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A b s t r a c t 

The mathematical theory underlying the Google search 

engine is the PageRank algorithm, first introduced by Sergey 

Brin and Lawrence Page, the founders of Google. A ranking 

of web pages is made considering many criteria. PageRank 

exploits the graph structure of the web. The web's hy­

perlink structure forms a massive directed graph, where 

the web pages are presented as nodes and hyperlinks as 

edges. The PageRank equation finds a score by solving a 

recursive equation which calculates the PageRank vector. 

The PageRank vector is the stationary distribution of an 

ergodic Markov chain. The Perron-Frobenius theorem en­

sures that the primitive matrix produced by this massive 

Markov chain will converge to a unique stationary distri­

bution. The PageRank vector existence is guaranteed since 

the so-called Google matrix is stochastic and has all entries 

positive. 



ii ABSTRACT 

In a recent work by Litvak, Scheinhardt and Volkovich 

[14], a mathematical model is presented that explains an in­

teresting relation between PageRank values and in-degrees 

in power law graphs. They analytically prove that in power 

law graphs, the tail distributions of PageRank and in-degree 

differ only by a multiplicative factor. 

We survey the mathematics of the PageRank algorithm, 

and study the work of Litvak et. al. We implement a 

PageRank calculator and expose different graphs to our 

calculator. For various power law graphs, we show that 

the ranking of the nodes by PageRank will be the same as 

the ranking given by in-degree. We give a counterexam­

ple for graphs which are not power law. For these graphs, 

the ranking derived from PageRank is different from the 

ranking derived from the in-degree values. 

Keywords : graphs, directed graphs, PageRank, Google 

matrix, Markov chains, random walk, power law graph, 

binary tree 
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CHAPTER 1 

Introduction 

1.1. Motivation 

With the rapid growth of the world wide web, informa­

tion retrieval presents increasing theoretical and practical 

challenges. With the massive amount of information enter­

ing the world wide web every moment, it becomes harder 

and harder to retrieve information from the web. That is 

why the presence of a search engine is as vital as the exis­

tence of the web itself. Since the birth of the web, it has 

been a central discussion in the web research community 

to design faster, more efficient, and more accurate search 

engines. 

The most popular search engine currently is Google. 

The mathematical theory behind the Google search engine 

is the PageRank algorithm, which was introduced by Sergey 

B r i n a n d L a w r e n c e P a g e [3], t h e founders of Goog le . In 

1998, Brin and Page were PhD students. They took a leave 

of absence from their Ph.D. to focus on developing their 

I 



2 1. INTRODUCTION 

Google prototype. Their pioneering paper described the 

PageRank algorithm, which is used to this day by Google 

to generate its rankings. 

A search engine consists of key components: a crawler, 

and indexer, and a query engine [2]. The crawler collects 

and stores data from the web. Data is stored in an indexer 

which extracts information from the data collected from the 

crawler. The query engine responds to queries from users. 

As part of the query engine, a ranking algorithm, ranks web 

pages in order of their relevance to the query. The ranking 

is achieved by the assignment of a score to each web page. 

PageRank is a ranking algorithm of web pages and uses 

the link structure of the web. The web's link structure 

forms a directed graph where the web pages are represented 

as nodes and links as directed edges. A page is considered 

"important" if it is pointed to by other important pages. 

The following PageRank equation finds a score by solving 

the iterative equation: 

irT = TTT(aS + (l-a)J), 
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where J is the matrix of all l 's whose order equals the 

number of pages. The matrix S is the stochastic matrix as­

sociated to the directed adjacency matrix of the web graph. 

The parameter a is called the teleportation factor, a con­

stant between 0 and 1 which is normally assumed to be 

around 0.85, and TT is the PageRank vector [13]. PageRank 

will be discussed in detail in Chapter 2. 

The PageRank vector consisting of the PageRank of each 

web page is the stationary value of a large ergo die Markov 

Chain [3]. The Perron-Frobenius theorem is used to en­

sure that the so-called Google matrix associated with this 

Markov Chain will converge to a stationary distribution 

[15]. The Perron-Frobenius theorem supplies a unique nor­

malized positive dominant eigenvector, called the Perron 

Vector, which is the PageRank vector of the Google ma­

trix. 

In a recent work by Litvak, Scheinhardt, and Volkovich [14], 

a mathematical model is presented that derives an interest­

ing relation between PageRank values and in-degrees of web 

pages. They investigate why the PageRank and in-degree of 
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web pages follow similar power laws in the web graph. Fur­

thermore, they analytically prove that in power law graphs, 

the tail distributions of PageRank and in-degree differ only 

by a multiplicative factor [14]. 

The aim of my thesis is to first survey the mathematics of 

the PageRank algorithm, and then to investigate the recent 

work of [14]. In Chapter 2, I introduce PageRank and 

describe its key properties. I will implement a PageRank 

calculator and expose different graphs to my calculator. In 

Chapter 3, we summarize the work of [14], who proved that 

the ranking of the nodes by PageRank in power law graphs 

will be similar to their ranking via their in-degree values. 

For binary trees, we show in Chapter 4 that the ranking 

result from PageRank is different from the ranking of their 

in-degree values. 

What follows in this chapter is the background and def­

initions needed throughout my thesis. As we will see, the 

mathematical study PageRank uses a blend of graph the­

ory, probability, and linear algebra. 
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1.2. Graph Theory 

This section gives a concise introduction to the graph 

theory terminology used later in my thesis. For a general 

reference in graph theory, see [6]. A graph G consists of 

a nonempty vertex set V(G), and an edge set E(G) of 2-

element subsets from V(G). A graph is sometimes called 

network, especially with regards to real-world examples. 

More formally, we may consider E(G) as a binary rela­

tion onV(G) which is irreflexive and symmetric. We often 

write G = (V(G), E(G)), or if G is clear from context, then 

we write G = (V, E). The set E may be empty. Elements 

of V are vertices, and elements of E are edges. Vertices are 

occasionally referred to as nodes, while edges are referred 

to as lines or links. We write uv for an edge {u,v}, and 

say that u and v are joined or adjacent; we may as well say 

that u and v are incident to the edge uv, and that u and 

v are endpoints of uv. The most common way to visualize 

a graph is by drawing a dot for each node and joining two 

of these dots by a line if the corresponding two nodes form 

an edge. By a non-empty graph, we mean a graph with at 

least one edge. 
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We allow graphs to have multiple edges, but no loops. 

A simple graph is a graph without multiple edges. The 

cardinality |V(G)| is the order of G, while |£?(G)| is its 

size. For a node v G V(G), degc{v) is the degree of v in G, 

namely the number of edges in G incident with v. A node 

of degree 0 is isolated. 

For a node re in a graph G, define the neighbourhood of 

x, written NQ(X), to the nodes joined to x. For X C V(G), 

NQ{X) is the union of the neighborhoods over nodes from 

X. If X C V, then define the subgraph induced by X, 

written G \ X (or as either (X)G or G*[X]), to be the graph 

with nodes from X, with two nodes joined in G \ X if and 

only if they are joined in G. A subgraph of G is a graph H 

such that V(H) C V(G) and E(H) C E(G). A graph G is 

called bipartite if V(G) admits a partition into two classes 

such that every edge has its ends in different classes (hence, 

nodes in the same partition class must not be adjacent). 

A graph may be directed or undirected. A directed graph 

or digraph is defined analogously as an undirected graph, 

except that now E{G) need not be a symmetric binary 

relation on V(G). The edges are written as ordered pairs, 
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and are called directed edges, (u,v), where u is the head 

and v is the £ai/. The directed edge (u, v) is then said 

to be directed from u to v. All the previously mentioned 

features and definitions can then be modified to directed 

graphs. The in-degree of u, written deg~(u), is the number 

of nodes v such that (v, u) are directed edges; the out-degree 

deg+(w) is defined dually. Moreover, a directed graph is 

called strongly connected if for each pair of nodes (vi,Vj), 

there is a sequence of directed edges leading from Vi to Vj. 

The directed graph in Figure 1.1 is strongly connected. In 

FIGURE 1.1. A strongly connected digraph. 

all of the above definitions, we will not mention G if it is 

clear from the content. 

One of the most important examples of a graph for us 

is the web graph. It is the graph where the nodes represent 

web pages, and the edges correspond to links between the 



8 1. INTRODUCTION 

pages. We write W for this graph, which is a real-world 

evolving graph. We may consider W an undirected or di­

rected graph, depending on the context. 

A key property of the web graph is the presence of a 

power-law degree distributions. Given a graph G and a 

non-negative integer fc, we define NkjG by 

Nk,G=\{xeV(G):degG(x) = k}\. 

The parameter Nk,G is number of nodes of degree k in G. 

The degree distribution of G is the sequence (N^^G '• 0 < 

k <t). The degree distribution of G follows a power law if 

for each degree k, 

Nk,G h_p 
—— ~ k p, 

t 

for a fixed real constant j3 > 1. We say that (3 is the ex­

ponent of the power law. A graph whose degree distribu­

tion follows a power law is often referred to as a power law 

graph. Power laws for the in-degree and out-degree distri­

butions may be defined in a similar fashion. The in- and 

out-degree distributions of the web graph were observed to 

follow power law in the experiments conducted by Broder 
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et al. [4], which sampled 200 million web pages and their 

links. For additional reading on the web graph, the reader 

is directed to the books [2, 5, 8]. 

1.3. Linear Algebra 

Matrices and vectors will be denoted in bold. Further, 

all vectors are column vectors unless otherwise stated. For 

a matrix A, we use the notation a^ for the zj-entry of 

A. An m x n matrix A is a non-negative matrix whenever 

each a,ij > 0, and this is denoted by writing A > 0. The 

notation A > B means that each a^ > bij. A matrix A is 

positive when each a^ > 0, and this is denoted by writing 

A > 0. More generally, A > B means that each â - > b^. 

A convenient representation of a graph is via its adja­

cency matrix. The adjacency 'matrix A(G) of a digraph G 

is defined by 

( 1 i f ^ - e E ( G 9 , 
aij = < 

I 0 otherwise. 

If G is undirected of order n, then A(G) is an n x n symmet­

ric (that is, A(G) = A(G)T) matrix. Adjacency matrices 

are non-negative. 
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For an n x n matrix A, a scalar A for which 

det(A - AI) = 0 

is called an eigenvalue of A. A nonzero n x 1 vector x 

for which A — Ax is the eigenvector of A for A. The pair 

(A,x) is called an eigenpair for A. The set of all distinct 

eigenvalues, denoted by <J(A) , is called the spectrum, of A. 

The eigenvalues and eigenvectors are fundamental topics 

in PageRank calculations. The adjacency matrix A(G) for 

an undirected graph G is a real and symmetric matrix, and 

hence, has n real eigenvalues Ai > 0, A2, . . . , An, which can 

be ordered by their absolute values: 

Ai = |Ai| > |A2| > . . . > |A„|. 

(See, for example, [2].) The first (that is, largest in absolute 

value) eigenvalue Ai is the radius of the spectrum, denoted 

by p(A). The real number Ai is also called the dominant 

eigenvalue. 

We now state Perron-Frobenius theorem. A proof of this 

important result may be found in [15]. A non-negative 

matrix A is primitive if Am > 0 for some m > 0. The 
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1-norm (or taxicab norm) of x is defined as 

Mli = £ 
n 

T • I 

•1=1 

THEOREM 1.3.1 (Perron-Frobenius). If a matrix A > 0 

is primitive, then each of the following assertions holds. 

(1) r = p(A) > 0. 

(2) There exists an eigenvector x > 0 such that A x = 

rx. 

(3) The Perron vector p is the unique vector satisfying 

Ap = rp 

and which is positive with 1-norm equal to 1. There 

are no other non-negative eigenvectors for A regard­

less of the eigenvalue, except for the positive multi­

ples of p. 

We will sometimes use limits of matrices. If (Mt) is a 

sequence o f m x n matrices, and L is an m x n matrix, then 

we write 

lim Mt = L 
t—>oo 
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if for all 1 < i < m, 1 < j < n, 

lim {Mt\3 = Lid. 
t—>oo ,J 

1.4. Markov Chains 

Markov Chains provide a powerful framework for mod­

elling certain random processes. Our approach to ana­

lyze the PageRank algorithm in Chapter 2 will use Markov 

chains. We give a brief discussion of Markov chains in this 

section. For a general reference in probability theory, see 

[11]. 

Fix n a positive integer. We denote ¥(A) the probability 

of an event A in a probability space. A (discrete-time, 

time-homogeneous, finite-state) Markov chain M consists 

of a discrete-time random process (Xt : t G N) each with 

codomain in the same finite set S — {ao, . . . ,an} with the 

property that for all n > 1 and 1 < t < n, 

F(Xt = at\Xt-i = o t_ i , . . . ,XQ = a0) = F(Xt = at\Xt-i = <H-i)-
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This definition expresses that the state Xt depends on the 

previous state Xt-i, but is independent of how we actu­

ally arrived at Xt~\. In other words, the random process 

does not remember the way it reached the state Xt-\. This 

property is called Markovian or memoryless property for a 

random process. It is important to note that the Markov 

property does not imply that the state Xt does not depend 

on the random variables XQ, X\,..., Xt-2- However, what a 

Markovian property guarantees for Xt, is that any such de­

pendency on the past will be captured and recorded in the 

value of Xt-\. In other words, only the present state giyes 

any information of the future behaviour of the process. See 

[16] for more background on Markov chains. 

The set of possible values S of M is called the state 

space, and without loss of generality we will always consider 

this to be { 1 , . . . , n}, where n is an integer. The transition 

probability 

Pid=F(Xt=j\Xt-i=i) 

is the probability that the process moves from state i to 

state j in one time-step. Using the Markovian property, 
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every Markov chain can be uniquely expressed by a transi­

tion matrix defined as 

/ 

P = 

Po,o Po,i 

Plfi P\,l 

Pifi Pi,I 

p 0,j 
\ 

P l j 

Pi hJ 

V / 

Hence, the zj-entry in the matrix is the transition prob­

ability Pi j . The representation of a Markov chain via its 

transition matrix makes it feasible to compute and predict 

the distribution of the future states of the process. 

A useful representation of a Markov chain is via a di­

rected weighted graph. The nodes correspond to the states, 

and the weight on each directed edge is the positive transi­

tion probability of getting from the head state to tail state. 

There is a directed edge (i,j) if and only if Pij > 0. A sto­

chastic matrix is a non-negative matrix in which each row 

sum is equal to 1. Note that the transition matrix of every 

Markov chain is a stochastic matrix (which follows from 

the basic probability definitions). A stationary distribution 
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s of a Markov chain is a probability distribution (that is, a 

vector whose sum of all entries equals 1) with the property 

that 

sT = s T P . 

We can also express this by saying that s is an eigenvector 

of P with eigenvalue 1, or s is a fixed-point of P . 

Stationary distributions exist and are unique if the Markov 

chain has a primitive transition matrix [2]. We refer to such 

Markov chains as ergodic. Hence, if we consider an ergodic 

Markov chain over a long period of time, the initial state 

becomes increasingly forgotten, and the probability that we 

are in state i approaches the ith component of s. As we will 

see in Chapter 2, the PageRank vector corresponds to the 

stationary distribution of a certain Markov chain. 



CHAPTER 2 

The PageRank Algorithm 

2.1. Introduction and Motivation 

Information retrieval is the process of searching within a 

collection of documents for a particular item of information. 

The information you are looking for is normally called a 

query. To retrieve information from the world wide web, 

we need to first be able to model the web. The best way to 

model a massive network like the web is by representing it 

as a digraph. Each web page is a node of the graph and the 

links between two nodes are directed edges. To perform a 

search in this network, we should first be able to gather all 

of the information about its link structure in a database, 

and then classify and retrieve the query from this database. 

A search engine consists of a crawler, indexer and a 

query engine; see [13]. See Figure 2.1 for a simplified model 

of a search engine. 

17 
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Crawler Indexer Query 
Processor 

' • 

Ranking of the 
Results 

F I G U R E 2.1. A basic search engine model. 

The crawler performs frequent visits to the entire (or 

a large part of the) world wide web. The crawler trav­

els from page to page to keep track of the existing links, 

and more importantly to update our database with new 

web pages and links. Imagine a backpacker who is walking 

through every link, and upon arriving at every new web 

page, writes down the address of the page and summarizes 

its content. There are certainly web pages that have no 

out-links. Hence, our backpacker will get stuck there. Af­

ter recording such pages (called dangling nodes), the back­

packer will step back as many steps needed to be able to 

find a way out. 

The links are classified once they are entered into the 

indexer. Hence, now we can search for our query in the 
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indexer. The search is done, and some number of pages 

associated to the query are found. 

After the search is done, let us say there are 200 pages 

found in the end. The question becomes: how to rank 

these pages? A useful way to display the 200 pages on the 

result screen is to rank them by popularity. We therefore 

need to find out how to rank web pages according to their 

popularity. This is the role of the query engine. As we 

will describe in Section 2.2, the PageRank algorithm is one 

effective way to accomplish this ranking. 

2.2. Random Walks on Graphs 

Before we define PageRank, we make a short digression 

to discuss random walks. A random, walk on a connected 

graph G is a certain type of Markov chain defined by the 

sequence of moves (over discrete time-steps) of a particle 

between nodes of G. The location of the particle at a given 

time-step is its state. In the uniform random walk, the par­

ticle may move from its current state to any of its neigh­

bouring nodes (with equal probability). A uniform random 

walk on a graph of size n may be represented by a transition 
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probability matrix P whose entries are p^-, where 

Pij = < 
I 0 otherwise. 

Note that the transition probability matrix of a uni­

form random walk is stochastic; that is, the row sums are 

equal to 1. We define an ergodic Markov chain to be one 

whose transition matrix is primitive. An important the­

orem states that an ergodic Markov chain always has a 

stationary distribution [19]. Hence, the stationary proba­

bility distribution exists for the uniform random walk if its 

transition matrix is primitive, and is a probability vector 

s T such that 

s T P = sT . 

The following theorem states sufficient conditions on G for 

the stationary distribution to exist. 

T H E O R E M 2.2.1. [2] Let G be a finite, connected, non-

bipartite graph. A random walk on G converges to a sta­

tionary distribution s T = (SJ), where 

_ deg(i) 
S%~2\E(G)[ 
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Analogous result holds for uniform random walks on di­

rected graphs. 

2.3. The Google Matrix 

To define the Google matrix for an arbitrary graph G, we 

consider the transition probability matrix for the uniform 

random walk on G. Let n = \V(G)\ be the order of G and 

apply a fixed enumeration from 1 to n to the nodes of G. 

For the directed graph G, the matrix P i is defined by 

I 0 otherwise. 

The structure of the P i matrix guarantees that at every 

node, the surfer will have equal probability to choose one 

of the out-neighbours. If there is no out-link from i to j , 

then this probability is 0. In the web there always exist 

web pages that do not link to any other web pages. These 

nodes are called dangling nodes. If we assume the only 

way to visit the web pages is by following the out-links, 

then the surfer gets stuck at such nodes. To overcome this 

problem, we manipulate the matrix P i in a way to bypass 

the dangling nodes. Define P2 to be the matrix P i such 
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that any zero rows are replaced with the vector with each 

entry equal to - . Define the Google matrix (or PageRank 

matrix) by 
1 — a 

P = a P 2 H J„,n, 
n 

where a; is a fixed real number in (0,1), and Jn j n is the nxn 

matrix of all l 's. (We do not use the notation G for the 

Google matrix, as G is reserved for graphs.) The constant 

a, called the teleportation factor, is a parameter measuring 

the frequency at which a surfer jumps to a new randomly 

chosen web page, rather than following the out-links. We 

now show why Google matrix is stochastic and primitive, 

and hence, has a stationary distribution. 

LEMMA 2.3.1. For a graph G with order n and P = 

P(G*) equalling its Google matrix, then the following asser­

tions hold. 

(1) The matrix P is stochastic. 

(2) The matrix P is primitive. 

Proof. For item (1), to show that P is stochastic, we 

must show that the row sums in P are all equal to 1. For 
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a fixed 0 < i < n, the row sum r,b equals: 

Ti = ^ ( a ( P 2 k j + — ^ — (Jn,n)ij) 
Kj<n ^ ' 

1 — a 

= " E (P2)*J + ( ! - « ) • 
l < j < n 

To find the value for J^ (^2)1^, we consider two cases. 

Case i. Node i is dangling node. 

In this case, 

(P2)„ = i. 

Hence, 

= a V - + (1 - a) 
l < j < n 

= a + (1 — a) = 1. 

Case £. Node i is not dangling. 

In this case, 

(P2)id = (Pi),,, . 
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Hence, 

n = a J2 (Pikj + ( l - a ) 
l<j<n 

— a + (1 — a) = 1. 

For item (2), since all entries of P are positive, P is primi­

tive. • 

Lemma 2.3.1 demonstrates that the Google matrix P is 

a transition probability matrix of an ergodic Markov chain. 

The Markov chain associated to this matrix is called the 

PageRank Markov chain, or the PageRank random, walk. 

In this random walk, at any page, the surfer visits an out-

neighbour of that node with probability a and visits any 

other node in G with probability 1 — a. In practice, the 

parameter a is normally assumed to be around 0.85; see 

[13]. 

We will now use the linear algebra preliminaries stated 

in Chapter 1 of the thesis to prove an important theorem 

about the PageRank random walk. The following theorem 
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guarantees that with the described structure of Google ma­

trix, the PageRank random walk has a unique stationary 

distribution, called the PageRank vector. 

THEOREM 2.3.2. Fix a graph G. The PageRank Markov 

chain with transition probability matrix P = P(G) con­

verges to a unique stationary distribution s. 

Proof. Since P is positive and primitive, the PageRank 

Markov chain is ergodic, and hence, converges to a station­

ary distribution s. To show that s is unique, we will use the 

Perron-Frobenius theorem (See Theorem 1.3.1). By Theo­

rem 1.3.1, P has a unique positive and dominant eigenvalue 

equal to 1. The corresponding eigenvector for this eigen­

value would be the vector s, where 

sTP = sT. • 

The vector s is the PageRank vector for the Google ma­

trix P . The entries in the PageRank vector are the PageR­

ank values for each node in the graph G (associated with 

the fixed enumeration of V(G)). To calculate the PageRank 

values, we need to find the stationary vector of the Google 
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matrix. In Section 2.4 we discuss a practical method used 

to calculate the PageRank, called the power method. In the 

next section, we explain another approach to calculate the 

PageRank vector first used by Brin and Page [3]. 

2.4. Another View of PageRank 

The original formula for PageRank due to [3], is a sum­

mation formula which calculates the popularity of the pages 

by adding up the PageRank of all the pages pointing to this 

web page. Let PR(Pi) denote the PageRank of the page 

Pi and let In(Pi) denote the set of web pages that point to 

Pi. The PageRank is then 

(2.i) PR(P,)= J2 ^§r-

A problem is that the values for PR(Pj) are unknown. To 

overcome this, we need to initialize all the web pages with 

an equal PageRank value, and then transform equation 

(2.1) into a recursive equation. Brin and Page assumed 

that at the beginning all the pages have a constant PageR­

ank value of - , where n is the total number of pages in the 

web graph. The iterative procedure calculates PageRank 
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at (k + l)-th step as 

(2.2) PRM(P,)= £ ^ p . 

The process initiates with setting PRo(Pi) — ^ for all pages 

Pi. As discussed in the previous section, since the PageR-

ank Markov chain is ergodic, the eventual convergence of 

the PageRank scores is guaranteed. 

2.5. The World's Largest Matrix Computat ion 

Cleve Moler, the founder of the well-known mathemati­

cal software matlab, cited PageRank as "The World's Largest 

Matrix Computation" in [17]. At that time Google was ap­

plying the Power Method to a sparse matrix of order 2.7 

billion. Now, it has at least 54 billion rows and columns! 

(See [2].) 

To find the PageRank vector, we should solve for the 

eigenvector s such that 

s T P = sT . 

Since P is a dense massive matrix, a direct approach to the 

calculations will not be feasible in general. To overcome 
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the computational problems, the power method is used to 

approximate the PageRank vector s. The algorithm works 

as follows. Fix a directed graph G of order n. 

(1) Initialize zo to be the stochastic vector with every 

entry equal to 1/n. 

(2) Define 

zT
k+1 = zpP = (zj )P* 

The sequence (z& : k € N) consists of stochastic vectors, 

since at every time step, we have the result of the product 

of two stochastic matrices. It can be shown that 

Inn zfc+i 
K—>00 

is the dominant eigenvector of the Google matrix; see [2]. 

From the Power method, we can approximate the PageR­

ank vector by taking powers of the Google matrix and mul­

tiplying it by zo- This amounts to simply summing up each 

column of P and multiplying the sum by 1/n. 

For completeness, we give an illustration of a PageRank 

computation. Figure 2.5 shows a sample graph G with six 

nodes. To find the PageRank vector of G. we first compute 
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the various matrices required in the definition of the Google 

matrix. 

FIGURE 2.2. A directed graph G. 

The P i matrix for G is 

Pi 

\ ( 0 1/2 1/2 0 0 0 

0 0 0 0 0 0 

1/3 1/3 0 0 1/3 0 

0 0 0 0 1/2 1/2 

0 0 0 1/2 0 1/2 

\ 0 0 0 1 0 0 j 
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The P2 matrix is 

( 0 1/2 1/2 0 0 0 \ 

1/6 1/6 1/6 1/6 1/6 1/6 

1/3 1/3 0 0 1/3 0 

0 0 0 0 1/2 1/2 

0 0 0 1/2 0 1/2 

\ 0 0 0 1 0 0 / 

If a = 0.85, then let a = a /2 , b = (1 — a) /6 , c = a /6 , and 

d = a / 3 . Then the Google matrix of G is then 

1 b a + b a + b b b b ^ 

6 + c 6 + c 6 + c 6 + c 6 + c b + c 

b+d b+d b b b+d b 

b b b b a+60+6 

b b b a+b b a+b 

b b b a+b b b 
\ 

Using the power method, the approximate PageRank 

vector (using the natural ordering {1,2,3,4, 5,6}, and with 

two decimal places of accuracy) is 

0.05 0.07 0.06 0.35 0.2 0.27 
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2.6. Implementation of a PageRank Calculator 

In this section, a brief description of an implementa­

tion of PageRank is given on a graph with n nodes. The 

PageRank calculator implemented for the thesis uses the 

algorithm provided in [13]. 

(1) The vector piO is the initial vector, which we nor­

mally set to 1/n. 

(2) H is the manipulated hyperlink matrix, P%. 

(3) n is the size of the matrix or the web. 

(4) a lpha is the teleportation factor. 

(5) eps i l on is the convergence tolerance; in the ac­

tual implementation, we set the total iteration steps 

equal to 20. 

(6) The vector a is the dangling node vector in which 

an entry is 1 if its corresponding node is a dangling 

node, and 0, otherwise. 

%Implementation of PageRank c a l c u l a t o r 

%using power method 

func t ion [p i , t ime ,numi t e r ]= 

PageRank(p iO,H,n ,a lpha ,eps i lon) ; 
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rowsumvector=ones(l,n)*H'; 

nonzerorows=find(rowsumvector); 

zerorows=setdiff(1:n,nonzerorows); 

l=length(zerorows); 

a=sparse(zerorows,ones(l,1),ones(l,1),n,1); 

k=0; 

residual=l; 

pi=piO; 

tic; 

for ( i=0:20 ) 

%while(residual < epsilon) 

prevpi=pi; 

k=k+l; 

pi=alpha*pi*H + (alpha*(pi*a)+l-alpha) 

*((l/n)*ones(l,n)); 

r e s i d u a l = n o r m ( p i - p r e v p i , 1 ) ; 

end; 

numiter=k; 

t ime=toc ; 

70save p i ; 



CHAPTER 3 

PageRank in Power Law Graphs 

PageRank roughly measures the popularity of a web 

page based on its number of in-links. We discussed PageR­

ank in detail in Chapter 2, and we proved that it is the 

stationary distribution of the PageRank random walk. We 

now present recent work by Litvak et al. [14], who proved 

that under certain assumptions PageRank and in-degree 

distributions of a power law digraph obey a power law with 

the same exponent. To prove this result, we model the re­

lation between PageRank and in-degree via a stochastic 

equation. All the results described in this chapter come 

from [14]. 

Studying the potential similarity between PageRank and 

in-degree of the web pages is of particular importance be­

cause it provides ground for simpler, cheaper and less time-

consuming calculations. The matrix calculations performed 

to estimate PageRank, are massive. However, it is straight 

forward to find the in-degree of a web page. 

33 
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To study the behaviour of the PageRank tail, Laplace-

Stieltjes transforms are used. The Tauberian Theorem and 

the theory of regularly varying variables are then applied 

to a certain stochastic equation to prove analytically that 

the tails of PageRank and in-degree distributions vary only 

in a multiplicative constant. Hence, the PageRank and in-

degree distributions in power law graphs follow power laws 

with the same exponent. 

We begin by recalling the PageRank equation in its sum­

mation form. (See Equation 2.1 from the previous chapter.) 

(3.1) PR(i) = a J2 ^ T ^ + (1 - ")• 
jeN(i) J 

An interpretation of (3.1) is that the PageRank of node 

i depends on the in-degree of i and PageRank of its in-

neighbours. However, it is important to note that while 

the linear algebraic methods often used in PageRank lit­

erature work well for most PageRank computations, they 

are not sufficient for analyzing the asymptotic properties 

of the PageRank distribution. The mathematical approach 

to PageRank analysis used in [14] stems more from applied 
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probability and stochastic operations research, than from 

linear algebra. 

In Donato et al. [7], Fortunato et al. [9] and Becchetti 

and Castillo [1], experiments performed on the web graph 

confirm the similarity in tail behavior of PageRank and in-

degree distributions. The exponent value (3 for the power 

laws of the PageRank and in-degree distributions were found 

in all cases to be around 1.1. Moreover, the cited experi­

mental studies have shown that the PageRank of the top 

10% of the nodes always follows a power law with the same 

exponent independent of the teleportation factor a. 

In a power law distribution, there is a so-called 30-70 

rule: the tail will cover 70 percent of the value of the distri­

bution. We will therefore compare the tail distribution of 

PageRank and in-degree. In other words, we focus on tail 

asymptotics for PageRank and its relation with in-degree. 

Since we are only interested in the tail, we are looking into 

web pages with high popularity or PageRank value, which 

can be stated as 

(3.2) F(PR> x), 
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for a suitably large x, and where F(A) is the probability 

of the event A in a probability space. Observe that (3.2) 

defines the fraction of pages having PageRank greater than 

x, where x is large. One way to analyze such a probability 

is to find an asymptotic expression p{x) for which 

,. F(PR > x) ., 
lim — — — — - = 1. 
x^oo pyx) 

If such a p(x) is found, then p(x) and ¥(PR > x) are 

asymptotically equal, and so we can approximate the tail 

of PageRank by p(x). 

3.1. Regularly Varying Random Variables 

A real-valued function RV(x) is said to be regularly 

varying of index j3 G M. if for every t > 0, 

lim ™ = if. 
z-»oo RV(X) 

A real-valued function SV(x) is said to be slowly varying 

if for every t > 0, 

SV{tx) 
l i m "cTTTT = x-
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A careful look at the above definitions leads us to a relation 

between RV and SV functions: every regularly varying 

function can be written as 

RV(x)=x<3SV{x), 

for some slowly varying function. We can also define the 

regularly varying property for random variables as well as 

functions. Recall that a(x) ~ b(x) if 

a(x) 
l i m T^T = L 

A random variable X is said to be regularly varying with 

index (3 if its distribution F(x) can be written as 

1 - F ( x ) ~ x~pSV{x), 

for some slowly varying function SV(x). The Laplace-

Stieltjes transform of X is 

/(5) = E[e-*], 
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where s > 0 and E(Y) is the expectation of the random 

variable Y. The n-th moment of X is written as 

poo 
£„ = / XndF(x). 

Jo 

By expanding / in a series at s = 0, the successive moments 

of F can be obtained. Moreover, the n-th moment of X is 

finite if and only if there exist coefficients £0, • • •, £,n such 

that fn(s) — o(sn), as s —» 0. The following lemma states 

this in a precise fashion. 

LEMMA 3.1.1 ([14]). The n-th moment of X is finite if 

and only if there exist real numbers £0 = 1 and £i> • • • > £n; 

such that 
n p 

s—>0 •«•—' ?! 

i=0 

The above coefficients & may be uniquely found. If £n < 

co, then we write: 

fn(s) = (-ir+i(f(s)-J2^(-s^ 
\ i=0 

Later, we will use fn(s) further to discuss the tail proper­

ties of the distribution. There exist an important relation 



3.2. THE RELATIONSHIP BETWEEN IN-DEGREE AND PAGERANK 39 

between asymptotic behaviour of a regularly varying distri­

bution and its Laplace-Stieltjes transform. The following 

theorem, used throughout this chapter, makes this relation 

precise. 

THEOREM 3.1.2 (Tauberian Theorem; [14]). For n G N 

and if£n < oo7 (3 = n + r), and rj G (0,1), then the following 

are equivalent 

(1) / n (s ) ~ ( - 1 ) ^ ( 1 - pySV{% ass^O 

(2) 1 - F(x) ~ x-PSV(x), as x -> oo. 

The proofs of the above lemma and theorem may be 

found in [14]. Theorem 3.1.2 plays an important role in 

finding the relation between asymptotic distributions of 

PageRank and in-degree. 

3.2. The Relationship between In-degree and 

PageRank 

We now describe the relationship between PageRank 

and in-degree. We consider equation (3.1), but make some 

important simplifying assumptions. These assumptions will 

enable us to model this relation by focusing on the influence 

of in-degree without considering other factors. Naturally, 
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these assumptions are not realistic, but in further discus­

sions we try to reduce them by generalizing the model ob­

tained. Rewrite equation (3.1) in the following form of a 

distributional identity with the random variable R: 

M 

(3.3) R = a^2-Rj + (l-a), 
Lb 

3=1 

where = represents a distributional identity and M is the 

in-degree of the considered random page. The assumptions 

we make are as follows. 

(1) Let R represent the PageRank of a randomly chosen 

page. One of our goals in this chapter is to deter­

mine the distribution of the random variable R. 

(2) Fix d > 1 and assume that it is the number of out­

going links for all pages. Hence, out-degree is equal 

for all nodes. 

(3) The dangling node effect is neglected. That is, we 

do not consider the effect of pages without outgoing 

links. 

(4) The random variables R and M are independent. 

That is, the in-degree distribution and PageRank 
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distribution of a random page have independent dis­

tributions (which is not the case, in general). 

(5) All Rj's are independent and have the same distri­

bution as R and hence, R = 1 constitutes the unique 

solution of the equation (3.3). 

The equation (3.3) has the same form as the original PageR-

ank formula as in equation (3.1). 

We will now find the in-degree distribution for a ran­

domly chosen web page. Although it is well-known that 

the in-degree distribution of the web graph follows power 

law (see for example, [2]), we need to be able to formally 

describe this random variable for our analysis. We use the 

theory of regularly varying random variables. The in-degree 

of a randomly chosen page is modeled by a non-negative 

integer-valued, regularly varying random variable which is 

distributed as N(X). In particular, the random variable X 

is regularly varying with index (3 and N{x) is the number 

of Poisson arrivals on the time interval [0, x\. For more de­

tails on Poisson processes and their application in Markov 

chains, see Sections 8.2 and 8.3 of [12]. 
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The variable N(x) is a "discretization" of the random 

variable X. In this way, we guarantee that while in-degree 

has a power law distribution, it only takes integer values 

and hence, we do not have to put any restrictions on X. 

In Theorem 3.2.1 below, we will prove that N(X) is also 

regularly varying with the same index as X, and so fol­

lows a power law with the same exponent. First, let Fx 

and FN(X) be the distribution functions of X and N(X), 

respectively. Let / and <fi be their corresponding Laplace-

Stieltjes transforms. 

THEOREM 3.2.1 ([14]). The following are equivalent. 

(1) 1 - Fx(x) ~ x-PSV(x), as x -> oo 

(2) 1 — F/v(x) ~ x~^SV(x), as x —> oo 

We give a brief sketch of the theorem. We first need a 

technical lemma. 

L E M M A 3.2.2 ([14]). Let fn(s) and(j)n(s) be the Laplace-

Stieltjes transforms of X and N(X), respectively. Then 

fn(s) = o(sn) if and only if (f>n(s) = o(sn). 
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While we omit the proof of the lemma, here is an infor­

mal sketch of its proof. One shows that the corresponding 

moments of X and N(X) always exist. It may be shown 

that since we fixed the out-degree of all pages to be equal 

to d, then the average in-degree would also equal d. That 

is, E[X] = d and similarly, E[N(X)] = d. The final step 

in the proof of Lemma 3.2.2 is to consider the generating 

function of N(X) and derive its Laplace-Stieltjes transform 

in terms of the Laplace-Stieltjes transform of the random 

variable X. 

We now sketch a proof of Theorem 3.2.1. 

Proof of Theorem 3.2.1. We only prove that (1) 

implies (2). Prom Theorem 3.1.2 in the previous section, 

we have that 

1 — Fx{x) ~ x~^SV(x), as x —> oo 

implies that 

fn(t) ~ ( - 1 ) ^ ( 1 - 0)1?SV Q , as t -* 0 

where n is the largest integer smaller than /?, and T is the 

gamma function. Since 0(s) = f(t)7 by Lemma 3.2.2 we 
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have that fn(s) ~ o(sn) where t(s) = 1 — e~s ~ s. By 

Lemma 3.1.1 and Theorem 3.1.2, we have that 

1 — FN(X)(X) ~ x_/?5F(a:) as x —> oo. D 

The model of Litvak et al. for the number of incoming 

links of a randomly chosen web page works well, since it de­

scribes an in-degree distribution which follows a power law 

with finite expectation and a non-integer exponent (3 > 1. 

Having obtained the distribution for in-degree and PageR-

ank, we will now proceed to retrieve the main stochastic 

equation for the relation between PageRank and in-degree 

and compare their tail distributions in the next section. 

3.3. Stochastic Equations 

Using the discussion in the previous two sections, we can 

now reformulate the equation (3.3) as follows: 

N(X) 

(3.4) R = a Y; -jRj + {l-a), 
CX 

3 = 1 

where a € (0,1) is the teleportation factor, d > 1 is the 

fixed out-degree of each page, and N(X) describes the in-

degree of a randomly chosen page in terms of the Poisson 
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arrivals on a regularly varying random variable X which 

represents time. The stochastic equation (3.4) adequately 

represents the PageRank distribution and its relation with 

the in-degree distribution. We can now apply analytical 

methods to study the tail behaviour. 

The main idea of the analysis is to apply the Laplace-

Stieltjes transforms of X and R. By using the Tauberian 

Theorem, we may prove that R is regularly varying with 

the same index as X. By the Theorem 3.2.1, this then 

guarantees similarity in the tail behaviour of the PageRank 

R and the in-degree N{X). 

The first step is to write the Laplace-Stieltjes transform 

of the PageRank distribution R in terms of the probability 

generating function of N(X). Let GN(X) be the generating 

function of N(X). By applying Laplace-Stieltjes transform 
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to the definition of R in (3.4) we have that 

r{s) = E[e-sR] = E{e-<l-a^}E a 

~d 

N{X) 

exp | — s— \] Ri 
i=i 

= e 
—s(l—a) 

s ( l -a ) 
oo 

expr4E^ 
i = l 

F(N(X) = k) 

r\s-X) F{N(X) =k) 
k=i 

d 

Ki-")(S N(X) r s 
a 

~d 

Note that for all i, we have Ri = R, and that is how the 

second equality in the above set of equations is obtained. 

In the following corollary, we prove that GJV(X)
 c a n be ex­

pressed in terms of the Laplace-Stieltjes transform of X. 

COROLLARY 3.3.1 ([14]). I/GN(X) ^ the generating func­

tion of N(X) and f is the Laplace-Stieltjes transform of X, 

then we have that 

&N(X)(s) = / ( l - S) 
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Proof. By definition of the generating function, 

GN(X)(S) = E[sNW] 
roo 

= / E[sN®]dFx(t) 
Jo 

roo 
= / e-^dFxit) 

Jo 

= f(l-s). • 

The above corollary leads us to an important conclusion for 

the Laplace-Stieltjes transform of R. By Corollary 3.3.1, as 

CJV(X)(S) = / ( I — s) w e obtain that 

(3.5) r(s) = f(l-r(^s))e-<1-a\ 

As in the previous section where the distribution for in-

degree was calculated, here we perform the analysis by 

showing the correspondence between the existence of the 

n-th moments of X and R. The independence of N(X) 

and the Rj's is heavily used. For example, using this in­

dependence, we can take the expectation from both sides 
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of (3.4). Similar to the result of Lemma 3.1.1, we can re­

formulate it and show that 

(3.6) fn(s) = o{sn) if and only if rn{s) = o(sn). 

Now we can present the final theorem in this chapter in 

which the observed correlation between in-degree and PageR-

ank distributions is explained in power law graphs. The 

proof of the theorem can be found in [14]. 

THEOREM 3.3.2. The following are equivalent. 

(1) 1 — FN(X){X) ~ x~^SV(x), as x —> oo In particular, 

N(X) is a regularly varying random variable with 

index j3. 

(2) 1 — FR{X) ~ d0
<^a/3dx~f3SV(x), as x —> oo. In partic­

ular, R is a regularly varying random variable with 

the same index (3. 

Theorem 3.3.2 shows that the asymptotic behaviour of 

PageRank and in-degree are similar in power law graphs, 

since they both follow a power law with equal exponents 

(they differ only by the multiplicative factor J^_ Pd). 
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3.4. Numerical Experiments and Conclusion 

How do we verify a power law behaviour in practice? 

It is not always simple to plot, measure, or numerically 

identify power law distributions. A well-known technique 

is to plot the so-called log-log graph of the distribution. 

More precisely, we plot the degree distribution in logarith­

mic scale and expect to obtain a straight line. Experiments 

conducted by Newman in [18] suggests that since we are 

focusing on tail distributions, we should plot the fraction 

of quantities which are not less than a certain value. In 

particular, we should plot the complementary cumulative 

function instead; that is, 

l-F(x)=F(X >x), 

rather than to plot the histogram. In this way, we will have 

a more concentrated plot. 

Another issue is that if a distribution X follows power 

law with exponent (3 such that 1 — F(x) ~ Cx~^, where C is 

a constant, then the corresponding histogram has exponent 
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(3+1. Thus, the plot of 1 — F{x) on logarithmic scale will 

have a smaller slope than the original plot of the histogram. 

Computation of the correct slope from real-world data 

is also an important part of the numerical analysis. Gold­

stein et al. in [10] suggest that using an MLM (Maximum 

Likelihood Method) is advantageous over the standard least 

square fit method, since the former provides us with a more 

robust estimation of the power law exponent. The calcula­

tions based on MLM yield a slope of —1.1 which confirms 

that both in-degree and PageRank have power laws with 

the same exponent (3 — 1.1. 

In the results retrieved from the experiments using web 

data, Litvak et al. focus on the right tail behaviour of the 

PageRank distribution. The result is that in a log-log plot, 

both in-degree and PageRank distributions plot as parallel 

lines for all values of the teleportation factor, as long as 

we focus on large PageRank values. In fact, comparing 

PageRank and in-degree does depend on the teleportation 

factor. However, the PageRank distribution of the top 10% 

of web pages obeys a power law with the same exponent as 

in the in-degree, independent of the teleportation factor. 
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Despite their results, the Litvak et al.'s model however, 

lacks the realistic dependencies between the PageRank val­

ues of the pages sharing a common neighbor. This is why 

the exact value of the multiplicative constant provided in 

Theorem 3.3.2 does not fit the results from their web crawls. 

Further work would be to reduce the assumptions made 

in Section 1.2 so that the generalized model can capture 

mainly the dangling node effect and the dependencies be­

tween PageRank values of the pages pointing to one certain 

web page. 

In conclusion, Litvak et al. showed that in power law 

graphs, PageRank and in-degree follow the same power law 

distribution which varies only in a multiplicative constant. 

In the next chapter, we provide examples of graphs where 

the PageRank and in-degree do not follow similar tail dis­

tributions. 



CHAPTER 4 

PageRank and In-degree 

4.1. Introduction 

In this chapter, we supply some examples complement­

ing the findings of [14]. Before we begin, let us have a quick 

review of the materials discussed in Chapter 2 on PageR­

ank. The PageRank vector for a digraph G is calculated 

by first calculating the PageRank matrix 

(4.1) P = P(G) = a P 2 + ^—^-3n,n, 
n 

where Jn / n is the nxn matrix of all l 's and a £ (0,1) is the 

teleportation constant. The matrix P defined on the left 

hand side of the equation above is the Google matrix (or 

PageRank matrix). The PageRank matrix is positive and 

stochastic, and therefore, is the transition matrix for some 

Markov chain. 

The Markov chain attributed to the PageRank matrix 

converges to a stationary distribution s. This convergence 

53 
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is guaranteed as it is an ergodic Markov chain. Since s 

is the dominant eigenvector of the transition probability 

matrix of this Markov chain, we have that L) 

The vector s is called the PageRank vector, whose ith en­

try is the PageRank of the ith node of the graph (according 

to some fixed enumeration of the nodes). Hence, to calcu­

late the PageRank vector of a graph, we should find the 

stationary distribution of the Google matrix P in (4.1). 

A good approximation to the PageRank vector can be 

evaluated using the Power method, discussed earlier in Sec­

tion 2.3. For this method, we start with an initial (arbitrary 

but fixed) non-negative, non-zero vector so, and then define 

(4.2) sj+1 = sf 

= (sJ)P*-

After a sufficient number of iterations (normally 20 to 50 

in practice; see [3]), s approximates the PageRank vector. 

The iterative process in (4.2), presents a useful alternative 
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for calculating the s. In (4.2), there are two steps: first, we 

raise the Google matrix P to a power t and then multiply it 

by the vector so- If we take so to be the vector of all 1 's, then 

this multiplication will give the column sum of the matrix 

P . Hence, the PageRank vector is simply the column sum 

of the limiting vector in the powers of the Google matrix 

(which is later on normalized to ensure it is stochastic). 

The Google matrix, however, is a dense matrix and the 

Power Method calculations involving matrix multiplication 

become increasingly costly as higher powers are formed. An 

alternative is to only work with the sparse matrix P2. In 

this case, the stationary distribution of the uniform random 

walk is computed (not PageRank). 

Litvak et al. [14] introduced numerical methods and a 

new model that proves that with certain assumptions, in 

power law graphs, the PageRank and in-degree distribu­

tions are similar. This result is interesting and of practical 

importance because PageRank calculations are costly when 

compared to the computation of in-degree. (To find the in-

degree of the ith node, simply find the ith column sum of 

the adjacency matrix. The adjacency matrix of the web 
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graph is sparse.) Litvak et al. [14] proved that this result 

is true for power law graphs, but not for arbitrary graphs. 

The main goal of the coming sections is to provide exam­

ples of graphs whose PageRank and in-degree distributions 

are distinct. 

4.2. Binary Trees 

A tree is a connected, acyclic digraph; a rooted tree has 

a distinguished node called the root. A binary tree is a 

rooted tree in which every node other than the leaves have 

in-degree equalling 2. For a fixed i e N , the it\\ row of a 

binary tree consists of those nodes which are connected to 

the root by a directed path of length exactly i — 1. Define 

^ ( r ) to be a binary tree with r rows. 

There are several interesting properties for binary trees. 

For instance, the set of nodes of T2(r) may be identified 

with a set of finite 0-1 sequences (or strings), with the root 

representing the empty sequence. Figure 4.1 displays such 

a binary string labelling. 

Our goal is to calculate the PageRank for every node 

in the binary tree, and then compare the ranking with the 
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J0 

A 
00 01 10 11 

FIGURE 4.1. The binary tree T2(3) with its 0-1 labelling, 

in-degree of the nodes. As we will see for small examples, 

the PageRank and in-degree distributions of binary trees 

do not correlate. We conjecture that this holds in general 

for all binary trees. For larger examples, while we do not 

prove this directly, we offer evidence for this conjecture 

by proving that the stationary distribution of the uniform 

random walk on the binary tree does not correlate with the 

in-degree distribution. 

We first need some notation for T2(r). This will help to 

quickly recognize on which row each node is located. Let 

Xij denote the i-th node on the j - t h row of the binary tree. 

The Figure 4.2 shows such a labelling for T2(3). 

Although the proof of the following lemma is folklore, 

we include it for completeness. 
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A1,1 

X2,lf£ i l X 2 , 2 

y y y y 
3,1 3,2 3,3 3,4 

FIGURE 4.2. The binary tree T2(3) with xitj labelling. 

L E M M A 4.2.1. Fix an integer r > 1. 

(1) For 0 < i < r, the number of nodes on the i-th row 

(assuming the root to be the 1st row) of the binary 

treeT2{r), is 2i~l. 

(2) The binary tree T2{r) has order n — 2r — 1. 

We note that all throughout this chapter we assume the 

binary tree to be a full binary tree, meaning that all of the 

leaves are on the same level and every non-leaf node has 

two children. 

Proof: For item (1), we perform induction on i. For the 

base step of the induction, consider the first row of nodes in 

T2(r). As i = 1, hence, 2 l _ 1 = 2° = 1. But there is exactly 

one node in the first row. 
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The induction hypothesis assumes that on row i, we have 

2'™1 nodes. Moving to the row i + 1, every node in row i 

has two children (since the binary tree is full) and so the 

number of nodes on row i + 1 is twice the number of nodes 

on row i: 

#(nodes on row i-\-\) = 2 x #(nodes on row i) 

= 2 x 2 i _ 1 

= 2 \ 

For item (2), the total number of nodes in a full binary tree 

T^r ) , is counted by adding up the total number of nodes 

on each row. Hence: 

\T2(r)\ = 2 1 + 2 2 + 23 + . . . + 2 r 

r—1 

= E2" 
i=0 

= 2 r - l . • 

4.3. Calculating the Stationary Distribution 

Calculating the exact PageRank vector for the binary 

tree would require us to compute all the powers of the dense 
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Google matrix. As we are presently not able to perform this 

calculation, we decided instead to calculate the stationary 

distribution of a uniform random walk on the binary tree. 

As PageRank is the stationary distribution of the uniform 

random walk with teleportation, our results are suggestive 

of the actual PageRank values. The proofs in this chapter 

are original work. 

A 

AA:AA 
FIGURE 4.3. An arbitrary binary tree 

A binary tree is depicted in Figure 4.3. The adjacency 

matrix (namely P i ) for the binary tree has the following 
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structure. 

/ 0 0 0 0 ^ 

1 0 0 . . . 

1 0 0 . . . 

0 1 0 . . . 

0 1 0 . . . 

61 

P i = 

The matrix P i contains a nice pattern: starting from the 

second row, every two consecutive rows are equal. The next 

pair of rows results by a single shifting of the previous pair 

of rows to the right. For X^r) , this pattern continues until 

the l 's reach the (2 r_1)-th column of the matrix. Since the 

leaves of the tree have zero in-degree, the matrix will have 

a rectangular block of zeros of size (2r — 1) x 2 r _ 1 on its 

right side. The relative simplicity of this pattern allows a 

rigorous analysis of the uniform random walk on T2(n). 

Consider the P 2 matrix for T2(r). Recall that the P 2 

matrix is just P i without zero rows. In the binary tree, the 

root or the node x\^_ is the unique dangling node, where the 

random surfer would become stuck in the uniform random 

walk. Hence, we will assume that the root is pointing to 
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all other nodes in the graph; this assumption turns P 2 into 

a stochastic matrix. The P2 matrix for the binary tree is 

therefore, 

' 1/n 1/n .. . 1/n » 

1 0 0 . . . 

1 0 0 . . . 

0 1 0 . . . 

0 1 0 . . . 

M = P 2 = 

V ; • ; 

where n = \V(T2(r))\. Throughout, let 

M 
6 — J n . l ~~ 

• • / 

w 
We now state the main results of this section 

T H E O R E M 4.3.1. Let H be the P 2 matrix of the binary 

tree X^r) . Fix k a positive integer. Define [Hfc] • to be the 

sum of the column corresponding to the node xp^. For all 
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k > 1 and 1 < p < r, 

where 1 < i < j < 2P~1. In particular, the column sums of 

any two nodes on the same row in T2{r) are equal. 

T H E O R E M 4.3.2. Let H be the P2 matrix of the binary 

tree T2(r). For all k > 1, 1 > i > j > 2v~l and 1 < p < 

r — 1, we have that 

[H }Pjl = 2[H }p+ij + - [ H ]i;i; 
ft/ 

where n = 2r — 1. 

Note that -[H]i,i does not depend on either p or j . We 

defer the proofs of Theorem 4.3.1 and 4.3.2 until the fol­

lowing section. We have however, the following corollary. 

COROLLARY 4.3.3. Let s be the stationary distribution 

vector of the P2 matrix of the binary tree T2(r). 

(1) For any two nodes on the same row of T2(r), the 

corresponding entries in s are equal. 

(2) For all 1 < p < r — 1, the entry of s corresponding 

to any node on the p-th row is approximately twice 
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the entry corresponding to any of the nodes on the 

(p + l)-st row of s. 

Proof: For the proof of (1), by definition we have that 

(4.3) sT = lim e r H t . 
t—»oo 

Now apply [•]-,• to both sides of (4.3), representing the sum 

of the j - t h column (or as in this case, the j-th element of 

the vector) on both sides of the limit: 

[sr],- = [ l ime^H 'b 
t—>oo 

= nm[e T H t ] i 
t—*oo 

= l-limlH*],-. 

Note that [s]j = [e^H*]j represents the j-th. element of the 

vector. By Theorem 4.3.1, since H is the P2 matrix of the 

binary tree T2(r), for all t and for 1 < i, j < 2P~1, 

[H]p,i = [H ]p,j. 

But the column sum [H*]P)i represents the stationary value 

for the node xPti: namely [S]2P-I+J_I; similarly [H*]pj is the 

stationary value for the node xpj, namely [S^P-I+J-I- Hence, 
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the corresponding (2P~1 + i — l)-th and (2P~1 + j — l)-th 

entries in the stationary vector are the same. As i and j 

were arbitrary, any two nodes on the same row have equal 

entries in s. The proof of item (1) follows. 

For the proof of item (2), since s is the stationary dis­

tribution of the P 2 matrix of the binary tree, we can apply 

Theorem 4.3.2 to H. As in the proof of the previous corol­

lary item, we use the definition of s, given in (4.3) for the 

entries i and j corresponding to the nodes lying on two 

consecutive rows p and p + 1: 

[sT], = [ l ime T H t ] i 
t—>oo 

= l i m ^ H * ] , 

Using part (1) of the corollary, by Theorem 4.3.2, and the 

fact that the jth node is located on the next row right after, 

we can write for any fixed t > 0 and for 1 < i, j < 2P~1, 

[H ]Pj = 2 x [H ]p+ij -\—[H l^i. 
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But the column sum [H*]P)j represents the stationary value 

for the node x p j , and similarly [HL]p + i j is the stationary 

value for the node xp+i,j: any node on the (p + l)-th row. 

Hence, the corresponding (2P _ 1 + i — l)-th entry is approx­

imately twice the (2P"X + j — l)-th entry in the stationary 

vector. As i and j were arbitrarily chosen, any two nodes 

on the two consecutive rows will have this property in s. • 

By Corollary 4.3.3, we see that the stationary distri­

bution decreases from the largest value at the root to the 

smallest value at the leaves. This is analogous to a power 

law, since the leaves are the most abundant nodes. How­

ever, the in-degree distribution has either values 0 or 2. In 

particular, the stationary distribution for the random walk 

and the in-degree distribution are quite different. We con­

jecture that an analogous difference occurs when comparing 

the PageRank distribution with the in-degree distribution. 

Before moving on to the next section, let us make this 

conjecture more plausible by comparing the PageRank and 

in-degree for T2(4). The graph of T2(4) is given in Fig­

ure 4.4. 
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FIGURE 4.4. The directed binary tree T2(4). 

After calculating the adjacency matrix P i , we change 

the row one zero values to 1/15 to recover the dangling 

node x\ \. The result of this step is the P2 matrix given by 

/ 1/15 1/15 1/15 . . . \ 

P 2 = 

1 

1 

0 

0 

0 

0 

1 

1 

0 

0 

0 

0 

V J 
Assuming the teleportation factor a to be equal to 0.85 

and using the power method with t = 20 iterations, we 
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calculate the PageRank vector to be approximately 

(0.28 0.14 0.14 0.06 0.06 0.06 0.06 0.02 

0.02 0.02 0.02 0.02 0.02 0.02 0.02) 

Therefore, the nodes in T2(r) can be ranked by PageRank 

as 

( 1 2 2 3 3 3 3 4 4 4 4 4 4 4 4), 

which implies that the root is the highest ranked page (as 

expected). Moreover, all nodes on the same row, have equal 

rank. 

As we can see in Figure 4.4, the in-degree of all the nodes 

of 12(4) is 2, except for the leaves which have 0 in-degree. 

The in-degree vector, written ID, has its first seven entries 

equal to 2 (corresponding to the non-leaf nodes) and the 

next eight elements equal to 0 (corresponding to the leaves 
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of the tree): 

/ 2 \ 

ID = 
2 

0 

W 
Thus, the in-degree ranks the pages as 

( 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2), 

implying that the first seven pages in the graph (that is, 

all the non-leaf nodes) have equal ranking. All the leaves 

come in second position. 

Q. 0.4 
CO 
i_ 
O) 
Q) 

= 0.3 
a> 
2 
D) 
<D 

•g 0.2 

(A 

i 0.1 
to 

OH 
0> 
en 
CL 0 

x x 

• * • • PageRank 
indegree 

X X X X 

_fc X X X X X X X 

5 10 
Nodes in Binary Tree 

15 

F I G U R E 4.5. PageRank versus in-degree for T2(4). 
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In Figure 4.6, the values for PageRank and in-degree 

are plotted in one graph, so we can see the difference be­

tween their rankings. As it is evident from the figure, the 

PageRank and in-degree in this example do not correlate: 

PageRank follows a rough power law, while the in-degree 

is a step function. 

1 ' 1 1 1 

•1 

1 1 ' 

m PageRank 

-

0.15 0.2 
PageRank value 

0.35 

j in—degree 

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 
in-degree value 

FIGURE 4.6. PageRank versus in-degree distributions 
for the binary tree T2(4). 

This is more clearly sketched through the plot of the 

PageRank distribution of the nodes versus the in-degree 

distribution of the nodes, given in separate histograms in 

Figure 4.6. 
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4.4. Proofs of Main Results 

Consider the nodes on two consecutive rows of T2(r). Let 

us say the first row starts with the node 2^1 and the second 

row starts with the node 2^+1,1. Note that we already know 

there are 2 l _ 1 nodes on the i-th row and 2l nodes on the 

(i + l)-st row. It is essential to know which column in the 

adjacency matrix the node Xij will be presented by. Always 

counting from top to bottom and left to right, the node x^j 

is the j '-th node on the i-th row. So, counting the nodes, 

we have total of 2*_1 — 1 nodes before the i-th row begins; 

adding it up with the j nodes until we reach x-ij, we will 

have that the node xi}j is the {{2l~l — 1) + j ) - th node in 

T2(r). Hence, we now know that the in-degree, and the 

stationary distribution of the node x,-hj will be presented 

through the (2*_1 + j — l)-th column of the corresponding 

adjacency matrices. 

Before stating the proof for the theorems, we need lem­

mas from linear algebra: 
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A 

X r i > ( 1 < i < 2 M ) 

X r + 1 i , ( 1 o < 2 r ) 

F I G U R E 4.7. The general form of a binary tree with the 
labeled nodes. Here xr^ denotes the i-th node on the r-th 
row. 

L E M M A 4.4.1. For every matrix A, and a vector 

fai\ 

a = 
OC2 

\ On J 
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we have that 

A 

1
 a i \ 

a2 
= [Ai lAal - . - IA*] 

' ^ 

OL2 

\ ®n J \®n J 

= aiAi +a2A2 +... +anAn, 

where A$ stands for the i-th column of A. 

L E M M A 4.4.2. For all matrices A and B (with appropri­

ate sizes for matrix multiplication), the multiplication can 

also be evaluated as follows: 

A B = A [ B i | B 2 | . . . |B„] = [AB!|AB 2 | . . . |AB n] . 

P r o o f of T h e o r e m 4.3 .1: We shall proceed by induc­

tion on the parameter k, which is the power of the matrix 

H. For k — 1, the theorem holds since in H1 , all columns 

have the same sum (equal to 2 + - ) , except for the leaves of 

the binary tree which are total of 2 r~1 nodes with column 

sum equal to 1/n. 
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We now assume that the theorem holds for k = i and 

move forward to prove it for k = i + 1 . Using Lemmas 4.4.1 

and 4.4.2, we have that 

[H ]rj = [H • H]rti 

= [Hfc]r+1)2l_1 + [H']r+i>2i + l/n[H*]i 

[H -H] rj 

[H'U^-x + lH'Ui^ + l/nlH*]! 

A 

xr+1,2i-1 Ar+1,2j-1 

Similarly, 

f H * + l 
r,3 

FIGURE 4.8. The location of some of the nodes used in 
the proof of Theorem 4.3.1. 



4.4. PROOFS OF MAIN RESULTS 75 

However, if the nodes xr^ and xT)j are assumed to be on 

the same row (which is the case, since 1 < i < j < 2r'~1 

and the total number of nodes on the r-th row is 2 r _ 1 ) , the 

nodes xr+\^, a^+i^+i, xr+ij and xr+itj+i are on the same 

row. See Figure 4.8. 

Now, using the induction hypothesis, we have that: 

[H ]r+l,2i-l = [H ]r+l,2i = [H ]r+l,j = [H jr+ij+i. 

Hence, 

[H+i], r ) i = [H + i ] r j - . 

The final step of the induction is carried out and hence, for 

all k > 1, 

[H*]r>< = [H fc] r j. D 

One interesting point to consider is that, not only are 

the above sums equal, but also the value for each element 

on row r, is approximately twice the value for the elements 

on row r + 1. To verify this, we prove Theorem 4.3.2. 
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Proof of Theorem 4.3.2: Using the results of Theo­

rem 4.3.1 we have that 

(4.4)[Hfc+1]p, = pHfc]p+i,2i-i + [H f c Ui i a + l /n[ i r ] i 1 i . 

But since both nodes xp+\^i~i and xp+i^i are located on 

the same row, they have equal column sums: 

[H ]p+i,2i-l = [H ]p+i,2i. 

Hence, 

(4.5) [H*+1]Pii = 2 x [ H V i , 2 i + l M H i ] i , i . 

By Theorem 4.3.1 applied to each row, all the nodes 

will have the same column sum value. By considering the 

equations (4.4) and (4.5), and not considering the effect 

of the root (which is carried as a constant all along the 

equations) it is seen that the column sum for the nodes on 

the pth row is approximately twice the column sum of each 

of the nodes on the (p + l)-th row. • 



4.6. PAGERANK OF RANDOM AND POWER LAW GRAPHS 77 

4.5. Conclusions for Binary Trees 

In Sections 4.3, we calculated the stationary distribu­

tion of the uniform random walk on the binary tree. This 

vector, while not equal to the PageRank vector, is closely 

related to it. We proved in Theorems 4.3.1 and 4.3.2 that 

the values of the stationary distribution for the nodes on 

each row is the same and it reduces to approximately half 

for every row we move away from the root. This behaviour 

is suggestive of a power law degree distribution. On the 

other hand, all nodes of the binary tree have in-degree 2, 

except the leaves which have in-degree 0. The binary tree 

is, therefore, an example which shows that in-degree and 

the stationary distribution of the uniform random walk are 

not correlated. We conjecture that such a difference ex­

ists between in-degree and the PageRank distributions for 

binary trees. 

4.6. PageRank of Random and Power Law Graphs 

We provide some experimental results from simulations 

of both random digraphs and power law graphs. The results 

here corroborate the theoretical ones correlating PageRank 
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and in-degree in power law graphs described in previous 

sections of this chapter. 

We first consider random digraphs. A random digraph 

has n nodes, and the probability of an edge between two 

distinct nodes occurs independently with probability 1/2. 

See Figure 4.9 for a randomly sampled digraph with 100 

nodes. It may be proven that as the number of nodes n 

tends to infinity, we have a binomial distribution for in-

degree. This follows from the fact that the degree of a node 

is asymptotically concentrated on n /2 . (See Theorem 3.11 

in [2]-) 

30 

20 

10 

0 
0.C 

30 

20 

10 

0 

FIGURE 4.9. PageRank versus in-degree in a random 
digraph with 100 nodes. 

107 0.008 0.009 0.01 0.011 0.012 0 .01 : 

) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
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However, the actual web graph has a power law, not 

binomial, degree distribution. We therefore include the 

PageRank distribution of a power law (undirected) digraph 

(produced using the freely available software Pajek). In the 

histogram in Figure 4.10, the distributions of PageRank 

and in-degree for a power law digraph with 1,200 nodes 

is plotted. As is evident, both distributions follow similar 

power laws. 

300 

200 

100 

0 

~i r 

J I L 

- l r 

k_> I I- . I 1_ 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

FIGURE 4.10. PageRank versus in-degree in a power law 
digraph with 1,200 nodes. 



CHAPTER 5 

Conclusion and Future Work 

We surveyed the mathematics of PageRank, which is a 

link-based ranking algorithm measuring the popularity of 

nodes in a digraph. The study of PageRank presented in 

this thesis combines graph theory, Markov chains, stochas­

tic calculus, and statistics. In Chapter 2, we defined PageR­

ank and summarized its key properties. We implemented 

a PageRank calculator in Matlab. With this calculator, 

we experimented with different graphs and compared their 

PageRank and in-degree distributions. In Chapter 3, we 

studied the recent work of Litvak et al. [14]. They proved 

(under certain assumptions) that in power law graphs, the 

PageRank and in-degree distributions follow power law dis­

tributions with the same exponent. In Chapter 4, we con­

sidered binary trees as a counterexample to the assertion 

that PageRank and in-degree possess similar distributions. 

The analysis of the PageRank of the class of binary trees is 

81 
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significant, since it demonstrates that in general we cannot 

correlate PageRank with in-degree. 

Several problems remain open related to the work de­

scribed in this thesis. We list two few such problems here, 

which we will consider in the future. 

(1) Derive the PageRank distribution of binary trees for 

all orders. We conjecture that such a distribution 

follows a power law, with PageRank decreasing as 

we move further from the root node. All nodes 

on the same row should have the same PageRank 

value. More generally, we would like to compute 

the PageRank of m-ary trees, where m > 2 (in these 

digraphs, all nodes except the leaves have constant 

in-degree equalling m). 

(2) Livak et al. [14] made certain unrealistic assump­

tions in order to rigorously analyze PageRank using 

stochastic equations. For example, they assumed 

that all nodes have constant out-degree. They also 

assumed that the PageRank of nodes pointing to a 

similar page are independently distributed (in fact, 
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web pages that point to a similar page have corre­

lated PageRank distributions). Can their analysis 

be generalized if these assumptions are removed? 



Appendix 

We include the original code used in the computational 

results in this thesis. 

function M = MatRead (pjklnput) 

f id = fopen(pjklnput); 

A = f g e t l ( f i d ) ; 

v = sscanf(A, "/.*s 0/0d'); 

for i = l:v+l 

A = f g e t l ( f i d ) ; 

end; 

for i = l :v 

i ; 

L = f g e t l ( f i d ) ; 

M(i,:) = str2num(L); 

end; 

fcloseCfid); 
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function ID =InDegree (X,n) 

"/Calculates the indegree or column sum 

°/0of a random H-matrix of size n. 

ID = sum(X); 

% Now to normalize ID: 

ID = (ID - mean(ID))/max(abs((ID-mean(ID)))); 

ID = (ID + l)/2; 

save ID; 

end 

function Inl = Initial (n) 

"/Generates the initial column matrix 

%for the PageRank algorithm for size n. 

Inl = zeros(l,n); 

for i=l:n 

Inl(i)=l/n; 

end%for 
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%return Inl; 

save Inl; 

function J = RandomSample(n); 

"/oGives a random H-matrix of s 

X = randint(n,n); 

for j=l:n 

for i=l:n 

if i==j 

X ( i , j ) = 0 ; 

end°/0if 

end%for 

end°/0f o r 

y = sum(X,2 ) ; 

f o r j = l : n 

f o r i = l : n 

J ( i , j ) = X ( i , j ) / y ( i ) ; 

end%for 

end°/0f o r 

s ave J ; 
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°/0 Plots the histogram for both InDegree and 

% PageRank for T_2(4) 

hold on; 

X=[0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14]; 

PR_15_1 = [0.2755; 0.1402; 0.1402; 0.0648; 0.0648; 

0.0648; 0.0648; 0.0231; 0.0231; 0.0231; 0.0231; 0.0231; 

0.0231; 0.0231; 0.0231]; 

ID_15_1 = [2; 2; 2; 2; 2; 2; 2; 0; 0; 0; 0; 0; 0; 0; 0]; 

ID_15_2 = (1/49) * ID_15_1; 

subplot(2,1,1); hist(PR_15_l); 

subplot(2,1,2); hist(ID_15_2); 
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