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Abstract

Previous assessments of factor analytic invariance to
scale and aggregation effects have led to discrepant results.
To determine the true effects, this study comprehensively
examines the influence of scale and aggregation on factorial
ecologies. This invsestigation is completed for three data
sets, four scales, and thirty aggregations at each scale. Of
these three data sets, two are artificial. These two data
sets differ only by levels of spatial autocorrelations as one
data set contains independent areal unit observations while
the other set includes modest positive spatial
autocorrelations. The third data set consists of variables
from the 1986 Saskatoon enumeration areas. Several prominent
themes emerge from these findings. When areal unit
observations are independent, scale effects are trivial and
aggregation effects are substantial. However, introduction of
positive spatial autocorrelations among variables generates
sizable scale effects and reduced aggregation effects. The
theoretical data results are also moderately predictable from
basic spatial unit data characteristics. Empirical results
display considerable scale effects and modest aggregation
effects., When increasing scale with the empirical data,
communalities, eigenvalues, percentage of explainable data set
variation, factor scores, and factor loadings are altered.

These exact variations include increasing explanatory power of

il



factor models with fewer significant factors and increasing
generality of the largest unrotated factors. These findings
along with several other modifiable results, attest to the
substantial effects of scale and aggregation on factorial
ecologies. With modifiable results from factorial ecologies,
one must question the completion of contemporary factorial

ecologies in geography.
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Chapter 1: Introduction and Framework

This chapter outlines the problems associated with scale
and aggregation on factor models employing areal unit
observations. First, the issues of scale and aggregation are
discussed. Detailed below are the purpose, framework, and
hypotheses of this research. As well, an outline of the

entire thesis is provided.

1.1: Scale and Aggregation Effects

Scale and aggregation effects are serious obstacles in
geography that influence areal unit data analyses. These
problems stem from the modifiable nature of aggregated areal
unit data (Yule and Kendall, 1950). The following sentences
clarify the terms of scale and aggregation effects. Scale
effects arise when measurement of a statistic by areal unit
observations varies by altering the number of areal units
partitioning the study area. Historically, the Product Moment
correlation coefficient has exhibited an increase with scale
({Gehlke and Biehl, 1934) and (Yule and Kendall, 1950) among
others). Aggregation effects transpire when the number of

observations are fixed, and alternate divisions of the study
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area yield inconsistent results. Research on the correlation
coefficient’s variability has suggested aggregation effects
are not systematic but are large due to the myriad of
permutations available (Openshaw and Taylor, 1979). These two
related problems of scale and aggregation were labelled the
modifiable areal unit problem or MAUP by Openshaw and Taylor
(1979). MAUP is also related to the well known ecological
fallacy issue popularized by Robinson (1950). An ecological
fallacy develops when ecological, i.e., aggregated, results
are applied to individuals. Ecological fallacies are specific
scale effects since one shifts the scale of analysis from
individuals to aggregated data.

Since the terms of scale and aggregation effects may
still be obscure, a visual example is provided. This example
inspects the Product Moment correlation coefficient for the
average family income and rate of migrant population variables
from the Saskatoon data in 1986. Map 1.1.1 displays the
correlation of these variables at the enumeration area level.
With a correlation of -0.25, one might be tempted to say that
the two wvariables are negatively related. However, when the
scale of analysis is increased by reducing the number of areal
units to forty, the associations between the wvariables
disappears, see Map l1.1.2. Furthermore, using an alternate
zoning system with forty observations could produce a

correlation of 0.40, see Map 1.1.3. Two important properties



Map 1.1.1: Correlations Between Average Family inceme
and Rate of Migrant Population for the Saskatoon
Enumeration Areas.

Correlation —0.2509
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Map 1.1.2: Correlations Between Average Family
income and Rate of Migrant Population for Forty
Observation Level, Saskatoon, 1986.

Correlation -0.0102
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Map 1.1.3: Correlations Between Average Family
Income and Rate of Migrant Population for Forty
Observation Level, Saskatoon, 1986.

Correlation 0.3955

s

rf—
s/ N
<E‘:J r'é"‘.lk

-

e

Number of Areal Units 40

logod 1|
1 0 1 2

Scale in Kms

Source: Statistics Canada, 1986a



6
are displayed from these maps. First, aggregation effects are
large as they range from correlations of -0.01 to 0.40 at the
forty observation level for the variables of this example.
Additionally, it should be apparent that any attempt to assess
scale effects must employ a sample of aggregations and not one
case. If only one aggregation was employed to measure scale
effects from the enumeration to forty observation level, the
results would pe highly modifiable to aggregation effects.

The focus will now return to the MAUP issue.

Researchers inadvertently exacerbate the MAUP issue by
employing arbitrary areal units for their exercises. Clearly,
MAUP is absent when one analyzes data to determine underlying
traits for the areal units employed, e.g., an analysis to
determine differences in average incomes across provinces.
Since areal units employed for most analyses are arbitrary,
many distinct areal unit partitions and/or scales are possible
for any study. An example of employing arbitrary areal units
could be the determination of income differences within a city
by analyzing the average incomes of census tracts. The
results, in this situation, are suspicious since the
observations are extraneous to the study and are modifiable at
choice. It is conceded that census tracts are created with
several objectives in mind (Statistics Canada, 1981), but
there is no denying that many alternate partitions of a city

could be completed with the same objectives. In the example
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above, attention should focus on the spatial patterns of the
city and not on the differences between units partitioning the
city. Further intensifying the MAUP issue is the scarcity of
individual socioeconomic data. Census data are only
accessible in predefined aggregated areal units. By using
previously aggregated data, any results acquire biases from
the first aggregation. Accordingly, the MAUP issue will
persist in geography as most research undertaken will employ

areal unit observations.

0f the work completed on the MAUP issue, most has
examined its effect on the correlation coefficient. Here the
evidence (Gehlke and Biehl, 1934; Yule and Kendall, 1950; and
Openshaw and Tayloxr, 1979) reveals that scale and aggregation
effects question the results of correlation analyses using
areal units. Furthermorn, since the Product Moment
correlation <coefficient 1is the foundation for many
multivariate statistical techniques including factor analysis,
it is inevitable that scale and aggregation effects extend to

such techniques.

The purpose of this study is to inspect the effects of
MAUP on factor analysis in geography. The technique of factor
analysis is examined with four scales and thirty aggregations
at each scale for three data sets. To present situations

typical of geographical analyses, this study preserves
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contiguity in every aggregated group. An inspection of the
agreement of factor analytic results at alternate scales and
aggregations assists 1in judging the robustness of the
technique to MAUP effects. To facilitate formation of a
comprehensive discernment of scale and aggregation effects on
factor analysis, the techniques described above are performed
for three data sets. Since the level of spatial dependency
among areal units is influential in biasing the correlation
coefficient with changes in scale (Arbia, 1989), two
artificial data sets are created. One data set contains
positive spatial autocorrelations between variables and is
thus contaminated. The other data set has variables free of
spatial autocorrelationg, i.e., it 1is uncontaminated. The
third data set is an empirical data base, from the enumeration
areas of the Saskatoon C.M.A. in 1986, and is used to evaluate

those findings acquired from the artificial data results.

Because factor analysis begins with the intervariable
correlation matrix, it is essential to discern the correlation
coefficients’ variability before assessing the effects of MAUP
on factor analysis. To attain some insight on the variability
of the correlation coefficient, this study employs results
from Arbia (1989). Arbia (1989) has completed the derivation
of the aggregated Product Moment correlation coefficient from
six elements measured at a lower scale. These elements are

described in Chapter two. It is e¥pected that MAUP effects on
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factor analysis may be predictable from Arbia’s (1989) work on

the correlation coefficient.

1.2: Pertinence of Research

Factor analysis has been employed to examine areal unit
observations for some time in geography, e.g., factorial
ecologies. Besides validating social area analysis themes,
Johnston (1978) has suggested additional applicaticns for
factor analysis in geography. With increasing factor analytic
applications in geography, enigmas associated with the
mocdifiable nature of spatial data (Yule and Kendall, 1950) may
become more prevalent. As well, the foundation of most factor
analyses, i.e., the Product Moment correlation coefficient, is
biased by scale changes (Gehlke and Biehl, 1934) and is highly
variable under different aggregations (Openshaw and Taylor,
1979) . Despite knowledge of the correlation coefficient'’s
variability and bias, few attempts have evaluated the effects
of scale and aggregation on factor analyses. Disregard or
inadequate examinations have been paid to the variability of
aggregation effects by Berry and Spodek (1971), Romsa et al.
(1972), Perle (1977), Davies (1983), Openshaw (1984b), and
Dudley (1991). These above studies also centred upon the
resemblance of factor loadings across scales, and not on any

other possible indicators of scale effects. Even with similar
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factor loadings, changes in other components of the procedure,
such as eigenvalues or the Kaiser-Meyer-0Olkin (KMO) measure of
sampling adequacy may profoundly affect the interpretation and
confidence placed upon results. If scale and aggregation
effects occur in factor analysis, any hypotheses or policies

generated from factor analytic results are debatable.

1.3: Objectives

This study will be thorough in its treatment and
cognizance of scale and aggregation effects on factor
analysis. From the evidence provided by analyses of the three
data bases, the question of factor analytic invariance to
scale and/or aggregation effects should be resolved. ILE
results are dependent upon the scale and aggregation employed,
research completed by factor analyzing variables collected
within areal units is suspect. Unless a theory is afforded to
estimate scale and aggregation effects, continued use of
factor analysis on spatial data may be unacceptable. Drawing
heavily from the work of arbia (1989) on the correlation
coefficient, this study will provide evidence and progress
towards such a theory given basic spatial unit data

attributes.
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1.4: Techniques of Analysis

1) Analyze data sets through R-mode principal axis
factoring technique with varimax rotation at four
scales and thirty aggregations at each scale.

2) Analyze descriptively various statistics of factor
analysis, e.g., communalities and eigenvalues.

3) Assess factor loading structures across scales and
aggregations with RELATE program by Veldman (1967).

4) Identify approximate limits of aggregation effects
and thus the probability of scale effects through
Arbia’s (1989) group correlation formulas by
adhering to common themes found in urban analysis,
e.g., social area analysis.

1.5: Hypotheses of Exexrrnises

1) Uncontaminated artificial data
Scale effects

- The results should remain unbiased. This
situation should be analogous to the effect of
random aggregations without contiguity
constraints on the correlation coefficient as
completed by Gehlke and Biehl (1934) and
Blalock (1964).

Aggregation effects
- The variability of aggregation effects should
be large and increase with scale.
2) Contaminated artificial data

Scale effects

i) There should be an increasing upward bias with
scale for most of the factor analytic
statistics. These are described in greater
detail in Chapter Three.
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il) The .factor loadings should increase 1in
magnitude with scale for the first few
unrotated factors extracted, and these factors
should eventually resemble general factors.
111i) There should be fewer factors extracted from
the data set with increasing scale, but the
explanatory power of the factors should
increase with scale.
Aggregation effects
- The variability of the results should be less
than the analysis with uncontaminated data.
as well, the variability of aggregation
effects should increase with scale.
3) Empirical data

- The empirical data results should parallel the
results of the contaminated data set.

This paragraph reveals the format of the remainder of
this study. The first chapter deals with the introduction and
background of the problem in some detail. Additiomnally, the
research areas, methodologies, and hypotheses arxe all briefly
disclosed. The second chapter reviews research relevant to
this study. Of the sections that partition the second
chapter, the most important ones review studies based on scale
and aggregation effects on the correlation coefficient and
factor analysis. The third chapter introduces the data sets
and variables employed. As well, this chapter reviews the
technique of factor analysis and forwards a rationale for
choosing specific factor model options. Chapter four
discloses results from the theoretical data sets. From the

theoretical data set results, development of accurate
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hypotheses for empirical data results is provided. Chapter
five tests these hypotheses on the empirical data. The final
chapter summarizes the results of this study. Additicnally,

the final chapter suggests areas for future research.



Chapter 2: A Review of Past Investigations into Scale and
Aggregation Effects

Studies using areal unit observations for statistical
tests are prevalent in geography. This 1s partially
attributable to the provision of data in areal aggregations by
census agencies. Since areal units are modifiable entities,
results may vaxry when completing analyses of the same
variables and study area with different areal unit
observations. Areal units are modifiable in their total
number covering a geographic area and the units’ shape, size,
and/or orientation. These issues are the basis behind the
modifiable areal unit problem or MAUP (Openshaw, 1977a). As
explained before, MAUP consists of scale and aggregation
effects. Despite knowledge by politicians and political
geographers since the 1800's!, only recently have aggregation
effects been examined for non political issues. Aggregation
effects are also greater than scale effects (Openshaw and
Taylor, 1979). This is due to the myriad of different
aggregations available for any scale (Keane, 1975; Cliff{ and
Haggett, 1970), while geographers analyze a significantly

smaller range of spatial scales (Haggett, 1983; 1990). Since

! The problem of aggregation was known to exist long ago
by peoliticians and political geographers in terms of
gerrymandering (Johnston and Taylor, 1978). Gerrymandering is
the deliberate alteration of electoral ridings to bias
election results.
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aggregation effects are apparent and large (Openshaw and
Taylor, 1979), a researcher should evaluate a sample of
different aggregations for scales to determine scale effects.
This would eliminate the possibility of inferring scale
effects from an extreme instance (Fotheringham, 1989). The
following sections illustrate the research accomplishments on

this topic.

2.1: Introduction

While traditionally receiving scant attention in social
science research, recently considerable achievements have been
obtained on MAUP. The contemporary research is generally moxe
specialized than past research that was performed almost
exclusively on the correlation coefficient. Some anomalies of
this rule do exist, as Duncan, Cuzzort, and Duncan (1961)
evaluated scale effects upon simple indices, and others have
examined the regression coefficient, e.g., Blalock (1964) and

Clark and Avery (1976).

Five sections divide this chapter with this introduction
first. The studies examining the effects of scale and
aggregation on the correlation coefficient’s robustness
comprise the second section of this review. It is impossible

to overstate the importance of the correlation coefficient as
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the usual index of association for factor analysis is the
intervariable correlation matrix. Consequently, the impact of
MAUP on any correlation coefficient will be magnified
throughout the £factor anralytic model. The third section
examines MAUP on factor analysis. This section reviews the
invariance of factor ansalysils across alternate scales and
aggregations. A fourth minor section succinctly reveals the
known effects of MAUP on other multivariate statistical
technigues. The final section examines the problem in its

entirety.

2.2: Review of Correlation Coefficient

The correlation coefficient’s systematic increase with
scale has been known before 1934 (Neprash, 1934; Gehlke and
Biehl, 1934). However, Gehlke and Biehl provided the first
narrative of scale effects, known to the author. Their study
of Cleveland census tracts examined the correlation of male
juvenile delinguencies and median monthly rental variables.
They successively aggregated the census tracts into seven
scales from 252 census tracts to twenty-five observations.
They dramatically showed an increasing correlation coefficient
with =scale for bkoth absolute and rated variables. The
increase in the correlation coefficient was, however, less

pronounced with rated variables. They also noted that
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rendomly aggregating data, i.e., without contiguity
constraints, led to an unbiased correlation coefficient. From
their results, the increasing correlation coefficients found
with geographic aggregations were produced by empirical
spatial data attributes, and not because of sample size
effects. Although not tacitly declared by Gehlke and Biehl,

their findings support this tenet.

Yule and Kendall (1950) expanded upon the earlier results
of Gehlke and Biehl. Yule and Kendall examined the
correlation between wheat and potato yields for successive
areal aggregations of forty-eight English agricultural
counties in 1936. Although the newly aggregated groups were
not entirely contiguous, the results exhibited an increasing
correlation coefficient from 0.2189 at forty-eight groups to
0.9902 at three groups. From these changes, Yule and Kendall
inferred that areal units could be aggregated or disaggregated
to generate a correlation from zero to one. They also
inquired whether any real correlation between wheat and
potato vields exists. They forwarded this question since the
correlation coefficient is influenced by associations between
the two variables and the arrangement of the areal units.
Later, Openshaw (1977a) would take their phrase of modifiable
areal units to place the label of modifiable areal unit
problem to both scale and aggregation effects. Finally, Yule

and Kendall stated this about modifiable units.
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They (correlations) measure as it were, not only
the variation of the quantities under
consideration, but the properties of the unit mesh

which we have imposed on the system in oxder to
measure it (Yule and Kendall 1950, p. 312).

In an often quoted paper, Robinson (1950) displayed a
unique scalie effect known as an ecological fallacy. An
ecological fallacy results when one makes individual level
inferences from xresults obtained with ecological, i.e.,
aggregated, data. The fallacy only develops when the results
obtained with aggregated data differ from the results of
individual data. Ecological fallacies were, however, known
long before Robinson’s work by both Thorndike (1939) and
Gehlke and Biehl (1934). Gehlke and Biehl stated the
following striking remark.

A relatively high correlation might conceivably

occur by census tracts when the traits so studied

were completely dissociated in the individuals or

families of those traits. (Gehlke and Biehl 1934,

p. 170).

From this statement, apparently these researchers had an
appreciation of the ecological fallacy issue. Thorndike
(1939) also noted the affinity for individual level
correlation coefficients to be closer to zero than ecological
correlations. This was illustrated by a theoretical example
of intelligence guotient and the number of rooms per person.
In the example, the aggregated data had a higher correlation,

0.90, than the disaggregated data, 0.45. Robinson’s results
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were similar to Thorndike’s results except Robinson derived

his results with empirical data.

Robinson (1950) examined the correlation coefficient for
illiteracy and black nativity in the United States. He
discovered larger ecological correlations than individual
correlations; the correlations were determined from the
Pearsonian fourfold point measures. The individual
correlations were determined from cross tabulations of the two
variables. He cautioned that individual level results do not
support conclusions reached from ecological data. From this
notable difference between ecological and individual
correlations, many researchers placed a rigid taboo on the use
of ecological correlations. To clarify the potential caveats
of making an ecological fallacy, a humorous example is
provided from Taylor (1977). Taylor stated how it is
conceivable to find a positive ecological association between
the rate of the population that is Jewish and the rate of
population that is anti-Semitic. Obviously, to conclude that
Jewish people are anti-Semitic would be asinine, but if one
takes the ecological relationships as a surrogate of

individual level associations this would be the case.

Besides his well known work on the ecological fallacy
issue, Robinson (1956) also provided research on the causality

of the correlation coefficient’s bias across scales. Robinson
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theorized that weighting observations would eliminate any bias
between ecological and individual correlations. To establish
the need for weighting observations, the following
hypothetical situation of two centres A and B with populations
of one thousand and one hundred, respectively is presented.
Assume variable X is rated by population and has values of 0.5
for A and 0.1 for B. If the two centres are considered equal
in the computation of basic statistics, dissimilarities may
arise from individual results. In the example above, the mean
value of the two centres would be 0.3, i.e., (0.5 + 0.1) / 2.
To conclude that 30% of the population has this trait would be
deceiving since the individual mean is 0.456, i.e., (1000 *
0.5 + 100 * 0.1) / (1000 + 100). These possible disparities
on the mean would also distort the computation of variances
and covariances which determine the Product Moment coxrrelation
coefficient. Robinson recommended using a weighting formula
by area or any other variable to replicate the individual
correlations. Nonetheless, Thomas and Anderson (1965) proved
that Robinson’s solution was only exact in specific
circumstances. Arbia (1989) would later reveal that the
weighting formula fails to reproduce individual results when
positive spatial autocorrelation affects a variable. When
positive spatial autocorrelation is present, it alters the new
group variance (Arbia, 1989), and again variance influences
the correlation coefficient. Arbia also displayed a recursive

apprecach to solve group variance and spatial autocorrelations
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since both are circularly related. Despite some defects, when
analyses attempt to reproduce individual level results,

execution of Robinson’s idea of weighting observations makes

intuitive sense.

Blalock (1964) completed an early attempt to investigate
scale effects with different aggregations. Blalock examined
the correlation and regression coefficients for successive
aggregations of 150 southern American Counties. The research
variables employed were differences in income between whites
and non whites (dependent variable) and the percentage of the
population non white (independent variable). His results,
displayed in Table 2.2.1, were completed through aggregating
by proximity, by randomization, and by maximizing the variance

in the independent and dependent variables, respectively.

Congruent with the results from Gehlke and Biehl (1934),
the coefficients from the randomly created aggregations were
unbiased. However, increasing biases transpired with the
correlation coefficient when aggregations maximized the
variance of the independent and dependent variables. The case
of maximizing the variance of the dependent variable biased
the regression and correlation coefficient, but the regression
coefficient was stable when aggregating by maximizing the
independent variable. The results of the final grouping,

proximity, fell between the two extremes above. Discovery of
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Table 2.2.1: Scale Effects on Regression and Correlation
Coefficients betwaen Differences of Non~White and White
Incomes (y) and Percentage of Population Non-White (x).

Aggregating Nunber of Groups

Procedure 150 75 30 15 10

Random

Xy 0.54 0.67 0.61 0.62 0.26

byx 0.26 0.36 0.31 0.27 0.L8

bxy 1.10 1.23 1.23 1.39 0.37

Maximize Variance of Independent Variable (x)

Xy 0.54 0.67 0.84 ¢.88 0.95

byx 0.26 0.26 0.26 0.26 0.26

bxy 1.10 1.70 2.69 2.97 3.44

Maximize Variance of Dependent Variable {y)

Xy 0.54 0.67 0.87 0.91 0.95

byx 0.26 0.41 0.68 0.75 0.84

bxy 1.10 1.11 1.10 1.11 1.07

Proximity

rxy 0.54 0.63 0.70 0.84 0.81

byx 0.26 0.27 0.28 0.28 0.34
_ bxy 1.10 1.48 1.77 2.52 1.91

Source: Blalock (1964, p. 103)

bias in the proximity aggregation was induced as Hannan (1970)
would note implicitly and Taylor (1977) explicitly by positive
independent variable.

spatial autocorrelation in the

Consequently, any scale increase by contiguous aggregations
would be analogous to aggregating groups to maximize the

variance in the independent variable. Blalock explained all

of the zxresults from the confounding effects of other
variables. These other variables were related to the
dependent variable and were expected to behave quite

differently under alternate zonings. When grouping by

maximizing the variance of the independent variable, the
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explanatory power of the confounding variables should decline.
With relatively declining importance in the confounding
variables, the independent variable should explain more
variation in the dependent variable. Since a regression
coefficient relates the changes in one variable from another
and not the variability of the variables, the regression
coefficient should be 1less influenced than correlation
coefficients (Tayloxr, 1977, p. 221). Hannan (1970), Taylor
(1977), and Williams (1977) all pursued this issue of
confounding variables on the correlation between two
variables. This approach is no longer supported as the
research by Arbia (1989) on spatial data configuration and
dependencies appears more plausible. Despite this, Williams
has provided a statement which geographers should acquaint
themselves with.

No self respecting statistician would take just any

selection of individuals as his sample in a study

and give it no further thought. Likewise we would

hope the days are numbered for urban and regional

scientists who produce zoning systems as it were,

out of a hat and proceed to use them, blissfully

unaware of the effects the grouping might have on

any subsequent empirical investigation they carry
out (Williams 1977, p. 64).

Openshaw (1277a; 1978; 1984a) and Openshaw and Taylor
(1979; 1981) have immensely contributed to the cognizance of
the modifiable areal unit problem and specifically the effects
of alternate aggregations. In one example, Openshaw and

Taylor (1979) examined the correlation between the percentage
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vote for Republican candidates in the Iowa congressional
election of 1968 and the percentage of population over sixty
years old from the 1970 U.S. census. Table 2.2.2 displays
their results for maximizing and minimizing the correlation
coefficient for alternate aggregations. It is apparent that
the correlation’s range encompasses the entire spectrum very
quickly, i.e., +1.00 to -1.00, by simply modifying the
aggregations. After examining the problem of aggregation
effects, they concluded, ". . . We have been able to find a
wide range of correlations. We simply do not know why we have

found them . . . .." (Openshaw and Taylor 1979, p. 142).

Table 2.2.2: Coxrelation Range of Vote and Age Variables for
Different Scales of Iowa Data, 1970.

Zoning Systems Grouping Systems
(geographic) (random)

Number of Min rxy Max zxy Min rxy Max rxy
Groups
6 -0.999 0.999 -0.999 0.999
12 ~-0.984 0.999 -0.999 0.999
18 -0.936 0.996 -0.977 0.999
24 -0.811 0.979 ~0.994 0.999
30 -0.770 0.968 ~0.989 0.999
36 -0.745 0.949 -0.987 0.998
42 -0.613 0.891 ~0.980 0.996
48 -0.548 0.886 -0.967 0.995
54 ~-0.405% 0.823 -0.892 0.983
60 -0.379 0.777 -0.787 0.983
66 -0.180 0.709 -0.698 0.953
72 -0.059 0.703 -0.579 0.927

Source: Openshaw and Taylor {1979, p. 130)

One reason Openshaw and Taylor could not resolve the

range of the correlation coefficient was due to their
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automatic zoning procedure from Openshaw (1977b). This random
procedure constructs aggregated areal units without any regard
for the internal size of groups. For example, if the
objective 1is to produce two aggregates from fifty basic
spatial units (BSUs), i.e., original areal unit observations,
the results could be as extreme as forty-nine BSUs in one
aggregate and one BSU in the other. Consequently, the
variability Openshaw and Taylor found in correlations was not
only attributable to aggregation effects, but also, as
Robinson (1956) had forewarned, because of problems associated
with weighting observations. With samples of ten thousand
alternate aggregations at each scale, it is highly probable
that several aggregations were extreme, and thus extended the

normal range for the coefficient.

Openshaw (1978; 1984a) did appraise the possibilities of
exploiting zoning systems that satisfy specific objectives
such as equal area, equal population, and zonal homogeneity to
mention a few. Although declaring no additional benefit
arises from alternate zone definitions, Openshaw did only
examine one aggregation for each objective. Since this
aggregation could be extreme, Openshaw’s dismissal of these
aggregating procedures may be premature and warrant further

investigation.
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Openshaw (1978; 1984a) and Openshaw and Taylor (1979)
also observed the effect of maximum, minimum, and absent
spatial autocorrelations for the voting and age variables
previously mentioned. Their findings are illustrated in Table
2.2.3 for spatial autocorrelations, measured by Moran’s I
statistic, of maximum, 0.82 and 0.92, minimum, -0.71 and
-0.57, and zero for the voting and age variables,

respectively.

Table 2.2.3: Aggregation Effects on the Correlation
Coefficient for Various Levels of Spatial Autocorrelations.

Max Negative Abgent Max Posgitive
# of Max Min Max Min Max Min
Groups rxy Xy rxy rxy Xy Xy
6 -0.99 0.99 ~0.99 0.99 -0.99 0.99
12 -0.97 0.99 -0.99 0.99 -0.98 0.99
18 ~-0.97 0.99 -0.97 0.99 -0.92 0.99
24 -0.98 0.98 -0.90 0.99 -0.89% 0.98
30 -06.93 0.98 -0.86 0.98 -0.78 0.95
36 -0.93 0.98 -0.80 0.98 -0.61 0.93
42 ~-0.92 0.97 -0.79 0.9s6 -0.52 0.93
48 -0.87 0.96 -0.66 0.95 -0.39 0.89
54 -0.85 0.95 -0.52 0.91 -0.32 0.88

Source: Openshaw (1984a, p. 22)

Surprisingly, Openshaw and Taylor detected scale effects
on the correlation coefficient when no spatial autocorrelation
was present in the data set. This finding could arise from,
as Arbia (1989) has noted, not controlling for lagged cross
correlations; this topic will be elaborated upon later. The
ranges of the correlations do substantiate the expectation of

lower ranges with positive spatial autocorrelations. This
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expectation arises since the range of variances is at a

minimum when forming groups homogeneously (Arbia, 1289).

Finally, Openshaw (1984a; 1977a) has explored MAUP from
a unique viewpoint of relaxing the idea of fixed observations
in statistical analyses. Furthermore, he postulated a radical
change of fixing model parameters and then calibrating a
zoning scheme reproducing this value. This procedure has been
called spatial engineering or applied gerrymandering
(Openshaw, 1984a), among other things. As well, since it is
feasible to produce these zoning systems, Openshaw distrusts
the normal science paradigm in geography. Another 1less
radical idea proposed by Openshaw is creation of zoning
systems that meet required assumptions of analytical
techniques, e.g., normality. Although these suggestions have
been clearly ignored and may be extremist in view, Openshaw'’s
work on the modifiable areal unit problem has brought
tremendous insight to the caveats related with using areal

unit observations.

Cliff and Ord (1981) also inspected the scale effect on
areal units using various floor space uses from Jones and
Sinclair‘s (1968) Atlas of London. Cliff and Ord examined the
variance and correlations between office, commerce, and
industry floor spaces upon a twenty-four by twenty-£four square

lattice. Through consecutive aggregations of four, four,
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four, three, and three cells from the previous aggregations,
they found the ordinary increase in the correlation
coefficient with scale. Since the internal sizes of all newly
aggregated groups were constant, this analysis was unique from
previous examinations. Therefore, any tenet rthat scale
effects are the result of not weighting observations was
dispelled. Haining (1990) also recommends creating aggregated
groups with egual internal sizes, i.e., the same number of
basic spatial units comprise each aggregated group, to assure
the same scale processes are behaving in each group. This
aggregating procedure could also confront the igssue of
correlation range under alternate agygregations that Openshaw
and-rTaylor (1979) could not resolve. However, since Cliff and
Oxrd based their results from only one aggregation at a given
scale, it is not possible to determine the true variability of

aggregation effects on the correLation coefficient.

Perhaps the most significant research on the modifiable
areal unit problem has been performed by Arbia (198%a; 1986).
The work of Arbia demonstrates a cognizance of MAUP far beyond
anyone previously (Fotheringham and Wong, 1991). Arbia
examined both issues of spatial configuration and spatial

dependencies of data and their relationships to scale and

aggregation effects.
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One objective of Arbia’s research was to derive the group
processes of the univariate; mean, variance, and spatial
autocorrelation and bivariate; correlation and lagged cross
correlation from basic spatial unit data. The areal units
were based upon square lattices and were subject to the
assumption of stationarity® in two dimensions. Stationarity
is important since it assures that there are no fundamental
changes in the structure of a process that would make
prediction difficult or impossible (Judge et al., 1982, p.
671) . The idea of local stationarity was also used to
determine spatial autocorrelations and lagged (cross)
correlations from first order contiguities only. Before
forging ahead with Arbia‘’s results, there is a warrant for a

review of the different types of spatial dependencies.

As asserted by Arbia (1989), there are two major
dependencies influencing spatial data, reaction and
interaction. Reaction is the effect one variable has upon
another, which 1s equivalent to regression (Arbia, 1989).
Interaction is the effect induced on a site by its geographic
neighbours, and it is subdivided into two further components.

The first component is the well known spatial autocorrelation

: Staticonarity is a concept most frequently used in
time-series analyses. In time series analysis, stationarity
implies that the covariance between two time periods depends
only upon the time i:terval and not on time itself (Granger,
1989). In a spatial sense, stationarity implies that
statistical properties of a spatial process do not change over
space (Arbia, 1989).



30
effect (Cliff and Ord, 1973) where one variable is correlated
among geographic neighbours. The second interaction effect is
far 1less recognized and is a combination of the two
dependencies already mentioned. In this situation, two
different variables are correlated across neighbouring spatial
units. The term for this dependency is lagged cross
correlation ox for convenience lagged correlation. Figure

2.2.1 illustrates these dependencies.

Only the principal conclusions are presented since
calculating the group process correlation is involved. Those
who are interested in the actual derivations of all formulas
are referred to the original work of Arbia (1989). All
statistics and measurements are completed at the basic spatial
unit level, i.e., the lowest level of aggregation, unless
otherwise stated. The qualifiers between group or aggregated
are used interchangeably to represent measurements made from
the aggregated data at the increased scale. When computing
values by averaging for aggregated groups containing equal
number of basic spatial units, not surprisingly, one finds an
unbiased mean value. The between group variance is affected
by the variance, by the level of spatial autocorrelation, by
average within group connectedness, and by the number of BSUs
forming the new aggregation. If no spatial autocorrelation
was present in a variable, the between group variance would

equal the variance divided by the number of BSUs forming an
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Process (V)

)

xyiP xyP

/ Process (X)
J xP '

Definition of tarms
xyP - comelation between processes X and Y

xylP - cogreloﬂon of processes X and Y between Nelghbouring
units

xP - spatial autocorrelation of a process
(comelation between nelghbouring units of the same

Process).

After: Aibla (1989, p.156).

Figure 2.2.1: Typologies of Spatial Dependencies in the
Bivariate Case.

aggregate (Arbia, 19289). Robinson’'s weighting formula could
also be employed in this instance. When positive spatial
autocorrelation is present, the between group variance is

dependent on the spatial autocorrelation and the average
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within group connectedness. Simply put, if the groups are
more compact, i.e., high average within group connectedness,
internally the groups will be homogeneous. This within group
homogeneity assures maximizing of the between group variance.
To calculate the group covariance, Arbia revised the
correlation coefficient formula to solve for covariance.
Consequently, the group covariance equals the <quare root of
the two between group variances multiplied by the group
correlation value. Since it is expected that aggregated and
individual correlations will be different, the group
correlation formula is altered to add the lagged correlation
multiplied by the average within group connectedness. The
following formulas are taken from and sometimes adapted from

Arbia’s work (Arbia 1989, pp. 69-70 and 157-160).

To determine the group correlation coefficient from
individual data, six elements must be known, i.e., the BSU
correlation, lagged correlation, both spatial
autocorrelations, the average within group connectedness, and
the size of the new group (Arbia, 1989). Rearrangement of
this final formula can solve any parameter’'s value required to
increase the correlation coefficient with knowledge of the
other five parameters. The formula provided can also judge
the range of aggregation effects by substituting the maximum
and minimum average connectedness values for any scale (Arbia,

1983). Arbia checks these formulas with reasonable accuracy,
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vV, * (1L + WC * xp)

Vi =X
Gy T
0.5
cve,, =-XB* yp)°-> * ();yp + WC * xylp)
where
VG, - grouped variance of X
v, (V,) ~ basic spatial unit (BSU) variance of x (y)
CVG,, - grouped covariance of x and y
wc - within average group connectedness
xp(yp) - BSU level of spatial autocorrelation in x (y)
r ~ the number of BSUs aggregated into a new group
CRG,, - grouped level correlation coefficient
Xyp -~ BSU level correlation coefficient
xylp - BSU lagged correlation coefficent

it follows that the grouped correlation coefficients eqgua.

cvG
CRG,, = X
xy (VGX * VGy)O.S
VG, * VG,)%5 * (x + WC * xyl
CRG (VG,, ) (xyp y1p)

"z % (V, * (1 + WC * xp) * (1 + WC % yp))°*®

which simplifies to

(xyp + WC * xylp)
((1 + WC * xp) * (1 + WC = yp))°->

CRG,, =

and this author has found that the formulas work properly for

at least lattices.

Arbia’s findings are not without criticisms, even beyond
the assumption of stationarity. Fotheringham and Wong (1991)
see little opportunity to apply this bivariate framework to
multivariate statistics because of the complexity of

determining partial corxrelation coefficients. Furthermore,
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dependencies based on. first order neighbours may be
unrealistic and consequently the general results are
debatable. Finally, these results depend upon groups with the
same Iinterconnectedness and size, and this is a rigid

assumption for empirical data.

2.3: Review of Factor Analytic Robustness

After substantiating urban social area analysis theories
postulated by Shevky and Williams (1949), Shevky and Bell
(1955), and Bell (1955), factor analysis became vogue in the
social sciences. After these initial factorial ecologies,
almost every urban centre with available socioeconomic data
has been factor analyzed. The findings from these factor
analyses vielded indications of underlying themes or
constructs of a city. Factor analysis is also employable in
less well known geographical applications. These alternatives
include reducing a data set into more workable terms or
concocting a set of independent factors for subsequent
analyses (Johnston, 1978). Johnston (1978) provides a
practical example for data set reduction. When data
co.lection cost is high in time or expense, a sample of
observations could be factor analyzed to reveal variable
redundancy. By revealing redundant variables, there is a

reduction in the time and cost of data collection (Johnston,
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1978) . Defining variables into a set of independent
constructs is particularly valuable when a technique such as
multiple regression 1s subsequently completed. Since
orthogonal rotations produce independent factor scores,
employing factors as independent variables averts the problem
of multicollinearity. Although factor analysis Thas
substantial relevance on geographic studies, the effects of
scale and particularly aggregation upon this technique are

unknown .

Several studies have attempted to assess scale effects on
factorial ecologies. Even as early as 1969, Murdie (1969)
warned of possible scale effects on the factor analytic model.
Within the MAUP studies completed on factor analysis, several
common themes emerge, despite the contradictory opinions each
researcher has advanced. If one only inspected the
conclusions provided by each researcher, one would erroneously

infer that scale effects on factor analysis are unresolved.

Berry and Spodek (1971) performed one of the earliest
studies of scale effects on factor analysis. They factor
analyzed the Indian city of Bombay at three separate scales of
fifteen, eighty-eight, and 437 observations with fourteen
socioeconomic variables. Although concluding wupon the
consistency of their results across scales, a review of their

data does not substantiate this assertion. Since Berry and
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Spodek did not provide the unrotated factor loading matrix,
only the rotated factor loading matrix can be inspected for
the strengthening £factor notion. The number of factor

loadings greater than A2BS(0.30) is presented in Table 2.3.1.

Table 2.3.1: Strength of Rotated Factor Loadings aAmong
Alternate Scales, Bombay, 1961.

Scale of Analysis

Rotated Factor 15 88 437
Loadings (ABS)

(0.2 - 1.0) 4 3 5
(0.8 - 0.9) 4 3 3
(0.7 - 0.8) 4 3 2
(0.6 - 0.7) 2 2 1
(0.5 - 0.6) 1 4 2
(0.4 - 0.5) 4 6 2
(0.3 - 0.4) 6 4 5
Total 25 25 20

After: Berry and Spodek (1971, pp. 275-276)

These results display increasing magnitudes of large
factor loadings with scale. It should be noted that the
scales with eighty-eight and 437 observations both had five
significant factors not four, and thus a varimax rotation was
more likely to detect higher loadings. This was especially
true with 437 observations where several factors had only two
variables with high loadings. The few variables loading on a
factor suggest an absence of general factors, and this lowest
scale was able to identify the largest number of highest
loadings. However, only twenty rotated factor loadings were

greater than ABS(0.3) for the smallest scale compared to
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twenty-five for the other scales. Table 2.3.2 displays the
cumulative percentage of variation explained by the factors

for all scales.

mable 2.3.2: Cumulative Percentage of Data Set Variation
Explained For Different Scales, Bombay, 1961.

Scale of Analysis

Factor 15 88 437
1 29.8 21.4 19.3
2 51.1 41.0 35.7
3 71.4 58.7 50.5
4 88.3 69.9 62.8
5 N/A 80.2 71.7

Source: Berry and Spodek (1971, pp. 275-276)

Other measures also point to the pronounced effects of
scale on the Bombay analysis. The number of significant
factors decreases as scale is increased, and these factors
explain more of the variation in the data set. The first
factor extracted exhibits increasing generality since the
percentage of explained data set variation increases from 19.3
at 437 observations to 29.8 with fifteen observations.
Finally, the communalities of the variables also increased
with scale. Berry and Spodek remarked about the stability of
their analysis across scales. However, with a better
awareness of how scale effects manifest themselves in factor
analysis, the importance of scale effects to this study is

evident.
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Romsa et al. (1974) completed an assessment of scale
effects on factorial ecologies. They performed factorial
ecologies on Windsor with thirty socioeconomic variables for
both 343 enumeration districts and forty-three census tracts.
These results, as the results from Berry and Spodek (1971),
may be suspect since the ratio of observations to variables is
very low, i.e., forty-three : thirty. The major objective of
their study was to provide a quantitative test for assessing
the scale invariance of factor loadings. The test selected
was the coefficient of congruence (Burt, 1948; Tucker, 1951),
since it acts like a correlation coefficient. Because the
sign of loadings highly influences this coefficient (Pinneau
and Newhouse, 1964), it has produced odd results (Gorsuch,
1.983). In turn, it has been suggested that a congruence
coefficient should be 0.90 for considering two factors to be
identical (Cureton and A’'gostino, 1983). The range of the
coefficient of congruence analysis for the two scales of the
Windsor analysis varied from 0.77 to -0.32, From the
relatively small size of the coefficients, it appears that the
two studies are sufficiently different in terms of their

factor loadings.

Despite publishing only rotated £factor loadings and
congruence coefficients, the results of Romsa et al. do
augment the expectations of scale effects. For the two data

sets, sixteen of the rotated 1loadings are greater than
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ABS(0.70) for the census tracts, while only eleven were
greater than ABS(0.70) for the enumeration districts. Romsa
et al. (1974) were first to state how scale effects

significantly influence factor analysis.

In a study of Detroit, Perle (1977) disclosed scale
effects while contending for the need of higher order factor
analyses. He examined forty-three variables at two scales of
444 census tracts and sixty-two subcommunities. The results
confirmed some typical scale effects. The percentage of data
set variation explained was 86.5 for the subcommunities and
70.2 for the census tracts with six significant factors for
each. These results again confirm that increases in scale
lead to increases in the extraction of variance. Perle (1977)
maintained that scale alters factor analytic results, and

alternate aggregations can vary results.

Also contributing to the study of scale effects on factor
analysis was research forwarded by Openshaw (1984b). Openshaw
examined ecological fallacies on several multivariate
statistical techniques including factor analysis, multiple
regression, and cluster analysis. Openshaw'’s paper marked the
first effort to use knowledge of correlation variability to
scale and extrapolate these effects onto factor analysis. He
accurately suggested that the first few eigenvalues should

increase with scale. In turn, these factors accounted for
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larger percentages of the data set variation. His first
example evaluated socioeconomic data of Sunderland determined
from a 10% sample. These data were subsequently aggregated to
form different scales including individual data, 500 m lattice
aggregations, one km lattice aggregations, and polling
districts. Table 2.2.3 displays the findings.

Table 2.3.3: Number of Significant Eigenvalues and
Percentage of Data Set Variation Explained for Alternate
Scales, Sundexrland, 1976.

Scale of Analysis

statistic Individual 500 m 1 km Polling
Data Lattice Lattice Districts

Significant 18 15 14 8

Eigenvalues

Percentage 62.5 73.4 82.5 85.0

of variance

Source: Openshaw (1984b, p. 71)

From the above results the number of significant
eigenvalues, i.e., those principal component eigenvalues
greatexr than one, decreases with increasing scale, while the
percentage of explained variation increases with scale.
Openshaw also examined Florence socioeconomic data by
individual and enumeration district level data. The
individual data contained fourteen significant eigenvalues
while the enumeration district level had eight eigenvalues
accounting for 57.8 and 73.7 percent of the wvariation,
respectively. The decreasing number of significant factors

with increasing scale was concluded as the result of
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increasing areal associations among the variables. Additional
tests using the coefficient of congruence also revealed the

differences between factors at different scales.

Davies (1983) performed a fourth study of scale effects
on the Welsh city of Cardiff in 1971, The principal component
analyses were conducted on 541 enumeration districts and
twenty wards with twenty-seven variables. Since there are
more variables than observations in the second data set, these
results are probably debatable. Following corresponding
results of previous studies, six factors were extracted at the
enumeration district level with only five at the ward level.
As well, these significant factors accounted for sixty-seven
and ninety-two percent of the overall variation for the
enumeration district and ward level, respectively. The
generality of factors was also stated as far more minor

loadings were found on each vector (Davies, 1983, p. 97).

Davies further analyzed this data set by employing the
coefficient of congruence. For the five common factors he
found coefficients of 0.88, -0.81, 0.94, 0.63, -0.56. Both
views of emerging general factors with scale and of similarity
among the first few axes across scales were concluded by
Davies (1984). This latter statement arose from the
similarity of the coefficients of congruence among these

factors. However, the coefficient of congruence is suspect,
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and thus only those coefficients greater than 0.90 (Cureton
and A’'gostino, 1983) should be considered identical. Davies'’
(1983) congruence coefficients may also be greater than
anticipated since a principal components and not a common

factor medel was employed.

The final review focuses on several factor analyses
completed by Dudley (1991) on Toronto, 1986. Dudley explored
factor analysis at two scales and five alternate aggregations.
This study, unlike those alluded to previously, was first to
employ a sample of aggregations to ascertain scale effects.
Of these five aggregations, three aggregations were spatially
assembled by census tracts, by grid allocation of enumeration
areas, and by clustering observations by proximity. The two
other aggregations were formulated from cluster analyses on
ethnic and occupational variables. Since only two
aggregations strictly followed contiguously formed groups,
there is doubt whether this small number of aggregations is

sufficient to examine scale and aggregation effects.

The results found are certainly interesting. Dudley
attains results which are not apparent elsewhere in the
literature. At the smallest scale he finds six sgignificant
eigenvalues, i.e., principal component eigenvalues greater
than one, accounting for 80.57% of the variation in the data

set. When increasing the scale of analysis, the number of
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significant eigenvalues increases to eight for all five
alternate aggregations. This increase in che number of
significant eigenvalues with scale is unexpected.
Additionally, the percentage of variance increases only
slightly with scale, and this increase is almost solely

produced by the larger number of factors.

At first, the results from Dudley cast doubt upon the
nypotheses of this study. Nevertheless, unless other studies
validate these findings by Dudley, the results should only be
considered as an anomaly. Despite Dudley’s contradictory

results, the hypotheses of this study will not be altered.

Several attempts to determine the impact of scale effects
on factor analysis were accomplished, while very few
endeavours at discerning aggregation effects were attempted.
Since the above results were normally established by one
aggregation for each scale, the effectiveness of these studies
must be pondered. These findings may come from extreme cases
and could be unlike average effects. Additionally, some
studies may have employed factor analysis with the
inappropriate number of observations to variables. Cattell
advises using a ratio of four observations for every variable
(Cattell, 1952). Aalthough employment of this ratio for purely
descriptive analyses is optional (Rummel, 1970), these studies

assess the yrobustness of factor analysis to MAUP. With
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attempts to assess robustness, the suggested observation to
variable ratio may be necessary to make such inferences.
Despite widely contradictory opinions forwarded by each
author, reviews of the studies illustrate resemblance of many
findings, except Dudley (1991). For those authors who
concluded falsely about scale effects, these exrrors were
partially attributable to their myopic examination of only the
factor pattern/structure matrix. As well, not one study
examined the initial correlation matrix for increasing
correlation coefficients with scale. Finally, there is a void
of research on scale and aggregation effecis upon factor
analysis. This study is expected to help develop an informed
base for determining and estimating MAUP effects on factor

analysis.

2.4: Othexr Relevant Work on MAUP

Factor analysis is not the only multivariate statistical
technigque evaluated for scale and aggregation effects. The
following section provides a sample of the other multivariate
technigues inspected. First, is a review of the effects of
MAUP on the multiple regresszion family. The next section
evaluates the invariance of marketing and economic models such

as spatial ir eraction models and input-output analysis. From
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these brief reviews, it should be apparent how MAUP can exist

in many distinct multivariate models.

This section reviews the effects of MAUP on the limited
regression family. Linear multiple regression, logit, and
Poisson regression models are all briefly examined. Although
the uses of the various models may differ, they are grouped in

this section for convenience.

Fotheringham and Wong (1991) assessed the impact of scale
and aggregation on the linear multiple regression and logit
models. They analyzed 871 block groups in the Buffalo
Metropolitan Area in 1980. From analyses completed by
aggregating the basic spatial units into 800, 400, 200, 100,
fifty, and twenty-five units with twenty-five alternate
aggregations for each, scale effects were found. To analyze
aggregation effects, 150 alternate aggregations were completed
with 218 observations, and as with scale effects aggregation

effects were found.

Amrhein and Flowerdrew (1989; 1992) and Amrhein (1992)
assessed the impact of scale and aggregation on Poisson
regression modelling of Canadian migration flows. They began
with the 260 census divisions of Canada, excluding
territories, and subsequently aggregated this data set to 130,

sixty-five, and ten areal units. Although noting some minor
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effects of aggregation, they posit the Poisson model may be

invariant to the modifiable areal unit problem.

The effects of MAUP on statistical analyses are apparent
in several disciplines of geography. In this section, the
effects of scale and aggregation on techniques used in
marketing and economic geography are displayed. It is also
worth noting that the effects of scale and aggregation are
apparent in location allocation models by Goodchild (1979) and
Bach (1981). The reader is referred to these articles for the

proofs.

Openshaw (1977c¢) examined the impact of scale and
aggregation upon spatial interaction models. The examinations
were completed with four SIMs (spatial interaction models) for
261 separate twenty-two and 87 separate forty-two zone
partitions of the original 73 Durham counties. Openshaw
established that SIMs are very sensitive to the zoning systems

employed.

Putman and Chung (1989) examined several aggregation
procedures on a spatial interaction model of the 108 bhasic
spatial units of Minneapolis. Since the model they employed
had many parameters, this study was unlike the Openshaw
example. They tested aggregations based upon five separate

criteria and thirty alternate aggregations for e«ach. Although
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aggregation effects were apparent, the aggregating procedures
ensuring equal population and equal basic spatial units were
more stable. This finding also indicates that Openshaw and
Taylor‘s (1979) range for the correlation was likely

overstated.

To study the effects of spatially aggregated regions in
input-output models, Blair and Miller (1983) examined
theoretical and 1963 U.S. multiregional data. They concluded,
» . ., . spatial aggregation in multiregional input-output
models produces ‘acceptable’ not large errors . . . .." (Blair
and Miller 1983, p.196). However, their sample used to assess

scale and aggregation effects may have been too small to draw

this inference.

As shown, MAUP affects many different models used in
geography today. There are cases where invariance to these
effects may exist, e.g., Poisson regression models (Amrhein
and Flowerdrew, 1989; 1992 and Amrhein, 1982), but clearly
more research must be completed upon this tenet. This section
has been provided to afford the reader the opportunity to

examine the general effect of MAUP in geography.



2.5: Summary

There is no quick and painless solution to the problem
of arbitrary areal units. Instead, research should
concentrate on the conditions generating the problems. Arbia
(1989) has determined the parameters that change ecological
correlations, and these findings should be employed for
predicting effects upon other analyses. As well, Fotheringham
(1989, p.222) lists several possible solutions to the MAUP
issue including (i) derivation of optimal zoning systems, (ii)
the identification of basic entities, (iil) sensitivity
analysis, (iv) abandonment of traditional statistical
analysis, and (v) shifting the emphasis of spatial analysis
towards relationships that focus on rates of change. It is
doubtful that creating optimal zoning systems satisfying the
large number of variables analyzed in multivariate statistical
analysis is possible (Fotheringham, 1989). Even what
constitutes optimal is debatable as both Moellering and Tobler
(1972) and Openshaw (1978) express different views, The other
possible solutions are also unobtainable with certain data
sets. There are several other avenues research on MAUP has

been following as several are revealed below.

Besides the above list of possible solutions, increasing
attention has also been devoted to fractals (Fotheringham,

1989), spatial entropy (Batty and Sikdar, 1982), and hierarchy
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of needs concepts (Dudley, 1991). These attempts offer some
prosg 'ct for finding solutions independent of the modifiable
nature of areal unit data. As well, Tobler (1989) has
suggested the statistic employed, e.g., the Product Moment
correlation coefficient, may be the source of the modifiable
results and not the nacture of areal data. He advocates the
search for scale invariant statistics for employment in
analyses. Along a similar vein, Carlin and Bendel (1989)
state that ecological fallacies transpire because of the
Product Moment correlation coefficient. They argue that a
Bayesian estimate of the ecological correlation coefficient
would provide more desired results. Finally, Wrigley (1993)
has suggested that ecological fallacies could be removed by
publishing individual characteristics of a small number of key
variables. The technique involves estimation of individual
level statistics for a group of wvariables from the key
variables, and when the differences between the individual and
group level statistics are removed the ecological fallacy
should be removed. Although this technique offers some
promise, it is doubtful that any manageable set of variables
could be found at the individual level that accounts for a

large portion of variation in a selected data set.

Despite the latest wave of attempts to eliminate MAUP
from geography, it is unlikely that any of these will make

significant inroads. The problem will persist due to the



50
accessibility of areal unit data supplied by statistical
agencies and the increasing use of statistical packages.
Although it may be a cynical view, most research in geography
will continue to report results based on areal unit
obsexrvations without the slightest pretence for the effects of
alternate scales and aggregations. Hopefully, this opinion is
inaccurate and the MAUP issue will deserve the attention, as
Openshaw (1984a, p. 6) stated, as the most serious unresolved

issue in the discipline of geography today.
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Chapter 3: Data Sets and Methodologies

This chapter addresses many conceptual problems arising
during the development of this thesis. First, a section
explores data set issues where the selection of variables and
problems associated with the data sets are forwarded. The
next section examines the spatial scales and aggregations this
evaluation employs. The following section reviews the
technique of factor analysis. Additionally, addressed are the
factor analytic options available. Finally, the different

means applied to examine factor analytic robustness are

explored.

3.1: Data Sets

To ascertain the causality of scale and aggregation
effects upon factor analyses employing areal unit
observations, two theoretical data sets were developed. These
data sets, created from the IMSL statistical 1library®, are

from a multivariate normal distribution and set on a twenty by

® IMSL is a statistical and mathematical library of
Fortran, and C, programs which may be employed by any
researcher. The random variables from a multivariate normal
distribution employed here, allows specification by the user
for the number of variables and the covariances between each
variables.
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twelve rectangular lattice. A multivariate normal
distribution is an assumption of factor analysis (Rummel,
1970), and it alsc helps to meet other suppositions. A
multivariate normal distribution increases the likelihood of
linear relationships between variables, reduces the
probability of heteroscedasticity, and decreases the chance of
limiting the correlation’s range (Rummel, 1970). For these
reasons, a multivariate normal distribution was chosen. The
intexvariable associations selected for the data sets were
determined from a sample of empirical correlations. By
selecting correlations in this fashion, these results should
clone empirical data set results. It should also be
acknowledged that the theoretical data corxrelations are
different from the empirical correlations. The correlations
deviate vastly, with some variables meagrely associated with
others. With some poorly associated variables, the conviction
of having strong communalities to complete a proper factor
analysis is violated. For two distinct reasons, this study
departs from this view. First, in purely exploratory factor
analyses, some low communalities will be present in a data
set. Furthermore, determining changes associated with
variables having different relationships is an objective of
this research. For these reasons, it was deemed worthwhile to
include these correlations and data sets. There are
differences in the two theoretical data sets and they will be

explained below.
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The two theoretical data sets differ only by the spatial
dependencies among areal unit observations. To emulate data
free of scale effects, the random variables were repositioned
on the lattice?, to remove spatial autocorrelations. Here,
the summation of the ten absolute value spatial
autocorrelations, measured by Moran‘s I with the below
weighting scheme, was held to 0.05, or each spatial

autocorrelation could average ABS(0.005).

- X = (X, - X
Yo X o X =y (X; - X)

I= =
Yo - x°?
where
X, - 1is the ith observation
X; - is observation j that neighbours i
cc, - 1is the number of co.tiguous neighbours of i

Although no constraints were placed on lagged cross
correlations, they all gravitated around the zero mark, see
Appendix C. There could be an objection of the constraints
placed on theoretical data since the expected value for
Moran‘'s I statistic is (-1/(240-1)) and not zero (Cliff and
Ord, 1973). Regardless, such differences are trivial and do
not warrant any changes. Following Arbia (1983), this study

uses rook’'s case contiguities to determine spatial

¢ A Fortran program was created to reposition the random

variables’ values on the lattice. Depending on the objective
set for this program, spatial autocorrelation could be
maximized, minimized, removed, or placed anywhere in between.
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autocorrelations. The weights for the I statistic are equal
to the inverse of the total number of contiguous neighbours
for a given observation which is equal to the inverse of the
row summation in the contiguity matrix. This weighting
adjustment avoided inflating the power of empirical

observations that had many neighbours.

The second theoretical data set was created by
repositioning the same random variables and bivariate
correlations to introduce positive spatial autocorrelations,
see Appendix C. The values of spatial autocorrelations for
these variables are similar to those autocorrelations {rom the
Saskatoon data. From the examinations of empirical spatial
autocorrelations, the range of spatial autocorrelations was
allowed to vary from 0.4931 to 0.2643. The lagged spatial
autocorrelations were again unconstrained. The next question

that needs to be addressed is why were two data sets created.

At this point, it is worth emphasizing the rationale for
creating two similar theoretical data sets. arbia (1989) has
shown the importance of spatial dependencies on ecological
correlations. Since correlations are scale invariant when
aggregations are completed randomly without contiguity (Gehlke
and Biehl, 1934 and Blalock, 1964), the characteristics unique
to empirical spatial data are solely responsible for altering

correlations. The results from data absent of spatial
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dependencies should, therefore, be analogous to aggregating
without contiguity. As well, with absence of spatial
autocorrelations, the uncontaminated data set does not violate
any factor analytic assumptions. The data set containing
positive spatial autocorrelations should provide zresults
analogous to empirical data. From these two data sets, MAUP
effects on empirical spatial data sets should be determined.

At this point the empirical data set will be introduced.

The enumeration areas of the urbanized Saskatoon C.M.A.
as displayed in Map 3.1.1 comprise the empirical data set.
Saskatoon is a medium sized Canadian metropolitan area with
populations of 210 023 in 1991 and 200 665 in 1986 (Statistics
Canada, 1991). Saskatoon was chosen because of familiarity
with this data set, and 1its size 1s manageable yet not
restrictive. Absence and suppression® of data for several
enumeration areas led to deletion of observations leaving 231
usable observations. To enable a properly functioning
contiguity matrix, the geographic space consumed by these
deleted enumeration areas had to be reallocated. The
geographic space was allocated by a consistent allocation
precept that appended this space to the largest neighbouring
enumeration area within the same census tract boundary.

Although the census tracts of Saskatoon are not entirely

* Statistics Canada may suppress data in cases where the
geographical areas are small or there are small cells in
tables (Statistics Canada, 1986c).



Map 3.1.1: Study Area for Empirical Data: Saskatoon
Enumeration Areas, Saskatoon, 1986.
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homogeneous (Hunt, 1992), on average, the properties of the
missing areal units should be analogous to the neighbouring
observations in the same census tract. The Saskatoon data set

employed here should be typical to those used in geographical

analyses today.

Below are listed a number of problems associated with
using enumeration area data. First, a condition known as the
small number problem (Kennedy, 1989) affecits the empirical
data set. This problem stems from rating wvariables with
either small numerators or denominators. With many small
values found in variables at the enumeration area scale, large
relative changes in measures can arise even when absolute
changes are small. When this problem is combined with random
rounding and several variables based on a 20% sample, the
validity of enumeration area data analyses is questionable
(Statistics Canada, 1981, p.25). Despite these serious
concerns, there are several reasons why this study employs
enumeration area data. First, and mosc important, the purpose
of subsequent analyses with different scales and aggregations
is to replicate enumeration area results. There is no attempt
made to reproduce individual level results. Whether
enumeration area level results drastically differ from the
individual level results is extraneous. If the purpose here
was to decipher urban themes, the validity of these results

would be debatable. Moreover, with each subsequent scale of
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analysis the successively aggregated areal units should reduce
many of these problems. Since variable selection for
empirical data may profoundly affect results (Gorsuch, 1983),

they were selected cautiously.

The variable selection for the empirical data follows the
social area analysis themes found from past research (Shevky
and Bell, 1955; Bell, 1955; Shevky and Williams, 1949). These
social area analysis themes include economic status, family
status, and segregation. These are not the only underlying
constructs found in urban analyses, e.g., those recent themes
found by Bourne (1987) and Davies and Murdie (1991). The
research here did not include other urban constructs because
of the small number of variables. To prove or disprove new
urban hypotheses, it would be necessary to increase the number
of variables from ten. However, the intent of this research
is to examine scale and aggregation effects in factor analysis
and not to decipher urban themes. Even when using traditional
social area analysis factors, use of such a small data set is
controvexrsial. Provided below, is a list of the variables
employed for this analysis. For more accurate variable
intexrpretations, the reader should consult Appendix A. The
variables portraying economic status are average family
income, male unemployment rate, rate of highly educated
population, and rate of workforce in blue collar occupations.

For social status, the variables include ratio of voung
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children to females in child bearing years, average household
size, and the female labour participation rate. The rate of
population with non official mother tongue language and rate
of population born as an immigrant describes the ethnicity or
segregation theme. Finally, one further variable was added,
i.e., rate of migrant population. Although most of these
variables are similar to those from traditional social area
analysis studies, e.g., (Bell, 1955}, addition of a housing
stock varxiable was not possible because of insufficient data.
There was also a conscious avoidance of count variables. IE
count variables were employed, enumeration areas differing
greatly in population size would contain all extreme cases.
The resulting size effect factor is typically useless as it is
basically the population variable. Since variables were
selected prudently with expected themmes, the results from the

empirical analysis should be alike other factorial ecologies.

3.2: Methodology

This next section describes in detail the aggregation
procedures and number of variables employed for the data sets.
First, the aggregation procedures are detailed below
illustrating the differences between empirical and theoretical
aggregations. As well, a scope of the number of analyses

completed is also provided.
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The aggregating procedures for the theoretical and
empirical data differ and are completed with alternate
objectives in mind. The empirical data set contains 231
enumeration areas while the theoretical data sets each have
240 observations. These initial observations are then
aggregated through contiguity constraints to produce three
additional scales of 120, sixty, and forty observations. The
number of basic spatial units used for the theoretical data
was 240 since it is divisible into all scales and approximates
the 231 enumeration areas. Because at the largest scale there
are only forty observations, selection of ten variables
maintained a ratio of observations to variables of four : one
(Cattell, 1952). For each scale, examination of thirty
alternate aggregations should demonstrate the effects ol
aggregation on factor analysis. Furthermore, the same
geographical aggregations were completed for both theoretical
data sets to ensure consistent comparisons. All groups
aggregated from the theoretical data sets contain an equal
number of basic spatial units, e.g., at the forty group scale
every group consists of six BSUs. To imitate spatial
databases, this equal BSU criterion was reraxed for the
empirical data set. The range of BSUs for the empirical
groups are displayed in Table 3.2.1. As can be seen, the
range each group can take becomes Jlarger as scale is
increased. The largest scale, forty observations, also

approximates the 37 census tracts in Saskatoon (Statistics
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Canada, 1986Db). In all, 272 separate factor analyses are
completed for these three data sets and £four scales of
analysis. A factor model program by Veldman (1967) was
modified for this specific study so that the large number of
factor analyses was manageable. Such a large sample should

expose scale and aggregation effects upon factor analysis.

Table 3.2.1: Ranges of Empirical CGroups.

Scale 120 Groups 60 Groups 40 Groups
Minimum BSUs one two three
Maximum BSUS four seven ten

3.3: Factor Analysis

This study 1is opposite of most geographic research
completed. Rather than using a statistical technique to draw
inferences about a spatial process, this study examines the
variakb.ility of spatial processes to judge a technique’s
robustness. The method examined here is factor analysis,
which is a popular method used in geography to substantiate
the themes postulated about social area analysis. Within the
factor model, there are many different options available.
These options include extraction techniques, determining the
number of significant factors, and factor rotation, among
others. Although most factor analytic options lead to robust

results, it 1is conceivable that some options may behave
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differently under aggregation procedures. Throughout the
paragraphs below, the options selected for this study are
provided along with the appropriate rationale. In almost
every case, the selected options are the same as those options
traditionally used by geographers, even when such a decision
may be undesirable. By creating a model that is comparable to
those used by other geographers, these results will be
applicable to those of contemporary geographical factor
analyses. First, before discussing the factor analytic
options, the factor model employed for this analysis is

illustrated.

Figure 3.3.1 displays the factor model selected for this
study. Since most of the factor analytic options are dealt
with in greater detail below, only cursory attention 1is
addressed to the model here. There are two separate steps in
completing the factor model for this analysis. The first step
is concerned with identifying the number of significant
factors and determining whether the data are adequate for the
factor analytic model. The Kaiser-Meyer-0lkin (Kaiser, 1970;
Kaiser and Rice, 1974) and individual measures of sampling
adequacies are employed to assess the suitability of the data
for the factor analytic model. After determining the number
of significant factors, the next step is to complete the
factor model with all the options shown in Figure 3.3.1. The

following paragraphs deal with the various factor analytic
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options available to a researcher and the rationale for the

options selected here.

The first factor analytic option available is the index
of association. Many different measurements are available,
depending in part on the measurement scales of the variables
used, including intervariable correlation matyix, covariance
matrix, and cross products and distance measures (Gorsuch,
1983). Geographic research normally uses the Product Moment
correlation <coefficient to produce the intervariable
correlation matrix. This study will also employ Product
Moment correlation coefficients, and the research here will

draw heavily on Arbia‘s research on grouped correlations.

The next selection available is the type of extraction
procedure used to derive the factor pattern and structure
matrices. There are two general choices: a component or a
common factor model. If one uses a component model, it is
assumed that variation of any variable is explainable by all
other variables. Since this assumption usually is incorrect,
a common factor model with expected unique variances is used.
Aun entire family of extraction procedures exists within the
common factor model including principal axis, image, alpha,
maximum likelihood, 1least squares, and generalized least
squares. Of the common model possibilities, geographical

research employs the principal axis factoring method most
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often (Davies, 1984). Principal axis factoring was selected,
since it extracts the most data set variation with the fewest
factors and reproduces the correlation matrix with the
greatest accuracy (Gorsuch, 1983). Squared multiple
correlations are inserted as initial communality estimates of
the wvariables. This technigue is again the most popular
although others do exist. Communalities are measures, Or
initially, estimates, of how well the factor model explains
the variation of a particular variable. The squared multiple
correlations are the coefficients of determination for
regressions using all other variables. It should be apparent
that the extraction procedure and communality estimate used

for this study are based on a strong contemporary tradition in

geography.

After selection of an extraction procedure and a
communality estimator, the selection of the number of
significant factors from the data set is essential. There
should be fewer factors than variables to ensure the principle
of parsimony (Harman, 1976). If there are almost as many
factors as variables, one must question the utility of
conducting a factor analysis. Rules of thumb are available
for selecting the number of significant factors. These
include taking all factors having principal component
eigenvalues greater than unity. explaining at least 5% of the

data set variation, and lying above an appropriate break in
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the eigenvalue slope (Cattell, 1966). It should be sufficient
to note that eigenvalues are indicators of the strength and
size of extracted factors. The convention in geography is to
select the number of factors with principal component
eigenvalues greater than one. By taking only factors with
principal component eigenvalues greater than one, it assures
that evexry factor accounts for more variation than that
associated with one variable. With only ten variables, it
would be ludicrous to select those factors explaining 5% of
the variation as the average variable accounts for 10% of the
variation itself. The greater than 5% criterion rule of thumb

should only be considered when the number of variables is

greater than twenty. Scree plots are typically used in
combination with othexr criteria, and despite their
subjectivity they are powerful techniques. In fact, the

eigenvalue slope break, as referenced by Gorsuch (1983), has
been translated into an objective test labelled the CNG test.
Selection of the principal component eigenvalue greater than
one criterion allows comparisons of this study to many in

geography .

After the extraction of eigenvalues and eigenvectors,
i.e., the association of variables to a factor, through
iterations of estimating communalities from the eigenvectors,
there is a potential for a nonsense case to develop. This

case, known as a heywood case from Heywood (1931), arises when
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the final communality of a variable exceeds one. Only a few
options are available in this situation including altering the
convergence criterion, selecting more factors (Harman, 1976),
and halting the iteration procedure before this case arises.
These cases are handled by terminating the iterations before
a heywood case is reached and it is quite typical, although
never mentioned, way to avert these cases. This does mean
that the convergence criterion is not met, and this may cause

minor problems in the final communality estimates.

Once the final iterated communalities become stable, it
is often useful to rotate £factor loadings to a simple
structure (Thurstone, 1935). Rotation is available because
the reference axes can Dbe altered 1in space. The
interpretation of factors is enhanced through rotation and is
normally completed for any research. Two general rotations
available are orthogonal and obligue. Orthogonal rotations
assure independence between all factors. Oblique rotations
allow correlations among factors, and thus factor scores can
be used to reveal higher order factors. Orthogonal rotations
are by far the most favoured technique in geography. However,
popularity does not always correspond with appropriateness.
Far too many geographers use orthogonal rotations only because
factor loadings are easy to interpret, i.e., because the
factor pattern matrix equals the factor structure matrix. As

Perle (1977) stated, spatial processes are not required to be



68
and usually are not independent of each other. As well, it is
believed that an oblique rotation may be more scale invariant
than an orthogonal rotation. This belief is spawned because
correlations usually increase between all variables when scale
is increased. Therefore, even relatively independent factors
extracted from the enumeration area analysis should become
more related with increasing scale. Obviously, orthogonal
rotations cannot continue to identify the same factors at
different scales if relationships between factors increase.
This study employs the varimax orthogonal rotation (Kaiser,
1958) to correspond with traditional geographic factor

analyses.

The final factor analytic choice available involves
estimating factoxr scores. Factor scores are estimates, when
using the common factor model, of the score a particular
observation has for a given factor. Factor scores are derived
from many technigues that reproduce scores for every
observation and evexry factor. Depending upon the rotation
employed, these factor scores are available for subseguent
analyses including higher order factor analysis or multiple
regression. The techniques for estimating factor scores
include regression estimates, minimizing unique factors, and
uncorrelated scores minimizing unique factoxs (Gorsuch, 1983).

The analysis here uses the regression method.
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One hypothesis outlined in Chaptexr One was not clearly
defined. ©Now with an introduction to the factor model, the
hypothesis is explained in greater detail. When increasing
the scale of analysis with contaminated or empirical data,
certain factor analytic statistics are expected to increase in
size. These statistics include eigenvalues, communalities,
and measures of sampling adequacies. Listed below are the

techniques utilized to test all the hypotheses put forth.

Examinations of scale and aggregation effects upon factor
analysis use several simple statistics. Factor analytic
statistics including initial and final communalities and
eigenvalues, rotated factor scores, and Kalser-Meyer-0Olkin
(Kaiser, 1970; Kaiser and Rice, 1974) and individual measures
of sampling adequacy are examined by the moments about the
mean. Scale effects may be ascertained by viewing changes in
the mean value of thirty aggregations for different scales.
If any statistic increases or decreases systematically with
changing scales, scale effects are present. Aggregation
effects are noted by the dispersion about the mean the thirty
aggregations produce. As well, comparisons of the deviations
and ranges should indicate if aggregation effects increase
with scale, as they should. If the distribution of
aggregations for any statistic has a small variance,
aggregation effects are trivial, whereas large deviations may

question any analysis at a particular scale. All of the above
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assessments depend upon near normal distributions of the
sample of a statistic’s wvalue. If distributions depart
greatly from normality, the examinations of mean and variance
are suspect. A RELATE program (Veldman, 1967) examines the
invariance of factor structures. The program measures whether
two separate factor structures are similar through correlation
estimates. This procedure is discussed in more detail in the
following chapter. Finally, from Arbia’s (1989) work on the
correlation coefficient, predictions of factor analytic
results for the theoretical data sets are undertaken. The
evaluation of factor analysis uses techniques that are far

simpler than the technique being analyzed.
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Chapter 4: Evaluation of Theoretical Data Sets
yoo

This chapter presents the results from the theoretical
data sets. It is divided into six sections with the first
section outlining the remaindexr of the chapter. The following
section reviews the attributes of the two theoretical data
sets employed for these analyses. Particularly, attention is
forwarded tc the contrasts and similarities between the data
sets. Section three illustrates the effects of alternate
scales on the factor analytic model. 1In this division, the
averages of the thirty scale specific aggregations solely
escimate oscate effects. The fourth section examines
aggregation effects on these theoretical data sets. The
standard deviations of the thirty scale specific aggregations
almost exclusively assess aggregation effects. Section five
attempts to predict scale and aggregation effects. These
estimates are based from the formula Arbia (1989) derived for
the grouped correlation coefficient. The £final section
comments upon the hypotheses developed for the empirical data

set results.
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4.1: Theoretical Data Set Properties

Since Chaptexr Three outlines the theoretical data sets,
this section only provides a brief review. The two
theoretical data sets, which are laid on a twenty by twelve
lattice, only differ in one respect. To chanae the spatial
dependency between areal units, the positions of the values of
random variables upon the lattice are altered. Positioning ol
one data set assures independence of areal unit observations.
Rearrangement of the other data set allows dependency of areal
unit obsexvations, or in other words permits positive spatial
autocorrelations. Table 4.1.1 displays the spatial
autocorrelations, measured by Moran’s I, for both data sets

and all variables.

Table 4.1.1: Spatial Autocorrelations, Weighted Moran’s I,
for the Theoretical Data Sets.

Variable Uncontaminated Contaminated
Data Data
1 0.0011 0.408%
2 0.0068 0.3593
3 0.0036 9.4054
4 ~-0.0075 0.4931
5 -0.0027 0.3158
[ -0.0042 0.2643
7 -0.0036 0.2752
8 -0.04Q76 0.28¢61
9 0.0152 0.3385
10 0.0087 0.3518

Expected Value ~0.0042 -0.0042
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Two reasons exist for constructing theoretical data sets
with different spatial dependencies. First, and most
important, the positive spatial autocorrelations found in the
contaminated data are similar to those found in empirical
geographical data sets. The similarity between these two data
sets allows development or comparable hypotheses for empirical
data. Since uncontaminated data results should be analogous
to randomly grouping observations without contiguity, these
results should indicate what 1f any effects scale and
aggregation have on data sets with any attributes.
Furthermore, factor analysis reguires implicit data
assumptions. The assumptions include multivariate normality,
homoskedacticity, no multicollinearity, and independence of
observations (Davies, 1984, pp. 112-118). Since the
uncontaminated data set satisfies these assumptions, the
results will be uncontaminated. Because of the nature of
areal unit data, geographic research commonly violates the
independent observation assumption. This assumption, however,

may not be essential for exploratory analyses,

The theoretical data sets also contain different
properties, which are important. First, the theoretical data
sets are arranged with specific bivariate associations among
variables. The theoretical correlations were chosen after
examining empirical relationships at the Saskatoon enumeration

area level. It must be stressed that the relationships among
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theoretical variables are not identical to those in the
empirical data set. If the same relationships were chosen,
the peculiarities of a specific correlation matrix could
obscure any general results. The results of these analyses,
if similar among all the empirical and theoretical data sets,
should be more plausible with different correlation matrices.
Furthermore, the theoretical variables were selected without
consideration of their relationship to potential factors.
Since no specific factors are expected, e.g., no economic
status factor, etc., the factors that are extracted from the
theoretical variables will likely be more variable than those
from the empirical data. In the empirical data where
variables are chosen to represent certain factors, the
variability of factor extractions should be considerably
smaller. As well, some theoretical variables are poorly
associated with many others because there are no expected
factors. Finally, the aggregation algorithms that increase
the scale of analysis contain important properties. When
aggregation is undertaken, the same number of basic spatial
units comprises every newly created group. This equality io
necessary for several various reasons. First, with cqual,
internal sized, aggregated groups, thesze results may be
predictable from the correlation coefficient analysic of Arbia
(1989). These results also satisfy the suggestion by Haining
(1990) of possessing matching scale processes operating on

each group. The assurance of group equality also dispels any
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tenet that scale effects arise from unequal weights. The
values for variables in aggregated groups are found by summing
the basic spatial unit values and dividing them by the number
of BSUs in a group. By aggregating in this fashion, the BSU
level results can be reproduced. These aggregation procedures
are very important in determining the effects that are found

in this chaptex.

4.2: Scale Effects on the Factor Model

This section assesses scale effects on the factor
analytic model for both thecretical data sets. Means from the
sample of thirty scale specific aggregations judge the effects
of scale on statistics such as eigenvalues, communalities, and
measures of sampling adequacies. Since changes in factor
loadings and factor scores can also indicate potential scale
effects, they too are examined. Finally, the rotated factor
loadings are examined through a RELATE procedure. A summary

paragraph reviews the general scale effects on these analyses.

The mean values of initial eigenvalues for all scales are
illustrated in Figure 4.2.1 and Figure 4.2.2. These charts
display the initial, i.e., principal component, eigenvalues
for both the contaminated and uncontaminated, also called

pure, data sets. If principal component eigenvalues alter
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with scale, a number of consequences can result. By far the
most serious effect scare specific eigenvalues can produce, is
to vary the number of significant factors. Traditionally, the
number of significant factors is determined 1{rom those
principal component eigenvalues greater than unity, above
breaks in the eigenvalue slope, or greater than five percent
of data set variation. If initial eigenvalues’ sizes or slope
varies with different scales, the number of significant

factors selected from the data set may be modifiable.

As theorized earliexr, Figure 4.2.1 unveils an increase in
the prominent eigenvalues with scale for the contaminated data
source. The increasing size of the major eigenvalues with
scale suggests increaszing generality among the principal
factors since eigenvalues are equal to the column sum of
squared unrotated factor loadings. The first eigenvalue
extracted from the contaminated data ranges from a mean of
3.30 at the basic spatial unit level to a mean of 4.29 at the
forty group level. With a range of almost one for this
eigenvalue, the percentage of data set variation explained by
this component increases ten percent from 33 to 42.9. The
slope of the eigenvalues also exhibits some interesting
trends. Around a value of one, the sizes of eligenvalues
decrease with increasing scale. If eigenvalue slope breaks
determine the number of significant factors, the task of

selecting the appropriate number of factors becomes easicr ags



77

5 o
4.5 4=
P S—|
3.5 +
° 7 :
83 i
n B
¢ 25317 ¢
g B
e
> 2 : A
1.5 S
E B )
; =% wl
1r 3 K WIRE
% R 1) o
R E ES ;E:
: 1] 1.
0.5 ; B 44 B, B = *
AL L L I
0 T ~ 7 = T Y = 11 - T =

5 6 7 8 9 10
Eigenvalue Mumber

Observations ‘w-jf;; 240 E=38 120 60 [_]40

-
N
N
~

Figure 4.2.1: Scale Effects on the Initial Eigenvalues for
the Contaminated Data Set.

scale increases. In terms of the actual number of significant
factors, there will likely be fewer factors extracted as scale
is increased. Therefore, comparisons of the same processes at
higher scales may lead to fewexr, but stronger, factors. The
above results clearly illustrate that large scale effects
exist on initial eigenvalues when variables contain positive

spatial autocorrelations.
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Figure 4.2.2. displays the means of initial eigenvalues,
i.e., principal component eigenvalues, for the uncontaminated,
pure, data set. The uncontaminated data results are presented
to assure that the contaminated data results are not simply

functions of sample size. As the figure displays, there is
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Figure 4.2.2: Scale Effects on Initial Eigenvalues for
Uncontaminated Data Set.

little variation between these mean eigenvalues across scales.
The first eigenvalue extracted only increases from 3.30 at the

basic spatial unit level to 3.42 at the forty ohservation
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level, hardly a symptom of scale effects. The apparent
absence of scale effects with pure data suggest scale effects
arise from interactions of spatial dependencies and spatial
contiguration of the data as Arbia (1989) suggested. As well,
the absence of scale effects implies that aggregating groups
without contiguity constraints or with contiguity and
variables free of areal unit dependencies leads to unbiased
estimates for any scale. It should be stressed that unbiased
estimates do not suggest that data void of spatial
autocorrelations will always provide unbiased results.
Unbiased results are only found when employing the mean of a
sample of aggregations. For any individual aggregation, there
cot .d be disparities from the mean due to aggregation effects.
It is obvious from the above results that scale does not alter
initial eigenvalues when the variables are void of spatial

dependencies.

Displayed in Table 4.2.1 are the mean values for the
final eigenvalues extracted, i.e., before iotation. The
results are similar to the findings for principal component
eigenvalues above. Final eigenvalues are determined from the

convergence of factor loadings anrnd final communalities through

iteration procedures. Final eigenvalues and eigenvectors
reproduce a correlation matrix by fewer themes, i.e., the
principle of parsimony. As well, the size of final

eigenvalues relates to the size of unrotated factor loadings,
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and if eigenvalues become larger with scale the loadings
shcould become general in appearance. Although there are fewex
final than initial eigenvalues, the largest eigenvalues
increase with scale for the contaminated data. The larger
eigenvalues also are revealed by the average percentage of
variation explained by the first three factors. The first
three factors on average account from 53.3% to 66.5% for
contaminated data compared to 53.3% to 57.4% for the pure
data. It is obvious from these differences that increasing
scale with contaminated data leads to greater explanatory
power of factors. Only the first three eigenvalues were
totalled to determine percent of variation explained since the
number of significant factors is modifiable. From inspection
of mean sizes of eigenvalues, scale effects are large and
present when variables have positive spatial autocorrelations.
The data set void of spatial dependencies is, to much extent,
void of scale effects. Since the contaminated data was
created to mimic empirical data, scale effects on the

empirical eigenvalues should be present and large.

The mean values of the initial and final communalities
display some scale effects. Initial communalities, which are
squared multiple correlations, always increase with scale for
both data sets although the increase is more pronounced for
the contaminated data set, see Figure 4.2.3. The average

increases in communality size across extreme scales are 0.20
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rable 4.2.1: Scale Effects, Means, on Final Eigenvalues.

Scale Eig 1 Eig 2 ~ig 3 Eig 4

Contaminated

Data

240 Obs 3.05 1.49 0.79 NA

120 Obs 3.45 1.63 0.82 0.44
60 Obs 3.87 1.60 0.88 0.44
40 Obs 4.11 1.68 0.86 0.49

Uncontaminated

Data

240 Obs 3.05 1.49 0.79 NA
120 Obs 3.11 1.54 0.85 0.56
60 Obs 3.24 1.56 0.89 0.52
40 Obs 3.21 1.57 0.96 ¢.58

from the contaminated data and 0.09 from the pure data. Even
Lthe smallest communalities became greater as variable seven
increases with scale from 0.10 to 0.35 for the contaminated
data set. With modifiability of initial communalities,
several variables could be deleted from the model depending on
the scale chosen. If a variable has a low communality
estimate, it may be excluded from factor analysis ox other
explanatory variables may be added to increase its
communality. As well, in situations where all cormunalities
are high, a principal components not a common factor model may
be employed. With the variability of initial communality
estimates, employing initial communality sizes to evaluate the

appropriateness of variables is guestionable.

The pure data set results also display larger
communalities with scale, albeit at a slower rate. At first,

increases in these communality estimates seem to contradict
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Figure 4.2.3: Scale Effects on Initial Communalities for
Both Theoretical Data Sets.

the hypothesis of unbiased results with pure data. However,
as Section 4.4 explains, the label of uncontaminated data i
a misnomer. The interplay of small spatial autocorrelations
and lagged cross correlations in these data leads to slight
scale effects. With some scale effects present, the

increasing communalities are simply artifacts of recidual
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dependencies left in the pure data. The effects of scale on
initial communalities clearly indicate increasing biases in

estimated values.

Scale effects upon final communalities are much more
difficult to clarify, see Figure 4.2.4. Before discussing the
results, it should suffice to say that final communalities are
found by iterating the eigenvectors and communality estimates.
Since communalities symbolize the size of sguared xrow
loadings, i.e., the summation of all squared factor loadings
on a given variable, they display the model’s ability to
replicate the variance of a variable. With contaminated data,
final communalities generally increase with scale. The
increase is as large as 0.28 for variable two of this data
set. For the pure data, there is less evidence of increasing
communalities with scale. Because the estimating procedure
for final communalities is iterative, scale effects on final
communalities are less than hypothesized. Constraint problems
can arise during iteration since communalities cannot exceed
one. With the contaminated data, three of the ten Ffinal
communalities cannot vastly increase since their values are
all around one. For the variables with lower communalities,
the trend of increasing size with scale appears more reliable.
Despite weaker scale effects with final communalities,
sufficient evidence exists to confirm that changing scale

alters communality estimates.
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Both Theoretical Data Sets.

Larger communalities with scale seriously influence the
interpretation of factor analysis. First, since there is a
close relationship between final communalities and factor
loadings, increasing final communalities implies increasing
lecadings. Larger factor loadings can have cubstantial inpact

on the identification of factors. 1{ factor leading:s greateor



PM-1 3%2"x4" PHOTOGRAPHIC MICROCOPY TARGET
NBS 16102 ANSI/ISO #2 EQUIVALENT

Lo e
IS
|1 - e
— 122
L2 L e




85
than some arbitrary wvalue, e.g., ARS(0.70), are only
interpreted, the number of interpretable variables for a
factor is modifiable. With changes to the number of
interpretable variables, the identification of factors may
also be variable. As well, Davies (1983) has suggested a
different way to determine “he number of significant factors.
Davies suggests that when adding or deleting a factor from the
analysis does not alter final communality estimates the
correct number of factors to extract has been found. With
unstable communality estimates with scale, using Davies'’
approach to find the significant number of factors is also
likely defective. Since communalities change with scale,
interpretation and confidence placed upon a factor model may

be modifiable.

Individual measures of sampling adequacy (MSA) and
Kaiser-Meyer-0lkin (KMO) behave differently under contrasting
data characteristics as shown by Table 4.2.2. Values of the
MSA and KMO identify whether a correlation matrix or
individual variables are adequate to be factor analyzed. MSA
and KMO behave in systematic ways depending upon several data
set characteristics. Measures of sampling adequacy and KMO
are known to increase as the number of variables increases, as
the effective number of factors decreases, as the number of
observations increases, and as the general level of

correlations increases (Kaiser, 1970, p.409). With
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contanminated data, forces working in opposite directions leave
the statistic almost constant. The reduction in number of
observations with scale reduces the KMO, but the decreasing
effective number of factors and increasing overall
correlations raise the KMO value. As stated above, in this
example the overall effects on the KMO and MSAs are scale
invariant values. The range of the contaminated data means
for the KMO is from 0.58 at the basic spatial unit level to
0.60 at the forty observation scale. Pure data results
decrease from 0.58 to 0.51 through the extreme scales. The
decreasing KMO with pure data is undoubtedly the effect of
recuced observations with scale since the general level of
correlations and number of significant factors are relatively
constant. From these results, the KMO statistic may be both
scale invariant and a suitable statistic to employ for
sampling adequacy with empirical data. However, a word of
caution is provided since different data set attributes and

scales may cause predictable changes in the KMO.

To assess the invariance of factor structures across
scales and aggregations, a RELATE program by Veldman (1967)
was used®. The RELATE procedure measures the similarity of

rotated factors, and the coefficients from the tests, i.e.,

¢  wWhen using the RELATE program provided by Veldman
(1967), all variables should be converted into double
precision to avoid potentially nonsense results. These
nonsense results can occur because of rounding problems
associated with very small eigenvalues.
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Table 4.2.2: Scale Effects on KMO and Individual Measurss of
Sampling Adequacies.

Contaminated Data Uncontaminated Data
STAT 240 126 60 40 240 120 60 40
RMO 0.58 0.60 0.61 0.60 0.58 0.56 (0.53 0.51
MSA1 0.55 0.59 0.62 0.63 0.55 0.5%3 0.52 0.49
MSA2 0.61 0.60 0.60 0.59 0.61 0.62 0.61L 0.60
MSA3 0.65 0.67 0.70 0.72 0.65 0.60 0.58 0.55
MSA4 0.64 0.68 0.69 0.66 0.64 0.64 0.6l 0.58
MSAS 0.36 0.40 0.40 0.43 0.36 0.33 0.30 0.31
MSA6 0.49 0.58 0.57 0.57 0.49 0.44 0.39 0.41
MSA7 0.64 0.61 0.63 0.54 0.64 0.67 0.58 0.48
MSAS 0.35 0.33 0.32 0.23 0.35 0.29 .29 0.30
MSAS 0.52 0.56 0.60 0.60 0.52 0.52 0.51 0.51
Msa10 0.71 0.70 0.69 0.67 0.71L 0.70 0.72 0.70

cosines, are interpretable as correlation coefficients.
Therefore, if factor analytic invariance exists these
correlations should be close to one when comparing factors.
It is important to mention that the RELATE program
standardizes the sum of squared factor loadings on each
variable to one. Standardization of factor 1loadings
facilitates comparisons between two factor structures. The
cost of facilitating comparisons is that if the unique
variances of variables syvstematicallv change among scales, the
standardization will remove these differences. Provided
below, is an example illustrating the potential caveats of
standardization. Here two factor structures are compared for
two factors and one variable. If the factor loadings are 0.8
and 0.6 for the first factor structure and 0.57 and 0.42 {or
the second factor structure, the RELATE procedure would
identify a perfect positive correlation. Since scale effects

are present in final communalities, this procedure
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overestimates the similarity of factor structures across
scales. As well, the interpretation of factors across two
scales may be significantly different though their structures
are identical. The procedure is, however, used to display the

similarity among factor structures although the results are

obviously exaggerated.

The following analyses are completed by assessing every
aggregation at one scale by every aggregation at another for
both data sets. There are thirty tests for comparisons of the
BSU level with any other scale and 900 for any other
comparisons of scales. Since the order of rotated factors is
unimportant, results are aggregated for replication of any two
factors. Results are displayed by the rate of replication of
any factor for correlations of ABS(0.90) or greater, ABS(0.80-
0.90), and ABS(0.70-0.80). Absolute correlation values axe
selected since it 1is thought to be inconsequential whether
factors are negatively related. Additionally, no factors
correlating less than ABS(0.70) are shown since more than two
factors can correlate with a factor below ABS(0.70). Fron the
subsequent analyses, the effects of factor replication should

be ascertained.

The results from the contaminated data are similar to
those of the pure data as displayed in Figure 4.2.5 and Figure

4.2.6. Generally, the rate of factor structure replication is
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Factor Loadings as Measured by RELATE Correlations.
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excellent as only four of the forty-five factors examined for
all scales and data sets axre below 90% when compared at
greater than ABS(0.70). Within the range of correlations some
trends do appear. The uncontaminated data results display
some heterogeneity among factor structures with increasing
scale when measured at the ABS(0.90). When comparing scales
from BSU to 120 observations and BSU to forty observations the
rate of factors replicating ABS(0.90) decreases from about
0.80 to 0.40. The same also holds when comparing results from
the 120 observation level to both the sixty and forty
observation scale. Figure 4.2.5 indicates that as scale 1is
increased from the BSU level, the rate of factor structure
replication decreases. As well, when aggregations are further
from the BSU level scale, e.g., comparison of the sixty to
forty observation scale, the overall replication of factors is
reduced. Despite some indications of scale effects, the
results from the uncontaminated data here show some semblance

of invariance between factor structures of different scales.

The RELATE results for the contaminated data are mainly
similar to the pure data results. Rgain an increasing
difference between the two scales analyzed displays subtle
contrasts in the replication rates of factor structures.
Comparisons of results previously aggregated from the BSU
level are also less well replicated than results compared to

BSU level results. The most notable point of the contaminated
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data results lies in its contrast from the pure data results.
Factor structure reproduction rates are greater for the
contaminated data than the uncontaminated data. At the
ABS(0.90) correlation level, the contaminated data results are
slightly better reproduced across scales than with the pure
data. The reason scale invariance is larger for contaminated
data factor structures than pure data is due to the spatial
dependencies of the data sets. With positive spatial
autocorrelations, contiguously aggregating BSUs should
maintain the similarities of relationships at the BSU level.
When these groups are compared with groups of another scale
the same structures should be identified. If aggregated
groups are formed contiguously with no spatial
autocorrelations, there is a greater opportunity for several
groups to be quite distinct from other aggregates. In
essence, the reason scale effects are larger with
uncontaminated data than contaminated data is that all
aggregates are compared to each other and not only the mean
values. It 1s satisfying for empirical analyses that scale
effects are slightly reduced when variables contain positive
spatial autocorrelations. However, since scale effects exist
on final communalities with contaminated data, it is likely

that scale effects are present when identifying factors.

Examination of the first unrotated factor loadings helps

substantiate the tenet of increasing generality of factors.
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Only the first unrotated factor loadings are examined, since
principal axis factoring extracts the greatest amount of data
set variation in the first factor. Therefore, if evidence of
generality exists, it should be most evident in this first
factor. From the basic spatial unit level results derived fot
both theoretical data sets, i.e., because at the BSU level
both factor analyses are identical, there are three factor
loadings greater than ABS(0.70). Table 4.2.3 displays the
average’ factor loadings for both data sets and all aggregated
scales. When employing the contaminated data set and reducing
the number of observations to forty, the average number of
factor loadings greater than ABS(0.70) increases to five. The
larger number of factor loadings greater than ABS(0.70)
illustrates the increasing generality of this factor. Results
from the uncontaminated data show no similar trend. The
number of factor loadings greater than ABS(0.70) decreases to
two at the forty observation level. The increasing generality
with scale found in the contaminated data can influence
interpretation of unrotated factors. Usually factors are only
interpreted after rotation, but it is often useful to inspect
the largest theme of a data set. It is possible that varimax
rotation eliminates some generality, although it is doubtful

all would disappear.

7 In some cases, the unrotated factor loadings were
reflected so they would all be in general agreement. Without
this reflection, calculation of the average factor loading
would be misleading.
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Table 4.2.3: Average Factor Loadings on the First Unrotated
Factor.

Contaminated Data Uncontaminated Data

Number of Areal Unit Chsgervations

var 120 Sixty Forty 120 Sixty Forty
1 0.76 0.81 0.84 0.68 0.70 0.69
2 0.54 0.61 0.64 0.52 0.53 0.55
3 0.79 0.81 0.92 0.75 0.75 0.69
4 -0.92 ~-0.92 -0.93 -0.89 -0.90 -0.88
5 -0.31 -0.32 -~0.38 ~0.24 -0.28 -0.27
6 0.12 0.12 0.16 0.00 -0.02 -0.08
7 0.20 0.29 6.32 0.21 0.18 0.18
8 -0.00 ~-0.07 -0.07 0.00 -0.02 -0.05
9 0.70 0.75 0.77 0.68 0.72 0.75
10 0.68 0.74 0.75 0.66 0.65 0.61

The final examination of scale effects on the theoretical
data sources involves examining the distributions of the
rotated factor scores from the first factor. Only the first
rotated factor scores were examined for the sake of brevity.
The summary statistics associated with the factor scores are
displayed in Appendix B. Factor scores are important in
geography for identifying and interpreting factors. The
identification of observations with extreme scores typically
aids in labelling and identifying a particular factor. From
the analysis, the range of scores decreases and the kurtosis
becomes increasingly negative, i.e., platykurtic, with scale.
The contaminated data set shows a larger reduction of extreme
scores than the pure data. This is unexpected as positive
spatial autocorrelations were thought to maintain the extreme

cases. Whereas, aggregating a data set with no
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autocorrelations was thought to reduce outliers through
averaging unlike cases. Since scale effects restrict the
range of values factor scores can take, the interpretations of

factors and sp.tial structures are much more difficult.

Apparently, scale effects manifest themselves in factor
analyses when variables have positive spatial
autocorrelations. Even in data void of autocorrelations some
scale effects exist, but they are significantly Jess
pronounced. Scale effects are serious and may lead to many
problems for any researcher. It is possible for researchers
to place tremendous confidence in results completed at a
highly aggregated scale because of high explanatory power and
associated high factor loadings and communalities. These same
researchers, however, may question the utility of conducting
the same factor analysis at lower scales. It is cautioned
here that altering the number of observations can

substantially influence the factor model.

Scale effects were determined from comparisons of a
statistic’s mean value from thirty aggregations. Drawing
results from means eliminated the effects of aggregation on
these results. It is now time to decipher whether aggregation

effects are important in the factor analytic model.
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4.3: Aggregation Effects

Examinations of the theoretical data sets now change to
assess the effects of alternate aggregations. Since at the
basic spatial unit 1level results are void of aggregation
effectg, 1.e., only one aggregation is available, this section
excludes the BSU scale. For each other scale, thirty separate
aggregations were completed. From these different
aggregations, the actual effect of aggregation on factor
analysis should be resolved. The standard deviations of a
statistic from the thirty aggregations at a scale almost
solely determine aggregation effects. Employing standard
deviations to assess aggregation effects would be disputable
if cthese distributions are not normal. Since most of these
distributions do not depart drastically from normality, the
standard deviation represents aggregation effects. The
distributional characteristics, i.e., kurtosis, skewness,
range, maximum, and minimum, are all displayed in Appendix B.
Although this information is relevant and is referenced, there
is no feasible way to incorporate it into text. As with the
section on scale effects, the initial and final eigenvalues
are first examined. Examination of initial and final
communalities and measures of sampling adequacies including
the KMO follows the eigenvalues. Finally, the RELATE

procedure outlined earlier examines whether factor structures

are invariant to aggregations.
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Figure 4.3.1 displays standard deviations from the sample
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Figure 4.3.1l: Standard Deviations Associated with Initial
BEigenvalues.

of initial eigenvalues for both data sets and all available
scales. The diagram illustrates two striking points. First,
standard deviations increase with scale. This Iincreasze

suggests, as was expected, that it may be misleading to obtain
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results from only one aggregation. The increasing deviations
with scale induce many problems most notably concerning the
selection ¢f the appropriate number of factors. Indeed, in
the pure data example at forty observations, the £fourth
eigenvalue ranges from 0.81 to 1.24. If significant factors
are determined from those having principal component
eigenvalues greater than unity, analyses holding the scale
constant can provide dissimilar numbers of significant factors
by rearranging the study area partitions. Modifiability in
the selection of significant factors produces difficulties in
replicating rotated factors. There are at least three
significant factors for both data sets and all scales, but
some scales contain as many as four significant factors. Four
significant factors are found in five, twelve, and sixteen of
the thirty aggregations for the 120, sixty, and forty
observation levels with uncontaminated data. The contaminated
data has nine, one, and one, Aaggregations with four
significant factors for the same scales as above. The second
important point from Figure 4.3.1 1is the deviations
surrounding the uncontaminated data are larger than their
counterparts in the contaminated data. This finding
substantiates the hypothesis and statements by Arbia (1989)
that aggregation effects are larger when data are free of
spatial autocorrelations. In terms of aggregation effects,
when variables have positive spatial autocorrelations, results

are less sensitive to aggregation effects than those from pure
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data. Since positive spatial dependencies exist in most
empirical data, this finding is encouraging. Despite more
invariance with contaminated 2data, aggregation effects are
large when the number of areal unit observations is

sufficiently decreased.

Table 4.3.1 shows the standard deviations for the final
eigenvalues for both data sets and all scales. The same
trends of increasing deviations with scale and significant
differences between the data set results are found. The first
eigenvalue extracted has deviations increasing with scale from
0.05 to 0.18 for the contaminated data compared to 0.13 to
0.37 for the pure data. At the forty observation level with
contaminated data, the first eigenvalue ranges from 3.77 to
4.47 a difference of 0.70. When converted into percent of
variation explained, the differences in eigenvalue size 1is
equivalent to 7%. Consequently, by simply altering the shape,
size, and orientation of areal units, a factor can account for
considerably varying amounts of data set wvariation. The
changing percentage of explainable data set variation, in
turn, influences the confidence and interpretzation placed on
results. As well, the overall extraction of variance varies
dramatically with the contanminated data and forty observation
scale from 62.73% to 72.28%. This range is, however,
partially attributable to the different number of factors.

The deviations of final eigenvalues also are indicators of
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factor loading size which may elevate or reduce the generality

of factors.

Table 4.3.1: Aggregation Effects, Standard Deviations, of
Final Eigenvalues.

Scale Eig 1 Eig 2 Big 3 Eig 4

Contaminated

Data

120 Obs 0.05 0.09 0.08 0.05
60 Obs 0.11 0.15 0.12 NA
40 Obs 0.18 0.19 0.18 NA

Uncontaminated

Data

120 Obs 0.13 0.11 0.12 0.09
60 Obs 0.20 0.19 0.12 0.11
40 Obs 0.37 0.28 0.16 0.11

Standard deviations from the distribution of initial
communalities, i.e., squared multiple correlations, are
displayed in Figure 4.3.2 for both data sets. The diagram
generally displays the trends of increasing deviations with
scale and larger aggregation effects upon pure data than
contaminated data. For example, at the forty observation
level all variables’ deviations are larger for pure than
contaminated data. The deviations across communalities also
influence the interpretation of results. As communalities
increase, the confidence in conducting a factor, i.e., common,
analysis increases. Communality size is another possible
avenue to verify whether a variable belongs in a factor model.
At the forty observation scale with contaminated data the
communality of variable six ranges from 0.26 to 0.63. With a

communality of 0.26, inclusion of this variable is
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Figure 4.3.2: Standard Deviations Associated with Initial
Communalities for Theoretical Data Sets.

questionable. However, with a communality of 0.63 there is
little thought given to removing this variable. Obviously,
inclusion or removal of variables can profoundly affect factor

results.
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The standard deviations associated with the final
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iterated communalities are displayed in Figure 4.3.3. These
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results illustrate similar trends to those from the initial
communality examination, but several standard deviations
decreasa with increasing scale for uncontaminated data. The
effect of several decreasing communality estimates with
increasing scale can be explained from several viewpoints.
First, only thirty aggregations are selected at each scale.
It should not be expected that all standard deviations will be
larger when the number of observations is reduced.
Furthermore, it bodes well fox the increasing deviations with
scale hypothesis that more anomalies do not exist. Other
explanations include the potential for skewed distributions
and Lhe occurrence of heywood cases. Although there is not an
exact correspondence with the tenet of larger deviations with
scale and these particular results, generally, these findings

do support this general hypothesis.

Examinations of standard deviations for measures of
sampling adequacy and KMO substantiate the above trends.
Table 4.3.2 displays the standard deviations for measures of
sampling adequacies. The KMO and MSAs are somewhat
insensitive to alternate aggregations. For example, at the
forty observation level with contaminated data, the KMO ranges
from 0.53 to 0.66 with a standard deviation of 0.03. A range
of 0.13 is not very significant at this highly aggregated
scale, Despite initially hypothesizing large aggregation

effects on these statistics, the results do not support this
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tenet. The findings again are contradictory to the hypotheses
set out initially for these measures. Generally, measures of
sampling adequacies and XMO may be robust under alternate
aggregations and possibly under scale with empirical 1like
data. Despite minor deviations, the aggregation effects are

larger for pure than contaminated data.

Table 4.3.2: Aggregation Effects measured by Standard
Deviations upon KMO and Individual Measures of Sampling

Adeguacies.

Contaminated Data Uncontaminated Data
STAT 120 60 40 120 60 40
KMO 0.02 0.03 0.03 0.03 0.05 0.06
MSAl 0.02 0.05 0.06 0.03 0.07 0.08
MSAZ2 0.04 0.06 0.06 0.04 0.05 0.10
MSA3 0.02 0.05 0.06 0.02 0.06 0.08
MSAd 0.02 0.04 0.05 0.04 0.06 0.07
MSAS 0.04 0.06 0.07 0.06 0.07 0.08
MSAS6 0.07 0.12 0.15 0.09 0.13 0.15
MSA7 0.08 0.11 0.15 0.09 0.14 0.17
MSAS 0.05 0.11 0.08 0.07 0.09 0.11
MSA9 0.03 0.05 0.05 0.05 0.07 0.09
MSA10 0.02 0.05 0.05 0.03 0.05 0.06

A RELATE program by Veldman (1967) was used to assess
aggregation effects for a particular scale. The results,
those factors correlating ABS(0.70) or better, are reproduced
in Figure 4.3.4. To determine aggregation effects on factor
structures, all factor analyses completed for one scale, i.e.,
thirty, were compared with each other for a total of 435 at
each scale. As with the results from the scale analysis
section, it is cautioned that results here will 1likely

overestimate factor replication.
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The results suggest reproductions of contaminated data
factors at a given scale are more likely than factors from the
pure data. Overall, factor replications correlating ABS(0.70)
or better are more frequent when data are contaminated. Of
those factors replicating ABS(0.70) or greater, only eight of
the twelve pure data factors were above 90% replication. With
the contaminated data, all ten factors were reproduced 90% of
the time. When comparing factor structures relating at
ABS(0.90) or better, the same differences between data sets
are found. At the forty observation level the pure data
results are replicated at 0.35 compared to 0.50 for the
contaminated data. The smaller aggregation effects with
contaminated data are attributable, as before, to the spatial
autocorrelations and lagged correlations. Aggregating the
same number of groups in different ways should lead to
relative stability in values because of internal homogeneity
of groups due to positive spatial autocorrelations.
Therefore, contaminated results should display signs of
invariance to alternate aggregations. Again 1t must be
reiterated that the RELATE results are misleading because of
standardization of factor loadings across variables. The
general effects of different aggregations are less pronounced
with empirical like data than with data that has independent

areal unit observations.
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It is obvious that aggregation effects behave differently
under unlike attributes of spatial data. The higher the level
of spatial autocorrelations in the data the more stable
results become under alternate aggregations. Aggregation
effects always increase with scale no matter what
characteristics data have. Since aggregation effects increase
with scale, there is probably no empirical data set that could
trivialize aggregation effects when scale 1is increased
substantially. The RELATE program results illustrate the
higher degree of factor replication with contaminated than
uncontaminated data. Adding this result to those from
eigenvalue and communality analyses, apparently contaminated
data may be a sanctification in terms of aggregation effects.
However, contaminated data alters results quite drastically
across scales. Now that the xesults of MAUP on the
theoretical data have been revealed, the next question 1is

whether these results can be estimated.

4.4: Predictions Based on Arbia’sg Formula

Estimation of scale and aggregation effects on the factor
analytic model is an important step in attempting to control
MAUP effects. Drawing heavily upon the work of Arbia (1989)
on the correlation coefficient, this study attempts to

initiate the process of estimating MAUP effects on factor
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analysis given the basic spatial unit attributes of a data
set. If the results are predictable, an important step in
containing MAUP will be ascertained. With accurate
predictions, the transmission mechanism that causes scale and
aggregation problems will be understood. Clearly, the MAUP
issue becomes diminished when one understands the effects that
are transpiring. As well, it 1is 1likely that any future
solution of the MAUP issue will be facilitated by knowledge of
the parameters that create the modifiability of results.
Provided below are the estimated scale effects for two scales

and both theoretical data sets.

This section employs Arbia‘’s (1989) formula, as shown in
Chapter two, for the grouped correlation coefficient to
predict the theoretical results. Before displaying these
predictions, it is imperative to note that Arbia aggregates
groups differently from this study. Arbia aggregates groups
to have the same average within group connectedness of basic
spatial units. Since this condition is not met in this
research, Arbia‘s formula can only be employed to estimate the
range of aggregation effects and not exact changes.
Nevertheless, the predicted results should substantiate the

trends found in the previous two sections.

An intervariable correlation matrix can be created with

knowledge of the six parameters known to change the group
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level correlation coefficient (Arbia, 1989). By inserting the
maximum and minimum average within group connectedness values
at a particular scale in the formula, it is possible to
predict the maximum and minimum correlation coefficients for
that scale. These correlation coefficients can be produced
for a number of variables, and when the correlations are
arranged together, both a maximum and minimum correlation
matrix 1is created. The maximum and minimum intexvariable
correlation matrices may then be factor analyzed to estimate

the effects of aggregation.

From Arbia’s group correlation formula, the results for
both data sets and two scales are predicted. Results from the
sixty observation scale are not shown since these predictions
should fall between the two scales chosen. The results
display only the KMO, initial eigenvalues, final eigenvalues,
and final communalities. It should be sufficient to note that
measures of sampling adequacies (MSAs) are well estimated by
this formula. The replication of the MSA statistic suggests
the hypothesis of increasing measures of sampling adequacy
with scale was incorrect. The values of the KMO and MSA were
in contrast to the initial hypothesis set out. Since the
estimates alsc contrast the initial hypothesis, the hypothesis
is incorrect. Initial communalities were deleted from this
section since their predictability should be similar to those

from the final communalities. The first examination predicts
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the results at the 120 group level. Since with an internal
group size of two the average within croup connectedness is
always one, i.e., a BSU in a group has only one contiguous
neighbour from the same group, there is only one set of
predicted results; therefore, there are no predicted
aggregation effects. In reality, some aggregation effects
exist because this model differs from the model created by
Arbia. The data in Table 4.4.1 display the predicted values

and actual mean values of the selected statistics for both

data sets.

The predicted results are remarkably similar to the
actual results for both data sets. Clearly, the parameters
changing the correlation coefficient with scale also alter
factor analytic results in predictable ways. With well
produced results at this scale, the importance of spatial
autocorrelations and lagged correlations in terms of scale
effects is substantiated. Despite large differences between
mean values £for the theoretical data set results, the
predicted values for both data sets are very accurate. It
appears when forming groups at very low levels of aggregations
and specific criterion, scale effects are entirely predictable

from the basic spatial unit level data characteristics.

The subsequent table shows both the means and standard

deviation of a statistic for the forty observation scale. As
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Table 4.4.1: Predicted Results at the 120 Observation Scale.

Contaminated Data Uncontaminated Data

Statistic Mean Prediction Mean Prediction

XMO 0.60 0.61 0.56 0.56

Final CM1 0.70 0.69 0.61 0.59

Final CM2 0.72 0.64 0.62 0.57

Final CM3 0.95 0.94 0.96 0.97

Final CM4 0.93 0.94 0.94 0.985

Final CM5 0.50 0.43 0.34 0.29

Final CM6 0.34 0.38 0.37 0.34

Final CM7 0.10 0.07 0.11 0.09

Final CMS8 0.22 0.21 0.17 0.17

Final CM9 0.70 0.61 0.64 0.56

Final CM10 0.89 0.92 0.85 0.87

Init E1 3.65 3.64 3.34 3.34

Init E2 1.98 1.96 1.93 1.89

Init E3 1.31 1.32 1.34 1.34

Init B4 0.98 0.98 0.94 0.93

Init E5 0.66 0.66 0.78 0.77

Init E6 0.59 0.59 0.68 0.70

Init E7 0.46 0.46 0.51 0.54

Init ES8 0.17 0.18 0.22 0.22

Init E9 0.13 0.13 0.17 0.17

Init E10 0.08 0.08 0.10 0.10

Final E1l 3.45 3.44 3.11 3.11

Final E2 1.63 1.57 1.54 1.43

Final E3 0.82 0.83 0.85 0.82

Final E4 0.49 NA 0.56 NA

where Final CM(X) ~ is the final communality of variable X
Init E(F) - is the component eigenvalue of factor F
Final E(F) -~ is the unrotated principal axis factor

eigenvalue of factor F

well, two values of average within group connectedness are
employed to determine the predicted range of scale effects.
These two predictors are necessary because as scale increases
the solutions for average within group connectedness becomes
multiple. If groups are set out in a chain, the line transect
case, the within average group connectedness for groups of
size six will equal 1.67, i.e., four BSUs have two contiguous

neighbours and the other two have only one contiguous
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neighbour. When the group is shaped as a rectangle on the
lattice, either three by two or two by threc, the average
within group connectedness equals 2.67, i.e., four BSUs have
three contiguous neighbours while two BSUs have only two
neighbours. Since there is a range of possible values for
average within group connectedness with groups of size six,

the maximum, 2.67, and minimum, 1.67, values act as surrogates

for range.

Results from the predictions at the highest scale are
shown in Table 4.4.2. When increasing the scale of analysis,
the predicted and actual results diverge. However, the
general trends established with changes to scale in the
previous sections still stand. From the estimated wvalues,
results with uncontaminated data should be more invariant to
scale than those from contaminated data. The predicted
uncontaminated data results also suggest some scale effects
should exist, e.g., the first extracted initial eigenvalue is
predicted to fall bhetween 3.37 and 3.40 at the forty
observation level while the basic spatial unit value for the
same eigenvalue is 3.30. The prediction that scale effects
should exist in the pure data results, suggest there are some
residual dependencies and interactions remaining in this data.
The hypothesis of 1larger deviations associated with
uncontaminated data is not supported. This may be because

scale is not increased sufficiently in these estimates to
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display these expected differences in dJdeviations. The
contaminated data set predictions consistently underestimate
the actual values. This consistent underestimatica is thought
to be the result of second order, i.e., second neighbour,
spatial autocorrelations and lagged correlations. Arbia
(1989) assumes u condition of local stationarity for the group
correlation formula, and this assumption requires second order
relationships to be zero. This assumption is unlikely to
exist in empirical data, and the effect of second order
relationships also accentuates the effects of scale on an
analysis. With this tenet, it is possible to explain why the
predicted values of the first aggregated scale are excellent
and the predictability of results decreases with higher
scales. At the 120 observation level only first order
relationships influence scale and aggregation because the
groups are only of size two. When increasing the scale to
forty observations, second order relationships in spatial
autocorrelations and lagged correlations influence scale and
aggregation effects. Because first and second order
dependencies should alter results in the same fashion, the
formula to predict scale effects should increasingly
underestimate the actual results. Nevertheless, the formula
facilitates predictions of general trends with alternate

scales.
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Table 4.4.2: Predicted Results at the 40 Observation Scale.

Contaminated Data Uncontaminated Data

Stat Mean Dev Predl Pred2 Mean Dev Predl Predld
KMO 0.60 0.03 0.62 0.62 0.51 0.06 0.55 0.54
CcM1 0.80 0.05 0.73 0.76 0.73 0.13 0.57 0.57
cM2 0.83 0.07 90.68 0.71 0.63 0.11 0.59 0.60
M3 0.92 0.04 0.95 0.95 0.88 0.08 0.99 0.99
cM4d 0.97 0.03 0.95 0.96 0.92 0.0%5 0.97 0.99
cMS 0.60 0.09 0.46 0.49 0.55 0.18 0.27 0.25
CM6 0.42 0.08 0.39 0.40 0.32 0.11 0.34 0.33
cn7 0.17 0.06 0.07 0.08 0.13 0.08 0.10 0.12
cM8 0.36 0.11 0.22 0.24 0.31 0.12 0.18 0.20
CM9 0.71 0.07 0.64 0.66 0.81 0.12 0.58 0.60
cM10 0.89 0.08 0.%4 0.96 0.7% 0.09 0.86 0.85
El 4.29 0.18 3.79 3.89 3.42 0.36 3.37 3.40
E2 2.00 0.16 1.97 1.99 1.92 0.25 1.87 1.85
E3 1.31 0.13 1.32 1.32 1.39 0.14 1.37 1.40
E4 0.87 0.07 0.97 0.97 1.01 0.10 0.90 0.86
ES 0.56 0.07 0.62 0.59 0.80 0.07 0.80 0.83
E6 0.44 0.05 0.56 0.55 0.61 0.07 G.69 0.69
E7 0.3 0.04 0.43 0.39 0.41 0.07 0.54 0.53
ES8 0.10 0.02 0.15 0.13 0.22 0.04 0.22 0.21
E9 0.07 0.01 0.12 0.10 0.14 0.03 0.6 0.15
EL10 0.04 0.01 0.07 0.06 0.07 0.02 0.09 0.09
FE1l 4.11 0.18 3.60 3.71 3.21 0.37 3.14 3.18
FE2 1.68 0.19 1.61 1.63 1.57 0.28 1.47 1.46
FE3 0.86 0.18 0.84 0.85 0.96 0.1le 0.85 0.88
FE4 0.49 NA NA Na 0.58 0.11 NA NA
where CM(X) - is the final communality of wvariable X

E(F) - is the component eigenvalue of factor F

FE(F) - is the unrotated principal axis factor

eigenvalue of factor F

The predictions from Arbia‘s work on the correlation
coefficient are excellent at the lowest levels of aggregation.
With increasing scale these predictions become increasingly
inaccurate due to the disturbances of second order spatial
dependencies. The empirical results from the next chapter
also contain varying internal sizes of aggregated groups.
When combining the variability of group size with the

likelihood of second order spatial autocorrelations, this
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formula should not be employed to predict any empirical

results.

4.5: Summary of Theoxretical Data Results

Scale and aygregation effects can transpire in factor
analytic studies. Depending upon the attributes of areal unit
data, these effects can be significantly different. The
general results of assessing MAUP on the theoretical data are
displayed in Table 4.5.1. Although scale severely affects
results when areal units contain  positive spatial
autocorrelations, the effects of aggregation are somewhat
limited. Uncontaminated data results show little or no scale
effects but are greatly influenced by alternate aggregations.
Since variables with positive spatial autocorrelations
frequent empirical Jdata, hypotheses for empirical data can be

drawn from contaminated data results.

Table 4.5.1: General Results of Theoretical Data Analyses.

Data Scale Effects Aggregation Effects
Uncontaminated Negligible Severe
Contaminated Severe Moderate

Changes in scale induce changes in factor results, some
of which are important in affecting researchers’ confidence in

the factor model. Increases in initial and final eigenvalues
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and communalities with scale seriously influence the
interpretation and confidence placed on factor analytic
results. It was found that increasing scale generates
increasing explanation of data set variation. The increasing
explanation of data set wvariation with scale prompts
researchers working at different scales to extract different
numbers of significant factors and differing levels of
correlation matrix reproduction. The generality of the
largest factors also increases with scale, and there is doubt
that all of this generality can be removed by rotation. The
increasing communalities with scale also alter the confidence
and interpretation of factor model results. If final
communalities increase with scale, larger factor loadings are
apparent. Any change in factor loading sizes alters the
identification of factors. The results from the factor
structure replication across scales show that factor
structures are well reproduced across scales. It is also
encouraging that the RELATE contaminated data results are more
invariant to scale than uncontaminated results. Overall,
there are serious questions about the factor analytic

stability under various scales.

Although aggregation effects are considerably smaller for
contaminated data than uncontaminated data, there are still
large effects. First, as the scale increases so does the

variability of the results among different aggregations.
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Therefore, a scale can be increased to the point where
aggregation effects are always present and large. The
variability of communalities and eigenvalies to different
aggregations influences the interpretation and confidence of
factor analytic results. As well, accepting results from one
aggregation and one scale 1is precarious. As Fotheringham
(1989) has suggested, sensitivity analysis may be necessary
when using areal units as observations. Although the RELATE
procedures produce factor structures remarkably well across
aggregations, the effect of standardizing loadings across
variables stains this result. Since communality sizes can
indicate aggregation effects, this potential variability
should be considered before concluding on £factor loading
stability. Nevertheless, it is encouraging that factor

structures are alike across aggregations.

Axrbia’s (1989) formula accurately predicts the effects of
scale and aggregation from the characteristics of basic
spatial unit data. When increasing the scale of analysis
beyond the 120 group level, the estimates are less reliable
and usually under predict the actual wvalues found. These
differences between predicted and actual results are due to
the effects of second order spatial autocorrelations and
lagged correlations. The grouped correlation formula suggests
that differences between two data sets transpire because of

dissimilar spatial autocorrelations and lagged correlations.
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Since it would be imprudent to expect this formula to work
adequately in predicting empirical results, no attempt at

predicting the empirical results is forwarded.

With the basic understanding of factor analysis on areal
units complete, the next inspection is completed upon the
empirical data. It is expected that the empirical data
results will behave similarly to the contaminated data

results. The results in Chapter Five test this supposition.
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Chapter 5: Empirical Results

Chapter five reveals the results of empirical factor
analyses conducted on the Saskatoon Census Metropolitan Area
for 1986 data. The empirical results are expected to mirror
the findings from the contaminated theoretical data. Four
distinct sections partition this chapter. The first section
emphasizes the important attributes of variables and
aggregating procedures. Section two examines scale effects on
the empirical data set. The following division illustrates
the aggregation effects on the results. The final section

reviews scale and aggregaticn effects on factor analysis.

5.1: Data Set and Variables

Since Chapter three detailed most empirical data set
characteristics, only scant attention is paid to this data
set. The basic spatial units employed for the empirical
investigation are from the enumeration areas of the Saskatoon
C.M.A.. In all there are 231 usable enumeration areas with
several other enumeration areas containing missing or
suppressed data. Although enumeration areas vary considerably
in population size from 115 to 1,525 (Statistics Canada,

1986b), they are given equal weight in determining results.
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No attempt is made to weight these observations since the
objective of this study is to reproduce basic spatial unit
results and not individual level results. Because areal units
differ in population size, any biases associated with
enumeration area results from individual level results are
preserved for all scales and aggregations. Unlike the
theoretical aggregation procedures, these aggregated groups
are not constrained to equal internal sizes. Leaving groups
unconstrained by size is analogous to other empirical data as
Saskatoon’s census tracts contain between three and fifteen
enumeration areas (Statistics Canada, 1986b) compared to the
three to ten range used for the largest groups of this

analysis.

As described earlier, the empirical variables for this
study were selected according to social area analysis themes,
i.e., economic status, family status, and segregation.
However, variables are only referenced by a number and not a
descriptive label. By labelling variables in this fashion,
readers can only focus on the results of scale and aggregation
and not on urban patterns. For those who wish to decipher the
urban implications of these factor analyses, Appendix A
provides the variable definitions and corresponding numbers.
As seen in Table 5.1.1 the spatial autocorrelations for these
variables are comparable to those from the artificially

produced contaminated data. The similarity of spatial
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autocorrelations permits the results from the previous chapter

on contaminated data to hypothesize the empirical results.

Table 5.1.1: Spatial Autocorrelations (I) for Empirical
Variables.

Variable Number

1 2 3 4 5 5 7 8 9 10

0.28 0.20 0.64 0.36 0.61 0.36 0.57 0.59 0.25 0.25
~all measures are significant at 99%

5.2: Scale Effects on Empirical Data

Following a similar vein to Chapter four, scale effects
are displayed for specific statistics. First, the initial and
final eigenvalues are examined by the four scales of analysis.
After the eigenvalue analysis, sections inspecting initial and
final communalities and measures of sampling adequacies
follow. The RELATE procedure inspects scale effects on Factor
loadings. The hypotheses of increasing generality with scale
for the unrotated factors are examined in the next section.
Finally, the distributions of the first unrotated factor

scores are inspected.

The means from the sample of initial, i.e., principal
component, eigenvalues are displayed in Figure 5.2.1. As
expected, the largest eigenvalues increase in size when

reducing the number of areal unit observations. The first
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Figure 5.2.1l: Scale Effects on Initial Eigenvalues for
Saskatoon Data.
eigenvalue extracted increases from 3.32 at the bhasic spatial
unit level to 4.36 at the forty observation scale. From the
final eigenvalues, the first eigenvalue extracted also
increases from 2.96 to 4.13 across the range of scales. wWhen
convexted into pexcentage of variation explained, the
difference between the final eigenvalues across the scales is
11.7%. The changing value of explained variation attests to
the increasing generality of unrotated factors with scale.

After extracting the second factor, the mean eigenvalues
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decline with a reduction in the number of observations. As
stated earlier, larger eigenvalues with scale can alter the
reliability, strength, and total explanatory power of factors.
Extraction of the number of significant factors 1is also
modifiable, and breaks in the eigenvalue slope becomes more
distinct with larger scales. The elevating generality of
factors as indicated by stronger principal final eigenvalues
also leads to problems with intexpretation. The number of
significant factors extracted alters from three for the BSU,
120, and sixty observation levels to 40% of the aggregations
at the forty observation 1level reporting only two. With
modifications to the number of significant factors, any
comments on the spatial processes operating on Saskatoon are
also modifiable. The final eigenvalues display the same

trends as the initial eigenvalue inspection.

Scale effects on initial and final communalities are
displayed in Figure 5.2.2. As with the results from the
contaminated data in Chapter four, increasing scale leads to
higher communality estimates. All initial communality
estimates for variables enlarge with scale. This trend is not
as vibrant for the final communalities where only six of the
ten communalities increase for all scales. The implications
of larger communalities with scale are important in factor
analytic results. For example, only one initial communality

estimate is greater than 0.70 at the basic spatial unit level.
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Figure 5.2.2: Scale Effects on Initial and Final
Communalities for Saskatoon Data.

When reducing the number of areal unit observations to forty,
only one estimate 1is not greater than 0.70. The £final
communalities also increase across the range of scales £rom
three to nine variables having communality estimates exceeding
0.70. Higher communalities are a clear indication that factor

loadings are stronger with scale. Since significant
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eigenvalues increase with scale, unrotated factors must move
towards generality. As well, it is possible for scale to
influence communality estimates to the point where a
researcher decides that a component not factor model is

suitable for a data set.

The measures of sampling adequacies are for the most part
unbiased across scales, see Appendix B. The KMO does exhibit
a slight bias with values of 0.68, 0.69, 0.72, and 0.71 for
all scales. This slight increase cannot be regarded as
significantly different from associated expected deviations of
taking a sample of thirty aggregations; thexefore the
statistic has to be considered unbiased. As the previous
chapter exposed, measures of sampling adequacies arz altered
in predictable ways by the data set employved (Kaiser, 1970;
Kaiser and Rice, 1974). The general effect c¢f the mechanisms
that change the measures of sampling adequacy for this
empirical data set largely cancel out. It is not known from
this study whether the KMO statistic is always scale invariant
with empirical data or whether certain empirical data sets may

produce unique reactions to the KMO.

The RELATE procedure is employed again to decipher the
effects of scale on factor structures. The factor structure
comparison involves examining the thirty aggregations at one

scale by the thirty aggregations at another scale. Again this
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procedure does not account for the differences of final
communality sizes and thus the different sizes of factor
loadings. Results shown in Figure 5.2.3 display the rate of
factor relationships correlating greater than ABS(0.70).
Following similar trends to the examination of theoretical
contaminated data, the overall replication of factors across
scales is quite high. Almost all scale comparisons illustrate
that the same factors, as measured by correlations of
ARS(0.70) or greater, are being replicated 90% of the time.
When the analysis is examined for those factors correlating
ABS(0.90) or greater, different findings transpire.
Generally, as the difference of the two scales being compared
increases the level of replication decreases. As well, if
both scales compared are aggregated further from the BSU
level, the reproduction of factors also declines. The
examinations from the RELATE analyses establish that factor
structures are somewhat invariant to scale effects. It must
be remembered that a high correlation among factor structures
does not egquate to high correlations among factor
interpretations. If factor loadings greater than some
threshold level aid in factor interpretation, there is little
doubt scale effects are present as suggested by increasing

final communality estimates with scale.

The following section tests the hypothesis of emerging

general factors with larger scales. Table 5.2.1 displays the
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average, measured in the same fashion as in Section 4.2.2,
factor loadings for the scales beyond the BSU level. By
examining the average loadings of variables on the first
unrotated factoxr, the expectation of generality can be
substantiated. At the basic spatial unit level only one
unrotated factor loading is greater than ABS(0.70). When
increasing the scale of analysis to forty observations, the
average number of factor loadings exceeding ABS(0.70) is four.
In all nine of the ten factor loadings associated with the
first unrotated factor strengthen as scale is increased from
the BSU to the forty observation Ilevel. Therefore, the
largest factors do increase in generality, although rotations

may alter this effect.

Table 5.2.1l: Average Factor Loadings on the Fizxst Unrotated
Factor.

Number of Areal Unit Observations

Variable 120 Sixty Forty
1 0.55 0.71 0.73
2 ~0.53 -0.76 -0.82
3 0.46 0.59 0.62
4 -0.48 -0.50 ~0.51
5 ~0.57 -0.81 -0.84
6 0.63 0.86 0.90
7 0.11 0.10 0.13
8 0.43 0.48 0.47
9 0.10 0.23 0.34
10 -0.48 -0.63 -0.63

Examinations of the empirical distributions of first
rotated factor scores comply with the same themes found with

theoretical data. Of the thirty factor score distributions
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created for each scale, results are shown in Appendix B, there
is a reduction in the ranges as the number of observations
decreases. For those factor score distributions with ranges
less than four, there are zero, three, and fifteen for the
120, sixty, and forty observation levels, respectively. If
extreme factor scores are employed to facilitate factor
interpretations, problems arise when factor score ranges are
reduced. For example, if extreme factor scores, those greater
than aBS(2.00), were mapped at the forty group Jevel, four of
the thirty aggregations contain no extreme scores at all. The
factor score distributions, display increasingly negative
kurtosis, i.e., a platykurtic or flat distribution, with
scale. The decrease in kurtosis with scale again suggests
factor scores estimated from the regression technique are
subject to scale effects. 1In turn, it is highly probable that
factorial ecologies employing outlying factor scores to help

identify factors are susceptible to scale effects.

The effects of scale on the Saskatoon data are apparent
on all but the measures of sampling adequacy and to some
extent the RELATE procedure. The associated scale effects
with empirical data are also larger than those found when
analyzing contaminated theoretical data. The larger scale
effects with empirical observations could be attributable to
the allowance of variable internal sizes of groups. Aas well,

the large scale effects on empirical data may occur from
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second orxder spatial autocorrelations and lagged correlations.
It is hypothesized that second order spatial autocorrelations
and lagged correlations should be higher with empirical data
than theoretical data. The reason this tenet is forwarded is
that theoretical data were only created with constraints on
first oxrder autoccorrelations and not sccond order.
Consequently, when increasing scale, empirizal data set
results should increase faster than their contaminated data
counterparts. This 1is also one reason Arbia’s grouped
correlation formula was not used to estimate the Saskatoon
results. To use Arbia’s formula correctly, an assumption of
local stationarity with no relationships of areal units beyond
contiguous neighbours must be forwarded. The spatial
dependencies of variables contained within the enumeration
areas will not support the local stationarity assumption, and
therefore prediction of scale effects would 1largely
underestimate the actual results. With knowledge that scale
effects are large, the next section tests aggregation effects

on the factor model.

5.3: aAggregation Effects on Empiricsl Data

The effects of aggregation on empirical factor analytic

results are presented in this section. These effects are

examined upon final and initial eigenvalues and communalities,
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measures of sampling adeguacies, and factor loadings.
Aggregation effects are almost exclusively determined by the
standard deviation of a statistic for any scale. The results
here should follow the same patterns found with contaminated
theoretical data results. First, aggregation effects should
increase with scale. As well, the effects of aggregation
should be larger with empirical data than with the
contaminated data. Large aggregation effects should arise due
to the variability of the internal size of groups for the
empirical data. The paragraphs below elaborate upon factor

analytic aggregation effects.

Standard deviations for the 1initial eigenvalues are
displayed in Figure 5.3.1. It is both astonishing and
encouraging that aggregation effects do not appear to increase
noticeably with scale. Possibly, true aggregation effects at
a particular scale may become obscured by the varying internal
sizes of groups. Although it is promising that aggregation
effects are constant with changes to scale, the effects are,
nevertheless, still present. Furthermore, the empirical
deviations are larger than those derived for contaminated
data. The larger deviations are obviously caused by the
internal variability of groups. Since aggregation effects are
larger in the empirical than contaminated data, the stability
of aggregation effects with different scales is insignificant.

The ranges are still great as at the forty observation level,
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Figure 5.3.1l: Standard Deviations Associated with Initial
Eigenvalues for the Empirical Data Set.

the first extracted initial eigenvalue ranges from 4.00 to
4.76. Despite apparent stability of aggregation effects to
changes in scale, the effects are still very large and would

surely complicate any factor model.

The results, in Figure 6.3.2, from the standard
deviations of the initial and final communalities corroborate
the eigenvalue analysis above. The standard deviations of
communalities do not appear to increase markedly with scale.
Again the relative stability of aggregation effects is
believed to be a product of the range available for internal

group sizes at all scales. Although aggregation effects do
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not increase drastically with changes in scale, they are still
large. These ranges are extreme as 0.63 for the final
communality of variable nine at the forty observation level.

With large ranges of communalities, it is obvious that the
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factor model will be modified with different aggregations.
Changes to final communalities are also directly related to

the strength of factor loadings and are masked by the RELATE

procedure.

The standard deviations for the distribution of alternate
aggregations of sampling adequacies and KMO are presented
below in Table 5.3.1. As with the results from the
contaminated data this statistic may be invariant to
aggregation effects. As well, the trend of increasing
deviations with scale may be more plausible for these
statistics than the empirical communalities or eigenvalues.
Although the KMO is somewhat invariant to aggregation effects,
it is possible for large ranges to exist, e.g., from 0.79 to
0.64 at the forty observation scale. With a large range in
the KMO, there is potential for researchers employing the same
scale, study area, and variables to find contrasting evidence
suggesting whether a correlation matrix should be factor
analyzed. However, the range of a statistic is not as
important as its deviation. With a small standard deviation
of 0.03, the KMO and :individual measures of sampling

adequacies display some invariance under aggregation effects.
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Table 5.3.1: Aggregation Effects measured by Standard
Deviations upon the KMO and Individual Measures of Sampling

Adequacies.
Statistic 120 Sixty Forty
Observationg Observations Observations
RMO 0.02 0.03 0.03
MSA1l 0.02 0.03 0.06
MSA2 0.04 0.07 0.05
MSA3 0.04 0.03 0.05
MSA4 0.03 0.03 0.03
MSAS 0.04 0.04 0.06
MSA6 0.04 0.05 0.06
MSA7 0.04 0.06 0.05
MSAS 0.04 0.07 0.05
MSA9 0.04 0.07 0.07
MSA10 0.03 0.04 0.04

The RELATE procedure 1is employed to assess whether
differences in factor structures at a given scale exist.
Figure 5.3.3 displays the results of this analysis for each
scale. Generally, the level of factor replication correlating
at least ABS(0.70) is superb for all scales. Almost all
factors are reproduced 90% of the time when mneasured by
correlations of ABS(0.70) or greater. When analyzing only
those factors correlating 2aBS(0.90) or better, the results
show internal differences. As scale is increased, the rate of
factor reproduction decreases. Therefore, some evidence
exists to suggest aggregahion effects increase with scale.
Again the comparisons here only examine factor structures and
not the actual interpretation of factors or the sizes of
unique variance. When compared to the theoretical data set
results, the empirical factors are better replicated than the
uncontaminated factors with a high scale. From thiszs

assertion, it is promising that data infected with positive
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spatial autocorrelations increases the likelihood of factor

structure invariance to aggregation effects.

Aggregation effects on empirical data are unigque in many
ways. The expected increasing variability of results with
scaie .is not apparent as it was with contaminated data
results. The absence of increasing aggregation effects with

scale may be due to several possible reasons some of which
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have been explored. The effects of aggregation, nevertheless,
are not removed from this data set, and they can affect

results and interpretation of factor analysis.

5.4: Summary of Empirical Data Results

Scale and aggregation effects are present and strong in
empirical data. There are some anomalies to the statement
above, e.g., the KMO may be invariant to scale and aggregation
effects, and thus might be a suitable measure to employ in
geographic studies. Factor structures also display the same
signs of invariance, but there are still scale and aggregation
effects visible when communality size is accounted for. For
the most part, MAUP effects are potent and cannot be assumed
away . Factor analyses employing areal unit observations
including factorial ecologies are subject to MAUP. Unless the
variables are free of positive spatial autocorrelations at the
basic spatial unit level, subseqguent alteration of scales
generates pronounced biases in results. Aggregation effects
are largest when areal units are independent. The typical
positive spatial autocorrelations in empirical data reduce the
effects of aggregation. However encouraging the above
statement may be, it is doubtful that any level of sgpatial
auotocorrelation will completely negate aggregation effects.

With knowledge of scale and aggregation effects, factor
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analysis is a technique that demands careful consideration

when completed with areal unit observations.

The hypotheses generated from the contaminated
theoretical data set results generally held well when compared
to empirical results. Some discrepancies did develop, but
many of these were easily explained. Scale effects were
strongest for the empirical data set most likely due to the
interaction of second order spatial dependencies. These
results also did not substantiate the hypothesis of increasing
aggregation effects with scale. The reasons why this
hypothesis could not be verified have all been elaborated upon
earlier. Overall, the contaminated data set proved quite

useful in predicting the results from the empirical data set.
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Chapter 6: Conclusions and Impetus for Future Research

It should now be apparent that scale and aggregation
effects are present in the principal axis factoring technicue
when observations are areal units. MAUP effects on factor
analysis are serious and deserve much more attention than is
presently afforded by researchers employing factor analysis.
The results here, unlike many others, prove that alternate
scales and aggregations can alter many important factor
analytic attributes besides rotated factor loadings. This
chapter is set out to review the major findings of this
research. Additionally, areas for future research are also
discussed at some depth. Finally, the presentation of how one
should complete future factor analyses considering the

findings here is discussed.

6.1: Overview of Results

The following text reviews several general themes and
their relationships to the initial hypotheses. The results
from all data sets are compared to the original hypotheses.
The £first subsection evaluates the hypotheses based upon

aggregation effects. Aafter determining the effectiveness of
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the aggregation hypotheses, hypotheses associated with scale

effects are reviewed.

There is sufficient evidence to conclude that aggregation
effects increase with scale in the theoretical data results.
This theme is not as lucid with the empirical data, where the
variable nternal size of groups may influence results.
Aggregation effects are also reduced when vwvariables have
positive spatial autocorrelations, because the values
aggregated groups may take are limited. Table 6.1.1
demonstrates the overall effects of aggregation for all
statistics and data sets. From these summary effects,
apparently positive spatial auotocorrelations reduce effects
of alternate aggregations, but as scale continues to be

increased aggregation effects will invariably become large.

When viewing the effects of scale, positive spatial
autocorrelations of empirical data accentuate the differences
between factor analytic results. The summary effects of scale
are displayed in Table 6.1.2 for all scales and data sets.
Scale effects are, for the most part, trivial in the
uncontaminated data results. However, results based with
variables containing positive spatial autocorrelations display
serious effects under alternate scales. The empirical data
results are also more modifiable with scale than contaminated

data results because the general level of spatial
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autocorrelations is higher and the interaction of second

order spatial dependencies is larger for empirical data.

Most hypotheses set out initially were verified by the
examinatiorns. Scale effects were almost entirely absent from
the pure data but were very strong for contaminated data. The
effects of increasing scale on the contaminated and empirical
data results revealed increasing sizes of eigenvalues for the
significant factors. Both views that aggregation effects
should be largest with pure data and should increase with
scale held for the theoretical data results. The empirical
results exhibited some discord with respect to increasing
aggregation effects with scale. The KMO and MSAs relative
invariance to both scale and aggregation effects opposed the
initial hypotheses. Since predictions were achieved
reasonably well for the theoretical data sets, there may be a
possibility to develop accurate predictions of scale effects.
The examinations of factor structures by the RELATE
correlations submitted some interesting results. First, when
variables are influenced by positive spatial autocorrelations,
the results are more invariant to aggregation effects as
suspected. However, the positive spatial autocorrelated
variables also led to more stability among results across
different scales. Despite this encouraging result, it must be
remembered that RELATE standardizes factor loadings across

variables. It is also known that factor loadings will be
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invariably affected by alternate scales. From all of the
above results, scale and aggregation effects are prominent

enigmas that transpire in empirical analyses.

6.2: Areas for Future Research

There are many areas for future research on scale and
aggregation effects on the factor analytic model. First, this
analysis examined MAUP with fixed options for the model. It
would be interesting to note whether assorted extraction
techniques, communality estimates, significant factoxr
criterion, and factor score estimates alter the sensitivity of
the model. If several factor analytic options are less
sensitive to MAUP than others, these options should be
popularized by present day researchers. However, it would be
sturtling if different factor analytic options would change
the effects of scale and aggregation. This study, hopefully,
has contributed a foundation from which future research could

elaborate upon specific aspects of the model.

Apparently absent from the suggestions above, are the
effects of various rotation techniques. This absence was
premeditated and this option is expanded in greater detail
below. Different orthogonal rotations are not expected to

produce noticeable invariance to scale or aggregation effects
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Figure 6.2.1: Hypothesized Effects of Increasing Scale for
Oblique and Orthogonal Rotations.

although this avenue could ke analyzed. Use of oblique
rotations may display signs of invariance particularly to
scale. As seen by the results, even the lowest associations
between variables increase with scale in terms of communality
sizes. The increase of small communalities with scale
suggests almost independent variables increase in association
with scale. If factors at the basic spatial unit level are
even remotely related, this association will increase with

reductions to the number of areal wunit observations.
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Therefore, an oblique rather than orthogonal rotation may
prove to be more scale invariant. Figure 6.2.1 displays a
hypothetical case with only two factors. As seen in Figure
6.2.1, it is possible for factor relationships to increase to
the point where an orthogonal rotation would merge the two
processes together in a weak general form. If scale
invariance is a goal of factorial ecologies, an obligque
rotation may be required. Clearly, this is an area where

investigation of scale effects on factor analysis should

concentrate.

Other particular aims of tbis thesis are also available
for substantiation by other research. First, the apparent
contradictory finding of constant aggregation effects with
increasing scale from the Saskatoon data set could be
explored. Although aggregation effects were thought to
increase with scale for all data sets, with the empirical data
this hypothesis did not hold. As well, future research could
attempt to predict scale and aggregation effects from Arbia’s
(1989) correlation formula. Particularly, the formula could
be modified to consider second order relationships that would
involve only an addition of a second term to the formula. If
scale and aggregation effects become predictable from the
basic spatial unit data attributes, these effects will not be
so omnipotent in the future. It should be apparent that while

this study provides an introduction to this topic, many
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opportunities exist for future research on MAUP effects in

factor analysis.

6.3: Conducting Future Factor Analyses

Researchers should consider some findings from this
thesis when conducting a factor analysis in the future.
First, one has to justify the scale of analysis employed. If
the objective is to decipher themes evolving from
neighbourhoods, it is imperative to detail explicitly why the
areal units employed epitomize neighbourhoods. Interpretation
of research must also avoid ecological fallacies and cross-
level fallacies (Davies, 1983) when interpreting results. 1If
observations are not based upon meaningful areal units, a
sample of alternate aggregations should be employed to judge
the sensitivity of the model to aggregation effects. When
sensitivity analysis is not feasible the researcher should
explain the caveats of completing research with only one
arrangement of areal unit observations. With all the advances
in region building algorithms and GIS technology, there is
little reason for geographers to accept the constraints of
areal unit data collected by census agencies. After stating
this, there are probably limits upon the basic spatial unit
level as socioeconomic data in Canada cannot accurately be

found below the enumeration area scale. Any further attempt
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to disaggregate data below BSU levels would involve rigid

assumptions.

Factor analysis 1s a technique adopted by gecgraphers
from other disciplines, most notably psychology. The
technique was not developed to handle the intricacies of areal
unit observations, and therefore the results are modifiable.
Apparently geographic research alone will bear the effects
assocliated with areal unit observations. The results found by
factor analysts are specific to the areal units employed in
the study. Due to the modifiability of results, factor
analytic results are not generally comparable across studies.
The similarity of past themes like social area analysis at
first appears encouraging, but it may be a symptom of another
problem with geographical factor analyses. For example, if
one completes a factorial ecology with most wvariables
measuring income, it should be hardly surprising that a
significant factor representing income appears. As well, if
one only enters socioeconomic variables in a factor analysis,
there should be 1little surprise in the factors that are

extracted.
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Appendix A - Definitions of Empirical Variables and
Corresponding Number used in Text

Economic Status

1) =~ Average Family Income
2) ~ Male Unemployment Rate
3) -~ Rate of Population Older than twenty-five years with a

University Degree

4) - Rate of Employed Labouxrforce in Blue Cellar Occupations

Social Status

6) - Female Labour Participation Rate
7) - Ratio of Children Aged (0-4) to Females Aged (20-44)
8) - Average Household Size
Ethnicity
5) - Rate of Population with Mother Tongue that is a
Non-Official Language
10) - Rate of Population Aged S+ years born as an Immigrant
Other

9) - Rate of Population Aged 5+ years who are Migrants
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Appendix B - Key to Appendix

PCT1
PCT2
RMO
MS(x)
C({x)
E(y)
CM({x)
EE(y)
FS(z)
St.dev.
Kurt
Skew
Min
Mast
'k

% of data set variation explained b, components
% of data set variation explained by factors
Kaiser-Meyer-0Olkin measure of sampling adeguacy
Measure of sampling adequacy for variable x
Initial Communality for variable x

Initial Eigenvalue associated with factor vy
Final Communality for variable x

Final Eigenvalue for factor y

Factor Score of sample z

Standard Deviation

Kurtosis

Skewness

Minimum

Maximum

Based on less than the thirty aggregations
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Appendix B.1
Basic Spatial Unit Results for all Data Sets

Empirical Theoxretical

PCT1 71.51 65.38
PCT2 60.60 53.50
KMO 0.64 0.58
MS1 0.68 0.55
MS2 0.85 0.61
MS3 0.70 0.65
MS4 0.82 0.64
MS5 0.83 0.36
MS6 0.73 0.49
MS7 0.54 0.64
MS8 0.55 0.35
MS9 0.38 0.52
MS10 0.70 0.71
Ci 0.65 0.74
c2 0.40 0.54
C3 0.62 0.74
c4 0.49 0.81
C5 0.50 0.48
Cé6 0.59 0.29
C7 0.64 0.10
c8 0.73 0.25
C9 0.45 0.70
C10 0.51 0.61
El 3.32 3.30
E2 2.23 1.92
E3 1.59 1.32
E4 0.84 0.99
E5 0.56 0.74
E6 0.42 0.68
E7 0.37 0.52
E8 0.30 0.24
ES 0.22 0.18
E10 0.15 0.10
cM1 0.81 0.60
CM2 0.40 0.55
CM3 0.64 0.93
CM4 0.56 0.93
CM5 0.57 0.36
CM6 0.72 0.34
CM7 0.55 0.06
CM8 0.99 0.17
CM9 0.31 0.55
CM10 0.51 0.86
EE1l 2.96 3.05
EE2 1.91 1.50
EE3 1.19 0.80
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Appendix B.2

120 Observation Level Results for Uncontaminated Data

STAT Mean St.dev. EKurt Skew Range Min Max

PCT1 67.83 3.37 1.58 1.57 12.04 64.24 76.28
PCT2 55.98 2.65 1.19 0.90 10.94 51.95 62.89
KMO 0.56 0.03 -0.90 0.08 0.19 0.51 0.61
MS1 0.53 0.03 0.17 -0.11 0.15 0.45 0.60
MS2 0.62 0.04 0.05 -0.49 0.15 0.45 0.60
MS3 0.60 0.02 ~0.81 -0.05 0.06 0.57 0.63
MS4 0.64 0.04 ~-0.76 -0.49 0.14 0.56 0.70
MSS 0.33 0.06 -0.11 0.23 0.24 0.22 0.45
MS6 0.44 0.09 -1.55 0.24 0.26 0.33 0.59
MSs7 0.67 0.09 0.95 -0.70 0.39 0.42 0.82
MS8 0.29 0.07 1.48 0.83 0.34 0.16 0.49
MS9 0.52 0.05 -0.36 -0.07 0.19 0.43 0.63
MS10 0.70 0.03 -0.81 0.41 0.12 0.65 0.77
Ccl 0.74 0.03 0.45 -0.77 0.11 0.68 0.79
Cc2 0.57 0.03 -0.88 -0.27 0.11 0.51 0.62
C3 0.76 0.02 0.38 -0.56 0.09 0.71 0.80
C4 0.81 0.03 -0.73 -0.16 0.12 0.74 0.86
CS 0.50 0.05 0.71 -0.24 0.21 0.38 0.59
cé 0.35 0.05 ~-0.52 0.10 0.19 0.26 0.45
Cc7 0.13 0.03 0.11 -0.13 0.12 0.07 0.20
C8 0.30 0.06 -0.86 -0.18 0.21 0.19 0.41
C9 0.73 0.03 0.64 -0.25 0.15 0.66 0.81
C10 0.65 0.03 -0.21 -0.05 0.14 0.59 0.72
El 3.34 0.12 -0.53 -0.33 0.46 3.11 3.57
E2 1.93 0.11 -0.14 0.07 0.45 1.72 2.17
E3 1.34 0.09 -0.30 0.55 0.34 1.20 1.54
E4 0.94 0.05 -0.84 0.23 0.19 0.85 1.04
ES 0.78 0.06 0.30 0.25 0.24 0.67 0.90
E6 0.68 0.05 -0.96 -0.05 0.19 0.58 0.77
E7 0.51 0.04 0.61 0.11 0.17 0.44 0.61
E8 0.22 0.02 -0.67 -0.16 0.07 0.18 0.25
E9 0.17 0.01 0.33 0.14 0.06 0.14 0.20
E10 0.10 0.01 -0.35 0.28 0.06 0.07 0.13
CM1 0.61 0.04 -0.02 -0.11 0.17 0.51 0.68
CM2 0.62 0.10 1.39 1.25 0.39 0.49 0.88
CM3 0.%36 0.03 -1.11 -0.38 0.11 0.89 1.00
CM4 0.94 0.03 -0.16 -0.31 0.14 0.86 1.00
CM5 0.34 0.10 3.51 1.38 0.50 0.19 0.69
CM6 0.37 0.07 0.67 0.52 0.34 0.23 0.57
CM7 0.11 0.03 -0.65 -0.03 0.12 0.04 0.16
CM8 0.17 0.05 -0.45 0.31 0.22 0.06 0.28
CM9 0.64 0.15 2.24 1.87 0.49 0.50 0.99
CM10 0.85 0.08 -0.64 -0.10 0.31 0.69 1.00
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Appendix B.2 (contiaued)

STAT Mean St.dev. Rurt Skew Range Min Max

EELl 3.11 0.13 -0.50 -0.14 0.51 2.85 3.36
EE2 1.54 0.11 0.25 -0.40 0.47 1.2 1.75
EE3 0.85 0.12 -0.20 -0.15 0.46 0.62 1.08
EE4** 0.56 0.09 -3.24 ~-0.59 0.18 0.46 0.64
STAT Mean Var. Rurt Skew Range Min Max

Fl 0.00 1.00 0.38 ~0.03 5.30 -2.84 2.46
F2 0.00 1.03 0.04 ~0.02 5.84 -2.93 2.91
F3 0.00 0.90 -0.44 0.15 4.45 -2.28 2.16
F4 0.00 1.02 0.86 -0.15 5.81 ~3.42 2.39
F5 0.00 1.00 0.28 -0.15 5.63 -3.23 2.41
F6 0.00 0.97 1.07 -0.25 6.04 -3.53 2.52
F7 0.00 1.03 0.54 0.04 6.06 -3.42 2.64
F8 0.00 0.97 0.43 -0.23 5.48 -3.32 2.16
F9 0.00 1.08 0.18 -0.30 5.43 -3.18 2.25
F10 0.00 0.97 -0.29 -0.18 5.07 -2.87 2.20
Fll 0.00 1.02 0.10 -0.02 5.0¢ ~2.59 2.50
Fi2 0.00 1.02 0.94 0.02 6.15 ~3.62 2.54
F13 0.00 1.03 0.04 -0.14 5.24 -3.18 2.05
Fl4 0.00 1.07 0.25 -0.31 5.31 -2.94 2.37
F1l5 0.00 1.00 -0.37 -0.07 4.71 -2.74 1.98
Flé 0.00 0.97 0.30 0.07 5.46 -2.79 2.67
F17 0.00 1.08 0.34 ~0.04 5.85 -3.47 2.38
F18 0.00 1.00 0.47 -0.16 5.33 -2.97 2.36
F19 0.00 1.02 0.35 -0.13 5.40 -3.33 2.08
F20 0.00 1.02 0.29 .00 5.27 -2.71 2.56
F21 0.00 0.97 -0.01 ~-0.15 4.99 -2.90 2.09
F22 0.00 0.96 0.50 ~0.21 5.33 -3.06 2.27
F23 0.00 1.10 0.35 -0.41 5.34 -2.94 2.41
F24 0.00 0.98 0.83 -0.35 5.80 -3.62 2.18
F25 0.00 1.01 0.67 -0.38 5.66 ~3.37 2.29
F26 0.00 1.11 0.80 ~0.25 6.42 -3.75% 2.67
F27 0.00 1.07 0.07 ~-0.19 5.63 -3.13 2.50
F28 0.00 1.07 0.18 ~0.18 5.98 ~-3.33 2.66
F29 0.00 1.00 -0.09 0.02 4.85 ~2.39 2.46
F30 0.00 1.01 -0.11 ~0.14 5.18 -2.80 2.38

** - based on five of thirty aggregations
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Appendix B.3

120 Observation Level Results for Contaminated Data

STAT Mean St.dev. ZXurt Skew Range Max Min

PCT1 72.38 4.66 -1.20 0.8 12.31 68.18 80.49
PCT2 60.49 3.23 -1.22 0.81 8.6 57.26 65.95
KMO 0.60 0.02 1.67 -0.55 0.08 0.55 0.63
MS1 0.59 0.02 1.01 -0.47 0.12 0.52 0.63
MSz 0.60 0.04 -0.85 -0.10 0.13 0.53 0.66
MS3 0.67 0.02 -0.16 0.26 0.08 0.63 0.71
MS4 0.68 0.02 1.45 -0.67 0.11 0.61 0.73
MSS 0.40 0.04 -0.82 -0.18 0.16 0.32 0.48
MS6 0.58 0.07 -0.72 ~0.05 0.28 0.45 0.72
MS7 0.61 0.08 ~0.23 -0.27 0.33 0.43 0.76
MS8 0.33 0.05 1.01 -0.79 0.21 0.20 0.41
MS9 0.56 0.03 0.71 -0.20 0.12 0.49 0.61
MS10 0.70 0.02 ~0.23 -0.43 0.09 0.65 0.74
C1 0.81 0.01 -0.13 0.49 0.05 0.79 0.83
c2 0.65 0.03 -0.92 -0.42 0.09 0.60 0.69
C3 0.82 0.01 -0.15 0.03 0.05 0.79 0.85
c4 0.85 0.01 0.89 0.21 0.06 0.82 0.88
C5 0.56 0.03 1.10 1.03 0.10 0.53 0.63
C6 0.31 0.03 0.87 ~-0.25 0.15 0.22 0.37
c7 0.15 0.03 1.27 0.28 0.15 0.08 0.23
C8 0.31 0.02 0.41 0.33 0.10 0.27 0.37
Cc9 0.76 0.02 0.15 -0.70 0.08 0.72 0.80
Cc10 0.71 0.02 -0.19 -0.02 0.08 0.67 0.75
El 3.65 0.05 0.47 -0.12 0.23 3.54 3.77
E2 1.98 0.08 0.32 -0.19 0.36 1.79 2.15
E3 1.31 0.07 -0.70 0.17 0.26 1.20 1.45
E4 0.98 0.03 -0.48 -0.43 0.11 0.92 1.03
ES 0.66 0.04 -0.76 -0.30 0.14 0.58 0.72
E6 0.59 0.03 -0.41 0.60 0.12 0.54 0.66
E7 0.46 0.02 -0.78 -0.18 0.07 0.42 0.49
E8 0.17 0.01 -0.41 0.29 0.05 0.15 0.20
E9 0.13 0.01 0.86 -0.20 0.05 0.10 0.15
E10 0.08 0.01 ~-0.19 ~0.23 0.02 0.06 0.09
CM1 0.70 0.03 0.37 0.02 0.11 0.64 0.75
CM2 0.72 0.15 -0.87 0.86 0.46 0.54 1.00
CcM3 0.95 0.03 -0.52 -0.26 0.10 0.89 1.00
CM4 0.93 0.02 -0.42 0.38 0.07 0.89 0.97
CMS 0.50 0.08 0.01 0.52 0.35 0.36 0.70
CM6 0.34 0.04 0.43 -0.50 0.20 0.22 0.42
CM7 0.10 0.05 4.76 2.00 0.23 0.04 0.27
CM8 0.22 0.03 -0.30 -0.45 0.12 0.14 0.26
CM9 0.70 0.12 0.95 1.45 0.43 0.56 1.00
CML10 0.89 0.05 -0.06 0.17 0.22 0.78 1.00



Appendix B.3 (continued)

STAT

EE1l
EE2
EE3

EE4 **

STAT

Fl

F2

F3

r4

F5

F6

F7

F8

F9

Fi0
F1l
F12
F13
Fl4
F15
Fl6
F17
F18
F19
F20
F21
F22
F23
F24
F25
F26
F27
F28
F29
F30

** - based upon nine of thirty aggregaticns

COOCOOCOOCOOCOOO0O0OO0O0OCO0OOOO0OOOITTOOOOC

Mean

3.45
1.63
0.82
0.49

Mean

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

St .dev.

0.05
0.09

0.
0.

08
05

var.

OCORROFRFROOROORMHOFFOODOODODORPORFPRCOMPROROD

.99
.04
.98
.03
.97
.93
.00
.97
.05
.97
.97
.97
.97
.95
.96
.01
.94
.03
.00
.99
.97
.02
.99
.95
.02
.04
.98
.00
.98
.98

Rurt

0.
0.
~0.
0.

37
66
51
01

Kurt

0.

-0

21

.19
~-0.
.09
-0.
.06
.05
.51
.15
.14
.41
.05
.59
.12
.21
.50
.33
.23
.03
.05
.29
.44
.25
.20
.04
.02
.27
.40
.32
.08

19
38

Skew

-0.44
-0.158

0.34
-0.31

Skew

-0.01
-0.08
-0.09
-0.32
~-0.17
-0.17
-0.05
-0.07
-0.10
~0.21

0.10
~0.13
-0.01
-0.12
~0.06
~-0.09
~0.09
~0.02
-0.02
~-0.25
-0.04
~0.07
-0.09
-0.16
~0.10
~0.34
-0.19
-0.19
-0.21
-0.24

Range

0.
0.
0.
0.

22
40
31
18

Range

UV b o s 0 B Ul B D D s GTUT D UL R D S UL D s

.06
72
.00
.87
.65
.02
.87
.58
.60
.71
.65
.09
.30
.68
.01
.01
.54
.93
.70
.84
.89
.54
.07
.71
.98
.96
.58
.92
.52
.14

Max

3.
1.

0

0.

33
39
68
39

Max

.62
.44
.56

.74
.64
.36
L3
.29

.32
.58
.98
.49

.15
.20
.57
.38

.56
.29
.78
.51
.66

.35
.75
.40
.70

Min

3

1.
0.
0.

.55

80
98
57

=
e
b

NRIONNNNONODNNDNMNRDONNONDDANDND N AN =N

.43
.29
.43
L7
.91

.51
.19
.30
.04
.33
.51
.32
.19
.44
.26
.34
.36
.32
.21
.33
.25
.29
.20
.32
.26
.22
.17
.12
.44
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Appendix B.4

Sixty Observation Level Results for Uncontaminated Data

STAT Mean st.dev. Kurt Skew Range Min Max

PCT1 71.30 4.76 -1.36 0.38 14.95 64.%5 75.95
PCT2 58.92 2.86 -0.44 0.28 16.16 51.15 67.31
KMO 0.53 0.05 -1.13 -0.12 0.17 0.45 0.62
Msal 0.52 0.07 0.05 0.04 0.28 0.38 0.66
MSA2 0.61 0.05 -0.77 ~-0.24 0.19 0.51 0.70
MSa3 0.58 0.06 -0.46 -0.42 0.22 0.46 0.68
MSA4 0.61 0.06 -0.77 -9.02 0.23 0.50 0.73
MSAS 0.30 0.07 -0.63 0.41 0.26 0.19 0.45
MSa6 0.39 0.13 0.17 0.99 0.48 0.22 0.70
MSa7 0.58 0.14 0.76 -0.41 0.65 0.21 0.86
MSAS8 0.29 0.09 -0.23 0.40 0.37 6.13 0.50
MSa9 0.51 0.07 0.27 -0.13 0.34 0.32 0.66
MSALO 0.72 0.05 -0.32 -0.14 0.21 0.61 0.83
C1 0.78 0.04 -0.46 0.00 0.18 0.70 0.88
C2 06.59 0.06 0.02 -0.57 0.27 0.42 0.70
C3 0.79 0.03 0.30 -0.19 0.14 0.72 0.87
Cc4 0.84 0.04 -0.59 -0.17 0.15 0.77 0.92
C5 0.57 0.08 1.14 -0.94 0.33 0.36 0.69
o3 0.39 0.07 -0.64 -0.18 0.27 0.26 0.52
C7 0.16 0.05 3.29 1.45 0.25 0.07 0.32
C8 0.37 0.07 -0.29 -0.18 0.30 0.24 0.53
C9 0.78 0.04 -0.52 -0.53 0.16 0.69 0.85
C10 0.65 0.07 1.32 -0.63 0.35 0.45 0.80
El 3.46 0.19 ~-0.88 ~-0.06 0.68 3.13 3.81
E2 1.94 0.18 0.49 0.50 0.84 1.59 2.44
E3 1.32 0.10 -0.38 0.13 0.40 1.14 1.53
E4 0.96 0.07 -0.74 -0.48 0.25 0.81 1.06
ES 0.79 0.05 ~1.09 0.00 0.17 0.70 0.87
E6 0.63 0.06 -0.41 -0.44 0.25 0.48 0.73
E7 0.46 0.06 -0.74 0.17 0.24 0.35 0.59
ES8 0.22 0.04 1.20 0.80 0.19 0.13 0.33
E9 0.15 0.03 0.82 0.82 0.11 0.10 0.21
E10 0.08 0.02 -0.38 0.41 0.07 0.04 0.11
CM1 0.65 0.10 0.17 0.39 0.45 0.44 0.89
CM2 0.61 0.09 0.90 -0.24 0.46 0.37 0.83
CcM3 0.95 0.06 0.33 -1.12 0.18 0.82 1.00
CM4 0.93 0.05 2.73 -1.50 0.23 0.76 1.00
CM5 0.52 0.21 -1.08 0.48 0.68 0.25 0.94
CM6 0.38 0.14 0.32 0.8¢% 0.56 0.18 0.74
CM7 0.12 0.07 4.08 1.83 0.30 0.05 0.34
CM8 0.24 0.09 2.98 0.99 0.45 0.07 0.52
CM9 0.0 0.08 0.83 0.04 0.37 0.52 0.90
CM10 0. 0.08 2.96 -1.28 0.38 0.52 0.90
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Appendix B.4 (continued)

STAT Mean St.dev. Kurt Skew Range Min Max

EEL 3.24 0.20 -0.76 ~0.25 0.72 2.88 3.59
EE2 1.56 0.19 0.03 0.15 0.87 1.17 2.04
EE3 0.89 0.12 -0.25 ~0.19 0.47 0.63 1.10
EE4 ** 0.52 0.11 -0.26 0.13 0.36 0.36 0.72
S'TAT Mean var. Kurt Skew Range Min Max

Fl 0.00 0.97 0.69 -0.58 4.94 -3.18 1.76
F2 0.00 0.96 -0.32 -0.36 4,37 -2.25 2.12
F3 0.00 1.06 -0.31 0.12 4.55 -2.03 2.52
F4 0.00 1.04 0.32 -0.12 4.77 -2.57 2.19
F5 0.00 1.05 -0.05 -0.46 4.52 =~-2.72 1.80
F6 0.¢0 1.02 1.25 0.20 5.09 =-2.27 2.81
F7 0.00 1.12 0.36 -0.53 4.76 -2.93 1.83
F8 0.00 0.98 0.91 -0.57 5.39 -3.28 2.11
F9 0.00 1.00 ~-0.05 -0.21 4.80 -2.35 2.45
F10 0.00 1.09 0.10 0.03 4.86 -2.63 2.22
Fli 0.00 0.93 -0.45 0.05 4.49 -2.10 2.39
Fl12 0.00 1.03 -0.03 -0.08 4.58 -~2.47 2.11
F13 0.00 0.81% 0.37 -0.43 4.28 -2.64 1.64
Fl4 0.00 1.06 -0.31 0.12 4.55 -2.03 2.52
F15 0.00 1.08 -0.26 -0.22 4.73 -2.82 1.91
Fl6 0.00 0.94 -0.47 -0.33 4.01 -~2.09 1.92
Fl7 0.00 1.11 0.64 -0.38 5.72  =~3.30 2.42
F18 0.00 1.00 -0.74 -0.10 4.36 =~2.43 1.94
F19 0.00 0.93 -0.08 -0.01 4.75 =-2.60 2.15
F20 0.00 1.06 -0.36 0.14 4.56 -2.10 2.46
F21 0.00 0.93 -0.41 -0.02 4.15 -2.14 2.01
F22 0.00 1.06 0.79 -0.36 5.82 -3.25 2.58
F23 0.00 0.97 0.32 -0.30 4.65 -2.60 2.05
F24 0.00 1.00 0.94 -0.42 5.38 -2.70 2.68
F25 0.00 0.92 0.18 0.08 4.76¢ -2.51 2.25
F26 0.00 1.01 3.7 -1.06 6.31 -3.76 2.55
F27 0.00 1.05 -0.68 0.04 4.30 -1.82 2.48
F28 0.00 0.93 0.81 -0.19 4.99 =-2.63 2.36
F29 0.00 11.11 1.00 =-0.48 5.46 -3.06 2.40
F30 0.00 1.03 -0.01 0.08 5.07 -2.29 2.78

** - based on twelve of thirty aggregations
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Appendix B.5

Sixty Observation Level Results for Contaminated Data

STAT Mean St.dev. FKurt Skew Range Min Max

PCTL 73.90 2.00 17.59 3.77 11.36 71.94 83.30
PCT2 63.69 1.64 4.80 1.68 8.39 61.21 69.60
KO 0.61 0.03 -0.21 0.08 0.11 0.56 0.67
MSAl 0.62 0.05 0.72 0.45 0.20 0.53 0.74
MSAZ 0.60 0.06 -0.16 -0.84 0.20 0.48 0.69
MSA3 0.70 0.05 -0.40 -0.41 0.21 0.59 0.80
MSA4 0.69 0.04 -0.35 -0.12 0.14 0.62 0.76
MSAS 0.40 0.06 ~0.06 0.55 0.24 0.28 0.52
MSA6 0.57 0.12 -0.75 0.06 0.43 0.37 0.80
MSA7 0.63 0.11 0.41 0.21 0.52 0.38 0.50
MSAS8 0.32 0.11 -0.73 0.56 0.45 0.13 0.55
MSAS 0.60 0.05 -0.83 0.27 0.18 0.52 0.70
MSAL0 0.69 0.65 1.14 -0.93 0.21 0.54 0.76
C1 0.86 0.02 -1.44 .01 0.06 0.83 0.89
Cc2 0.76 (.04 2.87 1.28 0.17 0.71 0.88
C3 0.87 0.02 0.76 0.54 0.08 0.83 0.91
Cc4 0.90 0.01 -1.11 -0.08 0.05 0.87 0.92
C5 0.64 0.0¢4 -9.21 0.39 0.17 0.57 0.74
of3 0.37 0.07 2.47 1.22 0.33 0.27 0.60
Cc7 0.23 0.06 ~-0.47 0.59 0.22 0.14 0.36
C8 0.41 0.06 -0.04 -0.15 0.26 0.27 0.53
C9 0.82 0.03 0.51 -0.22 0.13 0.75 0.88
C1l0 0.80 0.03 -0.0L -0.24 0.13 0.74 0.86
El 4.06 0.11 ~1.08 0.16 0.37 3.88 4.25
E2 1.95 0.14 ~0.63 -0.09 0.54 1.66 2.21
E3 1.35 0.09 ~0.46 -0.24 0.35 1.16 1.51
E4 0.91 0.05 0.11 -0.32 0.21 0.79 1.00
ES 0.62 0.05 -0.90 0.24 0.18 0.53 0.72
6 0.47 0.04 -1.01 -0.18 0.13 0.40 0.53
E7 0.38 0.04 1.06 -0.38 0.19 0.29 0.47
E& 0.12 0.02 0.69 0.43 0.07 0.09 0.16
ES 0.0 0.01 -0.39 -0.01 0.04 0.07 0.11
E10 0.05 0.01 0.35 0.86 0.03 0.04 0.07
cMl 0.78 0.04 -0.67 0.18 0.16 0.72 0.88
CM2 0.77 0.08 0.95 0.66 0.40 0.60 1.00
CM3 0.93 0.04 ~0.44 -0.04 0.15 0.85 1.00
CM4 0.96 uv.02 0.20 0.36 0.07 0.92 1.00
M5 0.48 0.10 0 89 0.98 0.42 0.32 0.74
CM6 0.38 0.08 1.49 1.11 0.33 0.28 0.61
CM7 0.13 0.04 -0.61 0.27 0.16 D.06 0.22
CM8 0.34 0.08 -0.04 -0.44 0.33 0.16 0.49
CM9S 0.68 0.05 1.29 0.80 G.23 0.60 0.83
CM10 0.91 0.05 -0.03 -0.56 0.21 ..79 1.00



Appendix B.5 (Continued)

STAT

EEL
EE2
EE3

EE4 **

STAT

Fl

F2

F3

F4

F5

F6

F7

Fe

F9

F10
F1l1l
Fi2
F13
rl4
F15
Flé
F17
Fl18
F19
F20
F21
F22
F23
F24
F25
F26
F27
F28
F29
F30

Mean

3.87

1.60
0.88
0.44

Mean

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

St.dev.

6.11
0.15
0.12
NA

Varx.

.96
.95
.00
.97
.87
.02
.03
.88
.03
.04
.02
.95
.93
.01
.95
.92
.92
.11
.98
.03
.02
.02
.01
.97
.00
.93
.98
.92
.96
.86

COO0OQOPrRORFRPPFPFOFPODOOROOIHNRPOREEOORPOO

Kurt

-1.
0.
-0.
NA

05
04
66

Rurt

.41
.98
.45
.06
.54
.06
.44
.00
.29
.10
.27
.40
.49
.33
.49
.65
.46
.50
.44
.09
.05
.72
.42
.68
.08
.52
.73
.44
.15
.81

Skew

0.06
-0.33
-0.31

NA

Skew

~0.01

0.01
-0.21
~0.02

0.08
-0.36
-0.35
-0.40
-0.28
-0.37
-0.38

0.16
-0.19
-0.28
~-0.06
-0.10
-0.02
-0.62
~0.04

0.01
-0.09
-0.01
~-0.52

0.04
-0.15

0.086
-0.01
-0.16

0.01

0.13

Range

0.
0.
0.
NA

37
65
44

Range

Rl A R ¥ TS NN ¢ S PURR FU I GY SN S T S S S SN S SO S S S U RIS

** - pbased on 1 of thirty aggregations

.21
.87
.08
.69

18

.88
.34
.61
.52
.60
.13
.61
.06
.41
.01
.82
.97
.01
.08
.96
.92
.99
.81
.94
.51
.11
.92
.05
.61
.62

Min

3
1
0

.69
.23
.63

NA

Min

.22
.95
.37
.G2
.93
.78
.50
.73
.55
.46
.23
.94
.06
.45
.02
.12
.88
.76
.16
.30
.30
.91
.96
.98
.16
.13
.97
.08
.51
.76

Max

q.
1.
1.

NA

2
&

A e = N R P DN DN R R NN RN RN NN =

06
88
07

.98
.92
.70
.07
.25
.10
.83
.88
.97
.14
.91
.67
.00
.96
.99
.70
.09
.25
.92
.65
.61
.09
.85
.96
.35
.97
.95
.97
.10
.86
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Appendix B.6

Forty Observation Level Results for Uncontaminated data

STAT Mean st.dev. Rurt Skew Range Min Max

PCT1 73.16 4,88 -1.66 ~0.03 14.44 65.87 80.31
PCT2 60.47 3.40 -0.50 ~0.04 14.02 54.20 68.21
KMO 0.51 C.06 -0.83 0.22 0.21 0.41 0.62
MSAL 0.49 0.08 -0.86 ~0.09 0.29 0.32 0.62
MSA2 0.60 0.10 0.08 ~0.20 0.42 0.37 0.79
MSA3 0.55 0.08 -0.77 0.22 0.31 0.41 0.72
MSAa4 0.58 0.07 -0.64 0.08 0.27 0.45 0.72
MSAS 0.31 0.08 -0.81 0.36 0.31 0.17 0.48
MSA6 0.41 0.15 ~-0.40 0.36 0.56 0.17 0.73
MSA7 0.48 0.17 -0.10 -0.37 0.69 0.06 0.75
MSAS 0.30 0.11 1.28 1.16 0.44 0.14 0.58
MSA9 0.51 0.09 -0.23 0.18 0.37 0.33 0.71
MSAL10 0.70 0.06 0.32 0.75 0.25 0.59 0.85
cl 0.80 0.04 -0.26 0.05 0.16 0.72 0.88
Cc2 0.59 0.07 -0.11 ~0.49 0.27 0.43 0.71
C3 0.79 0.04 4.18 -1.00 0.25 0.64 0.88
c4 0.84 0.05 -0.32 -0.66 0.17 0.73 0.90
C5 0.62 0.08 0.64 -0.62 0.35 0.39 0.74
Ccé6 0.40 0.08 1.74 0.88 0.38 0.26 0.63
Cc7 0.20 0.07 -0.23 0.51 0.29 0.08 0.37
C8 0.45 0.11 -0.17 0.26 0.43 0.24 0.67
C9 0.80 0.04 1.90 -0.95 0.20 0.66 0.86
C10 0.66 0.06 -0.66 -0.13 0.24 0.53 0.77
El 3.42 0,36 -0.15 -0.50 1.43 2.64 4,07
E2 1.92 0.25 0.47 0.30 1.19 1.39 2.58
E3 1.39 0.14 1.25 0.27 0.70 1.08 1.78
E4 1.01 0.10 0.24 0.12 0.43 0.81 1.24
ES 0.80 0.07 ~0.48 0.52 0.29 0.69 0.98
E6 0.61 0.07 3.14 1.20 0.30 0.50 0.80
E7 0.41 0.07 0.11 0.56 0.28 0.28 0.56
E8 0.22 0.04 0.12 0.30 0.16 0.15 0.31
E9 0.14 0.03 0.14 0.57 0.11 0.10 0.21
EL0 0.07 0.02 -0.51 0.52 0.06 0.04 0.10
cMl 0.73 0.13 0.33 0.16 0.52 0.48 1.00
CcM2 0.63 6.11 0.02 -~0.09 0.48 0.43 0.91
CM3 0.88 0.98 -1.07 0.31 0.25 0.75 1.00
cM4 0.92 0.05% -0.65 -0.29 0.20 0.80 1.00
CM5 0.55 0.18 0.45 0.15 0.85 0.15 1.00
CM6 0.32 0.11 -0.42 0.15 0.44 0.11 0.55%
CcM7 0.13 0.08 -0.78 0.51 0.29 0.01 0.30
CM8 0.31 0.12 -0.56 0.23 0.46 0.07 0.52
CM9 0.81 0.12 ~-0.04 -0.44 0.50 0.50 0.99
CM10 0.75 0.09 ~-0.54 0.08 0.39 0.57 0.97
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Appendix B.6 (continued)

STAT Mean St.dev. RKurt Skew Range Min Max

EEL 3.21  0.37 0.13 -0.57 1.49 2.35 3.85
EE2 1.57 0.28 0.27 0.34 1.25% 1.05 2.30
EE3 0.96 0.16 2.06 =0.98 0.78 0.49 1.27
EE4 ** (.58 0.11 -1.18 1.09 0.34 0.41 0.75
STAT Mean var. Kurt Skew Range Min Max

Fl 0.00 1.00 2.66 -0.90 5.33 -3.45 1.88
F2 0.00 0.82 0.01 0.51 3.99 -1.62 2.37
F3 0.00 1.04 -0.39 -0.12 4.09 -2.26 1.82
F4 0.00 0.85 0.52 -0.12 4.50 -2.52 1.98
F5 0.00 0.99 ~0.38 ~0.08 4.08 ~2.02 2.06
F6 0.00 ©0.95 0.02 0.25 4.17 -2.17 2.00
F7 0.00 1.08 1.25 ~0.43 5.43 -2.79 2.64
F8 0.00 0.94 0.68 -~0.56 4.35% -~2.61 1.74
F9 0.00 0.90 ~0.24 0.28 3.93 ~-1.87 2.06
F10 0.00 0.93 0.26 -0.24 4.33 -2.21 2.11
Fl1l 0.00 0.95 0.11 0.51 4.12 -1.65 2.47
F12 0.00 1.07 0.32 -~0.21 4.63 ~2.23 2.40
F13 0.00 0.95 -0.55 ~0.08 4.02 ~-2.02 2.01
Fl4 0.00 0.91 -0.75 0.16 3.60 -1.63 1.97
Fl1l5 0.00 1.01 -0.14 -~0.30 4.09 -2.01 2.07
Fl6 0.00 0.96 1.07 0.11 5.25 =2.49 2.76
F17 0.00 0.93 -0.54 -0.18 4.04 ~1.98 2.06
F18 0.00 0.95 -0.13 ~0.28 4.08 -2.17 1.91
F19 0.00 0.96 -0.14 -0.13 4.20 ~2.32 1.87
F20 0.00 1.06 -0.15 -0.24 4.37 -2.38 1.99
F21 0.00 0.97 1.67 ~1.18 4.42 ~2.99 1.43
F22 0.00 0.89 -0.74 -0.50 3.23 ~1.85 1.39
F23 0.00 1.23 0.01 0.03 4.78 ~2.25 2.53
F24 0.00 1.00 -0.38 ~0.064 4.31 -~2.39 1.92
F25 0.00 0.97 .48 -0.80 4.45 -2.78 1.66
F26 0.00 0.88 -0.45 -0.24 3.89 -1.99 1.90
F27 0.00 0.87 -0.46 0.21 3.67 -~1.66 2.01
F28 0.00 1.13 0.04 -0.41 4.65 ~2.49 2.15
F29 0.00 1.07 0.84 -06.42 5.12 -2.91 2.20
F30 0.00 0.97 0.10 0.00 4.40 ~2.37 2.03

** - based on sixteen of thirty aggregations
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Appendix B.7

Forty Observation Level Results for Contaminated Data

STAT Mean St.dev. Rurt Skew Range Min Max

PCT1 76.35 2.21 11.80 2.61 13.28 72.58 85.86
PCT2 66.68 2.12 0.54 0.36 9.55 62.73 72.28
KMO 0.60 0.03 -0.54 -~0.16 0.13 0.53 0.66
MSAl 0.63 0.06 -0.46 -0.34 0.24 0.49 0.73
MSA2 0.59 0.06 -0.57 -0.07 0.25 0.46 0.71
MSA3 0.72 0.06 0.14 -0.82 0.25 0.57 0.82
MSA4 0.66 0.05 -0.28 0.01 0.21 0.56 0.77
MSAS 0.43 0.07 -0.40 0.43 0.27 0.32 0.59
MSA6 0.57 0.15 -0.82 -0.06 0.57 0.26 0.83
MSA7 0.54 0.15 -0.12 0.17 0.63 0.26 0.90
MSAS 0.23 0.08 -0.75 0.35 0.28 0.10 0.38
MSA9 0.60 0.05 4.44 1.23 0.27 0.51 0.78
MSAL10 0.67 0.05 -0.27 0.11 0.19 0.58 0.77
Ccl 0.89 0.02 -0.21 -0.38 0.09 0.84 0.93
Cc2 0.83 0.03 0.19 0.35 0.14 0.76 0.90
C3 0.88 0.02 1.64 1.00 0.08 0.85 0.93
c4 0.93 0.02 0.29 -0.78 0.08 0.87 0.96
C5 0.72 0.04 0.48 -0.75 0.19 0.60 0.79
c6 0.46 0.06 -0.29 0.04 0.27 0.32 0.59
C7 0.35 0.08 0.35 0.06 0.35 .17 0.52
Cc8 0.47 0.09 -1.02 0.04 0.31 0.33 0.64
C9 0.85 0.03 -0.22 -0.09 0.11 0.80 0.91
C10 0.84 0.04 2.18 -1.12 0.20 0.72 0.92
El 4.29 0.18 -0.60 -~0.26 0.73 3.93 4.66
E2 2.00 0.16 -0.34 -0.10 0.66 1.66 2.32
E3 1.314 0.13 0.02 0.10 0.55 1.01 1.56
E4 0.87 0.07 0.05 -0.42 0.29 0.71 1.00
E5 0.56 0.07 -0.07 -0.26 0.29 0.40 0.69
E6 0.44 0.05 0.57 0.77 0.23 0.36 0.58
E7 0.31 0.04 0.59 -0.19 0.21 0.20 0.41
E8 0.10 0.02 4.34 1.40 0.10 0.07 0.17
E9 0.07 0.01 0.02 -0.29 0.04 0.05 0.09
ELOQ 0.04 0.01 -0.50 0.54 0.03 0.03 0.06
Ml 0.80 0.05 0.26 0.00 0.22 0.69 0.91
cM2 0.83 0.07 -0.10 0.37 0.29 0.70 0.99
CM3 0.92 0.04 -1.00 0.27 0.15 0.85 0.99
CcM4 0.97 0.03 -1.23 -0.51 0.08 0.92 1.00
CM5 0.60 0.09 -0.37 -0.48 0.35 0.40 0.75
CcM6 0.42 0.08 -0.26 0.44 0.32 0.29 0.60
cM7 0.17 0.06 -0.67 0.42 0.22 0.07 0.29
CM8 0.36 0.11 -0.59 0.61 0.40 0.21 0.61
cM9 0.7L  0.07 0.03 ~0.59 0.28 0.54 0.82
CM10 0.89 0.08 -0.88 -0.43 0.27 0.73 1.00
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Appendix B.7 (continued)

sTaT Mean St.dev. Xurt Skew Range Min Max

EE1l 4.11 0.18 -0.78 -0.20 0.69 3.78 4.46
EE2 1.68 0.19 -0.26 -0.25 0.75 1.30 2.05
EE3 0.86 0.18 -0.14 -0.25 0.73 0.41 1.14
EE4 ** 0.49 NA NA NA NA NA NA

STAT Mean Var. Rurt  Skew Range Min Max

Fl 0.00 0.92 -0.56 -0.13 3.90 ~2.12 1.7

F2 0.00 0.91 -0.55 0.08 3.86 -1.99 1.88
F3 0.00 1.00 -0.31 -0.51 4.00 -2.22 L.79
4 0.00 1.03 -0.03 ~-0.51 4.24 -2.56 1L.68
F5 0.00 1.062 -0.20 -0.42 4.06 -2.20 1.87
F6 0.00 0.96 0.01 0.21 4.40 -1.82 2.58
F7 0.00 1.06 -0.88 -0.29 4.00 =-2.14 1.87
F8 0.00 1.05 0.25 =-0.75 4,18 -2.44 1.74
F9 0.00 0.98 -0.88 0.02 3.95 -~2.01 1.94
F10 0.00 1.05 -0.91 0.10 3.64 -1.60 2.04
Fl1l 0.00 1.00 -0.30 -0.21 4.26 -2.55% 1.71
Fl12 0.00 1.10 -0.68 0.29 3.98 -1.92 2.07
F13 0.00 1.04 -1.06 -0.11 3.7 ~-1.79 1.78
Fl4 0.00 0.97 -1.06 -0.06 3.69 -1.83 1.86
F15 0.00 1.02 -0.47 -0.29 4,21 -2.14 2.06
Fl6 0.00 0.97 -10.07 -0.10 3.39 -1.71 1.68
F17 0.00 0.91 ~-0.67 -0.32 3.56 -1.87 1.69
F18 0.00 1.09 -0.02 0.01 4.46 -2.27 2.19
F19 0.00 0.97 -0.92 -0.37 3.44 -2.05 1.39
F20 0.00 1.02 -0.81 -0.15 3.73 =-2.12 1.61
F21 0.00 0.95 -1.03 =9.10 3.40 ~1.83 1.58
F22 0.00 1.08 -0.62 0.12 4,18 -1.96 2.23
F23 0.00 0.97 -0.74 0.23 3.98 ~-1.87 2.11
F24 0.00 0.97 ~1.01 0.00 3.90 -1.83 2.07
F25 0.00 0.84 -0.65 ~-0.15 3.71L. =-2.10 1.61
F26 0.00 0.91 -0.70 0.12 4,02 -2.03 1.99
F27 0.00 0.99 -0.50 0.14 4,14 -1.88 2.25
F28 0.00 0.97 -10.08 -0.01 3.60 -1.71 1.90
F29 0.00 0.96 -0.11 -0.11 4.1%5 -2.21 1.94
F30 0.00 0.98 -0.97 -0.1¢6 3.94 -2.08 1.8%

** - based on one of thirty aggregations
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Appendix B.8

120 Observation Level Results for Empirical Data

STAT Mean st.dev. Kurt Skew Range Min Max

PCTL 75.00 1.04 -0.67 0.22 4.01 73.18 77.19
PCTZ2 65.10 1.41 -0.78 0.24 4.97 62.92 67.88
KMO 0.69 0.02 -0.02 -0.07 0.10 0.64 0.75
MSAl 0.7 0.02 ~-0.90 -0.38 0.08 0.67 0.75
MSAZ2 0.83 0.04 4,31 -1.61 0.22 0.68 0.90
MSA3 0.72 0.04 -0.39 -0.27 0.14 0.64 0.79
MSA4 0.81 0.03 -0.82 -0.14 0.11 0.75 0.86
MSAS5 0.82 0.04 0.95 -0.79 0.16 0.72 0.87
MSA6 0.74 0.04 -0.40 -0.66 0.15 0.65 0.81
MSA7 0.56 0.04 ~-0.58 0.37 0.17 0.48 0.65
MSAS8 0.56 0.04 -0.65 0.06 0.16 0.48 0.64
MSA9 0.39 0.04 -0.60 -0.15 0.16 0.29 0.46
MSAl0 0.71 0.03 -0.32 -0.30 0.14 0.62 0.76
C1l 0.68 0.03 -0.61 0.04 0.13 0.61 0.74
C2 0.50 0.05 -0.50 0.39 0.20 0.40 0.61
C3 0.68 0.03 1.24 -0.86 0.14 0.61 0.75
C4 0.58 0.05 -0.55 0.16 0.19 0.49 0.68
CS 0.59 0.04 -0.45 0.41 0.1 0.51 0.67
cé 0.68 0.03 -0.70 0.08 0.11 0.63 0.74
c7 0.70 0.02 -0.06 -0.06 0.10 0.66 0.75
C8 0.78 0.02 -0.24 0.06 0.07 0.75 0.82
C9 0.49 0.05 1.56 -0.65 0.26 0.32 0.58
C1o0 0.62 0.05 -0.23 -0.20 0.19 0.52 0.71
El 3.59 0.19 -0.44 -0.24 0.76 3.19 3.95
E2 2.40 0.12 0.37 0.13 0.53 2.11 2.63
E3 1.50 0.12 0.00 -0.03 0.54 1.22 1.76
E4 0.81 0.05 0.35 -0.63 0.23 0.67 0.90
ES 0.51 0.05 0.47 -0.25 0.25 0.38 0.63
ES 0.36 0.04 -0.78 -0.31 0.13 0.29 0.42
E7 0.29 0.02 -0.87 -0.42 0.09 0.24 0.33
E8 0.23 0.02 -0.18 -0.04 0.09 0.18 0.27
E9 0.19 0.02 -0.88 0.14 0.06 0.15 0.22
E10 0.12 0.01 -0.62 0.11 0.04 0.10 0.14
cMl 0.81 0.05 0.08 -0.10 0.22 0.69 0.91
CM2 0.48 0.06 0.61 0.50 0.28 0.36 0.64
CM3 0.70 0.04 0.20 -0.57 0.16 0.60 0.76
CcM4 0.65 0.06 -0.15 -0.04 0.25 0.53 0.77
CM5 0.61 0.04 3.25 0.46 0.25 0.50 0.74
CM6 0.78 0.05 0.94 -0.29 0.25 0.63 0.88
CM7 0.59 0.03 -0.90 0.03 0.11 0.54 0.64
CM8 0.95 0.05 -0.34 -0.92 0.17 0.83 1.00
CM9 0.35 0.09 0.16 0.34 0.39 0.17 0.55
CM10 0.59 0.07 -0.94 -0.01 0.26 0.47 0.73
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Appendix B.8 (continued)

STAT Mean St.dev. Rurt Skew Range Min Max

EE1l 3.28 0.20 -0.34 -0.20 0.83 2.85 3.68
EE2 2.11 0.12 0.52 0.18 0.53 1.80 2.33
EE3 1.12 0.14 -0.17 0.08 0.63 0.80 1.42
STAT Mean var. Rurt Skew Range Min Max

Fl 0.00 0.91 0.86 -0.16 6.09 -3.46 2.62
F2 0.00 0.87 2.27 -0.75% 5.88 -3.48 2.40
F3 0.00 0.93 2.89 -1.42 5.26 -3.77 1.48
F4 0.00 0.93 1.49 -0.92 5.%2 ~3.76 1.76
F5 06.00 0.85 2.76 -1.08 5.66 -3.61 2.05
F6 0.00 0.85 2.86 -1.18 5.47 -3.26 2.21
F7 0.00 0.93 1.09 -0.34 6.26 -3.53 2.73
F8 0.00 0.87 0.47 -0.62 5.09 -3.04 2.05
F9 0.00 0.92 3.29 -0.97 6.55 ~-3.93 2.63
F10 0.00 0.89 1.88 0.91 5.7 -1.99 3.58
Fli 0.00 0.88 1.29 =0.45 5.86 =3.02 2.84
Fl2 0.00 0.88 3.03 =-1.20 5.63 -3.64 1.99
F13 0.00 0.89 3.03 -0.83 6.5% -3.92 2.62
Fl14 0.00 0.91 2.03 -0.34 5.82 -3.23 2.59
F1l5 0.00 0.86 0.77 -0.93 4.56 -3.15 1.41
Fl6 6.00 0.87 2.06 -0.80 5.53 =3.44 2.09
F17 0.00 0.86 1.39 -0.68 5.68 -3.76 1.92
F18 0.00 0.89 1.99 -1.13 5.2 ~3.54 1.69
F1l9 0.00 0.90 0.85 0.96 4.43 -~1.54 2.90
F20 0.00 0.88 2.48 -1.20 5.24 -3.58 1.66
F21 0.00 0.87 0.44 -0.18 5.49 -~2.79 2.70
F22 0.00 0.89 2.35 -0.84 5.93 -3.62 2.31
F23 0.00 0.93 0.87 -0.83 5.10 -3.34 1.76
Fz4 0.00 0.87 3.16 =-1.20 6.02 -~3.64 2.38
F25 0.00 0.89 2.13 -1.04 5.39 -3.38 2.02
F26 0.00 0.85 1.44 -0.39 5.67 -3.16 2.51
F27 0.00 0.90 1.62 1.02 5.26 -1.45 3.81
F28 0.00 0.90 2.99 -~1.30 5.45 -3.79 1.67
F29 0.00 0.88 1.717 -0.51 5.74 -3.28 2.46
F30 0.00 0.91 2.33 ~-1.28 5.24 -3.60 1.6%
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2Appendix B.9

S8ixty Observation Level Results for Empirical Data

STAT Mean st.dev. Rurt Skew Range Min Max

PCT1 80.88 1.15 -0.54 0.14 4.42 78.78 83.20
PCT2 72.67 1.26 0.30 -0.27 5.65 69.51 75.16
KMO 0.72 0.03 0.15 -0.51 0.12 0.65 0.77
MSA1 0.75 0.03 -0.55 0.01 0.13 0.68 0.81
MSAZ2 0.84 0.07 1.27 -1.41 0.23 0.68 0.91
MSA3 0.77 90.03 0.17 0.07 0.14 0.70 0.85
MSA4 0.81 0.03 -0.05 -~0.73 0.12 0.74 0.86
MSa5 0.81 0.04 1.06 -1.03 0.17 0.69 0.86
MSA6 0.75 0.05 -0.53 -0.15 0.18 0.67 0.84
MSA7 0.60 0.06 -0.17 ~0.46 0.23 0.46 0.69
M5A8 0.58 0.07 0.74 -0.61 0.30 0.40 0.70
MSA9 0.37 0.07 0.26 =-0.10 0.33 0.20 0.54
MSAL10 0.73 0.04 0.29 -¢.11 0.18 0.63 0.82
Ccl 0.75 0.03 -0.08 -0.29 0.12 0.68 0.80
Cc2 0.65 0.06 -0.47 0.00 0.21 0.54 0.75
C3 0.78 0.02 -0.90 -0.04 0.08 0.74 0.83
c4 0.74 0.04 -0.08 0.72 0.16 0.68 0.84
C5 0.7 0.03 -0.76 -0.38 0.10 0.69 0.79
Cé6 0.81 0.03 -0.32 0.16 0.11 0.76 0.86
Cc7 0.80 0.03 -0.10 -0.49 0.11 0.74 0.84
C8 0.85 0.03 0.05 -0.65 0.10 0.79 0.89
C9 0.51 0.07 -0.71  -0.27 0.29 0.36 0.65
C10 0.75 0.04 -0.54 -0.19 0.16 0.67 0.83
El 4.05 0.16 -1.21 -0.30 0.49 3.78 4,27
E2 2.84 0.15 ~-0.06 -0.51 0.63 2.48 3.11
E3 1.20 0.09 -0.82 0.12 0.33 1.03 1.36
E4 0.75 0.07 -1.25 -0.01 0.22 0.64 0.87
ES 0.37 0.05 0.90 0.42 0.23 0.27 0.51
E6 0.24 0.02 -0.94 0.08 0.07 0.20 0.27
E7 0.20 0.02 2.35 -0.91 0.09 0.15 0.23
E8 0.15 0.02 -0.86 -0.10 0.06 0.12 0.19
E9 0.12 0.02 -0.93 0.23 0.06 0.09 0.15
ELl0 0.08 0.01 -0.21 0.67 0.06 0.06 0.11
CcM1 0.80 0.07 -0.48 -0.53 0.24 0.66 0.91
CcM2 0.63 0.07 1.16 0.78 0.32 0.52 0.84
CM3 0.80 0.03 -0.35 -0.33 0.11 0.74 0.85
CcM4 0.80 0.05 0.20 0.96 0.17 0.73 0.91
CcM5 0.72 0.04 0.45 -0.16 0.18 0.63 0.81
CMé 0.87 0.05 -0.25 -0.10 0.21 0.76 0.97
cM7 0.68 0.04 -0.64 0.42 0.15 0.62 0.77
cM3 0.93 0.09 1.86 -1.52 0.37 0.63 1.00
CM9 0.34 0.19 1.01 1.17 0.80 0.07 0.86
CM10 0.70 0.09 -0.72 -0.30 0.32 0.51 0.83
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Appendix B.9 (continued)

STAT Mean st.dev. EKuxt Skew Range Min Max

EEL 3.81 0.16 -1.30 -0.24 0.50 3.55 4.05
EE2 2.62 0.16 -0.15 -0.46 0.68 2.25 2.94
EE3 0.84 0.10 -0.67 0.20 0.40 0.66 1.06
STAT Mean var. RKurt Skew Range Min Max

Fl 0.00 0.91 -0.66 -0.21 3.84 -2.13 1.72
F2 0.00 0.94 0.56 -0.26 4.88 ~2.85 2.04
F3 0.00 0.93 0.34 -0.61 4.72 -2.95 1.78
F4 0.00 0.94 0.61 -0.58 4.49 ~2.72 1.77
F5 0.00 0.96 0.62 -0.34 4.34 -2.39 1.95
F6 0.00 0.93 0.93 -0.76 4.82 -3.06 1.77
F7 0.00 1.05 -0.51 -0.02 4.28 -2.18 2.10
F8 0.00 0.93 0.00 -0.41 4.37 =2.43 1.94
F9 0.00 1.05 -0.29 -0.19 4.50 ~2.34 2.16
F10 0.00 0.97 -0.03 -0.46 4.28 -2.64 1.63
Fl1l 0.00 0.93 1.86 -1.12 4.67 -3.01 1.66
F12 0.00 0.97 ~0.16 -0.43 4.29 ~2.57 1.73
F13 0.00 0.95 0.13 -0.64 4.76 -2.78 1.98
Fl4 0.00 0.91 2.35 -1.29 4.72 -3.18 1.54
Fl5 0.00 0.93 0.64 -0.03 5.01L -2.28 2.73
Fl6 0.00 0.96 -0.19 -0.68 4.04 -2.71 1.33
F17 0.00 0.94 2.6L -1.18 4.91 -3.20 1.71
F18 0.00 1.00 ~0.47 -0.13 4.31 -2.00 2.31
Fl9 0.00 0.95 0.04 -0.58 4.30 ~-2.63 1.67
F20 0.00 0.96 ~0.37 -0.55 4.14 -2.69 1.45
F21 0.00 0.97 0.40 -0.28 4.91 -2.94 1.97
F22 .00 0.94 0.32 -0.74 4.50 -2.75 1.75
F23 0.00 0.92 0.16 -0.51 4.48 ~-2.52 1.96
F24 0.00 0.97 0.15 -0.98 3.93 -2.57 1.36
F25 0.00 0.94 0.97 -0.67 4.91 -2.77 2.14
F26 0.00 0.92 0.93 -0.81 4.58 -2.76 1.82
F27 0.00 0.96 0.21 -0.83 4.25 -2.69 1.56
F28 0.00 0.96 -0.10 -0.73 3.89 -2.48 1.41
F29 0.00 0.96 0.83 -1.06 4.34 -2.74 1.60
F30 0.00 1.00 -0.16 -0.54 4.05 -2.41 1.64



Appendix B.10
Fexrty Obsgervation Level Results for Empirical Data

STAT Mean St.dev. Kurt Skew Range Min

PCT1 79.95 4.85 -1.77 -0.36 13.43 72.68
PCT2 73.48 3.90 -1.41 -0.18 12.82 67.12
KMO 0.71  0.03 -0.18 -0.04 U.15 0.64
MSAl 0.74 0.06 1.46 -0.89 0.27 0.57
MSA2 0.85 0.05 0.69 -0.74 0.23 0.71
MSA3 0.76  0.05 0.12 -0.68 0.22 0.63
MSAa4 0.80 0.03 -0.52 -0.44 0.12 0.73
MSAS5 0.79 0.06 0.51 ~-1.02 0.25 0.64
MSA6 0.73 0.06 ~-0.02 0.01 0.27 0.60
MSA7 0.60 0.05 0.07 0.59 0.18 0.54
MSA8 0.56 0.05 0.25 0.23 0.22 0.47
MSA9 0.42 0.07 -0.58 -0.02 0.26 0.29
MSAL0 0.74 0.04 0.78 -0.88 0.18 0.62
Cl 0.79 0.03 -0.76 -0.26 0.13 0.73
c2 0.72 0.06 1.36 0.88 0.30 0.61
C3 0.84 0.02 -0.64 -0.09 0.08 0.79
C4 0.81 0.03 0.95 -0.80 0.16 0.72
CS 0.81 0.04 ~-0.08 0.05 0.18 0.71
cé6 0.87 0.03 -0.02 0.27 0.13 0.81
Cc7 0.84 0.03 -0.99 -0.02 0.10 0.79
Cc8 0.89 0.02 -0.32 -0.37 0.09 0.84
o) 0.60 0.08 -0.17 -0.14 0.32 0.42
C10 0.80 0.04 -0.16 0.42 0.15 0.74
El 4.36 0.21 -0.77 0.02 0.76 4.00
E2 2.97 0.14 -0.29 0.01 0.58 2.64
E3 1.04 0.10 -0.37 -0.03 0.42 0.82
E4 0.71 0.07 -0.48 0.13 0.29 0.57
E5 0.30 0.05 -0.52 -0.19 0.18 0.19
E6 0.20 0.02 0.46 -0.21 0.10 0.15
E7 0.16 0.02 -0.34 -0.31 0.07 0.12
ES8 0.12 0.02 0.07 0.15 0.0¢ 0.08
E9 0.09 0.01 -0.43 -0.07 0.65 0.07
E10 0.05 0.01 0.05 0.60 0.05 0.03
CM1 0.73 0.09 -1.10 0.01 0.31 0.58
cMm2 0.71 0.07 1.25 0.92 0.32 0.58
CM3 0.86 0.03 1.57 -0.64 0.14 0.78
CM4 0.85 0.04 ~-0.79 -0.18 0.14 0.78
CM5 0.73 0.05 0.86 0.90 0.20 0.65
CM6 0.90 0.05 -0.92 0.41 0.17 0.82
CcM7 0.72 0.07 5.18 1.64 0.37 0.62
CM8 0.84 0.11 -1.26 0.07 0.35 0.65
CM9 0.32 0.17 0.36 1.08 0.63 0.13
CM10 0.69 0.05 -0.90 0.35 G.19 0.61
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2ppendix B.10 (continued)

STAT Meaa st.dev. Xurt Skew Range Min

EELl 4.13 0.20 ~0.66 0.11 0.77 3.80
EE2 2.75 0.15 0.31 -0.36 0.63 2.38
EE3 ** 0.77 0.08 ~-1.15 0.09 0.26 0.64
STAT Mean var. Rurt Skew Range Min

Fl 0.00 0.98 0.39 -0.58 4.34 -=2.75
F2 0.00 0.98 6.69 -2.13 5.46 -4.07
F3 0.00 0.98 -0.06 -0.44 4,23 -2.55
F4 0.00 0.98 -1.03 -0.30 3.71 -2.10
F5 0.00 1.08 ~-0.45 0.08 4.26 -2.01
F6 0.00 0.97 -0.91 0.11 3.65 ~-1.75
¥7 0.00 0.98 0.29 -0.81 3.94 ~2.66
F8 0.00 0.95 0.74 -0.78 4.48 -2.75
F9 0.00 0.96 0.26 =-=0.70 4,13 -2.54
F10 0.00 0.98 0.94 -1.07 4.28 =-2.82
Fl1l 0.00 0.99 -0.15 -0.57 4.12 -2.58
Fi2 0.00 0.9¢6 -0.23 -0.53 3.78 -2.29
F13 0.00 1.00 -1.37 -0.20 3.07 -1.64
Fl4 0.00 0.96 -0.43 -~0.49 3.7 -2.24
F15 0.00 1.01 ~0.14 -0.43 4.36 -2.63
Fl6 0.00 0.97 0.12 ~0.58 4.24 -2.75
Fi7 0.00 0.99 -1.11 ~0.10 3.52 =-1.62
Fis8 0.00 1.0y -0.85 -0.26 3.92 ~-2.1b
F19 0.00 0.96 0.20 =~-0.74 3.79 -2.33
20 0.00 1.12 0.29 0.58 4,71 -1.91
F21 0.00 0.97 -0.52 =-0.43 3.98 -2.38
F22 0.00 1.00 0.50 0.61 4.44 -1.67
F23 0.00 0.98 0.02 -0.70 3.7 -2.31
F24 0.00 0.96 -0.73 ~0.48 3.44 -1.96
25 0.00 1.08 0.64 0.21 5.04 -2.13
F26 0.00 0.95 -0.17 -0.51 3.91 -2.32
F27 0.00 1.03 -0.02 0.01 4.48 -=-2.15
F28 0.00 0.99 -1.41 =-0.12 3.20 -1.58
F29 0.00 1.12 -0.14 -0.40 4.42 -2.62
F30 0.00 0.99 -0.94 -0.39 3.51 ~2.04

** - based on eighteen of thirty aggregations

Max
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Max
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.59
.38
.68
.61
.25
.90
.28
.73
.58
.46
.54

.43
.51
.73
.49
.90
.15
.46
.80
.60
17
.40
.48

.59
.33
.62
.80
.47
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Appendix C.1

Matrix of Spatial Dependencies for Uncontaminated Data

Variable 1

N
w
[2Y
54
o
~

1 0.001

2 0.014 0.007

3 0.007 0.031 0.004

4 0.200 -0.024 0.019 -0.008

5 -0.00L 0.008 =-0.016 0.007 -0.003

6 -0.003 -0.034 =~-0.027 0.008 0.050 -0.004

7 -0.017 0.003 0.033 -0.009 0.027 -0.020 -0.004

8 0.001L 0.055 0.022 0.026 0.008 -0.022 0.021

9 -0.005 0.020 -0.006 -0.015 -0.020 -0.008 0.055

10 0.008 -0.006 0.002 -0.037 -0.004 -06.017 0.015
8 S 10

8 ~-0.008

9 ~0.005 0.015

10 0.006 0.040 0.00S

- spatial autocorrelations are printed on the diagonal
- lagged correlations are printed on the off diagonal



Appendix C.2

Matrix of Spatial

Variable 1

.409
.191
.385
.390
.123
.050
.088
.062
.256

.33

i

DVLONAUTHWN R
¥
coooooooCo

-

8 0.286
9 -0.077
10 ~-0.129

0.

183

Dependencies for Contaminated Data

2 3 4 5 6 7
.359

103 0.405

.175 -0.402 0.493

.057 -0.165 0.239 0.316

.085 0.092 -0.115 -0.165 0.264

.142 0.035 -0.105 -0.040 -0.023 0.275
.039 0.080 -0.018 0.014 -0.018 0.005
.253 0.233 -0.301L -0.031 -0.023 0.071
.300 0.140 -0.266 -0.080 0.002 0.055
9 10

.339

.288 0.352

-~ gspatial autocorrelations are printed on the diagonal
-~ lagged correlations are printed on the off diagonal
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Appendix C.3

Empirical Data Set

Variable 1 2 3 4 5 6 7
1 0.280
2 -0.185 0.196
3 0.329 -0.175 0.638
& -0.276 0.133 -0.445 0.360
5 -0.267 0.344 ~0.262 0.185% 0.612
6 0.216 -0.264 0.258 -0.100 -0.414 0.356
7 -0.072 -0.045 -0.297 0.311 -0.063 0.15%9 0.4%69
8 0.082 -0.217 -0.148 0.159 -0.240 0.296 0.470
9 0.134 -0.074 0.223 -0.134 -0.087 0.132 0.037
10 -0.065 0.191 0.022 -0.051 0.3%7 -0.251 -0.203
8 9 10
8 0.594
9 -0.017 0.253
10 -0.300 -0.021 0.255

- spatial autocorrelations are printed on the diagonal
- lagged correlations are printed on the off diagonal
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