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Abstract

In the case of minimizing risk with a given level of expected return, we discuss the
portfolio selection problem when the asset returns are characterized by a Gaussian
distribution and heavy tailed distribution.

More specifically, under the Gaussian assumption, we give the explicit solu-
tions to the problems of minimizing risk variance, CaR and EaR respectively. When
a compound Poisson process is assumed, we derive explicit solutions to the vari-
ance, CaR and EaR. Furthermore, we give the explicit solution for the CaR when a
Lévy distribution is considered.

For the more realistic process—normal inverse process, we are able to obtain the
analytical solution for the EaR with the help of the explicit form of its probability
density function.

Moreover, we give numerical results using Monte Carlo simulation for each
risk measure discussed above by assuming that the stock returns follow Gaussian
and Compound Poisson models, respectively. Finally, we give a comparison of the
risk curves between these two processes and characterize the sensitivity of the risk

curves for various values of the model parameters.
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Chapter 1

Introduction

One of the basic questions in mathematical finance is how to choose an optimal
investment strategy in a securities market. More precisely, an investor endowed
with a given initial capital W (0) = w has to decide how many shares of which asset
he/she should hold at what time instant to maximize his/her utility of consumption
during the time interval [0, 7] and total wealth at the time horizon 7. The main
object of portfolio selection theory is to derive solution methods for the portfolio
problem.

In principle, these methods can be applied to general decision problems under
uncertainty, but the models we consider here are typical of financial markets, such

as infinitely divisible assets, trading possibilities in continuous time and so on.

1.1 Development of models for the underlying uncer-
tainty

Prior to H. Markowitz’s work [42] [36], investors focused on assessing the risks
and rewards of individual securities in constructing their portfolios. Standard in-

vestment advice was to identify those securities that offers the best opportunities



for gain with the least risk and then construct a portfolio from these. Following
this advice, an investor might conclude that railroad stocks all offered good risk-
reward characteristics and compile a portfolio entirely from these. While,in 1952,
Markowitz [41] proposed that investors focus on selecting portfolios based on their
overall risk-reward characteristics instead of merely compiling portfolios from se-
curities that each individually have attractive risk-reward characteristics. He pro-
posed the mean-variance model for the investment problem, and hence started the
modern portfolio theory. In 1959, J. Tobin [67] expanded on Markowitz’s work by
adding a risk-free asset to the analysis. This made it possible to leverage portfolios
on the efficient frontier.

The classical mean-variance model is easy to implement and demands no spe-
cial knowledge beyond very basic stochastic models, therefore it still has great im-
portance in real-life applications and is widely applied in the risk management de-
partments of banks. However, it is only suited for one-period decision problem:s.
Samulson [58] and Smith [64] formulated and solved a multi-period generalization,
corresponding to lifetime planning of consumption and investment decisions, see
also [26] and [50]. But their models are still confined in the discrete-time case. To
overcome the limitations and problems raised by modelling the portfolio problem
in a discrete time setting, a continuous time approach for modelling the stock prices
and the actions of the investors is called for.

The work of Robert Merton [45] can be regarded as the real starting point of
continuous- time portfolio theory, see also [49]. By applying standard methods and
results from stochastic control theory to the portfolio problem he was able to obtain
explicit solutions for some special examples. In his model, the standard Brownian
process was assumed for the return distribution.

As pointed out in [47], the continuous trading solution will be a valid asymp-

totic approximation to the discrete trading solution provided that the dynamics have



continuous sample paths. However, the Black-Scholes solution is not valid, when
the stock price dynamics cannot be represented by a stochastic process with a con-
tinuous sample path. In 1976, Merton [48] proposed a Brownian motion compound
Poisson process which suggested that the dynamics of the stock price motion should
be a natural prototype process for the continuous component, i.e. a Gaussian pro-
cess, plus a jump component, i.e. a Poisson driven process. The latter process al-
lows for a positive probability of a stock price change of extraordinary magnitude,
no matter how small the time interval between successive observations.

Although the Gaussian distribution is almost a “universal law” for random phe-
nomena encountered in nature, it does not describe the behavior of asset returns
in a very realistic way. One reason for this is that the distribution of real data is
often leptokurtic, i.e. it exhibits smaller values than a normal law and has often
heavy tails, in other words its kurtosis is higher than the kurtosis of the normal dis-
tribution. Even some of the jump-diffusion models cannot represent this heavy tails
phenomenon very well.

For this reason, Fama [21], Mandelbrot and Samuelson [40] proposed models
for stock prices ranging from log-normally distributed ones to models having stable
Pareto and other « stable distributions. Two important properties of « stable distri-
butions are stability or invariance under addition and the fact that these distributions
are the only possible limiting distributions for sums of i.i.d. random variables. They
have concluded, from economic and statistical points of view, that the distribution
of price changes following a stable distribution with characteristic exponent o < 2
seemed to fit the data better than the Gaussian distribution. However, in practice, its
“infinite” variance makes the « stable process showing extremely erratic behavior
even for very large samples. One may feel that it is nonsense to talk about infi-
nite variances when dealing with real world variables. In particular, when it comes

down to the classical mean-variance model for the portfolio selection problem, it



seems useless. Actually « stable distributions with infinite variances do not provide
the only alternative to the Gaussian distribution.

Eberlein and Keller [18] showed, for instance, the fit of the generalized hyper-
bolic distribution to financial data in a very convincing way. Generalized hyperbolic
distribution, as contributed by Barndorff(1977) [6], can be fitted to the empirical
distributions with high accuracy.

In the 1990s, the normal inverse Gaussian process was applied considerably in
finance; see, for example, [8] [9], and [56]. It has remarkable been shown that the
NIG law has much potential for capturing key styhlsed features of observational
series from finance and it can be used as a building element for the construction of
analytically and statistically tractable stochastic processes. In this thesis we con-

sider the application of such models to portfolio optimization.

1.2 Development of risk measures

The role of risk in decision making under uncertainty has been investigated exten-
sively in the field of finance [30]. Markowitz in [42] and [44] proposed variance
as a risk measure and a mean-variance model for portfolio selection based on mini-
mizing variance subject to a given level of mean return, see also [62] and [63]. But
it is well known that the usual Markowitz-type efficient set analysis is highly sen-
sitive to the estimates of the variances used [10] [11] [59]. Thus, if it is difficult to
develop good estimates of variances because of erratic sampling behavior induced
by long-tailed distributions of returns, one may feel forced to use an alternative
measure of dispersion in portfolio analysis [66].

Another deficiency is the well-known fact that the variance as a risk measure
is increasing with the time horizon. This is in contrast to the common wisdom

of asset managers that in the long run stock investment leads to an almost sure



gain over risk-less bond investment and hence the larger the planning horizon, the
greater should be the investment in risky stocks. For this reason, we concentrate on
the risk measures based on quantile and expected shortfall. In recent years, Value-
at-risk (VaR) has been accepted as the benchmark risk measure, see [16]. VaR
is a low quantile of the profit-loss-distribution of a portfolio, see [31]. Based on
VaR, Emmer et al. [19] introduced the definition of CaR. In essence both measures
describe the loss that is likely to be exceeded by a specified probability.

Sentana [61] analyzes the mean-variance frontier under a VaR constraint as-
suming elliptically symmetric distributions. Alexander and Baptista [3] assume
either a normal distribution or a t-distribution when comparing VaR and standard
deviation in the context of mean-VaR analysis. Yiu [70] analyzed the impact of
a VaR constraint and Emmer [19] considered some other quantile constraints on
asset allocation CaR while using numerical techniques. Kaplanski [32] developed
an analytical tool for calculating the VaR of a portfolio composed of generally dis-
tributed assets. This analytical VaR can then be used to construct optimal portfolios
in which the target function and constraints are expressed in terms of VaR.

However, either VaR or CaR fails to satisfy the coherence of a risk measure as
pointed out by Artzen et al. [4]. They adopted an axiomatic approach to character-
ize economically coherent risk measures and suggested tail conditional expectation
(TCE) as an alternative to VaR. The notion of coherent risk measure has been ex-
tended to convex risk measure [23], and has been generalized to more complex
spaces of risk, which allows to take into consideration financial positions with dif-
ferent types of cash streams structures. For instance, Cheridito et al. [14] extended
the definition and the representation of coherent and convex risk measures to the
space of cadlag processes. Jaschke [29] considered coherent risk measures on ab-
stract spaces of risk including deterministic, stochastic, singely or multi-periodic

cash stream structures. Based on these works, Imen [27] extend the tail conditional



expectation to multi-asset portfolios, that is, the vector valued TCE. Based on TCE,
also called tailed VaR, Li et al. [39] introduced a new risk measure-Earning-at-Risk
which measures the difference between the expected future return and the tail con-
ditional expectation. It naturally preserves the property of coherence, since it has a

TCE basis.

1.3 Contribution of the thesis

Within the Gaussian process for the underlying uncertainty of the risky asset, Em-
mer [19] considered the optimization problems of maximizing the expected return
with constrained variance and CaR. However, this is only one side of the coin. In
fact, the dual problem, that is, minimizing the risk with the expected return con-
strained is also meaningful and important in practice, see [42] and [17]. Therefore,
we consider the analytical optimal solutions to the dual problem for different risks.

By changing the risk measure to be EaR, Li et al. [38, 37] considered the min-
imizing EaR problem and showed the advantage of this measure by comparing the
results generated for the EaR problem with those generated by the CaR problem. To
make the discussion complete, we consider the problem of maximizing the return.
It turns out that the optimal solution is consistent with the optimal solution to the
problem of maximizing the return problem in [19].

In the Non-Gaussian case, Emmer [19] generated the analytical solutions for the
problem of maximizing the return with constrained variance where the compound
Poisson process, Normal Inverse Gaussian (NIG) process and variance gamma pro-
cess were assumed, respectively. We extend these results to the minimization prob-
lem. Moreover we also consider a particular a-stable process where o = 1/2.

For the NIG process, Emmer [19] derived an approximation formula for the

risk measure CaR by using the approximation results in [5]. Besides extending



their work to the EaR measure, we also give the analytical formula of EaR by using
the probability density function for the NIG process.

Furthermore, besides the analytical work, we provide simulation results for the
Gaussian and Compound Poisson processes and compare them. From the numerical
results, we characterize the regularity of the change of the risk curve tendency with
respect to changes in the model parameters. Also, we compare the curve tendencies

with respect to the two processes.



Chapter 2

Portfolio Selection and Lévy process

2.1 Background of modern portfolio theory

The basic investment-choice problem for an individual is to determine the opti-
mal allocation of his or her wealth among the available investment opportunities.
The solution to the general problem of choosing the best investment mix is called
portfolio selection theory. It is a mature field which grew out of the Markowitz’s
mean variance theory [42]. This theory relies on the numerical representation of
the preference relation investors have for assets with random outcomes. When the
mean variance theory was developed, variance was widely used as the measure of
risk, since it allows a very detailed theoretical analysis of the properties of optimal
portfolios(such as the efficient frontier) and the use of the quadratic optimization
methods. The objective of the portfolio selection theory consists in the selection
of an optimal allocation of an investor’s wealth in different investment alternatives
such that the investor obtains the best possible outcome at the end of the investment
period.

The basic problem can be stated as follows: consider a continuous trading hori-

zon [0, T]. Let w be the initial amount of wealth available to an investor across n



random assets and one risk-free asset, such as a bond. Assume that each one of the
assets has an initial price p;(0), and a final price p;(T"). The price processes p;(t)
are non-negative random variables whose values become known to the investors at

period T'. Then we can define the return of the asset as

pi(T) —pi(0) _ pi(T)
pi(0) pi(0)

ri(T) = -1

Denote

. PilT)
RT) = pi(0)

, since the randomness only depends on R;(T'), we may use R;(T') as the returns of

=1+4+r(T7),i=0,...,n

the assets. Then the means, variances, and covariances are given by

E(RZ(T)) = ,Lti,’I: = O, ;N

var(Ry(T)) = o2
COU(Ri(T), RJ(T)) = Oij, Z,] = 0, e,

We assume that each asset is divisible, i.e. we can hold v; € R shares of asset. A
negative position, i.e. 1; < 0 for some asset corresponds to a short selling.
Definition 2.1. An investor with initial wealth w > 0 is assumed to hold

¥; > 0 shares of asset 4,7 = 0, ..., n, with
Yot - pi(0) = w.
Then the portfolio vector 7 = (my, ..., m,) is defined as
Yi-pi0) .

M= ——"1=0,...,n
w



and R := X7_ym; - R;(T) is called the corresponding portfolio return.
Remark 2.1. The components of the portfolio vector represent the fraction of

the total wealth which are invested in the corresponding assets. In particular, we

have X7 m; = Z=ati?i® _

Remark 2.2. If Wr denotes the final wealth corresponding to an initial wealth

of w and a portfolio vector 7, and
Wr = Xi_othi - pi(T)

then we have

= ey e Yiopi(0) p(T) Wy
R=Xlom - Ri(T) = X, ” 20~ w

This justifies the definition of the portfolio return.

Remark 2.3. The mean and variance of the portfolio return are given by

E(R) = 2;"___07'('7; My =T U,

and

!
Var(R) = X X5 _om; - 0y - m; = w'om

where p is the mean vector and ¢ is the nonnegative semi-definite variance-covariance
matrix.

When choosing a portfolio, an investor has the aim of obtaining a return as
large as possible. If the mean of the portfolio return is the only criterion, then
this will lead to investing the entire wealth into the asset with the highest mean
return. However, this could be a very risky asset and thus, the return can have big
fluctuations. To accommodate this fact, we introduce the idea of minimizing such

a risk as a second criterion. As a measure of this risk, the portfolio variance was

10



introduced by Markowitz [42]. His basic idea was to look for a balance between

the wealth deviation risk and the return.

2.2 Formulation of mean variance model

In formulating our the mathematical model for the portfolio selection theory, we
need to make some assumptions.

Assumption 1. Frictionless Markets.
There are no transaction costs or taxes, and all securities are perfectly divisible.

Assumption 2. Price Taker.
The investor believes that his actions cannot affect the probability distribution of
returns on the available securities. Hence, if mr; is the fraction of the investor’s
initial wealth Wy allocated to security 4, then m, .. ., 7, uniquely determines the
probability distribution of his terminal wealth. A risk-less security is defined to be
a security or feasible portfolio of securities whose return per dollar over the period
is known with certainty, i.e. regardless of outcome.

Assumption 3. No-Arbitrage Opportunities.
All risk-less securities must have the same return per dollar. This common return
will be denoted by R = 1 + 7.

Assumption 4. No-Institutional Restrictions.
Short-sales of all securities, with full use of proceeds, are allowed without restric-
tion. If there exists a risk-less security, then the borrowing rate equals the lending
rate.

With these assumption, the first idea is to require an upper bound for the port-

folio return and then choose from the corresponding set the portfolio vector with

11



minimal variance, i.e. we choose 7 as.

mingegns1 var(R)  subject to

E(R) > C

@2.1)

In words: under all possible portfolios 7 € R"*!, consider only those which satisfy
the constraints, in particular those which yield at least an expected return of Cj.
Then, among those portfolios determine the one with the smallest return variance.
The second idea is to set up an upper bound for the portfolio variance and then
determine the portfolio vector with highest possible mean return from the remaining

set. This corresponds to fining 7 as

max,ecgn+t E(R) subject to 2.2

var(R) < Cy
In words: under all possible portfolios 7 € R™*!, consider only those which
satisfy the constraints (which form the “feasible region™). In particular, portfolios
those which have a variance that is below C;. Then, among those portfolios deter-
mine the one with the largest expected return.
Since R = @, where w is constant and 7, corresponds to the fraction of the
risk-less bond, with the assumption that no short selling is allowed (that is 7 > 0),

we can equivalently consider

mingegn var(W7(T)) subject to
EW™NT) =2 Cy

(2.3)

Here, the components of 7 = (7, ..., m,) correspond to the fractions of the respec-
tive risky assets. This is slightly different from the 7 in (2.1) which is the vector

including the fraction of the bond. C; here is the predetermined minimum level of

12



including the fraction of the bond. C) here is the predetermined minimum level of

the expected terminal wealth E(W™(T)).

2.3 Other types of expected utility functions

The above W™ (T') can be viewed as a kind of utility function. A utility function is
a twice-differentiable function of wealth U (W) defined for W > 0 which has the
propetties of non — satiation, i.e. positive first derivative, and risk aversion, i.e.
non-negative second derivative [12]. The non-satiation property states that utility
increases with wealth, that is, more wealth is preferred to less wealth. The risk
aversion property states that the utility function is concave down, in other words, the
marginal utility of wealth decreases as wealth increases. Utility functions provide
a way to measure investor’s preferences for wealth and the amount of risk they are
willing to undertake in the hope of attaining greater wealth.

There are many kinds of utility functions [51] [22], for example: an investor
might consider the square root utility function given by U(W) = /W, or he might
consider the natural logarithm function as a utility function defined as U(W) =
log(WW). But there is no absolute right answer to such questions like: which utility
function is the best one, or which is typical of most investors. Different investors
have different patterns of risk aversion as functions of wealth.

Throughout this thesis, we are going to keep using U(W) = W as the utility
which is a very simple degenerate case. All the results in this thesis can be easily

extended to a more general utility function U(W).

2.4 Definition and construction of a Lévy process

Processes with independent and stationary increments are named Lévy process after

the French mathematician Paul Lévy(1886-1971), who made the connection with

13



infinitely divisible laws, characterized their distributions(Lévy-Khintchine formula)
and described their structure (Lévy-Ité decomposition).

Lévy processes play a fundamental role in many fields of science, such as
Physics, Engineering and Actuarial science. In particular, they have become more
and more popular in Mathematical Finance recently because they can sometimes
describe the observed reality of financial markets in a more accurate way than mod-
els based on Brownian motion.

In the “real” world, we observe that asset price processes have jumps and risk-
managers have to take them into account. Moreover, the empirical distribution of
asset returns exhibits fat tails and skewness behavior that deviates from normality.
Hence, models that accurately fit return distributions are essential for the estimation
of profit and loss distributions. In the “risk-neutral” world, we observe that implied
volatilities are constant neither across strike nor across maturities as stipulated by
the Black- Scholes model. Therefore, traders need models that can capture the
behavior of the implied volatility smiles more accurately, in order to handle the risk
of trades. Lévy processes provide us with an appropriate framework to adequately
describe all these observations, both in the “’real” and in the ’risk-neutral” world.

After knowing the importance of the Lévy process with the application in fi-
nance, it is natural to ask what is a Lévy process and how to get it. To answer this
question, we need to give a definition of a random walk.

Definition 2.2. Let Y;, ¢ > 1, be i.i.d. random variables, then X,, = Y Yine
N, is called a random walk.

By the definition, we can see that random walks have stationary and indepen-
dent increments. Here stationarity means all the increments have identical distribu-
tion. Stochastic processes are collections of random variables {X;,t > 0}. For us,
all {X;,t > 0} take values in a common state space, which we will choose specifi-

cally as R( or [0, 00), or R for some d > 2). We can think of X, as the position of
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the stock price at time ¢, changing as ¢ varies. It is natural to suppose that the price
moves continuously in the sense that t — X, is continuous almost surely, but we
know that sometimes the stock price has jumps for some ¢ > 0, and hence we need
to turn to another continuity definition to describe the process in this case, that is,
the right continuity.

Definition 2.3. Suppose the limits of

AX; = Xy — Xi = 611_{131+(Xt+e - Xt—e)

exist for all t > 0 and that in fact X;, = X, i.e. thatt — X, is right continuous
with left limits X;_ for allt > 0 almost surely, then the path ¢ — X, is called a
random right-continuous function.

A Lévy process is a right continuous process with stationary and independent
increments. More precisely,

Definition 2.4. A real-valued stochastic process X = (X;);>o is called a Lévy
process if

(@foralln >1and 0 <ty < t; <...< ty,, the random variables Kigy Xty —
Xty - - - X3, — X4,_, are independent (i.e. independent increments),

(b) Xiys — X has the same distribution as X, for all s,¢ > 0 (i.e. stationary
increments),

(c) the paths ¢ — X; are right-continuous with left limits almost surely.

One way to obtain the Lévy process is by the central limit theorem (CLT). Since
CLT is well known, we don’t put the theorem itself here.

Theorem 2.1. (Khintchine) Let Yi("), ¢t = 1,...,n be i.i.d. with distribution
changing with n > 1, and such that

Y;(") — 0, n probability, as n — oo
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if

S™ X in  distribution

where X has the infinitely divisible distribution.
Definition 2.5. A one-dimensional distribution v is called an infinitely divisible

distribution if for every n = 1,2, ... we can find a distribution v such that

Remark 2.4. Suppose X,,,n = 1,2,... and X are real valued random variables.

We say that X,, — X as n — oo in probability, if for any ¢ > 0,

P(|Xp,—X|>€) >0, as n— oo

Remark 2.5. Suppose that X,,,n = 1,2, ... and X are real valued random variables
with distribution functions Fy,,n = 1,2,... and F, respectively. We say that X,,

converges to X in distribution, if for all z,

Fo(z) —» F(z), as n— oo

Theorem 2.2. In the above theorem of Khintchine, s > 1, n > 1,
XM =8" X, in distribution, as n - 00

Furthermore, X(™ — X where X is a Lévy process.

Actually, Lévy process is not only attained as limits, by restricting the incre-
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ment distributions to infinitely divisible distributions, we can construct Lévy pro-
cess with given infinitely divisible increment distribution.

We restrict the increment distributions to infinitely divisible because it can be
parameterized nicely, see the following theorem:

Theorem 2.3. (Lévy-Khintchine) A random variable X is infinitely divisible if

and only if its characteristic function E(e™X) is of the form

1 )
exp{iau — —2—52'&2 + /(e””” — 1 —duzlje<iy)v(dz)}
R

where & € R, 4% > 0 and v is a measure on R such that [i (1 A 22)v(ds) < oo.
Here (o, 32, v) is called the three components of Lévy process.

Next, we give an very important decomposition theorem:

Theorem 2.4. ( Lévy-Ito) Let X; be a Lévy process, whose distribution is

parameterized by («, %, v), then X is decomposed as
Xt = ot +ﬁBt + Jt + Mt,

where B; is a Brownian motion, and A X follows a Poisson process with intensity
measure v, J, = ESStAX31{|AXS|>1}, and M; is a martingale (within the given

probability measure) with jumps AM; = AX;1{jax,|<1}-

2.5 Several important examples of Lévy processes

2.5.1 Compound poisson process

A compound Poisson process with intensity A and jump size distribution f is a

continuous time stochastic process {X; : ¢ > 0}, given by

X, = Eﬁ\’:(f)yi
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where jumps sizes Y; are i.i.d. with distribution f and N(#) is a Poisson process
with intensity ), independent from (Y;);>1. A Poisson process itself can be seen as
a compound Poisson process on R such that ¥; = 1. This explains the origin of
term “compound Poisson” in the definition.

Let R(n) = £7_,Y;, n > 0 be a random walk with step size distribution f. The
compound Poisson process X; can be obtained by changing the time of R with an
independent Poisson process N;. X thus describes the position of a random walk
after a random number of time steps, given by N;.

Using conditional expectation, the expected value of a compound Poisson pro-

cess can be calculated as:
E(X,) = B(E(X,IN(t))) = E(N()E(Y)) = ME(Y),

and
var(X;) = E(var(XyN(t))) + var(E(X;|N(t)))

= var(Y)E(N(t)) + E(Y)?var(N(t))
— ME(Y?)

More generally, denote the characteristic function of f by f , then

E(e™*) = E(B(e™*|N(t))
= B((H0)

= etX -1
= exp(tA [p(e™* — 1) f(dz))
2.5.2 Hyperbolic processes

In response to remarkable regularities discovered by geomorphologists in the 1940s,
Barndorff-Nielsen [7] introduced the hyperbolic law for modeling the grain size

distribution of diamonds from a large mining area in South West Africa. Almost
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twenty years later the hyperbolic law was found to provide a very good model for
the distributions of daily stock returns from a number of leading German enterpris-
ers, giving way to its use in stock price modeling and market risk measurement.
The name of the distribution is derived from the fact that its log-density forms a hy-
perbola. Recall that the log-density of the normal distribution is a parabola. Hence
the hyperbolic distribution provides the possibility of modeling heavier tails.

The hyperbolic distribution is defined as a normal variance-mean mixture where
the mixing distribution is the generalized inverse Gaussian(GIG) law with parame-
ter A = 1, i.e. it is conditionally Gaussian. More precisely, a random variable Z has

the hyperbolic distribution if:
(ZIY) ~ N(u+ BYY)

where Y is a generalized inverse Gaussian random variable and N (m, s2) denotes
the Gaussian normal distribution with mean m and variance s2. The above relation
implies that a hyperbolic random variable Z ~ H (4, 3, x, 1) can be represented in
the form:

Z ~pu+BY +VYN(0,1) 2.4)

with the characteristic function:
¢Z (U) — eiup / eiﬂzu—zu2/2dFy(Z) (25)
0

Here Fy () denotes the distribution function of a generalized inverse Gaussian ran-
dom variable Y with A = 1. Hence the hyperbolic probability density function (pdf)

is given by:

_ V¥/x T ek =) Bla—p)
In) = S T PR ’
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where K is the modified Bessel function of the second kind of order 1.

Let§ = \/x and @ = /1 + (32, then the PDF of the hyperbolic H(a, 3, 8, 1)

law can be written as;

Vo2 =B o [FTGm o)
) — — o e & (2'6)
fu(@) 200 K1 (6+/a? — 3?)
where 0 > 0 is the scale parameter, 4 € R is the location parameter and 0 < |3| <
. The latter two parameters o and § determine the shape, with « being responsible

for the steepness and 3 for the skewness. § = 0 gives a symmetric density.

2.5.3 Normal inverse Gaussian process

The hyperbolic law is a member of a more general class of generalized hyperbolic
distributions, which also includes the normal-inverse Gaussian (NIG) and variance-
gamma distributions as special cases. The generalized hyperbolic law can be repre-
sented as a normal variance-mean mixture where the mixing distribution is the gen-
eralized inverse Gaussian (GIG) law with any A € R. The normal-inverse Gaussian
distributions were introduced by Barndorff-Nielsen (1995) as a subclass of the gen-
eralized hyperbolic laws obtained for A\ = —1/2. The density of the normal-inverse

Gaussian distribution is given by:

Iyie(z) = a—ée‘s\/"rﬁzw(z"“) Kilavo® + (@ - p)’) 2.7
At the expense of four parameters, the NIG distribution is able to model symmetric
and asymmetric distributions with possibly long tails in both directions. Its tail
behavior is often classified as “semi-heavy”, i.e. the tails are lighter than those of
a non-Gaussian stable law, but much heavier than Gaussian. Obviously, the NIG
distribution may not be adequate to deal with cases of extremely heavy tails such

as those of Pareto or non-Gaussian stable laws. However, empirical experience
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suggests an excellent fit of the NIG law to financial data [69]. Moreover, the class
of normal inverse Gaussian distributions possesses an appealing feature that the
class of hyperbolic laws does not have. Namely, it is closed under convolution, i.e.
a sum of two independent NIG random variables is also a NIG.

In recent years, the hyperbolic distribution has formed the basis for models of
financial data, (see [8] and [18]). However, as already indicated, the hyperbolic
distribution lacks the property of being closed under convolution in contrast to the
NIG distribution. Also, the cumulants are not easily calculated like they are for the
NIG distribution, see above. All in all, the NIG distribution seems to have much

nicer probabilistic properties than the hyperbolic distribution.

2.5.4 o-stable process

As already mentioned above, it has been long known that financial asset returns are
not normally distributed. Rather, the empirical observations exhibit excess kurtosis.
This heavy-tailed or leptokurtic character of the distribution of price changes has
been repeatedly observed in various financial and commodity markets.

In response to the empirical evidence Mandelbrot[40] and Fama[21] proposed
the stable distribution as an alternative model to the Gaussian law. There are at
least two good reasons for modeling financial variables using stable distributions.
Firstly, they are supported by the Generalized Central Limit Theorem, which states
that stable laws are the only possible limit distributions for properly normalized and
centered sums of independent, identically distributed random variables. Secondly,
stable distributions are leptokurtotic. Since they can accommodate the fat tails and
asymmetry, they fit empirical distributions much better.

Stable laws-also called a-stable. They were introduced by Paul Lévy during
his investigations of the behavior of sums of independent random variables in the

early 20th century. The a-stable distribution requires four parameters for complete
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description: « € (0,2],6 € [-1,1},6 > 0 and u € R. The tail exponent «
determines the rate at which the tails of the distribution taper off. When o = 2, it
is the Gaussian distribution. When o < 2, the variance is infinite and the tails are
asymptotically equivalent to a Pareto law, i.e. they exhibit a power-law behavior.

More precisely, using a central limit theorem type argument it can be shown that

limg oo 2°P(X >1z) = C,(1+B)o®
limg oo 2°P(X < —2) = Co(l+ B)o*

where C,, is a function of o only. When o > 1, the mean of the distribution exists
and is equal to u. When the skewness parameter 3 is positive, the distribution is
skewed to the right, i.e. the right tail is thicker. The last two parameters ¢ and y are
the usual scale and location parameters.

From a practitioner’s point of view the crucial drawback of the stable distribu-
tion is that, with the exception of three special cases a = 0.5,1, 2, its probability
density function and cumulative distribution function do not have closed form ex-
pressions. Hence, the a-stable distribution can be most conveniently described by
its characteristic function ¢(¢). The most popular parameterization of the character-
istic function of S, (o, 8, ) is given by Samorodmitsky and Taqqu [57], and Weron
[68]:

—o|t|*{1 — ifsign(t) tanh(ma/2)} +iut |, o #1,

—ot|{1+ iBsign(t) 2 log |t|} + iut , a=1

log (t) =

If we consider a Brownian motion with drift B, = B; + ~t then this property is

only verified up to a translation:

~

B,
Ya > 0, (—\/—Et-)tzo =4 (By + Vart)so
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A natural question is whether there exist other real-valued Lévy Processes that share

this self-similarity property: a Lévy Process X; is said to be self-similar if

X,
Ya > 0,,3b(a) > 0: (gé)t20 =% (X)t>0

Since the characteristic function of X; has the form ®x,(z) = exp(—t(z)), this

property is equivalent to the following property of the characteristic function:
VYa >0,,3b(a) > 0: Ox,(2)* = Dx,(2b(a))

The distributions that verify this property are called strictly stable distributions.
More formally, these are defined as follows,
Definition 2.6. A random variable X ¢ R is said to have a stable distribution

if for every a > 0 there exist b(a) > 0 and ¢(a) € R such that
q)X (Z)a = (I)X (Zb(a))@ic(a)z .
It is said to have a strictly stable distribution if c¢(a) = 1

Bx(2)® = Bx(2b(a)).

The name stable comes from the following stability under addition property:
if X has stable distribution and X ... X® are independent copies of X then

there exist a positive number c,, and a vector d such that
XWgop X =de x4 4

This property is clearly verified if the distribution of X is that of a self-similar Lévy
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Process at a given time t.

It can be shown that for every stable distribution there exists a constant « €
(0, 2] such that b(a) = a'/*. This constant is called the index of stability and stable
distributions with index o are also referred to as a-stable distributions. The only
2-stable distributions are Gaussian.

A self-similar Lévy Process therefore has strictly stable distribution at all times.
For this reason, such processes are also called strictly stable Lévy Processes. A

strictly a-stable Lévy Process satisfies:

Xa
Ya > 0, (aT/:;) =4 (Xt)tzo,

i.e. Brownian motion is a 2-stable Lévy Process.
More generally, an a-stable Lévy Process satisfies this relation up to a transla-
tion:

Va > O, de € ]Rd : (Xat)tZO =4 (al/o‘Xt + Ct)tZO

A stable Lévy Process defines a family of stable distributions and the converse
is also true: every stable distribution is infinitely divisible and can be seen as the
distribution at a given time of a stable Lévy Process.

Remark 2.6. A distribution on R? is a a-stable with 0 < « < 2 if and only
if if is infinitely divisible with characteristic triplet (0, v, ) and there exists a finite

measure \ on S, a unit sphere of R?, such that

v8) = [ [ 1a0¢)

dr
r1+a)‘(d§) 2.8)

Remark 2.7. For real-valued stable variables and Lévy Processes (d = 1) the

above representation can be made explicit: if X is a real-valued a-stable variable
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with 0 < o < 2 then its Lévy measure is of the form

A B

v(z) = STrale>0 le«)

for some positive constants A and B.
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Chapter 3

Market Risk Assessment

Market Risk is the risk that a position will not be as profitable as an investor ex-
pected because of fluctuations in market prices or rates(e.g. equity prices, interest
rates, currency rates or commodity prices). Market Risk can be defined as the un-
certainty of the future market values of the portfolio’s profits and losses resulting
from adverse market movements of the market-risk factors.

Mathematically, for a fixed probability space (2, F,P), given some convex
cone M C (§, F,P) of random variables, a measure of risk with domain M is a
mapping p : M — R. Recall that M is a convex cone if X; € M and X, € M
implies that X; + Xy € M and A\X; € M for every A > 0. Economically, a risk
measure should capture the preferences of the decision maker.

Many possible definitions of risk have been proposed in the literature, because
different investors adopt different investment strategies in seeking to realize their
investment objectives. In some sense, risk itself is a subjective concept and this is
probably the main characteristic of risk. Thus, even if we can identify some desir-
able features of an investment risk measure, probably no unique risk measure exists
that can be used to solve every investor’s problem. Loosely speaking, it is hard to

discriminate between a “good” and a “bad” risk measure. Most of portfolio theory
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had based the concept of risk in strong connection with the investor’s preferences

and their utility function.

3.1 The original risk measure-Variance

An important risk measure that is widely used in financial economics is the standard
deviation, also sometimes means variance risk measure. It was firstly considered
by Markowitz [42] in his Modern Portfolio Theory and it was also a basis of the
Capital Asset Pricing Model. One deficiency of the standard deviation measure for
applications to Gaussian distribution is that it treats the negative and the positive
deviations from the mean in the same way.

Even for the application to heavy-tailed distribution, it also shows some draw-
backs. The heavy-tailed distributions are widely applied in insurance and are grad-
ually penetrating in finance as well. However, for such distributions, as we will see
in the following chapters, the standard deviation may not even exist. In the case that
it does not exist, the risk measure provides little relevant probabilistic information.

All these reasons motivate the research into other risk measures.

3.2 The most classical risk measure-VaR

A highly comprehensive market risk measure is the so-called Value-at-Risk(VaR).
VaR describes the loss that can occur over a given period, at a given confidence
level, due to exposure to market risk. Formally, it is defined as:

Definition 3.1. Given some confidence level a € (0, 1) and a risk time horizon
T > 0, VaR(a,T) is the smallest real value such that the probability that the

portfolio changes W exceeds that value is not larger than 1 — a,

VaR, = inf{w e R,P(W > w) < 1-a}. 3.
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The wide usage of the VaR stems from the fact that it is an easily interpretable
summary measure of risk and also has an appealing rationale, as it allows its users
to focus attention on “normal market conditions” in their routine operations. Note
that VaR in the definition corresponds to a negative dollar value when a loss is
observed at level 1 — a.

By noting

VaR, = inf{w € R,1 - Fy(w) <1 - o} = inf{w € R, Fy(w) > a}

we observe that the definition of VaR coincides with the definition of an a-quartile
of the distribution of W in terms of a generalized inverse of the distribution function
Fy.

If W denotes the aggregate claims of an insurance portfolio over a given ref-
erence period, P denotes the aggregate premium for this portfolio, and Qa(W)
denotes the o quantile of the wealth W, then Q,(W) — P is the smallest ”addi-
tional capital ” required such that the insurer becomes technically insolvent, i.e.
W > Qa(W) , with a probability of at most 1 — . Note that here « is the confi-
dence degree, e.g. 0.95. In addition, many books talk about the simulation of VaR,

one may refer to [2] and [65].

3.3 A better risk measure-Tail VaR

A single quartile risk measure of a predetermined level a does not give any in-
formation about the thickness of the upper tail of the distribution function from
VaR.(W) on. A regulator for instance is not only concerned with the frequency of
default, but also about the severity of default. Also shareholders and management
should be concerned with the question “how bad is bad?”” when they want to eval-

uate the risks at hand in a consistent way. Therefore, one often uses another risk
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measure which is called the Tail Value-at-Risk(TVaR) at level a.
Definition 3.2. Given a small number o € (0,1), TVaR is the arithmetic

average of the quantiles of W, from « on, i.e.
1 1
TVaR,(W) = 1——04—/ VaRs(W)dé, a € (0,1). (3.2)

Note that the TV aR, is always larger than the corresponding quantile. From the
above formula it follows immediately that the TVaR is a non-decreasing function
of .

Let W again denote the aggregate claims of an insurance portfolio over a given
reference period and P the provision for this portfolio. Setting the capital equal to
TVaR,(W)— P,we could define "bad times” as those where W takes a value in the
interval [Qo(W), TV aR.(W)]. Hence, “bad times” are those where the aggregate

claims exceed the threshold Q,(W), but not using up all available capital.

3.4 An a-quantile based risk measure-CaR

Based on the definition of VaR, Emmer et al[19] considered capital at risk (CaR) as
the risk measure. CaR is defined via the value at risk, that is, a low quantile (1 -a)of
profit-loss distribution of a portfolio. The CaR of a portfolio is then commonly
defined as the difference between the mean of the profit-loss distribution and the
VaR. We think of the CaR as the capital reserve in equity. One of the advantage of
this risk measure is that it allows one to derive explicit closed form solutions for the
portfolio problem in either Gaussian world or some subclass of a Levy world[20].
Definition 3.3. (Capital at Risk) Let W, be the initial capital and T" a given
time horizon, let Z,, be the a-quantile of the standard normal distribution. For some

portfolio 7 € R and the corresponding terminal wealth Wr, the a-quantile of Wy
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is given by
p(W,m,T) = Woexp((m/(b— 7 - 1) + 7 — |70 |*)T + z||mto||VT)
that is, p(W, 7, T) = inf{z € R : P(Wr < z) > a}, then define

CaR(W,n,T) = Woexp(rT) — p(W,n,T)
= Woexp(rT)(1 — exp((mt(b—17 - 1) (3.3)
+r = |miol*)T + za|mto || VT)),

the capital at risk of the portfolio w(with initial capital W and time horizon T).
Remark 3.8. Here « is different from the one in the definition of VaR which
denotes the confidence level. From the definition of CaR and the following, we
assume o is a small number which actually denotes one minus confidence level.
Just to ease the notation, we still use «, and thus z, < 0.
Remark 3.9.The definition of CaR limits the possibility of excess losses over
the risk-less investment. One typically wants to have a positive CaR as the upper

bound for the likely losses”.

3.5 A Tail-VaR based risk measure-EaR

However CaR also shows several disadvantages, since it is based on VaR. As stated
in [4], VaR, and hence CaR doesn’t behave nicely with respect to addition of
risks, even independent ones, creating severe aggregation problems; the use of VaR
doesn’t encourage and, indeed, sometimes prohibits diversification, because VaR
does not take into account the economic consequences of the events the probabilities
of which it controls. As a replacement of VaR, Artzner introduced Tail Conditional

Expectation(TCE), also called TVaR (as defined previously). For convenience, we
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use an alternate definition of TVaR presented in the following.

Definition 3.4.(Tail-VaR)

TVaR(W(T)) = E(W(T)[W(T) < VaRa) (3.4)

Intuitively, tail-VaR is a more appealing risk measure than the a-quantile. It
gives the average severity of loss given that the loss exceeds its a-quantile. «-
quantile, on the other hand, only provides a probabilistic statement for which the
loss exceeds the a-quantile. Based on the properties of TVaR, Li et.al [38, 37]
considered another risk measure: Earning at Risk(EaR).

Definition 3.5. The Earnings-at-Risk of a constant re-balanced portfolio in-
vestment strategy = relative to a risk measure T'CE,, is defined as the difference

between the mean terminal wealth and its associated risk measure:

EaR, = E(W(T)) — TVaRo(W(T)) (3.5)

Remark 3.10. Note that there is an important distinction between the EaR
proposed above and the CaR considered by Emmer et al.[19]. CaR is defined as
the difference between the terminal wealth of the pure bond (risk-less) investment
strategy and the risk measure VaR. CaR measures risk relative to a pure bond invest-
ment strategy while EaR measures risk relative to mean terminal wealth. The mean
terminal wealth depends explicitly on the adopted investment strategy 7 while the
pure bond strategy is independent of 7. EaR therefore provides a trade-off between
investing in the portfolio with position 7 and its expected shortfall as a result of
adopting such an investment strategy. When formulated as an optimization prob-
lem, both the mean return and its risk measure are considered jointly. Hence it

is a more relevant measure over CaR which only provides a trade-off between the
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risk-free investment and its associated risk measure.
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Chapter 4

Portfolio Selection in Gaussian World

Consider a standard Black-Scholes type market consisting of one risk-less bond and
several risky stocks. Their respective prices (Po(t))e>0 and (Pi(t))is0,3 = 1,...,n

evolve according to the SDE
dP()(t) = Po(t)’l”dt, Po(O) = 1,

AP(t) = PAt)(budt + Y 05dBy(1), PA0) =i,

=1

where ¢ = 1,...,n Here B(t) = (By(t),..., B,(t)) is a standard n-dimensional

Brownian motion, r € R is the risk-less interest rate, b = (b1,...,b,) the vector

of stock-appreciation rates or the percentage of return, and o = (0i)1<ij<n 18 @
volatility matrix.

Let w(t) = (mi(t),...,m.(t)) € R™ be an admissible portfolio process, in

other words, m;(t) is the fraction of the wealth W (t) that is invested in stock i.

Denoting by (W (t)):>o the wealth process, it follows the dynamic
dW(t) = W(t)((1 - 7(t)1)r + n(t)'b)dt + 7(t)cdB(t), W(0) =w  (4.1)

where w € R denotes the initial capital of the investor and 1 = (1,...,1)’ denotes
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the vector(of appropriate dimension) with unit components. The fraction of the
investment in the bond is 7o (t) = 1 — 7 (t)'1.

Throughout the thesis, we restrict ourselves to the constantly-rebalanced port-
folio (CRP)7r(t) = m = (my,...,m,) for all t € [0,T]. By this assumption, we
can obtain the explicit results in the Gaussian case. Moreover, the economic in-
terpretation of the mathematical results is comparably easy. Here, it is important
to point out that following a constant portfolio process does not mean that there is
no trading. Since the stock prices evolve randomly, one has to trade at every time
instant to keep the fractions of wealth invested in the different securities constant.
Thus, following a constant portfolio process still means one must follow a dynamic
trading strategy.

By solving SDE 4.1, we get the following explicit formulas for the wealth pro-

cess for all t € [0, T, (see [35]for the derivation).

W(t) = wexp((x'(b—rl)+r —|n'c|?/2)t + 7oB(t)), (4.2)
EW(t) = wexp((n'(b—rl)+7)t), (4.3)

var(W(t)) = w?exp(2(n'(b—r1) + r)t)(exp(||7'c|%t) — 1). 4.4

4.1 Variance as the risk measure

Now consider the optimization problem:

mingepe Var(W7™(T)) subject to
EW™(T)>C

(4.5)

Since the pure bond policy yields a deterministic terminal wealth of W (0) exp(rT'),
it is natural to assume that C > W (0) exp(rT). With the assumption b # r1, we

have the following result:
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Theorem 4.5. The unique optimal policy of problem (4.5) is

. (o0")"Hb—rl) A
T = - e’ (*.6)

where the ' = 7 1n(C/W(0)) — r. The corresponding expected terminal wealth is
E(W™(T)) = C and variance var(W™ (T)) = 02(eXp(__—1(ng) 1)

Proof. By the constraints E(W™(T)) > C and equation (4.3), we have
the inequality 7'(b — r1) > % In(C/W(0)) — r. To simplify the notation, we let
C = L1n(C/W(0)) — . Then we have

~

m'(b—rl) > C

Now consider the objective function. Since W (0) exp((n'(b — r1) + )T) > C,
W(0)?exp(2(w’(b — r1) + r)T)(exp(l|n'a|*T) — 1) > C2(exp(|'s|*T) — 1).
It is easy to see that, as ||7'c|| — oo, the right hand side of the above inequality
goes to infinity, and thus var (W (T')) — oco. Therefore, minimizing the variance is

equivalent to minimizing ||7’c ||. Now consider the following optimization problem:

min, ||7'o||?  subject to

7' (b—-rl)>C

Define f(m) = n'oo’'n and g(7) = n'(b — r1) — C. Then both f(r) and g(m) are
differentiable with respect to 7. Define h(r) = f(m) + Ag(),using the Lagrangian

method, we get
loo'm +A(b—-r1) =0
mb—-rl)—-C=0

By solving this system of equation, we get the unique optimal solution to problem
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@.1)

. (oa) 7 (b—r1) A
~[o7i(b - r1))[e=Hb—r1)] ¢

By the definition of norm and inner product, we can simplify the above solution as

o (00")"Hb—rl) A
llo=1(6—r1)|1?

4.7

The rest of the results are easy to verify.

4.2 CaR as the risk measure

Now let’s consider the optimization problem

min, CaR(W™(T)) subject to
EW™T)>C

for the same predetermined minimum attainable expected terminal wealth C. In
Emmer et al.[19], they considered the opposite case, that is, maximizing the expec-
tation of the terminal wealth with constrained risk. In order to make the comparison
of the three risk measures easy to see, we choose to discuss the case of minimizing
the risk given that expectation is greater than a lower bound. Instead of giving a
theorem, we are going to obtain the unique solution by the following analysis.

Let f(m) = (n/(b — 1 - 1) — ||710||2/2)T + 24|71 ||V/T), = € R, where z, is
the a-quantile of the standard normal distribution.

Remark 4.1. Note that here 2, < 0, since we assume that o < 1/2, e.g. 0.05.
Thus, in the following we will use —|z,| in place of z,

Remark 4.2. Let € = ||7’0||, then f(7) — —occ as € — oo.

Remark 4.3. One obvious fact is that sup, CaR(W (T)) = W (0) exp(rT); in

other words, the use of extremely risky strategies(in the sense of high norm ||7'c||)
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can lead to a loss that is close to the total capital.
Remark 4.4. For any fixed positive €, with the assumption that b # 71, it is

easy to see that minimizing the function

fm) = (@ ®—r-1) = |l7'o|?/2)T + za||7'a||VT)

4.8)
= 2aeVT —T/24+7'(b—71-1)T
over the boundary of an ellipsoid ||7’c|| = ¢ is equivalent to the problem
min, 7'(b —r-1) subject to
4.9)
7’|l = e
Again by Lagrange’s method, we get the explicit solution
. (oo)) (b —rl)
= 4.1
"= e G ] o
Denoting 8 = |lo~1(b ~ r1)||, from equation (4.10), we get
720 = (00’)"H(b —rl)e
and multiplying both sides by oo”, we have
(00") 120 = (b—r1)e
Then, multiplying both sides by 7*/, we have
o0’ =¥ (b—rl)e
Furthermore we get
(b —11) = b @.11)
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Substituting (4.11) back into (4.8), we get immediately that

f(m) = —2T/2 +evVT(OVT - |2a))
= —1evT — (OVT — |2a))2 + L(OVT — |2a])?

(4.12)

Now, let’s look at the above as a function of ¢, that is,
1
g(e) = -—5[6\/27 — (VT — |za])]? + (9\/— |2al)?

On one hand, if VT — |z,| < 0, in the domain [§v/T — |z, +00), g(g) is

decreasing. Since € > 0, it obtains its maximum only when ¢ = 0. Therefore

f(m2) = g(e) = 0. In this case, 77 = 0, and thus corresponds to a pure bond
Strategy.

On the other hand,if 9\/7“— — |2za] > 0, we need to consider the constraints
of problem 4.2. By simplification, the constraints are equivalently changed to be
evVT > %. Under this condition, we have two cases to consider.

First of all, if % < VT — |24, then by the properties of the quadratic
equation, we get the maximum of g(e*) = $(0VT — |24)%, where ¢* = § — %

And thus the minimal CaR is

CaR(W™(T)) = W(0) exp(rT)(1 — exp(5 L (0VT — |2al) %) (4.13)
and
. |2al\ (00") 7} (b — r1)
= 4.14
T P - @1
Secondly, if % > 0v/'T — |24, g(€) obtains its maximum when ¢* = %. In
this case X
71_*:(g)(oa')_l(b—rl) 4.15)

llo=(6 — D)
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and

CaR(W™ (T)) = W(0) exp(rT)(1 — exp(—%%ﬂi + %2(9\/?— |z4]))) (4.16)

Remark 4.6. So far, we don’t consider the case when b = r1. Actually, this

case happens in a risk-neutral world. Under this condition,
£(5) = gle) = ~5 (VT + [2al)? + |2al?/2
And so g(¢) obtains its maximum only when * = 0, that is, 7* = 0, and thus
CaR(W™ (T)) =0

This result states that in a risk-neutral market the CaR of every strategy containing

stock investment is bigger than the CaR of pure bond strategy.

4.3 EaR as the risk measure

Before getting into the discussion of the explicit solution to the mean-EaR opti-
mization problem, let’s give some detailed derivation of some results in [38, 37]
which we did not explain clearly.
By equation4.2, given an a-level quantile po (), we have the following inequal-
ity
W(0) exp((x'(b—r1) +r — [|7'o||*/2)T + w'o B(T)) < po(m)
Denoting @ = 7'(b —r1) +r — ||n'c||?/2, by simple manipulation of the inequality,

we have
7’0 B(T) < In Wy — ol
7'a|VT = |wo||VT
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Since B(T') is n-dimensional standard Brownian Motion, z ~ N(0,1), and thus
Zq 1s the o quantile of the standard normal distribution. Let T and p(z)be the

distribution function and density function of z, respectively. Then:
po = W(0) exp(aT + 2z, ||n'c||VT)

By the definition of TVaR in (3.2), we have

p = EWHD)WNT) < po)
= EW"(T)|z < z)
= & [ WH(D)p(2)dz
= W(0)exp((n'(b — r1) + r)T) 2eezlrolVD)

By the definition of EaR, we have

EaR(WX(T)) = E(W™T))-p

, 4.17)
= W(O0)exp((x'(b—rl) +7r)T)(1 — ‘—q)(z"_”;’ "”‘/T))

Next let’s consider the following optimization problem:
mingegr EaR(W™(T)) subject to E(W™(T)) > C (4.18)

Firstly, we give the extreme case of EaR:
Proposition 1.
1. minqegn var(W(T)) = 0if and only if 7 = 0, where 0 = (0, .. ., 0),..
Woexp(rT) b=rl

2. sup,egn var(W(T)) =
400 otherwise

For more details of the proof, please see [38, 37]. Here, we just present the
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main results. Firstly, give an important function defined as

Fr) = (x'(b=r1) + )T + In(1 — 2= ’ZT'U”\/T))

(4.19)
Then EaR can be expressed as EaR(m) = W(0) exp(f(r)), if ||7'o|| > 0. Further-
more, minimizing EaR is equivalent to minimizing f(7), since EaR is an increas-
ing function of f(), with the constraint |7'c|| = e, for fixed .

With the above proposition, Li [38] give their main result as following.

Theorem 4.6. Assume that b # r1, then the unique optimal policy of problem
4.18 is

(o) b - 1)

S P “20

where
o= In(C/W(0)) — rT
lo= TG~ D)7

(4.21)

The corresponding expected terminal wealth is E(W™ (T)) = C and Earnings at
Risk is
P2~ e*VT)

a

Ear(n*)=C(1 )

As a comparison, we give the explicit solution to the dual problem by giving
the following theorem and proof.

Theorem 4.7. For the following optimization problem:

maxgyern E(W™(T)) subject to EaR(W™(T)) < C (4.22)

If b # r1, then the unique optimal policy of the problem is given by

o) =)
=16 =D

(4.23)
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where €* is the unique solution of the equation

1 Clw
-1
”O’ (b—T‘l)“E—‘(Tlnl—W—

[ed

r)=20 (4.24)
The corresponding maximal expected terminal wealth under the variance constraint

equals

EW™) = wexp((e*||o™(b — r1)|| + 7)T)

Proof. Let ||7’'0|| = &, then the constraint

EaR(W™(T)) < c -
wexp((r'(b— r1) + r)T)(1 — eezevDly < C -
(n'(b—rl)+7r)T +1In(1 - ‘I’—(Z";;‘/Tl) < In(<) -
(' —rl)+r)T < ln(g—) ~In(1 - @(za;.g\/:?)) -
B < b

(4.25)

To simplify the notation, let C' := —Tl—ln :@fxg—;?ﬁ — 7, then it is easy to verify
that C is a decreasing function of € and as e — 0, ¢ — —+o0; as € — 00, ' —
LIn< — r. Note that C > 0 for any ¢, since we assume that C' < wexp(rT) in the
previous sections.

Now let’s consider the objective function max,cgn E(W™(T)). It is easy to see
that w exp((7'(b — r1) 4+ r)T) is an increasing function of . With the assumption
of no short selling, we have the equivalent objective function max,eg» 7/(b — 71)
and further

max7'(b—r1)(b—rl)n

TeRn
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Let6 = ||c~(b — r1)||, then

(b —r)o—rl)r = oo b—r1)(b-rl)o to'r

= 7ob%'n (4.26)
— %2
Thus 7'(b — r1)(b — r1)'w is an increasing function of e. Since ||7'o|| = ¢ is an

increasing function of £ and by the inequality 4.25, 022 < 2, we have that 22

gets its maximum with C? at the intersection point, that is, when €* is the unique

solution of

o2c? = C2.
On the other hand
7' (b—rl) = f¢
oo™ (b —rl) = fe

w'oo (b —rl)o " (b—rl) = feo~(b—r1)

m'o? = feo~(b—r1)
T — saa’_l(b—ﬂ!

[

Therefore for the unique £* which satisfies equation

o (6 = 1) le — (& In — /¥

T 1 _ 2a=evl) r)=0

the optimal solution to the problem 4.22 is

(00 M=)

" lo~ 16— r1)]]
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and the maximum value of the objective function
EW™) =wexp((e*llo™" (b — r1)|| +7)T)

is easy to verify.

4.4 Summary

Remark 4.7. Comparing the Variance and CaR we can see that the existence of at
least one stock with a mean rate of return different from the risk-less rate implies
the existence of a stock and bond strategy with a negative CaR as soon as the time
horizon T' is large. Thus, even if the CaR were the only criterion by which to judge
an investment strategy the pure bond investment would not be optimal if the time
horizon were far away. On the one hand this fact is in line with empirical results
on stock and bond markets. On the other hand this shows a remarkable difference
between the behavior of the CaR and the variance at risk measures. Independent of
the time horizon and the market coefficients, pure bond investment would always
be optimal with respect to the variance of the corresponding wealth process.

Remark 4.8. One consequence of the analysis of the three risk measures is
that for a given minimum level C of the expected terminal wealth E(W™(T')), the
optimal investment strategies for both the mean-EaR and the mean-variance prob-
lems are equivalent. In fact, it can also be shown that similar optimal 7* can also be
obtained if we had considered the risk measure CaR as in the mean-CaR optimiza-
tion problem. This implies all these risk measures yield similar optimal investment
strategies as long as the preselected level C is identical.

Remark 4.9. We also can see a linkage between the EaR and the Variance of
the terminal wealth. For instance, by fixing the level of EaR, we can get the highest

attainable expected return and hence the optimal portfolio 7*. This, in turn, allows
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us to determine the corresponding minimum variance of terminal wealth using the

result of theorem 1.
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Chapter 5

Portfolio Selection in Non-Gaussian

World

5.1 Analytical solutions to the optimization problem

In this section, we will use the notation in Emmer et al.[20] to make out context
consistent. Consider a standard Black-Scholes type market consisting of a risk-less
bond and several risky stocks, which follow an exponential Lévy process. The stock

prices P;(t),7 = 1,...,n are given by the SDE

dP(t) = Pt )(b,dt +dbt)
= P{t=)((bi + 3271 (0485))dt + B3y 055d Ly (¢) (5.1)
‘f‘eXP(E?:le’jALj () —1- 25105 AL;(¢))

The quantity r € R is the risk-less interest rate and o = (04;)1<; j<n is an invertible
matrix, b € R™ can be chosen such that each stock has the desired appreciation rate.
Assume L;,© = 1,--. ,n are independent. L = (Ly,..., L,) has characteristic
triplet (o, '8, v), where o € R", 3 is an arbitrary n-dimensional diagonal matrix.

Since the components of SV are independent Wiener processes with possibly dif-

46



ferent variances, we allow for different scaling factors for the Wiener process and
the non-Gaussian components. L; is such that e(L;) = exp(X7_104;L;(t)), where
¢ denotes the Stochastic Exponential of a process. From the representation we
see that jumps of L; occur at the same time as those of (oL); = X7 104 L;(t), but
a jump of size ¥7_;0i;AL;(t) is replaced by one of size exp(X7_;05;AL;(t)) — 1
leading to the term exp(X}_,0;;AL;(t)) — 1 — X7 04, AL;(t), whereas the Brow-
nian component remains the same.
In order to simplify the following discussion, we put the definition of the stochas-

tic exponential and its relation with the ordinary exponential here [15].

Definition 5.1. Let (L;) be a Lévy process with triplet (o, 32, ), then there

exists a unique cadlag process (Z;):>o such that
dZ, = Z,dL,

Z is called the stochastic exponential of L and is denoted by Z = £(L).
Following the above assumption, there exists another Lévy process (L;):>0, such
that Z, = el* where
R Bt R R
Ly = ln(Zt) =L — T -+ Eogsst{ln(l —+ Ls) — ALs}

Let m(t) = (m(t),...,m(t)) € R™ be an admissible portfolio process, i.e.
7(t) is the fraction of the wealth W™ (¢), which is invested in asset 7. The fraction
of the investment in the bond is 7o(t) = 1 — 7(¢)'l, where 1 = (1,..., 1)’ denotes
the vector having unit components. As stated in [20], we restrict ourselves to the

constant portfolios; i.e. 7(t) = =, for some fixed time horizon T. In order to avoid

negative wealth we require that 7 € [0, 1], hence short selling is not allowed in
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this model. Denote the wealth process by (W™ (t)),>o, it follows the dynamic
dW™(t) = W (t=)(((1 — #'1)r + 'b)dt + 7'dL(t)),t > 0, W™(0) = w

where w € R denotes the initial capital of the investor.
From the result in [25], we know that if L is a real-valued Lévy process with
characteristic triplet (c, 32, v), then also L defined by e(L) = e’ is a Lévy process

with characteristic triplet (&, 82, ) given by
A 1 2 x
a—a= -2-ﬂ + [ ((e* — l)l{lez_1|<1} — $1{|m|<1})l/(d.’l})

/32:/32

o(A) = v({z € Rle® — 1 € A}) for any Borel set A C R.
Furthermore, Sato[60] gives the characteristic triplet (v, 32, v, ) of an n-dimensional
Lévy process, which also presents the relation between the characteristic triplets of
an n-dimensional Lévy process with L and its linear transformation 7’ L by the fol-

lowing formula:

Xy = 71',01 + /7(":1:(1{|7,-/z<1|} - 1{Iz|<1})l/(d$), (52)
By = B, (5.3
vr(A) = v({z e R*r'z € A})VA CR. (5.4

With the above results, we can derive the above solution to SDE by using Itd’s

formula [20].

W™ty = wexp(t(r + n'(b—r1)))e(x'L(t))

r (5.5)
= wexp(awt + 7' W ()W (t)
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where aw =1+ '(b+ [06]*/2 — r1 + 0a) — |70 B2/2 + [gu (£(2)1gemy<ay —
7T/0'1{|z|51})7/(dw), and E(x) = ln(l + 7.‘./(e.gyz) . 1)'

In Wﬂ(t) = fot f]R“ (@) L{je)>1y M (ds, dz)
+ Jo Jon £08) Ley<1y (M1 (ds, da) — dsv(da))

The wealth process is again an exponential Lévy process. ayy together with B =
|7'o3]? and vy (A) is the characteristic triplet of the Lévy process In(W™ /w). As-

sume the k-th moment of the wealth process exists, then
E(W™(1)*) = w* exp((kaw + K*Ba/2)t) E(W™ (£))*)

and

E((W™(t))*) = exp(/ixt)

where

e = /n((l + (e = 1)) — 1 — k() L) <13)v(dx)

and v is the Lévy measure of L. Now, we would like to find the mean and variance
of the wealth process.

Firstly assume that a Lévy random variable L(1) has moment generating func-
tion f(s) = E(exp(sL(1))) such that f(e}o) < cofori = 1,...,n, where ¢; is the

i-th dimensional unit vector. Then it is easy to calculate

feio) = BE(exp(eloL(1))
= exp((oa+ (00)*/2 + [gu(€”® — 1 — 021511y v(dz));)

Let
In f(o) := (In f(e\0),...,In flelo))
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then
EW™®t) = wexp(t(r+7'(b—rl+1nf(0))))

= wexp(t(r +'(b—rl+ (c8)%/2+ (5.6)
00 + [pa(€7” =1 — 021 jj<1})¥(dT))))).

Let Ay .= f((e; +e;)'0) — feio) — f(e o), and A = (Ay)1 < i,j < n, then

' Am = |n'o 8|2 +/ (7'(e”® — 1))?v(dx)
]R'n,
‘With this, we can calculate the variance

var(W™(t)) = w?exp(2t(r +n'(b—rl+ (¢8)%/2)+
Jor(e® =1 ‘ml{lwld}) (dw))))
exp(t(|7'of? + [ (' (€7 = 1))*v(dz)) — 1)

= w?exp(2t(r + /(b — 71+ In f(0))))(exp(tr’Ar) — 1)
(5.7)

For more details, see [20].

Generally, if the moment generating function of a stochastic process exist, and
hence the mean and variance exist, then we can easily calculate the optimal solu-
tion based on the above discuss. Sometimes, not all the stochastic processes have
defined first or second moments, therefore we might not be able to get the explicit
solution to the optimization problem 2.3. Next, we are going to consider the cases

when the first and second moments of the process are well defined.

5.1.1 variance as the risk measure

In this section, we consider the following optimization problem using the variance

as the risk measure

mingeo1» var(W™(T)) subject to E(W™(T)) > C
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Assume matrix A is symmetric and positive definite. Denote s := b—r1+1n f(0),

and €2 := 7/ Am, where ¢ is a positive real number. Then
var(W™(T)) = w? exp(2T(r + 7's)) (exp(Te?) — 1)

It is easy to see that

ase — 0, g(e) = var(W™(T)) — 0
and as € — 09, g(g) = var(W™(T)) — oo.
Noting that g(e)is a strictly increasing function in €. Therefore, for fixed ¢, min-
imizing var(W7(T)) is equivalent to minimizing . In other words, minimizing
7' An whose value is 2. By the constraint E(W™(T)) > C, we have 's >

LIn€ — r. By Lagrange’s method, we get

. e*?A-1g
7'(' =
Lin € _
T In - =T
where
11, C 2
*2 — (T h’l v T)
s’A-1g
Furthermore,

11, C 2
var(W™ (T)) = cz(exp(T%I;fT;'”_) ~1).

Remark 5.1. Note that the minimal variance value only depends on the stocks
via the value s’A~'s. There is no explicit dependence on the number of stocks.
Therefore, there is no difference between investment in our multi-stock market and
a market consisting of the bond and just one stock with appropriate market coeffi-
cients b and ¢. In the following we take n = 1, and without loss of generality, we

choose 0 = 1.

Now let’s consider the Lévy process (L(t)):>o ([20]) taken as the sum of the
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drift part (yt);»o and the Compound Poisson process (L(t))i> := Efvz(f)Y;, as
defined in section (5.2.1).

If the moment generating function §(n) := E(e™) < oo, then

f(n) = exp(A(3(n) - 1))

where A > 0 is the Poisson intensity. It is easy to calculate

b—r+ A1) — 1P

R ¢ T6 B e )

where A = A(§(2) —2g(1) + 1), and s = b — r + A(§(1) — 1). Since the drift
part of L(t) equals the sum of v and A\(§(1) — 1), we may choose 7 such that
v+ A(g(1) — 1) = 0. In this case we get the same expectation as in the Black-
Scholes model; that is, when the stochastic process of the stock price is assumed
to be Gaussian. With this particular chosen +y, we calculate the expectation and

variance as follows:
EW™(T)) = wexp((n'(b—r1) + r)T) = wexp(T(nb + (1 — m)r))

var(W™(T)) = w? exp(2T(wb + (1 — m)r)) (exp(m*T(A(§(2) — 26(1) + 1)) — 1)
and the minimal risk is given by

Dlglny = rfA0@) - 291 +1),
[b—7+AMg(1) — 1P

var(W™ (T)) = C*(exp(

Remark 5.2. Note that although we made an assumption that only one bond
and one stock is involved, this optimal solution can be viewed as the solution to the
general multi-stock case.

Remark 5.3. We will see more clearly in a later discussion that variance as
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the risk measure does not ask explicit probability density function. While, CaR and
EaR as the risk measure must require explicit pdf which sometimes is hard to be

satisfied.

5.1.2 CaR as the risk measure

The explicit form of the Lévy measure shows that if & > 1, the a-stable distri-
butions on R never admit a second moment, and they only admit a fist moment.
Therefore, to get the first and second moments of an «a-stable Lévy process, we
shall limit our attention on o < 1. When a = 1, S1(0, 0, 1) gives us the Cauchy

distribution
o

(CRMEETD

folz) = ~

But, the Cauchy distribution doesn’t belong to exponential families under investi-
gation. So let’s consider another case, that is, « = 1/2. This gives us the Lévy
distribution Sy /5(0, 1, i) with density:

1

CE exp{~—2—(xa_—lu)}lm>u (5.8)

) = ()2
fule) = ()

27

Now calculate the moment generating function

flo) = [Pefu(a)dz

= f/fo esw(%)l/2 (m—/_ll,)3/2 eXp{— 2(::—;;) }1$>/-¢dx

(5.9)

However, we find that the first moment and second moment are not defined, there-
fore we can’t consider the portfolio selection problem with variance as the risk
measure. Since the density of the Lévy distribution has explicit form, it is natural to
consider the portfolio selection problem with CaR as the risk measure. Obviously,
this will be an unconstrained optimization problem, since the expectation does not

exist. One can use a special optimization algorithm to solve it as, for example,
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Newton’s method.
Let ¢(X,) := f:("‘ fr(z)dz be the cumulative distribution function of the Lévy
distribution. Then its a-quantile is X, = ¢~1(a). It is easy to calculate the o-

quantile of the wealth process W7 (T'), which is given by the formula
VaR,(W™(T)) = W] = wexp(T(r + 7' (b —rl)) + ¢ (a))
Then by the definition of CaR, we have

CaR,(W™(T)) = wexp(rT)— VaR,(W™(T))
= wexp(rT)(1 — exp(r'(b — r1)T + ¢~ Ha)))

However, we are not able to extend this result to the risk measure EaR, since
the first moment does not exist. From this example we can see that, one of the
advantages of CaR over the variance and the EaR as the risk measure is that it has
a wider application. EaR asks that the random process at least has a first moment,
while variance has a stronger requirement that both first and second moments must

exist.

5.1.3 EaR as the risk measure

The advantage of the application of the NIG process in finance has been stated
clearly in section (5.2.3). Since it has explicit pdf and the first moment is well
defined, we are able to use it to calculate EaR, and hence solve the constrained
optimization problem 4.18.

In order to clarify our discussion, we are going to give a more detailed expla-
nation of the pdf of the NIG process. First of all, we give the standard definition of
the Gamma function, see [18], [56] and {60]:

Definition 5.2. For complex number z with positive real part, the Gamma
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function is defined by

Using the definition of Gamma function, we have:

Definition 5.3. The Modified Bessel function of the first kind is given by

R i
L) = Q) B 17 0)

Definition 5.4. The Modified Bessel function of the second kind of order 1

is defined as

_ 7w Ii(z) - Li(z)
Ki(z) = 5(——5;1“(;;)—)

Finally, the pdf of the NIG random variable in (2.7) is:

Futc(es 8.6, p) = 2 VB Krla VO + @~ w)?)
) y Uy T m

Based on the pdf of NIG process, we define the cumulative distribution function

(cdf) as Fyra(za, B) = f_mg‘o fnic(z)dz. It is easy to see that the &-quantile of NIG
is given by Fy}.(&, 3). Here we sacrifice the notion of the « a little bit. And note
that we use another parameter [ in the definition of Fiy;¢(z4, 3), since it is a family
of distributions with variable 3. By the results generated by (5.5), (5.6) and (5.7),
we have:

W™t = wexp(t(r+ «'(b—r1)))e(x'L(t)) (5.10)
EW™(t)) = wexp(t(r+'(b—rl+1nf(0)))) (.11

Since we have assumed that only one stock is involved as the risky asset and the

corresponding o = 1 (see Remark(5.5) for the details), e(7'L(t)) = exp(rLnic)
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and f(o) = E(eln1e),
Firstly, let’s calculate E(el) = E(el~re).

fQ)y=E(") = [ éfnre(l)d

—_ [ a6 et/ 2 —F+B(— —p) Ki(oy/82+(-p)?) )2)

= ) V(=)

_ op [0 @8 5v/aP—FP (B4 1)(1—p) K1(ay/ 824+ (-1)?)
e f'—OO 7['6 /62+(l_'u)2 dl

— Mty fa? =B [P (B+1)?) 2 fyic(l: o, B+ 1,6, p)dl
— it a2 [a?—(B+1)?)

Therefore

In f(1) = p+6(v/a? = 32 — /o2 — (B +1)2)

Furthermore, we have

W™(T) = wexp(T(r +n(b—r)))e™ (5.12)
EW™(T)) = wexp(T(r + (b~ ) + p+ (/a2 = B2 = Vo2 — (8 +1)2))))
(5.13)

Now let’s calculate the &-quantile, Wi, of the wealth process W™(T').

P(W™(T) < Wa)

Q>
Il

(5.14)

(
= P(wexp(T(r +n(b—r1)))e™ < Wa)
= P(rL<In¥s —T(r+m(b—r)))

(

= P(L < i(nWa/w—T(r+n(b—r)))

By the definition of the cdf of NIG, we have 2(InWs/w — T(r + 7(b — 1))) =
Fyio(&,), and hence Wa = wexp(T(r + (b — 1)) + mFy1c(&)).

With this derivation, let’s calculate the conditional expectation, that is, the

56



T'VaRs. To make the notation easy, denote a := wexp(T(r + w(b — 1))):

EWHNTIW™(T) < W) = EWNT)|L <)

= 1% WD) fyie(l)dl
_ o fla ob ml 5y/aP—Frtp(—p) Ki(en/PH(—p?)
g [& aderle T dl

= ggmutd(y/a?—pi—\/a2—(G+m)?)

ffz,o Inre(G o, B+, 6, 1)dl
= %6”’“”‘(\/ oB=Fiorfed =Bt (L, B+ )
(5.15)

Then, with the equations 5.13 and 5.15, we can obtain the formula for EaR by its

definition 3.5.

EaRg = ae®V/@=F (gu=0/=@HIE _ Frig(le, 8+ 7) =5/ (5.16)
[8%

After getting the explicit risk formula, we substitute it into the optimization
problem (4.18) and by the previous method or other optimization methods, we get
the optimal portfolio. Since solving this optimization problem is out of our topic of

this thesis, we simply stop here.

5.2 Semi-analytical solutions to the optimization prob-
lem

The calculation of the CaR and EaR involves the a quantile of the exponential of
the NIG process, which is quite a complicated object. To calculate its distribution
explicitly is certainly not possible. One can possibly approximate its density using
the inverse fast fourier transform method. However, Asmussen [5] proposed an
alternative approximation method based on a weak limit theorem. In this section,

we are going to approximate some Lévy processes by some well defined process,
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for example, Gaussian, which makes the calculation of the o quantile much easier.
Here, we call the solution semi-analytical , since the calculation is based on the
approximated process.

Let X = {X(t) : t > 0} be a Lévy process with characteristic function of the

form

E(e™X*®) = exp{t(iou — F2u?/2) + /00 (€™ — 1 — juslyp<1)v(de)} (5.17)

-0

where o € R, 32 > 0and v is a Lévy measure. With standard terminology, we refer
to the case [, [|v(dz) < oo as the finite variation case, and a1 Izl (dz) =
oo as the compensated case. The term corresponding to z#(|z| < 1) in (5.17)
represents a centering which is necessary for convergence in the compensated case
and may be deleted in the bounded variation case (say X is a subordinator). X (t)
is the independent sum of a drift term ot, a Brownian component W (t), and a
compensated pure jump part with Lévy measure v, having the interpretation that a
jump of size = occurs at rate v(dz) (See [60]).

For simulation, the generation of the Brownian part is a standard topic. For
the jump part, the most straightforward case is the compound Poisson case ||v|| <
oo where jumps have distribution v/||v|| and can be simulated at the epochs of a
Poisson process with rate ||v||. When ||v|| = oo, one could attempt to generate
a discrete skeleton. This is straightforward if the marginal distribution of X (t) is
easily simulated for any t as for the stable case, the Gamma case, or the inverse
Gaussian case. However, most often marginal distributions are not easily simulated
and in practice, one often as an approximation simulates a Lévy process obtained
by neglecting jumps with absolute size smaller than e. In the finite variation case,

this may be implemented by simply removing such jumps, leading to

X5(t) = X (t) — Dot AX (I qa(x(s)))<e) (5.18)

58



In the compensated case, the idea leads instead to
Xi(t) == pet + bW (t) + N(t) (5.19)

where

He =0 — / zv(dx)
e<|z[<1

and

NE(t) = Be: AX (8)L{|A(X(5))] = €)

is a compound Poisson process with jump measure vj,>. and independent of the
standard Brownian motion W;. In the finite variation case, 5.19 means that X7 is
obtained from X by replacing small jumps by their expected value rather than just

only removing them. That is,
Xi(t) = Xo(t) + BE(X(t) - X5(1))

A further improvement is to incorporate also the contribution from the variation of

small jumps, which leads to
X5(2) := pet + (0% + 02(e))V2W (t) + N<(¢) (5.20)

where
o*(e) == / z?v(dr)
|z|<e

Notice a Brownian term appears in X5(¢) even when the original process X does

not have one. This implicitly assumes that the error

X(t) = X(t) - X5(t)
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is approximately normal, as has been suggested on intuitive grounds in some par-
ticular cases [56].

X.(t) is a Lévy process with characteristic function

E(e5®) = exp(t / (% — 1 — juz)v(dz))

|z|<e

Consequently, E(X,) = 0 and var(X.(1)) = o%(¢). o(e)"' X, is convergent in
distribution to a standard Brownian motion W; equipped with the uniform met-
ric. For the specific definition of convergence in distribution, denoted by i,
please see Remark(5.2.). One of the properties of this convergence is that for
every function f : D[0,1] — R, that is continuous with respect to the uniform
metric, bounded, and measurable with respect to the projection o-field, one has
E(f(o(e)™'X0)) < E(f(w)) in distribution, as € — oc.

Theorem 5.1. o(e) ' X, 4 Wase— Oifand only if for each k > 0
o(ko(e) Ne) ~ a(e)

ase — 0

The next theorem gives a more intuitive condition for the validity of the normal
approximation.

Theorem 5.2. o(ko(€) A €) ~ o(e) is implied by

€
lim —— = .
lim — 0 (5.21)

This means that the normal approximation holds when the dispersion of the small
jump part of a Lévy process converges slower to zero than the level of truncation.
Equivalently, the range ¢ of jumps of o(e) ' X, approaches 0.

Furthermore, to find the approximation for In a(ﬁﬁ), we need the main results
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in [20], which are stated below without proofs.

Theorem 5.3. LetZ¢, ¢ > 0, be real valued Lévy processes without Gaussian
component and Y¢ = Ine(Z¢). be the logarithmic stochastic exponentials. Let
g : R — R* with g(e) — 0 as e — 0. Let V be a Lévy process, then for ¢t > 0, as

€ — 0, the following are equivalent

Theorem 5.4. Let L be a Lévy process and L, as given in 5.19. Let L be such

that e[, = el and let L.and I:E be the same relationship as L and L. Then

o(e) ML) — Le(t)) 2 V(2)

is equivalent to

(wo(e))(Ine(rL(t)) — Ine(rL(t))) < V(t)

Theorem 5.5. With the same notation, we have the following result

Ine(rl) =~ Ine(rLe+ no(e)V(t)
= it +7BW(t) + ML(t) + mo(e)V (t)

where

Yo =m(ple) +1/26°(1 ~ m))
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and

ME(t) = Soct In(1 4 m(eAL@hazenc — 1))

if V(¢) is a Brownian motion, then

Ine(rl) = At + (62 + o%(e)) V2 W (t) + ME(t) (5.22)

Since throughout this thesis we are mainly interested in the Compound Poisson
process, a-stable process and Normal inverse Gaussian process, we just present the
analysis results of [5] related to these processes.

Remark 5.1 For compound Poisson process, the condition 5.21 doesn’t hold,
since ¥(R) < 0o, o(€) = o(e)

Remark 5.2 In the case of a Stable process of index a € (0,2), v(dz) =
alz|1*1(z < 0)dz + bz~ 1"%1(z > 0)dz, a,b > 0,a +b > 0 and o(e) =
(4+b)1/2¢l-e/2 Therefore the normal approximation is valid.

Remark 5.3 The normal inverse Gaussian Lévy process is a Lévy process with
X (1) distributed according to the normal inverse Gaussian distribution (see [8]).
The normal approximation is valid since o'(¢) ~ (26/m)'/%¢!/2 as € — 0.

By the result in Resnick [54], the approximation of the a-quantile z, of e(rL)

can be obtained:

2o R ZE(T)

= inf(z € R: P(sT + w(B2 + 0%(e))*W(T) + ML(T) < Inz2) > @)

From this we calculate VaR as in [20]:

VaR(w,m,T) = wzi(n) exp((r + n(b —r))T)
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and hence
CaR(w,n,T) = wexp(rT)(1 — 25 (r) exp(w(b — r)T)). (5.23)

Let f,(x) be the general pdf of the random variable X = In Z which follows
the process given by 7. T +7(8%+0%(€))\*W (T) + M (T), then W™(T) = aZ(T)

where a = wexp(T'(r + 7(b — r))). Then we can get EaR which is given by

EaR(m,T) = [ ae"f(z)dw — 4 ff;(:z“) ac® f(z)dz

o0 In(azea) (524)
= a[ﬁn(aza) e f(x)dx — f_oo N (%)e’”f(x)dx]

5.3 Monte Carlo simulation of the risk measures

Since there is no difference between investment in our multi-stock market and a
market consisting of the bond and just one stock with appropriate market coeffi-
cients b and o, one simplification of the simulation work is to assume that we are
in the one stock and one bond market. Therefore in the following result, 7 is a real
number. Since, for the optimization problem we discuss here deals mainly with
the risk, we give simulation results for three risks, i.e. variance (or more precisely,
the standard deviation), CaR and EaR when they follow Gaussian and Compound

Poisson processes respectively.

5.3.1 Computing risks that follow a Gaussian process

Since the expected return of the wealth process is an increasing function of 7, (see
4.3), EW™(T)) > C is equivalent to m > C’. Assume the confidence level is 1 — o

and the variance of the Brownian motion is o, then we have figures 5.1 to figure 5.6:
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Figure 5.1: For any fixed 7 , standard deviation is smaller than CaR and EaR.

Figure 5.2: When the variance is bigger, with the growth of 7, standard deviation grows

faster than CaR and EaR.

Figure 5.3: When the variance is big enough, standard deviation becomes bigger than CaR
and EaR from some big value of , and also CaR and EaR are getting closer.

Figure 5.4: When the value of a grows, CaR decreases quicker than EaR and standard

deviation for any fixed 7 . This is because CaR is decreasing function of & quantile . While
standard deviation and EaR are not as sensitive as CaR.
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Figure 5.5: When the variance increases, the standard deviation grows faster than CaR and
EaR and the reason is quite trivial.

Figure 5.6: Comparing with figure 5.3, the change of the value of o does not change the
value of risk too much.

5.3.2 Computing risks that follow a Compound Poisson Process

Now we consider the process of Compound Poisson by given figure 5.7 to figure
5.12:

When a Compound Poisson process is assumed, from the above six figures we
can see that, for fixed «, increasing o will increase the values of all these three risks.
But obviously, CaR increases more quickly than EaR and standard deviation. And
the bigger o is, the higher degree of the curve for each risk measure. For example,
when o is small, the standard deviation looks like a straight line. While, when o is
relative big, the standard deviation looks more curly. When o is fixed, increasing «

does not change the figures too much, except that the curves turns a bit smooth.

5.3.3 Results comparison between two processes

Now let’s change the point of view of comparison. For fixed o = 0.05 and o = 0.6,
we have the following results, see captions of figure 5.13 to figure 5.15:

If the Compound Poisson process is assumed, CaR and EaR show us close
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Figure 5.7: o = 0.0l and ¢ = 0.2

Figure 5.8: & = 0.01 and ¢ = 0.6

Figure 5.9: a =0.0l ando = 1.0

Figure 5.10: « = 0.05 and o = 0.2
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Figure 5.11: « =0.05and ¢ = 0.6

Figure 5.12: « =0.05and o = 1.0

results. When ¢ is small CaR behaves better than EaR, while when ¢ is getting
bigger, EaR goes gradually below CaR as 7 grows; at the same time, when « grows
bigger, the three risks as a whole are smaller, see figure 5.7 to figure 5.12. If the
Gaussian normal process is assumed, the increase of the value of o changes the
increment of EaR and CaR, but it does not change the camber. While, the curve
of variance becomes more and more steep for which the reason is quite obvious.
When o increases, the same performance is shown in the figures. From the above
discussion we can see that there is no absolute one criteria to tell which risk measure

is good and how good. As a matter of fact, it really depends on the individual

investor.
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Figure 5.13: In the case variance as the risk measure, assuming that the risk asset follows
Compound Poisson will give us a smaller risk for any value of 7

Figure 5.14: When CaR is concerned , Gaussian process gives us better results compound

poisson process

Figure 5.15: For risk measure EaR, Gaussian process is a better model for relative small
value of 7. But when 7 is very big Compound Poisson turns better.
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