the oven dried soil in 

crucible (g), and WCSi is the weight of the remaining (inorganic) soil and crucible (g). 

For the C:N there was no separation between organic and inorganic forms was made 

for the carbon component of the soil. The total percent carbon (%TC) and nitrogen 

(N) contents of the soil were determined through combustion using an Isochrom -

elemental analysis, Carlo - Erba Isotope Ratio Mass Spectrometry, autocombustion 

carbon - nitrogen analyzer (Micromass UK, Ltd., Environmental Isotope Laboratory, 

Dept. of Earth Sciences, University of Waterloo, Waterloo, Ontario, Canada). Soil 

characteristics for each land cover unit are provided in Table 2.4. 
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2.2.5 Statistical Analysis 

Literature that examines chamber flux measurements uses standard deviation 

(Strack et al., 2006; Botting and Fredeen, 2006; McNeil and Waddington, 2003) or 

standard error (Tufekcioglu et al., 2001; Heijmans et al., 2004) to assess the daily 

uncertainty between and within sites. For this study standard error was used as it 

better describes the confidence of the reported mean, rather than the natural 

variability (Ambus, 2001). 

When modeling temperature dependence with total respiration (Rtot), in some 

circumstances linear (Heijmans et al., 2004; Fang et al., 1998) or quadratic (Maestre 

and Cortina, 2003) relationships fit well, however most studies represent temperature 

and Rtot using exponential relationships (Fang and Moncrieff, 2001). This exponential 

relationship suggests that microbial activity increases at an accelerated, non - linear 

rate as temperature rises, thus exponential relationships were used to model 

temperature and Rtot-

A linear model can suitably explain variability in Rtot with volumetric 

moisture content (VMC) if small seasonal ranges of VMC occur. That is, if the 

majority of the measurements occur in conditions that are either 'wet' or 'dry' ends of 

the spectrum (Simek et al., 2004). However, when the range of 'wet' and 'dry' 

conditions occurs, a quadratic relationship is more representative (Davidson et al., 

1998). Therefore, within this study a quadratic model was used to represent the 

relationships between Rtot and soil moisture as a range of VMC were observed over 

the study period. 
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2.3 Results 

2.3.1 Canopy Closure 

Canopy closure among the land cover units were not that variable except for the open 

peatland (Table 2.5). The upland was composed of a high aspen canopy where 

canopy closure increased throughout the growing season as leaf out occurred ( 3 1 -

64%). The riparian area had a variable canopy composed of aspen, black spruce, and 

alder that also increase in canopy closure as leaf out occurred ranging from 48 - 70%. 

The peatland was composed of two types of canopy, open and covered black spruce 

canopy. The canopy closure in the covered peatland (-50%) was 5 times larger than 

that of the open peatland (~11%). The peatland (open and covered) experienced little 

variation in percent coverage as the growing season increased as the majority of the 

canopy was composed of evergreen species. These different canopy covers allowed 

for different light regimes to reach the forest floor affecting the hydrological 

conditions and microclimates of the different land cover units. 

Table 2.5: Canopy coverage as a percent for upland, riparian, and peatland (covered 
and open) land cover units, Utikuma Region Study Area, Alberta, Canada. 

Canopy Percent Coverage 
Date Peatland 

29-Apr-06 
19-May-06 
15-Jun-06 
22-Jul-06 
15-Aug-06 
22-Sep-06 
5-Oct-06 

Upland 
30.5 
54.5 
58.0 
62.9 
63.5 
60.9 
41.5 

Riparian 
48.2 
63.0 
66.1 
70.3 
69.9 
69.0 
57.5 

Covered 
44.1 
46.3 
49.0 
51.1 
51.4 
47.5 
46.5 

Open 
10.2 
11.7 
11.6 
12.5 
11.5 
10.1 
10.5 
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2.3.2 Variability of Environmental Controls on C 0 2 Exchange 

The growing season was divided into four components to compare the hydro -

climatic conditions and CO2 exchange between land cover unit forest floors (Table 

2.3). The hydrology (precipitation, soil moisture, water table, and depth to frost) 

between land cover units and years is shown in Figure 2.2. The water table gradient 

was from the peatlands (no separation between open and closed sites were made), 

toward pond and upland. The covered peatland had the highest average Volumetric 

Moisture Content (VMC) (51%) and was the most variable, whereas the riparian was 

least variable. The lowest average VMC (34%) was observed in the forest floor of the 

upland. Frost lasted longer in 2005 for all land cover types. Depth to frost at the 

measured sites was deepest in the uplands in both years and was the first land cover to 

lose its frost (ice lens). The frost in the open peatland sites was slightly deeper then 

those observed in the covered sites, and disappeared slightly earlier. However, within 

land cover units, spatial variability in frost depth was measured. Thus, depth to frost 

is an average for the land cover unit. 
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Figure 2.2: Average seasonal (a) precipitation, (b) water table depth, (c) soil moisture 
(9) at 10 cm below surface, and (d) depth to frost, for the study site, Utikuma Region 
Study Area, Alberta, Canada 2005 and 2006. Upland water table depth shown is taken 
from the toe of the slope. 
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The microclimates at each site were examined at the same time as the CO2 

fluxes within each land cover unit to assess the relative roles of air temperature (Ta), 

soil temperature at 5cm (T5), photosynthetically active radiation (PAR) and relative 

humidity (RH) on the exchange of CO2 within each forest floor (Figure 2.3). Ta and 

T5 show slight spatial variation between the land cover units but the variability 

between Ta of forest floors is insignificant. However, a significant difference in T5 

(p< 0.001) was observed which was driven by differences between the covered 

peatland and the other land cover forest floors. Distinct seasonal variations of Ta and 

T5 were observed, peaking at the middle of the growing period (Figure 2.3b, 2.3c). Ta 

and T5 were slightly higher in 2005 for all forest floors, particularly in the early 

growing season. However, maximum Ta and T5 was reached approximately 2 weeks 

earlier in 2006, T5 on Julian day 206 and Ta on Julian day 175 (T5 and Ta on Julian 

day 219 and 190 in 2006, respectively). Maximum air temperatures and soil 

temperatures did not vary between years, however, the minima were lower in 2006. 

Relative humidity (Figure 2.3d) is lowest in the early green for all forest 

floors, and increases with the growing season in 2005, however, trends were not 

statistically significant (p= 0.86). PAR (Figure 2.3a) was significantly different (p< 

0.001) between the different forest floors which were driven by the difference 

between the open peatland and the other forest floors. Seasonality in PAR was also 

observed. PAR decreased in the upland and riparian forest floors as the season 

progresses and was significantly lower then the PAR in the open peatland. However, 

PAR values in the covered peatland were similar to the upland and riparian but did 

not show seasonal variability. 
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Figure 2.3: Average seasonal (a) PAR, (b) soil temperature at 5 cm (T5), (c) air 
temperature at 20 cm above surface (Ta), and (d) relative humidity (RH) during time 
of measurement at each upland, riparian and peatland (covered and open) land cover 
units, Utikuma Region Study Area, Alberta, Canada, 2005 and 2006. Error bars are 
standard errors, upland n= 394, riparian n= 96, covered n= 311 and open n= 263. 
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Small variations in seasonal average were observed in PAR between years (2005 and 

2006 (in parentheses), upland 126 (122); riparian 180 (175), open 516 (428), and 

covered 141 (135) umol m"2 s"1). 

2.3.3 Seasonal variation in measured C 0 2 exchange 

Measurements of day time forest floor CO2 exchange from April through 

October in both years showed a similar pattern of CO2 uptake and release, but a 

difference in magnitude between forest floors (Figure 2.4). Note that the fluxes in this 

study represent instantaneous midday fluxes, which cannot be extrapolated to daily or 

seasonal carbon gain or loss (Heijmans et al., 2004). Maximum, minimum and 

average Rtot values for each forest floor are shown in Table 2.6. Point measure 

maximum Rtot in all forest floors were observed in the EG or G. The average Rtot in 

both 2005 and 2006 was the highest in upland and riparian forest floors (-0.19 and -

0.21 mg CO2 m"2 sec"1 respectively) and was not significantly different between these 

forest floors (p= 0.47). Rtot was lowest for all forest floors in the early green, but 

increased throughout the growing season. The average Rtot for both years was higher 

in the open peatland sites than covered sites (-0.09 and -0.05 mg CO2 m"2 sec"1 

respectively), but was not significantly different. Soil respiration (RSOii) for all forest 

floors followed the same trend as Rtot and represented >75 % of the total respiration. 
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Figure 2.4: Average seasonal chamber measurements of (a) total respiration (Rtot), (b) 
soil respiration (RSOii), and (c) gross ecosystem production (GEP) from forest floors of 
uplands, riparian, and peatland (covered and open) land cover units (n= 86 - 176), 
2005 and 2006 during the early green (EG), greening (G), late green (LG) and 
senescence (S) periods, for Utikuma Region Study Area, Alberta, Canada. Negative 
values indicate CO2 release from respiration; positive values represent uptake by the 
ecosystem, error bars are standard error. 
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Gross ecosystem production was faintly variable between land covers, 

however the open peatland was had considerably higher GEP (Figure 2.4c, Table 

2.6). The peatlands (open and covered) generally had the highest GEP for forest 

floors of different land covers, however the open sites were much higher then the 

covered sites. The GEP averages for 2005 and 2006 (in parentheses) were open 

peatland 0.071, (0.081); and covered peatland 0.014, (0.032) mg C02 m"2 sec"1. All 

land cover units except the uplands showed higher GEP and Rtot values in 2006 than 

2005. There was no significant difference in GEP observed between the upland and 

riparian sites (p= 0.99). However, significant differences were observed between the 

open and covered peatland sites (p< 0.001) as well as with the other forest floors (p< 

0.001). 

The largest range in GEP and Rtot were in the riparian land cover unit while 

the closed peatlands had the smallest range (Table 2.6). The timing of the maximum 

CO2 uptake and maximum Rtot are closely coupled to one another. All land cover 

units exhibited the lowest CO2 exchange (photosynthesis and respiration) early in the 

growing season when the soils were still partially frozen and air temperatures low. 

Greatest fluxes were measured during the mid growing season when vegetation was 

fully developed and air and soil temperatures were at a maximum. 
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The seasonal partitioning of total respiration (Rtot) into soil respiration (RSOii) 

and vegetation respiration (Rveg) is shown in Figure 2.5. During the early greening 

(EG) in all forest floors Rveg was low. As the growing season progresses Rveg 

contributed more to Rtot but always <20%. The contribution of Rveg observed within 

the uplands and riparian was larger than expected in the G and LG (-25 % in uplands 

-20% in riparian) owing to the low percent coverage of vegetation within these plots. 

This may be due to the decomposition of the detritus within the collars, which cannot 

be partitioned and is being observed as Rveg. Rveg contributes -30% of the Rtot in the 

middle of the growing season to the open peatland. However, within the covered 

peatland, Rveg was only -20% of the Rtot. 
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Figure 2.5: Average partitioning of total respiration (Rtot) into soil respiration (Rsoii), 
and vegetation respiration (Rveg) in (a) upland, (b) riparian, (c) covered peatland and 
(d) open peatland during the growing season (April- October). Utikuma Region Study 
Area, Alberta, Canada, 2005 and 2006. 
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2.3.4 Environmental Controls on Photosynthesis and Respiration 

The relationship between GEP and PAR for each land cover unit was 

compared and modeled (Figure 2.6), and varied according to land cover units and 

canopy coverage. However, there was no relationship observed between the upland 

forest floor and PAR due to the lack of vegetation located within the collars as 

potential photosynthetic rates and light use efficiency are found to be related to leaf 

area index (Ueyama, et al., 2006). The forest floors displays considerable scatter, 

which can be attributed to the moisture variations between microtopography as well 

as the timing of frost out. The open peatland responded to higher light levels with 

higher photosynthesis, and the highest PAR values were observed here. GEP ranged 

from 0.0001 and 0.328 mg CO2 m" sec" , with maximum PAR values of 2200 umol 

m"2 s"1 in the open peatland. GEP from the covered peatland ranged from 0.002 and 

0.145 mg CO2 m"2 sec"1, and had a max PAR value of 1500 umol m"2 s"1. The riparian 

exhibited only slight increases in photosynthesis with increases of PAR (range 0.0001 

9 1 9 

and 0.189 mg CO2 m" sec") and had the lowest maximum PAR values (975 umol m" 

s"1) aside from the upland sites. 

Ecosystem respiration is closely tied to changes in the near surface soil 

temperatures at 5 cm depth and volumetric moisture content (VMC) in all forest 

floors (Figure 2.7). All sites showed bell shape curves, lowest total respiration at low 

and high moisture, and peaks at 30 - 50%. Correlations between VMC and Rtot were 

high in all forest floors at all land cover units (R2= 0.34 - 0.70). Rtot was highest in 

both upland and riparian land cover units, however the peak in Rtot was reached at 

different VMC. This may correspond to percent saturation that occurs for different 

VMC from differences in soils. The riparian area had a higher maximum Rtot than the 
40 



upland but peaked at higher VMC. Fluxes varied according to canopy coverage in the 

peatland. The open peatlands had slightly higher Rtot and peaked at a lower VMC then 

that of the covered peatlands. 
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Figure 2.6: Relationship between photosynthetically active radiation (PAR) and gross 
ecosystem production of CO2 (GEP) for combined data of 2005 and 2006, showing 
variation in the rates of GEP between land cover units ((a) riparian; (b) peatland 
covered; and (c) peatland open)), Utikuma Region Study Area, Alberta, Canada. 
Curve fits for PAR versus GEP are calculated with rectangular hyperbola model from 
Eq. (2.3). Note change in scale between land cover units. Upland forest floor site not 
shown as no relationship was observed for PAR versus GEP. 
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Soil temperatures at 5 cm for all land cover units (Figure 2.7b) were also strongly 

associated with Rtot but the slopes of the regressions vary significantly between sites. 

The uplands responded with higher Rtot for lower soil temperatures than those 

observed within the peatlands. Total carbon (organic and inorganic) to total nitrogen 

(no separation between nitrogen species, e.g. nitrate and ammonia) ratios in the top 10 

cm of soil during this study show that lower C:N ratios are associated with the 

uplands and riparian forest floors where CO2 exchange to the atmosphere is highest. 

C:N ratios are variable between open and covered peatland sites. However, the range 

of variability between them are similar. 
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Figure 2.7: Relationships between total respiration (Rtot) and (a) soil moisture content 
(0) at 10 cm depth, (b) temperature at depth of 5 cm, (c) C:N ratio in the top 10 cm of 
the uplands, riparian, and peatlands (open and covered) land cover units. 2005 and 
2006 data are combined. Utikuma Region Study Area, Alberta, Canada. Negative 
values indicate CO2 release from respiration. 
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The relationship between photosynthesis and respiration shows a positive correlation 

at all sites during all seasons in 2005 and 2006 (Figure 2.8), (R2 ranging from 0.21 -

0.42). The slope of the regression varies between land cover units: upland -0.11; 

riparian -0.13; covered -0.32; and open -0.74. The slope of the regression line is -0.28 

for the combined data set in 2005 and 2006, indicating that the ratio of combined 

autotrophic and heterotrophic respiration to maximum CO2 uptake is approximately 

1/3 in both years. However, it is important to note that the peatland (open and 

covered) forest floors have the highest photosynthesis, and most respiration is 

occurring within the upland and riparian. 
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2.4 Discussion 

2.4.1 Spatial and Temporal Variability of C 0 2 Exchange 

The rate of total respiration (Rtot), soil respiration (RSOii) and gross ecosystem 

production (GEP) varied within, and between, land cover forest floors both spatially 

and temporally within the season. Spatial variability in Rtot and GEP across a peatland 

in terms of microtopography (e.g. Moore, 1989; Strack and Waddington, 2007), 

variation in vegetation (e.g. Heijmans et al., 2004; Botting and Fredeen 2006), and 

canopy coverage (e.g. Connell et al., 2003; Swanson and Flanagan, 2000) has been 

reported previously. The variability in Rtot and GEP within upland and riparian areas 

have also been explained to be a function of the above ground biomass (Gulledge and 

Schimel, 2000), variability in soil organic matter (Longdoz et al., 2000) and soil 

temperatures (Swanson and Flanagan, 2001), which can be attributed to the light 

regime under the canopy, and the presence of a few key species (Tremblay and 

Larocque, 2001). Thus, the variability of CO2 exchange observed within the land 

cover units is not uncommon for northern forested wetland complexes. 

The timing of maximum CO2 uptake and the timing of highest Rtot are closely 

coupled to one another (Figure 2.4). In the early growing season when the vegetation 

first emerges (mid May) the light levels are high, which allows the system to quickly 

initiate and reach maximum Rt0t and GEP values in a shorter time (Bubier et al., 

1998) than it takes for the ecosystem to senesce in the fall. In 2006, during the late 

greening period there is a decrease in GEP but Rtot is still high, this can be attributed 

to high temperatures and very low precipitation during that time which would cause 

vegetation productivity to decrease due to water limitations. However, microbial 
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activity likely continued as the temperature and moisture deficits that occurred were 

not strong enough to cause a break down of the microbes. 

Ranges of maximum Rtot and Rson followed the general progression of riparian 

> upland > open peatland > covered peatland (Figure 2.4). This corresponds to the 

water table being close to the surface within the peatland allowing anoxic conditions 

to limit microbial and root respiration slowing the rates of decomposition. Vegetation 

cover has been shown to alter soil temperature and moisture conditions (Raich and 

Tufekcioglu, 2000), and soil temperatures significantly influence soil respiration rates 

(Goulden et al., 1998). As a result, observed differences in soil respiration among 

plant communities can frequently be attributed directly to plant - mediated effects on 

soil microclimate. Within the peatland, Rsoii was higher in the open peatland, even 

though C:N ratios were lower in the covered peatland which would favour 

decomposition (Tufekcioglu et al., 2001). However, high VMC within the covered 

peatland likely limited decomposition due to anoxic conditions and lower soil 

temperatures. Higher Rtot and RSOii values within the riparian land unit can be 

attributed to higher litter quality (high organics, minerals and nutrients) of the forest 

floor compared to those within the upland (Table 2.3) which allow for efficient 

decomposition (Rejmankova and Houdkova, 2006; Longdoz et al., 2000). These areas 

also had higher VMC than the uplands. Thus, water was not limiting in the soil 

processes. 

In this study the average daily Rtot fluxes (Table 2.6) in the peatland (open and 

covered) are similar in magnitude to other studies (Strack et al., 2006; Swanson and 

Flanagan, 2001) even though fluxes were exclusively measured during midday, with 
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no dormant season measurements. The Rtot in the upland and riparian land cover units 

were as much as four times higher than those within the peatland (open and covered). 

Rtot values of the riparian forest floors were similar to those found by Tufekcioglu et 

al. (2001) in a mid - latitude multi - species riparian buffer, and the uplands were 

similar to these findings in a cropped field. This may be due to the high C:N ratios 

found in the upland, which is an important determinant on soil respiration and soil 

moisture (Tufekcioglu et al., 2001). 

Gross ecosystem production in the open peatland forest floor was about 4 

times higher then that in the forest floor of the upland, riparian and covered peatland 

forest floors (Table 2.6). This large uptake of CO2 from the forest floor can be 

attributed to the large above ground biomass and the light response of the vegetation. 

The relationship between GEP and PAR (Figure 2.6) varied among the four land 

cover forest floors with maximum photosynthetic capacity following the gradient 

from open peatland > covered peatland > riparian with no relationship for the uplands 

due to the lower amounts of vegetation located within the collars. The open peatland 

forest floor had the largest maximum GEP fluxes, which were similar to that found by 

Swanson and Flanagan (2001). This can be associated to the shading of the above 

canopy and the light levels that reached the understory. Also, it was observed that the 

open and covered peatland forest floors in this study had highly variable VMC, which 

suggest that they may not have been photosynthesizing optimally during drier parts of 

the growing season due to low water content, lowering metabolic activity. 

Many studies have shown that peatlands store large amounts of carbon (e.g. 

Bubier et al., 2003; Griffis et al., 2000; Waddington and Roulet, 1996). However, it 
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was observed that average midday chamber measurements in this study were 

dominated by Rtot, indicating net CO2 flux to the atmosphere. Although, studies that 

examine inter - annual CO2 exchange variability have shown that there can be large 

differences in carbon exchange from year to year (e.g. Lafleur et al., 1997; Shurpali et 

al., 1995). Trends throughout the growing season in the peatland were similar to those 

determined by Swanson and Flanagan (2001) within a mature black spruce forest in 

central Saskatchewan and by Botting and Freedeen (2006) in a sub - boreal spruce 

forest. Both studies report a net loss of CO2 to the atmosphere during the growing 

season (April - October). Within the uplands and riparian land units, there were large 

CO2 fluxes to the atmosphere during all growing periods. This can be attributed to the 

high quality soils and lower water tables (Table 2.4 and Figure 2.2b). However, the 

above canopy in these land cover units generally has high photosynthetic light - use 

efficiency, making them highly productive, thus compensating for loss of CO2 from 

the forest floor. Aspen productivity can be highly variable between years depending 

on temperature and precipitation (Arian et al., 2002). During senescence, high Rtot 

could be associated with the decomposition of the understory vegetation and the 

above canopy leaves. Deep soil warming also may be playing a role in the consistent 

Rtot into senescence. 

2.4.2 Interactions of Environmental Variables 

Fluxes were collected midday within a 0.4 km area and there was spatial 

variability in air and soil temperature, VMC, soil quality and PAR between sites and 

land cover units. Canopy coverage controlled the light that penetrated to the forest 

floor which influenced photosynthesis. However, Rtot dominated the CO2 flux. Soil 
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temperature and moisture showed the largest influence on Rtot but differed spatially 

between land cover units (Figure 2.7). As a result, the spatial variability in Rtot can be 

attributed to both hydro - climatological and biological (C:N, vegetation) variables, 

and to explain seasonal patterns of CO2 exchange. 

Ta (air temperature 50 cm above forest floor) and T5 (soil temperature at 5 cm 

below surface) showed slight spatial variation between the land cover units, and show 

distinct seasonal variation peaking at the middle of the growing period (Figure 2.3). It 

is during the middle of the growing season when maximum Rtot and GEP values were 

also observed (Figure 2.4). This may be associated with the deepening of the active 

layer increasing decomposition and CO2 exchange. The correlation between 

respiration and 5 cm soil temperature is strong for all land cover units when water is 

not limiting the soil processes but the slopes of the regressions vary between sites 

(Figure 2.7b). This may be due to the quality of the soil at the different land cover 

units (Figure 2.7c). Higher quality soils (lower C:N) have more nutrient availability 

for soil organisms, roots, and mycorrhizae (Raich and Schlesinger, 1992). Thus, small 

increases in soil temperature provide an optimal situation for decomposition (Fang 

and Moncrieff, 2001), whereas a soil with less nutrient availability will not profit the 

same with a similar temperature input. In this study the uplands and riparian areas 

react with higher total respiration to similar temperatures, than that observed in the 

peatland. 

Temperature coefficients (Q10) for the temperature interval 10°C to 20°C 

between the land cover units ranged from 1.24 - 1.68. These low values are similar to 

those generally associated with upland mineral soils (Bubier et al., 1998). However, 
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this may be attributed to maximal rates of decomposition occurring at higher moisture 

values then those observed during this study (Ise & Moorecroft, 2006). The Qio value 

is an estimate because it only considers the direct affect of temperature and ignores 

other factors that may influence microbial and root respiration, but is often used to 

explain the temperature dependence of Rtot (Fang et al., 1998). The larger the Qio 

value the more sensitive the reaction (SOM decomposition) is to temperature 

increases. Ise and Moorecroft (2006) suggest that the temperature sensitivity of 

decomposition at global scales is Qio= 1.37. This is significantly less than those 

values suggested in respiration studies (mean Qio= 2.5) (Reich & Schlesinger, 1992), 

which directly apply temperature sensitivity from small - scale studies, and that 

maximal rates of decomposition occurs at higher moisture values then is assumed by 

these studies (Ise and Moorecroft, 2006). However, comparing the Qio values 

obtained from different studies is difficult because some are calculated from observed 

data and others from fitted relationships, in which different models were used to 

obtain Qio (Fang et al., 1998). In addition, Qio can vary spatially and seasonally 

(Davidson et al., 2000) and is related to VMC distribution. For example higher Qio 

values have been reported for wetter soils at the same temperatures and decreases 

with VMC, suggesting that soil CO2 flux is more sensitive to low temperature soils 

under high moisture conditions (Lloyd and Taylor, 1994), and has also been observed 

to be more sensitive under acidic and organic soils (Chapman and Thurlow, 1996). 

With all the abovementioned uncertainties, values in this study were still comparable 

to the literature. 
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Water table location was also an important control on Rtot on a seasonal basis 

as well as a daily basis between the land cover units. The spatial variation in water 

table position can be as significant as interannual differences in affecting carbon 

accumulation rates (Bubier et al , 1999). Within the peatland (open and covered) 

microtopographic features respond differently to changes in temperature and water 

table. For example, Waddington and Roulet (1996) found that drier hummocks 

generally accumulate more carbon than wetter hollows. The four land cover forest 

floors respond to changes in VMC differently (Figure 2.6a). The riparian, open and 

covered peatland forest floors optimally respire at the same VMC. However, the 

riparian forest floor responds with much higher Rtot than the covered and open sites. 

This is likely attributed to the quality of the soils. The riparian land cover unit had a 

much lower C:N ratio, thus microbial decomposition could occur at a higher rate than 

that observed in the peatland sites. If the VMC were to increase in the upland and 

riparian land cover units, it is likely that higher Rtot rates would be observed as 

optimal conditions for decomposition would be expected. 

Heterotrophic respiration can be limited by substrate quality and quantity, in 

addition to temperature and moisture. This can have a large effect on total ecosystem 

respiration (Law et al., 2002). Figure 2.7c shows that the quality of the soil plays an 

important role in total respiration. The C:N ratio (Table 2.3) of the open canopy 

peatland was nearly double that of the closed canopy peatland sites. Thus the 

substrate within the covered peatland is of better quality. The low substrate quality in 

the open peatland is likely due to high nutrient resorption resulting in poor litter 

quality, and consequently, lower decomposition. The covered peatland C:N ratios 
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were slightly higher than those observed within the riparian and upland sites, which is 

likely due to the boundary of oxic and anoxic conditions occurring very close to the 

surface. Thus, nitrification and denitrification are coupled, which allows for the rapid 

formation of N gas rather than assimilation into biomass (Baldwin & Mitchell, 2000). 

In addition, larger amounts of recalcitrant litter produced annually by the above aspen 

canopy can decrease the C:N ratios (Chastain et al., 2006). 

Seasonal variability in PAR, soil and air temperatures and soil moisture can 

control the CO2 exchange in the land cover units. The relative controls of temperature 

and light on photosynthesis vary seasonally with changes in leaf area and 

biochemistry (Law et al., 2002). Generally PAR values were high in the riparian and 

upland in the early growing season as the above canopy leaf out had not yet occurred 

(Figure 2.3a). This allowed for more radiation to reach the forest floor, increasing the 

soil and air temperatures, which favoured Rtot. Similar PAR was observed throughout 

the growing season within the covered peatland as the above canopy was dominated 

by evergreen species. Therefore canopy cover did not fluctuate a great deal during the 

growing season. The compact structure of the foliage and the narrow canopy of black 

spruce trees resulted in gaps between individual trees that allowed the passage of 

sunlight to the ground throughout the growing season in the open peatland. However, 

throughout the growing season the mosses insulated the soil, thereby reducing the soil 

temperatures (Van Cleve et al., 1983). An increase in PAR was also observed in the 

upland during senescence as the canopy began to lose its leaves. Variation in 

vegetation distribution on the forest floor is generally due to the PAR that reaches it 

(Heijmans et al., 2004). Seasonal variability in PAR allows for species to use the light 
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most efficiently during different times during the growing season and soil 

temperatures to vary seasonally with PAR. 

The correlation between photosynthesis and respiration (Figure 2.8) in the 

combined data set suggests that the two processes are coupled in the open and 

covered peatland even though different factors are controlling the uptake and release 

of CO2, however no correlation was observed for the riparian and upland land cover 

units. However, under closer observation it can be seen that within the uplands and 

riparian areas the slope of the regression was much lower. This suggests that the two 

processes are controlled by different factors, or that there is an offset in the timing of 

carbon uptake and release during the season, implying that deep soil warming may be 

playing an important role (Bubier et al., 1998). The ratio of combined (auto - and 

heterotrophic) respiration to maximum CO2 uptake is 1/3. This may be attributed to 

the relationship of respiration and photosynthesis to biological factors such as %TC 

(Maeste et al., 2003), N content (Tufekcioglu et al., 2001), and C:N ratios 

(Tufekcioglu et al., 2001). The strong correlation in the peatland suggests that there 

may be a strong physical link between photosynthesis, plant metabolism, and 

respiration (Bubier et al., 1998). The close relationship between surface temperatures 

and respiration (Figure 2.7b) suggests that root associated processes may be 

responsible for a substantial portion of the total respiration. Further, PAR is the 

primary control on photosynthesis, but increased light levels are correlated with 

increased soil temperatures, which is a dominant control on respiration (Bubier et al., 

1998). 
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2.4.3 Implications for Climate or Land use Change 

Within a wetland - forest ecosystem, both photosynthesis and respiration 

occur in a range of species and functional groups as well as along variable 

topographic gradients. Subsequently the environmental controls on carbon exchange 

processes are quite different in these ecosystems. Northern peatlands represent a 

globally significant stock of soil carbon (Gorham, 1991). Although they have been a 

net sink of carbon for thousands of years, the balance between CO2 uptake and 

release may be so close that a small change in water table, temperature, or timing of 

thaw and senescence could favour decomposition over plant production (Bubier et al., 

1998). Anticipated climate change scenarios in these regions may be further 

complicated by altered land use practices. Impacts on these areas such as timber 

removal, road establishment, and corridor creation enables industry to access prime 

regions for extraction of timber and oil. However, this may cause significant changes 

to the WBP hydrological and biogeochemical cycling. For example, increased soil 

moisture resulting from forest harvesting could decrease decomposition in the 

peatlands, or provide more optimal conditions for decomposition in the dry uplands. 

Since different land cover units respond to environmental variables differently 

it is essential that they be examined separately when predicting Rtot and GEP under 

such scenarios. Warming at high latitudes would expose larger amounts of organic 

carbon to microbial activity by lowering the depth to frozen soil, lowering the water 

table (assuming sufficient drainage) and extending the duration of thawed conditions 

(Goulden et al., 1998). Silvola et al. (1996) estimated that an increase in 2 °C - 4 °C in 

the boreal region would cause a 30 - 60% increase in CO2 emissions from peatlands. 

This calculation was based on average Q10 values that were higher than those in this 
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study, suggesting that a comparable increase in temperature would result in lower 

CO2 fluxes. However, because temperature only correlates well on daily and weekly 

time scales (Law et al., 2002) temperature based predictions on CO2 exchange is 

complicated. 

It is suggested that warming may also stimulate plant production in the boreal 

forest although it is expected that this effect would be modest (Goulden et al., 1998). 

Furthermore, the soil currently contains more carbon than is stored in the vegetation 

of a mature temperate deciduous or boreal forest (Gorham, 1991). Thus, indirect 

stimulation in production would have to be large to offset the expected loss of soil 

carbon (Goulden et al., 1998). That is, over long periods of time (years to decades), 

heterotrophic decomposition might be more influenced by substrate quality and 

quantity (Giardina and Ryan, 2000). Further, boreal forests in northern latitudes 

typically have soil that is wetter for longer periods (Grace and Rayment, 2000). Thus, 

respiration rates can be higher than those of terrestrial ecosystems at lower latitudes 

that experience periods of soil water deficits (Law et al., 2002). 

Changes in land use due to industrial pressures within this area may also cause 

enhanced aerobic soil respiration under lower water tables and higher peat 

temperatures (Devito et al., 2005; Petrone et al., 2006) causing a release in stored 

carbon to the atmosphere, which could act as a positive feedback to climate change. 

When soils are disturbed, their content of organic matter declines. The decline is 

observed because the conditions for decomposition (soil aeration and moisture 

content) are often improved when the soils are disturbed, leading to greater rates of 

soil respiration (Schlesinger and Andrews, 2000). Clearing of trees creates conditions 
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that affect the soil biota, including restructing, vegetation, modification in quality and 

quantity of litter, alteration of root exudates, leaching of plant nutrients, changes in 

the microclimate (Marshall, 2000; Raich & Schlesinger, 1992), and compaction of 

soils all of which may restrict water, nutrient and gas movement (Childs et al., 1989). 

Thus, harvesting in the uplands and riparian will increase soil temperatures, which if 

the soil moisture remains adequate, increased microbial activity will occur leading to 

enhanced organic decomposition and increases in inorganic nitrogen production 

(Hazett et al., 2007). However, production of the understory vegetation may be 

stimulated by the availability of resources (e.g. PAR, water, nutrients) and the 

peatland may become more productive if nutrients are leached from the upland, 

offsetting increased Rtot. Understanding of the spatial and temporal variability in CO2 

exchange between land cover units is essential when hypothesizing anticipated 

changes with climate and land use change. 

2.5 Conclusion 

CO2 exchange between the forest floors of differing canopy closures is 

variable both spatially and temporally. Within an aspen upland and a transitional 

riparian the forest floor is dominated by detritus and small vascular vegetation, and is 

responsible for only part of the ecosystem CO2 exchange. Such that, the aspen in the 

upland and the variable canopy closure in the riparian as well as the shrub layer are 

largely contributing to the CO2 exchange. In the covered and open peatland the forest 

floor is playing a more dominant role and community scale fluxes encompass nearly 

the entire ecosystem. Thus, the highest Rtot was found within the riparian and uplands, 

which was dominated by RSOii. The highest GEP was found within the peatland, with 
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lower Rtot, and higher Rveg contribution to it. Although canopy cover controlled PAR 

at the forest floor, small spatial variability was observed in the microclimates between 

forest floors (Ta p= 0.034; T5 PO.001; RH p= 0.859). However, seasonal variability 

and spatial variability was observed in the hydrology (water table location, soil 

moisture, depth to frost) of the forest floors. Each of the forest floors responded to 

VMC and T5 with differing magnitudes of Rtot and had differing responses to light. 

Examining the forest floors of land covers with different canopy coverage is 

important when predicting changes in the cycling of CO2 within these ecosystems 

after changes to land covers from industry or climate change. With the deforestation 

in the uplands the understory may start to act like the peatland due to enhanced 

resources (increased LAI, temperature, etc), or will it may become a greater source of 

CO2 to the atmosphere as the water table lowers further increasing the oxic zone, and 

soil temperatures warm. Changes in the upland hill slope may also directly affect the 

peatland CO2 exchange by altering the hydrologic connections, for example increased 

runoff. 

Due to the variability between the forest floors of different land cover with 

different canopy coverage they should be assessed separately in biogeochemical 

models as they will likely not respond to external changes on the same spatiotemporal 

scales. 
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Chapter 3 

Microtopographical Controls on Carbon Dioxide Exchange 

in a Western Boreal Plain Pond - Peatland Complex 

3.0 Introduction 

There have been many studies on CO2 exchange from northern peatlands over 

the past decade because of their importance in greenhouse scenarios (c.f. Gorham, 

1991; Waddington et al., 1998; Moren and Lindroth, 2000). Many studies try to 

quantify CO2 emissions and establish links to physical processes (Amiro, 2001; Black 

et al., 1996; Petrone et al., 2003). However, the quantification of, and interactions 

between the environmental controls on the dynamics of net ecosystem CO2 exchange 

are currently not well understood (Joabsson et al., 1999; Hobbie et al., 2000). 

It has been observed that measurements of net ecosystem exchange show 

large spatial variability (e.g. Heijmans et al., 2004; Bubier et al , 1998; Waddington, 

1996) within, and among, northern peatlands. These ecosystem carbon budgets are 

controlled by the balance between carbon uptake during photosynthesis and carbon 

loss during respiration (Bubier et al., 2003; Potter et al., 2001). However, within a 

peatland, both respiration and photosynthesis are occurring among a range of species 

and functional groups, so the environmental controls on the carbon exchange 

processes are quite different in the distinct ecosystem components (Swanson and 

Flanagan, 2001; Bubier et al., 2003). Much of this variance in CO2 exchange is 

related to differences in the factors controlling the fluxes, such as plant community, 

hydrological conditions, nutrient availability, temperature and peat substrate 
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(Waddington, 1996). Much of the previous research has taken a vegetation 

community or microform (microtopograhical) approach to explain, and predict, the 

spatial variables in CO2 exchange and these controlling factors within a peatland 

(Waddington and Roulet, 1996; Carrill and Clark, 1998; Biasi et al., 2005; Yavitt et 

al., 2000; Potter et al., 2001; Bubier et al., 2003). 

Much of this research, however, has focused the discussion of these 

interrelationships largely on hydrologic and microtopographical controls. That is, the 

live biomass of a system greatly influences the net function of the ecosystem by 

affecting the hydrology, thermal regimes and nutrient availability (Oechel and Van 

Cleve, 1986; Bisbee et al., 2001; Heijmans et al., 2004). Further, dominant peatland 

communities such as Sphagnum mosses will insulate the soil, intercept atmospheric 

nutrients, and decompose very slowly, thereby reducing the soil temperatures and 

rates of nutrient supply (Oechel and Van Cleve, 1986). However, this approach to 

vegetation controls on ecosystem CO2 exchange requires the assumption that 

vegetation is the primary control on local - scale hydrologic conditions compared to 

other factors such as surficial geology, or microtopography, and climate. 

Another approach is to assume that the microtopography drives hydrological 

gradients, which in turn controls vegetation patterns and therefore CO2 exchange 

(Bubier et al., 1998; Waddington and Roulet, 1996). Therefore, in any system, 

hydrological gradients will exist along with variations in micotopography. For 

example, microtopographic highs (e.g. hummocks, lawns, moss cushions) will 

generally be drier than adjacent microtopographic lows (e.g. hollows, depressions) 

(Waddington and Roulet, 1996; Petrone et al., 2005). These hydrological differences 
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will drive vegetation distributions, which will control patterns of CO2 exchange. 

Thus, in sub - humid regions, such as Canada's Western Boreal Plain (WBP), where 

peatlands and surface water systems persist in much drier conditions (Devito et al., 

2005), the correlation between CO2 exchange and patterns in vegetation and 

microtopography may differ from studies conducted elsewhere. 

Peatland - pond complexes dominated by Black Spruce (Picea mariana) 

overstories with Sphagnum {Sphagnum spp.) and feather moss (e.g. Pleurozium 

schreberi and Hylocomium splendens) ground covers are widespread not only within 

North America (Bisbee et al., 2001), but are also common place within the WBP. 

Here they represent important water resources, wildlife habitat and sites of potentially 

significant greenhouse gas exchange (Swanson and Flanagan, 2001). The narrow 

nature and low density of trees allows for a substantial portion of solar energy to 

reach the moss - covered floor (Heijmans et al., 2004), contributing significantly to 

ecosystem CO2 exchange due to the large above ground biomass (Waddington et al., 

1998; Goulden et al., 1997). However, since these complexes exist in a sub - humid 

climate soil moisture storage and groundwater - surface water connections are 

controlled largely by surficial geology (Devito et al., 2005). Thus, these mosses can 

have potentially strong effects on ecosystem CO2 exchange (Petrone et al., 2004; 

Waddington and Roulet, 1996) but their interactions with hydrologic conditions may 

differ than those described above. That is, the complex hydrology and sub - humid 

climate of the WBP (Devito et al., 2005) may produce a relationship between 

microtopography and vegetation patterns that is highly variable and dissimilar to 

other systems. Further, the required moisture thresholds (differences) between 
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microtopographical highs and lows may not be the same as that which is needed to 

drive vegetation differences relative to CO2 differences. For example, a difference in 

CO2 exchange may be observed between lawns and depression, but not a difference in 

relative ground cover vegetation distributions, which in the WBP is largely comprised 

ofbryophytes. 

Currently, the inclusion of the role of the ground layer comprised of such 

bryophytes is limited in estimates of boreal forest net ecosystem exchange (NEE) 

(Gower et al., 2001), and as such these communities are poorly represented in models 

used to predict the effects of climate and land - use change on ecosystems (Frokling 

et al., 1996). A better understanding of the factors influencing bryophyte distribution, 

such as interactions with canopy cover, microtopography, and NEE is needed to 

quantify the boreal forest carbon cycle because of the large contribution of 

bryophytes to this flux and their influence on the microenvironment of systems 

dominated by black spruce (Bisbee et al., 2001). 

The objectives of this study are to measure the rates of understory net 

ecosystem exchange (NEE), gross ecosystem production (GEP) and total respiration 

(Rtot) through the growing season to determine (1) if there are differences in CO2 

exchange between different microtopographical units and if these units can be used as 

a proxy for photosynthesis and respiration, and (2) whether vegetation patterns are 

controlled more by microclimate, hydrology or canopy cover. 
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3.1 Site Description 

The forested peatland - pond - upland complex in this study is situated on 

common disintegrated moraine (Redding et al., 2005), located in the Utikuma Region 

Study Area (URSA) near Utikuma Lake, northern Alberta (56°20' N, 115°30' W) 

within the Western Boreal Plains (WBP) ecozone (Figure 2.1) (Devito et al., 2005). 

The climate is characterized by warm summers and long, cold winters. The average 

30 year climate normals in annual temperature, precipitation, and potential 

evapotranspiration for the region are 1.7°C, 485 mm, and 515 mm respectively 

(Environment Canada, 2007). The average temperature and precipitation for 2005 and 

2006 (in parentheses) were 2.8°C (2.9°C) and 374 mm (396.5 mm), respectively, 

making them slightly warmer and drier than the 30 year normal. 

In most years, PET exceeds precipitation in this region, making it a sub -

humid climate. Up to 84 % of the area in this ecozone is covered in conifer and 

deciduous forests (Environment Canada, 2007). Typical vegetation of drained 

uplands includes trembling aspen {Populus tremuloides.), paper birch {Betula 

papyrifera), white spruce (Picea glauca), and jack pine (Pinus banksiana) in sandy 

areas, while balsam poplar {Populus balsamifera) and black spruce (P. mariana) 

dominate in the lowland areas (Environment Canada, 2007). 
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o - Sphagnum lawn 
• - Sphagnum depression 
+ - Feather moss lawn 
+ - Feather moss depression 

Figure 3.1: Study site Pond 40, located within the western boreal plain ecozone, 
Utikuma Region Study Area, Alberta, Canada. Stars and circles represent site 
locations. 

65 



The study site is comprised of a shallow pond (< 1 m depth) surrounded by 

riparian treed bog/fen and thicket swamp grading to aspen dominated uplands similar 

to that described by Ferone and Devito (2004). The peatland - pond complex is 

located on a topographical high glacial till moraine adjacent to an upland forested hill 

slope reaching a height of 7 m above the pond surface. There is some disturbance 

associated with access roads for oil drilling and seismic lines where strips of 

vegetation are removed located outside the study pond - peatland complex. 

The ground cover of the peatland - pond complex is comprised mainly of 

continuous mats of vegetation with some microtopographical differences. Peat depths 

ranged from 1.5-4 meters. Although vegetation communities varied throughout the 

peatland - pond complex, similar vegetation was located both on lawns and in 

depressions. Lawns are classified as topographically high moss mounds, whereas 

depressions are low lying. Therefore, collars were placed throughout the complex to 

capture the range of microtopography and the different vegetation communities (lawn 

n= 5 (Sphagnum lawn n= 2; Feather moss lawn n= 3) depression n= 6 (Sphagnum 

depression n= 2; Feather moss depression n= 4). 

3.2 Materials and Methods 

3.2.1 C02 Measurements 

CO2 exchange between the surface and atmosphere was measured using a 

dynamic - closed chamber system with an EGM - 4 Infrared Gas Analyzer (IRGA) 

(P.P. Systems, Maryland). Net ecosystem CO2 exchange (NEE) and gross ecosystem 

productivity (GEP) were measured using clear lexan chambers, while total respiration 
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(Rtot) was measured using an opaque neoprene shroud over the lexan similar to that 

used by Wadding and Roulet (1998,2000). Measurements were conducted from April 

30th (DOY120) to September 7th (DOY 250) 2005 and April 26th (DOY 116) to 

October 3rd (DOY 276), 2006. Polyvinylchloride (PVC) collars (radius = 9cm) with a 

groove for collar placement were inserted one week prior to initial measurements. 

The groove was filled with water and remained throughout the measurements to 

insure an airtight seal when the chamber was inserted during the flux. A climate 

controlled system in each chamber consisted of a cooler with cold water pumped 

through a coolant tube to maintain chamber conditions within 2 °C of ambient 

conditions and a fan mounted on the inside of the chamber to minimize concentration 

build - up influencing the gradient without ventilating the surface (Welles et al., 

2001). Five 1 - minute CO2 concentrations were sampled at each collar location 

midday (9 - 1600 hrs), twice a week. The rate of CO2 concentration increase within 

the 5 minute interval was then used to determine the average flux (Lund et al., 1999). 

The concentration of CO2 was measured in ppm and then converted into mg CO2 m"2 

sec"1 using, 

^ AxMM V ^ 
F = x — xCF (3.1) 

N A 

where F is the gas flux (mg C 0 2 m sec" ), A is the linear change in CO2 concentration 

with time (ppm sec"1), MM is the molar mass of C02 (44010 mg mol"1), JVis the molar 

volume of a gas (22.4 L mol"1) at standard temperature and pressure (STP), V is the 

temperature corrected volume within the chamber (m ), A is the chamber area (m ) 
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and CF is the conversion factor from ppm to mol (1 ppm = 10"6mol). Sampling times 

at each site were random and rotated to allow for different light, temperature and 

moisture regimes that may occur throughout the day to be measured. 

Gross ecosystem production (GEP) was estimated by subtracting the gross 

respiration (Rtot = autotrophic and heterotrophic) from net ecosystem exchange (NEE) 

which is the combined above - and below ground respiration and photosynthesis: 

GEP = NEE-Rtot (3.2) 

The sign convention of CO2 uptake by the ecosystem as positive and CO2 emissions 

from respiration as negative was adopted here. The measurement period includes the 

majority of the growing season at this boreal location. For comparative purposes the 

season was divided into different time periods (early green (EG), green (G), late 

green (LG) and senescence (S)). The periods fluctuated slightly between the years as 

they were based on precipitation, temperature and vegetation growth. Early green in 

2005 and (2006) extended from DOY 120 (116) to 161 (157). At this time vascular 

species emerge but are immature. Green extended from DOY 161 (157) to 218 (212). 

During this time vascular species are maturing. Late green extended from DOY 218 

(212) to 250 (244). During this time the vascular species reach maturity and leaf area 

index (LAI) reaches a maximum. The senescence period was only monitored in 2006 

and extended from DOY 244 to 276. Onset of dormancy occurred at this time. 

The relationship between GEP and PAR was fitted empirically using an 

equation for a rectangular hyperbola (Whiting, 1994; Waddington and Roulet, 1996): 
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GEP = 
(axPARxGP^) 

(axPAR + {GPmJ) 
(3-3) 

9 i 

where PAR is the measured PAR (in umol m" sec"), GPmax is the empirically derived 

gross photosynthetic exchange of CO2, and a is the initial slope of GEP versus PAR. 

To determine the temperature coefficients (Q10) which represent the difference 

in respiration rates over a 10 °C interval, Fang and Moncrieff s (2001) first - order 

exponential equation was used: 

Qw=(X2/Xir'lTl-Tl) (3-4) 

where Ri and R2 were measured respiration rates at temperatures Ti and T2 

respectively. 

3.2.2 Environmental Variables 

Relative humidity (RH), air temperature (Ta) and photosynthetically active 

radiation (PAR) were also measured at each site during each 5 minute chamber 

sample period, both inside and outside of the chamber (at approx. 1.5 m above the 

forest floor) using an EGM - 4 atmospheric probe (P.P. Systems, Maryland). Peat and 

soil temperatures were recorded at the same temporal and spatial scale as the CO2 

fluxes using a digital thermocouple at 2, 5 and 10 cm. Soil moisture was measured 

using a Theta soil moisture probe (Delta-T Devices) inserted into the top 7cm of the 

soil substrate. Theta soil moisture probe were calibrated in the lab by extracting 
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representative samples from the field and then allowing them to dry to different 

moistures. Theta soil moisture measures and weights of the soil were recorded twice 

daily for 3 weeks. Soil properties for the representative samples were then determined 

in the lab, and calibration curves were determined using theta soil moisture measures 

and VMC relationships and then fitted to the data. 

3.2.3 Vegetation Sampling 

Plant species composition was recorded in each collar by percent cover of 

vascular plant and bryophyte species. Nomemclature follows Anderson et al. (1990) 

for all species. Canopy closure was determined using digital photographs. The 

camera (Kodak DC - 120) with a fixed 39 - 114mm //2.5 - 3.8 lens and 1280 x 960 

pixel image resolution was levelled above each collar and manual photos were taken 

(Guevara - Escobar & Gonzalez - Sosa, 2005). Photos from all sites were taken mid­

day on clear days to avoid large variations in brightness across the pictures. Images 

were analyzed using Adobe Photoshop CS (Adobe Systems incorporated). The 

threshold to classify pixels into 'sky' and 'canopy' was determined on the first image 

and then applied to the rest of the images in that set. Classified images were then 

analyzed to calculate canopy area. The ratio of the canopy area to frame area of the 

image was expressed as a percentage and used to estimate canopy cover (Guevara -

Escobar & Gonzalez - Sosa, 2005). 
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Table 3.1: Biomass partitioning and soil organic matter in plots where CO2 flux 
measurements were made. Utikuma Region Study Area, Alberta, Canada. Data are 
means ± S.E. (n= 2 - 8 plots). All data are in g dry mass m"2. Plots were harvested to a 
depth of 12 - 17 cm (bottom of collar). Samples were taken and analyzed in 
2005. 

Total Biomass 
Vascular plants (aboveground) 

Mosses 

Lichens 

Evergreen shrubs 
Herbs 
Graminoids 

Feathermoss 
Sphagnum 

Vascular plants (belowground) 
Soil Organic Matter 

Vegetation dominated by 
Feathermoss 

Lawn 
1075 

46±10 
5±5 
0±0 

1024±101 
0±0 

708±650 
301±42 

3901±402 

Depression 
1362 

32±4 
3±3 
3±3 

1302±78 
0±0 

22±6 
281±31 

5298±640 

Sphagnum 
Lawn 
1576 

56±28 
2±2 
0±0 

0±0 
1402±184 

10±10 
108±45 

4205±325 

Depression 
1228 

31 ±9 
1±1 
1±1 

0±0 
1205±97 
784±745 
184±55 

5105±348 
Species (occuring in more then one plot) were- evergreen shrubs: V. vitis- idaea, L. Groenlandicum, 
O. microcarpus, E. nigrum; feathermoss: P. schreberi, H. splendens, and H. blandowii. 

To determine above - ground biomass (Table 3.1) two representative plots per 

collar were harvested to a depth of 12 - 17 cm (bottom of collar). The cores were 

separated into aboveground vascular - plants (clipped from above the moss surface), 

moss, below - ground vascular plant parts (fine roots, rhizomes, below - ground stem 

parts), and soil organic matter (the remainder) (Heijmans et al., 2004). The above -

ground vascular plant parts were sorted into three categories: (1) herbaceous plant 

material (2) graminoids, and (3) woody leaf and stem (evergreen) (Bubier et al., 1998; 

Thormann and Bayley, 1997). The moss fraction was 4 - 6 cm thick and only green 

moss was included, clearly decomposed and compacted moss was included in the soil 

organic matter fraction (Heijmans et al., 2004). The mosses were separated into 

Sphagnum, and feather mosses (P. schreberi, H. blandowii, H. splendens), and 

lichens were separated from the mosses. All plants were oven dried at 60 °C for 2 

days, whereas the large soil organic matter fraction was dried for a week, and then all 
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samples were weighed. The below - ground biomass was determined by taking two 

20 cm representative cores for each site. Roots were removed and separated into 

living and dead, live roots were oven dried at 60 °C for 2 days. 
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Table 3.2: Vegetation as percent coverage in vegetated collar for each lawn and 
depression site (n = 1), and above canopy closure. Bare collars are not shown as no 
live material was present. Over 100% coverage is observed at some collars as moss 
mats were present with vascular vegetation growing through. Canopy closure at all 
sites was composed of Black spruce (P. mariana). Utikuma Region Study Area, 
Alberta, Canada. 

Canopy Closure 
8% 

4.50% 

Lawn (L) 
) Vegetation 

Cladina mitis 
Empetrum nigrum 
Ledum groenlandicum 
Oxycoccus microcarpus 
Sphagnum (uscum 
Vaccinium vitis-idaea 

Empetrum nigrum 
Ludum groenlandicum 
Oxycoccus microcarpus 
Sphagnum fuscum 
Vaccinium vitis-idaea 

15% 
30% 
25% 
10% 
100% 
3% 

10% 
25% 
30% 
90% 
10% 

Canopy Closure 
5% 

2% 

Depression (D) 
Vegetation 

Cladina mitis 
Vaccinium vitis-idaea 
Oxycoccus microcarpus 
Sphagnum fuscum 

Helodium blandowii 
Ledum groenlandicum 
Oxycoccus microcarpus 
Sphagnum fuscum 
Vaccinium vitis-idaea 

90% 
30% 
5% 
100% 

4% 
5% 
3% 
85% 
15% 

29% Cladina mitis 95% 
Ledum geoenlandicum 15% 
Pleurozium schrebeh 90% 
Vaccinium vitis-idaea 15% 

84% Cladina mitis 20% 
Ludum groenlandicum 10% 
Pleurozium schrebeh 95% 
Vaccinium vitis-idaea 30% 

64% Helodium blandowii 40% 
Viola renifolia 10% 

62% Helodium blandowii 95% 
Vaccinium vitus-idaea 30% 

40% Helodium blandowii 40% 
Ludum groenlandicum 30% 
Smilaciha trifolia 1% 
Vaccinium vitis-idaea 25% 

40% Hylocomium splendens 20% 
Helodium blandowii 55% 

69% Helodium blandowii 65% 
Hylocomium splendens 15% 

* Canopy closure n=12 for each site, percent coverage of vegetation is average of 2005 and 2006. 
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3.2.4 Soil Analysis 

Soil cores were taken in duplicate for each collar site in August 2005 and were 

analyzed for bulk density (pb), porosity (0), soil organic matter (SOM), specific yield 

(Sy), VonPost and C:N ratios. Bulk density measured the mass of soil per unit 

volume, including pore space and was determined by: 

BulkDensity = WeightOfOvenDriedSample(g) ^ 
VolumeOfSample(cm ) 

Porosity measured the portion of soil occupied by air and water and was determined 

using: 

%Porosity = SaturatedMass{g) - DryMassjg) ^ m ( 3 £) 

Volume{cm ) 

Specific yield was determined by saturating the soils and then allowing them to drain 

for 48 hours: 

. r. „ . », SaturatedMass(g) - DrainedMass(g) 
SpecijicYield = - i 2 - (3.7) 

SaturatedMass(g) 

Total carbon (liable carbon and carbonate) for all sites were determined through loss 

on ignition (LOI) in a muffle furnace (Fang et al., 1998) using: 

\(w -w)-{w -w )1 
%LossOnIgnition = LV cs0 . c) v »' C-Ax 100 (3.8) 

{wcso-wc) 

Where Wc is the weight of the crucible (g), Wcso is the weight of the oven dried soil in 

crucible (g), and Wcsi is the weight of the remaining (inorganic) soil and crucible (g). 

For the C:N there was no separation between organic and inorganic forms was made 

for the carbon component of the soil. The total percent carbon (%TC) and nitrogen 

(N) contents of the soil were determined through combustion using an Isochrom -
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elemental analysis, Carlo - Erba Isotope Ratio Mass Spectrometry, autocombustion 

carbon - nitrogen analyzer (Micromass UK, Ltd., Environmental Isotope Laboratory, 

Dept. of Earth Sciences, University of Waterloo, Waterloo, Ontario, Canada). Soil 

characteristics for each land cover unit are provided in Table 3.3. 

3.2.5 Statistical Analysis 

Literature that examines chamber flux measurements uses standard deviation 

(Strack et al., 2006; Botting and Fredeen, 2006; McNeil and Waddington, 2003) or 

standard error (Tufekcioglu et al., 2001; Heijmans et al., 2004) to assess the daily 

uncertainty between and within sites. For this study standard error was used as it 

better describes the confidence of the reported mean, rather than the natural 

variability (Ambus, 2001). 

When modeling temperature dependence with total respiration (Rtot), in some 

circumstances linear (Heijmans et al., 2004; Fang et al., 1998) or quadratic (Maestre 

and Cortina, 2003) relationships fit well, however most studies represent temperature 

and Rtot using exponential relationships (Fang and Moncrieff, 2001). This exponential 

relationship suggests that microbial activity increases at an accelerated, non - linear 

rate as temperature rises, thus exponential relationships were used to model 

temperature and Rtot. 

A linear model can suitably explain variability in Rtot with volumetric 

moisture content (VMC) if small seasonal ranges of VMC occur. That is, if the 

majority of the measurements occur in conditions that are either 'wet' or 'dry' ends of 

the spectrum (Simek et al., 2004). However, when the range of 'wet' and 'dry' 

conditions occurs, a quadratic relationship is more representative (Davidson et al., 
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1998). Therefore, within this study a quadratic model was used to represent the 

relationships between Rtot and soil moisture as a range of VMC were observed over 

the study period. 
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3.3 Results 

The plots in the lawns and depression were dominated by Sphagnum and 

feather moss (Pleurozium schreberi and Hylocomium splendens), and all contained 

similar total biomass (above - and below ground) (Table 3.1). The soil organic matter 

was similar across all plots, ranging from 3901 to 5298 g dry mass m"2 in feather 

moss lawn and depression, respectively. Below - ground vascular plant biomass was 

highest within the feather moss plots, which may be associated with the quantity of 

evergreen shrubs with deep roots on these plots. The depression sites had higher bulk 

densities (BD), lower C:N and further decomposed peat (Table 3.3). Specific yield 

(Sy), loss on ignition (LOI), and porosity was similar between the lawn and 

depression microtopographical units. 

3.3.1 Variability in Environmental Controls on C 0 2 Exchange 

The growing season (2005 and 2006) was divided into four intervals to 

compare the hydrology, microclimate and CO2 exchange between the different 

microtopographical units. There were large fluctuations in soil moisture for the lawns 

and depressions throughout the growing season (Figure 3.2b). However, the 

depression sites were considerably wetter than the lawn sites throughout the entire 

season in both years with average VMC of 68 and 63% in 2005 and 2006, 

respectively (lawn VMC's for 2005 and 2006 were 31 and 28% respectively). In both 

years the depth to frost at the beginning of the season was similar (~10cm below 

surface) (Figure 3.2c). Frost out occurred later in 2005 for both microtopographical 
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units. However, in 2005, frost out occurred first in the depressions and in 2006, lawns 

lost the ice lenses first. 

The microclimate (air temperature (Ta), soil temperature at 5cm (TSOii), 

photosynthetically active radiation (PAR) and relative humidity (RH)) was examined 

at the same temporal scale as the CO2 fluxes to determine if there was variation 

between the microtopographical units (Figure 3.3). No significant difference was 

observed in Ta between units. However, average temperatures for 2005 and 2006 at 

the depression sites (7.9°C) were generally cooler then the lawns (9.6°C) throughout 

the study seasons. Seasonality in Ta and Tson was observed at both microtographical 

units, with maximum TSOii being reached during the green (G) period when maximum 

Ta values were also observed. The lawn and depression units had similar PAR values 

for the early green (EG) and G periods; however, during the late green (LG) and 

senescence (S) periods the depressions had lower average PAR. This could be 

attributed to the on average higher percent canopy closure in the depressions, and the 

differential shading by the canopy when the sun was lower in the sky. Maximum 

PAR values were observed in the EG period for the lawn (1862 umol m"2 s"1) and 

during the G period for the depression (1616 umol m"2 s"1). Relative humidity 

increases slightly through the study season, but did not vary between 

microtopographical units. 
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3.3.2 Microtopographical effects on spatial and temporal variability of 

CO2 exchange 

There were differences observed in midday CO2 exchange from April through 

October among the microtopographical units (Figure 3.3). Note that the fluxes in this 

study represent instantaneous midday fluxes, which cannot be extrapolated to daily or 

seasonal carbon gain or loss (Heijmans et al., 2004). There was little difference in 

NEE, GEP and Rtot between 2005 and 2006 (Table 3.4), and differences between the 

two years could be accounted for by the addition of new sites in 2006. Thus, the two 

years were grouped together for the analysis of the CO2 exchange. The lawns showed 

an average net CO2 uptake during the early green (EG) period, but an average loss of 

CO2 to the atmosphere for the remainder of the study season. The depression sites 

also showed an average net loss of CO2 to the atmosphere during the entire study 

season. Net ecosystem exchange (NEE) for both microtopographical units was closest 

to zero during the EG. The average NEE for the lawn (-0.018 mg CO2 m"2 sec"1) was 

less than that for the depression (-0.029 mg CO2 sec" m day"). The timing of 

maximum GEP occurred earlier than maximum Rtot. However, the timing was 

different in the two microtopographical units. Daily point measure maximum GEP in 

the lawn (0.32 mg CO2 m'2 sec"1) occurred during the G period and maximum Rtot (-

0.29 mg CO2 m"2 sec"1) was reached in the LG. Conversely, maximum GEP in the 

depression (0.32 mg CO2 m" sec") occurred during the LG period and maximum Rtot 

(-0.40 mg CO2 m"2 sec"1) was reached during senescence. The timing of the flux 

maxima correspond with the highest GEP and Rtot averages. The lowest Rtot and GEP 

averages and minimums were observed in the EG when the soils were still cold and 
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had a shallow frost depth, and the lawn sites had higher average Rtot and GEP (-0.087 

and 0.074mg CO2 m" sec" respectively) for the study season than the depressions (-

"J 1 

0.54 and 0.031 mg CO2 m" sec" , respectively). The spatial variability of 

instantaneous CO2 fluxes between microtopographical units suggests that the 

moisture and temperature regimes are important in the exchange of CO2 between the 

peatland - pond complex and the atmosphere. 

Total respiration (Rtot) was partitioned into vegetation (Rveg) and soil (Rsoii) 

respiration to examine the variability in the exchange throughout the growing season 

(Figure 3.5). The highest Rtot was observed in the lawns, and approximately 26% 

originated from the vegetation, whereas only 13% originated from the vegetation in 

the depressions. Throughout the growing season moss respiration contributed only a 

small proportion of the total respiration from the forest floor. However, a seasonal 

variation of Rveg was observed for both mircotopographical units. 
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Figure 3.4: Average seasonal (a) net ecosystem exchange (NEE), (b) total respiration 
(Rtot), and (c) gross ecosystem production (GEP) from microtopographical lawn and 
depression units, Utikuma Region Study Area, Alberta, Canada for 2005 and 2006. 
Negative values indicate CO2 release from respiration; positive values represent 
uptake by the ecosystem. (Error bars are standard error, for depression EG n=63, G 
n= 148, LG n=63, S n= 42; and for lawn EG n= 58, G n= 106, LG n= 45, S n= 34). 
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Soil temperatures and volumetric moisture content (VMC) were tightly linked 

to total respiration (Figure 3.6). However, the lawn sites responded with higher Rtot to 

similar temperatures and VMC's observed in the depression sites. Soil moisture and 

Rtot curves were bell shaped and peaked at 40-60%. Average Qio values calculated 

using a standard exponential equation, were higher in the depression (1.61) than lawn 

(1.58) microtographical unit for the range of soil temperatures observed (10 - 20 °C). 

3.4 Discussion 

The differences in midday net ecosystem CO2 exchange among 

microtopographical units (lawns and depressions) in this study were small (Figure 

3.4a). However, when partitioned into Rtot and GEP (Figure 3.4 b and c), spatial 

variability was observed between lawns and depressions, suggesting that the CO2 

exchange is sensitive to the microtopography of the understory. Spatial variability in 

Rtot and GEP across a peatland in terms of microtopography (e.g. Moore, 1989; 

Strack and Waddington, 2007; Waddington, 1996), variation in vegetation (e.g. 

Heijmans et al., 2004; Botting and Fredeen 2006), and canopy coverage (e.g. Connell 

et al., 2003; Swanson and Flanagan, 2000) has been reported previously. Thus, the 

variability of CO2 exchange observed within this riparian peatland is not uncommon 

for northern forested wetland complexes. However, CO2 exchange for sites with 

microtopographical differences but little variation in the composition of the 

vegetation has not been well documented. 
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3.4.1 Peatland - pond complex NEE, respiration and photosynthesis 

Differences in midday CO2 exchange among the lawns and depressions were 

observed (Figure 3.4), suggesting that the CO2 exchange in the peatland - pond 

complex is sensitive to the microtopography of the area. However, with this set of 

measurements it cannot be said with certainty whether the observed differences are 

sustained when integrated over day and night, or year. Still, these data are useful for 

comparing sites with seasonal patterns with respect to midday CO2 exchange. 

Net ecosystem CO2 rates were generally highest in the depressions, and both 

lawns and depressions were a source of CO2 during the growing season (Figure 3.4a). 

However, NEE was only significantly different in the early green (EG) and green (G) 

periods, and no significant differences were observed for the remainder of the 

growing season between lawn and depression microtopographic units. Other studies 

(e.g. Waddington and Roulet, 1996; Strack et al., 2006; Kim and Verms, 1992) have 

shown significant differences between lawn (hummock) and depression (hollow) CO2 

exchange at sites located in Sweden, Quebec, and Minnesota. However, these studies 

had larger magnitudes of GEP and lower Rtot then this sub - humid site. The 

variability in net ecosystem CO2 exchange between lawn and depression 

microtopographical units has been strongly linked to changes in the water table 

position and near surface temperatures (Waddington and Roulet, 1996; Kim and 

Verms, 1992). Therefore, the greater spatial variability of NEE between lawns and 

depression in previous studies relative to this WBF site could be due to more extreme 

moisture and temperature gradients. For example, the depressions described in 

Waddington and Roulet (1996) were generally saturated. However, in the current 
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study the depressions had an average VMC of 65% and were rarely saturated. The 

extreme variability in the moisture and temperature gradients that drive spatial 

variability in CO2 exchange in other studies is likely why differences in NEE were 

observed in the EG and G periods when moisture and soil temperature varied the 

greatest between the microtopographical units. In addition, depression sites in this 

study had higher bulk densities, therefore the water holding capacity was higher. In 

the Sphagnum sites this may reflect the need for a tighter growth form (smaller pore 

space) to maintain hydrologic connectivity around non - Sphagnum shoots (c.f. Bauer 

et al., 2007). Additionally, studies have shown that bulk densities of Sphagnum 

increase with distance from water (Luken, 1985; Bauer et al., 2007). This suggests 

that the depression sites in this study are drier, and more closely resemble the soil 

characteristics of the lawns than those of studies completed in more humid Eastern 

peatlands. That is, higher bulk densities in depressions are a result of an increased 

need maintain hydrological connectivity that resembles the lawn sites due to distance 

from the water table, whereas larger topographical gradients (i.e. lawns are 

topographicaly higher then depressions) exist in more humid peatlands that cause the 

bulk densities of the lawns to be larger as the depressions are located closer to the 

water table. In addition, feather moss productivity has been shown to be tightly linked 

to availability of water (Bauer et al., 2007. Therefore, due to small moisture gradients 

between the lawns and depressions it is likely that productivity is similar, however the 

depression with a slightly higher VMC likely results in slower decomposition, thus 

higher bulk densities. 
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The larger topographical gradients in humid peatlands cause larger moisture 

gradients that tend to drive vegetation differences (Moore, 1990; Vitt, 1990) in other 

regions, which have been documented to alter CO2 dynamics (Botting and Fredeen, 

2006; Heijmans et al., 2004). This may further explain the lack of spatial variability 

of NEE observed between lawns and depressions in this study. That is, although 

moisture and temperature gradients were observed between lawn and depression 

microtopographical units, there was little to no variation in the vegetation patterns in 

the lawns and depressions in this study. Although NEE was not always significantly 

different between depressions and lawns, significantly different average gross 

ecosystem production (GEP) and total respiration (Rtot) (in parentheses) values were 

observed between depression and lawn sites (0.03 (-0.053) and 0.07 (-0.086) mg CO2 

m"2 sec"1 respectively) (Figure 3.4 b and c). Bubier et al. (2003) observed similar NEE 

for lawns and depressions at a site in Ottawa, Canada. However, GEP and Rtot were 

very similar, and vegetation patterns were different between microtographical units. 

Thus, moisture thresholds in this more humid climate are required to produce 

variation in vegetation distribution, and CO2 exchange are similar to which, or more 

closely related. 

Studies have shown that temporal variability in GEP is strongly related to 

PAR, and that respiration rates are coupled to soil and air temperatures (Botting and 

Fredeen, 2006; Law et al., 2002; Bubier et al , 1998; Waddington and Roulet, 1996). 

Thus, gross photosynthesis rates, calculated from the chamber measurements made in 

the light and dark were related to changes in PAR (Figure 3.7). A rectangular 

hyperbole was fitted to the GEP - PAR data at individual collars to calculate values 
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for the Amax. The scatter in the GEP - PAR model for this study is typical of that 

found in other studies (Lafleur, 1999, Bubier et al., 1998), which is often attributed to 

limiting environmental conditions (e.g. high temperature or vapour deficit) (Lafleur, 

1999) and differential timing of snowmelt and thaw (Bubier et al., 1998). The fluxes 

here appeared to vary according to microtopography (Figure 3.7) with fluxes being 

slightly larger from the lawns. However, partitioning these data into the dominant 

ground cover vegetation communities shows that Sphagnum lawns (Figure 3.7b) had 

three times higher Amax than Sphagnum depressions and both feather moss 

depressions and lawns. 
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Previous studies have indicated that mosses (feather moss and Sphagnum) 

have different photosynthtically active periods over the growing season (e.g. Botting 

and Fredeen, 2006; Williams and Flanagan, 1998). Sites dominated with feather moss 

have been found to be consistently photosynthetic throughout the growing season and 

senescence, whereas Sphagnum plots generally exhibit stronger seasonal 

photosynthetic trends peaking in the middle of the growing season (Botting and 

Fredeen, 2006; Swanson and Flanagan, 2001). This difference is likely due to 

seasonal changes in photosynthetic capacity in Sphagnum as a result of physiological/ 

biochemical adjustments (Williams and Flanagan, 1998). Sphagnum usually grows in 

wetter, less dense portions of black spruce forests, while Hylocolium has higher 

abundance in the shaded, drier areas where tree density is higher (Gignac, 1992; 

Brisbee et al., 2001), therefore higher PAR (Table 3.2) in Sphagnum dominated areas 

favours GEP. Under field conditions, Sphagnum exhibits significant seasonal changes 

in biochemical capacity for photosynthesis, while photosynthesis in feather moss 

appears more strongly influenced by seasonal shifts in soil water content (Williams 

and Flanagan, 1998; Swanson and Flanagan, 2001). In addition, Bauer et al. (2007) 

found that feather moss (P. schreberi and H. splendens) did not show differences in 

actual productivity between wetter and drier plots. This suggests that the higher 

photosynthesis observed in the lawns in this study is more a function of increased 

productivity of the Sphagnum mosses. Net ecosystem exchange (NEE), total 

respiration (Rtot) and gross ecosystem production (GEP) for lawn and depression 

microtopographical units dominated by Sphagnum and feather moss are shown in 

Table 3.5. Both feather moss lawns and depression had higher bulk densities (BD) 
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than the Sphagnum sites (0.049 and 0.051 g cm" , respectively), which were 

associated with the highest volumetric moisture content (VMC) (34.4 and 80.8%, 

respectively). The lowest Rtot was observed in the feather moss depression, where the 

BD and VMC were the largest, suggesting that the water holding capacity of the 

feather moss at this site has a high water holding capacity which may be causing 

anoxic conditions to occur. However, the feather moss lawn had a similar BD but the 

highest Rtot for both feather moss and Sphagnum microtopographical units. This 

suggests that the feather moss depression sites were situated close to the water table 

which allowed for water to saturate the pore space. However, in the topographically 

high feather moss lawns, while they had the potential to hold water it was unable to 

draw water up. This likely allowed for the lawns to maintain an optimal VMC for 

decomposition, in addition to having warmer temperatures than the depressions which 

increased Rtot. However, as PAR values were similar there was little difference 

observed in GEP between feather moss lawns and depressions. Conversely, 

Sphagnum depressions had higher BD than the Sphagnum lawns, but similar VMC. In 

addition PAR values were similar between Sphagnum sites. This suggests that the 

difference in soil temperature between Sphagnum microtopographical units drove the 

differences GEP. 
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The NEE from lawns and depressions exhibited marked seasonal variations 

(Figure 3.4). When the study began, there was no snow present but the peatland still 

had a shallow frost depth. Thus, sites were only slowly fixing CO2 from the beginning 

of this study, while cool soil temperatures resulted in the lower GEP and Rtot 

measured during the EG. This is similar to Bubier et al. (1998), who found a peatland 

in northern Manitoba fixed CO2 as soon as the top 5 cm of peat warmed above 0°C. 

During the middle of the growing season, maximum Rtot and GEP values were 

observed in both lawns and depressions. Deepening of the active soil layer from 

higher air temperatures was likely increasing decomposition, resulting in higher R^. 

In addition, during this period, light levels were high, soil conditions were warm and 

moist, and large leaf area index (LAI) favoured GEP. The CO2 flux then declined 

with decreasing temperatures at the end of the growing season as soils cooled and 

plants began to senesce. 

Moss respiration contributed only a small proportion of the total respiration 

from the peatland surface (Figure 3.5). Lawn vegetation contributed about 26% of the 

total respiration, whereas the depression vegetation contributed only 13%. In 

addition, in areas dominated by feather moss approximately 13% of the respired CO2 

came from the moss, while a slightly higher percentage (25%) originated from the 

moss in the Sphagnum dominated lawns and depressions. These were similar to 

observations by Swanson and Flanagan (2001) who found that 7% of Rtot originated 

from feather moss respiration, and 21% originated from Sphagnum respiration, and 

most of the Rtot occurs in the deeper soil layers. The lower contribution of feather 

moss respiration than Sphagnum moss was likely a combination of the low water 
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content in the feather moss, and therefore lowered metabolic activity (Swanson and 

Flanagan, 2001). Thus, the higher Rtot values in the lawns can be associated to the 

increased plant respiration from the higher productivity, more specifically the 

Sphagnum. Soil respiration rates correlate significantly with mean annual air 

temperatures and precipitation (Raich and Schlesinger, 1992). Thus, small changes to 

the climate or the landscape (e.g. removal of canopy cover) may dramatically increase 

the rates of deep soil respiration. For example, as this is a pre - harvest study, when 

this study site is logged, soil respiration rates may be very high following 

deforestation due to higher soil temperatures and decomposition of logging debris, 

and changes in the availability of water to vegetation may increase the metabolic 

activity of the understory vegetation increasing Rtot. 

This study examined point CO2 measurements. However, it has been observed 

that CO2 fluxes vary diurnally (e.g. Suyker et al , 1997; Kim and Verma, 1992). 

Given that this study focused on midday CO2 exchange the importance of GEP may 

be over estimated. For example, it has been observed that GEP exhibits a midmorning 

maximum (Shurpali et al., 1995; Suyker et al., 1997) and can be highly variable on 

diurnal timescales (Griffis et al., 2000). Whereas, total respiration generally peaks 

midday and the ecosystem continues to respire throughout the night (Jarvis et al., 

1997). Therefore, it is likely that total respiration in this peatland - pond complex is 

higher when examining the exchange for the entire day, and GEP may be over 

estimated if extrapolated for the entire day. 
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3.4.2 Implications for Climate or Land use Change 

Average daytime peatland NEE for all understory vegetation communities 

was a net loss of CO2 to the atmosphere for the combined 2005 and 2006 growing 

seasons. The average range in summer NEE for the 2 years was -0.057 to 0.007 mg 

CO2 m"2 sec"1 (Table 3.4). The upper end of this range is considerably lower then 

those observed in other studies (e.g. Lafleur, 1998; Waddington and Roulet, 1996; 

Bubier et al., 1998) who showed a large net uptake in CO2 over the entire season, 

which may be due to these studies having been conducted in areas where soil 

moisture and temperatures were different than those in this study. For example, the 

study by Bubier et al. (1998) had depressions with standing water, and higher soil 

temperatures, which likely increased NEE. However, studies that have examined 

interannual NEE variability have observed that there can be large differences in 

carbon exchange from year to year (e.g. Lafleur et al., 1997; Shurpali et al., 1995). 

For example, Griffis et al. (2000) reported interannual variability ranging from a net 

sink of 2.71 mg CO2 m" sec" in an early snowmelt year to a net source of -0.88 mg 

CO2 m"2 sec"1 in the same peatland a few years earlier. Shurpali et al. (1995) observed 

seasonal net exchange from bogs ranged from -0.82 to 0.37 mg CO2 m" in 

contrasting dry, warmer years, and cool, wetter years. Therefore, the fluxes observed 

in this study are within the ranges of previous studies. However, even though both 

field seasons were slightly warmer and drier then the 30 year normal of the area they 

did not come close to the lower end of this range. This is likely due to the season not 

being as warm and dry as that observed by Shurpali et al. (1995). Consequently, as it 

is anticipated that climate change is going to be most pronounced in these areas, a 
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further increase in temperature and decrease in precipitation may drive the study site 

to be a larger source of CO2 to the atmosphere. 

The strong relationships observed between T5, VMC and Rtot (Figure 3.6) 

illustrates how enhanced soil temperatures and changes in the soil moisture may act 

as a positive feedback to climate change. For example, industrial pressures will play a 

significant role in altering the CO2 biogeochemical cycles within these areas by 

altering land use practices. Corridor creation to access prime regions for the 

extraction of timber and oil may cause enhanced aerobic soil respiration due to the 

lowering of water tables and higher peat temperatures due to canopy removal (Devito 

et al., 2005; Petrone et al., 2006) causing a release in stored carbon to the atmosphere. 

As alterations to the upland and riparian areas occur (e.g. forest harvesting) it is likely 

that the peatlands will be affected as these different land cover units are 

hydrologically connected. Thus, if the peatlands dry out, or wet up it is likely that Rtot 

will decrease as both lawns and depressions optimally respires between 50 - 70% 

VMC (Figure 3.6). In addition increased warming could influence the depth to frozen 

soil, decrease the water table and extending of thawed conditions, therefore exposing 

larger amounts of organic carbon to microbial activity (Goulden et al., 1998). This 

could act as a positive feedback to climate change in a system that is already acting as 

a source. 

The average Q10 coefficient observed in this study (1.7) is lower than those 

observed in other respiration studies (e.g. Lafleur, 2001; Bubier et al., 1998) and 

marginally lower then the global median (2.4) reported by Raich and Schlesinger 

(1992), but was within the overall values they reported (1.3 - 3.3). Higher Q10 values 
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generally correspond to a high sensitivity to temperature change in low temperature 

soils (Lloyd and Taylor, 1994), as well as wet, acidic, and organic soils (Chapman 

and Thurlow, 1996). The observed lower Qio values observed suggests that this study 

area may not be as sensitive to changes in temperature. For example, Silvola et al. 

(1996) estimated that an increase in 2°C - 4°C in the boreal region would cause a 30 -

60% increase in CO2 emissions from peatlands. However, this calculation was based 

on average Qio values that were higher than those in this study, suggesting that a 

comparable increase in temperature would result in less of an increase in CO2 fluxes. 

Currently, however, it is difficult to conclude with confidence how these climate 

changes will immediately affect the NEE of CO2 exchange at high latitudes due to the 

uncertainty surrounding changes in evaporation rates, active layer deepening, water 

balance, water table elevation and soil moisture content (Griffis et al., 2000). 

Therefore studies such as this are important as they allow for the development of 

predictive relationships among photosynthesis, respiration and the environmental 

controls on these processes, which help to improve the understanding and modeling 

of peatland - pond complex CO2 exchange. 

3.5 Conclusion 

Midday growing season ecosystem CO2 exchange shows small differences 

between lawn and depression microtopographic units, including different controls on 

the seasonal pattern. This suggests that species composition of the peatland surface 

cover should be taken into account when evaluating understory contributions or when 

interpreting eddy covariance data for the entire forest or peatland ecosystem. The 

general trend was for lawn sites to have higher CO2 uptake and respiration than the 
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topographically lower, denser depressions. Changes in volumetric soil moisture and 

soil temperature are important in many peatland environments as they cause gradients 

that also drive changes in vegetation. However, they did not control the distribution 

of vegetation in this study. That is, similar surface cover vegetation was located in 

areas with different hydrological and microclimatic conditions. Sphagnum lawns had 

higher maximum rates of GEP than feather moss lawns and depressions, and 

Sphagnum showed a pronounced seasonal change in photosynthetic capacity. While 

most studies treat peatlands as discrete units, this study has tied fluxes to different 

microtopographic units and shows that moisture and temperature gradients that can 

drive changes in fluxes may not be related to eco - hydrology of vegetation 

distribution. Thus, the variability observed in CO2 exchange between microtopograhy 

and similar vegetation communities demonstrates that vegetation communities alone 

cannot be used as a proxy for CO2 exchange. In addition, higher bulk densities in 

depression sites suggests that the water holding capacities in the WBP is different 

then those observed in more humid peatlands, thus it is likely that these different 

types peatlands be not react the same to climatic and environmental changes. 

Therefore, peatlands located in a moisture deficit ecozone (peatlands in a sun- humid 

climate), considerable micotopography and different vegetation communities should 

not be lumped together as one component of a boreal forest ecosystem. 

Therefore, in a sub - humid environment like the WBP, moisture differences 

(gradients) between microtopographical highs and lows are reduced compared to 

other environments wetter conditions and larger gradients (i.e. saturated conditions or 

standing water in depressions). This results in moisture gradients with 
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microtopography that are not significant enough to result in differences in vegetation 

distribution, but are large enough to cause differences in the level of productivity 

within a species. 
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Chapter 4 

Summary and Conclusions 

4.1 Spatial and temporal variability in C 0 2 exchange within a 

forested wetland complex 

Examining CO2 exchange from different land cover units in a forested 

wetland complex allows for the enhancement of: (1) our understanding of CO2 

dynamics in forested wetland systems between different canopy closures and 

vegetation communities, and to better quantify, and represent, the role of the these 

land covers within the context of northern greenhouse gas emissions; and (2) evaluate 

whether these land covers can be assessed as a homogeneous unit during the growing 

season, or that they exhibit large spatial and temporal variability. 

This study demonstrated that there is large spatial and temporal variability in 

CO2 exchange between forest floors of differing canopy closures. The forest floors in 

the upland and riparian land covers are dominated by Rtot, which is a function of RSOii 

rather than Rveg. However, high Rtot values for the forest floors in these areas are 

likely compensated for by the uptake of the large aspen canopy cover as well as the 

shrub layer. Within the covered and open peatland sites, the forest floors play a more 

dominant role in CO2 exchange as these areas encompass a high proportion of the 

total ecosystem. However, the canopy cover in this study controlled the light 

available to the forest floors, allowing for small variations in the microclimate to 

occur. In addition, variations in the substrate quality (C:N) is observed between sites, 

which is likely the reason for the differences in the magnitude of the responses to 
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changes in soil temperature and moisture. All sites exhibit enhanced Rtot and GEP 

during the middle of the growing season when soil and air temperatures where 

highest, and when depth to frost was 20 cm below the surface. 

It is observed that there is little spatial variability between the top, middle, and 

slope toe within the uplands (Table 2.1). Therefore, these sites are able to be grouped 

together to represent the uplands. However, within the peatland spatial variability is 

found between covered and open peatlands in CO2 exchange as well as moisture 

regimes and vegetation communities. As a result, the peatlands are examined to better 

understand the CO2 dynamics as well as to determine if peatlands can be grouped 

together when modeling CO2 exchange or if they need to be addressed according to 

the microtopography, or vegetation composition. This study shows that temporal 

variability is similar for lawns and depressions, but different in magnitude. Moisture 

and temperature gradients are observed between the lawns and depressions. The drier 

and warmer microclimate of the lawn causes differences in the productivity of the 

species affecting GEP and Rtot, which are higher at the lawn sites. Although 

temperature and moisture gradients are observed between lawn and depression sites 

they are not enough to cause variation in the vegetation composition. However, 

Sphagnum plots (lawn and depression) show higher maximum rates of GEP than 

feather moss plots. In addition the Sphagnum plots have a lower canopy closure, 

which increases PAR availability at the peatland. This is likely why higher 

productivity is observed at the Sphagnum plots. This suggests that microtopography 

and species composition of the peatland should be taken into consideration when 

describing CO2 exchange for the peatland ecosystem. 
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4.2 Global carbon cycle and management 

The boreal forest constitutes a large biome on Earth, and as we attempt to 

monitor and model the dynamics of it there is an increasing need to recognize the 

directions and magnitudes of the CO2 flux in different land covers. This is especially 

important when considering the northern boreal regions as a possible carbon sink for 

elevated atmospheric CO2 concentrations (IPCC, 2001). Since this study uses 

instantaneous midday fluxes (which cannot be extrapolated to daily or seasonal 

carbon gain or loss) (Heijmans et al., 2004), whether this forested wetland complex 

increases, sustains, or decreases the atmospheric CO2 concentration cannot be 

confirmed. However, it is known that soil CO2 emissions are negatively linked to the 

water table (Bubier et al., 1998) and positively linked to changes in the near surface 

soil temperature (Raich and Tufekcioglu, 2000). However, they may react to changes 

with different CO2 fluxes as shown in this study. For example, warming of the soils in 

a particular land cover in this study would result in an increase of CO2 to the 

atmosphere (as long as water is not limiting), but not all land cover units would react 

with the same magnitude of change. Generally, peatland lawns have higher Rtot and 

GEP, thus changes in the water table and soil moisture could significantly change the 

peatland CO2 flux. For instance, a decrease in water table and soil moisture could 

change the depression areas to operate more like a lawn site increasing the Rtot and 

GEP. Although the increase in photosynthesis would act as a positive feedback, 

respiration would likely also increase. In addition, the lawn sites may dry out with an 

increase in water table, increasing respiration, and minimizing GEP. Thus, it is 
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important to recognize that small changes to these ecosystems could result in large 

shifts in the CO2 exchange. 

As the WBP is altered by land use change, the dynamics and cycling of CO2 

will be altered as well. This study illustrates how the forest floors of the peatlands are 

responsible for most of the understory photosynthesizing in the watershed. However, 

as this area is altered we will likely observe a shift in the exchange. For example, if 

the aspen canopy in the upland and riparian is removed, the forest floor will likely 

receive more resources. An increase in PAR and precipitation received at the forest 

floor may stimulate the understory species and the forest floors of the upland and 

riparian will encompass the entire ecosystem and may start to operate like the 

peatlands with higher GEP. As a result, Rtot may increase as soil and air temperatures 

increase, and the aspen canopy will no longer be present to counteract the increase in 

Rtot with high productivity. However, runoff of nutrients from the upland and riparian 

due to the removal of the aspen canopy may stimulate growth in the peatlands 

(Hazlett et al., 2007), as well as increase soil moisture, which will act as a positive 

feedback for global climate change. Compaction of soils, alteration of out and in -

flows, and other human interferences are also likely to alter the microclimates, 

vegetation interactions and biogeochemical characteristics of these forest floors. 

Therefore, as climate change occurs and the alteration of these landscapes continues, 

understanding the interactions of the physical and environmental variables and the 

processes involved will help with the parameterization and interpreting of climate 

change and biogeochemical models. 
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4.3 Conclusion 

This study observed the region - specific CO2 flux variability and some of the 

controlling variables on the exchange. The large spatial variability in net ecosystem 

CO2 exchange that is observed demonstrates how the forest floors of different land 

cover units needs to be assessed independently as they will likely not respond to 

changes the same. In addition, microtopographical differences within the peatland 

caused gradients in the moisture and thermal regimes that resulted in higher 

productivity, therefore variation in the CO2 exchange. Although the results are 

comparable to other studies, the sub - humid environment appeared to have unique 

qualities. For example, moisture gradients with microtopography did not drive 

vegetation differences, but did drive differences in CO2 exchange. Thus, this study 

demonstrated that although degrees of spatial and temporal variability as well as 

controlling environmental factors on CO2 exchange have previously been examined, 

they cannot necessarily be extrapolated to a sub - humid region, such as Canada's 

Western Boreal Plain. 
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