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Abstract

Mountain pine beetle (Dendroctonus ponderosae Hopkins) is an endemic species
in the forests of British Columbia that has become epidemic and reached infestation
levels like never before. Different approaches have been taken in order to try and
manage the forest and understand the processes affecting the behavior of mountain

pine beetle.

No single model has been entirely successful in unearthing the complexity of
mountain pine beetle behavior. In this thesis, large spatial data sets of mountain pine
beetle attacks, obtained from helicopter and ground surveys, and further adjusted for
the incorporation of uncertainty, are studied using a spatial autocorrelation approach

in a pattern-based analysis.

The study of spatial patterns is carried out by simulating possible scenarios of
the observed data set. Moran’s I is used to obtain an overall measure of spatial
autocorrelation of the global pattern and Local Indicators of Spatial Autocorrelation,
specifically Local Moran’s I, are used to identify local pockets of high levels of infesta-
tion (hot spots). Using a significance criterion, regions that have intense infestations
are screened to retain those that are more pervasive, thus having a more robust set of
results that can be more reliable. Different levels of significance can be used to allow

for a more ‘liberal’ or ‘strict’ screening of results.



Study of the sensitivity of the data model and detection approach is carried out
by comparing the locations of hot spots obtained with different detection methods.
A comparison between results derived from data sets containing only aerial data
and those containing aerial and field data is useful to determine the impact and

effectiveness of sending crews to groundtruth aerial surveys.
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§ Chapter 1

Introduction

According to the British Columbia Ministry of Forests, the province is experi-
encing the largest infestation of the mountain pine beetle (Dendroctonus ponderosae
Hopkins) ever recorded and there is no foreseeable end. From 1994 to 2003, 4.2 million
hectares have been infested by mountain pine beetle in the entire province (British
Columbia Ministry of Forests, 2003). Local communities whose economies are based
on the forest are and will continue to be affected by the infestation as long as there

is no scientifically driven management policy.

Forest values affected by mountain pine beetle infestations include: landscape
aesthetics, water quality, wildlife habitat and timber supply that have economic im-
plications on about 30 communities around the province and affects 25,000 families
in British Columbia. Previous infestations have been tracked through time and out-
breaks have been delineated using helicopter surveys since the 1960’s. It is interesting
to note the work of Wood and Unger (1996), which is a document containing a lot
of information with respect to infestations and outbreaks all over the province from
1910-1995. It includes sections on the history of mountain pine beetle beetle in British
Columbia for different forest regions and it is particularly suitable, for this study, to

briefly summarize the information available for the Prince Rupert Forest Region, in
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which the study area for this research is located.

For this region, Wood and Unger (1996) present with great detail reports on the
infestation levels for each year from 1970 to 1995. They also present the reader with
information on the proportion of thousands of hectares and trees affected each year to
track the history of infestations throughout time. It is interesting to note that during
the 1980’s infestation levels where reported to be unusually high compared to the
previous decades affecting over 13,000 hectares and up to 1.4 million trees, reaching its
peak in 1987. During the early 1990’s infestation levels decreased reaching its lowest
point around 1992-1993 and during 1994-1995 infestation levels started increasing

again.

At the landscape level, infestation is currently taking place at epidemic propor-
tions. For this study, landscape level or scale is understood as an area that is spatially

heterogeneous in at least one factor of interest (Turner et. al., 2001).

The general purpose of this study is to explore spatial and spatial-temporal
behavior of the mountain pine beetle population distribution over large areas. A
specific goal is to detect the locations that are exceptionally intensely affected (hot
spots) using spatial analysis. My research will explore how sensitive the identification
of hot spots is to the method used to represent the data (the spatial data model) and

to the techniques used to identify them (spatial analysis technique).

Little is known about the mountain pine beetle’s behavior at the landscape level.
Previous studies have been carried out on a more local scale (e.g., individual tree
stands) and behavior identified at that scale includes, but is not limited to: aggrega-
tion of individual beetles in response to chemical signals, the effect of spatial distri-

bution of individual trees on the spatial pattern of the infestation, and differences in



§ CHAPTER 1. INTRODUCTION 3

spatial patterns of infestations due to population distribution (Geiszler et. al., 1980;
Mitchell and Preisler, 1991; Logan et. al., 1998). Different analyses of mountain pine
beetle populations have been carried out and it has been recognized by researchers
that it is imperative to consider spatial analysis in its studies (Bentz et. al., 1993;

Logan et. al., 1998).

As mentioned before, most of the studies that include spatial analysis for moun-
tain pine beetle populations have been carried out at a more local scale, thus aiding
in the understanding of the processes that govern the behavior of the beetle at that
particular scale. It should not, then, be assumed that the same process will operate
at a landscape level, which is the scale considered in this research. Since infestations
are occupying large extents of the forests, it is necessary to gain insights into the

behavior at a larger level.

One of the reasons why landscape level studies have not been carried out much
in the past is the complexity of mountain pine beetle behavior and the limitations
posed by computational hardware (e.g., processor speed and storage). Typically,
studies were carried out for small study areas, since they offered the advantage of
being a reasonably manageable analysis and computational requirements were not
overwhelming. Also, the unavailability of large data sets was a major limitation for
this approach. These limitations have been partially surmounted as large data sets
have been collected and are readily available, computers are faster and storage media
are able to support these larger data sets, thus making it possible to analyze mountain

pine beetle spatial behavior within larger areas of study.

Basically, two approaches can be applied to the study of mountain pine beetle
infestations: pattern-based or process-based. In general terms, a spatial pattern is

the expression of one or more spatial processes (Getis and Boots, 1978), while a
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spatial process is one that reflects changes in its state due to the spatial properties
of the attribute (Haining, 1993). In the case of the mountain pine beetle, pattern-
based studies typically use pine mortality to explore the nature of mountain pine
beetle spatial behavior. Process-based studies focus on direct observation or modeling
of mountain pine beetle emergence, dispersal, and host selection. In this project,
the pattern-based approach has been chosen since it provides an advantage at the

landscape scale being used. This will be further explained in a later chapter.

The research goal is to locate the areas of major infestation. Once these have
been identified, the primary issue will be to compare the hot spots previously iden-
tified using another approach (Kernel Density Estimated — KDE — surfaces) with
those obtained with the present analysis (Local Indictors of Spatial Autocorrelation
— LISA). As it will be explained in more detail in Chapter 2, for some years data were
collected by aerial and ground surveys and the analysis will be carried out using these
two different sets of data. It will be important to assess the differences of utilizing

field data obtained from the surveys and aerial data.

It is worth noting that this thesis does not relate profoundly to the mountain
pine beetle entomology or pine biology. There are several books, articles and other
sources of information to which the reader is referred if further knowledge on this
topic should be required. As examples of such sources, the following can be listed:
Safranyik et. al. (1974); Geiszler et. al. (1980); Preisler and Mitchell (1993); Amman
et. al. (1988), among many others. Also Nelson (2005) has a brief, yet comprehensive,
summary of mountain pine beetle entomology and pine biology and further references

can be found therein.

The present work is organized as follows. In Chapter 2, the area of study is

presented along with the data sets. Special emphasis is given to the distinction
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between the two different data sets that will be used for this analysis and the way
they were obtained. In Chapter 3, a brief summary of previous research is presented
and the research methods used here are explained. Chapter 4 presents the results
of this study and finally, Chapter 5 summarizes and presents the conclusions of this

work, as well as some ideas for future research.



§ Chapter 2

Area of Study and Data

2.1 Morice Timber Supply Area

The area of study of this research is the Morice Timber Supply Area, (54°24
N, 127°38 W). Morice is part of the British Columbia Ministry of Forests, Nadina
Forest District and is centered on the small town of Houston (Figure 2.1). It covers
approximately 1.5 million hectares and it has been one of the areas impacted by
mountain pine beetle infestation.

It is delimited by the Cascade Mountains to the west and Tweedsmuir Park to
the south. The topography of the region shows a trend to be more mountainous
towards the southwest. Within the region are two large lakes: Babine Lake in the
north and Ootsa Lake in the south, as well as three major rivers: the Bulkey, the
Morice and the Nadina. The area is dominated by lodgepole pine (sp. Pinus) and

spruces (sp. Picea).

2.2 Data

The mountain pine beetle infestations have been monitored in the study area

since 1995 using point-based, global positioning system aerial surveys. Aerial surveys
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§ CHAPTER 2. AREA OF STUDY AND DATA 8

use indicators of pine mortality to monitor mountain pine beetle activity. When pine
trees are attacked by mountain pine beetles, crown foliage changes successively from
green to yellow, brown, red and finally to grey leaving the tree just with the stem

and branches (Safranyik et. al., 1974).

Pine trees are usually attacked during summer and the first visible change in
foliage color usually occurs the next spring after the attack. Typically one year after
the attack the foliage is yellow green or yellow brown. Two years after the attack the

foliage is usually red, and by the third year, needles fall off the tree.

During aerial surveys, if a cluster of infested trees is detected it will be identified
and a cluster center is mapped with a point. For each cluster, the number of infested
trees is estimated and the infesting insect species recorded. The maximum area
represented by a point is approximately 0.031 km?, equivalent to a circle with a
radius of 100 meters; each data point represents from 1 to a maximum of 300 trees.
From 1995 to 2002 a total of 42,632 points were identified during aerial surveys, of
which field data were collected for 6,151 points, between 1999 and 2002. Table 2.1

shows the data available for each year, for both aerial and ground surveys.

Survey Sites‘ 1995 1996 1997 1998 1999 2000 2001 2002 ] Total

Aerial | 2,181 6,076 8461 2418 4,657 5310 50226 8,308 42,637
Field 0 0 0 0 223 104 3,004 2,820 6,151

Table 2.1: Annual number of aerial and field survey sites.

Field data are obtained when ground crews locate the infestation clusters that
were identified during aerial surveys and determine the cause of tree mortality. If
trees were killed by mountain pine beetle, the number of green trees under attack,
the number of trees attacked the previous year and two years previously as well as

the number of trees attacked, and now gray, are recorded. The crews also note the
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presence of any non-mountain pine beetle infestations on the field. It is important
to note, however, that even though green-tree attack is recorded it is not used in
this study in order to have comparable results with what has been obtained from the

helicopter surveys.

When data have been collected in the field, records are updated and changed and
it is expected that those databases containing only information from aerial surveys
will be less accurate than the ones containing field data. Field data sets will often
contain more records than their aerial counterpart since typically, when crews are

inspecting areas in the field, more clusters of infected trees are found and recorded.

It is important to mention that field data are used in this analysis in order to
identify errors in aerial data and adjust these accordingly. It will provide insights to
see whether considering error, as identified in the field data, provides an advantage
over the data collected from the air. This work will involve two aspects to address
the problem: one with what has been called ‘Adjusted Aerial Data’ and the other

which was called ‘Adjusted Aerial-Field Data’, which are presented below.

2.2.1 The Adjusted Aerial Data

These data sets are available from 1995 to 2002 and will be useful to check for
consistency of hot spots throughout time. Data have been collected in the field for
some of these years, thus making it possible for a comparison of field and aerial data
at those sites where both are available. This in turn allows for identification and
modeling of error in the aerial data. Once this information is available, it is used to

adjust the aerial data of those years for which no field data was collected.

In order to incorporate adjustments on spatial error and uncertainty, simulated

data sets of what the real data might have been, given knowledge of the error ob-
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tained from the field data, are created. For detailed information on the error and
data accuracy from mountain pine beetle aerial and field surveys, Nelson (2005) con-
tains a comprehensive discussion on this topic. The simulations used in this research
were obtained in the following way: spatial error for each point is estimated by field
crews to be within £25m (Nelson et. al., 2006). Values are randomly drawn from
a standardized normal distribution and then scaled between +25 and added to both
the z and y coordinates of each point. This is a valid approach since for either the
x— or y—axis, the distribution of GPS error is approximately normally distributed
(Leva et. al, 1996). In other words, one could consider that for each simulation a
point is randomly displaced from its position based on a probabilistic approach us-
ing a two-dimensional normal distribution. Figure 2.2 shows an illustration of this
idea. In this Figure, the z— and y— axes represent the spatial coordinates of any
given point while the z— axis represents, and is shaded according to, the probability
distribution of spatial error that will be assigned to each point in every simulation.
Also, in this Figure, each black line represents the normal distribution for each axis,
r— and y—. It can be seen that smaller displacements for spatial locations have the
higher probabilities (near the center of the distribution), while greater displacements
are less likely to occur since the probability greatly decreases as we move away from

the center of the distribution.

As it was recognized in Nelson (2005), the number of infested trees has uncer-
tainty associated to it and is important to try and take this into account. In order
to do this, attribute error was simulated by drawing values from a distribution. A
cursory exploration suggested it was necessary to use more than one distribution and,
based on natural breaks in the frequency, three categories for attribute values were
used: one to five, six to ten, and greater than ten, to properly reflect changes in the

distribution of attribute data depending on the number of infested trees. It was found
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b)

Figure 2.2: Spatial error probability distribution for both axes. Illustrations are
shaded according to probability values ranging from purple for lower to red for higher
levels: a) shows a wireframe so the normal distribution along each axis can be seen;
b) is shown as a continuous surface and probabilities can be more easily identified.

that the distribution for each category appeared to follow a Gamma distribution. For

each class, a two-parameter Gamma distribution was fitted and used to simulate the

attribute values for the realizations.

Ground crews found locations where there were no infested trees and assigned
these locations a value of zero. Since the Gamma distribution does not contain zero
values, there was a limitation when simulating attribute values and keeping the zero

values obtained from field surveys. In order to overcome this problem, the percentage
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of zeros was kept and the number of zero values assigned to each year were treated like
random draws from the distribution. With parameters estimated and the percentage
of zero values fixed for each year, attribute values for each point were simulated
by randomly drawing values from the Gamma distributions. An illustration of the
conception of the Adjusted Aerial data sets is shown in Figure 2.3. This illustration
can be explained in general terms as follows: the coordinates obtained from the aerial
survey are subject to be simulated by means of displacing the original locations by
adding random values drawn from a normal distribution (scaled between £25), while

the number of trees is simulated using a Gamma distribution.

2.2.2 The Adjusted Aerial-Field Data

The Adjusted Aerial-Field data sets are available from 1999 to 2002. These data
sets were derived from the previous Adjusted Aerial data sets by including the field
data values at sites where these values were available, hence the label Adjusted Aerial-
Field. These data sets will give the possibility to explore two aspects: test for the
impact of the corrected data set (Adjusted Aerial vs. Adjusted Aerial-Field) on hot
spot detection, and compare the detected hot spots with those recognized previously
using another method. Previous studies dealing with detecting mountain pine beetle
hot spots in the same study area have been carried out using the Adjusted Aerial-
Field data sets. It is worth noting that to date, no previous work on comparing the
impact of including field data or not to correct the data sets has been carried out.
Also, field data counts are not adjusted, and are considered to be closer to true than
those obtained via helicopter surveys. For the Adjusted Aerial-Field data sets, spatial
error for each point was also simulated by displacing the original locations £25m by
randomly drawing values from a normal distribution for each axis. An illustration of

the conception of the Adjusted Aerial-Field data sets is shown in Figure 2.4.
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In this case, this illustration can be explained in general terms as follows: original
coordinates from the aerial survey are displaced by adding random values drawn from
a normal distribution (scaled between +25), while the number of trees is either kept
if data field was collected for any given location or is corrected using a Gamma
distribution.

For each case a total of 100 simulations was generated in order to create 100
different spatial representations of the point data, for hot spot detection using local
spatial autocorrelation techniques. These steps are explained in the next chapter.
Mlustrations showing the idea behind the generation of these realizations are shown
in Figures 2.5 and 2.6. An illustration showing a summary of the process for obtaining

the simulations for both data sets is shown in Figure 2.7.
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Original (Aerial) data set
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Figure 2.5: Illustration of an example of the process to obtain the Adjusted Aerial
data set simulations. Original locations are displaced using a normal distribution;
number of trees are adjusted using a Gamma distribution.
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Figure 2.6: Illustration of an example of the process to obtain the Adjusted Aerial-
Field data set simulations. Visited field locations are displaced using a normal dis-
tribution; number of trees are corrected when visiting the sites or adjusted using a
Gamma distribution if no field data are available.
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Figure 2.7: Illustration of the summary of the process to obtain the 100 simulations
for both the Adjusted Aerial and the Adjusted Aerial-Field data sets.
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Research Methods

The spatial behavior of the mountain pine beetle is not well understood, but
it seems to be increasingly recognized that spatial dynamics play an important role
(Bentz et. al., 1993; Powell and Rose, 1997; Logan et. al., 1999; Powell et. al,
2000). As was mentioned in the Introduction, there are two approaches for studying
mountain pine beetle infestations at the landscape level: pattern-based or process-
based. Pattern-based studies typically use pine mortality to explore the nature of
mountain pine beetle spatial behavior. On the other hand, process-based studies
focus on direct observation or modeling of mountain pine beetle emergence, dispersal,

and host selection.

In this study, the pattern-based approach is preferred since it provides an advan-
tage at the landscape scale insofar as it is more useful for exploratory analysis. This
is because the processes of mountain pine beetle dispersal and host selection are not
well understood to derive a good pattern that can be compared to the ones observed
on the ground. In other words, process-based analysis poses further technical limita-
tions to the study since there is insufficient knowledge of the processes to derive good

models.

19
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In this case direct data on the spatial process, the mountain pine beetle behavior,
are difficult to obtain. With the spatial pattern approach it is possible to make
inferences regarding processes but unfortunately, the relationship between these two is
complex because spatial patterns are usually the result of several interacting processes

and it can be either very difficult to identify or assess the impact of all of them.

3.1 What is a Hot Spot?

The term ‘“hot spot” has been coined and used in many different disciplines
and can have several meanings. It could very well mean that something out of the
ordinary has occurred (Ord and Getis, 2001); that there is an excess of an event in
space or time compared to an expected value (Wartenberg and Greenberg, 1992) or
that an unusual absence of an event has occurred (Sokal et. al, 1998); and more
recently, it has been understood to refer to accessibility to a wireless network in a
certain place (Manjunath et. al., 2004). It is clear from the above that one definition
is not enough and the suitability of a particular definition depends on what is being
studied. The term is so widely employed and is so flexible that typically, in order to
have a consistent definition, it is necessary to take into account the spatial pattern,
hypothesis, techniques and available data, but it is also important to consider that

the definition of a hot spot will influence the method that is used for its detection.

In general terms, it is safe to say that hot spots are locations where something
“unusual” is occurring. That is to say that, whatever it is that is being measured,
is showing different values from the expected ones. In other words, these values are
exceeding a threshold. Thresholds can be defined absolutely or relatively and either
choice will be useful in some instances, but will suffer from certain disadvantages as

well.
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It is useful to choose relative thresholds when analyzing a specific data set, but it
is important to be aware that the results will very likely be unique to that data set and,
in general, will not be comparable to a different data set. Relative thresholds may be
useful for detecting ‘local extreme’ values, where absolute thresholds are helpful for
identifying extreme values across data sets. It is important to note that when global
characteristics do not change much over different data sets that are being analyzed,
the use of relative or absolute thresholds will not make a big difference. Also, when
using relative thresholds, hot spots will always be identified. This does not necessarily

hold when using absolute thresholds.

Perhaps it is useful to clarify the difference between each threshold type by
presenting an example. Consider a data set that contains the heights of a sample of
the population of a certain region. When interested in finding the tallest people in
this area it is possible to take two approaches. For the first one, think of the data
set as heights sorted in an ascending order and then define, in a totally arbitrary
way, that a person will be considered to be part of the ‘tallest people’ if their height
falls within the top 15% of the heights. In the second case, consider a person to be
part of the ‘tallest people’ if their height is above a certain pre-defined level, say for
example 1.80m. It is clear from these two definitions that the outcomes of these two
classification schemes are likely to be different simply because the first will always
contain elements, while the second not necessarily. It is possible that the data set will
not contain heights above 1.80m, therefore the second method would not contain any
elements. On the other hand, it is easy to see that considering the top 15% of the
individuals in the data set will inevitably give us people that are classified amongst
the ‘tallest’.

In this example two different classification thresholds are used: a relative one in

the first case and an absolute one in the second. In other words, the relative threshold
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helps to identify those people who, within or relative to the data set, are the tallest.
The absolute threshold helps identifying those whose heights are above a specified

level, an absolute measure with respect to the whole data set.

3.2 Previous Studies in Mountain Pine Beetle
Spatial Analysis

There are several studies of Mountain Pine Beetle involving both pattern and
process-based approaches. Previous process-based studies, have focused on under-
standing reactions of beetles to different stimuli as well as obtaining data on beetle
movement and ‘migration’. One disadvantage of this approach is the limited coverage
one can have, as these studies are only suitable at the tree or stand level, therefore
they are not useful for a study at the landscape level. Examples of this type of
work are Safranyik et. al. (1989, 1992); Turchin and Thoney (1993); Powell and Rose
(1997); Powell et. al. (2000); Logan et. al. (1998).

Also, starting from a process-based study point of view, in the cited papers, a
model for the mountain pine beetle pheromone ecology and single tree processes is
considered, and Logan et. al. (1998) simulates the spatial process and generates an
expected spatial pattern of pine mortality. Direct pattern studies include those of
Mitchell and Preisler (1991) and Preisler and Mitchell (1993), in which the spatial
pattern of individual trees is studied as well as the behavior of attacking beetles with
respect to host trees. The approach of these process-based studies has been useful to
shed some light into mountain pine beetle dispersal and host selection at the stand
level. Unfortunately, beetle ‘migration’ usually spreads across the landscape covering

several kilometers, therefore making it difficult to use the results from these studies

at the landscape level.
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Pattern-based studies at the landscape level seem to be scarce, but Nelson (2005)
is worth noting. In this work, hot spots of infestation were obtained by converting
the original data from marked point patterns — that is, cluster centroids with the
number of infested trees — to continuous surfaces by means of using Kernel Density
Estimator (KDE) methods (Diggle, 1985; Gatrell, 1994; Bailey and Gatrell, 1995).
Hot spots were defined using the relative upper 10% threshold of intensity values of
the obtained surfaces. One disadvantage of defining hot spots in this fashion is that
it is an arbitrary way of doing it and does not give a helpful indicator that can be
traced through time, as the upper threshold is likely to change from year to year,
making it hard to compare results across years. Spatial-temporal analysis involved

finding significant differences between pairs of KDE surfaces.

In this research, the definition of a hot spot consists of the following parts:
e Spatial Autocorrelation

o Statistical Significance

e Concentration Measurements

each of which will be elaborated throughout the rest of this chapter.

3.3 Spatial Autocorrelation and Hot Spots

For this research it is suitable to define a hot spot as the location of an abnormal-
ity in the spatial pattern that is being observed, the spatial pattern being a realization
of a spatial process (Haining, 1993; Tiefelsdorf, 2000). The goal is to identify those
locations that have infestation levels that are significantly above an expected value,
that is, showing dissimilar and abnormal values to the rest of the areas. Because of

mountain pine beetle processes it is expected that data values will be clustered, or
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spatially autocorrelated, since the underlying idea behind the process is that beetles

tend to locate themselves in certain regions of space, thus creating a spatial pattern.

Large and mature trees are preferred by mountain pine beetles for several reasons.
Thicker phloem provides optimal food for the beetle, a thicker bark protects the
beetles from cold and predators, and older trees are more easily attacked, colonized
and killed (Safranyik et. al., 1974; Geiszler et. al., 1980; Preisler and Mitchell, 1993),
suggesting that patches of older trees are more likely to be attacked if there is an
infestation in the vicinity. It also has been suggested that pine mortality depends
on stand density (Amman et. al., 1988) and could be a reason for host selection by
mountain pine beetle. Mountain pine beetle dispersal is not clearly understood but
it is influenced by chemical signals, temperature, light and wind direction (Safranyik
et. al, 1989; Powell et. al, 2000). The combination of tree age, stand density,
chemical signals and seasonal changes are factors that affect the location of beetles
and may trigger the accumulation of beetles in certain regions, but in general it is very
difficult to propose a proper model that takes all the known variables into account

and accurately reproduces the observed spatial patterns at the landscape level.

From air and field surveys, information is available on infested trees, and a hot
spot will be understood as a location of major levels of infestation. However, since
data will show some form of spatial pattern, it is necessary to search for these intensely
infested areas on a more local scale. It is important to bear in mind that local patterns
and fluctuations may be reflected in the global pattern, but not necessarily, since the
possibility exists that the local pattern is something very uncommon that is not picked
up by the global pattern. It is also possible that localized areas may behave in an

opposite fashion to the general trend of the pattern.

Spatial autocorrelation is a measure of the relation between spatial data from
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near locations. According to Tobler’s first law of geography: everything is related
to everything else, but nearby things are more related than distant things (Tobler,
1970). Furthermore, as stated by O’Sullivan and Unwin: “...any set of spatial data is
likely to have characteristic distances or lengths at which it is correlated with itself, a

property known as self-correlation or autocorrelation” (O’Sullivan and Unwin, 2003).

One way to assess the degree of spatial autocorrelation is by means of global sta-
tistics such as Moran’s I or Geary’s ¢ (Bailey and Gatrell, 1995; Ord and Getis, 1995,
2001; O’Sullivan and Unwin, 2003). Such statistics assume there is a certain degree of
stationarity or structural stability throughout space and work very well under these
conditions. However, in cases where it is recognized that spatial randomness is not
the process underlying the observed spatial pattern, using these statistics might not
be entirely appropriate. Still, they are able to provide insights into what is going on
globally with the pattern under study. Unfortunately it is difficult to derive better
models that take into consideration these complex spatial variations. One alternative
for taking into account local instabilities and focus on local patterns is the use of a
localized version of these statistics, which allows consideration of the contribution of
individual observations and that altogether reflect the overall behavior of the pattern.
As defined in Anselin (1995), Local Indicators of Spatial Autocorrelation (LISA) are

statistics that satisfy the following criteria:

1. The LISA for each observation gives an indication of the spatial clustering of

similar values around that observation.
2. The sum of LISAs for all observations is proportional to a global indicator.

In this sense, the value of the local indicator depends on the value of a variable in
a certain specific location, as well as on other observations located in a neighborhood

centered in the location under study.
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The use of Global Moran’s I will help in giving a general idea of the overall spatial
pattern and autocorrelation at the landscape level. When interested in detecting, at a
much finer scale, the locations that are presenting unusual numbers of infested trees,
it is much more appropriate to consider the localized version of Moran’s I, that is,
the I; statistic. The expression for Global Moran’s I is:
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or in a more simplified form:
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where:

e z; = (x; — I)/s, are deviations from the mean,

x;, are individual observations,
e Z, is the average value of these observations,

e s, is the standard deviation of the sample, and

n, is the total number of elements.

The summations are taken over all of the observations i and over the number of
observations, j, that are contained within a certain neighborhood around each element
i. The terms w;; are the elements of the weights matrix, which are used to properly
reflect the influence of the neighbors around each observation to the overall result,

that is, they are used to indicate how each possible covariance term will affect the
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calculations. The simplest case is an adjacency matrix in which w;; = 1 if the elements
i and j are adjacent and O otherwise. Adjacency matrices are used throughout this

study and the way to obtain them is explained further on in this chapter.

Local Indicators of Spatial Autocorrelation come into play when it is acknow-
ledged that global spatial autocorrelation is expected to be present given the nature
of the data, as was mentioned before, and the use of a global statistic is therefore
not able to give much more information about the spatial pattern under study. As
stated by Anselin (1995): “...the assumption of stationarity or structural stability
over space may be highly unrealistic”. The use of global Moran’s I would completely
ignore this potential instability, thus the search for local instabilities is considered to
be much more appropriate. Since LISAs are defined to be such that the summation
of all the contributions is proportional to the global indicator, they allow for each
individual observation to have a value attached to it that can help to shed some light
on the behavior of the pattern at local scales. In the realm of spatial autocorrelation,
a hot spot is typically understood to be a collection of spatial locations that have
a significant local statistic, or in other words, a local spatial cluster. The use of
global Moran’s I will give some indication of the overall spatial autocorrelation of
the pattern and Local Moran’s I will be used to search for hot spots by comparing
the number of infested trees in the vicinity of each location to the number of trees in
each location. The expression for Local Moran’s I may be written as (Gatrell, 1994;

Bailey and Gatrell, 1995; Fotheringham et. al., 2000):

(2 — )Y wy(z; — )
[1' = ki s <33>
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or in a more simple way as:

Ii = Zj Zwij Zj (34)

J#

where the elements z; and w;; are as defined above.

The definition of a hot spot that is used throughout this research and was previ-
ously introduced will be further refined by including a statistical significance criterion,
which will allow for a more effective use of the Local Moran’s [ statistic. A poten-
tial hot spot will be considered as a location that has a significant I; value. The
general course of action for hot spot detection is the following: calculate I; for each
point, identify locations that have a significant statistic with either positive or nega-
tive spatial autocorrelation and use a significance criterion to identify unusually large
infestation levels. Thus, a hot spot will be considered as such if it has a significant
I; value and is consistent throughout a fair number of simulations. This will be ex-
plained in more detail in the next section. Numerical computations to obtain both
Moran’s I and I; will be carried out using the GeoDa software package (Anselin,
2004). An alternate approach would include the utilization of different local statistics

such as local Getis G; or local Geary’s ¢, that are defined similar to /; (Anselin, 1995).

Since there are 100 realizations for each year, for which each point has been
randomly displaced from its original position and the spatial attribute has also been
randomly assigned, it would be difficult, if not impossible, to make a comparison
between hot spots detected from one simulation to the next. If this were feasible,
then there would be the cumbersome process of summarizing these comparisons and
to then compare the hot spots throughout the years. Given the difficulty of using the
I; statistic values to directly carry out hot spot detection, a significance criterion is

used. This is explained in detail in the following section.
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3.4 Statistical Significance and Hot Spots

Analyses can be carried out by including a large number of significance tests
or by repeated processes. However, there is a problem with the interpretation of
results because, if something is tested several times, it is possible to find something
“significant” (Bland and Altman, 1995; Voss and George, 1995; Caldas and Singer,
2006). Indeed, as it has been recognized by Caldas and Singer (2006): “...assessing
the significance of multiple and dependent comparisons is an important, and often
ignored, issue that becomes more critical as the size of data sets increases. If not
accounted for, false-positive differences are very likely to be identified”. This problem
has been recognized and there is no straightforward way to eliminate it, although
several methods have been developed to deal with this. However, its consequences
and attempts for solution are beyond the scope of this research. If a more in-depth
discussion on this topic is desired, the reader is encouraged to review Caldas and

Singer (2006).

It is also important to recognize the fact that tests for both global and local
spatial autocorrelation are compared to a null hypothesis of spatial randomness (or
no spatial autocorrelation). Another problem is that typically neighborhoods will
contain common elements, thus their corresponding statistics will be correlated and
we are in the presence of non-independent tests. This ties in with the problem of
repeated processes (or multiple comparisons) and the net impact is that it is not
possible to accurately interpret the value of the significance (Anselin, 1995; Caldas
and Singer, 2006). One way to assess how reliable the obtained results are is to change
the significance levels and compare the results, thus having an idea of how dependent
and sensitive results are on the chosen significance level. This provides a quick way
around the problem of repeated processes without much formality. Typically strict

levels of significance (e.g., 0.05, 0.01 and so on) are used in order to try and rule out



§ CHAPTER 3. RESEARCH METHODS 30

false positives, that is, values that are incorrectly reported to be true when, in fact,

they are not.

Statistical significance is a way of arriving at the conclusion of how ‘real’ a
potential hot spot may be. A significance value can be computed for each point and
help assess if, within a certain specified confidence interval, a potential hot spot is
in fact a hot spot. Not only is statistical significance useful for discerning the local
behavior of data points, but it is also useful in determining if the values of global
Moran’s [ are significant, thus permitting us to recognize if we are indeed in the

presence of global spatial autocorrelation or not.

3.4.1 Testing significance for Global Moran’s [

Statistical significance is implemented in the GeoDa software package (Anselin,
2004) based on a permutation approach. In this procedure, a reference distribution is
calculated for spatially random layouts with the same data values as observed. 9,999
permutations are generated and are used to generate the reference distribution (see
Figure 3.1), having a total of 10,000 realizations. The significance level is computed
as the ratio of the number of statistics for the randomly generated data sets that are
equal to or exceed the observed statistic + 1, over the number of permutations used
+ 1. In simpler terms, it is defined as the ratio obtained by the division of the number
of times a statistic is found to have a value greater or equal to the observed one and
the total number of realizations. In the example shown in Figure 3.1, the number of
permutations used is 9,999 and six values were found to be greater than or equal to
the value of Moran’s [ for the sample under study. The significance for this example

would then be computed as:

6+1 7

@= 5999 +1 10000 007
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In Figure 3.1 the blue bar represents the observed value of Moran’s I and the values
to the right those that exceed this observed value. The existence of a large number
of values to the right of the blue bar is an indication of a low significance in the

observed value, meaning that the data set under study is not showing global spatial

autocorrelation.
Original Permutation | Permutation 5,999
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1 . 7 P 3 .
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Figure 3.1: Permutations approach used in GeoDa to compute the significance of
Global Moran’s I. The terms IV, ... 11999 pefer to the value of Moran’s I for
permutations 1 through 9,999.

3.4.2 Testing significance for Local Moran’s [

Statistical significance for I; is also evaluated in GeoDa and follows the same

principles as for Global I, that is, a permutation approach. In this case, however,
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conditional permutations are carried out within the neighborhood of each point. This
means that the value at each point remains fixed, acting as a pivot, and the values
at the rest of its neighbors undergo the permutations. GeoDa directly computes the
significance level the same way it does for the case of Global I and attaches this value
to the point. Figure 3.2 shows an illustration of this process. An observed value of [;
is calculated based on the ‘original’ configuration of point ¢ and its neighbors. The
value at location ¢ remains fixed while intensity values of its neighbors are permutated
to calculate the significance of ;. GeoDa does not display the reference distribution
generated for the case of Local Moran’s I and it is only shown for the illustrative
purpose of understanding the way GeoDa calculates statistical significance for I;.
Significance for Local Moran’s [ is computed in the same way as for the case of
Global Moran’s I. In Figure 3.2 the blue bar represents the observed value of I; and
the values to the right are those that exceed this observed value. The existence of a
large number of values to the right of the blue bar is an indication of a low significance
in the observed value, meaning that there is no significant spatial autocorrelation in

the neighborhood around location i.

When 9,999 permutations are used, statistical significance can be classified in
four levels: 0.05, 0.01, 0.001 and 0.0001. Each class will hold all those points that
have a significance level that is less than or equal to the upper bound of the class
(i.e.,, <0.05,<0.01, and so on). This serves the purpose of separating points that are
significant from the ones that are not, to further process the valuable information.
Once a significance value has been attached to each point in a simulation, this process
is repeated for the remaining simulations. After this has been completed every point
in every year has a significance value that will allow it to be classified in one or more

of the classes mentioned above.

Since there are 100 simulations for any given year, it is possible to determine
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Figure 3.2: Permutations approach used in GeoDa to compute the significance of

Local Moran’s I. The terms Ii(l), e ,Ii(g’ggg) refer to the value of Local Moran’s I

that is evaluated for point ¢, for permutations 1 through 9,999.
how many times a point is significant at a certain significance level (e.g., 0.05, 0.01,

0.001), out of a hundred; in other words, the significance of a point can be expressed

in terms of a percentage.

3.5 Concentration Measurements and Hot Spots

Hot spot detection is carried out using marked points as the data representation
and Local Indicators of Spatial Autocorrelation (LISA) as the detection method. As

was mentioned before, previous work has been carried out in the same study area
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using Kernel Density Estimated (KDE) surfaces for these data sets. The driving
idea behind this research is to explore if a change in the technique for detection will
considerably affect detected hot spots. It will also be interesting to examine the

impact of the existence or absence of field data in the results.

For both I and [;, spatial relationships between points (adjacency matrix) will
be defined as distance-based neighborhoods (the term w;; in equations 3.1 - 3.4).
More specifically, initially two points will be considered to be neighbors, or adjacent,
if the distance between them is less or equal to the minimum distance required for
every point in the data set to have at least one neighbor. It is important to note
that, typically, adjacency matrices are based on either rook’s, queen’s or bishop’s
case (from the way each element moves in a chessboard). However, in this study
adjacency is defined in terms of a distance and none of the previously mentioned
cases are considered here. As an illustration, if working with a data set consisting of

5 points, an adjacency matrix might look like:

0100 1
10000

W=wg)=|00 010 (3.5)
00100
1000 0

In this example, the adjacency matrix tells the reader that location 1 is adjacent
to locations 2 and 5; 2 is adjacent to 1; 3 is adjacent to 4; 4 is adjacent to 3; and 5 is

adjacent to 1.

As mentioned before, my analysis will involve two groups of data sets: the ‘Ad-

justed Aerial Data’ and the ‘Adjusted Aerial-Field Data’. In both cases, Global



§ CHAPTER 3. RESEARCH METHODS 35

Moran’s I (equation 3.1) will be used to obtain an indicator of the overall distribu-
tion of infested trees. Also, hot spot detection will be carried out using Local Moran’s

I (equation 3.3) along with a statistical significance criterion.

Once Local Moran’s I has been calculated for each point, locations showing a
significant value are then classified into one of the four following types of spatial
correlation or cluster type: high-high, low-low, for positive spatial autocorrelation
and high-low, low-high, for negative spatial autocorrelation. The remaining ones are
associated with a cluster type of ‘not significant’. Figure 3.3 shows the different
cluster types that can be detected using GeoDa, depending on whether the location
under study (Central element in Figure 3.3) has high or low values and whether its

neighbors (Neighboring elements in Figure 3.3) have high or low values.
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Figure 3.3: Possible cluster types that can be identified for positive and negative
spatial autocorrelation.

Attention will be given only to those points with high-high and high-low cluster
types, that is, high values surrounded by either high or low values and the rest will be
discarded. High-high values suggest clustering of similar high infestation levels while
high-low clustering suggests the existence of high values of infested trees surrounded

by not-so-high numbers of infested trees, or more localized areas of infestations. In
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terms of mountain pine beetle and trees high-high points can represent areas of high
infestation levels, while high-low ones can indicate locations of an early or late stage

of an outbreak.

Once every point in each simulation for each year has a significance value and a
cluster type assigned to it, working with this classification scheme allows us to account
for the number of times a point is either high-high, high-low or none, at a particular
significance level. Therefore it will be possible to say how many times, out of 100,
an adjusted point is significantly identified as a hot spot. For analytical purposes,
whenever a point is significant at a certain significance level 50 or more times out of

the 100 simulations, it will be considered a hot spot.

For data visualization and mapping purposes, data were aggregated by keeping
only an average x and y location of the point throughout the whole year; that is to
say, for each point all of the x and y coordinates across the 100 simulations were
averaged out and only two records were kept (Z and ). Information on whether a
point is high-high, high-low or none at each significance level is immediately available,
but this information was aggregated in order to know what proportion of the times

a point was classified as hot (high-xxx).

3.6 Assessing Results

Once the hot spots have been located, the primary issue will be to compare
them with those identified by KDE. To do this it is necessary to superimpose the
data points on top of the KDE surfaces. This will provide a means of comparing
results obtained with each method and data model, and can be done in the following

ways:

1. Display detected hot spots as points on top of a KDE surface image and use
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them for display as an informal method of visual comparison;

2. Count how many points are contained inside the KDE surface and make the

most accurate comparison by means of intersecting the points with the surface.

3. Convert data points to a grid and superimpose this on top of the KDE surface

and use map algebra to identify those locations that match.

As was mentioned before, no previous work on comparing the impact of the
inclusion of the field data to correct the data sets has been carried out, so it will be
important to compare results from both data sets (‘Adjusted Aerial’ and ‘Adjusted
Aerial-Field’) to determine the importance and usefulness of the field data. It is clear
that this task can only be accomplished for those years that have field data available
and it will be carried out by studying those locations that, according to LISA, are
hot spots. This will provide a way to identify regions in space or individual locations
that without the existence of fleld data would be considered hot spots, when they
might be the result of an artifact of the way attribute data has been simulated. It
will also provide the possibility of identifying locations that become significant when
field data are available, but would otherwise not be classified as such. Should results
be similar it will be an indication that field data are not providing a great advantage
over pure aerial data, while the opposite will indicate that it is indeed useful to verify

the validity of the aerial data by sending crews to the ground to collect data.

A diagram summarizing the hot spot detection process is shown in Figure 3.4.
The same procedure is applied to both data sets. When hot spots have been detected
for both data sets, a comparison over the years to assess how the mountain pine beetle
population has evolved over space and time will be carried out and this will be useful
for checking for consistency with hot spots detected in previous years. This idea can

be summarized in Figure 3.5.
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Figure 3.4: Hot spots detection approach.
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' ‘Adjusted Aerial” data (1995 —2002)
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‘Adjusted Aerial-Field’ data (1999 — 2002)

Figure 3.5: Hot spots comparison approach.

3.7 Time Commitments and Computational Effort

As has been mentioned before, in order to compute both Global and Local
Moran’s I the spatial relationship between points, the adjacency matrix, is defined as
distance-based neighborhoods. For this, it is necessary to know the distances between
the points in each data set. This calculation is carried out using the GeoDa software
package (Anselin, 2004); neighborhoods are constructed based on this information
and the weight matrix is built with a custom program which writes this information

in the appropriate format to be read by GeoDa.

Within GeoDa both Global and Local Moran’s I values are computed, and infor-
mation on cluster type and significance is also stored in a database file (DBF format),
for each simulation for each year. This database file is processed using a custom macro
written in Visual Basic for Microsoft Excel. The result is one database (DBF) file,

for each year, containing the average location for each point, along with the number
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of times it is significant for each significance level. DBF files are imported to ArcGIS

and hot spot maps are created. An illustration of this process is shown in Figure 3.6.

The most computationally intensive parts of this procedure are the calculations
of both Global and Local Moran’s I for the different significance levels. Since a
permutation approach is used to test for significance, the more strict the significance

level is, the more intense it is.

Calculations and data processing were carried out using a Dell Precision 620
workstation, running on an Intel Pentium III XEON double-processor running at 800
MHz, with 512 MB of RAM. In terms of computing time per simulation, distance
calculation in GeoDa is quite fast and very well implemented, taking from 5 to 45
seconds, depending on the number of points in each data set. The creation of adja-
cency matrices based on distance information is fast and efficient taking only a few
seconds for each data file. Calculations to obtain the values of Global and Local
Moran’s I can take anywhere from 10 minutes to close to 1 hour, depending on the
number of points of the data file and the significance level. Data processing in Excel
is well implemented and takes only a few minutes to complete the summarizing of the

information for each year.

Under these circumstances, an estimate of 650-700 hours is required to process
the data. For future work involving a similar procedure, it would expected to reduce
the amount of time required for data processing by means of using a computer with

a faster processor (~ 3.2 GHz) and more RAM (1 GB).
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§ Chapter 4

Results and Discussion

In order to compute Global and Local Moran’s I, adjacency matrices were re-
quired and these were obtained in terms of neighboring distances, as explained in the
previous chapter. The average minimum, the smallest minimum and the maximum
minimum distances, along with the standard deviation, over the 100 simulations,
for each year are shown in Table 4.1. From now on, for simplicity, data for years
referring to the ‘Adjusted Aerial’ data sets will be identified as (year_number)nof
and those referring to the ‘Adjusted Aerial 4+ Field’ data set will be identified as
(year_number) f; for example, 1999nof will correspond to the 1999 ‘Adjusted Aer-
ial’ data set, while 2002 f to the 2002 ‘Adjusted Aerial + Field’” data set.

To get an idea of how neighborhoods have been defined and how many elements
are typically taking part in the calculations of Global and Local Moran’s I, box plots
were created to show the distribution of the number of points in neighborhoods. For
this, only a representative simulation was used, since each point from one simulation
to the next is displaced within a radius of 25 meters. It can be seen from Table 4.1
that the distances used to define neighborhoods are a few orders of magnitude greater
than this displacement. It is therefore not expected for neighborhoods to change a lot
across simulations. Table 4.2 shows the median and maximum number of neighbors

for a representative of each year.

42
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Year Average Minimum Maximum | Standard
LDistance (m) | Distance (m) | Distance (m) | Deviation
1995 4.,101.4803 4,062.8649 4.,146.2723 15.9899
1996 6,265.1188 6,215.0356 6,301.3098 17.5075
1997 7,504.3631 7,469.4766 7,538.1071 15.0069
1998 10,591.4601 | 10,549.0901 | 10,625.4311 15.6897
1999nof | 9,860.5717 9,827.4465 9,899.5218 16.9770
1999f 9,863.2975 9,812.0763 9,907.8270 19.2941
2000nof 9,467.4395 9,429.2555 9,523.8424 16.7467
2000f 9,466.1554 9,420.6375 9,515.7056 18.3779
2001nof | 6,769.9002 6,725.4676 6,304.8840 16.4005
2001f 8,069.7623 8,017.0162 8,108.7347 17.3147
2002nof | 6,945.6253 6,906.7593 6,990.8036 17.4485
2002f 6,945.8614 6,907.8385 6,984.8805 16.4474

43

Table 4.1: Average, minimum and maximum distances, over 100 simulations, used for
defining adjacency matrices for each year. Standard Deviation is also shown. Years

without a suffix (nof or f) only contain ‘Adjusted Aerial’ data.

Year Median number | Maximum number
of neighbors of neighbors
1995 35 157
1996 149 551
1997 238 820
1998 119 386
1999nof 206 507
1999f 205 504
2000n0f 201 650
2000f 201 651
2001nof 114 461
2001f 151 572
2002nof 238 860
2002f 238 859

Table 4.2: Median and maximum number of points per neighborhood, per year. Years

without a suffix (nof or f) only contain ‘Adjusted Aerial’ data.

Figure 4.1 shows the distribution of the number of neighbors for each year, using

box plots. The filled circle inside the box represents the median, the upper and lower

edges of the box represent the upper and lower quartiles and the distance between

these two is a measure of the spread of the distribution. The location of the median

with respect to the upper and lower edges of the box gives an indication about the
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shape and skewness of the distribution. The appendages of the box, or whiskers,
give an indication of the spread and the shape of the tails of the distribution. Outer
circles represent data outliers, that is, unusually large or small observations that are

not included in the summarizing process of the box plot.

From this Figure it can be seen there is variability in the number of points found
in each neighborhood, however, the median seems to fluctuate around a value of 200,
the exception being 1995 which has a much lower median. The distribution of points
per neighborhood appears to be skewed all years and most of them also have long
tails towards the higher values up to a maximum of about 800 points and with a

lower bound of 1 point per neighborhood.

An average of Global Moran’s I was obtained for each year to give an idea of
the general trend of the point pattern throughout the years. Also histograms were
produced to show the distribution of Global Moran’s I throughout the years and are
shown in Figures 4.2 - 4.4, The average value of Moran’s I is shown for the year
in the top right corner of each histogram. The number of bars for the histograms
was chosen according to the guidelines suggested in Doane (1976), Terrell and Scott
(1985) and Scott (1979), that propose corrections to the ‘optimal’ number of classes
defined by Sturges (1926) to be K = 1+1log,(N), where N is the number of elements.
Following these suggestions, all of the years except one, had an optimal number of
classes of about eight; for consistency, histograms for all years were produced using
eight classes or bins. It is worth noting that due to the nature of the data for each
year, histograms are not drawn to the same scale on the z-axis. Each histogram is
drawn on its own range thus care should be taken when comparing results across
years, especially in those years that have both aerial and field data available. (This
limitation is partially accommodated by the use of box plots, presented further in

Figure 4.7.)
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Global / Distribution - 1995, 1996, 1997, 1998
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Figure 4.2: Moran’s I distribution from 1995 to 1998.

A closer inspection of Figures 4.3 and 4.4 reveals the existence of certain differ-
ences in the inclusion of field data in the analysis. For 1999 and 2000 there is very
little change in the average value of Moran’s I, considering that inclusion of field
data reduces this value from 0.0135 to 0.0124 for 1999, and from 0.0102 to 0.0093 for
2000. These are not significant changes and is not expected that these years would
show such differences since there are very few points with field data collected (see
Table 2.1). However, for 2001 and 2002 the values change considerably more with the
inclusion of field data. For 2001 it changes from 0.0251 to 0.0376 and from 0.0195
to 0.0342 for 2002. Based on results from the years that have substantial field data
collected (2001 and 2002), it is possible to say that global spatial autocorrelation is
greater when field data are included. This behavior, however, is not observable for

1999 and 2000 since these years have very little field data available.
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Global / Distribution - 1999, 2000
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Figure 4.3: Moran’s I distribution for 1999 and 2000.

It is interesting to note that, regardless of the inclusion of field data in the analy-
ses, the averages obtained for Moran’s / throughout the years seem to be quite low,
compared to bounding values of the distribution (Bailey and Gatrell, 1995; Tiefelsdorf
and Boots, 1995), since in general values closer to 1 would indicate strong positive spa-
tial autocorrelation and closer to -1 strong negative spatial autocorrelation. However,
this does not necessarily imply that there is no strong global spatial autocorrelation,
since it is possible to get an idea of how significant the observed values of Moran’s
are with respect to the expected value.

As it was explained in section 3.4.1, it is possible to generate a reference distribution
for the data sets and test for significance. As was mentioned before, tests for spatial
autocorrelation typically have a null hypothesis of no spatial autocorrelation, or spa-

tial randomness, and some degree of structural stability across the space. Under these
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Global / Distribution - 2001, 2002
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Figure 4.4: Moran’s I distribution for 2001 and 2002.

assumptions, Moran’s I has a near normal distribution with the following parameters

(Bailey and Gatrell, 1995):

E(I) = (4.1)

_ n*(n—1)S; —n(n—-1)S — 253
VAR(I) = (nil)(n_ 1)2582 0 (4.2)

with the coeflicients given by:

So = ZZ Wi (4.3)

i#]

S = %ZZ(@UU + wji)2 (4.4)

i#]

SQ = Z <Z Wg; + Zwik> s (45)
k J i

where:
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e i, 7, k range from 1 to n, the number of data points, and

o w;; are the elements of the weights matrix.

When these conditions hold, it is possible to test the observed values of Moran’s

I. A z-score can then be calculated with:

_I-E()

CT VARD)

and the 95% confidence interval (with z &~ £1.96) can be used to search for ‘extreme’

(4.6)

values that would give an indication of strong spatial autocorrelation. However,
throughout this research it has been recognized that positive spatial autocorrelation
is expected (section 3.4.2), therefore the approach that has just been presented is not
entirely suitable for this case. Nevertheless, it is possible to shed some light in this
direction by making use of the same procedure outlined in section 3.4.1 to evaluate
if the observed values of Moran’s I are significant so it is possible to tell if there is,
in fact, global spatial autocorrelation, and if there is, how pervasive it is throughout

the years.

An exploratory approach was taken in order to fulfill this task. For each his-
togram, a representative from the highest bar is selected and tested to obtain a value
for its significance level. If this turns out to be greater than or equal to 0.05 — that is,
significant at the 95% interval — a representative of the previous class is selected and
the same procedure applied until a non-significant class is found. If it is less or equal -
that is, not significative at the 95% interval — a representative of the next higher class
is tested for significance until a significant class is found. This exploratory technique
allows to find an interval where Moran’s [ is significant for each year. A diagram of

this procedure is presented in Figure 4.5.
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Results for this exploratory analysis indicate that for all the years, values from
the second bin onwards are significant. For 1995 and 2000 values contained in the first
bin are not always significant but typical values for Moran’s I values found in these
bins are very low compared to the ones around the mean of the distribution (typically
bin 4 of the histograms). Having said this, it is safe to claim that the observed values
of Moran’s I are in fact significant and therefore the data are autocorrelated at a
global level. A graph showing the variations of Moran’s I throughout the years and

the impact of field data is shown in Figure 4.6.

Referring back to Table 2.1 it can be seen that from 1995 to 1998 no field data
were collected and Moran’s I has only one average value for each year. For 1999 and
2000 there are very few data collected and this is a reflected in the average values of
Moran’s I, since there does not appear to be much change. For the last two years,
2001 and 2002, there is a clear difference in Moran’s I value indicating that the ‘Aerial

Adjusted + Field’ data sets are showing stronger global spatial autocorrelation.

Ideally it would be desirable to create a diagram or a table containing information
relating the “change” of Local Moran’s I throughout the years. Unfortunately it is
not clear how to compare the values of I; at a specific site, j, in two different time
periods, thus making it very difficult to go further in this direction (Tiefelsdorf, 2004).
A better way to explore and compare the distribution of Moran’s I throughout the
years is by using box plots (Cleveland, 1993). They are useful in comparing all of the
distributions with one another. Figure 4.7 shows box plots for the values of Moran’s

I for all years.
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Figure 4.7: Box plots for Moran’s I values, from 1995 to 2002. Years without a suffix (nof or f) only contain ‘Adjusted Aerial’

data.
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It can be seen from the box plots that the distributions are highly contained,
except for 1995, which shows a much greater spread than the others, followed by
1998. All of the distributions seem to be skewed to either one side or the other and
some, like 1998 or both in 1999, are clearly skewed. In some cases, however, it is hard
to determine the direction in which they are skewed, such as 1995, 1996 and both in
2000, for example, which might suggest that in these cases there is a tendency for the
distributions to approach a normal distribution. For three of the first four years the
distributions have long tails. This behavior does not seem to hold for the next years
as the appendages do not reach too far out from the box. Most of the distributions
have outliers, the exceptions being 1999 f, 2000nof and 2001f, but typically these

appear to be close to the whiskers, except for the first couple of years.

The description of the box plots can be related to the spatial pattern of infested
trees in the following way: those years that have a low Moran’s I value show a lesser
degree of global spatial autocorrelation than the others. It also portrays that the
inclusion of fleld data is affecting the global distribution of infested trees as there
is a clear difference in Moran’s I value for 2001 and 2002. Box plots for 1995 and
1998 have large whiskers and larger boxes, suggesting that there is a wider variety
of Moran’s I values throughout the simulations that can be translated into a more
diverse behavior in each one of the data sets simulated, in terms of the observed
spatial pattern and overall clustering. Other years have a more compact distribution
suggesting that the data sets show a similar behavior across the 100 simulations,

meaning that there is a lot less variation in their overall clustering pattern.

As it was mentioned in the previous chapter, different levels of significance are
used in order to have an informal method to test for stability of results. The results
presented from now on in this section will be constrained to the lowest significance

level, or the most liberal one, of o = 0.05. It is important to note two things:
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1. Tt has been shown before that autocorrelation is present in the data sets so care
needs to be given to the importance assigned to detected hot spots, since it is
plausible that certain locations have been marked as hot spots and may not
actually be presenting high levels of infestation; that is, they might be ‘false

positives’.

2. There is a way to overcome this limitation of the method by taking into account
the remaining significance levels of a = 0.01,0.001 and 0.0001. Due to time
constraints it is not possible to carry out all of the analyses required and present
the results for all significance levels. However, it is important to note that these
remaining significance levels contain valuable information that can help assess
in a more definite way the locations of hot spots, and remain as a subset of the

analysis that is carried out here.

Since a hot spot, in this study, is understood to be a point that appears to
be significant 50 or more times out of the 100 simulations, it is necessary to report
that for 1995 only one high-low hot spot was found. This led to the exclusion of
1995 from further analyses and is shown in Figure 4.8 for illustrative purposes only.
This provides the first important result, as this was not expected and contrasts with
previous findings (Nelson, 2005) that showed that all of the years had several hot
spots. This also provides clear evidence of the difference between detection methods
used, since in this case it is not necessary to have a large number of hot spots, while
in previous studies there always are. It is useful to remember why this is so: as it
was mentioned in section 3.2, in Nelson (2005) hot spots were defined in terms of the
relative upper 10% threshold of intensity values of KDE surfaces, thus forcing the

existence of hot spots.

The rest of the years do show pockets of infestation and it is interesting to note

that all of them show a distinction between locations of high-high (red dots) and
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high-low (blue dots) cluster types, that is, they are not intermixed. Figures 4.8 -
4.13 show maps depicting the location of these pockets of infestation. In these figures
beige-colored regions show regions of infestation, red /brown areas indicate the regions
that were designated as hot spot areas by means of KDE. These results are the same
that were presented in Nelson (2005). In the same figures, red- and blue-colored
points represent the locations of hot spots detected with LISA. Red dots indicate the

location of high-high values and blue dots show high-low values (see Figure 3.3).

It is important to remember that infested areas and hot spots used from Nelson
(2005) from 1995 to 1998 are based on the ‘Adjusted Aerial’ data sets, while from
1999 to 2002 they are based on the ‘Adjusted Aerial-Field' data sets. This means

that in this research comparison is being made in the following fashion:

e From 1995 to 1998, only ‘Adjusted Aerial’ data sets exist and comparison is

carried out using these.

e From 1999 to 2002, only ‘Adjusted Aerial + Field’ hot spot surfaces exist, and
comparison for both data sets (‘Adjusted Aerial’ and ‘Adjusted Aerial-Field’)

are carried out against these existing surfaces.

For the maps of hot spots of infestations, an ordered sequence of appearances
was expected, such as: HL — HH — HL, that could represent the initial stages of
an outbreak, the peak of the infestation and then a late stage of the outbreak. This
is not observed and it is possible that the definition of a hot spot itself is the cause
of this, since when using both the statistical and the concentration criteria lots of
points are stripped away from the final data set used to create the maps. If more
points are kept maybe this behavior will show up. There also might be a relationship
of hot spots with underlying environmental characteristics that do not allow for this

behavior to be shown as expected.
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The next procedural step is to compare detected hot spots with those obtained
in previous works. Table 4.3 shows the number of detected hot spots that lie within
those detected and reported in Nelson (2005). These results are shown as the number
of significant hot spots, LISA HH or HL, that were classified as KDE hot spots. In
other words, a point was either a high-high hot spot within the LISA framework as
well as in the KDE one (LISA HH - KDE HS), or appeared to be high-high only
with LISA, or was a high-low hot spot in LISA but high-high in KDE (LISA HL -
KDE HS) or was high-low only in LISA. The number of occurrences were obtained
by intersecting the high-high and high-low points with each year’s hot spots surface
and counting the number of points that are completely inside the surface. To make it
easier to interpret these results, they are also presented as percentages obtained from

the ratio between the number of corresponding and significant hot spots for both HH

and HL.
LISA HH | LISA HH LISA HL | LISA HL
Year LISA HH - - LISA HL - -
KDE | KDE (%) KDE | KDE (%)
1996 687 487 70.89 92 47 51.09
1997 268 180 67.16 3 3 100.00
1998 228 211 92.54 41 21 51.22
1999nof 266 178 66.92 22 16 72.73
1999f 248 166 66.94 20 17 85.00
2000nof 88 79 89.77 49 27 55.10
20001 40 30 75.00 42 25 59.52
2001nof 207 161 77.78 5 1 20.00
2001f 446 345 77.35 169 61 36.09
2002no0f 499 465 93.19 a0 25 50.00
2002f 646 545 84.37 119 44 36.97

Table 4.3: Number of LISA high-high and high-low hot spots that match KDE hot
spots and infestation areas from 1996 to 2002. Results show the total number of LISA
HH and HL points and the number of significant LISA hot spots that were classified
as KDE HS and the associated percentage. Years without a suffix (nof or f) only
contain ‘Adjusted Aerial’ data.

It can be seen from Table 4.3 that there is a high percentage of coincidence in the
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high-high results, at least two thirds of the detected hot spots (above 66%) agree with
those detected with KDE in all years. These findings indicate that those locations
coinciding to be hot spots by both methods are very likely to be troublesome areas.
For some years there is also a good correspondence between high-low spots with KDE
hot spots, although there is more variability.

This can be understood in terms of the way KDE works when smoothing data.
An illustration of points being high-high within LISA as well as with KDE is shown
in Figure 4.14a). In this case, high values are surrounded by other high values and by
smoothing the data, by means of KDE, a surface with high values is obtained. The
case where a point is high-high within LISA but not a hot spot according to KDE
is something similar to this illustration, but with surface values that are lower and
do not reach the specified threshold set in order to be classified as a hot spot. If a
point is identified to be high-low in LISA but hot spot in KDE, the KDE method has
smoothed the data and returned a surface with high values. However, according to
LISA, high values are surrounded by low ones. Figure 4.14b) shows an illustration
of this case. Finally, when a point is high-low according to LISA, but not a hot spot
according to KDE, what may be happening is that low and high values are smoothed
out and the resulting surface values are not high enough in order to be classified as
a hot spot, but it is detected as a high-low location by LISA. This is illustrated in
Figure 4.14c).

When comparing the number of hot spots to total infested area, in terms of KDE,
it is expected to find a ratio of 10%; this is a consequence of the relative threshold
used (Section 3.2). It is interesting to compute this ratio for the LISA method by
dividing the number of points that were classified as hot spots by the total number

of points for each data set. These results are shown in Table 4.4.
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Figure 4.14: Illustration of (a), LISA high-low and KDE hot spots (b) and LISA
high-low and KDE infested areas (c). Red bars represent locations with high levels
of infestation; blue bars represent locations with low levels of infestation.
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Year | HH | HL | HH + HL | Points | HH % | HL % | HH + HL %

1996 687 | 92 779 6,076 | 11.31 | 1.51 12.82
1997 268 | 3 271 8,461 | 3.17 0.04 3.20
1998 228 | 41 269 2,418 | 9.43 1.70 11.12
1999nof | 266 | 22 288 4,657 | 5.71 0.47 6.18
1999f 248 | 20 268 4,657 | 5.33 0.43 5.75
2000nof | 88 | 49 137 5,310 | 1.66 0.92 2.58
2000f 40 | 42 82 5,310 | 0.75 0.79 1.54
2001nof | 207} 5 212 5,226 | 3.96 0.10 4.06
2001f 446 | 169 615 5,303 | 841 3.19 11.60
2002nof | 499 | 50 549 8,308 | 6.01 0.60 6.61
2002f 646 | 119 765 8,401 | 7.69 1.42 9.11

Table 4.4: Percentage of points that have been classified as hot spots by means of
LISA for each year. HH is the number of high-high hot spots, HL the number of
high-low hot spots, HH + HL the total number of hot spots and Points the total

number of points in a given data set. Years without a suffix (nof or f) only contain
‘Adjusted Aerial’ data.

Comparing this table with Figure 4.7 quickly informs of the correspondence be-
tween those years having higher percentages of host spots detected and those that
have higher values of global Moran’s I, namely: 1996, 1998, 2001f and 2002f It
would be possible to think this result was predictable as it would be fair to think
that since LISAs are proportional to the global statistic, those years showing a lower
global Moran’s I value should have a lower percentage of hot spots detected via Local
Moran’s . It is important to emphasize that this is not necessaril8y the case (but
it turned out to be this way in this case) since the proportionality constant can be

smaller than unity thus making this assumption no longer valid.

Most of the years have a total hot spot percentage (HH + HL) below 10%, with
1996, 1998 and 2001f being the only exceptions. This is consistent with what was
expected to occur since the use of an absolute threshold should have a lower outcome
than the one used with the relative top 10%. However, it is important to remember
that the analysis is being carried out only at the significance level of @ = 0.05 and

one would expect to have an even lower percentage of hot spots, since under a ‘pure
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chance’ scenario 5% of the data would be expected to show this behavior. This is
not reflected in the results as there is a large variability in the percentages for the

detected hot spots (HH + HL) ranging from 1.54% to 12.82%.

For those years for which field data were collected, there seems to be a very
good correspondence between hot spots detected for the ‘Adjusted Aerial’ and the
‘Adjusted Aerial-Field’ data sets (see Figures 4.10 - 4.12), except for one small region
in the northeastern portion in 2002 (Figure 4.13). A more detailed illustration of
this situation is shown in Figures 4.15 and 4.16, where a comparison between the

aforementioned region of both data sets is made.

It can be seen that for the ‘Adjusted Aerial’ data set there appears to be a
concentration of high-high hot spots, suggesting the existence of high values of infested
trees surrounded by other high values. However, for the ‘Adjusted Aerial-Field’ data
set there are no hot spots in the area. In order to investigate this discrepancy, points
that had purely simulated data and points that had field data available were identified.

Figure 4.16 shows this information in the following way:

e Locations marked with a green tree symbol have field data collected, the values
of which vary from 1 to 300 trees and are kept constant throughout the 100

simulations;

e Locations marked with a red cross have values that are always simulated and

are assigned a value by randomly drawing its values from a gamma distribution;

e Locations marked with a black dot represent locations that have field data
collected and have been corrected to have a value of 0. These values are kept

the same throughout the 100 simulations.

As it can be interpreted from the above classifications and from the data shown

in Figures 4.15 and 4.16, there appears to be an artificial way of obtaining hot spots in
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Figure 4.15: Northeastern region of the study area for the ‘Adjusted Aerial’ data set.

this area as field data does not indicate the existence of very high levels of infestation.

Purely simulated data, however, shows that there is, indeed, a cluster of high values in

the area, but this cannot be confirmed using field data. Furthermore, there appears to

be a very low number of fixed values corresponding to field data (green tree symbols)

in the region under scrutiny. There is, however, a large number of purely simulated

data (red cross symbols) that could be affecting the outcome and are potentially

involved in creating the observed difference. It is not clear what mechanism may

be producing such differences, but it is likely that the existence of several locations

with field data collected (both green symbols and black dots) may have the effect

of suppressing high values from occurring in the area. It is also possible that the
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Figure 4.16: Northeastern region of the study area for the ‘Adjusted Aerial-Field’
data set.

aerial survey has other sources of error that have not been taken into account, such
as human error introduced by a particular surveyor, difficulties to survey the area in
that particular year, the identification of several clusters of infested trees that are not
associated to mountain pine beetle or that are not pines. It is, however, interesting to
note that for the previous year, 2001, there appears to be good agreement on detected

hot spots in the same region, for both data sets.

As was mentioned before, it is not possible to work out all the analyses required
and present results for all significance levels and all years. Nevertheless, it is useful to

present some results that would give some indication of what can be expected should
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these analyses be carried out. Table 4.5 shows how the percentage of overall hot spots
(HH + HL) changes when different levels of significance (a) are used. It can be seen

that with more strict significance levels, this percentage decreases.

HS HS HS HS
Year Points (o = 0.05) (aw =0.01) (= 0.001) | (& =0.0001)
Points | % |Points| % |Points| % | Points| %
1996 6,076 779 12.82 688 11.32 580 9.55 457 7.52
1997 8,461 271 3.20 198 2.34 159 1.88 75 0.89
1998 2,418 269 11.12 234 9.68 215 8.89 202 8.35

1999nof | 4,657 288 6.18 182 3.91 44 0.94 7 0.15
1999f 4,657 268 5.75 160 3.44 76 1.63 35 0.75
2000nof | 5,310 137 2.58 41 0.77 12 0.23 0 0.00
2000f 5,310 82 1.54 26 0.49 10 0.19 0 0.00
2001nof | 5,226 212 4.06 176 3.37 90 1.72 24 0.46
2001f 5,303 615 | 11.60 | 387 7.30 220 | 4.15 | 147 | 2.77
2002nof | 8,308 549 6.61 444 5.35 347 1418 | 196 | 2.36
2002f 8,401 765 9.11 617 7.34 475 | 5.65 | 382 | 4.55

Table 4.5: Percentage of points that have been classified as hot spots by means of
LISA for each year, for different significance levels, a. HS is the total number of hot
spots and Points the total number of points in a given data set. Years without a
suffix (nof or f) only contain ‘Adjusted Aerial’ data.

Furthermore, aiming to know a little bit more of the expected behavior of the rest
of the available data and significance levels, hot spots were studied and intersected
with KDE surfaces to produce the equivalent of Table 4.3 for both of the 2002 data
sets and these results are shown in Table 4.6. It can be seen from Tables 4.5 and
4.6 that as one becomes more strict with the significance level, the overall number of
hot spots decreases for each year. Also, there are more high-high than high-low spots
and while the percentage of coincidence for high-high and KDE hot spots increases,

it decreases for high-low and KDE hot spots.

The differences presented previously show the potential of using a variety of
methods to carry out hot spots detection and compare the outcomes, as well as the

usefulness of field data collection. An ongoing study that will focus on hot spot
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LISA HH | LISA HH LISA HL | LISA HL
Year LISA HH - - LISA HL - -
KDE KDE (%) KDE | KDE (%)
0 =005 2002n0f 499 465 93.19 50 25 50.00
20021 646 545 84.37 119 44 36.97
o =001 2002nof 428 404 94.39 16 ) 31.25
' 2002f 552 478 86.59 65 22 33.85
0 = 0.001 2002nof 341 324 95.01 6 1 16.67
2002f 451 420 93.13 24 2 8.33
o = 0.0001 2002nof 196 192 97.96 0 0 0.00
2002f 371 359 96.77 11 0 0.00

Table 4.6: Number of LISA high-high and high-low hot spots that match KDE hot
spots and infestation areas for different significance levels for 2002. Results show the
total number of LISA HH and HL points and the number of significant LISA hot
spots that were classified as KDE HS and the associated percentage.

detection using a different local statistic, with the same data sets, will help shed
some more light into the validity of the findings reported here. Until these results
become available and are compared to the ones presented here and the ones available
in Nelson (2005), it is only possible to say that the proposed combination of data
model and detection technique used in this work gives results that are comparable to
those from Nelson (2005). It is interesting to note, however, that two very different

data models and detection approaches turn out to give very similar results.

At this stage it is not quite possible to say much more about how sensitive
mountain pine beetle hot spot identification is to the data model used or the detection
technique. In order to find out more about this dependence, it would be necessary to
use either: a) the same detection technique with two different data models or b) two
different detection techniques to the same data model. The limitation in this case is
that LISA cannot be applied to a KDE surface but, as mentioned above, the use of
another local statistic for hot spot detection will provide further insights about how

sensitive hot spot detection is to the data model and detection technique.
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Conclusions

Results presented in the previous chapter indicate that global spatial autocorre-
lation is indeed present in the data sets as can be inferred from the low, yet significant
Moran’s I values obtained for each year. In terms of the spatial pattern of infested
trees, this means there is a correlation at a global scale of the locations beetles prefer
to attack. As it was mentioned before, large and mature trees are preferred for they
provide the best conditions for mountain pine beetle survival. This is also an indica-
tion of the way beetles seem to spread to colonize and kill neighboring tree stands,

since suitable trees in the vicinity of an infested area are likely to be attacked.

The use of Local Indicators of Spatial Autocorrelation (LISA) has indeed proved
useful to determine the locations of those regions that show unusually high levels
of infested trees. There is a strong similarity between high-high hot spots detected
with LISA and KDE, although there is a significant difference in the way they are
defined. In the case of high-low hot spots that are detected with LISA, there is more
variability in its correspondence with KDE hot spots. It is likely that local variations
in the spatial pattern were not picked up by KDE but are revealed with the use of
the LISA approach. Still, for most of the years there is a very good correspondence

between LISA and KDE hot spots.

72
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The use of the more ‘liberal’ significance level of o = 0.05 gives very interesting
results relating to the locations of hot spots. For the purpose of comparing how sen-
sitive detection is, this significance level seems to indicate little sensitivity. However,
as was stated in the previous chapter, it would be important to fully compare the
obtained results with those distilled from the use of more strict significance levels of
a = 0.01,0.001 and 0.0001. It has been shown that becoming less liberal will have an
effect on the number of detected hot spots by decreasing its number. In this sense,
this approach can be very useful for detecting the most pervasive hot spots, those re-
gions of space that are very strongly infested. The use of more strict significance levels
will likely result in a higher percentage of correspondence between detected LISA and
KDE high-high hot spots, since by keeping only those locations that are significant
at higher levels they would be more likely to be clearly placed inside the KDE HS
patches. It is also expected that the percentage of overall hot spots (HH + HL) to
decrease when compared to the corresponding column in Table 4.4. This due to the
fact that the number of points in each data set remains the same, but it is expected

that the more strict the significance level is, the less number of hot spots are detected.

The availability of data and the ability to consider different levels of significance
is very useful when trying to compare and assess the obtained results. It appears that
the way of defining hot spots by using LISA is more flexible than KDE definition: it
permits the existence of different significance levels that are helpful in assessing the
validity of results and it is capable of not indicating any hot spots if the data does
not show enough significant values to be considered. It also allows to identify local
variations that would otherwise be ignored using KDE that could potentially help into
gaining more information about other features of mountain pine beetle processes, such
as dispersal and host selection. Specifically, it might be possible to study the evolution

of high-low locations throughout the years with more detail in order to see if these
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local variations are transformed into high-high regions. It is worth mentioning that
the use of more or less restrictive threshold levels (e.g., 10%, 5%, etc.) in the KDE
scenario could provide something similar to what can be obtained with the use of

different significant levels with the LISA approach.

It would certainly be useful to use the rest of the data that were produced for
this research — that is, carry out the analyses of the remaining significance levels — to
undertake a comparison between the corresponding results and those presented here,
to see if they are in fact a subset of what has been obtained. It would also be very
interesting to use a different local statistic instead of Moran’s I. Currently work is
being carried out in this direction, on the same data sets, by a group at the University

of Victoria, British Columbia, using the Getis statistic.

It is important to note that the inclusion of field data does in fact make a
difference in the results. The most dramatic example of this situation is 2002, in
which according to simulated data a small region in the northeast appears to be
heavily infested, but the use of field data suggests that this behavior may be due
to an artificial mechanism of allotting high simulated values along this region. This
finding certainly is valuable towards understanding more about the nature of spatial
error in the data sets. It is worth remembering that error has only been incorporated
into the data sets based on its frequency distribution. However, it is very likely that
it will have a spatial structure associated with it, one that so far has been ignored.
In this sense, if this spatial pattern is indeed present, it could help explain why a
particular area showed significant differences for the 2002 data sets. Furthermore,
it would greatly improve the present conception of spatial uncertainty associated to
mountain pine beetle aerial and field surveys. It would also be helpful in adjusting
the way simulations are obtained, to properly reflect the nature of spatial error by

somehow allowing for more variability in those regions that show to be more heavily
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impacted by spatial uncertainty.

An interesting approach would be to carry out the exploration of environmental
and climatic characteristics in terms of the differences in the hot spots detected by
LISA and KDE surfaces. This would provide insights into the ‘preferred’ selection of
hosts by the mountain pine beetle as well as information on various types of dispersal.
It would be important to try to assess the climatic and environmental conditions where
there is both agreement and disagreement between these two methods. It would be
critical to include geographical and physical information from the landscape such
as tree age, tree height, slope, aspect and any other characteristics that could give

insights into the process of mountain pine beetle dispersal and host selection.

As with any research, this one has taken on a specific approach but there are
other possibilities that yet remain to be explored. For example, in order to investigate
the dependence of hot spots on scale, it would be useful to repeat the analysis by
using increments of the minimum distance that was used to define adjacency.

Also, instead of using a minimum distance to define neighborhoods, a 2 km. distance
could be fixed for every point and this would allow a better way of comparing LISA
results with KDE, since in Nelson (2005) a smoothing radius of 2 km. was used for

the Kernel Density Estimated surfaces.
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